
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

Anna Rodum
 Bjøru

The im
portance of disentanglem

ent w
hen learning representations

Anna Rodum Bjøru

The importance of disentanglement
when learning representations

Master’s thesis in Computer Science
Supervisor: Helge Langseth
September 2021

M
as

te
r’s

 th
es

is

Anna Rodum Bjøru

The importance of disentanglement
when learning representations

Master’s thesis in Computer Science
Supervisor: Helge Langseth
September 2021

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science

i

Abstract

The field of disentangled representations has been suggested a promising avenue in
search of robust and generalisable machine learning algorithms and increased data
e�ciency. It has in recent years received a lot of interest.

The key assumption leveraged by disentangling methods is that raw data is
generated by a set of factors of variation, referred to as generative or explanatory
factors. Such factors are considered to correspond to inherent properties of the
data, each factor encoding a unit of information present in the data that is both
semantically meaningful and statistically independent of all other factors. Disen-
tangling techniques should attempt to capture and disentangle as many factors as
possible describing the data distribution in a compact, low dimensional space.

This thesis provides a thorough review of disentangled representation learning
and its theoretical foundation, looking at various methods presented in the field
that aim to learn disentangled representations, covering both unsupervised and
supervised approaches. Also reviewed are evaluation techniques introduced as to
reliably determine the level of disentanglement achieved by the methods, briefly dis-
cussing some qualitative approaches and then looking in-depth at the quantitative
disentanglement metrics most prevalent in the literature.

It is commonly perceived that disentangled representations would provide an
advantage in learning models to solve downstream tasks. It is however not yet
clear to what extent enforcing disentanglement results in representations that ex-
hibit such an advantage. This thesis presents results that support the hypothesis
that increased disentanglement results in improved downstream model accuracy.
Both overall performance as well as limited sample performance of simple down-
stream tasks are shown to correlate well with disentanglement as measured by both
unsupervised and supervised disentanglement metrics.

ii

Sammendrag

I jakten p̊a generaliserbare, robuste maskinlæringsalgoritmer, samt økt datae↵ek-
tivitet, har fagfeltet ”disentangled representation learning” i de senere år utviklet
seg i en lovende retning, og feltet har vært gjenstand for stor interesse.

Nøkkelantagelsen i sentrum for disentanglement g̊ar ut p̊a at høydimensjonale
r̊adata genereres fra et sett med generative faktorer, det vil si faktorer som hver
for seg forklarer iboende egenskaper ved r̊adataene, under en antagelse om at hver
faktor isolert er semantisk meningsfull og statistisk uavhengig av alle andre faktorer.
For et gitt datasett er målet med disentanglement å lære lavdimensjonale data-
representasjoner best̊aende av komponenter som tilsvarer de generative faktorene.

Denne masteroppgaven inneholder en grundig studie av disentanglement i repre-
sentasjonslæring, og de teoretiske ideene som ligger til grunn, med fokus p̊a forskjel-
lige metoder introdusert innenfor feltet som forsøker å lære modeller som lykkes i
disentanglement. Her er metoder som benytter b̊ade veiledet og ikke-veiledet læring
inkludert. I tillegg presenteres en studie av kvalitative og kvantitative evaluer-
ingsteknikker som forsøker å fastsette graden av disentanglement oppn̊add gitt en
modell.

Selv om det innenfor feltet er en felles oppfatning om at data-representasjoner
som oppfyller disentanglement vil være godt egnet til å løse nedstrøms læringsopp-
gaver, er det fortsatt uklart i hvilken grad en slik fordel kan knyttes til disentan-
glement. I denne oppgaven presenteres resultater som støtter hypotesen om at
disentanglement fører til bedre prestasjon hos enkle modeller som løser nedstrøms
læringsoppgaver, b̊ade overordnet og i tilfeller der lite data er tilgjengelig. Grad
av nøyaktighet i løsning av læringsoppgaver vises å korrelere godt med disentan-
glement målt b̊ade av teknikker som krever kjennskap til de generative faktorene
og deres verdier, samt av teknikker som ikke gjør antakelser om de underliggende
generative faktorene.

iii

Preface

This master thesis was performed at the Department of Computer Science (IDI) at
the Norwegian University of Science and Technology (NTNU). The thesis is situated
in the field of machine learning, and is a continuation of a project report I wrote in
2020.

I would like to thank my supervisor Professor Helge Langseth for inspiring dis-
cussions and invaluable guidance through my work.

Anna Rodum Bjøru Trondheim, September 17, 2021

iv

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Goals and Research Questions . 3
1.3 Thesis Structure . 3

2 Background Theory 5
2.1 Introduction . 5
2.2 Deep Learning . 5
2.3 Variational Inference . 10

3 Disentangled representation learning 15
3.1 Introduction . 15
3.2 Representation learning . 15
3.3 Disentangled representations . 18
3.4 Unsupervised disentanglement . 21
3.5 Supervised disentanglement . 26

4 Disentanglement Evaluation 31
4.1 Introduction . 31
4.2 Qualitative Evaluation . 31
4.3 Quantitative evaluation . 34

4.3.1 Supervised metrics . 34
4.3.2 Unsupervised metrics . 51

5 Experiments and Results 55
5.1 Experimental Plan . 55
5.2 Experimental Setup . 57

5.2.1 Metrics . 57
5.2.2 Dataset . 59
5.2.3 Disentanglement learning models 61
5.2.4 Predictors . 61
5.2.5 Computations . 62

5.3 Experimental Results . 62

6 Evaluation and Conclusion 75
6.1 Evaluation and discussion . 75
6.2 Contributions . 77

v

vi CONTENTS

6.3 Future work . 78

Bibliography 80

Appendices 85

Appendix A Minibatch Weighted Sampling 85

Appendix B The dSprites dataset 89

Appendix C Metric convergence 93

Appendix D DisentanglementLib models 95
D.1 Model Architecture . 95
D.2 Model hyperparameters . 97

Appendix E Results 99
E.1 Modularity . 99
E.2 UDR . 101
E.3 Metric scores . 102
E.4 Spearman correlation coe�cients 104

List of Figures

2.1 Transformation details . 6
2.2 Feedforward networks . 7
2.3 Advanced layer connections . 8
2.4 Autoencoder . 10
2.5 Directed graphs . 11

3.1 Representation learning . 16
3.2 Generative Adversarial Network . 25
3.3 Supervised generative models . 28

4.1 Traversals �-VAE . 32
4.2 Traversals InfoGAN . 33
4.3 Qualitative evaluation of DIVA . 34
4.4 From ground truth to representations 36
4.5 Z-di↵ and Z-min Variance metrics 39
4.6 Z-di↵ and Z-min Variance failure mode 40

5.1 Experiment design . 56
5.2 Samples from the dSprites dataset 60
5.3 Nonlinear DCI metric convergence 60
5.4 Linear DCI metric convergence . 60
5.5 Metric correlation matrix . 63
5.6 Predictor-metric correlation matrix 65
5.7 UDR scatter plots . 66
5.8 UDR scatter plots continued . 67
5.9 CCI-VAE order of factor encoding 68
5.10 UDR scatter plots continued . 68
5.11 UDR correlation on CCI-VAE models 69
5.12 Predictor-metric correlation excluding CCI-VAE 70
5.13 UDR correlation . 71
5.14 UDR plotted against linear prediction of shape and size 72
5.15 Predictor correlation with disentanglement of factor subsets 73

6.1 dSprites with added grey square . 78
6.2 Model specific scatter plots . 80

B.1 Factor 0 - shape . 89
B.2 Factor 1 - size . 89

vii

viii LIST OF FIGURES

B.3 Factor 2 - orientation . 90
B.4 Factor 3 - position X . 91
B.5 Factor 4 - position Y . 92

C.1 Metric convergence . 93
C.2 Metric convergence continued . 94

E.1 Modularity metric correlation . 100
E.2 UDR scores plotted against supervised metric scores 101
E.3 Average modularity scores . 102
E.4 Average compactness scores . 103
E.5 Average explicitness scores . 103
E.6 Figure 5.6 Spearman equivalent . 104
E.7 Figure 5.12 Spearman equivalent 105
E.8 Figure 5.13 Spearman equivalent 106
E.9 Figure 5.15 Spearman equivalent 107

List of Tables

4.1 Modularity, compactness and explicitness 35
4.2 Supervised disentanglement metrics 50

5.1 Pretrained model parameters . 61

A.1 Minibatch Weighted Sampling . 86

B.1 dSprites dataset factors of variation 89

D.1 Variational encoder architecture . 95
D.2 Decoder architecture . 96
D.3 Factor-VAE discriminator architecture 96
D.4 Model hyperparameters . 97
D.5 Discriminator hyperparameters . 97

ix

x LIST OF TABLES

Notation

x - scalar

x - vector

X - matrix

X - tensor

xi - element of vector x located in row i

xi,j - element of matrix X located in row i, column j

xi,j,k - element of 3D tensor X located in row i, column j, and
at depth k

x\i - all elements of x except for element in row i

x - scalar random variable

x - vector random variable

p(x) - probability distribution over random variable x

x ⇠ p - random variable x with distribution p

Ex⇠p[q(x)] - The expected value of q(x) with x having distribution p

DKL(qkp) - Kullback-Leibler divergence of probability distributions
q and p

p̂X - The empirical distribution given by a dataset

p⇤
X

- The true generating distribution of the data in the
dataset

p✓ - The distribution function given by a model with
parameters ✓

N (x;µ,⌃) - Gaussian distribution over random variable x with
mean µ and covariance ⌃

xi

xii NOTATION

X - The dataset with examples

x(i) - The i’th example of a dataset X

y(i) - The target attached to the i’th example of a supervised
dataset X

ŷ - Prediction made by a function f from input x, ŷ = f(x)

Chapter 1

Introduction

1.1 Motivation

Learning useful data representations is considered one of the main contributions to
the success of machine learning over the last decades, and the potential of machine
learning algorithms is to a large extent determined by how the data they receive as
input is represented [Bengio et al., 2014]. In general terms, representation learning
is the process of learning what features best describe the data, and a good data
representation is one that proves useful as input to a learning algorithm solving
some learning task. If the task in question is solved satisfactorily on the given input,
the representation learning algorithm has succeeded in extracting useful information
from the data and making it accessible for the algorithm solving the task.

Traditional techniques for creating good data representations typically require
human involvement, where features are explicitly designed leveraging domain knowl-
edge about the data at hand. Such techniques are referred to as feature engineering,
and can quickly get time consuming and even infeasible in cases concerning large
sets of complex data. Consequently, representation learning algorithms that receive
raw, often high dimensional data as input and produce good data representations
for any subsequent tasks to be solved is desirable in the search for artificial in-
telligence, removing the need for human involvement through feature engineering
and arriving at increasingly flexible and e�cient solutions, possibly applicable to a
diverse set of problems

Particularly interesting perhaps is unsupervised representation learning, where
one attempts to learn representations for data through unsupervised learning using
unlabeled data. Labeled data is then preprocessed by applying the trained rep-
resentation model before a supervised learning model is trained on the resulting
representations. As unlabeled data is typically much easier to collect than labeled
data, semi-supervised learning has the potential to take advantage of far more ex-
tensive information found in possibly vast unlabeled datasets. Such techniques can
help in preventing overfitting, resulting in models that generalize better to unseen
data and in turn increase accuracy of predictions. It is generally considered that
unsupervised representation learning has potential to drive machine learning to-
ward significant progress. This belief is also supported by a hypothesis suggesting
that learning conducted by the human brain is largely unsupervised, in that hu-

1

2 CHAPTER 1. INTRODUCTION

mans learn the structure of the world mainly from observation [LeCun et al., 2015],
requiring only a few labeled examples.

Deep learning provides examples of highly successful representation learning
algorithms, often taking images, video, sound or text as input and creating repre-
sentations through multiple layers in deep neural networks, separating out features
and recombining them in new ways in order to improve performance in the last layer
of the network, where a learning task is solved [Goodfellow et al., 2016]. This way,
deep networks implicitly leverage an assumption that useful features are gradually
built on top of each other, allowing for hierarchies of increasingly abstract features
approaching the last layer.

Taking advantage of the assumption that new, more useful features can be build
on top of less abstract features starting from raw data input has led deep neural
networks to be able to solve a range of complex tasks. Similarly, other general
assumptions about the world can be expressed in representations, providing general
representations that can be used in a wide range of problem solving tasks [Bengio
et al., 2014]. Such assumptions are also referred to as priors.

Generative factors of variation, also referred to as explanatory factors, is an
interesting example of such priors. This is an assumption that raw data, or more
precisely the world state described by the raw data, is generated by a set of under-
lying mutually independent factors, where recovering all or most of these factors
in a disentangled structure would provide an e�cient, flexible representation [Ben-
gio et al., 2014]. Each factor is expected to change its value independently of the
configuration of the remaining factors, and learning a representation is reduced to
learning the distribution of each of the generative factors given any input. Such a
representation would allow for generalisation to factor combinations not necessarily
encountered during training, capturing the full data distribution, from potentially
less data.

Learning representations that disentangle the generative factors of data has
been suggested to be a robust approach to representation learning [Bengio et al.,
2014; Higgins et al., 2018; Locatello et al., 2019], with the goal being to capture
and disentangle as many factors as possible describing the data. A disentangled
representation should contain all or most of the information present in the original
data, encoded in an interpretable structure that axis aligns with the generative
factors, which are assumed to correspond to semantically meaningful concepts.

The approaches to recovering disentangled representations presented in the liter-
ature are diverse and range from purely unsupervised methods to methods requiring
di↵erent levels supervision. Overall, representing the data by disentangled repre-
sentations is suggested beneficial in enabling machine learning to solve problems
more e�ciently and flexibly, producing general representations that could poten-
tially serve as useful input to many di↵erent learning tasks, unknown at the time
of representation learning.

1.2. GOALS AND RESEARCH QUESTIONS 3

1.2 Goals and Research Questions

A review of the goal of this masters project is presented in the following, with two
research questions highlighted.

Goal To explore advantages of disentangled representations when solving down-
stream prediction tasks

Representing high-dimensional raw data by disentangling generative factors is
suggested beneficial. As mentioned in Section 1.1, one main motivation behind
attempting to learn disentangled representations is the hypothesis that such repre-
sentations will result in improved performance in downstream learning tasks.

Research question 1 Do existing disentanglement evaluation techniques reliably
quantify disentanglement?

Quantifying the impact of disentangled representation learning on the perfor-
mance of downstream prediction tasks requires being able to reliably measure dis-
entanglement. In order to examine the e↵ect of disentanglement, metrics should
preferably be unambiguous and precise in determining level of disentanglement.

Research question 2 Will unsupervised disentanglement improve downstream per-
formance on simple prediction tasks?

Unsupervised models enable general learning of disentanglement, where repre-
sentations are learned independently of the downstream tasks in question. Given
reliable measures of disentanglement, impact of disentanglement on the ability of a
subsequent model to solve learning tasks can be examined.

1.3 Thesis Structure

The thesis consists of six chapters, where Chapter 1 provides an introduction.
Chapter 2 contains an overview of background theory useful in understanding

the material discussed in the remaining chapters. This includes a brief review
of deep learning models in Section 2.2, as well as an introduction to variational
inference in Section 2.3.

Chapter 3 provides a literature review of disentangled representation learning.
Section 3.2 discusses representation learning in general and Section 3.3 continues
the discussion by introducing the disentanglement property and the variational
autoencoder. The rest of chapter 3 gives an overview of some approaches attempting
to learn disentangled representations, with Section 3.4 focusing on unsupervised
methods and Section 3.5 focusing on supervised methods.

Chapter 4 provides a review covering the evaluation methods used to measure
how well a representation learning model disentangles. Section 4.1 gives a brief
introduction to disentanglement evaluation, Section 4.2 presents some qualitative
evaluation techniques commonly encountered in the disentanglement literature, and

4 CHAPTER 1. INTRODUCTION

Section 4.3 presents quantitative evaluation techniques, covering a set of metrics
designed to measure model disentanglement.

Chapter 5 presents the results of experiments designed to test whether increas-
ing disentanglement results in representations that improve prediction accuracy of
downstream tasks. The experiment plan and setup is detailed in Sections 5.1 and
5.2, and Section 5.3 describes the experiment results.

Chapter 6 concludes the thesis, with Section 6.1 presenting an evaluation of
the results presented in Chapter 5, Section 6.2 detailing the contributions of the
master’s project and Section 6.3 discussing future work.

Chapter 2

Background Theory

2.1 Introduction

This chapter presents an overview of background theory, with Section 2.2 covering
deep learning and Section 2.3 covering variational inference. The material presented
in Chapter 2 is based on [Goodfellow et al., 2016]. An earlier version of the chapter
was included in [Bjøru, 2020].

2.2 Deep Learning

Machine learning attempts to learn useful patters from a set of data points X =
{x(1),x(2), ...,x(n)}, such that these patterns can be generalized to new, unseen data.
Developing powerful machine learning algorithms is considered to be one of the
most promising ways of achieving artificial intelligence. Deep learning is a sub-field
of machine learning that covers a set of flexible, powerful algorithms and models
designed to solve complex learning problems, both supervised and unsupervised.
This section attempts to give a brief review of deep learning and some useful related
concepts.

The simplest deep learning models are based on taking a�ne transformations
of the input x and applying a nonlinear mappings � to the result. An a�ne trans-
formation is made up of a linear transformation Wx and a constant term b, such
that if a = Wx + b for vector-valued x, a matrix W and a vector b, then a is
an a�ne transformation of x. For x 2 R

i and a 2 R
j, where i and j are inte-

gers, W 2 R
i⇥j and b 2 R

j. Applying a nonlinear mapping to a gives a function
f(x) = �(Wx + b). The details of the matrix calculations for such vector-valued
inputs x are outlined in Figure 2.1. The calculations extend to tensor-valued inputs
of 3 or more dimensions.

The functions f(x) = �(Wx+b) are also called layers, or simply transformations
of the input x. Several such transformations can be stacked by function composition

5

6 CHAPTER 2. BACKGROUND THEORY

(a)
(b)

Figure 2.1: a) Details of the matrix calculations of the transformation between
input x and �(Wx + b) = h in a deep learning model. x 2 R

i and h 2 R
j for

positive integers i, j. b) The mapping � is applied elementwise to each entry of
Wx+ b to produce the entries of h.

to create a deep model:

h1 = �1(W1x+ b1)

h2 = �2(W2h1 + b2)
...

hn = �n(Wnhn�1 + bn)

ŷ = �o(Wohn + bo)

Here each h denotes an internal layer of the model, also called a hidden layer,
and the ŷ denotes the output of the model. The type of each of the nonlinear
mappings in {�1,�2, ...,�n,�o} is usually chosen ahead of training, while the tensors
W = (W1,W2, ...,Wn,Wo) and B = (b1, b2, ..., bn, bo) constitute the parameters of
the model that are assigned values during training of the model. The parameters
of W are usually called the weights of the model, and those of B are called biases.
Sometimes these parameters are also denoted jointly as ✓, with ✓ = {W ,B}.

A model made up of an arbitrary number of such layers is called a feedforward
neural network, also known as a multi-layer perceptron (MLP). Figure 2.2a shows
an example. It is referred to as fully connected, meaning that each entry in a layer is
connected to each entry in the next layer, such that every entry in hi�1 contributes
information to the calculation of every entry in hi. Figure 2.2b illustrates this. The
term neural network is also used more generally to refer to any deep learning model.

The neural networks act as function approximators that can approximate any
function with accuracy depending on the depth and width of the network. Depth
here refers to the number of hidden layers, while width refers to the number of
entries in the layers. The universal approximation theorem states that a network
with one hidden layer can approximate any continuous function y = f(x), where
x 2 R

n and y 2 R
m for arbitrary positive integers n and m, such that increasing

the with of the hidden layer increases the accuracy of the approximation. That is,
a network ŷ = g(x) = W2(�1(W1x + b1) can be constructed such that for x 2 X,
|f(x)� g(x)| < ✏ for arbitrarily small ✏. However, this may not always be feasible
in practice due to computational limitations, and more layers are often introduced
as an attempt at improving the approximation while restricting the network width.

2.2. DEEP LEARNING 7

(a) (b)

Figure 2.2: a) A common way to draw a graph of the layers of a feedforward neural
network. The arrows represent the transformations hi = �i(Wihi�1+bi) from layer
to layer. b) This graph shows the connections between entries in two subsequent
layers. Each entry in layer i� 1 contributes information in the calculation of each
entry in layer i, weighted by the corresponding entry in Wi. Analogous to the
calculations in Figure 2.1b, for hi,1 the calculation is hi,1 = wi;1,1hi�1,1+wi;1,2hi�1,2+
...wi;1,khi�1,k+bi;1. Here, hi�1 2 R

k and hi 2 R
m, wherem and k can be any positive

integer chosen independently as part of the model architecture.

Other important types of deep learning models include convolutional neural
networks (CNN) and recurrent neural networks (RNN). Convolutional networks
make use of simplified connections between layers, removing some connections and
using shared parameters for other connections. Figure 2.3a illustrates this concept.
These types of models work well with structured data such as images, where pixel
location, as well as pixel value, contain information about the data it represents.

Recurrent networks uses backwards connections, which are connections from
layers back to themselves or from deeper layers in the model back to preceding
layers. This allows the network to remember information from previous input.
This is useful when modelling time series data etc. Figures 2.3b and 2.3c illustrates
this.

If the dataset X contains data examples with attached targets y, i.e. the task is
to perform supervised learning, the output ŷ of the network can be modelled to
solve both regression and classification tasks. In the case of regression, the output
can be interpreted directly, and in the case of classification, if the length of the
output vector ŷ is set to match the number of classes, it can be passed through
an elementwise softmax function to produce normalised probabilities of how likely
it is that the input belongs to each class. Regression and classification are both
examples of predictive learning tasks.

The network is trained by optimizing a suitable objective function. In the super-
vised case where X = {(x(i),y(i))}n

i=1, where n is the size of the dataset, maximum
likelihood estimation is a common way of performing such optimization. The log
of the likelihood of the data is maximised in order to learn the parameter values

8 CHAPTER 2. BACKGROUND THEORY

(a)
(b) (c)

Figure 2.3: a) This graph shows sparse connections between layers, where only a few
nodes in a layer contributes information to each node in the next layer. Parameters
are shared for the remaining connections, indicated by the di↵erent coloring of the
arrays. In this graph, all red arrays share the same weight parameter, and similarly
the green and blue arrows. b) A graph of a recurrent neural network, where there
is an additional parametric connection from a hidden layer h back to itself. c) An
illustration of the parametric connections in 2.3b when unfolded over several time
steps. For each time step t, Wh carries information from ht�1 into ht

{W ,B}, which is equivalent to minimizing the negative log-likelihood:

J(W ,B) = �E(x,y)⇠p̂X [log pW ,B(y|x)] (2.1)

Here, p̂X is the function describing the dataset distribution, and pW ,B is the function
the network optimises.

