
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

Åsm
und H

augse
G

it in an educational context

Åsmund Haugse

Git in an educational context

Master’s thesis in Computer Science
Supervisor: Trond Aalberg
July 2021

M
as

te
r’s

 th
es

is

Åsmund Haugse

Git in an educational context

Master’s thesis in Computer Science
Supervisor: Trond Aalberg
July 2021

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science

Abstract

Git is frequently used in computer science education as a tool to support project-based
development. Introducing students to Git has benefits not only for collaboration and
software development but also for collaborative learning.

This thesis explores the implications on group dynamics and the social aspect
of project work when using Git. In addition, a prototype mirroring tool using
GitLab data was developed to investigate the data’s potential to inform students and
educators about aspects of the group work. Ninety-one students answered an online
questionnaire about using Git, and semi-structured interviews and demonstrations
were conducted with 24 students and 11 educators to collect data on the mirroring
tool.

The thesis makes two main contributions. Firstly, the analysis of questionnaire
responses implies that Git has an effect on some students’ experience with group
projects regarding interpersonal dynamics and the social aspect of working together.
However, it also verifies previous findings that Git has many benefits for student
collaboration. Secondly, results from testing the mirroring tools suggest that GitLab
data is well-suited to provide students new insight into their work and educators
with an efficient method for monitoring project work and student groups.

This thesis’s results can impact how educators teach and make use of Git in their
courses and for future research and development on mirroring tools using GitLab
data.

1

Sammendrag

Git brukes ofte i informatikkutdanning som et verktøy for å støtte prosjektbasert
utvikling. Å introdusere studenter til Git har fordeler ikke bare for samarbeid og
programvareutvikling, men også for samarbeidslæring.

Denne oppgaven utforsker hvilke implikasjoner Git har på gruppedynamikk og
det sosiale aspektet ved prosjektarbeid. I tillegg har en prototype av et "mirroring
tool" som bruker data fra GitLab blitt utviklet for å utforske dataens potensial
til å informere studenter og lærere om aspekter ved gruppearbeidet. 91 studenter
svarte på en spørreundersøkelse om bruk av Git og semistrukturerte intervjuer og
demonstrasjoner ble holdt med 24 studenter og 11 lærere for å samle data om
prototypen av et mirroring tool.

Oppgaven gjør to hovedbidrag. For det første impliserer analysen av svar på
spørreundersøkelsen at Git har en innvirkning på noen studenter’s opplevelse med
gruppeprosjekter med tanke på mellommenneskelig dynamikk og det sosiale aspektet
ved samarbeid. Imidlertid verifiserer oppgaven også tidligere funn om Git’s mange
fordeler for studentsamarbeid. For det andre antyder resultatene fra testing av
prototypen at GitLab data er velegnet til å gi studenter ny innsikt i sitt arbeid og
lærere med en effektiv metode for å overvåke prosjektarbeid og studentgrupper.

Denne oppgavens resultater kan påvirke hvordan lærere underviser og bruker Git
i sine kurs og for fremtidig forskning og utvikling av et mirroring tool som bruker
data fra Git.

2

Preface

This thesis has been written and submitted as the finale of my MSc in
Computer Science at the Norwegian University of Science and Technology
(NTNU).

I want to extend my appreciation to Trond Aalberg for his support,
guidance and patience. Without his help I would not be able to complete
my thesis.

Furthermore, I want to thank all students and educators who partook
in interviews and tested my software solution.

Åsmund Haugse
Trondheim, 2021

3

Contents

Contents 4

List of Figures 6

List of Tables 8

1 Introduction 9

2 Background and related work 12
2.1 Git and GitLab . 12
2.2 Git in software development education 18
2.3 Collaborative learning in computer science education 22
2.4 Peer assessment . 24
2.5 Learning analytics . 26
2.6 Monitoring in computer-supported collaborative learning 28
2.7 Mirroring tools . 30

3 Methodology 33
3.1 Case studies . 33

3.1.1 TDT4140 Software Engineering (Spring 2021) 36
3.1.2 IT2810 Web Development (Autumn 2020) 37
3.1.3 Comparing the cases . 39

3.2 Online questionnaire . 40
3.3 GitLab mirroring tool . 42

3.3.1 Design and creation . 42
3.3.2 Interviews . 44

4 Dashboard design and implementation 48
4.1 GitLab API and data collection . 48

4.1.1 Limitations and workarounds 51
4.2 Software technology used . 52
4.3 Dashboard components . 54

4.3.1 Group selection . 54

4

4.3.2 Project period’s issues and merge requests 55
4.3.3 Project period’s commits and lines of code 56
4.3.4 Commit and code line distribution by members 59
4.3.5 Project commits list . 60

5 Results 61
5.1 Questionnaire results . 61
5.2 Mirroring tool results . 71

5.2.1 Qualitative attribute assumptions 71
5.2.2 Component feedback . 76
5.2.3 Accuracy of visualized GitLab data points 82
5.2.4 As a mirroring tool promoting self-reflection 83
5.2.5 Anonymity of presented data 85
5.2.6 Would educators use the dashboard? 87
5.2.7 New features suggested . 88

6 Discussion 92
6.1 What are students’ perceptions on and experiences with using Git in

an educational setting (RQ1)? . 92
6.2 How can GitLab’s data points be visualized in a mirroring tool (RQ2)? 96
6.3 What does a mirroring tool on GitLab data offer (RQ3)? 99
6.4 Ethical concerns . 105
6.5 Validity of results . 105

7 Conclusion and future work 107

References 110

A Appendices 116
A.1 NSD application and confirmation 117
A.2 Interview guide educators . 121
A.3 Interview guide TDT4140 . 123
A.4 Interview guide IT2810 . 125
A.5 Results questionnaire IT2810 . 127
A.6 Results questionnaire TDT4140 . 134

5

List of Figures

2.1 Screenshot of GitLab’s issue list. 16
2.2 Screenshot of GitLab board for tracking issues. 17
2.3 Commit history of a project following the feature branch workflow [6]. . 18
2.4 Commit history of a project following the Gitflow workflow [7]. 18
2.5 The Collaboration Management Cycle as proposed by Soller et al. [43]. . 29

4.1 How courses can be structured in GitLab. A real course would have more
student teams. 49

4.2 GitLab’s analytics displaying commits per weekday and day of month of
a master branch. 50

4.3 Page for selecting what student group to view. 54
4.4 Project list with statistics and indicators to help educators choose groups

to inspect. 55
4.5 Line charts displaying a project period’s merge requests and issues. . . . 56
4.6 Bar chart displaying a project’s commits distributed by dates. 56
4.7 Bar chart displaying team members’ commits distributed by weekdays

with columns per member. 57
4.8 Bar chart displaying team members’ commits distributed by weekdays

with combined columns. 57
4.9 Bar chart displaying a project’s code lines distributed by dates. 58
4.10 Bar chart displaying a project’s code lines distributed by dates but sup-

pressed to a commit size of 1000 code lines. 58
4.11 Doughnut graphs showing distribution of commits and changes to code

lines by members. 59
4.12 Doughnut graph showing distribution of programming languages used in

the repository. The right doughnut has one entry removed. 59
4.13 List view of commits of a project. Can be ordered by date, author, amount

of code lines removed or added. 60

5.1 Composition of answers on why students use Git. 62
5.2 Student answers on learning Git and ease of use. 63
5.3 Student answers on what Git features their group used. 64
5.4 Student answers on using Git in the development process. 65

6

5.5 Student answers on Git’s transparency and on giving and receiving feedback. 67
5.6 Statements on working with GitLab and Git with an interpersonal topic. 69

6.1 Bar chart and doughnut graph both displaying team members’ commits. 99

7

List of Tables

3.1 Comparison of TDT4140 and IT2810. 39
3.2 Qualitative attributes used to categorize student groups before and after

interviews. 45

5.1 Juxtaposition of student answers on previous experiences with Git and
web development. 62

5.2 An overview of the interviews held to demonstrate and test the dashboard.
It shows the distribution of interviewees, the average interview length and
the course of action for each interview. 71

5.3 Results of attributing student groups qualitative attributes. For the
columns "Difference attributions" and "Difference not attributed", green
cells means the attribute was correctly assumed more times than not.
Red cells mean the opposite. Accuracies larger than 60% are marked in
green, below 60% are marked in red. 72

5.4 Feature suggestions made by educators and students to improve the
dashboard. 89

8

Chapter1Introduction

The version control system Git has become a staple of software development in
teams, offering functionality to improve working asynchronously and distributed.
Widely used, the industry expects graduating students to know it. There have been
several studies on the use of Git in the classroom and its benefits, disadvantages,
and challenges related to incorporating it in software development courses. For
example, Feliciano, Storey, and Zagalsky [1] found that the use of GitHub in software
engineering courses was beneficial to and well-received by most of the students enrolled
in the course. Furthermore, Hsing and Gennarelli [2] found that students who used
GitHub in the classroom felt a greater sense of belonging in the field than those who
did not use GitHub in the classroom, suggesting that Git can provide benefits to the
quality of software development education beyond its technical capabilities.

Although using Git in software education has seen positive results, little research
has examined the adverse effects or challenges using Git in software development
education has on students. The tool is complex and often introduced in courses
where many students still find programming confusing or complicated. Furthermore,
development with Git is transparent and quantifies contributions by students in a way
few have experienced before. This thesis wants to examine how students experience
using and learning Git to identify the negative aspects of introducing Git in software
development education. Furthermore, this research will examine if using Git affects
student groups’ social aspect and interpersonal dynamic.

Another side of using Git is that students generate data points during development.
This data describes work done by student groups and is accessible to both students
and educators whether they use GitLab or GitHub. However, most students pay
little attention to the history of their repository, and educators do not have enough
resources to inspect all student repositories. This thesis attempts to use data points
from Git and GitLab in a mirroring tool to assist both students and educators.
For example, can the data give students more insight into work habits or team
cooperation? For an educator grading a group’s project, can this data give more

9

insight into their performance and be used for evaluation? Or perhaps, can it be used
to more rapidly assess the health of a course and identify student groups struggling?

This thesis tackles Git and GitLab in software development courses from two
angles. First, questionnaires provide insight into students’ experiences using Git
and GitLab, and how Git and GitLab affect students’ motivation and the social
composition of student groups. The second focus is on a mirroring tool using data
from GitLab to provide students and educators with a more intuitive and efficient
presentation of a GitLab repository to increase reflection and understanding. Through
interviews and demonstrations, the dashboard was presented to and tested by both
students and educators.

The research questions the thesis hopes to answer are:

– RQ1: What are students’ perceptions on and experiences with using Git in an
educational setting?

– RQ2: How can GitLab’s data points be visualized in a mirroring tool?

– RQ3: What does a mirroring tool on GitLab data offer?

Motivation and approach

This thesis and the work done was initially only defined by the term "Learning
Technology", defined as software and other technological products that support learning
and education. In collaboration with my supervisor, Trond Aalberg, the focus of
this thesis was shaped iteratively through discussions on what was feasible and what
research was interesting. Mainly the focus has been on the two subjects below.

– Student attitudes towards and experiences with using Git with GitLab in group
projects.

– Presenting students’ data points from GitLab in a mirroring tool.

My motivation for researching student’s attitudes on Git and GitLab originated
in my own experiences using the technologies. Git is a technology most computer
science students use during their education, often without a proper introduction.
I’ve spoken to students who describe the process as similar to birds learning to fly,
having some powerful technology forced upon you; many learn to use Git but do
not understand how it works. Curious to learn how students experience this process,
the thesis questions its impact on student groups’ motivation, interaction among
members, and social aspects.

10

This work has involved researching related work using Git in an educational setting
and formulating three research questions. To best answer the research questions, a
questionnaire on experiences and attitudes towards using Git and GitLab. Forty-eight
students enrolled in a web development course and 43 students enrolled in a software
development course answered the questionnaire, and their answers will are in this
thesis.

Another important factor for how this thesis turned out was that I wanted to
make something. Many courses at NTNU use GitLab for software development,
collecting data from students in one place. However, students use Git differently, and
its data points do not retain all information of the development process. Intrigued by
the idea of making sense of "stupid" data to improve learning, the idea of developing
a mirroring tool arose.

11

Chapter2Background and related work

2.1 Git and GitLab

Version control

Version control is a term describing a system that maintains records of changes to
a set of files, allowing its users to access specific versions at a later time [3]. These
systems track any type of file, from images, code, presentations, and data. One of its
main benefits is the ability to revert one or more files to their previous state, compare
changes over time, and track who has modified a file. This section will explain VCS
concerning developers.

We mainly have three version control systems (VCS): Local, centralized, and
distributed. Local VCS is, as the name suggests, version control on a local unit,
for instance, an individual’s computer. Used to maintain a record of one’s work
for oneself, not tailored for collaboration with others, local VCS is less used than
centralized and distributed.

Centralized and distributed VCS provide functionality for developers to collaborate
between different systems and computers. Centralized VCS, such as Subversion and
CVS, use a single server to track files, which developers then check out and modify.
Although advantageous to a local VCS, it has the downside of being a single point of
failure. If the centralized server experiences downtime, its developers cannot access
its files during the downtime.

Distributed CVS (DVCS) differs in that developers not only check out the files
they are working on but check out a mirror of the entire repository. Thus, all
developers working on a repository maintain a backup, possibly reducing the effect of
a server hosting the repository dying. The most popular DVCS are Git and Mercurial;
we explain Git more in-depth.

12

Git

Today, Git is the most popular VCS used for software development. It is open-source,
free to use, fast, well-suited for handling large projects and non-linear development.
Created in 2005 by Linus Torvalds, the same person widely recognized for his work
on the Linux kernel, its development started as a response to the poor performance
of the VCS available at the time.

Git maintains a record of changes by taking snapshots of each file in a repository,
represented by a blob. Git hashes a blob’s content using SHA-1, used to compare
files. Blobs make up trees, the equivalent of folders, whose hash is computed based
on its content. The genius of Git stems from its use of snapshots to compare files
and reduce required storage. As opposed to VCS that store copies of unchanged files
for each version, Git will instead supply a link to the hash pointing to the last time
a file has changed, meaning Git uses a stream of snapshots to present the repository
at a given time.

The "timeline" of a Git repository is a graph structure of commit objects. Each
commit contains a pointer to the snapshot of the changed content, some developer
metadata, a commit message, and a pointer to its parent commit or commits. The
initial commit has no parent, and the next will point to the initial commit, and so
on.

Git only maintains a record of files when told to do so. Each file residing in one
of three states: Modified, Committed or Staged. Committed means a snapshot of
the file is stored locally, modified means the file has changed, but a snapshot of the
change is not stored yet, and staged means a file has been modified and marked for
inclusion in the next commit object. This is better understood by explaining the
stages a file can be in: Working Directory, Staging Area or Local Repository. If a
repository is stored remotely, for instance, using a service like GitLab or GitHub, a
fourth stage, Remote Repository is also possible.

Git uses the Local Repository to store information about a repository. The
Working Directory is a local representation of all files at a single version of a
repository, a single checkout of a commit. Git fetches versioned files from the Local
Repository. Files changed in the Working Directory are moved to the Staging Area in
the shape of a snapshot. Snapshots contain contains the changes included in the next
commit. Using a remote repository hosted using a service such as GitLab, pushing
commits updates the state of changed files. Doing so makes the commits available to
see for all developers connected to it.

To use Git efficiently, students must know the following commands:

13

– git status

◦ Example: git status
◦ Lists information about your repository, such as the state of files modified

since the last commit, what branch you are currently on and if your branch
is up to date with the remote repository.

– git clone

◦ Example: git clone git@github.com:torvalds/Linux.git
◦ Clones the repository, here called Linux, into a newly generated directory

of the same name.

– git add

◦ Example: git add userController.js storeController.js
◦ Moves the files userController.js and storeController.js from your working

directory to the staging area.

– git commit

◦ Example: git commit -m “Fix sorting bug”
◦ Creates a new commit object, moving the files in the staging area to the

local repository.

– git push

◦ Example: git push
◦ Pushes commits made locally to a remote repository, for instance, one

hosted on GitLab.

– git pull

◦ Example: git pull
◦ Fetches new commits from a remote repository and integrates these with

your local repository.

– git branch

◦ Example: git branch “feature/static-analysis”
◦ Creates a new branch named feature/static-analysis, which can then be

checked out using git checkout. Commits made on the new branch will
not be applied to the origin branch.

– git checkout

14

◦ Example: git checkout “feature/static-analysis”
◦ Checks out the branch “feature/static-analysis,” setting your HEAD to

the last commit of that branch. The command can also check out specific
commits.

– git merge

◦ Example: git merge “feature/static-analysis”
◦ Merges the current branch with the branch feature/static-analysis, creating

a new commit object. The parent commits of this commit will be the
latest commit of both the current branch and feature/static-analysis.

When using Git, developers choose between the command-line interface (CLI) or
a graphical user interface (GUI), such as GitKraken or SourceTree. Both options
perform the same but provide an interface to Git’s functionality differently, the CLI
utilizing commands and flags whereas the GUI uses buttons, text boxes, and other
graphical elements. Some developers argue for one interface over the other, stating
that, for instance, the CLI is better suited for beginners because it does not present
its user with more functionality than they seek. Others state that the GUI is superior
because it visualizes how Git works.

15

GitLab

GitLab is a web-based tool providing its users with free hosting of Git reposito-
ries, issue-tracking, and tools to support developers with DevOps. Created by two
Ukrainian developers, Dmitriy Zaporozhets and Valery Sizov, it has grown in popu-
larity since its launch in 2014. It is now the second most popular service of its kind
behind GitHub.

GitLab provides its users with some functionality to help its users navigate and
perform actions on their repositories, some of which include the ability to view the
commit history of a repository, its branches, and files, as well as its merge request
functionality.

Merge requests provide developers with a three-step approach to Git’s git merge.
The developer first specifies a source and target branch for the merge request, then
creates the merge request. Then, other developers on the team can review the merge
request, provide feedback, or comment on the merge request before choosing to
approve the merge request. Finally, the developer can perform the merge, which
combines the two branches into one.

GitLab also provides developers with the option to create issues; descriptions of
some job or task. Developers can add templates for specific types of issues like bugs,
feature requests, or refactoring to improve the quality of the issues. Furthermore,
developers can be assigned to an issue to signal that they are working on it, and
labeling an issue helps categorize them. Figure 2.1 lists four issues as presented in
GitLab.

Figure 2.1: Screenshot of GitLab’s issue list.

16

Figure 2.2: Screenshot of GitLab board for tracking issues.

Inspired by the physical task board, GitLab has a view for presenting issues in
a board format. Issues can be in one column, signaling at what stage of a team’s
defined workflow the issue is. Columns are added when needed, providing developers
with an effective way of seeing the state of their project, as can be seen in Figure 2.2.

Practices using Git and GitLab

There is no best way of collaborating in a team using Git, but we often see some
reoccurring practices among developers. This section will introduce a few commonly
used practices in the following section.

The master branch, the primary branch of your repository, should be treated
with care, especially for projects with multiple collaborators. A common practice
is avoiding or even preventing developers from pushing commits directly to master.
Using GitLab’s merge request feature to introduce changes to master gives developers
increased knowledge of a repository’s codebase and can promote good discussions
about its content.

Commit messages describe what a commit changes, and are written by developers
for all commits. A commonly used rule says that the subject line (The first line
of the commit message) should complete the sentence If applied, this commit will
<subject line> [4]. Use the imperative mood, and the message’s length should not
exceed 72 characters. Referencing an issue in the commit message, e.g., "Add routing
for store #25", links to the related issue in GitLab (Issue #25).

GitLab’s issue boards provide developers with a tool to plan, organize, and visualize
their workflow by pairing issue tracking and project management [5]. Developers can
tailor issue boards for specific needs, e.g., a Scrum board, and paying users can have
multiple boards linked together. Boards best visualize a team’s progress when they
are up to date. Thus the best practice is to move the issue accordingly when working
on it.

Branching is commonly done in a modified fashion of the feature branch [6] and
Gitflow [7] workflow. The former focuses on keeping all development of new features
on separate branches, in theory preventing broken code from entering master. In
short, a developer creates a branch to work on a feature, pushes some commits, and

17

creates a merge request for the feature. Some developers review the request. Perhaps
some contribute to the branch with new commits, some provide feedback, and the
request is accepted. Finally, the merge request is accepted, and we merge the feature
branch into master. Merging branches create a merge commit.

Figure 2.3: Commit history of a project following the feature branch workflow [6].

The Gitflow workflow maintains two branches dedicated for a project’s history, the
master branch and a development branch. Extending the feature branch workflow, it
is more centered on releases, with features first being merged into development, then
development is branched to a release branch, which is then merged into master. If
some code on master needs to be fixed, a hotfix branch is created from master and
merged with both development and master when completed.

Figure 2.4: Commit history of a project following the Gitflow workflow [7].

2.2 Git in software development education

Universities receive pressure from the industry to prepare their students for the
work awaiting them and adapt their courses’ accordingly. As a result, the shape,

18

content, and relevance of a course can vary greatly, and with it, the perceived
usefulness of a course varies. With rapid changes in what technologies are relevant
in software development, a course whose technology was relevant three years ago
may be outdated today. Especially exposed to change is web development, with
new libraries, frameworks, and concepts appearing often. However, more than just
technology is changing in the field of software development. We have observed a
shift towards agile methodologies where students must learn to collaborate in teams.
Software development in teams is a skill to master, emphasizing the technical aspects
of writing code and the social aspects of working in teams.

Version control systems such as Git have come to stay and remain relevant
in the years to come, accommodating distributed software development in teams.
Universities teach it in their software development courses early on to give students
experience and understanding of how it works. Over time several version control
systems have been developed and used in education and the industry, such as
Subversion, Mercurial, Git, and Bazaar. However, Git, offering distributed version
control and possibly as a result of Git being used to develop the Linux kernel, has
grown to be the most popular version control system over the years.

Student perspective

Git is a complex tool that can be difficult to understand, introducing a way of
thinking that is not necessarily best taught in introductory software courses. In
addition to all other new concepts taught in introductory courses, its complexity
may confuse already confused students, even more, especially those who have little
to no previous experience with programming. Furthermore, attempting to teach Git
without programming may also struggle to present the benefits it provides. Thus,
faculties face the challenge of introducing Git early to students to become experienced
users before finishing their studies, but not too early to avoid it being a hindrance or
element of confusion.

Although we often praise Git for its usefulness for software development in teams,
its benefits are also present when working alone. Professors and educators can
provide skeleton code for the students to improve upon using integrated version
control systems in an IDE such as Eclipse or IntelliJ IDEA. Doing so, students do
not need to understand how Git works.

In some courses at NTNU, students link their Eclipse IDE to a remote repository
owned by the professor. Then, the professor pushes assignments and the code
presented during classes, and students can pull the code to their working environments.
Although students have little understanding of what is happening when they pull
code from their teacher’s repository, they are pleased to have skeleton code from
lectures and assignments appearing locally on their computers.

19

Lawrance, Jung, and Wiseman [8] examined the technical obstacles encountered
when computer science faculties attempt to expose students to version control as
well as the perceived benefits of the students exposed to Git. Students were often
initially confused by Git’s inner workings, but they appreciated what it offered and
did not feel that learning Git was a waste of time. Notably, by using Git in a class
project with multiple contributors, the students learned of the benefits of adopting
good habits such as branching by topic and more minor incrementing changes to
prevent massive merge conflicts.

Haaranen and Lehtinen [9] suggested using GitHub as an LMS to distribute and
collect assignments. Furthermore, they gradually introduced new Git features to
students. The reasoning was that students who use Git in a course where they work
alone only need a few Git commands to work efficiently. Students can clone each
assignment, and depending on the complexity of the course, it introduces different
Git functionality. Instructing students to make incremental changes to their software
and committing their changes often can help by inducing mass training in adding,
committing, and pushing their changes if they are using a remote repository. By
instructing students to develop two versions of the same piece of software, each
version with a few specific functions implemented differently, they learned Git’s
branching and merging functionality, which effectively displayed the simplicity of
switching between Git branches.

To give students authentic experiences with Git in software development, using Git
for assignments where students must work in groups will be advantageous. Arguably
the most frustrating aspect of Git for beginners is merge conflicts, occurring when
two separate branches have made edits to the same lines of one or multiple files.
Although merge conflicts can occur when working alone, they are more common in
projects with multiple collaborators. They are even more common in projects where
collaborators have little experience with Git.

Feliciano [10] conducted a study of using GitHub in multiple software development
courses. Looking at student perceptions of GitHub’s benefits and what challenges
students encountered, multiple benefits and challenges arose. Among its benefits
noted by students was gaining experience with an industry-standard tool. Its
transparency in seeing when and how their team members work helped keep each
other accountable for the group project. Additionally, students found it helpful to
use GitHub as a portfolio for their projects.

All the above benefits apply to GitLab, although students tend to use GitHub
over GitLab for their portfolio due to its popularity. In addition, employing Git with
GitLab for software development courses can provide multiple benefits to students
that they can later apply outside the educational context.

20

Educator perspective

Incorporating Git into a software course is not as quickly done as it is said. The
correct course to introduce Git is not apparent, and one might argue for and against
introducing Git in an introductory programming course. Furthermore, Git can hardly
fill a course on its own. Not using Git in a relevant context makes it harder to drive
home the point of using it. Faculties should be hesitant to replace their existing
courses with courses focusing entirely on Git, as developers can come a long way
knowing only the most common functionality of Git.

GitLab supports any file format, meaning educators can upload course material
such as presentations, illustrations, and more, aggregating course material in one
place. In addition, with its merge request feature, students can provide feedback on
course material in the form of improvements or corrections, which the teacher can
review and accept with little effort. Similarly, students could choose to open an issue
requesting more materials or as a discussion forum, depending on how to educator
wished to use GitLab.