If y|x is assumed to have a Bernoulli distribution, with y 2 {0, 1}, this is
equivalent to minimising the cross entropy between the empirical distribution of
the training data and pW ,B:

J(W ,B;x,y) = �
X

n

y log ŷ + (1� y) log(1� ŷ) (2.2)

If y|x is instead assumed to have a Gaussian distribution, maximising the log-
likelihood becomes equivalent to minimising the mean squared error between the
true value y and the predicted value ŷ. This is also known as the L2-error:

J(W ,B;x,y) =
1

2

X

n

ky � ŷk2 (2.3)

The networks are usually trained to optimise the objective function through
stochastic gradient descent using backpropagation, an algorithm that allows for
e�cient calculation of the objective function derivatives with regards to each of the
learnable parameters in {W ,B}.

A regularisation term can be added to the objective function to improve the
model’s ability to generalize to new, unseen data. One way of doing this is by
adding restrictions to the values the parameters can take during training. This can
be done by adding a second term to the objective function J :

Jreg(W ,B;x,y) = J(W ,B;x,y) + ↵⌦(W ,B) (2.4)

2.2. DEEP LEARNING 9

where ↵ is a hyperparameter weighting the contribution of the new regularization
term to the full objective. A simple example is L2-regularization, where the squared
L2-norm of the W parameters is added to the objective function. The L2-norm of
a vector or matrix is defined as the square root of the sum of all its entries squared,
hence for L2-regularisation, the ⌦-term is given as ⌦(W) =

P
m

i=1

P
n

j=1

P
l

k=1 w
2
i,j,k

A subfield of machine learning that is closely related to deep learning, is represen-
tation learning. It is concerned with the layout of the data that is presented to
a learning algorithm, and what features are used to describe it. The data repre-
sentation refers to these features, their content and their location relative to each
other. One example is the three-dimensional tensor of pixel values that represents
a colour picture. In this case, the tensor is the picture representation, while each
tensor entry - representing the blue, green or red content of a single pixel - is a
feature. Another example is using vector-valued representations for each word in a
vocabulary when dealing with natural language learning tasks. These vectors are
called word embeddings.

Machine learning is highly dependent on good data representations in order
to get good results on most learning tasks. Choosing the right set of features
through feature engineering has been shown to improve performance greatly. How-
ever, most techniques for successfully choosing feature representations require some
form of human expert involvement and is therefore expensive on large datasets. A
lot of research is invested in finding ways that machine learning itself can learn
good representations for the data it is presented with, that in turn can be used in
downstream tasks like regression, classification etc.

Deep learning models provide subsequent layers h, each being a new transfor-
mation of the original input x. These can be interpreted as new representations
of x, with a set of new features which are constructed from the original content of
x, adjusted according to each transformation in order to better solve the learning
task. During training the models are implicitly encouraged to recognise the parts
of x that are useful in solving the task, while ignoring the parts that are not. Each
new layer transformation hi can be seen as providing a representation that is more
abstract relative to the hi�1 it is built on top of, hopefully containing features that
are better adapted to solving the task at hand.

One example that illustrates this point of view, is the autoencoder. This model
is made up of an encoder network, f✓f

(x) , and a decoder network, g✓g(z) , shown in
Figure 2.4. The encoder takes as input x and calculates an output z = f✓f

(x), and
the decoder takes the z as its input and tries to output a reconstruction x̂ = g✓g(z)
that is as close to the original x as possible. The model parameters ✓f and ✓g

are trained together, often denoted jointly by ✓. Training is conducted by using
x as both input and target. This can be interpreted as trying to make a good
representation z of x, since the decoder has to reconstruct x from z, with z often
called a latent code, or a feature vector. The autoencoders capability to reconstruct
x is learned by minimizing an objective function based on a reconstruction error
between x and x̂ = g✓g(f✓f

(x)). Often the autoencoder is regularised in some
way to make sure it learns useful representations z. f✓f

and g✓g can be modelled
as anything from simple single-layer networks to more complex convolutional or

10 CHAPTER 2. BACKGROUND THEORY

Figure 2.4: The autoencoder, composed of an encoder network and a decoder net-
work. The black arrows represent parametric connections, the rectangles represent
an arbitrary number of hidden layers, and the red arrows represent the output of
the encoder passed on unchanged as input to the decoder

recurrent networks, depending on the complexity of the input x.

So far the models discussed have been based on deterministic mappings between lay-
ers, where moving from one layer to the next is a computational step. Another way
to consider this is that the layer values calculated for an input x after training are
point estimates of underlying probability distributions. By using the same learning
techniques discussed here to train probabilistic models, combined with techniques
for approximating inference, layers can be modelled to learn these distributions and
to sample values from them. The next section in this chapter as well as Chapter
3 discuss inferring distributions over the values of the hidden layer nodes and the
output layer nodes.

The next section covers variational inference, which is a way of approximating
inference in complex probabilistic models.

2.3 Variational Inference

Probability theory deals with uncertainty, extending the formal rules of logic to
allow for reasoning about uncertain events, in order to determine and quantify the
likelihood of the events occurring. Probabilistic learning utilize probability theory
to account for uncertainty when learning a model to fit the data. Given a dataset
X, probabilistic learning models attempt to find a set of parameters ✓ of a function
p✓ describing a probability distribution that is likely to have generated the data,
i.e. p✓ is a probability density function or a probability mass function.

In this text, p̂X denotes the probability mass function of the empirical distribu-
tion that is determined by the dataset X at hand. p⇤

X
denotes the function assumed

to describe the true underlying probability distribution seen as having generated the

2.3. VARIATIONAL INFERENCE 11

(a)
(b)

Figure 2.5: a) A directed graph showing the conditional dependencies between vari-
ables z and x that have joint distribution p(x, z) =

Q
n
p(zn)

Q
m
p(xm|z1, z2, ..., zn).

b) A more compact representation of the graph in a).

data in the dataset, often called the data generating distribution. p✓ is the function
learned by the model with the goal of approximating p⇤

X
as closely as possible.

To solve the supervised learning problem of predicting ŷ from x using proba-
bilistic learning, would require modelling p✓(y|x). Assigning a target value for a
given x can then be achieved by sampling a value ŷ ⇠ p✓(y|x = x), or by return-
ing the expected value ŷ = Ey⇠p✓(y|x=x)[y]. Alternatively, an unsupervised learning
problem could require modelling the function p✓(x) by trying to approximate p⇤

X
(x).

In probability learning, the functions p✓ are learned by inference, that is the process
of predicting unknown properties or quantities of underlying probability distribu-
tions of a set of random variables from a given set of observations for some of these
random variables.

The remainder of this section considers the case of unsupervised learning given
unlabeled data X = {x(1),x(2), ...,x(n)}. The samples in X is considered observa-
tions of a random variable x, referred to as an observed, or visible, random variable.
Thus x(i) for 1  i  n are assumed to be x(i) ⇠ p⇤

X
(x). From this dataset, the

data distribution p⇤
X
(x) is wanted modelled by some probabilistic model p✓(x).

In order to do so, it is often included in the model a set of unobserved random
variables, denoted z, of which there are no observations. These are also referred to
as hidden or latent random variables. One common way to model the variables x
and z is to assume that they form a directed graph z! x, shown in Figure 2.5. In
such a model, each of the variables in x is dependent on each variable in z, but there
are no dependencies within the sets x and z. The joint probability is therefore:

p(x, z) = p(z)p(x|z) =
Y

n

p(zn)
Y

m

p(xm|z1, z2, ..., zn) (2.5)

where m is the number of variables in x and n is the number of variables in z.
The variables z can be seen as a way of representing the data x, with p✓(x) =R
p✓(x|z)p(z)dz = Ez⇠p(z)p✓(x|z).
The following equation is known as Bayes’ rule, or Bayes’ theorem:

p(z|x) = p(x|z)p(z)
p(x)

(2.6)

12 CHAPTER 2. BACKGROUND THEORY

Bayes’ rule is the foundation of Bayesian inference. For a set of observations x for
the observed variables x, the inference task is often dependent on the computation
of a probability distribution over the unobserved variables z, given these observa-
tions. When used in the context of inference, the di↵erent terms of Bayes’ rule are
interpreted as follows:

– p(z) - The prior probability. This term reflects any existing belief about the
probability of the values of z before the x are observed.

– p(x|z) - The likelihood. This term gives the probability of the observations of
x for values of z .

– p(x) - The marginal likelihood, also called the model evidence. This is
the distribution over the observed variables x marginalised over z: p(x) =R
p(z)p(x|z)dz

– p(z|x) - The posterior probability. This term gives the probability distribution
over z after observing x, and is often the term being inferred.

In many probabilistic models, exact inference can be computed using di↵erent
algorithms. However, the probability models that are usually come across in the
context of deep learning, are too complex to allow for exact inference in a reasonable
amount of time, and techniques for approximating inference are therefore often used
instead.

Variational inference is a general technique to perform approximate inference by
viewing inference as an optimization problem, where the goal is to maximize some
modelled probability distribution over the observed x. Ideally, this would mean
solving max

✓
Ex⇠p̂Xp✓(x), or equivalently max

✓
Ex⇠p̂X log p✓(x). However, as solving

max
✓

Ex⇠p̂X log p✓(x) is often intractable, the evidence-lower bound (ELBO) on the

log-likelihood Ex⇠p̂X log p✓(x) can be maximized instead. The ELBO is defined to
be:

L(✓, q,X) = Ex⇠p̂X [log p✓(x)�DKL(q(z|x)kp✓(z|x))] (2.7)

and is a lower bound on the log-likelihood for any distribution q over z. The
DKL term in Equation (2.7) is the Kullback-Leibler divergence (KL divergence), a
dissimilarity measure between two probablity distributions q and p, defined as:

DKL(q(x)kp(x)) = Ex⇠q(x)[log
q(x)

p(x)
] (2.8)

DKL � 0 always holds, ensuring that Equation (2.7) is indeed a lower bound on the
log-likelihood.

While still containing the intractable log p✓(x) term in Equation (2.7), the ELBO

2.3. VARIATIONAL INFERENCE 13

objective can be reformulated as follows:

L(✓, q,x) = log p✓(x)� Ez⇠q[log
q(z|x)
p✓(z|x)

]

= log p✓(x)� Ez⇠q[log
q(z|x)
p✓(z,x)
p✓(x)

] (2.9)

= log p✓(x)� Ez⇠q[log q(z|x)� log p✓(z,x) + log p✓(x)]

= log p✓(x)� log p✓(x)� Ez⇠q[log q(z|x)� log p✓(z,x)]

= �Ez⇠q[log q(z|x)� log p✓(z)p✓(x|z)]
= �Ez⇠q[log q(z|x)� log p✓(z)� log p✓(x|z)]
= Ez⇠q[log p✓(x|z)]�DKL(q(z|x)kp✓(z))

Now, the ELBO version in the last line of Equation (2.9) is a lower bound on
the maximum log-likelihood of the data that contains neither the term p✓(x) nor
p✓(z|x), and if q is carefully chosen, max

✓
L(✓, q,x) will allow for tractable optimiza-

tion.
One example of this approach is called mean field, where the q distribution is

restricted to be a factorial distribution:

q(z|x) =
Y

i

qi(zi|x) (2.10)

The optimization problem would solve for parameters of each qi.
Generally, restrictions on q can be made according to each specific learning

problem in ways that make sure the inference by optimization is tractable.

14 CHAPTER 2. BACKGROUND THEORY

Chapter 3

Disentangled representation
learning

3.1 Introduction

This chapter presents a literature review of disentangled representation learning,
with Section 3.2 discussing representation learning in general and Section 3.3 intro-
ducing the disentanglement property and the variational autoencoder. Section 3.4
presents a set of unsupervised disentanglement methods, and Section 3.5 presents
a set of supervised methods. Parts of this chapter is based on a preliminary review
performed in [Bjøru, 2020].

3.2 Representation learning

Section 2.2 introduced the concept of creating good representations for improved
machine learning performance. This section continues the discussion on data rep-
resentations in the context of deep learning.

One important advantage of the deep learning models is their ability to produce
distributed representations of the data. A distributed representation is a represen-
tation that can encode di↵erent descriptive features of the input simultaneously and
separately [Hinton, 1986].

For a model that takes an input x and produces a representation vector r(x)
with 2 binary entries, the di↵erent possible distributed representations are r(x) 2
{(0, 0), (1, 0), (0, 1)(1, 1)}. The model would be able to separate inputs x into four
di↵erent groups, or concepts, by assigning them one of the above representations.
Inputs assigned to (0, 1) and (1, 1) could be considered similar in the feature they
have in common, encoded by the second entry, whereas (0, 0) and (1, 1) would di↵er
in both features. For a representation vector of length n, the number of distinct
binary-valued representations would be 2n. Additional representational power is
obtained in deep learning models due to the fact that layer nodes, which correspond
to representation vector entries, can be continuously valued.

Nondistributed representations can only separate its input based on one fea-
ture or feature-combination. To represent four di↵erent concepts by binary vector

15

16 CHAPTER 3. DISENTANGLED REPRESENTATION LEARNING

Figure 3.1: The figure illustrates how a representation learning model r and a
predictor f can be modelled separately. If r(x) is general and not related to any
specific f , di↵erent models f producing di↵erent predictions ŷ can be applied to the
same representation r(x), ideally with better results than when applying f directly
to x. Priors, e.g. assumptions about the world state underlying the observations
x, can be utilized by r in order to make r(x) better than x at predicting ŷ.

representations would require four entries, giving representation vectors r(x) 2
{(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1)}. These representations can only com-
pare input as belonging either to the same concept or not, they do not contain any
information about how similar or dissimilar inputs of di↵erent concepts are. They
are sometimes called one-hot representations, or symbolic representations.

These examples illustrate how distributed representations allow for measuring
similarity between inputs in terms of their features. The distributed representa-
tions can be seen as located in a multi-dimensional Euclidean space, where each
dimension corresponds to a feature, and where distance between two inputs can be
measured for instance as the Euclidean distance between their respective represen-
tations. Having established the distributed properties of deep learning representa-
tions, it is interesting to examine more closely what other feature properties should
be attempted obtained. This includes what knowledge each representation feature
should encode, as well as how they can be useful in solving the problems at hand.

For any defined supervised problem, the best representation would be the one
allowing for the best solution. Trivially, this means that y itself can be considered
a representation of its corresponding x. However, reducing x to a representation
only containing information relevant for assigning the correct y can cause a lot of
information in x to be discarded. This limits the chosen representation and would
potentially make it useless in other contexts.

Often it is not possible to say right away what information is useful and what is
not. In the most general case of unsupervised representation learning, the goal is to
create as good a representation r(x) as possible of the input x without knowledge
about what downstream tasks these representations may later be used for, and this
would suggest keeping as much information as possible in the representation. Figure
3.1 illustrates how representations can be learned separately from the tasks they
can be helpful in solving.

Bengio et al. [2014] lists several general task-invariant priors about the world
that can be useful when exploited in a representation, suggesting what can make a
representation r(x) better than x at solving downstream tasks. Mentioned in their
list are several assumptions about manifolds and generative factors.

3.2. REPRESENTATION LEARNING 17

The manifold assumption suggests that while the data may be located in a high
dimensional space, most data points are located on a region with much smaller
dimensionality [Bengio et al., 2014]. This implies good representations can be of
significantly lower dimensionality than the original data. The autoencoders in-
troduced in Section 2.2 can be constructed to make use of this assumption, by
constricting the representation, i.e. the output z of the encoder, to be of lower
dimension than the input. Another hypothesis is that data separates into di↵erent
manifolds according to di↵erent values of certain variables, such as object class.
Then, for a set of classes y 2 {i}n

i=1, there would be little or no overlap between
p(x|y = i) for di↵erent i. This is referred to as natural clustering [Bengio et al.,
2014].

Generative factors refer to the underlying causes that lead to a given world state
observed by the data, and can be seen as causing, or generating, the data. This
process is discussed further in Section 3.2. Often learning representations can be
seen as trying to capture these factors. Many assumptions can be made about these
factors. One example is the assumption that they may be organised hierarchically
such that lower-level factors may be combined in making more abstract factors
[Bengio et al., 2014]. Another useful assumption is that these factors often are
considered as having linear dependencies, such that a representation with features
corresponding to these factors may be used as input to simple, linear models in
solving downstream tasks [Bengio et al., 2014].

A third assumption about these generative factors is that they may be shared
by data across the tasks attempted to be solved [Bengio et al., 2014]. This way,
knowledge about the data may be increased when considering data from other
datasets. Generalising between datasets may be enabled with representations that
record these shared factors of the data.

There are di↵erent machine learning setups that are illustrative of why good rep-
resentations matter, and how representations that generalize to help solve di↵erent
problems can be useful. They are based on the idea of increasing statistical strength
through sharing knowledge, where some problem is to be solved based on a dataset
of limited size, and the hope is that some related datasets can contribute useful
knowledge. Bengio et al. [2014] mentions transfer learning, multi-task learning and
domain adaptation as such setups, which have in common that examples from dif-
ferent task-specific datasets may share important features such that knowledge can
be shared.

In the transfer learning setup, two di↵erent tasks T1 and T2 are considered,
with datasets XT1 and XT2. Often |XT1| >> |XT2| and x 2 XT1 come from the
same distribution as x 2 XT2. The idea is that a representation r(x) that is useful
in mapping x to y

T1 can also be useful in mapping x to y
T2.

Multi-task learning refers to the setting where several tasks T1, T2, ..., Tn are
considered, where there exists labelled datasets XT1,XT2, ...,XTn with data from
the same distribution, and where some or all of the datasets are limited in size. A
shared representation r(x) is used to solve all tasks simultaneously.

Domain adaptation describes a setup where a certain task is attempted gener-
alised to data from slightly di↵erent distributions, that is they belong to di↵erent
domains D1, D2, ..., Dn. There are labelled datasets XD1,XD2, ...,XDn, and the

18 CHAPTER 3. DISENTANGLED REPRESENTATION LEARNING

learned model should generalise to performing the same task on all these datasets.
It is concerned with generalizing between domains, such that domains where there
exists little data can take advantage of domain-invariant knowledge from other do-
mains with a lot of data. One interesting extension to domain adaptation is domain
generalization, explained in [Muandet et al., 2013], which is the case where the goal
is to apply knowledge from known and learned domains to previously unseen do-
mains. That is, the domain examples encountered at test-time is not viewed at
training time.

Also mentioned in [Bengio et al., 2014] is the more general setting of semi-
supervised learning, which illustrates another way of taking advantage of good
representations. The datasets available are typically a large unlabelled dataset XU

and a much smaller labelled datset XS. The idea is that using the data in XU to
help create general representations r(x) can help with learning about the mapping
from inputs to outputs in XS.

3.3 Disentangled representations

Returning to the observed random variable x and the hidden random variable z from
Section 2.3, with the directed graph z! x from Figure 2.5. The joint distribution
p(x, z) = p(x|z)p(z) is often considered as describing a process where z is interpreted
as being a set of generative causes of x. This process is referred to as a generative
model. For a z sampled from p(z), x takes on values x by sampling x ⇠ p(x|z = z).
Trying to infer distributions p(z|x) over z is then interpreted as recovering these
causes from the observations.

Recovering p(z|x) can also be considered as representing x by z, for instance
by using the expected value of z as the representation r(x) for a datapoint x. The
elements of z are often called factors, with the terms factors of variation, generative
factors and explanatory factors used interchangeably.

Kingma and Welling [2014] introduced a probabilistic autoencoder called a vari-
ational autoencoder (VAE) to model p✓(x, z). Starting with a dataset X, the VAE
assumes as explained above that there exists generative factors z that produce the
observed x following the model p(x, z) = p(x|z)p(z). p✓(x|z) is considered a proba-
bilistic decoder, modelled using a neural network, and it gives a distribution over x
for input values z. p✓(z) is often chosen to be N (z;0, I), but can also be modelled
di↵erently.

Since p✓(z|x) generally is not tractable to compute in this setting, a model
q�(z|x) is introduced as an approximation to p✓(z|x) , and q�(z|x) is modelled using
a neural network as a probabilistic encoder. This network then gives a distribution
over z given inputs x.

To train the joint model consisting of q�(z|x), p✓(x|z) and p✓(z), the lower
bound

L(✓,�;X) = Ex⇠p̂X [Ez⇠q�(z|x)[log p✓(x|z)]�DKL(q�(z|x)kp(z))] (3.1)

from Section 2.3 is required optimised. This is however problematic to di↵erentiate
with regards to �, and [Kingma and Welling, 2014] introduce the stochastic gradient

3.3. DISENTANGLED REPRESENTATIONS 19

variational bayes (SGVB) approximation. By using a reparameterization of the
z ⇠ q�(z|x) as z = f�(✏,x), ✏ ⇠ p(✏) [Kingma and Welling, 2014; Rezende et al.,
2014], the approximation for an input x(i) becomes:

L̃(✓,�;x(i)) =
LX

l=1

log p✓(x
(i)|z(i,l))�DKL(q�(z|x(i))kp(z)) (3.2)

Where z(i,l) = f�(✏(i,l),x(i)), ✏(i,l) ⇠ p(✏). L is usually set to 1.
As an example, assume z ⇠ p(z|x) = N (z;µ,�2I). The probabilistic encoder

q�(z|x) can then be implemented as a neural network f�(✏,x), that performs the
mapping f1 : x ! (µ,�2) followed by f2 : (✏,µ,�2) ! µ + �✏. That gives
f�(✏,x) = f2(✏, f1(x)) = µ + �✏ = z. In the case where q�(z|x) = N (z;µ,�2I)
and p✓(z) = N (z;0, I), the DKL-term can be calculated analytically as:

DKL(q�(z|x(i))kp(z)) = 1

2

JX

j=1

(1 + log �2
j
� µ2

j
� �2

j
) (3.3)

Rezende et al. [2014] independently introduced the same reparameterization of
variables z, and illustrated its use on a model with more than one layer of hidden
random variables z.

With this reparameterization, the approximation L̃(✓,�;x) is di↵erentiable
w.r.t both ✓,� and can be optimized using stochastic gradient descent. The op-
timisation on a dataset X involves point estimation on the parameters ✓ and �,
and variational inference on the variables z. This algorithm is general and works
well both in the case of intractability concerning p✓(z|x), and for large datasets.
A trained model allows for generating artificial data resembling the data in X , by
sampling z from p(z) and using the probabilistic decoder to sample x from p(x|z).
It can also provide an approximation of p(x).

The true generative causes of an observation x are usually assumed to consist
of semantically meaningful elements, such that a change in a generative cause as
interpreted by humans would be reflected by a change along one dimension in the
space of the true generative causes [Bengio et al., 2014; Higgins et al., 2018]. For
observations x that are pictures of objects, examples of such generative cause can
be the colour of the object, or the location of the object. They change one aspect
of the observation, while leaving the rest invariant.

Recovering z using the VAE framework often results in a z where the generative
causes are entangled, such that adjusting a single variable value of z may cause
multiple changes in x. When representing an observation x by r(x) = µz, r(x)
would be entangled if some or all of its features encodes more than one of the
underlying generative factors. r(x) is considered disentangled if each feature is
influenced only by a single semantically interpretable underlying factor, such that
a change in one feature only changes one aspect of the observation it represent
[Higgins et al., 2018]. The representation is then said to disentangle the underlying
causes.

The disentangled representation approach to learning representations assumes a
benefit from disentangling the underlying structure of the world state behind an ob-
servation into separate parts of the representation. There is not yet a single agreed

20 CHAPTER 3. DISENTANGLED REPRESENTATION LEARNING

upon definition of disentangled representations in the deep learning community,
however three properties of disentangled representations have been considered by
several contributors as a basis for discussion [Eastwood and Williams, 2018; Ridge-
way and Mozer, 2018; Higgins et al., 2018; Zaidi et al., 2021]. They are usually
referred to as modularity, compactness and explicitness.

Modularity is satisfied when each dimension in z encodes information about at
most one generative factor. This property ensures that factors that are mutually
independent in the generative factor space are also independent in z-space [Zaidi
et al., 2021]. This property is agreed upon by most approaches to disentanglement
as a necessary criterion for disentanglement [Higgins et al., 2018].

Compactness is satisfied if each generative factor is encoded by at most one
dimension in z. This property is less agreed upon, with many arguing that com-
pactness should not be a criterion for disentanglement [Ridgeway and Mozer, 2018;
Higgins et al., 2018; Zaidi et al., 2021]. Arguments against compactness suggest that
allowing multiple z dimensions to encode a single factor will increase the flexibility
of the model, both in terms of factor complexity and model optimization. Multiple
z dimensions encoding a factor would allow for encoding of complex factors that are
not easily represented by one dimensional variables [Zaidi et al., 2021], which are
likely to occur when working with complex data. It will also allow for more than
one equivalent solution when encoding any factor, such that training is less likely
to get stuck in local optima [Ridgeway and Mozer, 2018].

Explicitness refers to whether the values of all of the generative factors can
be decoded from a representation z. This property requires that all factors are
encoded in z, and that they are encoded in such a way that little or no information
is lost. In order to satisfy explicitness, a transformation T from z-space to factor
space should be implicitly learned by the model that generalise the relationship
between z and the generative factors. So far, this property is agreed upon by most
disentanglement approaches. Some additionally argue that the transformation T
should be simple, and ideally linear [Ridgeway and Mozer, 2018]. Explicitness is
therefore often discussed distinguishing between two versions, non-linear and linear
explicitness [Higgins et al., 2018; Zaidi et al., 2021].

Higgins et al. [2018] make an attempt at formally defining disentangled represen-
tations by starting with the transformation properties of the world, saying it is the
transformations that only change some aspects of the world state, while leaving the
rest unchanged, that will give data structure that can be exploited in representa-
tion learning. Higgins et al. connects the concept of symmetry transformations
from physics - covering rotations, translations etc. - with vector representations
through group theory, and use this to define disentangled representations. A vec-
tor representations qualifies as disentangled if it decomposes into a set of subspaces
such that each subspace is independently transformed by a corresponding symmetry
transformation. The definition presented is:

A vector representation is called a disentangled representation with re-
spect to a particular decomposition of a symmetry group into subgroups,
if it decomposes into independent subspaces, where each subspace is af-
fected by the action of a single subgroup, and the actions of all other

3.4. UNSUPERVISED DISENTANGLEMENT 21

subgroups leave the subspace una↵ected [Higgins et al., 2018, p. 6].

In addition they also present a definition of a linear disentangled representation,
which adds the criterion that the actions of the subgroups on their subspaces are
linear.

3.4 Unsupervised disentanglement

Unsupervised disentanglement refers to the case of attempting to recover the se-
mantically meaningful generative causes in a disentangled representation from the
observations x 2 X through inferring p(z|x) over z. In this setting, no knowledge
is available about z apart from the assumptions made about the prior p(z). Lo-
catello et al. [2019] show that unsupervised disentangled representation learning is
impossible unless inductive biases are present in both the model architecture and
the data.

Several attempts at creating models that perform unsupervised disentanglement
have been suggested that are based on introducing some adjustment to the objective
of the VAE model, to try to improve the models disentangling performance. One
such framework is the �-VAE [Higgins et al., 2017], where the VAE objective is
modified to

L(✓,�;X, �) = Ex⇠p̂X [Ez⇠q�(z|x)[log p✓(x|z)]� �DKL(q�(z|x)kp(z))] (3.4)

Here, one new parameter � is introduced that controls the contribution of the
KL-divergence to the total objective. Higgins et al. arrive at this objective by
first considering the reconstruction loss max

✓,�
Ex⇠p̂X [Ez⇠q�(z|x)[log p✓(x|z)]] as their

objective function, and then adding the constraint that DKL(q�(z|x)kp(z)) < ✏.
Adding this constraint is seen as trying to match q�(z|x) to a prior p(z) set to
the factorial distribution p(z) = N (z;0, I) to encourage disentangling. Because
the prior is assumed to be a factorial distribution, its separate dimensions are
linearly independent, and it is argued that minimizing the divergence between such
a prior p(z) and q�(z|x) should encourage the dimensions of the latter to capture
independent pieces of information from x.

The �-VAE can be implemented similarly to the VAE using neural networks
as probabilistic encoder and decoder, including � in the objective as an additional
hyperparameter chosen ahead of training. By choosing values of � such that � > 1,
the model should be encouraged to increase disentanglement of the representations
created [Higgins et al., 2017]. However, this may lead to a trade o↵ between disen-
tanglement and reconstruction error, where high values of � leads to lower quality
of reconstructions.

In [Alemi et al., 2019] another way of arriving at the lower bound in Equation
(3.4) is presented through a variational approximation to the information bottleneck
[Tishby et al., 2000]. For a model taking input observations of x and learning a
stochastic representation z and a reconstruction of x from this representation z, the
unsupervised version of the information bottleneck objective is

max I(z,x)� �I(z,x(i)) (3.5)

22 CHAPTER 3. DISENTANGLED REPRESENTATION LEARNING

I(z,x) is the mutual information between random variables z,x. I(z,x(i)) is the
mutual information between random variable z and the i-th datapoint x(i). This
is understood as maximising the mutual information between z and x in order to
improve reconstruction, while encouraging that the representation variables z re-
members as little information about each datapoint x(i) as possible. z is considered
a bottleneck limiting the information about x that can pass from input to recon-
struction. Creating a variational lower bound on Equation (3.5) results in the same
objective as the one introduced for the �-VAE [Alemi et al., 2019].

Burgess et al. [2018] considers the information bottleneck perspective and presents
a further modification to the �-VAE. Thinking of q�(z|x) as the bottleneck for
the reconstruction max

✓,�
Ex⇠p̂X [Ez⇠q�(z|x)[log p✓(x|z)]], the term DKL(q�(z|x)kp(z))

is seen as bounding the information allowed through z. This upper bound is re-
ferred to as the capacity of z. When q�(z|x) = p(z) the capacity is zero, and the
model will not be able to store any information about x in z

The objective introduced by Burgess et al. is

L(✓,�;X, �, C) = Ex⇠p̂X [Ez⇠q�(z|x)[log p✓(x|z)]� �|DKL(q�(z|x)kp(z))� C|] (3.6)

Here, � is a hyperparameter chosen ahead of training, while C is set to 0 at the
beginning of training and increased during training. Starting with C = 0 is con-
sidered enforcing maximum limitation on the capacity for a chosen �, intuitively
explained as forcing z to keep only the most important information contained in
x. This is assumed to result in the representation focusing on remembering the
most important generative cause [Burgess et al., 2018]. When C is increased it
decreases the pressure on q�(z|x) to be close to p(z) and thus increases the capacity
of z. This allows the model to expand its representation with more information
about x, eventually moving on to less and less informative generative causes, thus
resulting in a disentangled representation. The model trained with this objective is
called Controlled Capacity Increase (CCI)-VAE. It is sometimes also referred to as
AnnealedVAE.

Kim and Mnih [2019] introduces a method for unsupervised disentangling called
FactorVAE. This framework attempts to drive the marginal distribution of z, q(z)
to be factorial, and therefore encourage the dimensions of the distribution to be
independent of each other. This distribution is given by

q(z) = Ex⇠p̂X [q(z|x)] =
1

n

nX

i=1

q(z|x(i)) (3.7)

where p̂X is the empirical distribution given by the dataset.
The FactorVAE method attempts to improve on the trade-o↵ between disentan-

glement and reconstruction quality seen in �-VAE, obtaining better disentanglement
for a given reconstruction error. The reasoning behind this approach is based on
the following decomposition of the KL-term as it appears in the original VAE as
well as in the �-VAE objective function:

Ex⇠p̂X [DKL(q(z|x)kp(z))] = I(x, z) +DKL(q(z)kp(z)) (3.8)

3.4. UNSUPERVISED DISENTANGLEMENT 23

Minimizing the original KL-term would lead to minimizing both the mutual in-
formation I(x, z) between x and z, and the KL-distance between q(z) and p(z).
Keeping the constraint from �-VAE that p(z) is chosen to be factorial, minimiz-
ing DKL(q(z)kp(z)) encourages disentanglement of the dimensions of z. However,
minimizing the mutual information between x and z will limit the amount of in-
formation about x that can be stored in z, which will in turn limit reconstruction
quality [Kim and Mnih, 2019].

The FactorVAE objective [Kim and Mnih, 2019] is:

L(✓,�;X, �) = Ex⇠p̂X [Ez⇠q�(z|x)[log p✓(x|z)]�DKL(q�(z|x)kp(z))] (3.9)

� �DKL(q�(z)kq̄�(z))

where q̄�(z) =
Q

l

j=0 q�(zj). DKL(q�(z)kq̄�(z)) is the Total Correlation (TC), a
measure of dependence between the variables z. Since both q�(z) and q̄�(z) are
intractable to compute directly, this term is approximated by using a discriminator
d that is trained to output an estimate d(z) of the probability that the input z
it gets is sampled from q�(z), and not q̄�(z). Input samples to the discriminator
is obtained by sampling from q�(z|x(i)), for datapoints x(i) chosen uniformly at
random, to obtain samples from q�(z). Samples from q̄�(z) are approximated by
sampling a batch from q�(z) and then randomly permuting each dimension across
the batch [Kim and Mnih, 2019].

The approximation used is:

DKL(q�(z)kq̄�(z)) = Ez⇠q�(z)[log
q�(z)

q̄�(z)
] ⇡ Ez⇠q�(z)[log

d(z)

1� d(z)
] (3.10)

and the discriminator and the VAE are trained jointly.
Chen et al. [2019] arrive at the same objective as shown in Equation (3.9) based

on a similar argument of decomposing the KL-term in the original VAE objective
and increasing the weight on the TC component to encourage disentangling. The
method suggested, �-TCVAE, uses a di↵erent approach to evaluating the TC com-
ponent. The following estimator is used as a lower bound on log q�(z), computed
on a mini batch of data of size m:

Ez⇠q�(z)[log q�(z)] ⇡
1

m

mX

i=1

[log
1

nm

mX

j=1

q�(z(x
(i))|x(j))] (3.11)

Where z(x(i)) is a sample from q(z|x(i)), and n is the size of the total dataset.
The derivation of this estimator is included in Appendix A. The method using this
estimator is called Minibatch Weighted Sampling (MWS) [Chen et al., 2019].

Kumar et al. [2018] presents an alternative approach, also attempting to regu-
larize q(z) to be factorial. The objective function suggested is:

L(✓,�;X,�) = Ex⇠p̂X [Ez⇠q�(z|x)[log p✓(x|z)]�DKL(q�(z|x)kp(z))] (3.12)

� �D(q�(z)kp(z))

The term D(q�(z)kp(z)) is intractable if D is taken to be the KL-divergence, and
D is therefore instead suggested measured as the matching of the covariance of

24 CHAPTER 3. DISENTANGLED REPRESENTATION LEARNING

q�(z) and p(z) [Kumar et al., 2018]. Assuming p(z) = N (z;0, I), matching the
covariance will require decorrelating the dimensions of q�(z). Considering the case
where q�(z|x) = N (z;µ�(x),⌃�(x)), the covariance of q�(z) is given, by the law
of total covariance, as:

covz⇠q�(z)[z] = Ex⇠p̂Xcovz⇠q�(z|x)[z] + covx⇠p̂XEz⇠q�(z|x)[z] (3.13)

= Ex⇠p̂X [⌃�(x)] + covx⇠p̂X [µ�(x)]

When ⌃�(x) is assumed to be diagonal, Ex⇠p̂X [⌃�(x)] will be diagonal and
the correlations between the z dimensions are captured in covx⇠p̂X [µ�(x)] alone.
One method for regularizing covz⇠q�(z)[z] to be close to I is therefore to consider
only the covx⇠p̂X [µ�(x)] term, in order to remove these correlations [Kumar et al.,
2018]. Matching covx⇠p̂X [µ�(x)] to I is done by reducing the element-wise squared
L2-norm, and the resulting objective function is:

L(✓,�;X,�od,�d) = Ex⇠p̂X [Ez⇠q�(z|x)[log p✓(x|z)]�DKL(q�(z|x)kp(z))] (3.14)

� �od

X

i 6=j

[covx⇠p̂X [µ�(x)]]
2
ij

� �d

X

i

([covx⇠p̂X [µ�(x)]]ii � 1)2

Here, two hyperparameters �od and �d are introduced in order to control the con-
tribution of the matching of the o↵-diagonal and diagonal entries of covx⇠p̂X [µ�(x)]
to I respectively. The framework based on maximising this objective is called DIP-
VAE-I [Kumar et al., 2018].

An analogous framework where the full covz⇠q�(z)[z] is matched to I is also
presented, called DIP-VAE-II [Kumar et al., 2018]. The accompanying objective
function is:

L(✓,�;X,�od,�d) = Ex⇠p̂X [Ez⇠q�(z|x)[log p✓(x|z)]�DKL(q�(z|x)kp(z))] (3.15)

� �od

X

i 6=j

[covz⇠q�(z)[z]]
2
ij

� �d

X

i

([covz⇠q�(z)[z]]ii � 1)2

For both objectives, it is the term controlled by �od that encourages the covariance
between di↵erent dimensions of z to approach 0 and therefore encourage indepen-
dence and consequently disentanglement. The term controlled by �d does not di-
rectly contribute to disentangling the factors of z, but setting �d = 0 would allow
the model to minimize the o↵-diagonals by driving the diagonal variance terms to-
wards 0, instead of by decorrelating z. �d should therefore be > 0 in order to keep
diagonal entries close to one, ensuring that the minimization of the o↵-diagonals is
due to independence [Kumar et al., 2018].

While all models presented in this subsection so far have been based on variations
over the VAE objective, other approaches have also been considered. InfoGAN
[Chen et al., 2016] is a method for disentangling that is based on the Generative

3.4. UNSUPERVISED DISENTANGLEMENT 25

(a) (b)

Figure 3.2: a) The Generative Adversairal Network architecture. The blue arrows
indicates how the inputs are sampled, with X being the data set. The generator g
and the discriminator d are typically parametrised by neural networks, and they are
trained using the value function presented in Equation (3.16). The output d(x) of
the discriminator is the probability that its input comes from the data set and not
the generator. b) The extended architecture of the InfoGAN model. The output ĉ
of the new component q is encouraged to reconstruct the input c to the g component
by the term Ec⇠p(c),x⇠g✓g (z,c)

[log q�(c|x)] of the extended value function shown in
Equation (3.18).

Adversarial Network (GAN) framework [Goodfellow et al., 2014]. The original GAN
framework is made up of two models trained simultaneously, a generative model g
and a discriminative model d. g takes as input some random noise z ⇠ p(z) and
attempts to learn to output samples from the training data distribution, while d,
when given an input sample, is trained to output the probability that the input
belongs to the training data rather than being produced by g. g is trained to
maximise the probability that d makes a mistake. This competition between g and
d, also referred to as a minimax game, eventually leads to g drawing samples that d
cannot distinguish from samples from the true data distribution [Goodfellow et al.,
2014].

For g and d parametrized by neural networks, the value function of the model
is:

min
✓g

max
✓d

V (✓d,✓g;X) = Ex⇠p̂X log d✓d
(x) + Ez⇠p(z)[1� d✓d

(g✓g(z))] (3.16)

where ✓d are the parameters of d and ✓g are the parameters of g. p(z) is the
prior distribution on the noise variables z that are used as input to g. The full
architecture is shown in Figure 3.2.

The InfoGAN extends this value function in order to allow for disentanglement.

26 CHAPTER 3. DISENTANGLED REPRESENTATION LEARNING

In addition to the noise z, a latent code c is introduced, with the assumed distri-
bution p(c) =

Q
l

i=1 p(ci). The generator g is adapted to take as input both z and
c, and in order to force g to consider meaningful c, the objective is regularized by
favouring high mutual information I(c, g(z, c)) between c and the output of g for
that c.

I(c, g(z, c)) is di�cult to optimize directly, and a lower bound is therefore used
[Chen et al., 2016]. A distribution q(c|x) is introduced to approximate p(c|x), and
the lower bound on I(c, g(z, c)) is:

LI(✓g,�) = Ec⇠p(c),x⇠g✓g (z,c)
[log q�(c|x)] +H(c) (3.17)

where q is paramterized by a neural network with parameters �, and H(c) is the
entropy over c, which can be considered a constant.

Now, the InfoGAN value function is:

min
✓g ,�

max
✓d

VInfoGAN(✓d,✓g,�;X,�) = V (✓d,✓g;X)� �LI(✓g,�) (3.18)

with a hyperparameter � that controls the contribution of the introduced regular-
ization term. The InfoGAN architecture is shown in Figure 3.2b.

3.5 Supervised disentanglement

Supervised disentanglement is concerned with datasets (x,y) 2 X and refers to the
case of trying to create disentangled representations z of inputs x such that a target
y can be assigned to x using z [Bengio et al., 2014]. It is often reasonable to assume
that y is closely related to one or more generative causes in z. Sometimes y is
considered a generative cause itself, and could therefore be recovered as a subspace
of z. It would then be straightforward to assign y from z. Often supervised
disentanglement is considered as part of a semi-supervised approach, allowing for
improvement on training using additional unlabeled data.

Louizos et al. [2017] present a semi-supervised model based on the VAE that
encourage independence between the representation given by recovered generative
factors z and some known sensitive factors s. Prediction on targets y can then be
performed using z as input. The datasets are (x, s) 2 XU and (x, s,y) 2 XS, with
X = {XU ,XS}. The generative model is:

p(x, z1, z2, s,y) = p✓1(x|z1, s)p✓2(z1|z2,y)p(z2)p(y) (3.19)

A graph of this model is shown in Figure 3.3a. The variational approximation to
the posterior q�(z1, z2,y|x, s) is assumed factorized as:

q�(z1, z2,y|x, s) = q�1
(z1|x, s)q�2

(y|z1)q�3
(z2|z1,y) (3.20)

The model is trained by maximizing a lower bound on E(x,s)⇠p̂X [log p(x|s)], which
becomes:

E(x,s)⇠p̂X [E(z1,z2,y)⇠q�(z1,z2,y|x,s)[log p(y) + log p(z2) + log p✓2(z1|z2,y) (3.21)

+ log p✓1(x|z1, s)� log q�(z1, z2,y|x, s)]]

3.5. SUPERVISED DISENTANGLEMENT 27

For data points from XU , the lower bound evaluates to:

LU(✓,�;XU) = E(x,s)⇠p̂XU
[Ez1⇠q�1

(z1|x,s)[log p✓1(x|z1, s) (3.22)

�DKL(q�2
(y|z1)kp(y))]

+ E(z1,y)⇠q�1,�2
(z1,y|x,s)[�DKL(q�3

(z2|z1,y)kp(z2))]
+ E(z1,y,z2)⇠q�(z1,y,z2|x,s)[log p✓2(z1|z2,y)

� log q�1
(z1|x, s)]]

For data points from XS, the lower bound evaluates to:

LS(✓,�;XS) = E(x,s,y)⇠p̂XS
[Ez1⇠q�1

(z1|x,s)[log p✓1(x|z1, s) (3.23)

�DKL(q�3
(z2|z1,y)kp(z2))]

+ Ez1⇠q�1
(z1|x,s),z2⇠q�3

(z2|z1,y)[log p✓2(z1|z2,y)
� log q�1

(z1|x, s)]]

The parameters �2 of q�2
(y|z1) are not updated by the LS objective, and a classifi-

cation objective E(x,s,y)⇠p̂XS
[Ez1⇠q�1

(z1|x,s) log q�2
(y|z1)] is added to ensure that the

parameters learn from all available data. The full objective becomes:

F(✓,�;X,↵) = LU(✓,�;XU) + LS(✓,�;XS) (3.24)

+ ↵E(x,s,y)⇠p̂XS
[Ez1⇠q�1

(z1|x,s) log q�2
(y|z1)]

with hyperparameter ↵ to control contribution from the classification objective.
While this model encourages independence between s and z1, it is still possible

that some information from s will be encoded in z1, especially if s and y are corre-
lated. In order to further encourage independence s and z1, a regularization term
is added to the lower bound objective that penalizes dependence in the marginal
posterior q�(z1|s). Maximum mean discrepancy (MMD) is considered for this, and
a term DMMD(q�(z1|x, s = s)kq�(z1|x, s = s0)) is added to the objective [Louizos
et al., 2017].

Ilse et al. [2019] introduces a model for supervised disentanglement based on
the VAE framework that separates the z-space into independent subspaces, called
Domain Invariant Variational Autoencoder (DIVA). The model considers a dataset
(d,x,y) 2 X, with data from n di↵erent domains d. The approach is based on the
assumption that a subspace of z is invariant with respect to the domain.

The z is divided into subspaces zd, zy and zx. zd is domain specific, capturing
variation in domains d, and zy captures variation in labels y. zx captures any
remaining variation in x that is invariant with respect to both y an d. Because zd
and zy are independent, the model should learn representations zy that are domain
invariant. The generative model is

p(x, zd, zy, zx,y,d) = p✓(x|zd, zy, zx)p✓d
(zd|d)p✓y(zy|y)p(zx)p(y)p(d) (3.25)

A graph of this model is shown in Figure 3.3b. p✓(x|zd, zy, zx) is the reconstruction
decoder, and encoders q�d

(zd|x), q�y
(zy|x), q�x

(zx|x) are introduced as variational

28 CHAPTER 3. DISENTANGLED REPRESENTATION LEARNING

(a) (b)

Figure 3.3: a) Generative model for the Variational Fair Autoencoder. b) Genera-
tive model for the Domain Invariant Variational Autoencoder.

approximations to the posterior distributions. In addition the model learns the pa-
rameters of the conditional priors p✓d

(zd|d) and p✓y(zy|z), and introduces classifiers
q!d

(d|zd) and q!y(y|zy).
The resulting lower bound objective for learning the parameters ✓L = {✓,✓d,✓y,

�d,�y,�x} is

L(✓L;X, �) = E(d,x,y)⇠p̂X [Ezd⇠q�d
(zd|x),zy⇠q�y (zy|x),zx⇠q�x (zx|x)[log p✓(x|zd, zy, zx)]

� �DKL(q�d
(zd|x)kp✓d

(zd|d))
� �DKL(q�y

(zy|x)kp✓y(zy|y))
� �DKL(q�x

(zx|x)kp(zx))]
(3.26)

The hyperparameter � is introduced to control the capacity of the z-spaces, analo-
gously to the � introduced in the �-VAE framework [Higgins et al., 2017].