Kelleher [11] found that students enjoyed using Git knowing that they were using
industry-standard technology. Similar to the study of Lawrance, Jung, and Wiseman
students encountered technical issues when using Git, but these diminished as the
students became more experienced. Students were exposed to the most common
functionalities of Git in conjunction with GitHub, such as branching, commits, and
remote repositories. Noted benefits were GitHub being free to use, saving faculty
resources by not needing to host their repositories, improved quality of submissions
(gitignore files aided in leaving out irrelevant files, no duplicate versions of files), and
student satisfaction stemming from the use of relevant tools.

GitLab can collect and distribute assignments by enabling educators to upload an
assignment to a repository that all students enrolled in a course can fork. Thus, the
educator can view all repositories forked for an assignment, gaining more insight into
how a student or group of students has worked than they would have received from
students only delivering their project files [10]. In addition, GitLab offers a graph
view of all commits made to a project. Suppose students are to complete several
tasks for an assignment. In that case, the educator can instruct students to tag each
task in the commit or merge request message, making it easier for the educator to
find their implementation.

Learning management systems such as Blackboard also provides solutions for
distributing and collecting assignments, but knowing how to use Blackboard is not
relevant to work as a software developer in the industry. Therefore, faculty must
decide whether to shape most or all aspects or only some aspects of course education
around Git and GitLab. Aiming only to replace some parts of an existing course

21

requires less work compared to a complete overhaul. However, it may very well
still achieve the desired outcome of teaching students relevant technologies if done
right [8].

2.3 Collaborative learning in computer science education

Software development courses that use Git can benefit from employing project-based
learning in teams. Grouping students together naturally increases the capability of
what they can achieve, giving educators more leeway in designing course assignments
and curriculum, allowing for more open-ended assignments and improved learning [12].
The approach also introduces relevant aspects of software development such as agile
methodologies, software system design and implementation, and clean code.

Sindre et al. [13] presented how project-based learning can be implemented in
courses throughout IT education. They classified how to apply project-based learning
in courses to help educators implement project-based learning in their courses,
building on more informed decisions about what works and what does not work and
the consequences of their decisions.

Range of implementation and freedom of the deliverable and process are ingre-
dients educators must consider when designing project assignments of a course. A
heterogeneous student group working on larger projects spanning over a semester is
advantageous in its realism, often increasing complexity. Stricter guidelines for the
project can simplify evaluation of whether criteria are met or not but restrict students
in creativity and innovation. More ambiguous guidelines promoting innovation and
creativity can, in turn, result in a more significant amount of design decisions being
made [13].

Accurate design decisions engage the students in solving a complex problem
themselves, being responsible for their learning. Dochy et al. [14] suggests that
project-based learning had a positive effect on students’ acquisition of knowledge and
the skills to apply this knowledge. Larger and more complex problems also proved
to increase collaboration and the development of communication skills as problems
often proved too difficult for individual effort [15].

Software development in teams requires skills beyond that of technical competence.
Teams must communicate remaining work, decision-making as well as communicating
the progress of the team [13], [9] [16] [17]. A group of students seldom consists of
equally talented software developers, with some students having more experience
than others. Ideally, this leads to exchanging knowledge with the more experienced
students explaining or giving pointers to the less experienced students. Curşeu
and Pluut [18] claims that group diversity is a necessary condition for collaborative

22

learning and that groups with similar members have reduced opportunity to learn
from each other.

Educators can further motivate peer teaching in software development courses
by encouraging pair programming. Pair programming is an alternative to solo
programming, stemming from the growth extreme programming has seen over the
last years. When pair programming, students have to discuss implementation ideas
to find a solution to the problem at hand, often both programmers seated in front of
the same computer.

McDowell et al. [19] conducted a study investigating the effects pair programming
had on student performance and enjoyment working with assignments. The study
compared students who enrolled in a Data Structures course, some opting for pair
programming and some opting to work alone. Students who chose to pair program
had significantly higher passing rates and were more likely to do better in their
courses afterward. Another benefit noted by the authors was that the quality of the
code produced was better for students who pair programmed, perhaps due to having
to meet the expectations of two students before moving on. Furthermore, students
who pair programmed reported higher confidence in their program, suggesting that
pair programming can lead to more students being satisfied with their education
choice.

Returning to the discussion of group diversity, although arguments suggesting it
creates increased learning opportunities have been presented [20], diversity is not a
guarantee for success. Research on collaboration and group dynamics present several
negative scenarios (e.g., internal conflicts, free-loaders, competitive behaviors) that
can occur in collaborative work [20]. Curşeu and Pluut [18] thus argues that diversity
will have disruptive effects on teamwork, in turn, affecting the positive effect diversity
has in collaborative learning.

Methods used for grouping students together for projects vary between faculties,
courses, and contexts. Students being allowed to choose whom they work with offers
safety to students who choose the same teammates in several courses, having a known
team dynamic and knowledge of each other’s strengths and weaknesses. However,
this reduces the opportunity to work with students with different perspectives,
backgrounds, or experiences [21].

Teaming students who have no previous experience working with each other
encourages discussion of how to approach the task at hand, structure work, and
divide labor through exchanging previous experiences. Repeatedly working with
the same students also reduces exposure to different ways of working. Although
faculty pairing students together can lead to some groups having internal conflicts or
problems, those who have experienced conflicts may have learned how to deal with

23

the conflict for future group projects [22].

Another concern is slackers or free-riders, group members who do not contribute
their part to the group project [22]. Colbeck, Campbell, and Bjorklund [21] found
that the potential for slacking increased as team size increased. They reported that
students knew what students to avoid based on previous projects. Thus, students
would try to avoid teaming up with the slackers. Having a slacker can be detrimental
to the learning of all members of the group.

In smaller group projects, this is especially bad, for instance, in a group of three
students where only two students contribute, increasing the amount of work, time,
and effort they must put in to compensate for the slacker not pulling their weight.
Hall and Buzwell [23] concludes that many students’ frustration with slackers stems
from the slackers often receiving the same mark as those who contributed the most,
due to the final product often being evaluated instead of the process leading up to it.
The paper suggests employing journals to document how a team works throughout
the project period. Educators then review the journals when marking students
alongside the final product.

Hendry, Ryan, and Harris [24] discusses problems occurring in problem-based
learning. In the paper, both educators and students rank the frequency of problems
occurring when working in groups. The third most frequent problem, ranked equally
by both students and educators, was that of the dominant student, someone who
talks a lot and tries to control the direction of the discussion, often preventing others
from contributing and getting a word in. Furthermore, students reported that the
case of dominant students was difficult to solve and that problems arose because of
how the group was working, not because of the task at hand.

2.4 Peer assessment

Peer assessment is commonplace when using Git in the form of feedback on merge
requests and code. In short, peer assessment is a process where learners themselves
are responsible for grading their peers and providing feedback on their work. The use
of peer assessment to assess the quality of work produced by students has been studied
in a wide range of contexts, such as academic writing [25], oral presentations [26]
and software development [27], all of which reported both benefits and problems.

Challenging students to assess the work of their peers promotes their higher
cognitive skills by applying one’s own skills and knowledge to understand and evaluate
the work that has been done [27]. It requires critical reflection, deep thinking, and
learning [28], which in turn leads to an improved learning outcome for students.

Peer assessment can aid educators in relieving them of parts of the workload

24

related to marking students. Over the course of two weeks, a student group has
the capability to develop relatively large software systems, each group choosing to
complete the assignment differently. A student reviewing the assignments of three
other student groups is obviously done quicker than an educator reviewing sixty or
more assignments.

Instructing multiple students to review the assignment of one group can help in
reducing the effect of some students poorly assessing an assignment. If an educator
finds that the reviews of one group’s assignment vary greatly in grading, the educator
can assess the quality of the assignment themselves to better assess what grading it
should be given. Topping [29] found that the quality and mark given when students
peer-assessed the work of other students did not vary greatly from the assessment of
an educator. Furthermore, the difference in grading was further diminished when
several students assessed the same assignment, suggesting that both the validity and
reliability of peer assessments are adequate [25].

Students often want their assignments to be reviewed sooner rather than later,
and through peer assessment, this is made possible. If students are given a deadline
for when they have to have assessed other students’ assignments, students know
that they will have feedback on their assignments by that time. Furthermore, if
each assignment is to be reviewed by three students, this often means that students
receive a greater amount of feedback than they would have had only the educator
assessed their assignment [25]. The content of each assessment may also vary as a
result of what students look for and their opinions, in turn possibly giving students
feedback on an increased amount of aspects of their assignment.

Sitthiworachart and Joy [27] discusses the results of peer assessment performed
by students in the context of a software development course. For the study, students
were tasked with assessing the quality of other students. To further motivate students
to perform the assessment more in-depth, the quality of the feedback they provided
affected their own grades for the course.Sitthiworachart and Joy [27] attempted
to simplify the marking criteria and reducing the number of choices per category.
What they found was that students found it difficult to pick the choice best suited
for a category as a result of there being too few choices. They suggested using a
5-point Likert scale to provide students with enough options to fairly judge student
performance.

Orsmond, Merry, and Reiling [30] reported that students were unenthusiastic
about having to define criteria for peer assessment themselves, preferring to grade
according to criteria defined by an educator. Providing students with both grading
criteria and a guideline for how the criteria should be applied helps with student
understanding of how to grade [27]. This may also help in reducing the variety of

25

student assessments of the same assignment because there is less ambiguity in how
students should evaluate different parts of an assignment.

Sitthiworachart and Joy [27] provided students with both a defined list of cri-
teria and guidelines for grading their assessment to help with the process of peer
assessments. Even so, it was reported that students had a difficult time assessing the
quality of other students’ assignments when they themselves did not feel qualified
on the subject. Equally, students doubted the quality of assessments given by other
students who they felt were not qualified. Some students reported feeling that they
received peer assessments that were unfair and inconsistent, but the results of their
research suggested that this was not the case. The research of Vu and Dall’Alba [31]
also found that students had concerns related to both the fairness and accuracy of
the grading provided both by themselves and other students.

Topping et al. [25] and Sluijsmans, Dochy, and Moerkerke [26] found that students
who assessed other students in turn improved the quality of their subsequent work.
Sitthiworachart and Joy [27] and Sitthiworachart and Joy [32]studied the use of peer
assessment in a software development course. When developing software, there is no
perfect solution, meaning must apply critical thinking to evaluate its correctness and
quality.

Students can learn from seeing a clever implementation of a problem they them-
selves would have thought to implement differently, plus reviewing code gives insight
into more of the software system’s code [27]. Closely related to code reviews, a
method commonly used in the software industry, peer assessment aids in preparing
students for the work awaiting them. Code review is when a developer reviews code
written by another developer, inspecting its quality and implementation. Through
code reviews, students partake in collaborative and peer teaching, giving pointers,
feedback, and correction of each other’s code. This has a doubly positive effect, both
for the students who review and those whose code is being reviewed. Students whose
code is being reviewed receive constructive feedback, pointers, or questions on their
implementation, which they can use to improve its quality.

2.5 Learning analytics

Using Git in software education is in line with the digitization of the last decade.
However, a typical approach is to use Git to develop a project and leave it at that.
With the rise of learning analytics, researchers may be able to use Git data from an
educational setting. Learning analytics has close ties to business intelligence and data
mining and aims to provide more insight. Although widely employed by technological
companies and governments, educational systems were comparatively slower to shift
towards the analysis of big data [33]. Higher education institutions worldwide use

26

learning management systems (LMS) like Blackboard, collecting more and more data.
Acknowledging the potential of Big Data, the Obama Administration announced their
"Big Data Research and Development Initiative" in 2012, urging industry, research
universities, and non-profits to make use of all opportunities created by Big Data [34].

The Society for Learning Analytics Research (SoLAR) defines learning analytics
as: "The measurement, collection, analysis, and reporting of data about learners and
their contexts, for the purposes of understanding and optimizing learning and the
environments in which it occurs" [33]. Despite being a reasonably young research
field, researchers have been generous in defining its potential. Research on the area
of LA has, among other topics, inspected how to improve student performances (e.g.,
knowledge acquisition, cognitive gains, learning outcome, and skill development) and
from the perspective of learning support and teaching [35].

Institutions expect that learning analytics can help improve student performances.
Arnold and Pistilli [36] piloted the software Course signals (CS), a learning analytics
system providing feedback to students based on predictive models. Using data
from students, it attempted to determine in real-time what students were at risk
to help educators deliver meaningful interventions to improve students’ chances of
success. Their findings suggested that students enrolled in CS courses saw higher
retention rates than those with fewer CS courses. Furthermore, comparing students’
grades of a course that implemented CS for one semester with results from the
previous semester, their research showed a significant improvement. Other studies
also showed improvements in students’ performances through the use of learning
analytics tools [37] [38] [39] [40].

The iterative process of designing course curriculum and content is traditionally
affected by student feedback, changes in the software development field, input from
the industry, and more. Thus, the research field of learning design stands intertwined
with learning analytics, both impacting each other. Learning design aids educators in
designing learning activities, and learning analytics make use of the metrics and data
used to inform and influence the design process [41]. Research on learning design
has generally focused on supporting teachers in defining pedagogical approaches and
educational objectives to make improvements and decisions on courses and reflection.

Robles and Gonzalez-Barahona [42] looked at mining student repositories in
a learning analytics context. The paper presents techniques for mining software
repositories that are transferrable to an educational environment. Furthermore,
they implemented an almost automated solution to gather data from students’
programming assignments using Git to use in a learning analytics context. They
did this to assess code quality, plagiarism, automated feedback, and the creation
of personal exams. Students appreciated receiving automated feedback, and the

27

code of students improved. In addition, using the system was well-received by the
instructors, who saw little need for manual work outside of some inspection and
evaluation. However, the authors believe that complete automatization is hardly
possible because some fine-tuning will be necessary to adapt to specific courses.

2.6 Monitoring in computer-supported collaborative learning

The increase in data points generated by students in learning situations introduces
possibilities to monitor more aspects of student groups. For example, some data
is unambiguous (e.g., timestamp of a deliverable or downloading a resource). In
contrast, other data leaves more room for interpretation if viewed by itself (e.g.,
timestamp and duration of a Zoom-meeting). Thus, monitoring may assist educators
and students in providing insights into student groups and detecting good and bad
collaboration patterns.

Managing collaboration can also prove easier with increased opportunities to
monitor activity. For example, in the form of indicators displaying student groups’
performance, educators can make information-based decisions on what groups to
contact. Likewise, offering students relevant resources based on their interactions
with the system can help them move past a problem.

Soller et al. [43] presents a framework for describing the process of collaboration
management to help define a model of desired interaction and monitoring current
interaction (see Figure 2.5) which I will present. The first phase is the collection of
interaction data. Whether analysis on the model will be activity-based or state-based
is an important decision bearing implications on how and what format to record data
points. Activity-based analysis requires historical logs of user interaction over time,
whereas state-based analysis requires logging of snapshots of interaction without
history information [44]. Transforming said logs into holistic and useful information
is difficult, time and resource-demanding, often requiring human manipulation of
data sets [33].

28

Figure 2.5: The Collaboration Management Cycle as proposed by Soller et al. [43].

The second phase is to construct a model of interaction, meaning defining how to
represent the current state of interaction based on high-level variables and metrics.
In this phase, one should consider the needs of educators and students, perhaps
separately, to best provide an efficient and unambiguous state representation.

The third phase compares the current state of interaction to the desired state,
used to classify attributes of the interaction based on the metrics and variables
defined in phase two. Soller et al. defines the desired model as a set of indicator
values that differentiate between productive and unproductive interaction states. In
turn, the definition of a productive interaction state will vary from domain to domain.
For example, in software development courses, productive interaction states can be
similar work distribution and a steady stream of completed story points/issues as a
team.

Phase four is to advise or guide the interaction. If the current and desired
interaction does not match, the system can suggest mitigating actions to help move
towards the desired interaction state. Less complex suggestions use few metrics (e.g.,
changes in work distribution based on story points completed). In contrast, more
complex actions require more complex analysis (e.g., suggestions on resources to
improve development speed when using specific JavaScript libraries). The actions
may be suggested by the system or by humans depending on implementation.

Before returning to phase one of the collaboration management cycle, we pass
through a fifth phase where we evaluate the action suggested in phase four and the
interaction of the cycle. Both humans or the system can evaluate to improve its
ability to present the interaction state. If necessary, the desired state is changed to
meet the learning goals better.

29

The locus of processing

The locus of processing describes where decisions on the quality of student interaction
are made and how to facilitate interaction [43]. The locus of processing can lie
with students, educators, or the system, or a mix of the three, depending on the
goals and requirements of the learning activity. Depending on where the locus of
processing lies, we distinguish between three types of computer-based support options,
mirroring tools, metacognitive tools, and guiding systems and vary in what phases of
the collaboration management cycle they perform.

Mirroring tools describe systems that collect and aggregate data about students
and reflect the information to students or educators. They perform only phases
1 and 2 of the collaboration management cycle and leave the locus of processing
entirely with the user. In other words, users must define what is the desired state of
interaction and decide how to act themselves. Designed to improve self-reflection
and awareness of students’ actions, visual presentations of behavior and information
give an efficient and intuitive representation of the state of interaction. Mirroring
tools will be explained more in Section 2.7.

Metacognitive tools display an indication of the desired state of interaction and
the current state of interaction. It performs phases 1, 2, and 3 of the collaboration
management cycle and can be considered a superset of the mirroring tool. These
systems provide users with indicators necessary to diagnose the interaction, meaning
the locus of processing also lies with the system. However, the user is still responsible
for choosing how to act on the indicators and the diagnoses.

Guiding systems perform all the phases of the collaboration management cycle
and help users by proposing how to act on deviations from the desired state of
interaction. Often not displayed to the students, the desired model of interaction
and the system’s assessment of the students are used by the system to help moderate
their interaction.

Designing a system to support student interaction involves evaluating the needs
of both students and educators and available computational resources. Based on
gathering information and presenting it in accordance with a model, the three systems
are similar. Their difference lies in the location of the locus of processing: the system,
educators, students, or some mix of all.

2.7 Mirroring tools

The following chapter will go more in-depth on research done on mirroring tools. To
recap: mirroring tools describe systems that collect and aggregate data points from
a user’s interaction and reflect this information to the users. Typically, students in a

30

learning situation generate data points, which an educator or the students reflect
on through graphs, tables, and other visualizations. Aiming only to present data
more efficiently, the locus of processing lies with its users, who must attempt to
draw conclusions on the information and decide how to remedy deviations in the
interaction model. The same information can be helpful in different ways depending
on whether a teacher or a student uses it. For students, these systems aim to enhance
self-awareness of one’s actions and behavior [45] [43] to improve upon for future work.
Educators can use mirroring tools to gain insight into how students work and to
know what students or student groups need guidance.

We can think of undesirable situations in group projects(e.g., free-riders, varying
participation, gaps in actual and expected skill) and their desirable opposites. Quan-
tifying participation and contributions to a group project may be helpful to provide
insight into how much and when team members have contributed. Ideally, this would
indicate equal participation among members, but perhaps just as practical, it may
indicate that some members have participated far less. Dietsch et al. found that a
mirroring tool for student activity in a collaborative software development setting
helped identify reoccurring roles in student groups. For example, some groups had a
lead coder (who contributed the most lines of code); others had one or two students
in the role of designers. Furthermore, they identified students in the role of free-riders
as students who were responsible for less than 10% of the code.

A primary goal of mirroring tools is to increase self-awareness and behavioral
regulation. Self-awareness, in general, has numerous proven benefits in multiple
domains. For example, athletes wear heart rate monitors to improve their workouts,
and fitness watches can give feedback on sleep quality. The ability to quantify aspects
of our lives improves self-reflection and helps us realize bad habits in our behavior [46].
In uncovering the causes of problematic behavior, self-monitoring tools have been
shown practical and valuable to both monitor and maintain changes in behavior. In
their 2013 study on behavioral change from presenting statistical patterns, Bentley
et al. observed that some participants pieced together two or more of their data
representations to understand their habits and patterns better. Participants enjoyed
being presented with their data and found it helpful to draw their correlations, which
for most of us can be more accurate than assumptions and correlations presented by
someone they do not know. Interestingly, this could indicate that data points from a
group can be helpful in different ways depending on which group member views it.

Meyer et al. [48] performed a study on software developers in the workplace where
they looked at what they expected from a mirroring tool and implemented this. They
concluded that increasing software developers’ self-awareness about productivity
through self-monitoring improved both productivity and engagement. Furthermore,
40.7% of their participants stated that the increased self-awareness motivated them

31

to adapt their behavior. Their system mainly looked at users’ unique collaboration
and communication patterns through data on meetings, emails, instant messaging,
and code review behavior. Still, they noted that improved insights into how teams
coordinate and communicate could help both developers and managers, for instance,
with scheduling meetings at more optimal times.

Mirroring tools designed for educators are referred to as teacher dashboards and
are visual displays that provide analytics of learners. The usefulness of teacher
dashboards comes down to how efficiently and effectively they convey information
to a teacher [49]. Dashboards should convey what it presents and how it has been
aggregated data and should not confuse its user. Furthermore, to prevent confusion,
dashboards must be designed with caution to avoid displaying too much information
at once. Mazza and Dimitrova [50] notes that systems should be designed differently
depending on their users, especially if their users are not well-versed with computers.

Research on the usefulness of teacher dashboards has shown that they can be
both helpful and insightful to teachers and that they can be used to give teachers
more information on their students’ activity [51]. However, research on mirroring
dashboards also shows that they do not consistently improve the detection accuracy
of a teacher [50] [52] concerning student groups. Teachers cannot always use a
dashboard to their advantage, for instance, because the information is overwhelming
or because data is interpreted wrong. Concerning teachers, mirroring dashboards,
in turn, introduce yet another source of information to consider. The information
displayed in the dashboard is possibly already accessible to the teacher and should
provide new or improved insight. Failing to do this risks the system being an obstacle
instead of a tool to its users.

32

Chapter3Methodology

3.1 Case studies

This thesis performed two case studies for data generation and analysis. The case
study bases itself on Oates, who defines a case study as follows;

A case study is an empirical inquiry that investigates a contemporary
phenomenon within its real-life context, especially when the boundaries
between phenomenon and context are not clearly evident.

Furthermore, the following traits characterize case studies:

– Focus on depth rather than breadth, i.e., the researcher obtains as much
information as possible about an instance of the investigated phenomenon.

– Natural setting, i.e., the case existed before the study came.

– Holistic study, i.e., the focus is more on the complexity of relationships and
processes and how they are interconnected than isolated individual factors.

– Number of sources, i.e., the researcher uses a wide range of data sources.

Oates [53] defines five choices one must make when performing a case study. They
are:

1. The type of case study
2. Approach to time
3. Approach to selecting cases
4. Approach to generalizations
5. Selection of data generation methods

33

This section will present the choices made and the rationale behind them for this
study.

The type of case study

Three types of case studies are defined, namely:

– Exploratory study: "Used to define the questions or hypotheses to be used
in a subsequent study. It is used to help a researcher understand a research
problem."

– Descriptive study: "Leads to a rich, detailed analysis of a particular phe-
nomenon and its context. The analysis tells a story, including discussion of
what occurred and how different people perceive what occurred."

– Explanatory study: "Goes further than a descriptive study in trying to
explain why events happened as they did or particular outcomes occurred. The
case study analysis seeks to identify the multiple, often interlinked factors that
had an effect, or compares what was found in the case to theories from the
literature in order to see whether one theory matches the case better than
others."

This thesis chose an exploratory study approach to provide insight into students’
perceptions of and experiences with Git (RQ1). The reasoning for this choice was
that little previous research discusses how Git affects group dynamics and the social
aspect of project work. Thus, it can provide insight used in later studies.

The research on a mirroring tool on Git data chose a descriptive study approach.
The approach explores and describes use cases for the software system. Furthermore,
exploratory studies on Git data and mirroring tools exist (although few combine the
two topics), reducing the need for an exploratory study.

Approach to time

Case studies vary in their approach to time. Oates defines three approaches:

– Historical study: "Examines what happened in the past by asking people
what they remember about earlier events and analyzing documents produced
at a time."

– Short-term, contemporary study: "Examines what is occurring in the case
now."

34

– Longitudinal study: "Involves the researcher investigating the case over
time."

This thesis chose a historical study for RQ1. The approach relies on students’
memories of how they used and experienced using Git. In addition, the research
wants to provide insight into how students feel about using Git in group projects.
Thus, asking students about a finished project makes sense.

Student and educator interviews took a contemporary study approach to inspect
how interviewees experienced using the system. For the study, we ask what students
and researchers obtain from viewing Git data visualized, both concerning previous
experiences and in general.

Approach to selecting cases

Case studies focus on an instance of the topic under investigation. Thus, an important
factor in selecting what case or cases to study. Oates suggests basing this decision
on the following five instances:

– Typical instance: "The chosen case is typical of many others and can therefore
stand as representative of the whole class. Findings from the one case should
be generalizable to the whole class."

– Extreme instance: "The case is not typical of others but provides a contrast
with the norm."

– Test-bed for theory: "The case contains elements that make it suitable for
testing an existing theory."

– Convenience: "People in the chosen case have agreed to give you access, and
it is convenient in terms of time and resources."

– Unique opportunity: "The chance arises to study something that you had
not previously planned for, and that may not occur again."