The full objective with additional objectives on ✓F = {!d,!y} is:

F(✓L,✓F ;X, �,↵d,↵y) =L(✓L;X, �)

+ ↵dE(d,x)⇠p̂X [Ezd⇠q�d
(zd|x)[log q!d

(d|zd)]]
+ ↵yE(x,y)⇠p̂X [Ezy⇠q�y (zy|x)[log q!y(y|zy)]]

(3.27)

Here, additional hyperparameters ↵d,↵y are introduced to control the contribution
from the classification objectives. The objective F may also be further extended to
allow learning from unsupervised data examples (d,x).

Kulkarni et al. [2015] presents a di↵erent approach to utilizing supervision to
encourage disentangling with the Deep Convolution Inverse Graphics Network (DC-
IGN). The model consists of a probabilistic encoder and decoder following the VAE
framework, implemented as convolutional neural networks.

3.5. SUPERVISED DISENTANGLEMENT 29

The factors attempted captured and disentangled in the representation is iden-
tified before training and assigned a location in z. This way, a subset {zi}ki=1 of z
is reserved for these identified disentangled features, while the remaining {zi}ni=k+1,
denoted zk+1:n, are left to capture any remaining variation in the data.

The dataset used to train the model is divided in mini-batches such that data
in a batch only di↵er in one of these features z1, z2, ..., zk, as well as batches where
data are similar in features z1, z2, ..., zk but di↵erent in other aspects corresponding
to feature-group zk+1:n.

During training, at each step one of z1, z2, ..., zk, zk+1:n is chosen, along with a
mini-batch di↵ering in the relevant feature or feature-group. For a zi, a correspond-
ing mini-batch is used to train the model to keep the relevant information in this
feature, which is done by calculating an average over the examples for the remaining
values of z and using the average values along with the unchanged value of zi as
input to the decoder. The gradients for the averaged variables of z are set to be the
di↵erence from the mean over the mini-batch examples, while the gradient of zi is
left unchanged.

30 CHAPTER 3. DISENTANGLED REPRESENTATION LEARNING

Chapter 4

Disentanglement Evaluation

4.1 Introduction

Chapter 3 introduced the concept of disentangled representations, along with sev-
eral models that attempt to output disentangled representations r(x) given input
x. When a model is trained on a dataset X, it is necessary to be able to provide
evidence to whether it has accomplished the goal of generating representations that
are disentangled. Furthermore, being able to establish how good a representation
is in terms of disentanglement allow for comparison of and selection between dif-
ferent models. This chapter discusses some techniques used in order to evaluate
disentanglement.

Several evaluation techniques have been explored in the disentanglement litera-
ture. Both qualitative and quantitative methods are used in order to evaluate the
achieved level of disentanglement of a model. Section 4.2 presents some examples
of qualitative techniques commonly used, and Section 4.3 focuses on quantitative
evaluation, presenting a set of disentanglement metrics developed in order to be able
to assign a score on the level of disentanglement accomplished by a given model.

Models that create representations include the probabilistic encoders of the dif-
ferent VAE-based models described in Sections 3.3, 3.4 and 3.5, as well as the q
component of the InfoGAN described in Section 3.4. Generally, a trained model con-
sidered for evaluation is in this chapter referred to as encoder q�(z|x). Since the en-
coder outputs a distribution, the representation is not unambiguously defined given
input x. When discussing evaluation methods in this chapter, the representation is
assumed defined as the mean of the encoder distribution, denoted ẑ, if nothing else is
specified. That is, r(x) = ẑ = Ez⇠q�(z|x)[z]. When q�(z|x) = N (z;µ�(x),⌃�(x)),
the representations therefore become ẑ = µ�(x). An alternative definition is to
sample a representation r(x) as z ⇠ q�(z|x = x).

4.2 Qualitative Evaluation

In order to perform qualitative evaluation of a model, some type of descriptive data
must be collected by observing the model behaviour. In this context, observations
are typically based on examining how input and output of a model is related trough

31

32 CHAPTER 4. DISENTANGLEMENT EVALUATION

fixing some values and varying others. The data is analysed by looking for patterns
in these observations. The results are typically presented organising input-output
pairs according to any detected patterns, hopefully relating meaningful patterns in
input to meaningful patterns in output.

A commonly used qualitative technique for evaluating disentanglement is based
on generating samples from encoder representations using the corresponding de-
coder, while traversing dimensions of the representation to visualize the e↵ects in
decoder output resulting form changing the value of just one dimension in z-space
at a time. Given encoder q�(z|x) and decoder p✓(x|z) trained on dataset X, the
procedure is as follows:

1. Start with a data sample x 2 X

2. Use q�(z|x) to obtain a representation ẑ = Ez⇠q�(z|x=x)[z]

3. Decide on a dimension l of ẑ to traverse. Keep ẑ\l fixed.

4. For a range of values of ẑl, use decoder p✓(x|z) to generate reconstructions
x̂ = Ex⇠p✓(x|z=ẑ)[x] of original x using di↵erent values of ẑl along with the
fixed ẑ\l.

5. Organise reconstructions x̂ in line such that the corresponding value of ẑl
increases or decreases along the line, to observe any changes in x̂ resulting
from changing only the value of ẑl.

Steps 3.-5. are usually repeated for a number of dimensions of ẑ for each x.
Some examples of the dimension traversal procedure are shown in Figures 4.1 and
4.2.

(a) (b) (c)

Figure 4.1: Figures from [Higgins et al., 2017], where a �-VAE model is trained on
the 3D chairs dataset. a), b) and c) show the results of traversing three di↵erent
dimensions in z-space, using the �-VAE decoder to generate reconstructions. The
rows of each figure show the same traversal on di↵erent choices of x. The dimensions
traversed appear to correspond to a) rotation, b) width, and c) leg style.

4.2. QUALITATIVE EVALUATION 33

(a) (b)

Figure 4.2: Figures from [Chen et al., 2016], where an InfoGAN model is trained
on the MNIST dataset. a) and b) show the results of traversing two di↵erent di-
mensions in z-space, using the InfoGAN generator to generate reconstructions. The
rows of a figure show the same traversal on di↵erent choices of x. The dimensions
traversed appear to correspond to a) rotation, and b) width.

A slightly di↵erent example of qualitative evaluation is presented in [Ilse et al.,
2019], applied in order to evaluate their DIVA model, presented in Section 3.5.
This VAE-based model separates its z-space into three disjoint subspaces, with each
subspace being trained to store di↵erent information about input x using a semi-
supervised approach. Subspaces are zd, zx and zy, and the evaluation is done by
regulating which subspaces are active, i.e. fed to the decoder, when reconstructing
x. Deactivating a subspace is done by setting all its values to 0. For a x 2 X, its
representation z = {zx, zy, zd} is generated using encoder q�(z|x). Then di↵erent
reconstructions are created for each x using decoder p✓(x|z) on di↵erent subsets of
{zx, zy, zd}. The example from [Ilse et al., 2019] is shown in Figure 4.3.

While these example illustrate that qualitative techniques do provide ways of
evaluating disentanglement, they are not in general well suited for model compari-
son and selection. In order to be able to reliably compare the level of disentangle-
ment of representations from di↵erent models, access to quantitative metrics giving
a numerical score to any given model is considered more useful than using such
qualitative evaluations.

34 CHAPTER 4. DISENTANGLEMENT EVALUATION

Figure 4.3: Figure from [Ilse et al., 2019], where a DIVA model is trained on
a dataset of images of blood cells [Rajaraman et al., 2018], with some cells in-
fected with malaria and others not. The model is trained using targets y 2
{infected, uninfected} and d 2 {patientID

m
}M
m=1 for M di↵erent patient IDs. Par-

asite presence is identified in an image by dark pink marks inside the cell, but the
colour of the cell itself may vary between patients. This is seen in the first line
of the figure, which shows a set of di↵erent cell images x. The remaining lines
show reconstructions of these x using either all subspaces (line 2), or subspace zd

(line 3), zx (line 4) or zy (line 5) only. Thus each column shows the di↵erence
in reconstruction for a single x for di↵erent subsets of active z subspaces. From
line 3 it appears that zd contributes information about cell colour, and from line 5
that zy contributes information about whether a malaria parasite is present or not,
indicating that actual model behaviour is consistent with intended behaviour.

4.3 Quantitative evaluation

Quantitative evaluation of disentanglement refers to methods that assign a nu-
merical score to the encoder model. Methods that provide such scores are called
disentanglement metrics.

The metrics in this section are discussed in terms of how their evaluation of
the model representations correspond to how well the representations meet the
disentanglement criteria introduced in Section 3.3, summarised in Table 4.1.

Disentanglement metrics can further be divided into supervised and unsuper-
vised metrics. Supervised here means that the metrics require knowledge about
the ground truth generative factors in order to perform calculations. Unsupervised
metrics are calculated directly on the representations created by a model, with-
out access to information about the ground truth factors. Supervised metrics are
discussed in 4.3.1 and unsupervised metrics in 4.3.2.

4.3.1 Supervised metrics

In order to calculate the supervised metrics, knowledge about the ground truth
generative factors must be available, and a representation of this knowledge must
be defined.

4.3. QUANTITATIVE EVALUATION 35

Criteria Summary

Modularity Each dimension ẑl in ẑ keeps information about at most
one ground truth generative factor

Compactness Information about a ground truth generative factor is kept
in ẑ by at most one dimension ẑl

Explicitness
(non-linear)

The values of all ground truth generative factors can be
fully recovered from ẑ

Explicitness
(linear)

Non-linear explicitness with the added requirement that
the values of the ground truth generative factors are recov-
ered from ẑ by a linear mapping

Table 4.1: Summary of the three disentanglement criteria, with two versions of
explicitness, introduced in Section 3.3.

Usually, K generative factors are identified under the assumption of indepen-
dence, with the requirement that each factor can be represented by a one dimen-
sional random variable. The factors are then jointly represented by a vector v 2 R

K ,
where the element at index k correspond to factor k. Each variable vk may be con-
tinuous or discrete depending on what is most appropriate, such that v can be
continuous, discrete or mixed. Suitable ranges of possible values for the variables
to take should also be defined, such that the full distribution p⇤(v) is available.

Synthetic datasets are most often used, where the factors v and their distribution
p⇤(v) are designed first. Additionally, the generative process of the data x given
these v must be defined, denoted p⇤(x|v), from which the dataset is then created
by drawing samples v ⇠ p⇤(v) and then x ⇠ p⇤(x|v = v).

It may also be possible in some cases to provide labels of v for an existing dataset
X. Such labeling can be considered as approximate sampling from p⇤(v|x = x) for
x 2 X in order to create a dataset X⇤ = {(x(i),v(i))}n

i=1 that can be used as a basis
for the metric calculations. Typically in this case labels will only be partially
available, and metrics will be used in order to provide partial disentanglement
evaluation.

Supervised metrics evaluate disentanglement with respect to the ground truth
factors by considering factor representations v as weak targets that the model rep-
resentations ẑ are evaluated against, where ẑ is not expected to recover the exact
values of v, but rather recover the same information within a disentangled structure
as defined by the criteria in Table 4.1. Some restrictions on the recovery of v in ẑ
are determined by di↵erences between p⇤(v) and the model assumption about p(z),
typically p(z) = N(z;0, I). For ẑ 2 R

L, L is chosen such that L � K and often
L > K [Zaidi et al., 2021]. Figure 4.4 illustrates the relationship between v and ẑ
given p⇤(x|v) and q�(z|x).

In order to return a useful disentanglement score on disentanglement in ẑ rela-
tive to v, Zaidi et al. [2021] considers a set of general properties that a metric should
ideally posses. First, the scores produced by the metric should be calibrated to lie
in the normalized range [0, 1]. Given a model that produce perfectly disentangled ẑ,

36 CHAPTER 4. DISENTANGLEMENT EVALUATION

Figure 4.4: From ground truth factors v to disentangled representation ẑ, when
q�(z|x) = N (z;µ�(x),⌃�(x))

the metric should give a maximum score of 1, while a model that produce represen-
tations of no disentanglement should get a minimum score of 0. In between these
extremes, the assigned score of a model should decrease close to linearly relative to
the level of disentanglement obtained by the model, to allow for reliable comparison
of models using scores [Zaidi et al., 2021].

Ideally, metrics should also have few hyper parameters, impose few assumptions
about the mapping from ẑ to v and not be sensitive to noise in ẑ [Zaidi et al.,
2021]. In the case where v can only be designed to cover a proper subset of the
generative factors assumed to have generated the data, any remaining factors not in
v should still be encoded in ẑ, and could appear as noise when calculating a score
on a representation relative to v.

In their review of metrics, Zaidi et al. [2021] introduce a taxonomy classifying
the metrics into three di↵erent groups. These are referred to as Intervention-based,
Information-based and Predictor-based metrics, and the metrics discussed here are
introduces according to this grouping.

Intervention-based metrics

Intervention-based metrics are based on comparison of model representations z and
ground truth factors v through creating sets of data points from fixed factor values
[Zaidi et al., 2021].

One supervised disentanglement metric classified as an intervention-based metric
is introduced in [Higgins et al., 2017], here referred to as the Z-di↵ metric, in
accordance with [Zaidi et al., 2021]. In order to calculate a score using the Z-di↵
metric, a set of representations ẑ are created from a set of ground truth factors
v, with the value of one factor vk kept fixed. That is, for a fixed value vk of
vk, sample x ⇠ p⇤(x|vk = vk) and then generate ẑ = Ez⇠q�(z|x=x)[z]. Di↵erence
vectors ẑdi↵ = |ẑ0 � ẑ00| are created from pairs of representations (ẑ0, ẑ00) generated
from the same value of the fixed factor, such that if the representations are in fact

4.3. QUANTITATIVE EVALUATION 37

Algorithm 1 Z-di↵ Metric

Input Trained probabilistic encoder q�, ground truth generative factor represen-
tation v with distribution p⇤(v), true generative process p⇤

X
(x|v)

B {}
for b = 1 to B do
Choose a factor k 2 {1, ..., K}
for c = 1 to C do
Fix a value v(c)

k
of the factor representation vk

Sample values v0(c)
\k and v00(c)

\k at random.

Sample datapoints x0(c) ⇠ p⇤(x|v\k = v0(c)
\k , vk = v(c)

k
) and

x00(c) ⇠ p⇤(x|v\k = v00(c)
\k , vk = v(c)

k
)

Infer ẑ0(c) = Ez⇠q�(z|x=x0(c))[z] and ẑ00(c) = Ez⇠q�(z|x=x00(c))[z]

Compute the di↵erence ẑ(c)
di↵ = |ẑ0(c) � ẑ00(c)|

end for
Compute average ẑ(b)

avg =
1
C

P
C

c=1 ẑ
(c)
di↵

B B [{(ẑ(b)
avg, k)}

end for
Train a linear classifier on B

Return DisentanglementScore Normalized accuracy of linear classifier

disentangled, one would expect values close to 0 in the dimensions of ẑdi↵ that
capture the fixed factor. Averages over batches of ẑdi↵ ’s generated from the same
fixed factor are used as input to a linear classifier trained to output the index of
the factor that was kept fixed. The accuracy of the linear classifier acts as the
assigned disentanglement score of the model encoder in question. Zaidi et al. [2021]
suggests using the fact that a completely random classifier assigning input to K
classes will have accuracy of 1/K on average to normalize the scores assigned by
the Z-di↵ metric. The details of the metric calculations are shown in Algorithm 1.
The process is also shown in Figure 4.5a.

A ẑdi↵ would contain 0 in dimensions where the original representations (ẑ0, ẑ00)
are equal. Equal value of a dimension implies the value is caused by the fixed gen-
erative factor value without interference from other factors. This indicates that a
good or bad score should correspond to high or low modularity. Kim and Mnih
[2019] points out a failure mode of the Z-di↵ metric, in that it will report 100%
accuracy even if only K � 1 out of K factors are disentangled according to mod-
ularity in the representation, where the linear classifier will be able to map ẑdi↵
averages without small value patterns to the remaining factor, despite it not being
disentangled.

Kim and Mnih [2019] introduce a metric that attempts to improve on the Z-di↵
metric. This metric is referred to as Z-min Variance. For a set of representations
created keeping one factor fixed, it replaces the average of the di↵erence vectors
with the empirical variance of the original representations. Then the index of the
representation dimension that has the lowest variance is recorded, and a majority-
vote classifier is used to predict generative factor from representation dimension.

38 CHAPTER 4. DISENTANGLEMENT EVALUATION

Algorithm 2 Z-min Variance Metric

Input Trained probabilistic encoder q�, ground truth generative factor represen-
tation v with distribution p⇤(v), ground truth generative process p⇤

X
(x|v),

sg Empirical standard deviation over full data (or large random sample)
B {}
for b = 1 to B do
Choose a factor k 2 G

Fix a value v(b)
k

of the factor representation vk
for c = 1 to C do
Sample values v(c)

\k at random.

Sample datapoint x(c) ⇠ p⇤(x|v\k = v(c)
\k , vk = v(b)

k
)

Infer ẑ(c) = Ez⇠q�(z|x=x(c))[z]

Obtain normalised z̄(c) by dividing ẑ(c) by sg, z̄(c) = ẑ(c)

sg
end for
¯̄z

P
c z̄

(c)

C

s2 Empirical variance in each dimension of the z̄(c),
diag(1

C�1

P
c
(z̄(c) � ¯̄z)(z̄(c) � ¯̄z)T)

l⇤ argmin
l
s2
l

B B [{(l⇤, k)}
end for
Train a majority-vote classifier on B.
Return DisentanglementScore Normalized accuracy of majority-vote classifier

The accuracy of the classifier is used as the disentanglement score. The score can
be normalized similarly to Z-di↵. Details are presented in Algorithm 2, as well as
in Figure 4.5b.

Predicting a factor correctly from variance of a dimension requires that there is
a dimension that consistently shows low variance when controlled for that factor,
and thus all factors must be present in the representation in order to get an optimal
score, correcting for the failure mode mentioned for the Z-di↵ metric above. Using
a majority-vote classifier reduces hyperparameter sensitivity compared to Z-di↵
metric [Kim and Mnih, 2019].

Similarly to the 0 valued dimensions of the di↵erence vectors before, low variance
of a dimension over a batch of representations indicates that that dimension cor-
responds to the fixed factor, and the more consistent this relationship is, the more
modular the representation. Compactness is not measured by either Z-di↵ or Z-min
Variance as the classifier will map vectors with any number of low value dimensions
to the right factor index as long as they are consistent for the corresponding fixed
factor. Explicitness is also not measured by these metrics, since whether values of
v can be fully or only partially recovered from the detected dimensions of ẑdi↵ does
not impact the score, as the linear classifier is asked only to map dimensions of ẑdi↵
to corresponding dimensions of v, not considering values of either variable.

4.3. QUANTITATIVE EVALUATION 39

(a)

(b)

Figure 4.5: a) Illustration of the generation of dataset B in Algorithm 1, Z-di↵
metric. The red arrows indicates the process depicted in Figure 4.4 b) Illustration
of the generation of dataset B in Algorithm 2, Z-min Variance metric. The red
arrows correspond to Figure 4.4 and sg is the empirical standard deviation of the
dataset.

40 CHAPTER 4. DISENTANGLEMENT EVALUATION

Z-di↵ and Z-min Variance do not require all generative factors to be present
in v in order to produce a meaningful score, and can thus be modified to allow
calculation of partial disentanglement based on a dataset X⇤, assuming the dataset
is of su�cient size, with high variance in the labeled factors.

Zaidi et al. [2021] and Sepliarskaia et al. [2021] presents experiment results that
show that while Z-di↵ and Z-min Variance are expected to give a low score when
representations are not modular, there are failure modes for both metrics that lead
them to assigning a good score to non-modular representations, see Figure 4.6.

(a) (b)

Figure 4.6: a) An example of a non-modular v - z relationship that will be assigned
a perfect score by Z-di↵ and Z-min Variance [Sepliarskaia et al., 2021; Zaidi et al.,
2021]. Lines connecting dimensions in v and z are numbered according to how
much information is shared along the line, under the assumption of independence
in both spaces. b) Graphs showing the relative variation one would expect in each z
dimension when keeping each factor fixed in Z-di↵ and Z-min Variation calculatons,
assuming a model that has learned the relationship in a). As shown in [Sepliarskaia
et al., 2021; Zaidi et al., 2021], the Z-di↵ classifiers would still be able to map
distinct combinations of lowest variance dimensions to the fixed index, and the Z-
min Variance classifier will give a maximum score as long as the dimension in z
with the lowest variance consistently maps to the fixed index.

Another intervention-based metric is presented in [Suter et al., 2019], where a causal
framework for evaluating disentanglement is considered, starting from a generative
process described by the graph c ! v ! x, assumed to represent a causal model
where factors in v are mutually independent given confounders c. The disentangle-
ment metric introduced is called Interventional robustness score (IRS).

With L = {1, ..., L} as the set of indices of elements in ẑ and K = {1, ..., K}
as the set of indices of elements in v, and with subsets L

0 ✓ L and K
0 ✓ K,

IRS(L0|K0,K\K0) is a general metric that measure how robust encodings in ẑ located
at indices in L

0 is to interventions on factors in v at indices in K\K0 when factors at
indices in K

0 are kept fixed [Suter et al., 2019]. The metric is based on calculating
di↵erences after interventions for given values vK0 for vK0 and vK\K0 for vK\K0 :

PIDA(L0|vK0 ,vK\K0) =

d(E[zL0 |do(vK0 = vK0)], E[zL0 |do(vK0 = vK0 ,vK\K0 = vK\K0)])
(4.1)

where d is an appropriate distance function, e.g. the Euclidean distance.

4.3. QUANTITATIVE EVALUATION 41

The generative process considered in this chapter considers only generative fac-
tors v of absolute mutual independence. When there is no confounding,
p(x|do(y y)) = p(x|y = y) [Suter et al., 2019]. Additionally, IRS({l}|{k},K\{k})
is identified in [Suter et al., 2019] as a special case of IRS that measures disentangle-
ment. Presented in the following are details of the disentanglement version assuming
no confounding.

IRS({l}|{k},K\{k}) requires calculation of PIDA({l}|vk,v\k) for a single dimen-
sion l of ẑ and for given values vk of vk and v\k of v\k. Assuming no confounding,
equation (4.1) now becomes:

PIDA({l}|vk,v\k) =

d(Ex⇠p(x|vk=vk)[ẑl]], Ex⇠p(x|vk=vk,v\k=v\k)[ẑl]])
(4.2)

In order to assign a score over all values of vk and v\k, first the maximal PIDA
distance caused by any value of v\k is found, called MPIDA({l}|vk,K\{k}), and
then the expected value of MPIDA is taken over vk:

MPIDA({l}|vk,K\{k} = sup
v\k

PIDA({l}|vk,v\k]) (4.3)

EMPIDA({l}|{k},K\{k}) = Evk⇠p(vk)[MPIDA({l}|vk,K\{k})] (4.4)

IRS is defined as:

IRS({l}|{k},K\{k}) = 1� EMPIDA({l}|{k},K\{k})
EMPIDA({l}|;,K)

(4.5)

From Equation (4.1) the general IRS(L0|K0,K\K0) is computed analogously [Suter
et al., 2019].

The disentanglement score of ẑl is taken as maxk IRS({l}|{k},K\{k}), and an
overall score is given by averaging over all ẑl. Details of the IRS calculation are
summarised in Algorithm 3, which shows calculations in the case where factors are
sampled to generate a dataset for which representations are obtained, and expec-
tations Ex⇠p(x|v=v)[ẑl]] are estimated by frequencies of co-occurring values in v and
ẑl. This requires discretizing continuous factors before estimation.

IRS({l}|{k},K\{k}) gives a score on how robust dimension l of ẑ is to changes in
factors v\k when factor vk is kept fixed, and will be high if vk has high influence on ẑl
and vk is the only factor influencing the value of ẑl. Thus maxk IRS({l}|{k},K\{k})
will be high if there is information about a single factor encoded in ẑl, and low if
multiple factors or noise are encoded in ẑl. This corresponds to measuring modu-
larity and explicitness under the assumption that all factors expected to be present
in ẑ must be present in v. Thus IRS can not be used to measure partial disentan-
glement.

42 CHAPTER 4. DISENTANGLEMENT EVALUATION

Algorithm 3 IRS Disentanglement Metric

Input Trained probabilistic encoder q�, ground truth generative factor represen-
tation v with distribution p⇤(v), true generative process p⇤

X
(x|v)

Sample a matrix V of N row vectors of generative factors v
Sample a tensor X of data points x for V using p⇤(x|v)
Obtain representations Ẑ of row vectors ẑ for X using ẑ = Ez⇠q�(z|x=x)[z]
Discretize V
From V , get K sets J(k) of all values present in V for each factor
for l = 1 to L do
for k = 1 to K do
for j in J

(k) do
Ẑ(j) Nj rows of Ẑ corresponding to rows of V with element at index k
equaling realization j of vk

m Estimate Ex⇠p(x|vk=vk)[ẑl]] as
1

Nj

NjX

n=1

ẑ(j)
n,l

MPIDAj 0
From V , get I(\k), the set of all values present of v\k
for i in I

(\k) do
Z(j,i) Nji rows of Ẑ corresponding to rows of V with element at
index k equaling realization j of vk and the remaining elements equaling
realization i of v\k

m0 Estimate Ex⇠p(x|vk=vk,v\k=v\k)[ẑl]] as
1

Nji

NjiX

n=1

ẑ(j,i)
n,l

PIDA d(m,m0)
MPIDAj max(MPIDAj, PIDA)

end for
end for

EMPIDAl,k
|J(k)|X

j=1

Nj

N
MPIDAj

m; Estimate Ex⇠p(x)[ẑl]] as
1

N

NX

n=1

ẑn,l

From V , get I(K), the set of all values present of v
EMPIDAl,; 0
for i in I

(K) do
Z(i) Ni rows of Ẑ corresponding to rows of V with elements equaling
realization i of v

m0 Estimate Ex⇠p(x|v=v)[ẑl]] as
1

Ni

NiX

n=1

ẑ(i)
n,l

PIDA; d(m;,m0)
EMPIDAl,; max(EMPIDAl,;, PIDA;)

end for

IRSl,k 1� EMPIDAl,k

EMPIDAl,;
end for

end for
Return DisentanglementScore 1

L

P
L

l=1 maxk IRSl,k

4.3. QUANTITATIVE EVALUATION 43

Information-based metrics

Information-based metrics are based on using information theory techniques to eval-
uate the relationship between v and ẑ [Zaidi et al., 2021]. The Information-based
metrics discussed here are based on calculating the mutual information between
elements of v and ẑ.

Chen et al. [2019] introduce a metric called Mutual Information Gap (MIG),
which is calculated from the empirical mutual information I(zl; vk) between each
dimension l of the representation and each ground truth factor k. If zl encodes a
lot of the information in vk, the mutual information between these variables will be
high. In order to encourage axis-alignment, the metric uses the di↵erence between
the top two I(zl; vk) for each k as the disentanglement score on factor k [Chen et al.,
2019]. The di↵erences is then averaged to get a joint score on the representation.

Chen et al. [2019] considers sampling representations z ⇠ q�(z|x = x) instead
of using the expected value, and suggests estimating the mutual information as

I(zl; vk) = Eq(zl,vk)[log
X

x2Xvk

q�(zl|x)p̂X(x|vk)] +H(zl) (4.6)

where q(zl, vk) =
P

x p
⇤(vk)p̂X(x|vk)q�(zl|x) and Xvk is the support of p̂X(x|vk)

[Chen et al., 2019]. MIG normalizes the mutual information by dividing by H(vk),
using that 0  I(zl; vk)  H(vk) = Ep(vk)[� log p(vk)] holds when vk is discrete
[Chen et al., 2019], which impose an assumption that v is discrete when using this
metric.

Some of the work presented that consider the MIG metric takes a di↵erent
approach at estimating the mutual information when calculating the metric [Lo-
catello et al., 2019; Zaidi et al., 2021]. Defining model representations to be ẑ =
Ez⇠q�(z|x)[z], they discretize the dimensions ẑ, such that for each dimension l, values
are binned. When used in the case where v is continuous or mixed, v should also
be discretized.

Given that ẑl and vk are now two discrete random variables taking values in
{ẑl,1, ẑl,2, ..., ẑl,I} and {vk,1, vk,2, ..., vk,J} respectively, probabilities q(ẑl,i, vk,j) q(ẑl,i)
and p(vk,j) can be estimated from a set of N samples as the number of samples
where the values occur divided by N . Mutual information between ẑl and vk is
then calculated as:

I(ẑl; vk) =
IX

i=1

JX

j=1

q(ẑl,i, vk,j) log

✓
q(ẑl,i, vk,j)

q(ẑl,i)p(vk,j)

◆
(4.7)

Details of the computation of the MIG metric using discretization of ẑ is pre-
sented in Algorithm 4.

With ẑ
l(k) being the dimension of ẑ with the highest mutual information with

factor k and ẑl0(k) the dimension with the second highest mutual information with
factor k, the di↵erence I(ẑl(k) ; vk)�I(ẑl0(k) ; vk) is high when ẑl(k) has a lot of informa-
tion about k, while ẑl0(k) has very little information about k. Thus in order for all k
di↵erences to be high, ensuring a high score, the representation ẑ must be compact,
and if the representation is not compact, the score will be lower. Modularity is

44 CHAPTER 4. DISENTANGLEMENT EVALUATION

Algorithm 4 MIG Metric

Input Trained probabilistic encoder q�, ground truth generative factor represen-
tation v with distribution p⇤(v), ground truth generative process p⇤

X
(x|v)

Sample a matrix V of N row vectors of generative factors v
Sample a tensor X of data points x for V using p⇤(x|v)
Obtain representations Ẑ of row vectors ẑ for X using ẑ = Ez⇠q�(z|x=x)[z]

Discretize Ẑ
for k = 1 to K do
for l = 1 to L do
Calculate I(ẑl; vk) from ẑl and vk using Equation (4.7)

end for
Calculate H(vk) from vk

l(k) argmax
l
I(ẑl; vk)

l0(k) argmax
l 6=l(k) I(ẑl; vk)

end for
Return DisentanglementScore 1

K

P
k

1
H(vk)

(I(ẑ
l(k) ; vk)� I(ẑ

l0(k) ; vk))

required in order for any I(ẑl; vk) to be maximal, however low modularity combined
with high compactness will give I(ẑl(k) ; vk)�I(ẑl0(k) ; vk) = I(ẑl(k) ; vk)�0 > 0 as long
as some information about vk is captured compactly in ẑ. If all I(ẑl(k) ; vk) = H(vk),
then all information in v is encoded in ẑ, and so the MIG score also measures non-
linear explicitness. Discretization of ẑ is shown in in [Zaidi et al., 2021] to cause
the MIG metric to score lower on highly non-linear ẑ � v mappings despite high
compactness and explicitness, due to uneven number of samples in value bins.

As the metric only considers di↵erences I(ẑ
l(k) ; vk) � I(ẑ

l0(k) ; vk) for each factor
in v, it can be used to measure partial disentanglement, and Algorithm 4 can be
modified to take as input a labeled dataset X⇤.

Another mutual information-based metric is introduced in [Ridgeway and Mozer,
2018]. This metric is referred to as the Modularity metric, and is explicitly designed
to measure modularity only. The metric is based on estimating the mutual informa-
tion between all pairs of ẑl and vk. From all I(ẑl, vk) a L⇥K matrix T is created,
such that in each row l, tl,k contains I(ẑl, vk) if it is the maximum mutual informa-
tion that any factor has with ẑl, and 0 otherwise. T is used as a perfectly modular
target to compare the actual I(ẑl, vk)’s against, computing a deviation from the

target as 1
K�1

P
K

k=1

⇣
I(ẑl,vk)�tl,k

maxk I(ẑl,vk)

⌘2

. This deviation will be 0 if ẑ is in fact perfectly

modular, and it will be 1 if dimension l of ẑ has equal mutual information with all
k factors [Ridgeway and Mozer, 2018]. The reported overall score is given by the

average 1
L

P
L

l=1(1� 1
K�1

P
K

k=1

⇣
I(ẑl,vk)�tl,k

maxk I(ẑl,vk)

⌘2

) over all dimensions of ẑ. Calculation

details of the Modularity metric are summarised in Algorithm 5, where v is assumed
to be discrete and ẑ is discretized.

Zaidi et al. [2021] show that while the Modualrity metric is intended to assign
scores according to level of modularity, normalizing by maxk I(ẑl, vk) can lead to
assigning good scores to non-modular representations. The modular target T as-
sumes one factor in v should always be identified as encoded in each dimension of

4.3. QUANTITATIVE EVALUATION 45

ẑ, and the metric will therefore not be useful on partially labeled data.

Algorithm 5 Modularity Metric

Input Trained probabilistic encoder q�, ground truth generative factor represen-
tation v with distribution p⇤(v), ground truth generative process p⇤

X
(x|v)

Sample a matrix V of N row vectors of generative factors v
Sample a tensor X of data points x for V using p⇤(x|v)
Obtain representation matrix Ẑ of row vectors ẑ for X using
ẑ = Ez⇠q�(z|x=x)[z]

Discretize Ẑ
T L⇥K matrix of zeros
for l = 1 to L do
for k = 1 to K do
Calculate I(ẑl; vk) from ẑl and vk using Equation (4.7)

end for
k(l) argmax

k
I(ẑl; vk)

for k = 1 to K do
if k = k(l) then
tl,k I(ẑl; vk(l))

end if
end for

end for

Return DisentanglementScore 1

L

LX

l=1

(1� 1

(K � 1)

KX

k=1

✓
I(ẑl; vk)� tl,k
I(ẑl; vk(l))

◆2

)

Predictor-based metrics

Predictor-based metrics produce a score based on training predictors to predict
factor values from model representations ẑ [Zaidi et al., 2021].

In addition to the Modularity metric presented above, Ridgeway and Mozer
[2018] also introduce a metric to measure explicitness, called the Explicitness metric.
The metric is based on training logistic regressors to recover factor values from ẑ.
It assumes discrete factors, and for each factor vk with values in {vk,1, vk,2, ..., vk,J},
J one-verus-rest logistic regressors fkj are trained, such that each fkj takes as input
ẑ and predicts whether vk takes value vk,j or not. The ROC curve of each fkj is
created, and the area under the ROC curve is recorded, denoted AUCkj for area
under ROC curve of logistic regressor fkj. The final score is the average of all
AUCkj over factors and their values. Details of the Explicitness metric are shown
in Algorithm 6.

Using one logistic regressor for each value of each factor detects whether the
value can be identified from v, but does not make assumption about the mapping,
and the metric should measure non-linear explicitness.

Separated Attribute Predictability (SAP) is a predictor-based disentanglement met-
ric introduced in [Kumar et al., 2018]. It is based on predicting factor values from

46 CHAPTER 4. DISENTANGLEMENT EVALUATION

Algorithm 6 Explicitness Metric

Input Trained probabilistic encoder q�, ground truth generative factor represen-
tation v with distribution p⇤(v), ground truth generative process p⇤

X
(x|v)

Sample a matrix V of N row vectors of generative factors v
Sample a tensor X of data points x for V using p⇤(x|v)
Obtain representation matrix Ẑ of row vectors ẑ for X using
ẑ = Ez⇠q�(z|x=x)[z]
Discretize V
From V , get K sets J(k) of all values present in V for each factor
for k = 1 to K do
for j in J

(k) do
Train a logistic regressor fkj to predict whether elements of vk equal j or
not from input Ẑ
Create ROCkj, the ROC curve of fkj
AUCkj Area under ROCkj

end for
end for
Return DisentanglementScore 1

K

P
K

k=1
1

J(k)

P
J
(k)

j=1 AUCkj

ẑ under the assumption that there is a linear mapping from ẑ to v. The metric
creates a L⇥K matrix of scores where the value in row l, column k corresponds to
how well vk is predicted from ẑl.

The metric is constructed to deal with both continuous and discrete factor vari-
ables. If the generative factor vk is continuous, the relationship to ẑl is evaluated
by linear regression, and the R2-score is used as the matrix entry. R2 is calculated
as

cov(ẑl, vk)2

var(ẑl)var(vk)
(4.8)

If vk is discrete, a linear classifier is trained to predict the value of vk from ẑl and
its accuracy is reported as the score entry of the matrix. If a dimension of ẑ has
variance close to 0 it is considered inactive and the corresponding score matrix entry
is set to 0.

When all values of the score matrix are computed, for each column the di↵erence
of the two entries with the greatest score is calculated, and SAP is then taken to
be the mean of the K di↵erences. Calculation details are shown in Algorithm 7.

Considering the di↵erence between the two greatest entries of each score matrix
column, ensures that in order for the final score to be high, there has to be exactly
one entry with a high score in each column, corresponding to high compactness
of ẑ. This is analogous to the di↵erences considered by the MIG metric. Low
compactness conversely results in a low score. A high score requires recovery of
values of v from ẑ, which is restricted to linear mappings, and the metric therefore
also measures linear explicitness. High or low modularity does not a↵ect the score
[Zaidi et al., 2021].

While designed to only report high compactness when there is a linear mapping
from ẑ to v, Sepliarskaia et al. [2021] show that SAP can return optimistic compact-

4.3. QUANTITATIVE EVALUATION 47

Algorithm 7 SAP Metric

Input Trained probabilistic encoder q�, ground truth generative factor represen-
tation v with distribution p⇤(v), ground truth generative process p⇤

X
(x|v)

Sample matrices V and V test of N row vectors of generative factors v
Sample a dataset X and a test set Xtest for V and V test using p⇤(x|v)
Get representation matrices Ẑ and Ẑtest of row vectors ẑ for X and Xtest

using ẑ = Ez⇠q�(z|x=x)[z]
S L⇥K matrix
for k = 1 to K do
for l = 1 to L do
if var(ẑl) ⇡ 0 then
sl,k 0

else if vk is continuous then

sl,k
cov(ẑl,vk)2

var(ẑl)var(vk)
else
Train a balanced linear classifier to predict vk from ẑl

sl,k Accuracy of linear classifier on predicting vtest
k

from ẑtest
l

end if
end for
l(k) argmax

l
sl,k

l0(k) argmax
l 6=l(k) sl,k

end for
Return DisentanglementScore 1

K

P
k
(sl(k),k � sl0(k),k)

ness scores if factors in v are encoded in ẑ through a compact linear mapping in a
subset of dimensions in ẑ as well as through a non-linear mapping in the remaining
dimensions of ẑ. The non-linear encoding of a factor may not be discovered by
the linear predictors of the metric, thus leading to the metric only considering the
subspace of ẑ linearly encoding v, falsely recognising the representation as compact.

Another predictor-based approach is introduced in [Eastwood and Williams, 2018],
which is a framework consisting of three di↵erent metrics in order to measure modu-
larity, compactness and explicitness separately. In their work modularity is referred
to as disentanglement, compactness as completeness and explicitness as informa-
tiveness.

The metrics are based on training K predictors in order to predict the value
of the K generative factors in v from ẑ. Predictor fj predicts vj given ẑ, and the
predictors should be able to provide relative importance’s of each ẑi in predicting
vj, such that a relative importance matrix R can be constructed, where ri,j is the
relative importance of ẑi in predicting vj. Usually two versions are considered, one
using linear predictors and one using non-linear.

The Informativeness metric, measuring the explicitness of representation ẑ rela-
tive to generative factors v, is given by the average prediction error 1

K

P
k
E(vk, fk(ẑ)),

where E is an error function [Eastwood and Williams, 2018]. The use of linear

48 CHAPTER 4. DISENTANGLEMENT EVALUATION

predictors fk(ẑ) will restrict the metric to measuring linear explicitness, while non-
linear predictors will measure non-linear explicitness.

The Disentanglement metric, measuring the modularity of representation ẑ rel-
ative to generative factors v, calculates a score by estimating probabilities for how
likely it is that ẑl is important in estimating only vk:

pl,k =
Importance of zl in predicting vk
Importance of zl in all predictions

=
rl,kP

K

k0=1 rl,k0
(4.9)

From this the entropy HK(pl.) = �
P

K

k=1 pl,k logK pl,k is calculated, and the score
for dimension l is given by 1 � HK(pl.). In order to give an overall score, ⇢l =

PK
k=1 rl,kPL

l0=1

PK
k=1 rl0,k

is used to construct a weighted average
P

L

l=1 ⇢l(1�HK(pl.)) [Eastwood

and Williams, 2018]. ⇢l is used such that if a dimension zl is inactive when predicting
all factors v, ⇢l will be small and ẑl’s contribution to the overall score will be low.

The Completeness metric, measuring the compactness of representation ẑ rela-
tive to generative factors v, calculates a score by estimating probabilities for how
important each ẑl is when predicting vk [Zaidi et al., 2021]:

p̃l,k =
Importance of zl in predicting vk

Importance of all z0s in predicting vk
=

rl,kP
L

l0=1 rl0,k
(4.10)

The entropy HL(p̃.k) = �
P

L

l=1 p̃l,k logL p̃l,k is calculated, and the score for factor k
is given by 1�HL(p̃.k). The average

1
K

P
K

k=1(1�HL(p̃.k)) is reported as the overall
score [Eastwood and Williams, 2018].

Algorithm 8 shows the calculation details of the Disentanglement, Compactness
and Informativeness metrics, with the error function E being the accuracy of the
predictors when run on test data.

As the predictor-based metrics presented here are based on predicting factor
values from representations, none of them requiring that all dimensions of ẑ should
contribute information in the predictions, they can be applied to measure partial
disentanglement on datasets with factor labels, and Algorithms 6, 7 and 8 can be
modified to take X

⇤ as input.

4.3. QUANTITATIVE EVALUATION 49

Algorithm 8 DCI Metric

Input Trained probabilistic encoder q�, ground truth generative factor represen-
tation v with distribution p⇤(v), ground truth generative process p⇤

X
(x|v)

Sample matrices V and V test of N row vectors of generative factors v
Sample a dataset X and a test set Xtest for V and V test using p⇤(x|v)
Get representation matrices Ẑ and Ẑtest of row vectors ẑ for X and Xtest

using ẑ = Ez⇠q�(z|x=x)[z]
R L⇥K matrix
P L⇥K matrix
P̃ L⇥K matrix
for k = 1 to K do
Train a predictor fk to predict vk from Ẑ
for l = 1 to L do
rl,k Relative importance of zl in predicting vk using fk

end for
Ik Accuracy of fk on predicting vtest

k
from Ẑ

end for
I 1

K

P
K

k=1 Ik
for l = 1 to L do
for k = 1 to K do
pl,k rl,kPK

k0=1 ri,k0

end for
Dl 1 +

P
K

k0=1 pl,k0 log pl,k0

⇢l
PK

k0=1 rl,k0PL
l0=1

PK
k0=1 rl0,k0

end for
D

P
L

l=1 ⇢lDl

for k = 1 to K do
for l = 1 to L do
p̃l,k rl,kPL

l0=1 rl0,k

end for
Ck 1 +

P
L

l0=1 pl0,k log pl,k0
end for
C 1

K

P
K

k=1 Ck

Return DisentanglementScores (D,C, I)

50 CHAPTER 4. DISENTANGLEMENT EVALUATION

Metric Modularity Compactness Explicitness Partial v

Z-di↵ X1) X
Z-min Variance X1) X
IRS X X
MIG X X X
Modularity X2)

Expliciteness X X
SAP X3) X4) X
Disentanglement X X
Completeness X X
Informativeness X X

Table 4.2: Summary of supervised disentanglement metrics. 1) Failure modes of
Z-di↵ and Z-min Variance are identified in [Zaidi et al., 2021; Sepliarskaia et al.,
2021], and the resulting modularity score is less reliable. 2) Modularity scores may be
optimistic compared to actual modularity of representation due to normalization
by maximal mutual information [Zaidi et al., 2021] 3) A failure mode of SAP is
identified in [Sepliarskaia et al., 2021] caused by the linearity assumption. 4) Linear
explicitness only.

A summary of the metric presented in this section in presented in Table 4.2. General
results from [Zaidi et al., 2021] also show that metrics using discretization of v
and/or ẑ perform less accurate if the mapping between v and ẑ is noisy or non-
linear, caused by inaccurate or uneven binning of values.

The supervised metrics are dependent upon an assumption that there is a known
representation v of the ground truth generative factors. While ẑ is not required to
be equal to v in order to give a high score using the metric, the choices in designing v
will limit the ways that ẑ can be constructed in order to be considered disentangled.

To illustrate this, consider a dataset of images of simple objects on a neutral
background. The objects position could be considered a generative factor inde-
pendent of any other factors. In order to describe position using one dimensional
random variables one could choose to register Cartesian coordinates x and y as
separate continuous random variables. A model representation ẑ that encodes the
objects position in two dimensions zi and zj according to polar coordinates would
succeed in disentangling equally well as the Cartesian v, but compared to v all
modularity and compactness metrics discussed in this section would consider ẑ en-
tangled relative to v.

Another analogous example would be to consider object colour an independent
factor, and deciding between encoding the colour using RGB, CYMK or any other
color representation. Comparing one such encoding to another would suggest en-
tanglement, when in fact both are disentangled.