Two cases were selected, the courses TDT4140 and IT2810, described in Section
3.1.1 and Section 3.1.2 respectively. This thesis chose IT2810 for convenience, being a
course taught by this thesis’ supervisor. TDT4140 is a typical instance of a software
development course, an attribute it shares with IT2810, and thus a well-suited case
to investigate. Similarities between the two courses will substantiate claims made
and help identify experiences that are not course-specific. Furthermore, differences
in the courses allow for comparing results based on varying aspects of the courses.

35

Approach to generalizations

Generalizations are an approach to make conclusions that are relevant beyond
the cases investigated. Even if some factors are unique to the case, other factors
will typically appear in other cases as well [53]. Oates defines four main types of
generalizations, used independently or in combination:

– Concept: "A new idea or notion that emerges from the analysis."

– Theory: "A collection of concepts and propositions with an underlying world-
view."

– Implications: "Suggestions about what might happen in other similar in-
stances, possibly with specific recommendations for actions."

– Rich insight: "What we might glean from reading a case study that does
not fit neatly into the three categories of concept, theory or implications, but
nevertheless give use important new understanding about a situation."

This thesis approaches the generalization of student perceptions on and experiences
using Git by presenting implications and theories. The selected approach is suitable
for the time constraints and what insights quantitative data offer. The goal is to
explore the research area and provide theories and implications for future research.

For the mirroring tool, the thesis approaches generalizations through implications
and rich insight into how students and educators perceive a mirroring tool on Git
data. In addition, the approach gives insight into what the mirroring tool offers
students and educators and how well its components convey information.

Selection of data generation methods

The thesis uses two approaches for data generation; questionnaires and interviews.
The former is described in Section 3.2 and the latter in Section 3.3.2.

3.1.1 TDT4140 Software Engineering (Spring 2021)

Curriculum and course dynamics

The course covers software project management and software process types, focusing
on agile methods such as scrum and extreme programming (XP). The course provides
students with a set of user stories for a software system, which they develop throughout
the semester. They are free to choose what technologies to use, some opting for more
familiar technologies (Java or Python), and some groups opt for technologies not
taught in their previous courses (e.g., TypeScript with Vue or React). The course’s

36

focus is on core IT development for students to build foundations on, and to apply
the programming knowledge taught in previous introductory courses.

Student groups must choose how to divide their user stories into two or more
sprints and are graded on their ability to apply agile methodologies in software devel-
opment. The students must complete a set of mandatory software demonstrations,
presentations, and group-based deliverables throughout the semester. These account
for 100% of the grade in the course.

Groups consist of 7 students and are put together at random across study programs.
Within each team, we often observe groups dividing members into roles such as scrum
master, designers, testers, front-end, and back-end developers.

Who are the students?

The students typically study Informatics, Computer Science or Industrial Economics,
and Technology Management in their fourth semester. Previous knowledge with
programming stems from introductory courses on process- and object-oriented pro-
gramming and the course IT1901 — Informatics Project 1. The latter course also
introduces agile software development practices and introduces students to both Git
and GitLab.

The course is mandatory for the above students. Thus, the student population
contains both students who are enthusiastic about programming and those who are
not. Students’ foundation are based on previous courses, which in regard to technical
courses for the most part are the same for all enrolled students.

Students have some experience with Git and GitLab from IT1901, but the course
introduces its concepts along with many others. Thus, for many students, TDT4140
is their first time using Git for extended time in a group project with focus on
development.

3.1.2 IT2810 Web Development (Autumn 2020)

Curriculum and course dynamics

The course covers technologies and methods used when developing web-based solu-
tions. Students must use multiple popular frameworks, libraries, and archeological
design patterns throughout the course. The workload is high, and students are
evaluated on one individual project and three group projects. The course covers
JavaScript, TypeScript, ReactJS, React Native, RESTful APIs, GraphQL, and
databases (Students choose whether to use SQL- or document-databases).

37

Students work in groups of up to three students and choose to work with friends or
be randomly assigned groups. Each project period lasts for about a month, throughout
which many students must first learn the relevant technologies before they can start
programming. In addition, students have to meet some functional requirements for
each project, such as using specific technologies in their applications. Otherwise, they
are left to their own in terms of implementing their solution. The course introduces
the technologies for each project, but students are primarily responsible for their
learning.

Following each project assignment, each student has to review the repositories
of 2-3 other groups using the software service Peergrade, assessing both quality and
implementation of their assignments. Equally, their repository would be reviewed and
assessed by 2-3 other students. For each review, the student has to give feedback on
how well the group has completed the assignment using free-text answers and a score
on a 5-point Likert scale. Many students have little to no previous experience assessing
the quality of other student’s assignments, let alone reviewing code. Furthermore,
this means that all code written by the students will be available for others enrolled
in the course to see. Students are anonymous when performing their peer assessment
but have access to the GitLab repository of the group they are reviewing.

Finally, at the end of the semester, an exam accounts for 15% of a student’s grade
in the course. It covers the technologies used throughout all the projects.

Who are the students?

The course is available for fifth semester students admitted to a bachelor/master in
Computer Science or Informatics as part of their study programs. Students from
other study programs with less programming experience also enroll in the course,
e.g., students studying interaction design or cybernetics. It is considered an advanced
course listing the following courses as recommended previous knowledge:

– IT2805 Web Technology
– TDT4100 Object-oriented programming
– TDT4180 Human-Computer Interaction
– TDT4145 Data Modelling, Databases and Database Management Systems
– TDT4140 Software Engineering

Students of Informatics enroll in IT2805 Web Technology (covering HTML, CSS,
and some JavaScript) in their first semester, whereas Computer Science students
do not traditionally enroll in the course. Therefore, students who did not choose
JavaScript-based technologies in TDT4140 Software Engineering could very well
have no prior knowledge of web development or JavaScript when enrolling in this
course. Students of other study programs who enroll in IT2810 typically have less

38

experience with development, perhaps only from an introductory course. Thus, the
course sees a large discrepancy in how well students tackle the projects. Students
with less experience are often overwhelmed and report spending many more hours
on projects than those studying IT.

Most, if not all, students have used Git and GitLab in one or more previous
courses. However, good practices of Git and GitLab are not the curriculum of any
previous courses.

3.1.3 Comparing the cases

Table 3.1 juxtaposes some qualities of TDT4140 and IT2810. The listed qualities
make comparing the two courses interesting to identify both unique and shared
factors for both student perceptions on Git and the mirroring tool. We look more
closely at their qualities and how they can affect results.

TDT4140 IT2810
What semester 4th semester 5th semester
Mandatory course? Yes No
Course difficulty Intermediate, course teaches core concepts Advanced, high workload

Who are students Mainly students of informatics, computer science and
industrial technology.

Students of informatics and computer science and
students without IT backgrounds who want to learn

web development.

Course focus

Core IT concepts including agile development,
project management, development,

group coordination, communication with users
and customers

Technology-oriented on web development. Teaches

technologies and methods used in development of
web solutions. Frameworks, architectures, languages,
formats and standards used in development of web-

applications and services
No. of projects 1 3
Group size 7 students 3 students

Group assignment Random Students choose groups or to be
randomly assigned a group

Development type Scrum and sprints No guidelines
Technology used Free to choose Must use specified technologies

Project type
Students use scrum and sprints.

Evaluated on their ability to apply
agile development methodologies

Students work freely but must
complete a set of functional requirements.

Evaluated on end product
Version control Git with GitLab Git with GitLab

Table 3.1: Comparison of TDT4140 and IT2810.

Students of IT2810 have more experience with development when enrolling than
those of TDT4140. This is a result both because students are in their fifth semester
(compared to fourth semester for TDT4140), and its high workload. Students who
enroll in IT2810 are in general more enthusiastic about programming and choose it
knowing it requires a lot of work. TDT4140 on the other hand contains the entire
student population, including students who are less enthusiastic about programming.
The same applies for Git, where TDT4140 students have less experience than IT2810
students. Thus, it is likely that some differences between how the populations
experience learning Git occur.

39

Furthermore, the two courses approach group composition differently. TDT4140
assigns students random groups of seven students, compared to IT2810 where students
choose their own groups of three students. As discussed in Section 2.3 random groups
increase diversity and larger group sizes increases the occurrence of slackers [22].
Furthermore, in the random groups of TDT4140 not all students initially know each
other. Comparing IT2810 groups where many students work with friends, one can
imagine some differences in how students experience working in teams. For instance,
students might feel differently about Git’s transparency in regard to working with
friends compared to strangers.

The difference in how students work throughout the semester will likely affect their
Git data points. Students use sprints in IT2810 focusing on the development process,
and in IT2810 students focus more on finishing projects and learning technologies.
Furthermore, in groups of seven it is expected that student contribution will vary
more than in groups of three, at least in regard to difference between the least and
top contributing students. Another aspect of larger group sizes is that it is harder to
track what all team members do. In teams of three the contribution of each member
probably has a larger impact on the end product.

3.2 Online questionnaire

Section 2.2 describes how researchers have explored the advantages and disadvantages
of employing Git with GitHub or GitLab in the classroom as an alternative platform
to support classroom activities. These studies have assessed how both students and
teachers have experienced the switch regarding ease of use, learning benefit, resources
used, and more. This thesis will address how students use Git and their experiences
to support previous findings and as an exploratory study on Git’s implications on
group work. Namely, it studies how students experience using Git, focusing on ease
of use, collaboration with other students, and how students personally feel about
both giving and receiving feedback on code. It also looks into less explored areas
like its effect on the overall social aspect of group work, social interactions, and
motivation.

To answer RQ1, a survey was conducted to collect data on students’ experiences
and attitudes. Survey research uses sampling and questionnaires to measure charac-
teristics of a population to provide answers and enables the comparison of groups.
On the other hand, quantitative research is useful to give quantitative answers to
quantify populations’ opinions, attitudes, and behaviors. Furthermore, it is suitable
for testing hypotheses and exploring a topic [54].

40

Questionnaire Design

The two questionnaires ask mostly the same questions, but some words differ. For
instance, the questionnaire for IT2810 has questions about projects, whereas the
questionnaire for TDT4140 has questions about sprints. Furthermore, we divide
questions into four types, presented in this section.

The first type of question aims to establish what students are participating. They
question students’ motivation for using Git, their previous experiences with Git and
software development, and how their group worked together (physically together or
separated).

The second type of statement asks about students’ experiences and habits using
Git to develop software development in teams. This section aims to give insight into
its perceived usefulness and usability.

The third type of statement asks about students’ experiences with receiving and
giving code reviews and Git’s transparency. These questions aim to provide insight
into how students personally feel about the interpersonal aspect of peer-reviewing
code. Confidence in one’s programming skills can vary [55] which may impact how
students feel about Git’s transparency and also how they experience the feedback
process.

The fourth and final type of statement asks what implications Git and GitLab have
on the social dynamics of student group collaboration. How does Git’s transparency
affect the impressions of group members and affect collaboration patterns?

Data collection

All students of IT2810 and students of TDT4140 were invited to answer the ques-
tionnaires via Blackboard and e-mail. IT2810 students were invited in January
and TDT4140 students were invited in May. In total 91 students answered the
questionnaires, 48 from IT2810 and 43 from TDT4140. To incentivize answering the
questionnaire participants had a chance to win a gift card by submitting their email
address in a separate questionnaire. The questionnaire is hosted online using the
service Nettskjema, developed by the University of Oslo, which provides function-
ality for designing forms to be used in research. They are configured to not store
IP-addresses, emails or any similar information about its participants for anonymity.

The questionnaires aim to provide insight into students’ perceptions of Git without
using any free text answers. Questions are worded as statements to which the student
answers with how much they agree with the claim. For example, one statement is I
only want to share code that I know is good, to which the answer options are Not
relevant, Strongly disagree, Somewhat disagree, Neither nor, Somewhat agree or

41

Strongly agree. The average time spent answering the questionnaire was 8 minutes
and 6 seconds.

NSD application

Although none of the individual questions of the questionnaire ask about personal
information, an application to conduct the project was sent to the Norwegian Centre
for Research Data (NSD). This decision was made based on the assumption that
someone could guess what student had answered the questionnaire if viewing answers
from an individual.

NSD reports a 30-day response time for applications. For this study, two applica-
tions were sent — one time for the IT2810 questionnaire and then again modified the
TDT4140 application. The response times were 33 days and four days, respectively.

3.3 GitLab mirroring tool

3.3.1 Design and creation

A popular strategy in computer science research, design and creation focuses on
developing new software, an artifact. This approach is suitable when the research
requires developing a new element of a system or a new system as a whole. Typically,
the artifact represents an approach to solve a problem. Oates [53] defines five phases
of the design and creation process:

1. Awareness

2. Suggestion

3. Development

4. Evaluation

5. Conclusion

This section succinctly describes each phase. The phases are not rigidly structured
as steps but instead form a more fluid, iterative cycle [53]. For instance, during the
evaluation phase, researchers gain increased awareness; evaluation results in new
suggestions, and so on.

Phase 1 — Awareness

This phase involves understanding the problem at hand; what to do with GitLab data.
The result of this phase was RQ2 and RQ3. A literature review on mirroring tools,

42

learning analytics, collaborative learning, and mining of Git data was conducted.
The literature review provided insight into designing a mirroring tool and what Git
data has provided previous researchers. The consensus of mirroring tool research is
to opt for visualizations that efficiently convey data and avoid overwhelming users.
Furthermore, the background theory emphasizes the importance of selecting and
understanding data points.

For this thesis, the initial identified problem was to make use of data points from
GitLab both for students and educators. Research on mirroring tools described in
Section 2.7 and Section 2.6 describes how mirroring tools can aid in self-reflection
with students and monitoring for educators. Varying challenges students encounter
when working in teams are described in Section 2.3. Thus, the problem of aggregating
student data to help identify uneven contribution, last-minute work, and more was
defined.

Phase 2 — Suggestion

The suggestion phase takes a creative leap from understanding a problem to a
tentative approach to addressing the problem. In the case of a software system, this
means suggesting one or multiple systems and their parts and comparing them. For
example, the suggestion can be in the form of paper prototypes or working software.

Early suggestions for this thesis were simple. All commits of a repository were
fetched and ordered by hours of the day in a JSON format, which worked to present
the idea of aggregating GitLab data by common attributes (e.g., weekdays or authors).
Later suggestions involved different graphs, data points, and dashboard functionality.

Phase 3 — Development

The third phase of development sees the implementation of ideas from phase two. The
specific implementation will vary depending on the artifact, but the development of the
mirroring tool involved software development. Early development iterations revolved
around developing the foundations for automatically fetching and storing data from
GitLab in the backend and developing a simple frontend system. Later development
focused on comparing student groups and combining individual components into a
coherent dashboard.

Phase 4 — Evaluation

The evaluation phase aims to evaluate and assess the worth of a created artifact
through data collection. Valuable insight from this phase is both what works and
what does not work. Throughout development for this thesis, the supervisor of
this thesis evaluated components. In addition, an evaluation of the dashboard by

43

students and educators took place through interviews and demonstrations, described
in Section 3.3.2.

Phase 5 — Conclusion

The final phase presents the results of the design process in the form of knowledge
gained and ideas for further research. The results of evaluation are presented in
Section 5.2 and discussed in Section 6.2 and Section 6.3.

3.3.2 Interviews

As a part of phase 4 of evaluation, semi-structured interviews were held with students
and educators to collect qualitative data on the mirroring tool.

All students of IT2810 and TDT4140 received an invitation via email to participate
in one-on-one interviews in May 2021. Nine students from IT2810 and 13 students
from TDT4140 participated. To incentivize participation, participating students
received a free meal and soft drink. In addition, to collect feedback on the educator’s
view, 11 educators who use version control (GitLab or GitHub) in their courses were
interviewed.

The process of collecting and analyzing data is summarized below:

1. Create a list of qualitative attributes.

2. Design interview guide.

3. Schedule the interviews.

4. Attempt to categorize student groups based on qualitative attributes.

5. Conduct the interviews. Have students categorize their group using the quali-
tative attributes.

6. Transcribe the interviews.

7. Analyze the transcribed interviews by grouping answers into categories or
themes.

8. Compare assumed attributes with students’ attributions.

The following sections will describe each of the above steps to explain how results
were collected and make this research reproducible.

44

Create a list of qualitative attributes

Qualitative data deal with characteristics that cannot easily be measured. As
such, qualitative attributes are nominal and represent some state or category. All
qualitative data is binary; either they apply to a group or do not. In total each group
has been categorized using 8 attributes, listed in Table 3.2. For the lack of a better
English word M4 uses the Norwegian word skippertak, defined by doing most of the
work before the deadline and doing less work during most of the project.

ID Statement
M1 Some members have contributed more than others on the programming
M2 Some members have been free-loaders on the programming
M3 The group has worked evenly through each exercise/sprint
M4 The group has done skippertak every exercise/sprint
M5 The group started working early in each exercise/sprint
M6 The group worked in planned spaces of time (e.g. 8-13 Mondays)
M7 One group member was responsible for setting up the project
M8 Everyone in the group contributed an even amount in the programming

Table 3.2: Qualitative attributes used to categorize student groups before and after
interviews.

Design interview guide

Following an interview guide, interviews were semi-structured, enabling the inter-
viewer to ask follow-up questions and new questions as needed. The same interview
guide was used to interview students from both courses and separated the interview
into three parts. First, interviews opened with some questions about the student’s
group to get to know the interviewee and to make them comfortable in the setting.
Then, students answered the question, "What kind of visualizations of GitLab data
can help you understand your progress as a group?" and what these visualizations
should look like (e.g., graphs, tables, text).

Students received an introduction to the dashboard in the second part and its
functionality described to them. Then students are instructed to view the dashboard
at their own pace and reflect out loud what the visualizations mean to them. Students
were suggested to use sentences structured as "This [surprises, makes sense to, is
interesting to] me because" and to express what they like and dislike about the
dashboard’s features.

The third and final part is adevelfter students have explored all or most of
the dashboard. Students answer a few questions about the visualizations and the
dashboard. Finally, they categorize their group using the attributes from Table 3.2.

45

Scheduling interviews

All interviews took place over a week. First, students signed up using the software
service Doodle[CITE] by selecting time slots and leaving their email addresses. They
were then contacted and invited to participate in an interview lasting 30 minutes.
All students interviewed were given information on the study, the interview, and how
their data would be collected and used and sign a consent form. Students also said
what group they belonged to analyze their group, described in the next section.

Attempt to categorize student group based on qualitative
attributes

Viewing only the dashboard solution before interviewing students, student groups
received attributes from Table 3.2. This process involved viewing a group’s visual-
izations and making assumptions based on these. For instance, answering M4 for
IT2810 student groups involved looking at dates of commits and merge requests. As
a result, student groups with a significant spike in commits and merge requests near
the end of the project received the attribute of "skippertak"-groups.

Conduct interviews and have students categorize their group

The interviews were conducted on campus and lasted around 30 minutes, and
all but three participants spoke English. As can be seen in Appendix A.2, the
interviews started with information about the project and data management to make
the interviewee comfortable with the interview setting. Then, each section of the
interview guide was gone through. If students answered imprecisely or ambiguously,
follow-up questions served to clarify. Although the scheduled length of interviews
was 30 minutes, some students were interested in testing the dashboard for longer. If
one had more time, one could collect more data by asking more questions or letting
the interviewee navigate longer.

Transcribe the interviews

All recorded interviews have been transcribed using the software solutions Temi [56]
and oTranscribe[57]. Temi is a paid service for transcribing, offering machine-
automated transcriptions for 0.25 USD per minute. In total, the interviews tallied 18
hours. The quality of transcriptions varied from interview to interview; thus, omatic
transcriptions served to do the heavy lifting of initial transcribing. All interviews
were listened through, and the generated transcriptions were corrected and refined
(e.g., remove repeated words). The manual transcription of Norwegian interviews
used oTranscribe.

46

Anonymization happened during transcription, replacing students’ references to
other students, group IDs, and names. However, the value of data remained the
same, as the information itself is not relevant for this research.

At the end of each interview, students categorized their group using the qualitative
attributes from Table 3.2.

Analyze the transcribed interviews

Interviews were all analyzed using NVivo [58], a qualitative data analysis software.
Its core functionality allows users to read through textual data (e.g., transcribed
interviews) and code/classify sections of documents or text of common themes. Text
coded with the same theme can easily be retrieved and compared by reviewing the
themes.

Comparing Qualitative Attribute Categorizations

Students’ assumptions are compared with assumptions made before interviews, and
discussed in Section 5.2.1. Points of interest are how many assumptions were correct
and incorrect. Furthermore, how many times groups correctly were not attributed is
of interest.

47

Chapter4Dashboard design and
implementation

Introduction

To answer RQ2 and RQ3, a web-based dashboard was implemented. The dashboard
supports both students and educators and consists of two views categorized as
mirroring tools. Students have their data points from GitLab mirrored back to
themselves, whereas educators can view all student groups accompanied by group
performance indicators. The dashboard is a proof of concept to aid student groups
in self-reflection, educators in gaining insight into student groups’ performance, and
to test whether qualitative assumptions on student groups can be made based on
data points from GitLab.

The dashboard is simple in architecture, consisting of a browser-based dashboard,
a MongoDB database, and a Node backend for intermediate communication between
the dashboard and GitLab.

4.1 GitLab API and data collection

GitLab has a well-documented API listing how to query specific resources. Resources
belong to either Projects, Groups and Standalone, but for this implementation, only
Projects and Groups are relevant. Groups logically group one or more projects
(repositories) or even more groups. Codebases are hosted as projects and have
accompanied issue trackers, repositories, merge requests, CI/CD, and more. Most
data of Groups and Projects are retrieved using API [59].

The code written to populate the dashboard works best for courses structured in
a specific manner. A course must have an overarching group containing all student
groups within, which in turn contain projects (See Figure 4.1). The dashboard
queries the Group API for all subgroups of a course and all projects of each subgroup.
Because GitLab places a rate limit on their endpoints, one should use either query
for new resources upon using the system or semi-regularly to maintain an up-to-

48

date representation of its data. Data is stored in an intermediate database to
increase performance, reduce the number of queries sent to GitLab. The current
implementation requires manually fetching new data when needed.

Figure 4.1: How courses can be structured in GitLab. A real course would have
more student teams.

How data is retrieved

Data of a specific course (GitLab Group) is queried for and stored iteratively through
a manual process. The first step is identifying what top-level GitLab groups to query.
Here we are interested in the groups that contain student groups, in Figure 4.1 this is
the group with an ID of 4242. The request-response contains an array of subgroups.

All queried groups are stored in a database and iterated through, querying for
and storing their projects. Metadata about groups and projects are stored, and then
project-specific data is queried and stored. For the dashboard, this meant querying
for commits (also containing information on lines changed) and storing this. GitLab’s
API allows for quickly extending the dashboard to include more data (e.g., merge
requests, issues, or pull requests).

Most API requests will only return public information if not authenticated.
Authentication methods include OAuth2 tokens, project access tokens, personal
access tokens, and more. In addition, all queried data requires authentication, which
correlates to one’s role in the course group on GitLab (E.g., educator or student).
For example, access to all subgroups and projects requires Maintainer-role or above,

49

whereas students have access to their projects and can view other public projects in
the course group.

Data aggregation and transformation

GitLab returns much data for queried resources; for instance, each project resource
consists of some ninety attributes. Many of the attributes are flags of no interest to
the regular GitLab user, e.g. emails_disabled, wiki_access_level and lfs_enabled.
Although useful in the GitLab ecosystem, they do not intuitively provide any value
in a mirroring tool. The system’s goal is to increase awareness about actions and
behaviors in students. Thus, presenting the same data in the same way GitLab does
will hardly provide anything. To meet this goal, we aggregate data from GitLab and
present it differently without mutating the data, leaving the locus of processing in
the hands of students or educators.

One approach to infer information that is not explicit from GitLab data is to
group data points by similar attributes. As seen in Figure 4.2 GitLab provides some
visualizations of commit data, providing insights into each branch separately. Com-
mits represent some amount of work, and when presented distributed by weekdays, a
developer team may infer what days of the week they produce their work.

Figure 4.2: GitLab’s analytics displaying commits per weekday and day of month
of a master branch.

50

The dashboard visualizes four data points from projects: merge requests, project
issues, project commits, and code line changes from commits. Because Git places few
restrictions on its users, the intrinsic value of each data point will vary from project
to project and viewer to viewer. This concern was willfully disregarded during the
dashboard development, focusing on presenting data points and measuring their
perceived usefulness.

4.1.1 Limitations and workarounds

Although GitLab offers an extensive API, it has some limitations that the dashboard
must overcome. This section presents both limitations and workarounds to provide
insight into some challenges encountered during development.

Commit authors

In the dashboard, commits and lines written (calculated from commits) are presented
both on a project basis and separated by author (as shown in 4.7 and Figure 4.11).
All commits have the field author_name, being the person that authored the commit.
However, the courses in this study use FEIDE, an SSO service, for authentication
with GitLab. Thus, all commits authored in GitLab have students’ full names as
the author_name. Having full names would not pose a problem if it were not for
the fact that most students have their local Git configurations set to use a different
name. From the development of the dashboard, it is clear that most students have
the field user.name of their local Git configuration set to their username on GitHub.

The problem arises when their local user.name and their GitLab name vary.
Naively displaying commits and lines by author_name often results in students
occurring twice (sometimes thrice or more), reducing the readability of the data
presented. For instance, the author of this thesis would appear twice, as Åsmund
Haugse and asmundh. In addition, often, Git names and real names are correlated,
perhaps including first name or surname.

The dashboard uses an algorithm to combine commits of the same student with
different author_name fields to remedy this. Commits are combined if the three first
letters of its author’s name are equal to the three first letters of a different commit’s
author. The Norwegian letters æ, ø, and å, are compared to the letters ae, o, and aa.
Although a somewhat naive solution, it worked remarkably well. Before each student
interview, an extra control of the combinations took place, and if the algorithm failed
to combine all names of a person, the algorithm was manually tweaked. Ironically,
the algorithm would fail to combine the author’s commits.