One way to attempt to correct for such issues could be to discretize the posi-

4.3. QUANTITATIVE EVALUATION 51

tion/colour space in v and assign each value a single number. An objects position
in an image could be represented by counting pixels and assigning the number of
its center pixel c as its position. Now both Cartesian x, y and polar r, ✓ are mod-
ular representations of c, and if measured by a reliable metric not inspecting for
compactness, a good score should be assigned. Intervention-based metrics also al-
low for fixing more than one dimension at a time, such that fixing e.g. x and y
simultaneously could be considered when calculating the metric.

However, when working with complex data, the task of designing v becomes
considerably more complex, and assumptions on which atomic factors are indeed
independent both statistically and conceptually given all others are harder to make.
Deciding upon factors to include in v is not straight forward, and ideally one would
want to avoid labeling v’s all together.

4.3.2 Unsupervised metrics

In order to avoid having to design a representation v of the ground truth generative
factors, it is desirable to construct unsupervised disentanglement metrics. Access
to such a metric would allow measuring disentanglement of a given model without
making any assumptions about factors and factor decomposition.

The informal definitions of disentanglement consider independence and inter-
pretability as required properties [Bengio et al., 2014; Higgins et al., 2017], some-
times also referred to as statistical and conceptual independence [Zaidi et al., 2021].
When evaluating disentangled representations, one must therefore identify statisti-
cally mutually independent factors that additionally have a meaningful interpreta-
tion if inspected by humans.

In the Disentanglement Library created in association with [Locatello et al.,
2019], several unsupervised scores are calculated based on mutual information and
total correlation. Low averaged mutual information between the di↵erent dimen-
sions of ẑ imply pairwise statistical independence and low total correlation imply
mutual statistical independence. Such metrics will only evaluate the statistical inde-
pendence of dimensions in a model representation, and will not say anything about
conceptual independence. While a low score will correspond to representations of
low modularity, a high score can not be interpreted as disentanglement.

Duan et al. [2020] introduce a framework for calculating disentanglement called
Unsupervised Disentanglement Ranking (UDR). The theory behind the UDR met-
ric is based on results from [Rolinek et al., 2019], which show that disentangling
VAEs, trained on non-adversarial datasets, tend to converge to the same disentan-
gled representations, up to permutations and inverse signs. In contrast, entangling
VAE’s tend to converge to di↵erent entangled representations despite having been
trained with the same architecture and hyperparameter settings [Duan et al., 2020].

The UDR metric is based on training many models for a given model architec-
ture, with di↵erent hyperparameters and initial model weights. Models with the
same hyperparameter setting are then pairwise compared by calculating their UDR
score, which is done by constructing a similarity matrix R 2 R

L⇥L, given represen-
tations of length L. Recording similarity between all pairs of dimensions, one from
each model representation, allow for assigning a high score to permutations. The

52 CHAPTER 4. DISENTANGLEMENT EVALUATION

absolute value of each entry is used in order to cancel out sign inverse.
Given a dataset X and two models m and u, each entry rij of R is calculated

as the similarity between z(m)
i

, the values of the i’th dimension of representations

produced from X using model m, and z(u)
j

, the values of the j’th dimension of
representations produced from X using model u. Similarity is suggested calculated
using Lasso regression [Duan et al., 2020] to predict one value form the other,
recording accuracy of the predictor as the similarity score.

For a representation z(m) from modelm with encoder q(m)
� , dimension l is defined

as informative if it has learned a posterior which diverges from them prior p(m) of
the model:

IKL(z
(m)
l

) =

(
1 DKL(q

(m)
� (zl|x)kp(m)(zl)) > 0.01

0 otherwise
(4.11)

The UDR-score between models m and u is calculated from entries ri,j of similarity
matrix R as:

UDRmu =
1

2
·
"

LX

j=1

maxi |ri,j| · IKL(z
(u)
j

)
P

L

i=1 |ri,j|
+

LX

i=1

maxj |ri,j| · IKL(z
(m)
i

)
P

L

j=1 |ri,j|

#
(4.12)

UDRmu =
UDRmu

1
2 · [

P
L

i=1 IKL(z
(m)
i

) +
P

L

j=1 IKL(z
(u)
j

)]
(4.13)

As seen in equation (4.13), calculating the UDR-score involves a division by the
average number of informative latents in z(m) and z(u), which is done in order to
account for the case where the two models have learned di↵erent subsets of factors
[Duan et al., 2020].

Given a VAE-based disentangling model architecture, for H di↵erent hyperpa-
rameter settings of the model and S di↵erent seeds, M = H⇥S models are trained,
covering all combinations of hyperparameters and seeds. Then, for each model m,
1  m  M , U  S models are sampled without replacement from the S trained
models that have the same hyperparameter setting as m. For each of these models
u, 1  u  P , compare representations created by m and u and calculate their UDR
score, denoted UDRmu. For each model m, the UDRm score is calculated as the
median of the U UDRmu scores. Details are summarized in Algorithm 9.

Disentanglement as measured by UDR corresponds to modularity [Duan et al.,
2020].

Theoretical argumentation and empirical results in [Rolinek et al., 2019; Duan
et al., 2020] suggest the UDR metric works on VAE-based models �-VAE, CCI-VAE,
FactorVAE, �-TCVAE, DIP-VAE-I and DIP-VAE-II.

4.3. QUANTITATIVE EVALUATION 53

Algorithm 9 UDR Metric

Input A model architecture A, hyperparameter settings H = {h1, ..., hH}, seeds
S = {s1, ..., sS}, design matrix X
M {}
for (h, s) in H⇥ S do
Train a model m from A initialized from seed s using hyperparameter h
M M [{m}
Z(m) representations created from X using model m
a(m) Vector of zeros of length L
for l = 1 to L do
if DKL(q

(m)
� (zl|x)kp(m)(zl)) > 0.01 then

a(m)
l
 1

end if
end for

end for

for m in M do
U A subset of {m̃ | m̃ 2M, m̃ 6= m,h of m̃ = h of m} of size U  S
R L⇥ L matrix
for u in U do
for (i, j) in {1, ..., L}⇥ {1, ..., L} do

Train a Lasso regressor to predict z(m)
i

from z(u)
j

ri,j Prediction accuracy of trained regressor
end for

UDRmu
1

P
L

i=1 a
(m)
i

+
P

L

j=1 a
(u)
j

"
LX

j=1

maxi ri,j · a(u)jP
L

i=1 ri,j
+

LX

i=1

maxj ri,j · a(m)
iP

L

j=1 ri,j

#

end for
UDRm Median of the U scores UDRmu

end for
Return UDRscores {UDRm}|M|

m=1

54 CHAPTER 4. DISENTANGLEMENT EVALUATION

Chapter 5

Experiments and Results

5.1 Experimental Plan

The hypothesis to be tested is that disentangling data representations will result in
increased performance in learning downstream tasks.

The experiment is based on a group of models that learn disentangled represen-
tations. 1800 disentangling models from the Disentanglement library (Disentangle-
mentLib) [Locatello et al., 2019] that learn unsupervised disentangled representa-
tions are considered, trained on the dSprites dataset [Matthey et al., 2017]. The
models are evaluated on both level of disentanglement and suitability as input to
prediction models, in order to test the hypothesis.

The 1800 models used for these experiment are VAE-based and share the same
architecture, with all models learning representations of 10 dimensions. They di↵er
in the objective function used during training and in weight initialization.

The level of disentanglement achieved by each model is evaluated using disen-
tanglement metrics as discussed in Section 4.3. In order to evaluate the reliability
of the disentanglement scores assigned by the metrics, their agreement on the set of
models is quantified by calculating pairwise correlation coe�cients. In particular,
metrics that measure the same disentanglement criteria (modularity, compactness
and explicitness in Table 4.1) are expected to be related by a linear relationship,
and thus share a strong correlation. As all models learn representations of equal
size, disentanglement scores are assumed to be model independent given true level
of disentanglement, and thus to reflect only the level of modularity, compactness or
explicitness.

The downstream suitability of representations is evaluated by considering the
accuracy achieved by a set of predictors receiving the representations as input. The
expected outcome is that the performance of predictors should improve as disentan-
glement increases, and the impact of disentanglement on predictor performance is
quantified by correlation coe�cients between disentanglement metrics and predictor
accuracy scores.

The experiment setup is shown in Figure 5.1. The setup is further detailed in
Section 5.2.

55

56 CHAPTER 5. EXPERIMENTS AND RESULTS

Figure 5.1: The figure shows the experiment setup. Blue arrows correspond to flow
of data, red arrows to flow of models, and purple arrows to flow of calculated scores.
The examples of data representations shown in this figure show values rounded to
two decimal precision for readability.

5.2. EXPERIMENTAL SETUP 57

5.2 Experimental Setup

5.2.1 Metrics

The metrics used to calculate scores in this experiment are the unsupervised metric
UDR measuring modularity, the supervised metrics Z-di↵, Z-min Variance (Z-min-
var), IRS and Modularity measuring modularity, Explicitness measuring explicit-
ness, MIG and SAP measuring compactness, and linear DCI and nonlinear DCI
measuring all three disentanglement criteria. The modularity score calculated by
the DCI metrics is referred to as D, the compactness score as C and the explicitness
score as I. All metrics are presented in Section 4.3.

The implementation of the UDR metric used in the experiment is from the Dis-
entanglementLib [Locatello et al., 2019]. The UDR metric calculates representation
similarity using Lasso regression, as suggested in [Duan et al., 2020].

Implementations of the supervised metrics are from the code accompanying the
metrics review by Zaidi et al. [2021], with a few changes detailed in the follow-
ing. The supervised metrics are all calculated using discrete factor class labels,
with the predictor-based metrics implemented using classifiers. The SAP metric is
implemented using logistic regression, in order to retain linearity. The linear DCI
implementation uses logistic regression with the importance weights taken as the
absolute value of the weights of the model. The nonlinear DCI implementation uses
random forest classification, with the importance weights calculated as permutation
importances.

The predictor-based metrics divide the dataset into training (7/10 of the data)
and test set (3/10 of the data), and returns a score based on evaluating the trained
classifiers on the test set. The permutation importances of the nonlinear DCI metric
are evaluated on a subset of the training set, in order to correspond to the linear
version where the importance weights are determined by the training set.

Out of the supervised modularity scores listed above, both IRS and Modularity
expects a complete set of factor labels covering all generative factors of the data,
thus limiting their flexibility and use outside of toy data experiments. The remain-
ing metrics Z-di↵, Z-min-var, linear D and nonlinear D all involve prediction of
either factors or factor values from codes, potentially resulting in optimistic scores
if disentanglement is calculated based on labels of few factors, and rendering them
unable to calculate a modularity score for one factor only. A new predictor-free
metric based on the Z-min-var metric is therefore suggested here to allow for more
stable measurement of partial modularity.

As for Z-min-var (presented in Section 3.5), representation variance vectors are
created by keeping a factor value fixed and sampling others at random, considering
the corresponding representations and calculating the variance of each represen-
tation dimension. Dividing each dimension of the variance vector by the global
variance of that dimension calculated over the entire dataset ensures a variance
approaching 1 in each dimension before factor interventions.

The dimensions that encode information about the fixed factor are expected to
have lower variance than the ones that do not encode this factor. Specifically, if the

58 CHAPTER 5. EXPERIMENTS AND RESULTS

Algorithm 10 Z (2) Metric

Input Trained probabilistic encoder q�, ground truth generative factor represen-
tation v with distribution p⇤(v), ground truth generative process p⇤

X
(x|v),

sg Empirical standard deviation over full data (or large random sample)
for n = 1 to N do
Choose a factor k 2 G

Fix a value v(n)
k

of the factor representation vk
for j = 1 to J do
Sample values v(j)

\k at random.

Sample datapoint x(j) ⇠ p⇤(x|v\k = v(j)
\k , vk = v(n)

k
)

Infer ẑ(j) = Ez⇠q�(z|x=x(j))[z]

Obtain normalised z̄(j) by dividing ẑ(j) by sg, z̄(j) = ẑ(j)

sg
end for
¯̄z

P
j z̄

(j)

J

c Empirical variance in each dimension of the z̄(j),
diag(1

J�1

P
j
(z̄(j) � ¯̄z)(z̄(j) � ¯̄z)T)

c(n)
l⇤ = minl cl

c̃(n) = c\l⇤

c⇤(n) = 1
L�1

P
L�1
l=1 c̃(n)

l
(1� c̃(n)

l
)

end for
c̄l⇤ =

1
N

P
n
c(n)
l⇤

c̄⇤ = 1
N

P
n
c⇤(n)

Return DisentanglementScore 1� (c̄l⇤ + 4c̄⇤(1� c̄l⇤))

representation satisfies the modularity criterium with respect to the fixed factor, the
representation dimensions encoding the factor should have variance approaching 0,
while the dimensions not encoding the fixed factor are expected to have variance of
approximately 1 after division by the global representation variance. Disregarding
noise and assuming a large sample size, one would expect perfect modularity to
correspond to variance vector dimensions either being close to 0 or close to 1.

The suggested metric calculates a modularity score by considering the lowest
variance of each representation variance vector c 2 C, denoted cl⇤ = minl cl, and
assigns a score 1�c̄l⇤ , where c̄l⇤ is the average of all cl⇤ in C. A high score corresponds
to there being a subset of the representation where some information about each of
the labeled factors are disentangled according to modularity. However, additional
and/or redundant information about the factors may still appear in the remaining
representaion space in a non-modular fashion.

In order to include all dimensions in the score calculations, the average across
the dimensions of c(1�c) could be considered in a score given by 1�4 1

L

P
L

l=1 cl(1�
cl). A high score now includes the case where no information about the factor is
encoded in the representation (no explicitness), which is not consistent with the
other modularity metrics.

Combining the two scores is suggested by extending 1 � c̄l⇤ , considering the

5.2. EXPERIMENTAL SETUP 59

remaining variances c̃ = c\l⇤ . A score c⇤ of how modular they appear are given by

c⇤ = 1
L�1

P
L�1
l=1 c̃l(1� c̃l), with 0  4c⇤  1. The final score is given by 1� (c̄min +

4c̄⇤(1 � c̄min)), where c̄⇤ is the average over C. The metric requires clipping the
dimensions of all c to [0, 1] in order to ensure the assigned score is in [0, 1].

The suggested metric is an intervention-based metric measuring modularity that
allows for calculating partial disentanglement, including when labels of only one
factor is present. Analogously to Z-min-var, a good score may be assigned despite
the representation not displaying perfect explicitness. The metric is however not
robust to noise. The lack of predictors presents an additional advantage in that the
computational cost is lowered.

The metric is included in these results in two versions, Z (1): 1� c̄l⇤ and Z (2):
1� (c̄l⇤ + 4c̄⇤(1� c̄l⇤)). Z (2) is detailed in Algorithm 10.

The linear and nonlinear DCI metrics both calculate three di↵erent scores, while the
remaining metrics calculate one score. Thus the total number of disentanglement
scores considered in this experiment is 16. Of these, 8 are supervised modularity
scores: Z-di↵, Z-min-var, Z (1), Z (2), D (linear), D (nonlinear), IRS and Modularity.
4 are supervised compactness scores: MIG, SAP, C (linear) and C (nonlinear). 3
are supervised explicitness scores: I (linear), I (nonlinear) and Explicitness. The
last score is the unsupervised UDR score.

As discussed in Section 4.3, the supervised metrics are classified as either intervention-
based, information-based or prediction-based, grouping the metrics on the technique
they use to compare factors and codes. Despite di↵erences in construction, the met-
rics that measure the same properties should be expected to increase or decrease
close to linearly relative to the true level of that property, and thus to other metrics
measuring the same property, even if values do not coincide. In order to estab-
lish reliability of the metrics given the other metrics, pairwise correlation of metric
scores is quantified using the Pearson correlation coe�cient, measuring the strength
of a linear relationship between the metrics.

IRS, MIG and SAP measure explicitness in addition to modularity/compactness.
The influence of multiple properties may impact their correlation with other metrics
measuring only one property.

5.2.2 Dataset

The experiment is conducted on the dSprites dataset [Matthey et al., 2017]. This is a
synthetic dataset generated from 5 factors of variation: shape (3 values), size (6 val-
ues), orientation (40 values), x-coordinate of position (32 values) and y-coordinate
of position (32 values). Some samples from the dataset are shown in Figure 5.2.
The factors and their values are presented in detail in Appendix B.

The dataset consists of 737 280 samples, one for each factor configuration. In
order to limit computational cost, a subset of the data is used in calculating metrics
and predictions. Score convergence is considered to determine the size of this subset.
The I score calculated by the nonlinear DCI metric, using the accuracy of random
forest classifiers to measure representation explicitness, is identified as the score
that requires the largest dataset in order to converge to a stable score. Figure 5.3

60 CHAPTER 5. EXPERIMENTS AND RESULTS

Figure 5.2: Samples from the dSprites dataset

shows the nonlinear DCI metric scores plotted against dataset size. The plot to
the left shows the I score. Calculating the score on the full dataset is seen to be
required in order to reflect actual explicitness of the representations, however as the
dataset size grows, the resulting increase in the score is less significant.

Figure 5.3: Nonlinear DCI metric convergence. The plot to the left shows the I
score as dataset size increases, along with the D (middle) and C (right) scores.

Due to computational cost, a data subset of size 150 000 is randomly chosen for
metric calculation, as increasing the sample size beyond this show limited impact
on the D (Figure 5.3, middle) and C (Figure 5.3, right) scores. The resulting
nonlinear DCI scores may however be slightly inaccurate, as explicitness may be
slightly underestimated.

For comparison, similar plots for linear DCI are included in Figure 5.4, and plots
for the remaining metrics are included in Appendix C.

Figure 5.4: Linear DCI metric convergence. The plot to the left shows the I score
as dataset size increases, along with the D (middle) and C (right) scores.

Predictors are trained on the same dataset of size 150 000 that disentanglement
is calculated on. Another subset of 65 000 samples is chosen as a test set for
evaluating predictor accuracy. The disentangled representation learning models

5.2. EXPERIMENTAL SETUP 61

used in the experiment are trained using the entire dSprites dataset, thus data
representations are in this case learned with access to information from the test set,
potentially overestimating test data accuracy. As this is the case for all models that
are compared in this experiment, this should not impact results significantly.

5.2.3 Disentanglement learning models

The models used in the experiment are pretrained models from the Disentangle-
mentLib [Locatello et al., 2019]. 1800 unsupervised VAE-based models are con-
sidered, identified by numbers 0-1799, trained to reconstruct the dSprited dataset
with a representation space of 10 dimensions. There are 300 models of each of
the unsupervised VAE variants �-VAE, Factor-VAE, DIP-I-VAE, DIP-II-VAE, �-
TCVAE and CCI-VAE, introduced in Section 3.4. The model encoder and decoder
architecture, shared by all 1800 models, is shown in Appendix D.1, along with the
Factor-VAE discriminator architecture. Hyperparameters shared by all models are
listed in Appendix D.2.

Table 5.1 shows the hyperparameters that di↵er between the models along with
their values.

The dSprites data samples are preprocessed using each of the 1800 pretrained
variational encoders, taking the mean of the encoder output distribution as the data
representation. After encoding using a variational encoder, the resulting set of 150
000 data representations is scaled to have a mean of 0 and a variance of 1 over the
representation dataset, before metric calculation and predictor training. Predictor
test data is scaled according to training data mean and variance.

Model Model Parameter values

numbers

0-299 �-VAE � 2 [1, 2, 4, 6, 8, 16]

300-599 FactorVAE � 2 [10, 20, 30, 40, 50, 100]

600-899 DIP-VAE-I �od 2 [1, 2, 5, 10, 20, 50] (�d = 10�od)

900-1199 DIP-VAE-II �od 2 [1, 2, 5, 10, 20, 50] (�d = �od)

1200-1499 �-TCVAE � 2 [1, 2, 4, 6, 8, 10]

1500-1799 CCI-VAE Cmax 2 [5, 10, 25, 50, 75, 100] (� = 1000)

Table 5.1: The parameter settings of the pretrained models from the Disentan-
glement Library. 50 models initialized from di↵erent seeds are trained for each
parameter value.

5.2.4 Predictors

Four learning tasks are defined on the dataset. These are classification of object
shape into three classes, and regression of size, position in Cartesian coordinates and
position in polar coordinates. Logistic regression, gradient boosting classification

62 CHAPTER 5. EXPERIMENTS AND RESULTS

and random forest classification are considered for the classification task, and linear
regression, gradient boosting regression and random forest regression are considered
for the regression tasks. Accuracy on Cartesian coordinate position is reported as
the average of the accuracy on predicting the x 2 [0, 1] and y 2 [0, 1] coordinate,
and accuracy on polar coordinate position is reported as the average of the accuracy
of predicting the angle, ✓ 2 [0, ⇡2], and radial distance, ⇢ 2 [0,

p
2], after converting

new label values from original x and y values.
All predictors are implemented using the Scikit-Learn library [Pedregosa et al.,

2011].
In total, 12 di↵erent tasks are solved on each set of data representations, and

12 accuracy scores are reported. Prediction accuracy scores are compared to level
of disentanglement as measured by the 16 disentanglement metrics in the experi-
ment, and the relationship between disentanglement and predictor performance is
quantified by Pearson correlation coe�cients.

5.2.5 Computations

The computation of metric scores and prediction accuracies constituting the re-
sults presented in this chapter were performed on resources provided by the NTNU
IDUN/EPIC computing cluster [Själander et al., 2019].

5.3 Experimental Results

For representations from each of the 1800 models, the following disentanglement
scores are computed: scores given by the supervised modularity metrics Z-di↵, Z-
min Variance (Z-min-var), IRS, Modularity, linear DCI Disentanglement (D) and
nonlinear D, the supervised compactness metrics MIG, SAP, linear DCI Complete-
ness (C) and nonlinear C, the supervised explicitness metrics Explicitness, linear
DCI Informativeness (I) and nonlinear I, and the unsupervised modularity metric
UDR. Supervised scores are calculated using class labels of factors shape, size, orien-
tation, x coordinate and y coordinate. As UDR provides a score that is independent
of factor labels, this score is considered particularly important when presenting the
results of this experiment.

Metrics measuring the same disentanglement property are expected to correlate
strongly across model groups if the metric scores does in fact reflect the true level
of the measured property of the representations. While UDR measures modularity,
this is not in reference to any ground truth factors, and the relationship with the
other modularity metrics is unclear. Examining Pearson correlation coe�cients
should provide some indication of how reliable the di↵erent metrics are given scores
from the other metrics.

Figure 5.5 shows the correlation coe�cients of the scores assigned by all 16
metrics for representations from the 1800 models in the experiment.

5.3. EXPERIMENTAL RESULTS 63

Figure 5.5: The correlation matrix of all metrics calculated for the 1800 experiment
model representations. The red box shows correlation among the modularity met-
rics, the green box shows correlation among compactness metrics and the blue box
shows correlation among explicitness metrics. The black boxes shows correlation of
modularity metrics with compactness metrics.

Summarizing Figure 5.5:
Modularity metrics (red box): All metrics show positive correlation, except for
Modularity, which does not appear well correlated with any metrics.
Compactness metrics (green box): All metrics correlate well with each other.
Explicitness metrics (blue box): The blue box contains the metrics that mea-
sure only explicitness. The nonlinear metrics are correlated, while the linear metric
does not correlate well with the others. IRS, SAP and MIG are also mentioned in
Section 4.3 as measuring explicitness, however as these metrics also measure other
disentanglement properties correlation is not as easily interpreted.
Modularity and compactness metrics (black box): These metrics appear to
be well correlated on these models, again with Modularity as the exception.
UDR (bottom row): The unsupervised disentanglement metric shows varying
correlation with the supervised metrics, possibly indicating some ambiguity in what
the metric scores are reflecting.

64 CHAPTER 5. EXPERIMENTS AND RESULTS

Modularity metrics and compactness metrics are intended to capture di↵erent prop-
erties of representations, and the level of correlation between these groups would not
in general be expected to be as strong as correlation of metrics within these groups.
However, they are related in that for a representation space and a generative factor
space of equal size, perfect modularity of all factors in the representation space
is equivalent to perfect compactness. In this experiment the scores are calculated
from representations having 10 dimensions while assuming a total of 5 factors, and
thus perfect modularity will follow from perfect compactness, while the reverse is
not necessarily true.

From Figure 5.5, Modularity appear to assign scores of particularly low cor-
relation with all other metrics. Pairwise comparison of Modularity with all other
metrics is detailed in Appendix E.1, where hypothesis testing indicate that a nega-
tive correlation with supervised modularity metric IRS as well as UDR is significant
(↵ = 0.01), even when considering Spearman correlation.

UDR is seen to share notable negative correlation with the nonlinear explicitness
metrics. With UDR only considering similarity, the amount of information relative
to the original data that is present in the representation does not influence the score
assigned. As argued by [Higgins et al., 2017; Burgess et al., 2018], disentanglement
in some of the models is enforced through reducing the capacity of the representation
space, which could potentially impact the resulting explicitness. Perhaps more
suprising is the low correlation shared by UDR with several of the modularity
metrics, which is even negative in the case of Z-di↵.

Also worth noting is that the explicitness metrics included here are all imple-
mented using predictors trained to predict the ground truth factors, resulting in
explicitness metrics that potentially favour to some degree representations where
these factors are disentangled according to modularity and compactness, as sug-
gested by the hypothesis at hand. This could account for some of the positive
correlation shared by explicitness metrics with modularity and compactness met-
rics.

For representations from each of the 1800 models, the following 12 prediction accu-
racy scores are computed: Classification of object shape into classes square, heart
and circle using logistic regression, gradient boosted classification and random for-
est classification, regression of object size using linear regression, gradient boosted
regression and random forest regression and regression of object position using two
di↵erent target representations, one given by the Cartesian coordinates of the po-
sition of the object and one given by the polar coordinates of the position, both
predicted using linear regression, gradient boosting regression and random forest re-
gression. Prediction of polar coordinates of position is included in order to observe
behaviour of comparison of supervised metric scores and prediction scores that do
not see labels of identical factors, where a nonlinear combination of a subset of
factors is instead attempted predicted.

In order to compare level of disentanglement with predictor accuracy, 16 ⇥ 12
correlation coe�cients are computed for each of the disentanglement metrics with
respect to each of the prediction tasks. Assuming that increased disentanglement
does indeed lead to increased predictor performance, one would expect to see pos-

5.3. EXPERIMENTAL RESULTS 65

itive correlation coe�cients of some strength for all prediction tasks. Figure 5.6
shows the correlation coe�cients for these models.

Figure 5.6: The correlation matrix shows correlation of accuracies of 12 prediction
tasks (x-axis) with scores from 16 metrics (y-axis), calculated on representations
from all models.

As seen in Figure 5.6, the supervised modularity and compactness metrics show
positive correlation of varying strength with most of the prediction tasks, disre-
garding the Modularity metric, supporting the hypothesis that disentanglement
does improve predictor performance. As the Modularity metric displays weak cor-
relation with all prediction tasks as well as with all other metrics in Figure 5.5, this
metric is not considered in discussion of the remaining experiments in this section.
It is included in subsequent figures for completeness.

The supervised metrics are calculated on class labels of the factors shape and
size as well as the Cartesian coordinates of the position. While the downstream
regressors use factor values, all datapoints belonging to a factor class share the
same value, giving a one-to-one mapping from label to value. Shared access to
labels may influence correlation, particularly between predictor-based metrics and
downstream tasks. However, position prediction using polar coordinates appears
only slightly if at all less correlated with the supervised metrics than the prediction
using the Cartesian coordinates, even in the case of linear regression, indicating

66 CHAPTER 5. EXPERIMENTS AND RESULTS

that disentanglement in general may be useful also for these prediction tasks.
From Figure 5.6, nonlinear explicitness appears to be negatively correlated with

position prediction as measured by both the nonlinear I and the Explicitness met-
rics. While prediction of position contributes to the explicitness scores, if in metric
calculations the prediction accuracy of the remaining factors display greater vari-
ance, the resulting score will reflect that. As the representations have a fixed size,
more information about some factors may potentially correspond to less information
about other factors.

The unsupervised disentanglement metric UDR (bottom row in Figure 5.6) is
particularly interesting, having no knowledge of factor labels. In this experiment,
UDR scores appear well correlated with position prediction, both linear and nonlin-
ear. However, prediction of shape and size correlates much weaker with these UDR
scores, with most prediction scores even displaying notable negative correlation.
Moreover, this is contradictory to most supervised metric scores.

Looking closer at the relationships between the downstream predictor scores
and the UDR score, Figures 5.7 and 5.8 shows scatter plots of the UDR score with
respect to prediction score for all 12 of the prediction tasks. �-VAE, Factor-VAE,
DIP-I-VAE, DIP-II-VAE, �-TCVAE and CCI-VAE models are plotted in di↵erent
colours.

(a)

(b)

Figure 5.7: Scatter plots showing the relationship between UDR scores and predic-
tion scores on model 0-1799, when predicting a) shape and b) size

5.3. EXPERIMENTAL RESULTS 67

(a)

(b)

Figure 5.8: Scatter plots showing the relationship between UDR scores and predic-
tion scores on all models, when predicting a) Cartesian coordinate position and b)
polar coordinate position

The plots in Figures 5.7 and 5.8 show that the CCI-VAE model scores in partic-
ular appear to be di↵erently distributed, with generally higher UDR scores, and in
the case of shape (Figure 5.7a) and size (Figure 5.7b) prediction, lower prediction
scores. Additionally, while the UDR scores appear to cover a wide range com-
pared to other models, most CCI-VAE prediction accuracies lie in a narrow range,
particularly for the nonlinear predictors.

As discussed in Section 3.4, the UDR metric assigns scores based on the simi-
larity of the model representations up to permutations and sign inverse, based on
results in [Rolinek et al., 2019] that argue that VAE models that disentangle well
tend to converge to similar representation.

The CCI-VAE, discussed in Section 3.4, uses a parameter C, which is increased
during training, to gradually increase the capacity of the representations. At the be-
ginning of training, very little information is allowed encoded in the representation,
and the information most important in reconstruction of the input is prioritized. In
[Burgess et al., 2018] it is shown that in the case of the dSprites dataset the factors
describing object position are encoded first using a CCI-VAE model. Included from
[Burgess et al., 2018], the plots in Figure 5.9 show position being encoded early in
training when capacity is low, followed by size, shape and orientation respectively
as capacity increases.

68 CHAPTER 5. EXPERIMENTS AND RESULTS

Figure 5.9: Figures from [Burgess et al., 2018]. As capacity is increased during
training, the KL-divergence of each factor, that is DKL(q✓(z|vk)kp(z)), is plotted
with respect to training iterations (left) and reconstruction accuracy (right) for vk
corresponding to factors shape, size (scale), orientation, x and y.

From Figure 5.8, it is seen that all CCI models score well on predicting posi-
tion, with low range despite these being scores on representation from 300 di↵erent
models trained with 6 di↵erent maximum capacity Cmax values (ranging from 5 to
100). This is the case even for linear regression of both Cartesian (Figure 5.8a)
and polar (Figure 5.8b) coordinates, suggesting that position information is indeed
easily accessible in these representations.

The CCI-VAE objective gradually allows new pieces of information to be en-
coded in decreasing order of importance as determined by reconstruction of the
input, until max capacity is reached. The similarity of the CCI-VAE models as
measured by the UDR metric may be partly due to enforcing such an order of
importance when encoding information about the data, rather than similarity just
relating to the level of disentanglement.

In order to further inspect the behaviour of the UDR scores, the metrics rela-
tionship with the other disentanglement metrics is similarly considered in detail.
As seen in Figure 5.5, UDR does not show as strong a correlation with all metrics
as would be expected, particularly some of the other modularity metrics. Figure
5.10 shows scatter plots of the UDR score against scores from the two versions of
the predictor free modularity metric Z, as well as the predictor free compactness
metric MIG.

Figure 5.10: The figure shows scatter plots of UDR score (y-axis) against the mod-
ularity metrics Z (1) (left) and Z(2) (middle), and the compactness metric MIG
(right).

5.3. EXPERIMENTAL RESULTS 69

Figure 5.10 indicates that UDR does indeed assign higher scores to CCI-VAE
models than the other models for a given level of disentanglement as measured by
the Z and MIG metrics. Pairwise scatter plots of UDR and all supervised metrics
are shown in Appendix E, displaying the same pattern. This may indicate that
the results from [Rolinek et al., 2019] utilized by the UDR metric is not entirely
reversible, potentially resulting in a failure mode of this metric. While converging
to similar representations is a consequence of enforcing disentanglement, converging
to similar representations will not guarantee disentanglement.

Figure 5.11: UDR correlation with prediction tasks, calculated on CCI-VAE model
representation

Figure 5.11 shows UDR correlation with predictors on representations from CCI-
VAE models 1500-1799. When considering models trained within this framework,
several predictors show strong correlation with unsupervised disentanglement mea-
sured by UDR, suggesting that UDRmight still be useful if comparing models within
this group. Noting again, as seen in Figure 5.8, that the accuracies obtained by most
predictors trained on CCI-VAE model representations of the dSprites dataset occur
within a small range compared to the other models, especially nonlinear predictors,
contrasting the wide range of the UDR scores. Linear regression of size (Figure 5.7b
left) is an exception, where increased UDR score corresponds to significant increase
in prediction accuracy training on these model representations.

Identifying the CCI-VAE model representations to be distributed di↵erently accord-
ing to the UDR scores, the results presented in Figure 5.6 is reproduced discarding
the CCI-VAE models. Figure 5.12 shows correlation between metrics and predictors
on representations from models 0 - 1499.

70 CHAPTER 5. EXPERIMENTS AND RESULTS

Figure 5.12: The correlation matrix shows correlation of accuracies of 12 down-
stream prediction tasks (x-axis) with scores from all metrics (y-axis), calculated on
representations from models 0-1499

Figure 5.12 shows that UDR now appears in general better correlated with all
prediction tasks, with only random forest classification of factor shape still display-
ing negative correlation with UDR. However, in these results this negative corre-
lation appear to be more consistent with correlations shared with the predictor by
the supervised metrics measuring modularity and compactness. Included in Figure
5.12 in the rightmost column are also the correlations of UDR with the supervised
metrics. Compared to the results shown in Figure 5.5 considering all models, dis-
carding the CCI-VAE also results in greater correlation between the UDR scores
and the supervised scores, as indicated by the scatter plots in Figure 5.10.

It is also seen from Figure 5.12 that in general, the random forest predictors
show lower correlation with the metrics than the gradient boosted predictors, both
reporting nonlinear prediction accuracies on the same datasets. This can possibly
be explained by the low range and high score of the random forest predictors as
seen in Figures 5.7 and 5.8, not shared by the gradient boosted predictors. This
discrepancy might follow from a higher capacity of the random forest predictors,
leaving disentanglement to a greater extent irrelevant as enough data is provided.

5.3. EXPERIMENTAL RESULTS 71

To investigate disentanglement impact on these prediction tasks when limited
data is available, the prediction accuracy scores are recalculated training the predic-
tors on 1000 data samples. Figure 5.13 shows metric correlation with these predictor
accuracies, on representations from models 0-1499.

Figure 5.13: Metric score correlation with predictor accuracies when the predictors
are trained on 1000 data samples, calculated on representations from models 0-1499.

In the results shown in Figure 5.13, performance of all prediciton tasks appear
to benefit from disentanglement as measured by UDR as well as the supervised
metrics. All nonlinear predictors calculated on limited sample sizes appear well
correlated with level of unsupervised disentanglement as measured by UDR and
the supervised modularity and compactness metrics. All linear predictors also show
positive correlation, while for the shape and size prediction tasks these correlations
are not as strong.

72 CHAPTER 5. EXPERIMENTS AND RESULTS

Looking closer at these two prediction tasks in particular, Figure 5.14 show UDR
scores plotted against logistic regression of shape (left) and linear regression of size
(right), when CCI-VAE models are not included and the predictors are trained using
1000 samples.

Figure 5.14: UDR scores plotted against accuracy of logistic regression of shape
(left) and linear regression of size (right), for models 0-1499.

In the case of the linear shape classification, scores are generally low considering
that accuracy of random classification is 1/3 when classifying objects into three
classes. An increase in disentanglement does however appear related to a slight
increase in prediction accuracy. In the case of linear size regression, accuracy is
generally high, indicating that a high level of general disentanglement might not be
required in order to solve this task on the data in question. In this case as well,
some positive correlation is present.

When the targets of the prediction tasks considered are the generative factors also
attempted disentangled, one would expect that disentanglement of the factor that
is attempted predicted is particularly useful, especially in linear prediction tasks.
Looking at the impact of disentanglement of each of the ground truth factors on
the prediction tasks separately, Figure 5.15 shows correlation of prediction tasks on
shape, size and position with disentanglement scores from metrics UDR, Z(1), Z(2)
and MIG calculated on all factors, as well as scores from metrics Z(1), Z(2) and
MIG calculated on shape, size, position and orientation separately.

5.3. EXPERIMENTAL RESULTS 73

Figure 5.15: The correlation matrix show correlation of disentanglement of each of
the factors with the prediction tasks where generative factors acts as targets. The
metrics of the four top rows are calculated on all factors. For each predictor of
generative factors, correlation of accuracy with disentanglement of the target factor
is marked, shape by the red box, size by the blue box and position given by x and
y coordinates by the green box.

In Figure 5.15, the red box shows correlation of shape classifiers with disentan-
glement of shape, the blue box shows correlation of size regressors with disentan-
glement of size and the green box shows correlation of Cartesian position regressors
with disentanglement of position. The figure shows that while linear prediction of
size is not as strongly correlated with overall disentanglement, the correlation is
indeed as expected much stronger when considering disentanglement of size only
(blue box). Note that neither the Z-metrics nor MIG use a predictor in assigning
their scores, so the results are not entirely trivial. Similar results are found for
position (green box).

However, the same tendency can not be found in the case of linear shape pre-
diction (red box), which for the models in this experiment appear as related with
disentanglement of the other factors, particularly the orientation factor.

A close to zero correlation is detected between compactness of shape (MIG)
and logistic regression of shape. As shape is a categorical variable without order,

74 CHAPTER 5. EXPERIMENTS AND RESULTS

a compact encoding in one dimension of a continuously valued representation may
not be the most e�cient way to represent such a variable, even less so when a
linear mapping to factor space is assumed. In general, a linear mapping may be
to restrictive when recovering information about this factor, also when modularity
is increased. Size and position are continuously valued factors, and would poten-
tially benefit more from relevant information being both modularily and compactly
encoded, also when assuming linearity.

While shape and orientation are statistically independent factors in the data
distribution, shape prediction appears to benefit in particular from disentangling
orientation, providing some support to the claim that disentanglement in general is
a desired property of representations.

Chapter 6

Evaluation and Conclusion

6.1 Evaluation and discussion

The results presented in Section 5.3 provide support to the hypothesis that dis-
entanglement is a desirable property in representations when solving downstream
prediction tasks.

From Figure 5.5 it is seen that the scores of the supervised disentanglement
metrics employed in these experiments for the most part appear to correlate well on
the set of representations for the dSprites dataset from the VAE-based unsupervised
disentangling models that form the basis of the experiment. These results indicate
that the metrics considered to some extent succeed in capturing the properties they
intend to, independently of model. The exception is the Modularity metric, which
is disregarded in the following discussion.

As shown in Figure 5.10, the UDR metric is found to be distributed di↵erently
for the CCI-VAE models given disentanglement as measured by supervised metrics.
However, when considering representations learned by the remaining models, UDR
also correlates well with the supervised metrics, quantified by correlation coe�-
cients in Figure 5.12. This provides further support to the measurements, as UDR
is calculated without knowledge of ground truth generative factors. In general, the
metrics are considered reliable when evaluated jointly in these experiments. How-
ever, the scores from metrics measuring the same representation do not in general
agree on value of disentanglement, suggesting metrics are to some extent influenced
by implementation technique. Appendix E.3 shows plots of average metric scores
over models with the same hyperparameter settings that illustrate this, suggesting
that scores should be interpreted with care.

Figures 5.6 and 5.12 show that the accuracy scores of several predictors are found
to correlate well with disentanglement as measured by the disentanglement metrics.
This includes the unsupervised UDR disentanglement score, when disregarding the
CCI-VAE models. Additionally, the results presented in Figure 5.13 show that in
the case of predictors of high capacity, disentanglement may be particularly useful
when limited data is available.

While disentanglement is suggested useful in a holistic sense, when evaluated it
is subdivided into distinct properties that a representations may possess, namely
modularity, compactness and explicitness (linear or nonlinear). In the case of ex-

75

76 CHAPTER 6. EVALUATION AND CONCLUSION

plicitness, a specific downstream task will benefit from receiving all information
relevant in solving the task, motivating that general representations should retain
as much information as possible when subsequent tasks are not known at the time
of learning. Modularity and compactness are the properties that address the par-
titioning of information in reference to the generative factors, and these properties
take on values in [0, 1] given any level of explicitness > 0. The results presented in
Figures 5.6, 5.12 and 5.13 show that predictor accuracy in general tend to improve
with both increased modularity and compactness.

It is potentially more useful in some cases to evaluate explicitness and modu-
larity/compactness separately and independently, focusing on metrics that measure
one property only, such that impact of e.g. modularity may be evaluated for repre-
sentations of a given level of explicitness and so forth.

The dSprites dataset is by design a very simple dataset, where samples are con-
structed from predefined factors without noise. Thus samples corresponding to all
factor combinations appear exactly once in the dataset, ensuring both conceptual
and statistical independence. While the results clearly suggest that disentangle-
ment increase predictor accuracy, the low complexity of the data, as well as low
complexity of the downstream tasks considered, may limit the generalisability of
the results beyond synthetic data.

Even in the context of this simple dataset, Figure 5.15 provides some results
indicating that the nature and complexity of factors should be kept in mind, sug-
gesting compactness as a representation property may not be entirely beneficial with
respect to generative factors of some complexity. The usefulness of compactness as
a disentanglement criteria has been discussed [Higgins et al., 2018; Ridgeway and
Mozer, 2018], some arguing that it might be to restrictive when dealing with real
world datasets where generative factors may appear increasingly complex. Results
from Figure 5.15 indicate compactness may indeed be less favourable when repre-
sentations are intended to solve subsequent tasks. However, compactness may still
be considered useful in other situations, e.g. if representations are required to be
interpretable.

Figure 5.15 suggest that disentanglement of some factors corresponds to im-
proved performance in predictions of other factors. While noting that unsupervised
models encourage disentanglement in general and thus disentanglement of di↵erent
factors would not be expected to be entirely independent of each other, some fac-
tors display particularly strong correlation with unrelated prediction tasks. Such
relationships further indicate that disentanglement in general is useful and that
disentangling as many factors as possible is desirable regardless of prediction task.

In the experiments, the Pearson correlation coe�cient is considered both when
quantifying relationships between metrics, and when comparing metrics with pre-
dictor performance. In the case of metric evaluation, this is justified by the assump-
tion that the metrics capture true level of disentanglement independently of model
type and other representation properties. For consistency, Pearson correlation co-
e�cients are considered when quantifying all relationships in Chapter 5. However,
when comparing disentanglement with predictor performance, assuming a linear

6.2. CONTRIBUTIONS 77

relationship may be too restrictive. What is suggested by the hypothesis, is that
increasing disentanglement should correspond to improving predictor performance,
however, it may not be reasonable to expect this relationship to be linear. Thus,
one could argue that strength of monotonically increasing relationships as mea-
sured by rank correlation, quantified by Spearman correlation coe�cients, would
be a more suitable measure when evaluating disentanglement impact on predictor
performance. This would be supported by the data distributions seen in Figures
5.7 and 5.8.

Appendix E.4 contains Spearman correlation coe�cient equivalents of the cor-
relation matrices shown in Figures 5.6, 5.12, 5.13 and 5.15, that compare disen-
tanglement scores with prediction accuracy scores, quantified using the Spearman
correlation coe�cient. On these data it does in general appear like overall results
indicate similar findings when compared to Pearson coe�cients, with Spearman
sometimes indicating a stronger positive relationship between disentanglement and
predictor performance.

Moreover, in the experiments presented in Chapter 5, the assumption that met-
rics are independent across models is extended to apply to relationship between
disentanglement scores and predictor performance, as the group of models that is
considered includes unsupervised disentangling models trained from several di↵er-
ent objective functions. In particular, the property measured by a metric, whether
it is modularity, compactness, explicitness or a combination, is in each comparison
assumed linearly related to prediction accuracy on representations form the chosen
set of models. This assumption might not be justified, as model objectives may
otherwise influence representations a↵ecting the results. More reliable results may
be obtained considering models of given objective functions separately. It is seen
in the case of the UDR metric in Figure 5.10 that the assumption does not always
hold among metrics either, which could be argued is more problematic, as it causes
ambiguity as to what exactly is reflected by the metric.

That correlations of some strength is in fact detected even when including mod-
els trained from several di↵erent objective functions, may be seen as further support
of disentanglement as a desireable property. In the context as defined by the exper-
iment presented in Chapter 5, disentanglement appears comparably determinative
of predictor success across all models.

6.2 Contributions

The main contributions of this thesis are presented here.
The first research question posed in Section 1.2 asks whether disentanglement

evaluation techniques can be trusted to provide reliable quantification of disentan-
glement. In the experiments presented in Section 5.3, several supervised disentan-
glement metrics are observed evaluating disentanglement scores that conform to
some extent, and while demonstrating ambiguity in exact values, a subset of the
metrics are considered reliable in reflecting increased/decreased level of true dis-
entanglement as scores increase/decrease. As it remains unclear which metrics, if,
any, are more accurate, overall trends across all metrics are considered jointly when

78 CHAPTER 6. EVALUATION AND CONCLUSION

evaluating disentanglement.
The unsupervised disentanglement metric UDR is observed demonstrating scores

that appear to generally comply with the supervised scores within model groups,
but not unanimously across model groups. While this is considered as further
supporting the reliability of metrics, some lack of clarity remains as to how scores
should be interpreted.