51

Advised Group Selection — Viewing each project

The dashboard presents educators with student groups clustered by what project they
want to view (as seen in Figure 4.4). For example, IT2810 had three group projects.
Thus three buttons were added to switch between them. However, not all student
groups followed the same naming convention when naming their repositories. For
example, for the second project, names included "Prosjekt2", "Prosjekt 2", "Project
2", and "Project2", but also less conventional names like "reacting-poetry." The casing
on letters also varied.

Consequently, the query attempting to fetch all related repositories (projects)
must accommodate the variable names. Populating the projects assign an extra
attribute to all projects returned from GitLab, namely name_normalized, removing
white spaces, using lowercase letters, and replacing the letters æ, ø, and å with ae, o,
and aa. For example, when fetching the second project of the course, we queried for
"prosjekt2" and "project2", "prosjekt3" and "project3" for the third project. A similar
workaround would have to manually be implemented for other courses if grouping
other projects on this page.

Educators can impose restrictions or naming conventions for each project reposi-
tory to reduce the manual configuration of this page. The current implementation
only displays projects adhering to the above naming scheme. For TDT4140, where
students only complete one project, the dashboard fetches all repositories and has no
options to choose a project.

4.2 Software technology used

The development of this proof-of-concept application has focused more on rapid de-
velopment than on clean code and development methodologies. Thus, the application
uses technologies that allow a rapid implementation to examine GitLab data better.

The application uses the React framework using JavaScript in the frontend. All
graphs use the open-source library Chart.Js [60] which provides an easy-to-use API for
visualizing data. The main development challenges have been to efficiently perform
aggregating operations on GitLab data to reduce re-renders and improve loading
speeds. Some data aggregation occurs in the frontend and some in the backend
application.

A focus has been on writing reusable frontend components to create an extendable
application. Chart.Js offers different graphs (bar, doughnut, pie, line charts, and
more) requiring datasets to be structured differently. Several implemented graph
components support a scalable amount of datasets, an exciting feature to compare
students or student groups.

52

The backend application has been implemented with Node.js using JavaScript.
It has three main concerns: fetching data from GitLab, storing data from GitLab,
and providing data to the frontend application. Data storage uses the document
database MongoDB and the ODM Mongoose. Koa was chosen as an HTTP server to
serve data to the frontend application because it is lightweight and offers an easy
API for rapidly implementing endpoints.

Database population worked by sending HTTP requests using Postman to end-
points in the backend application. Populating the database prepares the system for
use in a new course. Depending on the request, this triggers a series of HTTP requests
to GitLab, all authenticated with a GitLab Access Token. For each request, GitLab
checks whether the access token is authorized for the resource queried. Access tokens
and the URL of GitLab (can vary between institutions) are stored as environment
variables to improve security and reduce the time needed to adapt the system for
use by others.

53

4.3 Dashboard components

4.3.1 Group selection

Users of the dashboard are interested in viewing student groups or projects, and
currently, there are two ways to gain insight. Figure 4.3 displays a simple list of
student teams by name. An educator might be interested in viewing a student group
that has contacted them, or a student group may be interested in viewing their data.

Figure 4.3: Page for selecting what student group to view.

Educators may be interested in insight into how student groups perform through-
out a project period, out of curiosity, or perhaps help student groups that struggle
actively. Aiding educators in choosing what groups to inspect more closely, the menu
uses smiling faces in varying colors to indicate what quartile the student group is
in for a metric. This is shown in Figure 4.4. From bad to good, the colors are red,
orange, yellow, and green, red meaning the group is in the bottom 25 percent of
all groups for that metric, orange 25-50%, yellow for the 75-50% , and green for
75-100%.

Instead of displaying student groups, an ordered list shows specific projects. The
possible orders are by name, the number of commits, lines, issues, or merge requests,
or by the sum of their metric quartiles. When calculating the sum of metrics, each
metric is weighed equally. Red faces hold a value of 25, orange 50, yellow 75 and
green 100. If their sum is in the range 100-200 they get a red face, 200-300 orange
and so on.

Because educators may be interested in viewing course health at a given points in
the semester, a calendar menu was added. The list view only uses data points from
the selected date and earlier. In other words, selecting September 17th displays a
course as it were on that date.

54

Figure 4.4: Project list with statistics and indicators to help educators choose
groups to inspect.

4.3.2 Project period’s issues and merge requests

To display merge requests and issues of a project, a line chart component to display
one or more datasets was implemented. Typical datasets of line charts represent
how data values change over time. A cubic interpolation function is used on the
data points to smoothen the changes of values. Figure 4.5 shows the component
used to display changes in open and closed merge requests and issues over time. The
orange-colored lines in each chart display the sum of closed merge requests or issues
on a given date, whereas the blue lines display the number of open merge requests or
issues on a given date.

The rationale behind a line diagram of merge requests boils down to how most
students work. Students using feature branches or the GitFlow workflow mainly
create merge requests for code that has been completed. Thus, merge requests
are slower to rise than commits; one merge request can come from many commits.
Nonetheless, merge requests can also be tiny.

The above rationale applies for issues. Students close issues when they are
completed. Some students delay closing issues, others close them immediately.
Furthermore, viewing the amount of open issues at a given time is interesting. It
provides insight into a team’s work backlog, and viewing when students create issues
give insight into how they work. Do they create issues only during sprint planning
or open issues concurrently?

55

Figure 4.5: Line charts displaying a project period’s merge requests and issues.

4.3.3 Project period’s commits and lines of code

Bar charts present categorical data using rectangular bars. The length or height of
bars is proportional to the values they represent. This component displays one or
more datasets using vertical bars. Along the X-axis are the categories (e.g., weekdays
or calendar dates), and the Y-axis and height of bars show the corresponding values.
The components display commits and additions or deletions to lines over time for
each project. All bar charts can display the same data distributed by weekdays,
dates, or hours of the day using the dropdown below the chart. Figure 4.6 shows
a simple bar chart displaying commits per date of the project period. Note that it
only lists dates that have one or more commits.

Figure 4.6: Bar chart displaying a project’s commits distributed by dates.

If the component is given more than one data point it will display them using
multiple bars as shown in Figure 4.7. If provided with many groupings on the X-axis
and many entries per grouping, it can appear cluttered and hard to read. As a
remedy bar charts with multiple data points have the option to combine columns as
shown in Figure 4.8.

56

Figure 4.7: Bar chart displaying team members’ commits distributed by weekdays
with columns per member.

Figure 4.8: Bar chart displaying team members’ commits distributed by weekdays
with combined columns.

The code line metric from commits can see some large numbers (millions of lines
changed) in projects where the gitignore configured poorly Changes in code lines
occur twice when merging branches, one for the initial commit and once for the merge
commit. The option to suppress the size of large commits from their original size
down to 1000 lines helps prevent skewed graphs. Skewed graphs were often occurred
in JavaScript projects of inexperienced groups where commits contain millions of
lines changed because of node modules.

57

Figure 4.9: Bar chart displaying a project’s code lines distributed by dates.

Figure 4.10: Bar chart displaying a project’s code lines distributed by dates but
suppressed to a commit size of 1000 code lines.

Figure 4.9 and Figure 4.10 illustrate how large commits can skew this graph and
reduce its readability. A concern is information loss when suppressing commits, but
"human-written" commits are seldom larger than 1000 lines. Also, note that the code
lines graphs show the sum of both code lines added and removed.

58

4.3.4 Commit and code line distribution by members

Doughnut charts convey values relative to each other, each slice representing their
share of some total value. Their readability diminishes when the amount of slices
increases and slight differences in values are hard to see, but to remedy this, hovering
over a slice will display its value (as seen in Figure 4.8). The doughnut charts present
commits and code lines distributed by members and show programming languages
used in a project.

Figure 4.11: Doughnut graphs showing distribution of commits and changes to
code lines by members.

Figure 4.12: Doughnut graph showing distribution of programming languages used
in the repository. The right doughnut has one entry removed.

59

4.3.5 Project commits list

GitLab provides a list view of a repository’s commits displaying concise information
about each commit. The dashboard recreated this list (see Figure 4.13) but only
display the commit message, author, date, and changes in code lines. The component
provides information to help understand large spikes in the graphs showing code
lines or commits. Should the user want more information, they can press View in
GitLab to it in its entirety. This component is less about providing new information
and more about clarifying the information conveyed in the graphs.

Figure 4.13: List view of commits of a project. Can be ordered by date, author,
amount of code lines removed or added.

60

Chapter5Results
5.1 Questionnaire results

This section will present the results from the two questionnaires. Answers to similar
questions will be juxtaposed to display similarities and differences. Findings related
to the research questions are discussed in Section 6.1. The results include personal
characteristics, experiences, and habits using Git, perceptions on Git’s transparency
and code reviews, and finally, Git’s implications on student group collaboration.
IT2810 students are more experienced than students of TDT4140, which likely has
an effect on the results. Thus, the answers may give insight into how knowledge and
experiences develop in the student populations. The statements presented have all
been translated from Norwegian, but the sentiment of the statements remains the
same.

Personal characteristics

This section gives insight into who our respondents are and their experiences before
taking the courses. Furthermore, we want insight into how they perceive using Git
for version control.

We may correlate students’ perception of Git to how much experience they have
with the tool. In Table 5.1 we see how much experience students had with Git
and web development before the courses. For TDT4140, 72.1% answered they were
somewhat (N=25) or not (N=6) experienced with Git, compared to IT2810 where
81.3% of students said they were quite (N=32) or very (N=7) experienced with Git.
In both courses, groups do web development, although it is a smaller part of their
projects in TDT4140. Experiences with Git may be affected by their experiences
with programming. 83.7% of TDT4140 students report having little (N=19) or no
(N=17) prior experience with web development, whereas 81.3% of IT2810 students
had little (N=19) or some (N=20) prior experience. Only one student of IT2810
reported having no prior experience with development, compared to 17 (39.5%) of

61

TDT4140 IT2810
Characteristics N % N %
How experienced are you with Git?
Not experienced 6 14% 0 0%
Somewhat experienced 25 58.1% 9 18.8%
Quite experienced 9 20.9% 32 66.7%
Very experienced 3 7% 7 14.6%
How much previous experience did you have
with web development before the course?
No experience 17 39.5% 1 2.1%
Little experience 19 44.2% 19 39.6%
Some experience 6 14% 20 41.7%
Much experience 1 2.3% 8 16.7%

Table 5.1: Juxtaposition of student answers on previous experiences with Git and
web development.

TDT4140. The results suggest that the student population of IT2810 are more
experienced compared to TDT4140.

Figure 5.1: Composition of answers on why students use Git.

As seen in Figure 5.1, students of IT2810 appear to have a slightly different
relationship with Git compared to TDT4140 students. 100% of respondents from both
courses agree or strongly agree that Git simplifies working with others. Substantiating
the claim that IT2810 students are more experienced we observe that 89.6%, N=43,
of IT2810 students use Git for their projects compared to 44.2%, N=19, of TDT4140.
These results also suggest that students of IT2810 to a larger degree do programming
outside of courses compared to TDT4140 students.

Unsurprisingly, most perceive Git as valuable for work after studies, 97.9%, N=47

62

and 86%, N=37, of IT2810 and TDT4140 students respectively agree or strongly
agree. Lastly, 93%, N=40, of TDT4140 students use Git because it is required for
school projects compared to 79.2%, N=38, of IT2810. A possible explanation is
that many TDT4140 students have mainly used Git when they had to in courses,
compared to IT2810 which saw more students using Git for their own projects as
well.

Experiences with and habits on using Git

Figure 5.2: Student answers on learning Git and ease of use.

This section will present responses to questions related to using Git for development
to assess where students stand with Git as a tool. We juxtapose the first three
answers and observe that for IT2810, only 50%, N=24, agree that Git easy to learn,
72.9%, N=35, agree it is easy to use, and 52.1%, N=25, agree that it is easy to
understand. In contrast, for TDT4140, only 32.6%, N=14, agree Git is easy to learn,
53.5%, N=23, agree it is easy to use, and 37.2%, N=16, agree it is easy to understand.
The large amount of students who find Git agree that Git is hard to learn may
be a result of how the respondents were taught Git. They had little or no formal
introduction of Git and many are self-taught. Considering that the average student
of IT2810 has a better grip of programming compared to the average TDT4140
student, it makes sense that fewer TDT4140 students think Git easy to learn. The
same reasoning offers an explanation for why fewer TDT4140 students think Git is
easy to use or understand.

Student answers show that fewer TDT4140 students understand how Git works
(65.1%, N=28) compared to IT2810 (87.5%, N=45). 18.6%, N=8, of TDT4140
students say they do not understand how Git works, even after using Git for an
entire semester. However, although not all understand Git, most think it is necessary
for project work and that it makes it easier to track progress in the codebase (90.7%,

63

N=39 of TDT4140 and 93.8%, N=45 of IT2810). Most of IT2810 students (93.8,
N=45) agree that Git simplifies working distributed, but only two-thirds of TDT4140
students report the same. This disparity between the courses may be a result of
both how students have used Git and how much experience they have. 18.6%, N=8,
of TDT4140 students disagree with the statements, suggesting Git makes it more
difficult to work distributed. Perhaps these students struggle with programming or
Git and prefer working around others. 16.3%, N=7, of TDT4140 neither agree nor
disagree, possibly because they have no experience working distributed with Git.

Figure 5.3: Student answers on what Git features their group used.

GitLab offers multiple features to improve collaboration in the development
process. In Figure 5.3 students are asked what features they used. Course staff of
IT2810 advised students to tag issues in their commit messages, and other students
provided feedback on their use of Git. For the most part, both student populations
were left to their own to decide on what GitLab features to use.

At first glance, the results appear similarly distributed in the two courses. Notably,
TDT4140 students appear to have given feedback on merge requests more than IT2810
students, with 23.3%, N=10, of TDT4140 and 39.6%, N=19, of IT2810 report not
using it. Code written in TDT4140 lived longer than code in IT2810. Thus, TDT4140
students may have been more careful to review code before it entered their master
branch. On the other hand, IT2810 students were not graded on quality but whether
they had functionality, reducing the need for quality assurance.

Most students of both courses report that they used issues to separate work tasks,
solved merge conflicts, and worked on separate branches. The three features are
often considered good practice, so the large amount of students using them are not
surprising. Although students were not instructed to separate tasks into issues, all

64

students of IT2810 reported doing so, and 95.3%, N=42, of TDT4140 report doing so.
This suggests that students find separating work tasks to be helpful, which correlates
to the large amount of students who said GitLab makes it easier to track codebase
progress.

The GitLab task board is an extension to its issue tracking as shown in Figure
2.2. Often used with scrum, it makes sense that more TDT4140 students (88.4%,
N=38) report using it compared with IT2810 students (75%, N=36). Lastly, only
10.4%, N=5, of IT2810 and 16.3%, N=7, of TDT4140 did not tag issues in commit
messages. Doing so increases the traceability of performed work and is considered
good practice.

Figure 5.4: Student answers on using Git in the development process.

The statements in Figure 5.4 probe into how using Git affected students motivation
and their development process. In both courses, close to all students report that Git
aids them in their work, simplifies working with others, improves the development
process, and makes the development process more efficient.

It is well known that Git can be difficult to use at times, but respondents seemingly
tackle its complexities well. For IT2810, only 6.3%, N=3, students agree that Git
has been demotivating to use, one student agreed it caused more trouble than it
has been helpful, and 50%, N=24, agreed it has been frustrating to use at times.
Results of TDT4140 are slightly worse, almost one out of five (18.6%, N=8) agree
it has been demotivating to use, 7%, N=3, said it had caused more trouble than it
has been helpful, and 58.1%, N=25, agree it has been frustrating to use at times.
Furthermore, four students (9.3%) from TDT4140 agree that Git has prevented them
from focusing on programming. No students of IT2810 reported the same. The

65

difference in student answers are likely direct results of how much experienced the
student populations have with Git. The more experienced IT2810 students mainly
have few problems with Git, compared to the less experienced TDT4140 students.
The numbers for TDT4140 suggest that students do not have sufficient experience
with or have not been sufficiently introduced to Git.

However, after a semester of using Git with GitLab for their development, 83.3%,
N=40 and 53.5%, N=23, of IT2810 and TDT4140 students, respectively, agree they
know what good Git practices are. Comparing the responses to what features Git
and GitLab features students used, it appears that some students are following good
practice without knowing it. A cause can be that a team member who has an idea of
good practices instructs other team members on how to use the features.

Furthermore, 58.3%, N=28, of IT2810 and 83.7%, N=36, of TDT4140 report they
have become better at using Git and 35.4%, N=17, to 67.4%, N=29, respectively
agree Git’s benefits have become more apparent. Considering that neither course
teaches Git, the results suggest that leaving students to learn Git on their own sees
some success. Although fewer students of IT2810 agreed, this may be correlated to
the student population’s previous experience with Git. For instance, 72.1%, N=1,
of TDT4140 students report being little or not experienced with Git. Thus, any
exposure to Git will likely provide learning.

62.5%, N=30, of IT2810 students report that Git has been fun to use, compared
to 46.5%, N=20, of TDT4140. 16.3%, N=7, of TDT4140 students disagree (N=5) or
strongly disagree (N=2), that Git has been fun to use, possibly correlating to results
on demotivation, frustration, and trouble associated with the use of Git. Viewing
the results of the statement "I wish Git had been introduced earlier in my studies",
we see 90.7%, N=39, of TDT4140 and 60.4%, N=29, of IT2810 students agreeing
or strongly agreeing. No TDT4140 students disagreed, but 12.5%, N=6, of IT2810
disagreed, while 22.9%, N=11, were indifferent to the statement. The results do not
provide insight into how students want Git introduced.

Git’s transparency and feedback on code

Working with Git on a project implies that all code will be available for all team
members. The statements of Figure 5.5 aim to provide insight into how students
experience this aspect of Git and also to assess how students feel about providing and
receiving feedback. From the results, we observe that many students only want to
share code they know is good, reading 50%, N=24, of IT2810 and 60.5% of TDT4140
students.

Regarding Git’s transparency, the two courses are similar in their answers. Of
IT2810 and TDT4140 respectively, 85.4%, N=41 and 81.4%, N=35, agree that it

66

is OK that staff can view their Git history, 79.2%, N=38 and 67.4%, N=29, are
OK with strangers seeing their code, and 95.8%, N=46, to 95.3%, N=41, are OK
with group members seeing their code. In a course context only educators and team
members are likely to see students’ code. Thus, the positive numbers are reassuring.

Figure 5.5: Student answers on Git’s transparency and on giving and receiving
feedback.

Five statements cover how students feel about providing feedback on code written
by others. For the most part, students are comfortable providing feedback (79.29%,
N=35 of IT2810 and 62.8%, N=27, of TDT4140), although they find it challenging
to assess code quality (54.2%, N=25 and 74.4%, N=32). The two statements may
be correlated, for example, discomfort when providing feedback may be due to
insecurities about the feedback they provide.

Most students of IT2810 (70.8%, N=34) disagreed with the statement I only want
to give feedback on code written by someone I know and only 6.3%, N=3, agreed,
whereas for TDT4140 60.5%, N=26, disagreed and one out of five agreed (20.9%,
N=9). The third-year students of IT2810 are more comfortable giving feedback
on code written by students they do not know (77.1%, N=37) compared to the
second-year students of TDT4140 (58.1%. N=25). Students of IT2810 likely have
more experience with giving feedback on code written by strangers as a result of the
peer grading they performed. This assessment was anonymous, and 85.4%, N=41,
agreed it was more comfortable to provide feedback anonymously. In TDT4140, most
feedback on code was not anonymous and on code by group members, yet 46.5% of
students agreed. Although pinpointing what TDT4140 students agree with, it may
be that some students would prefer the option to provide feedback anonymously.

67

On the topic of receiving feedback on code, the two student populations are again
reasonably similar. Most students do not take the feedback received personally (only
12.5%, N=6, of IT2810 and 7%, N=3, of TDT4140 agree), and experienced receiving
feedback as useful (64.6%, N=31 and 60.5%, N=26). Furthermore, the feedback
helped students improve their code (58.3%, N=28 and 51.2%, N=22). Although
peer reviews are part of the course grade in IT2810, a quarter of students (27.1%,
N=13) disagree with the statement I receive feedback that helps me improve my
code. In TDT4140, where feedback is provided mainly by group members, only 14%,
N=6, disagree with the same statement. A possible explanation is that students
perform peer reviews after a project’s deadline, before starting their next project.
Many students experience this as a tedious chore, possibly impacting the quality of
the feedback they provide. However, most students of IT2810 (64.6%, N=31) and
TDT4140 (60.5%, N=26) report that their programming improved by assessing code
written by others.

Effects on social dynamics of group work

This thesis wants to answer how version control with Git affects the social dynamics
of student groups. Groups of IT2810 mainly consisted of 3 students, whereas groups
in TDT4140 mostly were seven students. Furthermore, IT2810 students could
choose whether to be assigned a random group or pick whom to work with, and
two-thirds (68.7%, N=33) chose their group. For TDT4140, groups were random,
and no equivalent data was collected. Furthermore, 41.7%, N=20, of IT2810 students
reported primarily working sitting together; the remaining students mainly reported
working sitting distributed. The TDT4140 questionnaire asked the same question but
included the option We worked a lot both distributed and together, to which 55.8%,
N=24, answered the latter, and only 18.6%, N=8, of students reported that they
mainly worked sitting together.

Perhaps as expected, large portions of both student groups report an uneven
contribution to projects. 50%, N=24, of IT2810 agree everyone contributed an equal
amount, and 35.4%, N=17, disagree. TDT4140 responses show 62.8%, N=27, of
students thought contribution was uneven, and only 23.3%, N=10, agree it was equal.
The size and composition of student groups likely affect these results. Students work
in groups of seven in TDT4140; thus equal contribution is less likely. Results may
also be affected by whether groups are randomly assigned or not, as IT2810 sees a
larger amount of groups reporting equal contribution and students choosing their
group.

Offering quantifiable metrics of contribution in terms of completing issues, amount
of commits, and similar metrics, 39.6%, N=19, of IT2810 students agree that using
GitLab makes group work more competitive, 37.5%, N=18, disagree, and 20.8%,

68

N=10, neither agree nor disagree. On the other hand, a smaller portion of TDT4140
agrees with the same statement, only 27.9%, N=12, whereas 44.2%, N=19, disagree
and 25.6%, N=11, neither agree nor disagree.

Figure 5.6: Statements on working with GitLab and Git with an interpersonal
topic.

Worryingly a third (34.9%, N=15) of TDT4140 students agree that GitLab
makes group work less social, about a third disagree (32.6%, N=14) and a third
neither agree nor disagree (30.2%, N=13). On the other hand, IT2810 sees more
students disagreeing (52.1%, N=25) and fewer agreeing (16.7%, N=8) with the
statement. Using GitLab for programming simplifies working distributed, which for
some TDT4140 students may differ from how they previously have done programming
in group projects. Thus, this may impact the percentage of students agreeing with
the statement. In contrast, the more experienced programmers of IT2810 might not
consider distributed working to affect the social aspect of group work.

Most students agree with Git makes differences in skill level more apparent,
namely 75%, N=36, of IT280 and 81.4%, N=35, of TDT4140. Furthermore, 50%,
N=24 and 48.8%, N=21, respectively agree with Git works best if all team members
are on the same skill level. Git’s transparency makes it easier to track contributions
by members, which likely affects the large amount of students who agree with the
former statement. Responses to the latter statement likely refer to how working
with Git to distribute work leaves developers to themselves, which works the best if
students are autonomous.

69

Although close to one out of four (27%, N=13) of IT2810 students and 41.9%,
N=18, of TDT4140 students agree with the statement Working with GitLab makes
it worse to be on a lower skill level than the team, 50%, N=24, and 25.6%, N=11,
respectively agree with GitLab makes it less difficult to work with someone on a lower
skill level than yourself. On the other hand, for TDT4140, 27.9%, N=12, disagree and
44.2%, N=19, neither agree nor disagree; the latter students perhaps feel it does not
have an impact. The large amount of TDT4140 students who agree with the former
statement is likely due to a larger amount of the students being or feeling that they
are on a lower skill level. Furthermore, few TDT4140 students agree that GitLab
makes the situation less difficult, likely for the same reasons. The more experienced
IT2810 students feel oppositely, but this may also be correlated to the group size of
three. A smaller group makes it easier to follow up team members.

Supplementing the former statements, a third (33.3%, N=16) of IT2810 students
and a fourth (27.9%, N=12) of TDT4140 students agree with Development with
GitLab turn team members who accomplish less into scapegoats. Worth noting is
that 45.8%, N=22, of IT2810 and 51.2%, N=22, disagree with the same statement.
The statement responses may reflect how less experienced students feel about their
contribution, but it can also be more experienced students who feel this way. The
slightly larger amount of IT2810 students who agree may correlate to team sizes,
because team members who contribute less will be more detrimental to the project.

Although omitted in Figure 5.6, the statement Git results in the best members
hijacking the development process also stated "(Rewriting a lot of code, doing all the
work themselves, etc.)" in the questionnaire. A concerning 45.8%, N=22, of IT2810
students and 37.2%, N=16, of TDT4140 students agree with the statement. The
answers may be correlated to student answers on GitLab making group work more
competitive, but also to how student groups work with issues in GitLab.

70

5.2 Mirroring tool results

This section will present results from the semi-structured interviews with students
and educators. The results will be presented both as summative results from multiple
interviewee responses and single answers from interviewees will be cited, providing
nuance to the results. Furthermore, the results of making assumptions on student
groups will be presented. An overview of all interviews can be seen in Table 5.2.

Overview of the interviews
Interviewee IT2810 student TDT4140 student Educator

No. of interviews 9 13 11
Average length 27 minutes 25 minutes 48 minutes

Course of action Interview and interviewee
tested the dashboard

Interview and interviewee
tested the dashboard

Interview and demonstration
of the dashboard

Table 5.2: An overview of the interviews held to demonstrate and test the dashboard.
It shows the distribution of interviewees, the average interview length and the course
of action for each interview.

5.2.1 Qualitative attribute assumptions

As mentioned in Section 3.3.2 and Section 3.3.2, the groups of all students who
were interviewed were ascribed a set of qualitative attributes before their interview.
This process took no longer than five minutes per group. Towards the end of each
interview, the students themselves ascribed their group the same attributes.

This section will present the results and how the dashboard was viewed when
deciding on an attribute. The qualitative attributes are listed in Table 5.3.

Attributes M4, M5, and M6 concern students’ habits across all projects or sprints,
but some inconsistencies in how groups were attributed occurred. For example, some
groups for whom the attribute would be valid for one or two projects or sprints
were attributed, whereas other similar groups may not have. The inconsistency has
both been the case when attributing groups before interviews and when interviewees
attributed their groups. Thus, the three attributes are possibly less accurate.

Furthermore, the group reviews followed only a mental model on how to attribute
groups. A more guided decision-making process would likely give different results.
E.g., attributing M2 to an IT2810 group, one could define groups where a student
has fewer than 20% of commits and lines qualify for the attribute.

71

Attributed using
dashboard

Attributed by
interviewee

Correctly attributed Wrongly attributed Difference
attributions

Correctly not
attributed

Wrongly not
attributed

Difference
not attributed

Assumption
was correct

Accuracy
ID

IT2810 TDT4140 IT2810 TDT4140 IT2810 TDT4140 IT2810 TDT4140 IT2810 TDT4140 IT2810 TDT4140 IT2810 TDT4140 IT2810 TDT4140 IT2810 TDT4140 IT2810 TDT4140
M1 3 13 6 12 3 12 0 1 3 11 3 0 3 0 0 0 6 12 66.7% 92.3%
M2 3 8 0 3 0 1 3 7 -3 -6 6 3 0 2 6 1 6 4 66.7% 30.8%
M3 8 10 5 4 5 4 3 6 2 -2 1 3 0 0 1 3 6 7 66.7% 53.8%
M4 5 3 5 11 3 3 2 0 1 3 2 2 2 8 0 -6 5 5 55.6% 38.5%
M5 5 12 5 11 3 10 2 2 1 8 2 0 2 1 0 -1 5 10 55.6% 76.9%
M6 8 13 9 12 8 12 0 1 8 11 0 0 1 0 -1 0 8 12 88.9% 92.3%
M7 3 7 3 5 0 2 3 5 -3 -3 3 3 3 3 0 0 3 5 33.3% 38.5%
M8 5 2 1 2 1 0 4 2 -3 -2 4 9 0 2 4 7 5 9 55.6% 69.2%

Table 5.3: Results of attributing student groups qualitative attributes. For the
columns "Difference attributions" and "Difference not attributed", green cells means
the attribute was correctly assumed more times than not. Red cells mean the opposite.
Accuracies larger than 60% are marked in green, below 60% are marked in red.

M1 — Some members have contributed more than others on the
programming

M1 was attributed fewer times by before interviews than by the interviewees. When
attributing a group, a review of the dates of a group’s commits and the number of
lines committed took place. The reviews attributed M1 to groups with some students
appearing on many more dates and authoring many more commits and lines than
their team members. For IT2810, we observe a 66.7% accuracy or two-thirds, whereas,
for TDT4140, the accuracy was 92.3%. The group reviews failed to recognize that
some students had contributed more in a third of the cases (N=3) of IT2810.

For TDT4140, the reviews attributed all groups with M1 before interviews, and
all but one student attributed it to their group. Thus, the accuracy of TDT4140
assumptions may correlate to the size of student groups and not the accuracy of
making assumptions before interviews. For example, when seven students work
together, some students will likely contribute more than others.

M2 — Some members have been free-loaders on the programming

The most negatively loaded attribute of the eight saw a low percentage of precision
for TDT4140 (30.8%) and correct assumptions for two-thirds of IT2810. When
reviewing student groups for M2, an attempt was made to identify groups where one
or more members had only a tiny portion of the commits made and lines contributed.

In IT2810, no student groups attributed their group with M2, whereas three
groups received the attribute before interviews. As a result, the remaining six groups
were correctly not attributed M2. Students explained that differences in previous
programming experience meant some students needed more time to produce code
and that pair programming could explain the number of false attributions of M2.

Eight groups of TDT4140 were attributed M2, and although three students did
too, only one of the groups overlapped. In other words, seven groups were wrongly
attributed with M2. Furthermore, through interviews with TDT4140 students, it was

72

made apparent that many groups had done a significant amount of pair programming
on one computer, effectively leaving no signs of contribution in commits.

M3 — The group has worked evenly through each exercise/sprint

M3 attributions saw higher accuracies for IT2810 groups (66.7%) than TDT4140
groups (30.8%). Factors for attributing groups were how student groups’ graphs
of merge requests developed and the consistency of commits made throughout the
project period. Groups whose sum of closed merge requests steadily rose and who
made commits often were attributed with M3.

Groups of TDT4140 had varying sprint lengths, and when a sprint ended was not
known when reviewing groups. In other words, an assumption of both when sprints
started and ended was made before assuming the consistency of work done. The
accuracy of assumptions would likely increase if these dates were known beforehand.

Three IT2810 groups were misattributed M3, and one group was falsely not
attributed, indicating an eagerness to attribute groups with M3. In addition, the
mental model for what constitutes evenly working may have set the bar too low.

M4 — The group has done skippertak every exercise/sprint

Skippertak, defined as doing most of the work before the deadline, saw poor accuracy
for both courses. The same shortcoming of when sprints started occurred as for
M3, whereas for IT2810, it was more apparent when students worked on the project.
Groups attributed with M4 had commit-graphs with large spikes on the last days of
the project and totaled fewer days with commits.

In eight cases (61.5%), TDT4140 students attributed their group with M4, but
review before interviews did not. This discrepancy suggests a poor job of identifying
when groups had performed a skippertak in sprints. But, again, this is likely affected
by the unknown sprint periods. Furthermore, 11 of 13 students attributed their
group with M4, suggesting a trend in the course.

Compared to TDT4140, numbers for IT2810 were better, but two groups were
wrongly attributed. The two students whose group was wrongly attributed specified
that they had done some skippertak, but not every exercise. The absolute wording
of M4 may have contributed to this inaccuracy. From student interviews, it was
apparent that the approach to identifying skippertak often was accurate but that not
all groups had consistently done skippertak. For example, some groups did skippertak
in two exercises but not the third, yet review attributed them M4. However, this
was not the case every time.

73

M5 — The group started working early in each exercise/sprint

Graphs of commits, merge requests, and issues were consulted to decide on this
attribute. IT2810 groups who only had a few commits in the first week or two did
not receive M5. Again, the shortcoming of not knowing when sprints started applies.
Based on assumptions on when sprints ended, the number of commits made in the
days after a sprint had ended was inspected.

Results for TDT4140 were better than IT2810 with 76.9% to 55.6%. In addition,
11 of 13 students of TDT4140 attributed their group with M5, suggesting that the
attribute was widely present in groups of interviewed students. Thus, a correlation
to how the course and project are structured, requiring students to work more
consistently, is suspected. Furthermore, because groups were assigned randomly, it
may have been less acceptable to delay starting a sprint.

Review before interviews wrongly attributed and failed to attribute two groups,
respectively, suggesting an imprecise approach to identifying groups. The low accuracy
of IT2810 may also be affected by the inconsistency in how groups were attributed,
similarly to M4.

M6 — The group worked in planned spaces of time (e.g., 8-13 Mondays)

Attributed by all students of IT2810 and 12 of 13 TDT4140 students, this attribute
was persistent in many student groups. In addition, the commit-graph was distributed
by weekdays and hours of the day when attributing groups with M6.

Results for both courses showed high accuracies (88.9% for IT2810 and 92.3% for
TDT4140), but this is likely mainly due to it being a common way of working. Its
counterpart, sporadic working, is less commonly observed for development because
members must know what remains of the project.

M7 — One group member was responsible for setting up the project(s)

Groups whose commit charts, when distributed by members, saw only one student
was present for the first day, in contrast to two or more students present were
attributed with M7. In addition, students assigned this attribute to their groups
if only one student set up the project, and if two or more students partook in the
setup, they did not receive the attribute.

Accuracies were low for both courses (33.3% for IT2810 and 38.5% for TDT4140).
Several groups had multiple students partake in the setup but using one computer,
which would not show in the commit-graph.

74

M8 — Everyone in the group contributed an even amount in the
programming

Allowing for some variable amounts of commits, and when the graphs indicated the
group working, groups attributed with M8 had no significant discrepancies between
team members.

For TDT4140, review before interviews had an accuracy of 69.2%, but attributed
no student groups with M8 successfully, instead correctly not attributing nine groups.
Two students attributed their group with M8 when the review did not, and the
review attributed two groups when the student did not. Results suggest not that
the review correctly identified the attribute but that it was not present in student
groups of TDT4140. Drawing a comparison to M1, this can be because all students
seldom contribute an even amount in groups of seven students.

One would expect better results for IT2810, but the review before interviews only
had an accuracy of 55.6%. In addition, reviews wrongly attributed four groups with
M8, suggesting that the metrics used for evaluating M8 for IT2810 groups gave an
inaccurate insight into contribution or that review consulted the data wrong.

75

5.2.2 Component feedback

This section will present feedback and comments on the components of the dashboard.
During the interviews and demonstrations, some components received less attention
than others, reflected in the feedback.

Advised group selection for educators

The advised group selection screen was of most interest to educators, providing quick
insight into the composition of all student groups of an entire course. The current
implementation by none perceived to be perfect, and most educators could think of
one more change that would fit better to their needs. Despite its shortcomings, the
general feedback was that the dashboard was helpful in its current state but could
be much more helpful if tweaked.

The use of colored faces was well-received by all educators to quickly convey
information visually. However, most educators were indifferent to smiley faces, instead
emphasizing the use of colors. One educator suggested using even more colors to
provide a more nuanced view of how the course as a whole was doing. His reasoning
is quoted below:

"If you could signal it using a continuous kind of scheme, that probably would be
more helpful. Because from reality, that’s how it is. Groups are not performing really
good and then somewhat good, but actually performing slightly worse or slightly better
on this metric or the other and so on."

Each group displayed had four metrics: commits, lines, merge requests, and issues.
These were perceived to be good choices of quantitative metrics to capture student
groups, although not equally valuable. For example, one educator (who teaches Git)
suggested that for an exercise where the curriculum is on issues, that metric would
be the only interest. Moreover, he noted that for courses where students had yet to
learn merge requests and issues, it would not make sense to use those metrics.

Educators suggested two functional changes to make the list more practical and
less naive. Both were initially suggested by the same educator (although repeated by
others in later interviews) and concerned how to convey group performance using
the colored faces. First, educators should define how each metric is weighted to have
the total score of groups be more tailored to a particular course.

The other suggestion entailed using colored smiley faces to partition student
groups relative to each other—the dashboard listed student groups into quartiles for
each metric and a total score. However, multiple educators expressed they would be
more interested in seeing student groups who performed even worse, for instance,

76

the groups who were in the bottom 5% of the course were probably performing worse
than the best of the 25% worst. Both functionalities were introduced to several other
interviewees, who agreed it would be helpful to increase the list’s ability to depict
how student groups were performing accurately.

In line with Soller et al.’s [43] theoretical work on meta-cognitive tools, several
educators suggested an alternative to sectioning students into colored faces based
on how they performed compared to other students. Their suggestion was to define
thresholds for each of the colored faces for a given date, e.g., two weeks into the
project period, a green face on merge requests for more than 20 merge requests,
whereas a red face would have fewer than four. This way, all groups who perform
well will be shown as doing well, compared to the current implementation, which for
100 good groups would show 25 of them as red faces.

In other words, these educators want to define a model of interaction based on their
expectations for their course. On this topic, multiple educators expressed concerns
for students gaming the system. For example, if students knew that educators looked
for many commits or issues, they could make more small data points to make it
appear as if they were doing better. To remedy this, one educator suggested also
showing the average amount of lines of commits.

Interviewees suggested new metrics for the page as well. One educator mentioned
that an average of commits per day would be of interest. Others suggested a metric
to give insight into how data points were distributed amongst members to identify
groups who had free-loaders. An educator whose students work alone on projects
suggested that the list also displayed a cake diagram (or a similar solution) displaying
when students had the most commits during the project period.

Language graphs

In interviews with students, this graph was of little focus. However, three students
referenced the component, all using words along the line of "This obviously makes a
lot of sense and does not surprise me".

Before viewing the dashboard, one educator said he would be interested in seeing
the programming language distribution. His students choose their technology stack
themselves. Once shown, he said "Viewing a group now, I’d look at project languages,
from which I assume this group used Django".

Merge requests and issues

The two graphs showing merge requests and issues over time are situated at the top
of the view and show when clicking a project. Most students agreed that the two

77

graphs accurately depicted the progression of their project(s). For example, spikes
in merge requests resulted from crunches or the group merging all the work done
on separate branches in a given period. For TDT4140, spikes in issues often meant
sprint planning had occurred, and plateaus indicated students had worked on other
projects.

One student, viewing a spike in merge requests near the deadline of a project,
said

"That is probably because we worked in separate branches until we had to merge
it at the end. And I think that would actually be quite useful to see, because this is
an indication that the team needs to merge things a lot more often, that we probably
work in individual brunches more, which is not necessarily a good thing, because that
means when you start merging stuff, you just get really stressed and things break".

Although students noted that issues were accurate of how they worked, student
groups had different habits when closing issues. For example, some groups reported
closing issues consecutively as they worked; others reported only closing issues at the
end of a sprint or when their group met.

Educators were also pleased to see how issues and merge requests developed over
time; some admitted not considering the data points as indicators beforehand. As
metrics to provide insight, an educator said The curves (of the two diagrams) are
very useful because they provide insight into how the students experience the scope of
the projects and how they work towards it. Furthermore, the same educator expressed
that upon viewing issues visualized, he became aware of how he could restructure the
use of issues in the course to allow for more effortless follow-up of student progress.

Commit graphs

Commits are displayed per project and in a separate graph showing project commits
separated by members (see Section 4.3.3). Furthermore, both graphs could display
their data distributed by dates, day of the week, and hours of the day. This section
will present results for both graphs and their distributions.

All students attempted to view the data using the different distributions. Although
most students switched distributions unprompted, some students did not view change
distribution until it was encouraged. Most students agreed that commits displayed
per date indicated when they worked. Spikes on a date often meant they worked
more, although in some cases, students recalled that they had many commits on some
days because they were doing minor changes to their documentation (README-file)
in GitLab.

78

One student, referencing the project period’s commits graph displayed by dates,
said "Project period commits as well is kind of three periods, the three sprints. A lot
of the commits happen at the end of each sprint, as you can kind of see here". The
consensus of students was that the project period’s commits did a good job conveying
when the group worked on the project. Days with few commits often meant less
work, and conversely, more commits often meant they worked more.

One student, whose graph, when distributed by hours of the day, showed a large
portion of commits between 12-16 o’clock, said "We always worked between 12 and
16, so it would be nice to see if we actually did work in that time period or if we
wasted it by always just talking. But as you can see, it actually was the time when
the group as a whole was the most effective". Several other students expressed the
same sentiment, one student expressing "I think it’s clear that we’ve worked in our
scheduled hours. And I think that it’s clear all group members didn’t work that much
outside of working hours".

In the graphs showing commits distributed by members, although group members’
names were anonymized, many students could make themselves out or at least one
group member from anomalies or patterns in when during the day commits were
made or the sheer amount of commits. Two educators expressed concern about
working habits on display, one referring to it as surveillance. The other educator
expressed concern for students who may experience having their behavior displayed
as sensitive and uncomfortable.

Commits distributed by weekdays met much of the same feedback as hours.
Student groups who scheduled weekly workdays mostly saw their workdays have
more commits than other weekdays, yet some students of TDT4140 were made aware
of group members who did more work during the weekends than they had thought.
When viewing commits distributed by members and displayed by weekday, multiple
students confirmed that columns with all members present were their scheduled
workdays. However, this was not the case for all groups.

Students disagreed on whether the graph showing commits by team members
accurately captured how group members did work. Although most students agreed
that differences in commit habits (e.g., committing often or not, large or small
commits) could skew the proportions of contribution, it was perceived to do a good
job of roughly capturing when students contributed. Below is a quote from a student
commenting on commits distributed by members:

"I also like the team member commits where you can kind of see the distribution
between people on the dates when there’s been done a lot of commits. I think that’s
an interesting one to look at. You can also see how people have been working, like

79

one person will have a few commits every day. And then somebody has like a lot on
the last day, that’s a good metric to see like, okay, somebody wasn’t, they weren’t
doing what they were supposed to be doing. And then they did everything at the last
minute. Yeah. Because you can see, like in project three we were working a bit more
throughout the project."

Code lines graphs

The graphs showing code lines added to the repository were the most poorly received
by students. Because the dashboard counted changes from merge commits, numbers
were often twice that of the actual codebase. As a result, the total code lines count of
some student groups dropped below zero. On the other hand, students whose graphs
had large commits (often from generated code) and educators alike appreciated the
option to suppress large commits. One student said "That’s a really important and
cool feature" and another said "I think this feature is nice, to suppress the large
commits. Just to like, not corrupt all the data".

Before viewing the dashboard, several students noted that lines of code would be
an interesting metric to see visualized. However, students whose groups had large
commits that skewed the graph experienced the metric not representing progress in
the project. Several of these students remarked that the importance of a gitignore-file
was made more clear to them.

As a metric, lines of code was by most students, deemed the least useful and
representative of work. One student accurately put this into words saying "That’s
interesting to see, how commits don’t necessarily represent code lines written. And
similarly, how amount of code lines aren’t equivalent with work done".

The code lines metric was explained when introducing the dashboard, but negative
bars confused some students. Columns dropped below zero if students had more
deletions than additions for the commits in a given period, often caused by refactoring
or deletions of files or folders. Quoted below is a student succinctly summarizing
this:

"I have a hard time making sense of it. Because like you said, it doesn’t really say
anything about the work done since removing code lines is a negative. So, so it might
be that on this day that says minus 77, maybe that’s a day we did a lot of work, but
we did a lot of work in both ends"

Although viewing code lines in isolation yielded little new insight for most,
multiple students observed the asymmetry of commits and lines of codes. Some
members would produce fewer lines per commit and vice versa. One student noted
"This is pretty interesting. Like these two, between each other, added code lines and

80

commits. Because someone likes to commit a lot, which I think is nice. And then
there’s people that, might be me as well, who write a lot of code, like fix something and
then don’t commit until it’s fixed. That’s interesting to see distributed by members".

Most educators only glanced at the two graphs, but some commented on their
applicability. One educator said "Viewing lines of code as a metric of quality is
dangerous, but it can still be interesting. It was intriguing to view groups with negative
millions code lines, because that too can give some thoughts into what the group has
done". On the topic of large amounts of code lines, another educator expressed
"It basically means that you likely have a red flag here [...], so don’t care about the
metrics. Just tell the group, clean up your repo".

Team member comparison doughnuts

The doughnut diagrams were placed at the bottom of the dashboard and were often
the last graphs student saw. Although they did not introduce a new metric, one
student remarked "I think it shows a different type of information with the same
information, or different types of information with the same data. Because, this
shows much more which member pushed the most and did the most work".

Interviewees perceived the graphs as more efficiently displaying team members’
commits and code lines than the bar charts. One student, comparing the doughnuts
to the bar charts, said "I thought these charts at the bottom was easier to see the
difference in the team members rather than the one here". Several students noted
that by viewing the doughnut graphs, they could probably make out their team
members from the distribution of pieces.

Each piece of the doughnut showed the sum of that metric for a team member,
e.g., the number of commits a team member had. Some students maintained the
concern that differing habits and abnormally large commits would skew these graphs
as well. Because GitLab already offered functionality to see the sum of team members’
commits, one student expressed that the graphs provided little new insight and that
he could manage without the doughnuts.

Several students and educators alike asked if they could suppress large commits
in the doughnut graphs like they could the code lines graphs to accurately depict
how many lines members added or removed. On a similar note, it was suggested not
to count lines of code from merge commits. That way, 100 added lines in a commit
on a branch later merged into master is not counted as 200 lines added.

81

List of commits

Only some students used the list of commits, primarily to cross-reference a spike
in the number of commits or lines of code at a given time. However, one student
commented that the ease of access to individual commits was helpful to provide more
insight into the trends of the graphs.

Some students suggested that the list should allow for toggling whether the
commit should be included in the other graphs to remedy the large skewing commits.

One educator thought it was helpful to have the list of commits easily accessible
to view how commit messages were formatted. Other educators also said they were
interested in whether students had written good commit messages or not, but they
did not mention the commit list during the interviews.

5.2.3 Accuracy of visualized GitLab data points

As mentioned earlier in this report, GitLab data points do not capture all that goes
into software development. It is interesting to see how Git’s lossy nature affects
perception on the accuracy of the dashboard’s visualizations. This section presents
students’ opinions and perceptions on the accuracy of the dashboard compared to
their impression of their projects.

An attribute all students of TDT4140 and many of IT2810 commented on was
that the dashboard does not reflect pair programming. Because the interviewed
students commonly used the development technique, this reduced the overall ability
of the dashboard to capture the development process. One student group had used
Git’s co-authoring functionality to mark commits with two authors, but this did not
improve its accuracy because the dashboard did not account for it. Furthermore,
several students expressed that comparing students based on the number of commits
they authored could be misleading. On pair programming and how commits can
appear misleading, one student said:

"And for example, team members commits, like I can tell some team members
commit more than others which definitely bears root in some of us having more
experience with writing code and, and committing more perhaps. But I don’t think
this is reflective of the method we used to code because we had pair programming.
And so usually the most experienced person would, would sit on his computer or her
computer and up to two people or at least one other would, would code alongside that
person. And so usually it’d be the same person committing, so that could indicate
why for example person two and person one have a lot of commits."

Overall, most students expressed that the visualizations made sense to them

82

based on their impression of their group’s work. Students whose commit-graphs saw
an increase towards the end of a project or a sprint often reported that it reflected
more work done. However, some students reported that their spikes were from many
small changes to their documentation files. Furthermore, the data points make sense
to the students because they view them in conjunction with their experiences of the
group work.

When asked what wrong assumptions an outsider, e.g., an educator, could make
about their group, all students shared the same concern — it does not capture all
aspects of group work. All students of TDT4140 expressed that the dashboard gave
the impression that their group had significant differences in how much each member
contributed because it does not account for pair programming or other project-related
work (e.g., report writing, planning). Almost all IT2810 students expressed similar
concerns. Some mentioning that they spent the first week of each project learning
the technologies before working directly on the project. Others mentioned that much
of the work involved in development is not quantifiable in GitLab, such as meeting
and discussing how to tackle the tasks at hand.

5.2.4 As a mirroring tool promoting self-reflection

As a mirroring tool, the dashboard aims to aid students in self-reflection and provide
new insights into their group’s performance. This section will present how the
dashboard served its purpose and present some statements by students.

When asked if they were made aware of anything new, a handful of students
replied that they had become more aware of Git as a tool and the correlation (or
lack of) correlation between commits and lines. Others noted that they got a better
understanding of why the gitignore-file is essential. Summarizing this perfectly, one
student said:

"I think that this graph right here with the removed code lines was surprising
because I don’t know if some of the large ones are node module files, but if they are
not, it seems like we removed more than we wrote. And that seems a little bit off."

Because the dashboard was anonymized and only tested on students using data
from development in a group project, most of the new reflections and insights of
students relate to their impression of how their group or team members have worked.
Students reflected on data in light of when their group worked, how they divided
work and more. As a tool to help their group tailor their sprints for their members,
one student said:

"Maybe a better understanding of how the group worked and a better understanding
on how for the next sprint, how we could optimize to do better the group. The diagram

83

showing the projects periods commits sorted by days could be used to know when the
group likes to work, and used to optimize the group."

Awareness and confidence have strong ties to self-reflection. During development,
one gets an impression of how individuals in a group and the group work. Often
based on communication and observations, this impression potentially misrepresents
reality. A student whose impression of their group changed during the interview
reflected on it, saying:

"It helps me connect the dots, seeing it all together. I definitely learned that maybe
my perception of how and when, and how much other people work isn’t, or usually
probably isn’t as accurate of how it actually is. So it’s definitely fascinating to see it
with your own eyes and not just guess based on assumptions."

Other students expressed that viewing their data visualized changed their im-
pression of their contribution to the project. One student claiming to be the least
experienced member of their group expressed:

"Now looking at project four, like I felt that I was contributing very little to the
project sometimes, but looking at it now, it’s like, I’m definitely had fewer commits
or whatever than others, but it’s not that uneven than I maybe felt like it was at
sometimes, which is nice to see that it wasn’t just yeah. And I think it’s interesting
to see how much more evenly distributed this commits distributed by members is in
the last project compared to the first project. I think it was like, it’s good to see that
we’d gotten much better at distributing work."

In contrast, several students expressed that the dashboard served to confirm
notions they had of their group, one student quoted below:

"I’m not sure if I was made aware of anything you per se, but I’m more confident
in what I thought about the project. And also it was a new way to visualize things,
and it made it more obvious. The things that I had a sense about when it came for
workload and who did what and how the projects went, and so on. So it was a great
tool for that I would say."