The second research question asks whether unsupervised disentanglement can be
seen to improve downstream performance on simple prediction tasks. In the pre-
sented experiment, increased disentanglement as measured by the metrics consid-
ered reliable, is found related to improved prediction performance of the defined
downstream tasks, both according to supervised and unsupervised disentanglement
scores. Prediction accuracy when trained on limited data is also shown to benefit
from disentanglement.

Additionally, results are presented that indicate further potential in disentangle-
ment when datasets and ground truth generative factors grow increasingly complex.

6.3 Future work

The experiments performed here are simple both in terms of dataset complexity
and in terms of downstream tasks complexity. While the results do indicate that
disentanglement of a factor is useful beyond recovering the factor itself, more work
should be done exploring this.

Figure 6.1a shows examples from the dSprites dataset where each sample is
modified by inserting a grey square at random position and of random size. From
representations encoded for samples as shown in Figure 6.1a using the models pre-
trained on the original dSprites dataset without additional training, the plot in
Figure 6.1b shows the UDR score with respect to accuracy of prediction of the
position of the grey square, both computed on the new representations.

(a) (b)

Figure 6.1: Modified dSprites data, where grey squares are added at random posi-
tion, shown in a), is encoded using models 0-1499 and UDR score (y-axis) is plotted
against regression accuracy of position of the grey square (x-axis), shown in b).

6.3. FUTURE WORK 79

Figure 6.1 indicate that the accuracy of predicting the position of the grey
square from the representations seem to benefit from disentanglement according
to the UDR score. As the VAE models has not seen the modified samples during
training, these findings may be interpreted as indicative of robustness of the models
when introduced to out-of-distribution samples.

While these are only initial findings, where UDR calculation and training of the
random forest regressor is performed on a representation subset of size 30 000, and
where regression accuracy is generally low and range from 0.02 to 0.50, Figure 6.1
further motivates more research on the advantages of disentanglement reflected in
model robustness.

Moreover, future work should look at disentanglement of generative factors from
real world data. Models trained to do unsupervised disentanglement provides dis-
entanglement in a general context, enabling use of any datasets. Performing similar
experiments on datasets of real images, and even text-based and sequential data,
would also allow for more interesting downstream tasks, possibly prediction of com-
plex data characteristics where several generative factors would interact in deciding
the outcome, as opposed to predicting simple factors/factor combinations.

While most metrics measuring disentanglement require access to at least some
labeled ground truth generative factors in order to give a (partial) disentanglement
score, the unsupervised UDR metric additionally allows for measuring complete
modularity without ground truth knowledge of the generative factors. As UDR
is shown here not to agree with the supervised metrics across model groups, more
research might be needed in order to establish when UDR and the supervised metrics
individually can be trusted to return reliable disentanglement scores.

As discussed in Section 6.1, it might be argued more reasonable that correlation
between disentanglement and prediction accuracy should be considered for models of
specific types independently. With correlation between UDR modularity and linear
classification of object shape on a dataset of size 1000 as an example, the Pearson
correlation coe�cient is calculated to be 0.34 across all 1500 �-VAE, Factor-VAE,
DIP-I-VAE, DIP-II-VAE and �-TCVAE models, as seen in Figures 5.13 and 5.14.
Figure 6.2 shows scatter plots of the linear classification accuracy of factor shape
(trained on 1000 data samples) with respect to the UDR score for each model type �-
VAE, Factor-VAE, DIP-I-VAE, DIP-II-VAE, �-TCVAE and CCI-VAE separately.
Within each plot, the models trained from di↵erent hyperparameter values are
plotted in di↵erent colours.

80 CHAPTER 6. EVALUATION AND CONCLUSION

Figure 6.2: The plots show how the accuracy of linear classification of shape using
logistic regression is related to UDR modularity score within the 300 models of each
model type �-VAE, Factor-VAE, DIP-I-VAE, DIP-II-VAE, �-TCVAE and CCI-
VAE. In each plot, models trained with the same hyperparameters, di↵ering in
weight initialization only, are plotted with the same colour. Correlation coe�cient
is included in the upper left corner in each plot. The standard deviation of the
predictor accuracy (LogR) and UDR scores are included in the lower left cornes.

Figure 6.2 shows that within several model groups, strength of correlation is
indeed stronger, with DIP-II-VAE, �-TC-VAE and CCI-VAE models displaying
correlations of 0.69, 0.43 and 0.61 respectively. Contrarily, the Factor-VAE and
DIP-I-VAE groups display weak to no correlation, noting however that these are
the groups of lowest standard deviation among both prediction accuracy and UDR
score.

Generally low predictor accuracies displaying low spread within model groups
in this particular example, which is also the case of the UDR score for some groups,
suggests these plots might not be reliable in determining a disentanglement advan-
tage, or lack thereof. Still, Figure 6.2 indicate when compared to Figure 5.14 that
taking model objective into account when evaluating benefit of disentanglement
might be advisable, possibly enabling further understanding of when disentangle-
ment is most useful, increasing reliability. More work is thus needed as to determine
impact of disentanglement (modularity, compactness, explicitness) under the influ-
ence of specific model objectives.

Bibliography

Alemi, A. A., Fischer, I., Dillon, J. V., and Murphy, K. (2019). Deep variational
information bottleneck.

Bengio, Y., Courville, A., and Vincent, P. (2014). Representation learning: A review
and new perspectives. arXiv:1206.5538 [cs.LG].

Bjøru, A. R. (2020). Disentangled representation learning. Unpublished.

Burgess, C. P., Higgins, I., Pal, A., Matthey, L., Watters, N., Desjardins, G., and
Lerchner, A. (2018). Understanding disentangling in �-vae.

Chen, R. T. Q., Li, X., Grosse, R., and Duvenaud, D. (2019). Isolating sources of
disentanglement in variational autoencoders.

Chen, X., Duan, Y., Houthooft, R., Schulman, J., Sutskever, I., and Abbeel, P.
(2016). Infogan: Interpretable representation learning by information maximizing
generative adversarial nets.

Duan, S., Matthey, L., Saraiva, A., Watters, N., Burgess, C. P., Lerchner, A.,
and Higgins, I. (2020). Unsupervised model selection for variational disentangled
representation learning.

Eastwood, C. and Williams, C. K. I. (2018). A framework for the quantitative eval-
uation of disentangled representations. In International Conference on Learning
Representations.

Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep Learning. MIT Press.
http://www.deeplearningbook.org.

Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair,
S., Courville, A., and Bengio, Y. (2014). Generative adversarial networks.

Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., and
Lerchner, A. (2018). Towards a definition of disentangled representations.
arXiv:1812.02230 [cs.LG].

Higgins, I., Matthey, L., Pal, A., Burgess, C., Glorot, X., Botvinick, M., Mohamed,
S., and Lerchner, A. (2017). beta-vae: Learning basic visual concepts with a
constrained variational framework. In ICLR.

81

82 BIBLIOGRAPHY

Hinton, G. E. (1986). Learning distributed representations of concepts. Proceedings
of the 8th Annual Conference of the Cognitive Science Society, pages 1–12.

Ilse, M., Tomczak, J. M., Louizos, C., and Welling, M. (2019). Diva: Domain
invariant variational autoencoders.

Kim, H. and Mnih, A. (2019). Disentangling by factorising.

Kingma, D. P. and Welling, M. (2014). Auto-encoding variational bayes.
arXiv:1312.6114 [stat.ML].

Kulkarni, T. D., Whitney, W., Kohli, P., and Tenenbaum, J. B. (2015). Deep
convolutional inverse graphics network.

Kumar, A., Sattigeri, P., and Balakrishnan, A. (2018). Variational inference of
disentangled latent concepts from unlabeled observations.

LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning. Nature, 521:436–444.
https://doi.org/10.1038/nature14539.

Locatello, F., Bauer, S., Mario Lucic, G. R., Gelly, S., Schölkopf, B., and Bachem,
O. (2019). Challenging common assumptions in the unsupervised learning of
disentangled representations. arXiv:1811.12359 [cs.LG].

Louizos, C., Swersky, K., Li, Y., Welling, M., and Zemel, R. (2017). The variational
fair autoencoder.

Matthey, L., Higgins, I., Hassabis, D., and Lerchner, A. (2017). dsprites: Disentan-
glement testing sprites dataset. https://github.com/deepmind/dsprites-dataset/.

Muandet, K., Balduzzi, D., and Schölkopf, B. (2013). Domain generalization via
invariant feature representation. arXiv:1301.2115 [stat.ML].

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A.,
Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay, E. (2011). Scikit-learn:
Machine learning in Python. Journal of Machine Learning Research, 12:2825–
2830.

Rajaraman, S., Antani, S., Poostchi, M., Silamut, K., Hossain, M., Maude, R.,
Jaeger, S., and Thoma, G. (2018). Pre-trained convolutional neural networks
as feature extractors toward improved malaria parasite detection in thin blood
smear images. PeerJ, 6.

Rezende, D. J., Mohamed, S., and Wierstra, D. (2014). Stochastic backpropagation
and approximate inference in deep generative models. arXiv:1401.4082 [stat.ML].

Ridgeway, K. and Mozer, M. C. (2018). Learning deep disentangled embeddings
with the f-statistic loss.

BIBLIOGRAPHY 83

Rolinek, M., Zietlow, D., and Martius, G. (2019). Variational autoencoders pursue
pca directions (by accident).

Sepliarskaia, A., Kiseleva, J., and de Rijke, M. (2021). How to not measure disen-
tanglement.

Själander, M., Jahre, M., Tufte, G., and Reissmann, N. (2019). EPIC: An energy-
e�cient, high-performance GPGPU computing research infrastructure.

Suter, R., Miladinović, D., Schölkopf, B., and Bauer, S. (2019). Robustly disen-
tangled causal mechanisms: Validating deep representations for interventional
robustness.

Tishby, N., Pereira, F. C., and Bialek, W. (2000). The information bottleneck
method.

Zaidi, J., Boilard, J., Gagnon, G., and Carbonneau, M.-A. (2021). Measuring
disentanglement: A review of metrics.

84 BIBLIOGRAPHY

Appendix A

Minibatch Weighted Sampling

Evaluating the Total Correlation DKL(q(z)kq̄(z)), requires evaluation of q(z), where
q(z) =

P
n

i=1 q(z|x(i))p̂X(x(i)) = Ep̂X [q(z|x)]. While this depends on the enitre
dataset X, for training it is preferable to be able to approximate it on a minibatch of
data samples. Chen et al. [2019] introduce Minibatch Weighted Sampling (MWS),
a method to stochastically estimate Eq(z)[log q(z)] using the minibatch estimator:

Eq(z)[log q(z)] =
1

m

mX

i=1

"
log

1

mn

mX

j=1

q(z(x(i))|x(j))

#
(A.1)

A naive Monte Carlo approximation using a minibatch of samples from p̂X would
be likely to underestimate q(z), explained in [Chen et al., 2019] by arguing that for
a sample z, if it is a sample from q(z|x = x), then q(z = z|x = x) will be large,
however for a randomly sampled x, q(z = z|x = x) will be close to 0.

A better estimate can be obatined by weighting the probabilities appropriately,
as seen in the estimator in Equation (A.1), inspired by Importance sampling [Chen
et al., 2019]. By the same argument, a similar estimator can also be constructed
for q̄(z) =

Q
j
q(zj). The estimator is biased, and its expectation is a lower bound

[Chen et al., 2019].
This section contains a derivation of the estimator in Equation (A.1). This

derivation is an extended version of the derivation presented in Appendix C.1 in
[Chen et al., 2019]. Table A.1 lists the concepts used in the derivation.

85

86 APPENDIX A

Notation Description

�m = {x(i)}m A minibatch of m datapoints x(i), sampled i.i.d. from
p̂X

�m,x = {x(i)}(m�1)[{x} A minibatch of m � 1 datapoints x(i), sampled i.i.d.
from p̂X, and a fixed sample x

⌦�m The set of all size m minibatches, |⌦�m | = nm

⌦�m,x

The set of all sizem minibatches with one sample fixed
to be x, |⌦�m,x | = n(m�1), ⌦�m,x ⇢ ⌦�m

p(�m) Probability distribution over �m, p(�m) = (1
n
)m

r(�m,x) Probability distribution over �m,x, r(�m,x) = (1
n
)(m�1)

z(x(i)) A sample from q(z|x(i))

Table A.1: Notation describing concepts used to derive the MWS estimator.

87

Derivation of the MWS estimator:

Eq(z)[log q(z)]

=

Z

z

[q(z) log q(z)]dz

=

Z

z

[q(z) log q(z)](
X

x

[q(x|z)])dz
����

X

x

[q(x|z = z)] = 1

=

Z

z

(
X

x

[q(x|z)q(z) log q(z)])dz

=

Z

z

X

x

[q(z,x) log q(z)]dz

= Eq(z,x)[log q(z)]

= Eq(z,x)[logEx0⇠p̂X [q(z|x0)]]
���� q(z) = Ep̂X [q(z|x)]

= Eq(z,x)[logEp(�m)[
1

m

mX

i=1

q(z|x(i))]]

���� Monte Carlo

= Eq(z,x)[log
X

⌦�m

p(�m)[
1

m

mX

i=1

q(z|x(i))]]

= Eq(z,x)[log
X

⌦�m

p(�m)r(�m,x)

r(�m,x)
[
1

m

mX

i=1

q(z|x(i))]]

���� Importance sampling

� Eq(z,x)[log
X

⌦�m,x

p(�m)r(�m,x)

r(�m,x)
[
1

m

mX

i=1

q(z|x(i))]]

���� ⌦�m,x ⇢ ⌦�m

= Eq(z,x)[logEr(�m,x)
p(�m)

r(�m,x)
[
1

m

mX

i=1

q(z|x(i))]]

= Eq(z,x)[logEr(�m,x)[
1

nm

mX

i=1

q(z|x(i))]]

����
p(�m)

r(�m,x)
=

1

n

(Importance

weights)

= Ep̂Xq(z|x)[logEr(�m,x)[
1

nm

mX

i=1

q(z|x(i))]]

For training on a batch �̄m, r(�̄m,x) = 1

Ep̂�̄m
[Eq(z|x)[log[

1

nm

mX

i=1

q(z|x(i))]]]

⇡ 1

m

mX

j=1

[
1

L

LX

k=1

log
1

nm

mX

i=1

q([z(x(j))](k)|x(i))]

⇡ 1

m

mX

j=1

[log
1

nm

mX

i=1

q(z(x(j))|x(i))]

���� L = 1

88 APPENDIX A

Appendix B

The dSprites dataset

The dataset used in the experiment presented in Chapter 5 is the dSprites dataset
[Matthey et al., 2017]. The dataset is generated from 5 factors of variation, listed
in Table B.1, with examples shown in Figures B.1 - B.5.

Factor Classes Values

0 Shape 3 Square, ellipse, heart

1 Size 6 [0.5, 1.0]

2 Orientation 40 [0.0, 2⇡]

3 Position X 32 [0.0, 1.0]

4 Position Y 32 [0.0, 1.0]

Table B.1: The factors of variation in the dSprites dataset.

Figure B.1: Factor 0 - shape

Figure B.2: Factor 1 - size

89

90 APPENDIX B

Figure B.3: Factor 2 - orientation

91

Figure B.4: Factor 3 - position X

92 APPENDIX B

Figure B.5: Factor 4 - position Y

Appendix C

Metric convergence

Figures C.1 and C.2 shows metric scores plotted against dataset size, calculated on
representations learned by model 0 from the DisentanglementLib [Locatello et al.,
2019].

(a) (b) (c)

(d) (e) (f)

Figure C.1: Convergence of metrics a) Z-di↵, b) Z-min-var, c) Z (1), d) Z (2),
e) IRS, f) Modularity.

93

94 APPENDIX C

(a) (b)

(c) (d)

Figure C.2: Convergence of metrics a) MIG, b) SAP, c) Explicitness, d) UDR

Appendix D

DisentanglementLib models

The models used in the experiments are pretrained models from the Disentangle-
mentLib [Locatello et al., 2019]. Model architecture is presented in Section D.1,
and model hyperparameters are presented in Section D.2.

D.1 Model Architecture

All models have the same encoder and decoder architecture, shown in Tables D.1
and D.2. Factor-VAE discriminator architecture is shown in Table D.3.

Variational encoder

Input: 64⇥ 64⇥ 1

Conv2 - 32 channels, 4⇥ 4 kernels, 2⇥ 2 strides, ReLU

Conv2 - 32 channels, 4⇥ 4 kernels, 2⇥ 2 strides, ReLU

Conv2 - 64 channels, 4⇥ 4 kernels, 2⇥ 2 strides, ReLU

Conv2 - 64 channels, 4⇥ 4 kernels, 2⇥ 2 strides, ReLU

FC - 256, ReLU

2 ⇥ FC - 10

Table D.1: The layers of the variational encoder.

95

96 APPENDIX D

Decoder

Input: 10

FC - 256, ReLU

FC - 1024 to 4⇥ 4⇥ 64, ReLU

Upconv2 - 64 channels, 4⇥4 kernels, 2⇥2 strides, ReLU
Upconv2 - 32 channels, 4⇥4 kernels, 2⇥2 strides, ReLU
Upconv2 - 32 channels, 4⇥4 kernels, 2⇥2 strides, ReLU
Upconv2 - 1 channel, 4⇥ 4 kernels, 2⇥ 2 strides

Table D.2: The layers of the decoder.

Discriminator (Factor-VAE)

FC - 1000, Leaky ReLU

FC - 1000, Leaky ReLU

FC - 1000, Leaky ReLU

FC - 1000, Leaky ReLU

FC - 1000, Leaky ReLU

FC - 1000, Leaky ReLU

FC - 2

Table D.3: The layers of the Factor-VAE discriminator

D.2. MODEL HYPERPARAMETERS 97

D.2 Model hyperparameters

All variational encoders and decoders used in the experiments are trained from the
hyperparameters shown in Table D.4. Factor-VAE discriminator hyperparameters
are shown in Table D.5

Parameter Value

Batch size 64

Optimizer Adam

Adam, beta1 0.9

Adam, beta2 0.999

Adam, epsilon 1e-8

Adam, learning rate 0.0001

Training steps 300 000

Table D.4: The hyperparameters of the variational encoders and decoders

Parameter Value

Batch size 64

Optimizer Adam

Adam, beta1 0.5

Adam, beta2 0.9

Adam, epsilon 1e-8

Adam, learning rate 0.0001

Table D.5: The hyperparameters of the Factor-VAE discriminator

98 APPENDIX D

Appendix E

Results

E.1 Modularity

In Section 5.3, Modularity is seen to assign scores of particularly low correlation
with all other metrics. Here, pairwise comparison of Modularity with all other
metrics is detailed, considering both Pearson and Spearman correlations. Each row
shows correlation coe�cients (r) along with p-values for a hypothesis test where
the null hypothesis is no correlation. Under the assumption of normally distributed
scores and measuring linear relationships (Pearson), several metrics fail to show
any correlation with 99% confidence, including modularity metrics Z-di↵, Z (1) and
linear and nonlinear D. Others, inlcuding the IRS and UDR metric, show significant
(↵ = 0.01) negative correlation, although correlation is still weak. Spearman cor-
relation coe�cients and p-values in Figure E.1 shows similar results when relaxing
the assumptions of linearity of relationship and normally distributes scores.

99

100 APPENDIX E

Figure E.1: The figure shows Pearson and Spearman correlation of the Modularity
metric with the other disentanglement metrics included in the experiment.

E.2. UDR 101

E.2 UDR

Figure E.2 shows the UDR scores plotted with respect to scores from each of the
supervised metrics.

Figure E.2: The UDR scores plotted against scores from supervised metrics. 1st
row: Z-di↵, Z-min-var, Z (1) and Z (2). 2nd row: D (linear), D (nonlinear), IRS
and Modularity. 3rd row: SAP, MIG, C (linear) and C (nonlinear). 4th row: I
(linear), I (nonlinear) and Explicitness.

102 APPENDIX E

E.3 Metric scores

Figures E.3, E.4 and E.5 show the average score of the 50 models trained for each
hyperparameter setting for each of the 6 model types �-VAE, Factor-VAE, DIP-I-
VAE, DIP-II-VAE and CCI-VAE, plotted agains hyperparameter value as shown in
Table 5.1.

It is seen in all plots that few metrics agree on the value of the reported disentan-
glement score, however as hyperparameters are increased/decreased, most metrics
measuring similar properties increase/decrease comparably.

Figure E.3: Separate plots for model types �-VAE, Factor-VAE, DIP-I-VAE, DIP-
II-VAE and CCI-VAE show average values of modularity scores assigned to the
50 models trained with the same hyperparameter setting (y-axis) with respect to
hyperparameter value (x-axis).

E.3. METRIC SCORES 103

Figure E.4: Separate plots for model types �-VAE, Factor-VAE, DIP-I-VAE, DIP-
II-VAE and CCI-VAE show average values of compactness scores assigned to the
50 models trained with the same hyperparameter setting (y-axis) with respect to
hyperparameter value (x-axis).

Figure E.5: Separate plots for model types �-VAE, Factor-VAE, DIP-I-VAE, DIP-
II-VAE and CCI-VAE show average values of explicitness scores assigned to the
50 models trained with the same hyperparameter setting (y-axis) with respect to
hyperparameter value (x-axis).

104 APPENDIX E

E.4 Spearman correlation coe�cients

This section contains Spearman correlation coe�cient equivalents of the correlation
matrices comparing disentanglement metrics with prediction accuracy scores in Sec-
tion 5.3. Figure E.6 correspond to Figure 5.6, Figure E.7 to Figure 5.12, Figure E.8
to Figure 5.13 and Figure E.9 to Figure 5.15.

Figure E.6: Spearman correlation coe�cient equivalent of Figure 5.6, where repre-
sentations from all models are included.

E.4. SPEARMAN CORRELATION COEFFICIENTS 105

Figure E.7: Spearman correlation coe�cient equivalent of Figure 5.12, where rep-
resentations from models 0-1499 are included.

106 APPENDIX E

Figure E.8: Spearman correlation coe�cient equivalent of Figure 5.13, where pre-
dictors are trained on only 1000 data samples and representations from models
0-1499 are included.

E.4. SPEARMAN CORRELATION COEFFICIENTS 107

Figure E.9: Spearman correlation coe�cient equivalent of Figure 5.15, where pre-
dictors are trained on only 1000 data samples and representations from models
0-1499 are included.

108 APPENDIX E

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

Anna Rodum
 Bjøru

The im
portance of disentanglem

ent w
hen learning representations

Anna Rodum Bjøru

The importance of disentanglement
when learning representations

Master’s thesis in Computer Science
Supervisor: Helge Langseth
September 2021

M
as

te
r’s

 th
es

is