All students were told to use the dashboard with their project experiences in mind.
However, some students experienced the dashboard not to be useful. Although they
agreed with the visualizations, they did not express any new insights, realizations or
enjoyment, one student quoted below:

"Åsmund: Were you made aware of anything new from the visualizations?"
"Student: Not really, I think that I wasn’t aware that someone used to like sit up to

84

two o’clock doesn’t seem like it was often, but I wouldn’t say I really learned anything
new"

The shortest interviews were with students who reflected little on the visualiza-
tions.

5.2.5 Anonymity of presented data

The dashboard anonymized all data shown in graphs, swapping student names with
non-identifying alternatives (e.g., "Person1", "Person2"). However, does this serve
to hide student identities? Moreover, should the data be anonymized or tied to
names? This section will present students’ opinions on whether the data should be
anonymized or not and whether they experienced it truly being anonymous or not.
Name are only anonymized in the graphs. The dashboard listed members of a team,
and the commit list showed author names.

Concerning whether the dashboard succeeded in anonymizing students, students’
general opinion was that it did not. Of the 25 students interviewed, all but one said
they could make out all or some of their team members from viewing the graphs. A
more significant portion of IT2810 students said they could make themselves out and
have an idea of the other team members (teams were 2-3 students), whereas most
TDT4140 students said they could make out at least 1 or 2 students (teams were
seven students).

Students were mainly of the impression that the dashboard should not hide
students’ names, although some also made arguments for anonymization. Some
argued it should be anonymized expressed concern for grading and evaluation from
educators based on the data. One student, when asked if the dashboard should be
anonymous, expressed:

"Yes. If you show it to a professor if it’s affecting grade, like if he sees the graph
and it’s like, okay, this is really bad. I need to talk to your group, then, then maybe
you can show the names, but I think it could just like affect the total impression of
the people in the group, like person one here that has few commits. It doesn’t mean
that person didn’t do anything they did a lot, it’s just not shown here."

Most students expressed themselves about anonymity in the context of using the
dashboard as a student or a student group. One student argued that by showing the
names, it would be easier to identify what times the groups should work; another
that by removing names, it was hard to make sense of the data if they could not
connect it to their impression of group members. A TDT4140 student expressed the
following when asked if the dashboard would be more useful if showing names:

85

"Yeah, for sure. I mean, it’s just easier to relate the data to someone and then
recall how they were working and then, you know, it makes more sense for them.
And also just for the whole group too, if you weren’t using it as like a ’you should
contribute more sort of thing’, but like maybe just to improve, it could be more useful."

Several other students substantiated the argument, saying that including student
names would reduce speculation on the data. Quoted below is a student who argued
for including names based on improving group collaboration.

"During the process, I would have the names here because we would easily be able
to correct and make sufficient changes to our way of working. Like now after the
project, and it is done and dusted, it is kind of interesting to see without the names
and I see how, well I think adding the names would not remove anything to me, I
would think other than removing like the speculation, but I would’ve done that in a
way."

Concerning the harmful effects of having students’ contributions on display, some
students were concerned about how students who contributed less would experience
this transparency. Although the same data is available in GitLab, differences in data
points are more apparent when aggregated. Quoted below is a student’s suggestion
to toggle whether names are shown or hidden:

"Student: It would be actually a great option if you could have a tick box to choose
if it’s anonymous. Yeah. And then you can, let’s say, then the project manager
would go through, and people would discuss things. And I was thinking that I was the
purple one or whatever. And then now looking at it, you’re actually the tiny one, for
example. So I guess it would be useful.
Åsmund: But you’d like the option to toggle the anonymity?
Student: Yes. But maybe not in a group like, or actually, yeah, it’s fine. You have
to be honest, but I mean, it depends on the group because if you are a group who gets
along, and it feels like group chemistry is good. Yeah. I guess everyone would be fine
with seeing their names, but I mean, it’s not so nice being, even though I know who
they are, I’m assuming it’s not so nice to be the guy with two commits."

Educators, on the other hand, were more divided on whether names should be
available or not. Arguments were presented from the viewpoint of educators and
students and varied accordingly. When assessing student groups, those for displaying
names argued that data would be incomplete without names and would hinder their
ability to provide feedback to students and student groups and assess how students
have worked. One educator said the following:

86

"As an educator who wants to keep track of how groups and students have worked,
it would be half as interesting if names are missing. It is interesting to see who has
done what."

On the other hand, three educators expressed that the dashboard should hide
names to ensure a fair assessment of students. They were concerned about how the
dashboard could affect the fairness of their grading. An educator who taught a course
of around thirty students expressed concern that seeing a student perform well or
poorly compared to others might amplify their prejudices towards students.

One educator expressed that showing student names would improve their trust
in the system and help validate the system’s accuracy. Beyond this, the educator
claimed that showing or hiding names would not change the value of the dashboard.

5.2.6 Would educators use the dashboard?

When asked if the dashboard could be helpful to them, all 11 educators answered
yes. Presented in this section are various use cases for the dashboard and concerns
regarding use.

Seven of the educators expressed that they would be interested in using the
dashboard’s Advised Group Selection view to gain insight into how student groups
perform throughout the semester. They expressed that they would use it to spot
struggling student groups and decide what student groups to give attention to or
contact. One educator, when asked to clarify, is quoted below:

"It is easier to detect problems earlier. The worst is to detect that someone has
not contributed just before a deadline. If this (the dashboard) can help me catch
problems early and act on it, it would be very good. And it appears it can contribute
to that."

Another educator said the dashboard could provide a heartbeat into how students
of their course were performing. Specifically, he could use the dashboard to quickly
see how many student groups were doing poorly and act accordingly if the dashboard
allowed for specifying what was regarded as doing good or bad (e.g., a good amount
of merge requests and issues). Several instructors said they already consult GitLab
to gain insight into student groups but that the same insight is available from using
the dashboard. One educator is quoted below on the topic:

"That is more useful than what GitLab offers out of the box. And I think it
would pretty much cover the typical use cases that we currently use the data for.
It’s a bit easier having the dashboard because you don’t have to do sort of a manual
checking yourself. And the summary is also very useful for a quick overview of how

87

the different teams perform. So that would be useful to know during the semester, as
well as at the end. [...] I would like to use dashboard like that in all my courses that
use GitLab."

In line with the theory on mirroring tools, most educators acknowledged the
importance of knowing what information is displayed and using the dashboard
accordingly, understanding that the locus of processing was with the user. All
interviewees were informed that the data points are "dumb", to which one educator
responded:

"It is equally useful data, and I would think that in my topic, I could have
approached some groups earlier and got to grips with the situation much earlier, so it
did not escalate as much".

Mirroring tools aim not to provide a conclusion but to help in decision-making and
awareness in its user. For example, another educator made a reflection supporting
the above quote and succinctly put into words how he would be careful and consult
other data sources before deciding on the dashboard., quoted below:

"If you focus on a thing from the system, you may miss something else. But
it’s not a concern because I’m aware of it. And in a classroom situation, I would
use other measurements. But it is always dangerous that it can give us a skewed
picture of the situation and not capture as much as we think we capture. [...] I’m
not worried, but would be sober towards use."

All educators answered what red flags they look for before contacting a student
group, to which responses varied. For example, two educators whose courses had
fewer than fifty students said they would contact groups if they had many red-faced
indicators. In total, four educators said they would consider contacting groups
that showed signs of not getting started with the project or showed signs of slow
progression early on.

5.2.7 New features suggested

This section presents new features suggested by students and instructors and the
rationale behind them. Some were mentioned by interviewees when asked how they
would visualize GitLab data points; others upon seeing the dashboard. All feature
suggestions are listed in Table 5.4.

Integration with GitHub

Two educators said they used GitHub for their courses and queried what changes
were needed to extend the dashboard to support visualizing repositories from GitHub

88

Where feature has impact ID Description of feature
Distributed Version Control

Support
F1 Integration with GitHub and GitHub Classroom.

Advised Group Selection
for educators

F2 Specify weights on metrics for aggregated performance indicator.
E.g. commits are weighed less than issues and merge requests.

F3
Specify discrete thresholds for colored faces to indicate performance.
E.g. define red faces for the commit metric to be fewer than 10
commits one week into the project.

F4 Specify percentiles used for colored faces to indicate performance.
E.g. define red faces to be the bottom 5% and green faces to be top 10%.

F5 A new metric to indicate equality of contribution among students.
E.g. a numeric value or a pie-chart of commits among members.

F6
A new metric to indicate consistency of work done.
E.g. a numeric value or graph to show if commits are made consistently or
sporadically.

F7 More colored faces to show nuance between student groups.
E.g. use a contiguous color space instead of only four colors.

F8
Define red flags to be displayed for student groups.
E.g. a red flag for student groups who have more than 200,000 lines
or a negative amount of lines.

F9 Add a slider for picking what dates of the project period to view groups.
This would clarify when the project period begins and ends.

F10
Functionality for educators to export data in numeric values in CSV or
similar format.This would allow educators to perform their own analytics
on the data.

Changes to and new features
for graphs

F11 Easier navigation from issues and merge requests to GitLab.
E.g. a list like the one for commits or clickable nodes in the graphs.

F12
Development of commits and lines of code visualized with line graphs.
This could provide easier insight into how individual students develop and
contribute over the project period.

F13 Option to toggle whether names in graphs are shown or hidden.

F14 Option to specify date ranges for all graphs to view how the group has performed
in a specific time period. This could be useful for viewing individual sprints.

F15 Option to view two student groups next to each other for comparison.

F16 Option to exclude certain commits and suppress large commits from doughnut
graphs

F17 Support for co-authored commits.
This could remedy the data loss of pair programming.

Table 5.4: Feature suggestions made by educators and students to improve the
dashboard.

89

(Feature F1). The data points used in the dashboard have semantic equals in GitHub,
although some variance in the specific attributes of each data structure is expected.
Furthermore, the dashboard would need to support fetching data from GitHub and
adapt to the differences in data structures. The rationale behind this extension is
that the dashboard would be helpful to more institutions and educators and possibly
integrated with GitHub Classroom.

Advised group selection for educators

Several educators mentioned they would like more control over the Advised Group
Selection page. The features mentioned by most educators were F2, F3, and F4,
all somewhat overlapping in functionality. For example, F2 would allow educators
to use the page more effectively for their courses, teaching version control with
GitLab, monitoring an introductory course, or monitoring a more advanced software
development course.

F3 and F4 are for educators who want more control over how the dashboard
presents groups, specifically how it decides on groups who are doing well or poorly.
The features could enable educators to allocate resources more efficiently to groups
struggling and monitor the overall status of their courses more efficiently. F3 is
closely related to F8 and would serve to notice educators of groups that require
intervention or attention.

F5 and F6 introduce new metrics of interest to educators. For example, more
educators expressed interest in picking up on groups that had free-loaders or under-
performing students for both the purpose of individual grading and to help students
who struggle. One educator said students complain every year that group members
are not contributing, and using the dashboard could help him intervene earlier.

Changes to and new graph features

A student suggested F12, explaining that viewing the development of commits in a
line graph could more clearly display how students pick up their pace throughout
the project period, e.g., students who are slow to start because they need to learn
the tech stack. Furthermore, it could better illustrate if individual students or the
group as a whole contribute evenly or sporadically.

F16 was suggested or requested by many students and educators alike who said
the option to suppress large commits in the bar charts would be equally valuable
for the doughnut graphs. The feature would prevent large commits from skewing
individual students’ pieces.

90

Although only one student reported having used Git’s co-authoring functionality,
almost all students expressed concern for the dashboard not accounting for pair
programming. If the dashboard accounted for co-authoring and students used the
dashboard, perhaps more students would use the co-authoring feature to log who
has worked on a commit more accurately.

91

Chapter6Discussion

This section will discuss results in light of the research questions presented in Section 1.
They will be viewed in correlation to the theory and previous work from Section 2.

6.1 What are students’ perceptions on and experiences with
using Git in an educational setting (RQ1)?

The survey conducted to answer RQ1 serves both to verify previous research on
using Git in software education and to probe into the relatively unexplored social
implications of Git with GitLab in software development in teams. The survey
results verify previous research that students enjoy using Git and that project
work conveyed its benefits. Findings also support the decision to implement peer-
assessment in programming courses. Finally, the results indicate that using Git has
some implications on group dynamics and how students perceive their team members.

Looking at students’ answers in Section 5.1 we quickly note the differences between
the two student populations before discussing the survey. Students of IT2810, a
fifth-semester course, are, for the most part, more experienced with both using
Git and with web development compared to students of the fourth-semester course
TDT4140. Not all students of TDT4140 choose to do web development, although a
considerable amount do. The answers inform us that most respondents only have
some previous experience. Thus, the questionnaire may provide insight into the
learning process.

Section 5.1 present findings on students’ perceptions on learning and using Git.
These results suggest that many students experience Git to be both difficult to
learn and to understand, supporting the claims of Lawrance, Jung, and Wiseman [8].
Furthermore, comparing the results from the less experienced students of TDT4140
to those of IT2810 students suggests that students’ understanding of Git improves
through using Git, a claim supported by the large number of students who reported
improving at using Git throughout their course. A limitation is that while all students

92

have to enroll in TDT4140 in their fourth semester, they must enroll in IT2810 over
other less programming intensive courses. Thus, in general, students of IT2810 may
be more enthusiastic about programming and Git.

The results fit with the premonition that Git’s benefits are made clear to students
through software development in teams. Students answer in unison (>90%) that
Git is necessary, simplifies working distributed, and simplifies tracking the progress
of the codebase in project work. From both courses, more than 90% of students
agree that Git aids in their work and that it simplifies both working with others
and the development process. The results agree with those of Lawrance, Jung, and
Wiseman [8] and support the decision to use Git for version control in software
education.

Concerning when to introduce Git to students, the results suggest that students
have not had an entirely smooth experience using it, or in the case of TDT4140,
learning it. More than half of the students report that Git has been at times
frustrating to use, and a worrying 18.6% (N=8) of TDT4140 students agreed that
Git had been demotivating to use. Although results show that many students learn
how Git works by using Git, many students wished that Git had been introduced
earlier on in their studies. However, not all bad, 62.5% of IT2810 students and 45.6%
of TDT4140 students agreed that Git had been fun to use. The results suggest that
learning institutions must consider when to introduce Git, possibly introducing it
earlier.

In contrast to introductory programming courses where students mainly program
alone, both TDT4140 and IT2810 have students work in teams on the same code
base. In other words, repositories are transparent, and all code is traceable back
to its author. Viewing students’ responses in Section 5.1 we observe that students
are widely OK with their code being available to view by strangers, team members,
and course staff. Furthermore, Git’s transparency is not an aspect many students
experience as a negative thing. Although this does not raise any new concerns or
questions, it assures that it is not a problematic area.

Figure 5.1 also provides insight into the topic of receiving and providing feedback
on code. We first look into students’ experiences receiving feedback and see that the
majority of students are comfortable receiving feedback (86.7% (N=37) of TDT4140
and 91.7% (N=44) of IT2810) and that few students take the feedback they receive
personally. The statements aimed to inquire if students were perhaps offended by
feedback on their code, but this does not appear to be the case for most students.
12.5% (N=6) of IT2810 students, however, agree that they do take the feedback
personally (compared to only 7% (N=3) of TDT4140), perhaps because they received
harsh feedback or because they feel pride in their code.

93

In IT2810, all students had to provide feedback to other students anonymously,
and 85.4% (N=41) agreed that being anonymous made it more comfortable. The
author suggests a correlation between this statement and the statement "I found
it hard to assess the quality of code written by others", to which 54.1% (N=26) of
students agreed. Thus, the large number of students who preferred anonymously
giving feedback may be a direct result of students doubting the feedback they provide
and their capabilities to assess code quality. However, although many students found
it hard, 64.6% (N=31) of IT2810 students agreed that assessing code written by
others helped them improve their programming. The results support the background
theory of Section 2.4 which suggests that peer-assessment improved the quality of
subsequent work.

TDT4140 had no option to provide anonymous feedback on code, so we ignore
their responses. More so than IT2810 students, 74.4% (N=32) agreed it was difficult
to assess the quality of code written by others. The difference can be correlated to the
larger number of students with little experience with web development, suggesting a
correlation between comfort providing feedback and programming experience. For
the statement "I got better at programming by assessing code written by others", six
students answered that the statement did not apply to them. This makes sense when
we consider 10 students said they did not provide feedback on merge requests (See
Figure 5.3). Of the 37 students it applied to, 70.3% (N=26) agreed their programming
skills improved by assessing the code of others.

Further, supporting the results on the benefits of peer-assessment, 58% (N=28) of
IT2810 and 51.2% (N=22) of TDT4140 students received feedback that helped them
improve their code, and 64.6% (N=28) and 60.4% (N=22) respectively experienced
receiving feedback as helpful. Therefore, when considering whether to instruct
students to do peer-assessment, the results should be weighed in. The results suggest
that implementing peer assessment will have positive results on the learning outcome
of many students.

In order to answer if any social implications follow from using Git and GitLab, we
look to the results of Section 5.1. Because all answers collected are from individuals
and not from entire student groups, we need to consider that any findings do not
necessarily represent how entire groups feel; it could just be individuals of a group.
We are possibly tracing back to our discussion on Git’s transparency and observe that
81.4% (N=38) of TDT4140 and 75% (N=36) of IT2810 students agree on differences
in skill level become more apparent when using Git. Although this means little by
itself, it may be a factor for why we see the responses discussed next.

The statement "Working with GitLab makes it worse to be on a lower skill level
than the team" saw 27.1% (N=13) of IT2810 students and 41.9% (N=18) of TDT4140

94

students agreeing, but for IT2810, we saw 29.2% (N=14) disagreeing, and 37.5%
(N=18) neither agree nor disagree. Fewer TDT4140 students disagree (20.9% (N=9))
and 32.6% (N=14) neither agree nor disagree. These results do not give any clear
indicators that GitLab affects collaboration between students of varying skills. The
questionnaire also had the near inverse statement "GitLab makes it less difficult
to work with someone on a lower skill level than yourself". For TDT4140, where
students worked in groups of seven, only 25.6% (N=11) agreed, and 27.9% (N=12)
disagreed. However, most students (44.2% (N=19)) neither agreed nor disagreed,
suggesting that GitLab does not have a significant impact. A larger portion, 41.7%
(N=20) of IT2810, agree with the statement, yet still 37.5% neither disagree nor
agree and 14.6% disagree. The differences in answers may be associated with the
differences in group size and the dynamics of the project work of the two courses. In
groups of three (IT2810), it may be easier to pay attention to and provide help to the
less skilled member than in groups of seven (TDT4140), but this is only speculation.

45.8% (N=22) of IT2810 students agree with the statement "Git results in the
best members hijacking the development process (Rewriting a lot of code, doing all
the work themselves etc.)". TDT4140 saw close to a third of students agreeing with
37.2% (N=16). IT2810 grades students on their end product, possibly contributing
to this phenomenon, but we also see a notable amount in TDT4140. From Figure 5.3
we see a large amount of students from both courses used issues to separate work
tasks. The case may also be that the better team members finish their issues more
quickly and move on to the next one, completing more issues than other members.

Turning our attention to the less skilled team members, we look at results on
the statement "Development with GitLab turn team members who accomplish less
into scapegoats". We see that 51.2% (N=22) of TDT4140 students disagree with
the statement to 45.8% of IT2810 students. However, we also see that every fourth
TDT4140 students and every third IT2810 student agree with the statement. Thus,
it is probably not the case of all student groups where members are on different skill
levels, but it appears that many students do feel it is the case. It could be that more
skilled students feel this way about their less skilled members, or it could be that the
less skilled members think their team members feel that way. Either way, it suggests
a harmful phenomenon is present in multiple student groups.

A consideration to be made is that the author has attempted to attribute GitLab
with specific implications on group work. When using statements in a questionnaire,
we risk putting words into the mouths of our respondents. Thus, we may not have
seen the same results if students answered open-ended questions about using GitLab.
There may be other aspects of programming that would more accurately be to blame
than version control with Git, but for this survey, GitLab has been the focus.

95

Further research is needed to reliably say how working with Git and GitLab
affects the social aspects of student groups. However, the above results can aid
researchers in approaching the research topic.

6.2 How can GitLab’s data points be visualized in a
mirroring tool (RQ2)?

A dashboard solution to examine visualizing GitLab’s data points has been imple-
mented to meet the needs of both educators and students. It visualizes several
data points of GitLab repositories to provide insight into work patterns and work-
flow. In addition, it offers educators functionality to order student groups based on
quantitative GitLab data to make advised decisions on student groups.

The results of interviews and demonstrations of the implemented dashboard
on students and educators support the visualizations developed for this thesis.
Feedback from interviewees shows that the visualizations can be helpful to students
and educators to provide insight into work and work patterns when viewed in
retrospect. Data points displayed in a time series and allowing for comparing student
contributions were well-received by both students and educators. Furthermore,
the dashboard design was perceived to have high affordance and conveyed data to
students and educators in a way that made sense.

Visualizing data points

The background theory on monitoring in computer-supported collaborative learning
and mirroring tools presented in Section 2.6 and Section 2.7 discusses how data
points generated by students in a learning situation can be aggregated and reflected
back to students or educators to provide new insights. This research has examined
four data points: commits, issues, merge requests, and code lines extracted from
commits. The four metrics were well-received by both students and educators and
perceived to be the four most relevant data points from GitLab.

Some interviewees suggested or expected branches to be visualized similarly to
how it is presented in Figure 2.4 and others suggested showing the number of branches.
However, merge requests may more accurately depict progression in the codebase.
Furthermore, graphs are not affected by "dead" branches, branches that remain
unmerged. However, using branches in the dashboard can be helpful to provide other
insights, perhaps to see if a student group abandons many branches. It can also
provide insight into whether students are rebasing their commits before merging or
not, an exciting aspect of evaluating the use of Git.

96

Line graphs visualized issues (see Figure 4.5), displaying the number of open
issues on a given date, as well as the sum of closed issues on a given date. Viewing
this graph proved to give insight into the amount of work student groups had done.
However, varying habits regarding the use of issues mean two well-performing groups
can appear differently. Furthermore, this also means a well-performing group can
appear worse than a poorly performing group if naively viewing the dashboard. To
substantiate this, we exemplify two groups, one performing well, but which opens
fewer significant issues (e.g., "implement backend"), and a poorly performing group
that opens many tiny issues (e.g., "fix typo in header"). The group with more minor
issues will close more issues and appear to show more progress than the otherwise
well-performing group.

An educator noted that having issues visualized could impact how he structured
his course and allow for more rapid insight into how far students are in the course’s
project. More specifically, he suggested that all students open a set of issues at the
start of the project, representing the programming goals of the project. Thus, as
students close their issues, the graph would act as an up-to-date burn-down chart
requiring little to no extra energy to keep it updated. Furthermore, the data structure
for issues returned from the API contains a list of labels per issue. If filtering on these
issues, the dashboard can group issues on topic and display them in a burn-down
chart manner (e.g., labels could include "database", "backend", "frontend").

The dashboard ordered neither merge requests nor issues by author. Thus,
reflections by students on the metrics concerned their group’s work and offered no
comparison of students. However, showing both metrics ordered by author can be
valuable to students and educators to provide nuance to members’ contributions.
For example, quantifying the metrics in doughnut charts efficiently shows how many
data points of each metric students’ created. Displaying issues and merge requests in
a line chart but ordered by students may convey when students finish their work,
be it in bursts or evenly throughout the project period. In addition, results from
other graphs ordering data by students show that both educators and students are
interested in graphs that display student contributions per student.

Commits were visualized both on a project basis and separated by authors. The
interviews with students proved that commits as a data point were a good decision
for the dashboard. Visualized in a time series bar chart distributed by dates, days
of the week, or hours of the day, they provided both students and instructors with
insight into when groups worked. However, students were concerned that viewing
commits distributed by team members failed to accurately capture how work was
distributed by members, especially regarding pair programming. A potential remedy
was to use Git’s co-authoring functionality, but it is tedious to use, and convincing
students to use this feature can be difficult.

97

Students perceived commits viewed on a project basis to capture the rough
features of how they structured their programming with increases in the number of
commits in a period, often correlating with increases in the work produced. However,
other students reported that some of their spikes in commits were related to minor
changes to documentation and spelling or attempting to fix bugs. In other words,
commit numbers could run rampant and give a viewer the wrong impression. In
addition, although students could consult the commit list to gain insight into the
sizes of commits, only a few students used it. As a remedy, displaying both the
average size of commits and the median size of commits, both per project and per
member, can, to a degree, convey commit habits.

An interesting suggestion made by a student was to visualize commits per member
in a line graph, showing how the amount of commits by a student develops over the
project period. The graph could provide insight into how students’ individual pace
develop over the project period with a lower cognitive load than reading bar charts
to extract the same information. An observed phenomenon for multiple TDT4140
students was that the bar graphs showed fewer commits early on in the project,
and more as the member became confident and experienced with the technology.
One student observed this when isolating commits of one member (by removing
other members). They commented that they understood who the student was and
confirmed that he had had to learn the technology for the project.

Feedback from interviews and demonstrations suggests that visualizing when
students add code lines to the repository was less valuable than expected. Code
lines were poor indicators of work done, were often skewed in repositories without
gitignore-files, and merged commits worked to double numbers gave a false impression
of the amount of work done. The option to suppress larger commits to prevent the
graph from being skewed was well-received and helped give insight into when and
the amount of work done by members. In addition, either excluding merge commits,
or counting merge commits alone could prevent lines from being counted twice.

Although none of the interviewees commented on using the word code lines, future
use of similar graphs should be unambiguous in its wording. All commits have added
and removed lines, namely additions and deletions, but these are not restricted to
code only. For example, SVG files have many lines, yet they are not code and would
skew this metric. The metric should be used carefully and works the best if users of
the dashboard should are aware of the amount of generated code in a repository to
make use of this metric better.

The dashboard included doughnut graphs displaying the number of commits
and lines (additions, deletions, and the difference between the two) per member to
compare contributions by students. For smaller student groups like in IT2810, they

98

efficiently presented relative contributions. However, for TDT4140, where student
groups were of seven and contribution amounts were more varied, it was challenging
to view students with lower numbers. Therefore, replacing the graphs with bar
charts, which make it easier to pin down similarly sized small contributions, can be
worthwhile (See Figure 6.1).

Figure 6.1: Bar chart and doughnut graph both displaying team members’ commits.

Displaying student names

Data points can be presented either with students’ names displayed or hidden, but
students will identify some members even if names are not displayed. Furthermore,
most students said that displaying names would allow students to better act on
the visualized data and remove the need to guess who is who. On the other hand,
some educators were more inclined to use the dashboard with anonymized names
to prevent unfair evaluation and that previous experiences would students would
color their impression. Adding the option to toggle anonymity will fit both needs,
perhaps controlled by an educator. All interviews with students were one-on-one and
did not capture how students who seemingly contributed less would react to seeing
this with their group. Some educators were concerned that those students would not
enjoy seeing themselves put on display, but further research is needed to establish
how student groups experience this.

6.3 What does a mirroring tool on GitLab data offer (RQ3)?

The results of interviews and demonstrations of the implemented dashboard on
students and educators indicate that the developed visualizations of data points
generated when using Git can be helpful to students to improve self-reflection,
planning in groups, and make aware of work patterns. However, results show that
individuals viewing the dashboard in retrospect made few new realizations.

99

The study suggests that the dashboard is helpful for educators to rapidly gain
insight into how students are performing in a course and spot underperforming
students. More importantly, the interviews with students and educators have solidified
the need for understanding its data points and critical thinking when viewing the
dashboard. Although providing some insight into how students work, Git’s data
points on its own do not do accurately capture all aspects of software development
in groups.

As a mirroring tool for students

Section 2.7 presents theory and research on mirroring tools. A point of mirroring
tools is enhancing self-awareness of actions and behavior to improve upon for future
work. The results of Section 5.2.4 show that the dashboard promotes self-reflection in
some students. Furthermore, the results indicate that group awareness can increase
from viewing the dashboard. Group awareness is helpful when structuring workdays
in a project. Results expectedly varied from student to student.

The interview results indicate that the dashboard is helpful to student groups
working on multiple projects and sprints. Interviewees said the dashboard visualized
times when members worked and that consulting it can optimize their work schedule.
Furthermore, the dashboard can help students detect and help team members
struggling. However, these results are from reflections of individual students, not
student groups. Therefore, the dashboard has to be available for use in a course to
get feedback from student groups. Alternatively, interviews with groups can provide
more insight into its helpfulness for student groups.

In interviews, students mainly reflected on their group, not on their contributions.
Although some students identified themselves and reflected on their data points,
not all students did this because the dashboard hid names. Those who did make
out themselves reflected on the data regarding how they remembered their project
or projects. Interestingly, some students made new realizations or changed their
perceptions of their contributions to the project. More students would likely reflect
on their data if the dashboard displayed their names. However, to display only some
student names would require either authentication (for example, through FEIDE) or
manually choosing what names to display and hide.

A few students who made out themselves did not reflect on their data. Some
focused more on their group, and others continued after acknowledging that their
data looked right. Students would likely reflect more on their data if instructed to do
so. However, when testing the dashboard, the interviewee was in the driver’s seat.
Unsurprisingly, students were more interested in viewing their group than reflecting
on their data. A probable cause for this phenomenon is the availability of data that

100

was previously not easily accessible to them. However, students often compared their
contributions to their team members.

Students reflected on the visualizations with their project work in mind, but
student responses varied. However, several patterns emerged in students who got
less out of viewing the dashboard. Some navigated through the system quickly, and
other interviewees were confused or overwhelmed by the dashboard. For example,
students who quickly navigated through the dashboard and those who explored
fewer features reflected less. Overwhelmed or confused students also made fewer
reflections, suggesting that using more time to explain the system can help some
students. Interviewees who lacked an understanding of Git beyond knowing how
to use it made fewer comparisons to their work. Mazza and Dimitrova [50] and
Voyiatzaki and Avouris [52] made similar findings on mirroring tools for teachers.

The majority of students expressed that the dashboard was helpful or exciting;
interviewees who took more time to examine and talk about their data got more out
of the dashboard. Furthermore, students who understood Git had a more modest
and sensible relationship to the visualizations. Finally, many students reported
more confidence in their impression of their group and their work after viewing the
dashboard. Although not particularly useful for the course they have completed, it can
be helpful for future courses. Two valuable outcomes come to mind. Firstly, students
who realized they had wrong impressions will know to be more careful. Secondly,
confirmation on impressions can help students act sooner and more confidently if
problematic behavior occurs.

Although multiple students said they became more confident from viewing the
dashboard, some students were very eager to accept the visualizations and data points
as authentic representations of their work. Nonetheless, this does not imply that
students were wrong in their reflections, but expectations were that more students
would mention the incompleteness of the data. In addition, it is terrible if the
dashboard falsely changes a student’s perception of themselves or their group. For
example, some students showed little or no skepticism towards using the code lines
metric. If code lines are in the millions, the validity of doughnut graphs decreases,
even if they indicate a slight imbalance between members. Thus, educators should
explain the dashboard to students before using it to prevent misconceptions.

It was expected that students would be skeptic towards using Git metrics. Less
expectedly, the results indicate that students’ understanding of Git improved from
viewing the dashboard. Thus, the dashboard can be valuable in courses teaching Git.
For example, the lack of consistency between code lines and commits is apparent in
the graphs, a correlation some interviewees admitted not to know. In its current
form, the dashboard does not help users understand its data. However, it can aid

101

students in developing a holistic mental model of good Git practices, for instance,
displaying the significance of gitignore-files.

An alternative use case of the dashboard would be to provide students with
a report of their data to promote self-reflection. For example, when students do
sprint retrospectives like in TDT4140. Viewing a report visualizing their previous
sprint, they can reflect on it, become aware of collaboration patterns, and more.
Unfortunately, the dashboard in its current state cannot offer this report, but adding
date ranges to select what data to show would suffice. Furthermore, comparing two
or more sprints, it is easier to see how the group develops.

To summarize the mirroring tool for students we conclude that the dash-
board can, to some degree, capture how much individual students contribute, when
they contribute and how a group works over a period. It also captures Git habits, and
provides some students with new insights and reflections on their work. Furthermore,
it served to increase confidence in students’ impression of their group work.

Educator’s view

Results from interviews and demonstrations with educators indicate that a mirroring
tool visualizing GitLab data is valuable in multiple ways. For example, educators are
interested in monitoring their courses’ overall health, gaining insight into individual
student groups, and making informed decisions on spending their resources.

Firstly we discuss how the dashboard helps educators monitor the health of
their courses. The advised group selection page displays four metrics indicating
student group performance, plus a fifth overall metric. The current implementation
partitioned student groups into quartiles per metric based on how many of each
data point is in their repositories. Educators were interested in specifying percentiles
themselves to quickly view poorly performing student groups, e.g., the bottom five
percent of overall performance or a specific metric. Extending the dashboard to
support this would increase its value for little development effort. Git’s incomplete
metrics will lead to some groups appearing to do worse, but results cannot conclusively
say if this is a problem. However, even in a course with 100 student groups, contacting
the bottom five percent would only require contacting five student groups.

Nevertheless, the dashboard is only a mirroring tool, and acting solely on it
is not suggested. Instead, educators should seek more information from students’
repositories before making deciding whether to contact a group or not. Thus, the
advised group selection serves to inform but not instruct.

Many educators suggested that the dashboard gave educators control of defining
what amounts of each metric would show as what faces. E.g., more than ten commits

102

in the first week of the project would be a green face; fewer than two would be a red
face. Implementing this, the advised group selection page extends into the domain of
metacognitive tools, discussed in Section 2.6. The dashboard, if comparing students’
interaction with the desired model, could notify of discrepancies. Educators would
still have to process the data before acting, but it can help educators more efficiently
distribute their resources.

Furthermore, this approach is less naive than viewing groups based only on
percentiles. For example, if all 100 student groups do well, some would appear to
be doing poorly if colored faces represent percentiles. Lastly, it gives the user more
control, making the dashboard more valuable to a variety of courses.

Regarding the concern for students misinterpreting the dashboard, educators
doing so would be even worse. Luckily, all interviewed educators maintained a
sensible approach to the dashboard. They knew its data was imperfect and does not
capture all aspects of project work. When introducing the dashboard to educators,
the data was introduced as dumb, which may have influenced how educators view it.
Nonetheless, educators must be aware of the limitation of Git data and the dashboard
to prevent perceiving students wrong.

In its current state, the dashboard would simplify getting insight into student
groups. Some educators said they consulted GitLab to get insight but said this was
both tedious and slow. Furthermore, viewing individual data points like in GitLab
makes it more challenging to see the whole picture.

To summarize the mirroring tool for educators we conclude that it captures
student habits and work, which is helpful when teaching and grading Git use.
Furthermore, it can roughly capture how a student group completes a project,
whether they work consistently or do most of the work near the end. Finally, the
advised group selection page helps educators identify student groups that need extra
attention and gives a heartbeat indication of a course’s health.

Making qualitative assumptions from the dashboard

Assumptions on student groups were made before interviews to quantify what the
dashboard conveys about student groups. Section 5.2.1 presents the results of this
effort, which suggests that it is difficult to make accurate assumptions on student
groups based only on how their visualizations appear. For example, for the attribute
M6 — The group worked in planned spaces of time (e.g., 8-13 Mondays) the accuracy
for both courses was >88%. However, attributing all groups with M6 would see
a higher accuracy. Thus, the validity of drawing this assumption based on the
dashboard is doubtful.

103

Results for M7 — One group member was responsible for setting up the project(s)
shows that the dashboard fails to capture if more than one student participated in
the setup of the project. In addition, results show that eight groups in total were
falsely attributed with M7 and that five groups were falsely not attributed. The
results suggest avoiding using the dashboard to draw assumptions regarding matters
where two or more students can be hidden behind the activity of one student.

Similarly, M1 — Some members have contributed more than others on the pro-
gramming and M8 — Everyone in the group contributed an even amount in the
programming, saw high accuracies for TDT4140. However, the high occurrence of
the two metrics may result from the group size of seven instead of the dashboard’s
ability to convey this information. To substantiate this claim, accuracies for IT2810
were only 66.7% and 55.6%, respectively.

M2 — Some members have been free-loaders on the programming saw inferior
results for TDT4140 at only 30.8% accuracy, worse than a coin toss. With groups
of seven in a course where students do a lot of pair programming, it is not easy to
accurately assess whether students with fewer commits and lines have contributed
less or just pair program on another computer. Results appear better for IT2810
with an accuracy of 66.7%, but no students attributed their group with this attribute.
Thus, the three groups attributed with M2 were wrong assumptions. The latter
results suggest that in student groups of three, free-loaders are more rarely present.
However, students actively enrolled in IT2810, and many student groups knew each
other beforehand, which both likely contributed to the low amount of free-loaders
recorded.

When students attributed their groups at the end of their interviews, some
students were hesitant to attribute their group or members with negative attributes,
possibly resulting in more false negatives. Furthermore, the absolute wording of M3,
M4, and M5, which regarded every exercise/sprint, in conjunction with inconsistencies
in how groups were attributed and how students attributed their groups, may affect
the results. However, in the interviews with students, many students pointed out
both periods of consistent work and the occurrence of skippertak. Attribute M5
— The group started working early in each exercise/sprint was more challenging to
assess because the dashboard does not capture work done outside of writing code,
such as planning an exercise or sprint.

For attributes M3 — The group has worked evenly through each exercise/sprint
and M4 — The group has done skippertak every exercise/sprint, assumptions made
on individual projects for IT2810 were more often were correct, but the numbers do
not show this. For similar experiments in the future, if attributes M3 and M4 are
to be measured, they should instead concern specific exercises (or sprints) to give

104

more accurate results. If anything, the results on making qualitative assumptions
should support the above claim that one must be aware of the dashboard’s limitations
when using it. It fails to capture all aspects of the development process and does
not provide an outsider with a window into the composition or performance of a
student group. Future research, perhaps using guided decision-making, is needed to
determine if reliable assumptions are possible from viewing the dashboard alone and
how to draw them.

6.4 Ethical concerns

The mirroring tool enables educators to monitor student activity which also raises
ethical concerns. Data points are generated by students with no effort beyond using
Git, and students do not actively consent to their data being mined, aggregated
and interpreted. An essay is graded on its content, not how the student wrote it.
Educators must decide if they grade an end product or a process, and if the insight
provided crosses any boundaries.

The mirroring tool provides insight into when during the day students are active.
Students who work during the day pose little concern, but students whose working
hours extend beyond midnight may find it intrusive to be put on display. Furthermore,
this insight might provide users with signs of larger problems that students do not
want displayed. A consideration to be made is what data students experience as
sensitive and adapt the dashboard accordingly.

The above concerns of monitoring single students arise because the mirroring tool
allows for viewing contributions by individual students. Educators need to question
how the value added from viewing individual students’ contributions compares to
privacy concerns of tracking individuals.

6.5 Validity of results

This study looked at two courses where students do software development. Although
both courses are standard in their approaches to software development, results may
differ for other courses. Furthermore, the two courses are from the same department
and should not be considered two isolated cases. In addition, the students that
participated in this study perform well both nationally and internationally. Thus,
results may vary for student populations that perform less well.

All questionnaire responses and student interviews represent single students’
impressions and experiences. It is not easy to assess which students from the student
populations answered the questionnaire. There is always a possibility that a part of
the student population is more represented, e.g., better-performing students, which

105

will impact how representative the aggregated answers are. Furthermore, not all
students from the two courses answered the survey, which reduces the generalizability
of the results.

Similarly, for student interviews, only one student per group was interviewed.
Whether the interviewee was more or less skilled than their members is not collected,
although some students did say so. Nonetheless, students only represent their
impression of their group’s work. Thus, a bias will persist when discussing what the
dashboard says about their group.

The recruitment phase for student interviews may also affect the validity of results.
For example, interviewees received food and a soft drink for participating, which may
also impact what students sign up for participation. In addition, interviews took
place when most students have exams, and for IT2810, interviews were a semester
after they completed their course. Both of these factors likely affected how many
students participated.

106

Chapter7Conclusion and future work

This thesis explored the implications on group dynamics and the social aspect of
project work when using Git. In addition, a prototype mirroring tool using GitLab
data was developed to investigate the data’s potential when shown to students and
educators. Ninety-one students answered an online questionnaire about using Git,
and semi-structured interviews and demonstrations were conducted with 24 students
and 11 educators to collect data on the mirroring tool.

This master thesis makes two contributions. Firstly, to research on using version
control with Git in software development courses. This research aimed to support
faculties’ decision to use Git in software education and to explore its social and
interpersonal impact on students and student groups. Based on the results of the
conducted survey, it can be concluded that faculties should continue to use Git in
software development education and that it is helpful to students. Furthermore, the
results indicate that some students experience Git to have negative effects on some
students’ experience.

The survey results highlight potential trouble areas that no other researchers have
investigated to the author’s knowledge. However, they also support the current use of
Git in software development courses. Quantitative studies fail to provide conclusive
evidence of what causes a problem and how to fix a problem. Nevertheless, the
survey clearly shows students want Git introduced earlier and that many students
experience Git to be challenging to learn and, at times, frustrating to use. A theory
is that students who struggle to learn Git independently will have a worse experience
using the technology overall.

Future work on the results from the survey should further explore how students are
affected by Git and GitLab in group projects — performing a more qualitative study
to understand better what causes students to have worse experiences. More research
will substantiate the claim that Git and GitLab affect student group dynamics and
provide insight for educators to remedy the problem.

107

The thesis’ second contribution is developing and testing a mirroring tool using
data points from GitLab. In 24 student and 11 educator interviews with demonstra-
tions, the research gathered feedback to assess if a mirroring tool on GitLab is helpful.
Based on a quantitative and qualitative analysis of the collected data, we conclude
that the mirroring tool can support both students and educators in a learning situa-
tion. The results show that GitLab data does not capture all aspects of development
and its quantitative data requires human processing to make assumptions.

The dashboard results help future research select Git data points and choose how
to visualize them. Many new features are described based on student and educator
interviews which researchers can consult to design a dashboard to develop a similar
or more extensive mirroring tool. The results describe what students and educators
make of the different data points for self-reflection for students and monitoring and
reflection for educators.

Impressions and results recorded from student interviews are from students who
had no idea what to expect of the dashboard. In 15 minutes, students were introduced,
had to understand, and then reflect on the dashboard. In other words, there was
little time to learn to fly. The students who got less out of the dashboard might
have gotten more out of it if given more time. Similarly, interviewees could provide
even more insight into the mirroring tool’s pros and cons if interviews lasted longer.
However, the majority of students quickly understood the dashboard, speaking to its
affordance.

Results from educator interviews show that the data points are helpful to monitor
student activity and entire courses. However, educators gained retrospective insight
into courses they had no relationship. Presenting educators with their courses can
provide new insight. Future research should employ the dashboard in an active
course to assess its helpfulness to educators. Topics of interest are, amongst others,
resource management, learning outcome of students struggling, and course health.
Researchers have to choose whether to inform students of the monitoring or not,
which can affect results.

Future work on the mirroring tool should aim to make it available and practical
to use. The current implementation manually populates the database and does not
stay up to date in an active course. Containerizing the application using Docker
and supporting authentication with GitLab will make the dashboard helpful with
less setup required. With authentication in place, a logical step is to support
automatically querying for new data, e.g., every twelve hours. These features will
make the dashboard available to use for more educators. Furthermore, it will be a
strong foundation for the development of a mirroring tool using Git data.

Due to the encouraging results on the mirroring tool from this study, continued

108

development to make it available and practical to use is planned. Furthermore, all
code will become open source to encourage further development. It will be made
available at https://github.com/asmundh.

109

References

[1] Joseph Feliciano, Margaret-Anne Storey, and Alexey Zagalsky. “Student Ex-
periences Using GitHub in Software Engineering Courses: A Case Study”.
In: 2016 IEEE/ACM 38th International Conference on Software Engineering
Companion (ICSE-C). May 2016, pp. 422–431.

[2] Courtney Hsing and Vanessa Gennarelli. “Using GitHub in the Classroom
Predicts Student Learning Outcomes and Classroom Experiences: Findings
from a Survey of Students and Teachers”. In: Proceedings of the 50th ACM
Technical Symposium on Computer Science Education. SIGCSE ’19. New York,
NY, USA: Association for Computing Machinery, Feb. 2019, pp. 672–678. isbn:
978-1-4503-5890-3. doi: 10.1145/3287324.3287460.

[3] Scott Chacon and Ben Straub. Pro git. Springer Nature, 2014.
[4] 262588213843476. Commit message guidelines. en.
[5] Issue Boards | GitLab.
[6] Atlassian. Git Feature Branch Workflow | Atlassian Git Tutorial. en.
[7] Atlassian. Gitflow Workflow | Atlassian Git Tutorial. en.
[8] Joseph Lawrance, Seikyung Jung, and Charles Wiseman. “Git on the cloud

in the classroom”. In: Proceeding of the 44th ACM technical symposium on
Computer science education. SIGCSE ’13. New York, NY, USA: Association
for Computing Machinery, Mar. 2013, pp. 639–644. isbn: 978-1-4503-1868-6.
doi: 10.1145/2445196.2445386.

[9] Lassi Haaranen and Teemu Lehtinen. “Teaching Git on the Side: Version Control
System as a Course Platform”. en. In: Proceedings of the 2015 ACM Conference
on Innovation and Technology in Computer Science Education - ITiCSE ’15.
Vilnius, Lithuania: ACM Press, 2015, pp. 87–92. isbn: 978-1-4503-3440-2. doi:
10.1145/2729094.2742608.

[10] Joseph Feliciano. “Towards a Collaborative Learning Platform: The Use of
GitHub in Computer Science and Software Engineering Courses”. en. Accepted:
2015-08-31T21:15:20Z ISSN: 1906-1927. Thesis. 2015.

110

https://doi.org/10.1145/3287324.3287460
https://doi.org/10.1145/2445196.2445386
https://doi.org/10.1145/2729094.2742608

[11] J. Kelleher. “Employing git in the classroom”. In: 2014 World Congress on
Computer Applications and Information Systems (WCCAIS). Jan. 2014, pp. 1–
4. doi: 10.1109/WCCAIS.2014.6916568.

[12] Kimberly A. Freeman. “Attitudes toward Work in Project Groups as Predictors
of Academic Performance”. en. In: Small Group Research 27.2 (May 1996).
Publisher: SAGE Publications Inc, pp. 265–282. issn: 1046-4964. doi: 10.1177/
1046496496272004.

[13] Guttorm Sindre et al. “Project-Based Learning in IT Education: Definitions and
Qualities”. eng. In: 147-163 (2018). Accepted: 2018-06-13T13:17:13Z Publisher:
Universitetsforlaget. issn: 1893-8981. doi: 10.18261/ISSN.1893-8981-2018-02-
06.

[14] Filip Dochy et al. “Effects of problem-based learning: a meta-analysis”. en. In:
Learning and Instruction 13.5 (Oct. 2003), pp. 533–568. issn: 0959-4752. doi:
10.1016/S0959-4752(02)00025-7.

[15] David W Johnson and Roger T Johnson. “Social Skills for Successful Group
Work”. en. In: EDUCATIONAL LEADERSHIP (), p. 7.

[16] L.J. Burnell, J.W. Priest, and J.B. Durrett. “Teaching distributed multidisci-
plinary software development”. In: IEEE Software 19.5 (Sept. 2002). Conference
Name: IEEE Software, pp. 86–93. issn: 1937-4194. doi: 10.1109/MS.2002.
1032859.

[17] Randall S. Hansen. “Benefits and Problems With Student Teams: Suggestions
for Improving Team Projects”. In: Journal of Education for Business 82.1 (Sept.
2006). Publisher: Routledge _eprint: https://doi.org/10.3200/JOEB.82.1.11-19,
pp. 11–19. issn: 0883-2323. doi: 10.3200/JOEB.82.1.11-19.

[18] Petru L. Curşeu and Helen Pluut. “Student groups as learning entities: The
effect of group diversity and teamwork quality on groups’ cognitive complexity”.
In: Studies in Higher Education 38.1 (Feb. 2013). Publisher: Routledge _eprint:
https://doi.org/10.1080/03075079.2011.565122, pp. 87–103. issn: 0307-5079.
doi: 10.1080/03075079.2011.565122.

[19] Charlie McDowell et al. “Pair programming improves student retention, con-
fidence, and program quality”. In: Communications of the ACM 49.8 (Aug.
2006), pp. 90–95. issn: 0001-0782. doi: 10.1145/1145287.1145293.

[20] Daan van Knippenberg and Michaéla C. Schippers. “Work Group Diversity”. In:
Annual Review of Psychology 58.1 (2007). _eprint: https://doi.org/10.1146/annurev.psych.58.110405.085546,
pp. 515–541. doi: 10.1146/annurev.psych.58.110405.085546.

[21] Carol L. Colbeck, Susan E. Campbell, and Stefani A. Bjorklund. “Grouping in
the Dark”. In: The Journal of Higher Education 71.1 (Jan. 2000). Publisher:
Routledge _eprint: https://doi.org/10.1080/00221546.2000.11780816, pp. 60–
83. issn: 0022-1546. doi: 10.1080/00221546.2000.11780816.

111

https://doi.org/10.1109/WCCAIS.2014.6916568
https://doi.org/10.1177/1046496496272004
https://doi.org/10.1177/1046496496272004
https://doi.org/10.18261/ISSN.1893-8981-2018-02-06
https://doi.org/10.18261/ISSN.1893-8981-2018-02-06
https://doi.org/10.1016/S0959-4752(02)00025-7
https://doi.org/10.1109/MS.2002.1032859
https://doi.org/10.1109/MS.2002.1032859
https://doi.org/10.3200/JOEB.82.1.11-19
https://doi.org/10.1080/03075079.2011.565122
https://doi.org/10.1145/1145287.1145293
https://doi.org/10.1146/annurev.psych.58.110405.085546
https://doi.org/10.1080/00221546.2000.11780816

[22] Barbara Oakley et al. “Turning student groups into effective teams”. In: (2004).
Publisher: Citeseer.

[23] David Hall and Simone Buzwell. “The problem of free-riding in group projects:
Looking beyond social loafing as reason for non-contribution”. en. In: Active
Learning in Higher Education 14.1 (Mar. 2013). Publisher: SAGE Publications,
pp. 37–49. issn: 1469-7874. doi: 10.1177/1469787412467123.

[24] Graham D. Hendry, Greg Ryan, and Jennifer Harris. “Group problems in
problem-based learning”. In: Medical Teacher 25.6 (Nov. 2003). Publisher: Tay-
lor & Francis Ltd, pp. 609–616. issn: 0142159X. doi: 10.1080/0142159031000137427.

[25] K. J. Topping et al. “Formative Peer Assessment of Academic Writing Between
Postgraduate Students”. In: Assessment & Evaluation in Higher Education 25.2
(June 2000). Publisher: Routledge _eprint: https://doi.org/10.1080/713611428,
pp. 149–169. issn: 0260-2938. doi: 10.1080/713611428.

[26] D. Sluijsmans, F. Dochy, and G. Moerkerke. “Creating a Learning Environment
by Using Self-, Peer- and Co-Assessment”. en. In: Learning Environments
Research 1.3 (Oct. 1998), pp. 293–319. issn: 1573-1855. doi: 10 .1023/A:
1009932704458.

[27] Jirarat Sitthiworachart and Mike Joy. “Effective peer assessment for learning
computer programming”. In: ACM SIGCSE Bulletin 36.3 (June 2004), pp. 122–
126. issn: 0097-8418. doi: 10.1145/1026487.1008030.

[28] Mien Segers and Filip Dochy. “New Assessment Forms in Problem-based
Learning: The value-added of the students’ perspective”. In: Studies in Higher
Education 26.3 (Oct. 2001). Publisher: Routledge, pp. 327–343. issn: 0307-5079.
doi: 10.1080/03075070120076291.

[29] Keith Topping. “Peer Assessment Between Students in Colleges and Univer-
sities”. en. In: Review of Educational Research 68.3 (Sept. 1998). Publisher:
American Educational Research Association, pp. 249–276. issn: 0034-6543. doi:
10.3102/00346543068003249.

[30] Paul Orsmond, Stephen Merry, and Kevin Reiling. “The Use of Exemplars and
Formative Feedback when Using Student Derived Marking Criteria in Peer and
Self-assessment”. In: Assessment & Evaluation in Higher Education 27 (Aug.
2002), pp. 309–323. doi: 10.1080/0260293022000001337.

[31] Thu Thuy Vu and Gloria Dall’Alba. “Students’ experience of peer assessment
in a professional course”. In: Assessment & Evaluation in Higher Education 32.5
(Oct. 2007). Publisher: Routledge _eprint: https://doi.org/10.1080/02602930601116896,
pp. 541–556. issn: 0260-2938. doi: 10.1080/02602930601116896.

[32] J. Sitthiworachart and M. Joy. “Web-based peer assessment in learning com-
puter programming”. In: Proceedings 3rd IEEE International Conference on Ad-
vanced Technologies. July 2003, pp. 180–184. doi: 10.1109/ICALT.2003.1215052.

112

https://doi.org/10.1177/1469787412467123
https://doi.org/10.1080/0142159031000137427
https://doi.org/10.1080/713611428
https://doi.org/10.1023/A:1009932704458
https://doi.org/10.1023/A:1009932704458
https://doi.org/10.1145/1026487.1008030
https://doi.org/10.1080/03075070120076291
https://doi.org/10.3102/00346543068003249
https://doi.org/10.1080/0260293022000001337
https://doi.org/10.1080/02602930601116896
https://doi.org/10.1109/ICALT.2003.1215052

[33] George Siemens. “Learning Analytics: The Emergence of a Discipline”. en. In:
American Behavioral Scientist 57.10 (Oct. 2013). Publisher: SAGE Publications
Inc, pp. 1380–1400. issn: 0002-7642. doi: 10.1177/0002764213498851.

[34] Big Data is a Big Deal. en. Mar. 2012.
[35] Olga Viberg et al. “The current landscape of learning analytics in higher

education”. en. In: Computers in Human Behavior 89 (Dec. 2018), pp. 98–110.
issn: 0747-5632. doi: 10.1016/j.chb.2018.07.027.

[36] Kimberly E. Arnold and Matthew D. Pistilli. “Course signals at Purdue: using
learning analytics to increase student success”. In: Proceedings of the 2nd
International Conference on Learning Analytics and Knowledge. LAK ’12. New
York, NY, USA: Association for Computing Machinery, Apr. 2012, pp. 267–270.
isbn: 978-1-4503-1111-3. doi: 10.1145/2330601.2330666.

[37] Katerina Mangaroska et al. “Gaze insights into debugging behavior using
learner-centred analysis”. In: Proceedings of the 8th International Conference on
Learning Analytics and Knowledge. LAK ’18. New York, NY, USA: Association
for Computing Machinery, Mar. 2018, pp. 350–359. isbn: 978-1-4503-6400-3.
doi: 10.1145/3170358.3170386.

[38] Maureen A. Guarcello et al. “Balancing Student Success: Assessing Supple-
mental Instruction Through Coarsened Exact Matching”. en. In: Technology,
Knowledge and Learning 22.3 (Oct. 2017), pp. 335–352. issn: 2211-1670. doi:
10.1007/s10758-017-9317-0.

[39] Denise Whitelock et al. “OpenEssayist: a supply and demand learning analytics
tool for drafting academic essays”. In: Proceedings of the Fifth International
Conference on Learning Analytics And Knowledge. LAK ’15. New York, NY,
USA: Association for Computing Machinery, Mar. 2015, pp. 208–212. isbn:
978-1-4503-3417-4. doi: 10.1145/2723576.2723599.

[40] Dirk T. Tempelaar et al. “Formative assessment and learning analytics”. In:
Proceedings of the Third International Conference on Learning Analytics and
Knowledge. LAK ’13. New York, NY, USA: Association for Computing Machin-
ery, Apr. 2013, pp. 205–209. isbn: 978-1-4503-1785-6. doi: 10.1145/2460296.
2460337.

[41] Katerina Mangaroska and Michail Giannakos. “Learning Analytics for Learning
Design: A Systematic Literature Review of Analytics-Driven Design to Enhance
Learning”. In: IEEE Transactions on Learning Technologies 12.4 (Oct. 2019).
Conference Name: IEEE Transactions on Learning Technologies, pp. 516–534.
issn: 1939-1382. doi: 10.1109/TLT.2018.2868673.

113

https://doi.org/10.1177/0002764213498851
https://doi.org/10.1016/j.chb.2018.07.027
https://doi.org/10.1145/2330601.2330666
https://doi.org/10.1145/3170358.3170386
https://doi.org/10.1007/s10758-017-9317-0
https://doi.org/10.1145/2723576.2723599
https://doi.org/10.1145/2460296.2460337
https://doi.org/10.1145/2460296.2460337
https://doi.org/10.1109/TLT.2018.2868673

[42] Gregorio Robles and Jesus M. Gonzalez-Barahona. “Mining student reposito-
ries to gain learning analytics. An experience report”. In: 2013 IEEE Global
Engineering Education Conference (EDUCON). ISSN: 2165-9567. Mar. 2013,
pp. 1249–1254. doi: 10.1109/EduCon.2013.6530267.

[43] Amy Soller et al. “From Mirroring to Guiding: A Review of State of the Art
Technology for Supporting Collaborative Learning”. In: International Journal
of Artificial Intelligence in Education (IOS Press) 15.4 (Dec. 2005), pp. 261–290.
issn: 15604292.

[44] K. Gaßner et al. “Analysis Methods for Collaborative Models and Activities”. en.
In: Designing for Change in Networked Learning Environments: Proceedings of
the International Conference on Computer Support for Collaborative Learning
2003. Ed. by Barbara Wasson, Sten Ludvigsen, and Ulrich Hoppe. Computer-
Supported Collaborative Learning. Dordrecht: Springer Netherlands, 2003,
pp. 369–377. isbn: 978-94-017-0195-2. doi: 10.1007/978-94-017-0195-2_45.

[45] Daniel Dietsch et al. “Monitoring Student Activity in Collaborative Software
Development”. In: arXiv:1305.0787 [cs] (June 2013). arXiv: 1305.0787.

[46] Eun Kyoung Choe et al. “Understanding quantified-selfers’ practices in collect-
ing and exploring personal data”. In: Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems. CHI ’14. New York, NY, USA:
Association for Computing Machinery, Apr. 2014, pp. 1143–1152. isbn: 978-1-
4503-2473-1. doi: 10.1145/2556288.2557372.

[47] Frank Bentley et al. “Health Mashups: Presenting Statistical Patterns between
Wellbeing Data and Context in Natural Language to Promote Behavior Change”.
In: ACM Transactions on Computer-Human Interaction 20.5 (Nov. 2013), 30:1–
30:27. issn: 1073-0516. doi: 10.1145/2503823.

[48] Andre N. Meyer et al. “Design Recommendations for Self-Monitoring in the
Workplace: Studies in Software Development”. In: Proceedings of the ACM on
Human-Computer Interaction 1.CSCW (Dec. 2017), 79:1–79:24. doi: 10.1145/
3134714.

[49] Anouschka van Leeuwen and Nikol Rummel. “Comparing teachers’ use of
mirroring and advising dashboards”. In: Proceedings of the Tenth International
Conference on Learning Analytics & Knowledge. LAK ’20. New York, NY,
USA: Association for Computing Machinery, Mar. 2020, pp. 26–34. isbn:
978-1-4503-7712-6. doi: 10.1145/3375462.3375471.

[50] Riccardo Mazza and Vania Dimitrova. “CourseVis: A graphical student moni-
toring tool for supporting instructors in web-based distance courses”. en. In:
International Journal of Human-Computer Studies 65.2 (Feb. 2007), pp. 125–
139. issn: 1071-5819. doi: 10.1016/j.ijhcs.2006.08.008.

114

https://doi.org/10.1109/EduCon.2013.6530267
https://doi.org/10.1007/978-94-017-0195-2_45
https://doi.org/10.1145/2556288.2557372
https://doi.org/10.1145/2503823
https://doi.org/10.1145/3134714
https://doi.org/10.1145/3134714
https://doi.org/10.1145/3375462.3375471
https://doi.org/10.1016/j.ijhcs.2006.08.008

[51] Essam Kosba, Vania Dimitrova, and Roger Boyle. “Using Student and Group
Models to Support Teachers in Web-Based Distance Education”. en. In: User
Modeling 2005. Ed. by Liliana Ardissono, Paul Brna, and Antonija Mitrovic.
Lecture Notes in Computer Science. Berlin, Heidelberg: Springer, 2005, pp. 124–
133. isbn: 978-3-540-31878-1. doi: 10.1007/11527886_17.

[52] Eleni Voyiatzaki and Nikolaos Avouris. “Support for the teacher in technology-
enhanced collaborative classroom”. en. In: Education and Information Tech-
nologies 19.1 (Mar. 2014), pp. 129–154. issn: 1573-7608. doi: 10.1007/s10639-
012-9203-2.

[53] Briony J. Oates. Researching Information Systems and Computing. en. Google-
Books-ID: VyYmkaTtRKcC. SAGE, Nov. 2005. isbn: 978-1-4462-3544-7.

[54] Suphat Sukamolson. “Fundamentals of quantitative research”. In: (Jan. 2007).
[55] Karina Kohl Silveira et al. “Confidence in Programming Skills: Gender Insights

From StackOverflow Developers Survey”. In: 2019 IEEE/ACM 41st Interna-
tional Conference on Software Engineering: Companion Proceedings (ICSE-
Companion). ISSN: 2574-1934. May 2019, pp. 234–235. doi: 10.1109/ICSE-
Companion.2019.00091.

[56] Audio to Text Automatic Transcription Service & App | temi.com.
[57] oTranscribe.
[58] Qualitative Data Analysis Software | NVivo.
[59] API resources | GitLab.
[60] Chart.js | Open source HTML5 Charts for your website.

115

https://doi.org/10.1007/11527886_17
https://doi.org/10.1007/s10639-012-9203-2
https://doi.org/10.1007/s10639-012-9203-2
https://doi.org/10.1109/ICSE-Companion.2019.00091
https://doi.org/10.1109/ICSE-Companion.2019.00091

ChapterAAppendices

116

A.1 NSD application and confirmation

NSD sin vurdering

Prosjekttittel

Masteroppgave om datapunkter fra GitLab

Referansenummer

531119

Registrert

03.05.2021 av Åsmund Haugse - aasmuha@stud.ntnu.no

Behandlingsansvarlig institusjon

Norges teknisk-naturvitenskapelige universitet / Fakultet for informasjonsteknologi og elektroteknikk (IE) /
Institutt for datateknologi og informatikk

Prosjektansvarlig (vitenskapelig ansatt/veileder eller stipendiat)

Trond Aalberg, Trond.aalberg@ntnu.no, tlf: 73597952

Type prosjekt

Studentprosjekt, masterstudium

Kontaktinformasjon, student

Åsmund Haugse, aasmuha@stud.ntnu.no, tlf: 46887436

Prosjektperiode

03.05.2021 - 30.07.2021

Status

05.05.2021 - Vurdert

Vurdering (1)

05.05.2021 - Vurdert

Det er vår vurdering at behandlingen av personopplysninger i prosjektet vil være i samsvar med
personvernlovgivningen så fremt den gjennomføres i tråd med det som er dokumentert i meldeskjemaet med
vedlegg den 05.05.2021, samt i meldingsdialogen mellom innmelder og NSD. Behandlingen kan starte.

Meldeskjema for behandling av personopplysninger about:blank

1 of 3 7/2/21, 15:36117

DEL PROSJEKTET MED PROSJEKTANSVARLIG
For studenter er det obligatorisk å dele prosjektet med prosjektansvarlig (veileder). Del ved å trykke på
knappen «Del prosjekt» i menylinjen øverst i meldeskjemaet. Prosjektansvarlig bes akseptere invitasjonen
innen en uke. Om invitasjonen utløper, må han/hun inviteres på nytt.

TYPE OPPLYSNINGER OG VARIGHET
Prosjektet vil behandle alminnelige kategorier av personopplysninger frem til 30.07.2021.

LOVLIG GRUNNLAG
Prosjektet vil innhente samtykke fra de registrerte til behandlingen av personopplysninger. Vår vurdering er
at prosjektet legger opp til et samtykke i samsvar med kravene i art. 4 og 7, ved at det er en frivillig,
spesifikk, informert og utvetydig bekreftelse som kan dokumenteres, og som den registrerte kan trekke
tilbake.

Lovlig grunnlag for behandlingen vil dermed være den registrertes samtykke, jf. personvernforordningen art.
6 nr. 1 bokstav a.

PERSONVERNPRINSIPPER
NSD vurderer at den planlagte behandlingen av personopplysninger vil følge prinsippene i
personvernforordningen om:

· lovlighet, rettferdighet og åpenhet (art. 5.1 a), ved at de registrerte får tilfredsstillende informasjon om og
samtykker til behandlingen
· formålsbegrensning (art. 5.1 b), ved at personopplysninger samles inn for spesifikke, uttrykkelig angitte og
berettigede formål, og ikke behandles til nye, uforenlige formål
· dataminimering (art. 5.1 c), ved at det kun behandles opplysninger som er adekvate, relevante og
nødvendige for formålet med prosjektet
· lagringsbegrensning (art. 5.1 e), ved at personopplysningene ikke lagres lengre enn nødvendig for å oppfylle
formålet

DE REGISTRERTES RETTIGHETER
Så lenge de registrerte kan identifiseres i datamaterialet vil de ha følgende rettigheter: innsyn (art. 15), retting
(art. 16), sletting (art. 17), begrensning (art. 18), og dataportabilitet (art. 20).

NSD vurderer at informasjonen om behandlingen som de registrerte vil motta oppfyller lovens krav til form
og innhold, jf. art. 12.1 og art. 13.
Vi minner om at hvis en registrert tar kontakt om sine rettigheter, har behandlingsansvarlig institusjon plikt til
å svare innen en måned.

FØLG DIN INSTITUSJONS RETNINGSLINJER
NSD legger til grunn at behandlingen oppfyller kravene i personvernforordningen om riktighet (art. 5.1 d),
integritet og konfidensialitet (art. 5.1. f) og sikkerhet (art. 32).

For å forsikre dere om at kravene oppfylles, må dere følge interne retningslinjer og/eller rådføre dere med
behandlingsansvarlig institusjon.

MELD VESENTLIGE ENDRINGER
Dersom det skjer vesentlige endringer i behandlingen av personopplysninger, kan det være nødvendig å

Meldeskjema for behandling av personopplysninger about:blank

2 of 3 7/2/21, 15:36

melde dette til NSD ved å oppdatere meldeskjemaet. Før du melder inn en endring, oppfordrer vi deg til å
lese om hvilke type endringer det er nødvendig å melde: https://www.nsd.no/personverntjenester/fylle-ut-
meldeskjema-for-personopplysninger/melde-endringer-i-meldeskjema

Du må vente på svar fra NSD før endringen gjennomføres.

OPPFØLGING AV PROSJEKTET
NSD vil følge opp ved planlagt avslutning for å avklare om behandlingen av personopplysningene er
avsluttet.

Lykke til med prosjektet!

Meldeskjema for behandling av personopplysninger about:blank

3 of 3 7/2/21, 15:36

120

A.2 Interview guide educators

Interview Guide Instructors
Introduction:
I’ll start by introducing my research. I’ve developed a proof-of-concept dashboard solution that
mirrors data from GitLab in a more graphical way. This is done to examine if data from GitLab
can be useful to students or educators, be it for self-reflection in students or for educators to
better understand their groups and receive an indicator on their performances. I’ve held
interviews with students, and before those interviews I’ve attempted to assign the groups
attributes based on what they look like in this dashboard. Then, students themselves assigned
their group the same attributes.

Everything said in this interview will be anonymized. Names and references to courses will be
replaced with pseudonyms and IDs.

The interview consists of three sections. Firstly, I’ll ask you some questions, then we’ll move on
to the demonstration, and finally I’ll ask some more questions.

Before demonstration:
1. Do you teach any courses where students use Git and GitLab? If so, can you give a brief

summary of how they are used?
a. Are they part of the curriculum and are students graded on Git/GitLab use?

2. How do you think data from GitLab can be used to give insight into student group
performances?

a. What GitLab data do you think can indicate student group performance?
b. What kind of visualizations would you use to present GitLab data efficiently?

3. Does your course have student assistants? If so, how do they engage with students?

Demonstration:
Introduction to the software solution.

Afterwards:
1) How did the visualizations of GitLab data match your expectations?
2) Do you see any use for a dashboard like this in your courses? If so, for students,

instructors or both?
3) Could a dashboard like this one impact how Git and GitLab is used and taught in your

course?
4) Do you have any concerns on using a dashboard like this?

a) What do you think of the use of coloured smiley faces?
5) Do you think the dashboard would be more useful if names were not anonymized?
6) Does your course have student assistants? Would this be of use to them?

121

122

A.3 Interview guide TDT4140

Interview Guide TDT4140

I’ll start by introducing my research. I’ve developed a proof-of-concept dashboard solution that
mirrors data from GitLab in a more graphical way. This is done to examine if data from GitLab
can be useful to students or educators, be it for self-reflection in students or for educators to
better understand their groups and receive an indicator on their performances. I’ve held
interviews with students, and before those interviews I’ve attempted to assign the groups
attributes based on what they look like in this dashboard. Then, students themselves assigned
their group the same attributes.

Everything said in this interview will be anonymized. Names and references to courses will be
replaced with pseudonyms and IDs.

Spørsmål:
Før webløsningen vises:

1. Can you give a short summary of your project?
a. Technology choice, ambition and scope

2. Can you summarize how your group has worked together?
a. How was each sprint structured?
b. Did you work sitting together or separately?
c. How was an average week of work?

3. How has your group distributed their work?
a. Coding, writing report, hours spent
b. Did everyone contribute an equal amount to the report and programming?

4. What kind of visualizations can help you understand your progress as a group?
a. Would you like to view your group’s progress compared to other groups?

5. How would you visualize your data?
Etter webløsningen har blitt vist:

1. How are the visualizations you are seeing aligned with your expectations of
visualizations of your progress/data?

2. Were you surprised to see any of the visualizations? Which ones?
3. Were you made aware of anything new from the visualizations ?
4. What conclusions do you think one can erroneously make from the visualizations?
5. Do you think you can make out which person is which student by viewing the

visualizations?

123

124

A.4 Interview guide IT2810

Interview Guide IT2810

I’ll start by introducing my research. I’ve developed a proof-of-concept dashboard solution that
mirrors data from GitLab in a more graphical way. This is done to examine if data from GitLab
can be useful to students or educators, be it for self-reflection in students or for educators to
better understand their groups and receive an indicator on their performances. I’ve held
interviews with students, and before those interviews I’ve attempted to assign the groups
attributes based on what they look like in this dashboard. Then, students themselves assigned
their group the same attributes.

Everything said in this interview will be anonymized. Names and references to courses will be
replaced with pseudonyms and IDs.

The interview consists of three sections. Firstly, I’ll ask you some questions, then we’ll move on
to the demonstration, and finally I’ll ask some more questions.

Questions:
Before showing the web solution:

1. Can you give a short summary of your project?
a. Who was your group?

2. Can you summarize how your group has worked together?
a. How was each exercise structured?
b. Did you work sitting together or separately?

3. How has your group distributed their work?
a. Coding and hours spent
b. Did everyone contribute an equal amount to the programming?

4. What kind of visualizations can help you understand your progress as a group?
a. Would you like to view your group’s progress compared to other groups?

5. How would you visualize your data?
After showing the web solution:

1. How are the visualizations you are seeing aligned with your expectations of
visualizations of your progress/data?

2. Were you surprised to see any of the visualizations? Which ones?
3. Were you made aware of anything new from the visualizations ?
4. What conclusions do you think one can erroneously make from the visualizations?
5. Do you think you can make out which person is which student by viewing the

visualizations?

125

126

A.5 Results questionnaire IT2810

Rapport fra «Spørreundersøkelse om bruk av Git i IT2810»

Innhentede svar pr. 2. juli 2021 14:58

Hvorfor bruker du Git?

Svar fordelt på antall

Påstanden er ikke relevant for
meg

Veldig
uenig

Litt
uenig

Verken
eller

Litt enig
Veldig
enig

Det kreves i forbindelse med
skoleprosjekter *

0 2 2 6 12 26

Det er relevant for jobb etter studiet * 0 0 0 1 6 41

Jeg bruker det for egne prosjekter * 1 0 0 4 9 34

Det forenkler arbeid med andre * 0 0 0 0 8 40

Svar fordelt på prosent

Påstanden er ikke relevant for
meg

Veldig
uenig

Litt
uenig

Verken
eller

Litt enig
Veldig
enig

Det kreves i forbindelse med
skoleprosjekter *

0 % 4,2 % 4,2 % 12,5 % 25 % 54,2 %

Det er relevant for jobb etter studiet * 0 % 0 % 0 % 2,1 % 12,5 % 85,4 %

Jeg bruker det for egne prosjekter * 2,1 % 0 % 0 % 8,3 % 18,8 % 70,8 %

Det forenkler arbeid med andre * 0 % 0 % 0 % 0 % 16,7 % 83,3 %

Hvor erfaren vil du si at du er med bruk av Git? *
Svar Antall Prosent

Ikke erfaren 0

Litt erfaren 9

Ganske erfaren 32

Veldig erfaren 7

Hvor mye erfaring hadde du med webutvikling før du tok emnet? *
Svar Antall Prosent

Null erfaring 1

Litt erfaring 19

En del erfaring 20

Mye erfaring 8

Hvem arbeidet du på gruppe med? *
Svar Antall Prosent

Studenter jeg kjente fra før 33

Studenter jeg ikke kjente fra før 15

Hvordan arbeidet dere sammen? *
Svar Antall Prosent

Satt oftest hver for oss og jobbet 28

Leverte svar: 48

Påbegynte svar: 0

Antall invitasjoner sendt: 0

Med fritekstsvar

0 %

18,8 %

66,7 %

14,6 %

2,1 %

39,6 %

41,7 %

16,7 %

68,8 %

31,2 %

58,3 %

Spørreundersøkelse om bruk av Git i IT2810 – Rapport - Nettskjema https://nettskjema.no/user/form/submission/report.html?id=170303

1 of 6 7/2/21, 14:59127

Svar Antall Prosent

Satt oftest sammen og jobbet 20

Huk av de påstandene om å arbeide hver for seg som du kjenner deg igjen i *
Svar Antall Prosent

Jeg kunne enkelt kontakte gruppen min hvis jeg slet 23

Det var frustrerende å løse bugs alene 10

Det ble hver enkelt sitt ansvar å gjøre jobben sin 19

Det fungerte bra å jobbe alene 19

Det var demotiverende å jobbe alene 4

Gruppearbeidet ble mindre sosialt 12

Det gjorde arbeidet mitt mer effektivt 17

Det gjorde arbeidet mitt mindre effektivt 4

Det gjorde arbeidet mindre gøy å holde på med 4

Huk av de påstandene om å arbeide sammen som du kjenner deg igjen i *
Svar Antall Prosent

Det gjorde gruppearbeidet mer sosialt 19

Webutvikling var vanskelig å gjøre alene 7

Det gjorde det enklere å hjelpe hverandre med utviklingen 16

Jeg lærer bedre av å forklare og få forklart hvordan koden fungerer 10

Det gjorde det enklere å få alle til å jobbe like mye 9

Det ga en bedre oversikt over prosjektet 16

Det var bedre å være flere til å løse bugs som oppstod 13

Hvor enig er du i følgende påstander om måten gruppen din kommuniserte?

Svar fordelt på antall

Ikke relevant for
meg

Veldig
uenig

Litt
uenig

Verken
eller

Litt enig
Veldig
enig

Gruppen min kommuniserte godt i løpet av hvert prosjekt * 0 3 1 3 12 9

Gruppen min kommuniserte mest i starten av hvert prosjekt * 0 6 6 5 7 4

Gruppen min fordelte oppgaver, deretter arbeidet vi hver for
oss *

0 1 1 1 19 6

Jeg hadde god oversikt over prosjektets fremgang til enhver
tid *

0 1 4 4 9 10

Hele gruppen deltok i valg av teknologi og hva vi skulle
implementere *

0 1 1 2 9 15

Svar fordelt på prosent

Ikke relevant for
meg

Veldig
uenig

Litt
uenig

Verken
eller

Litt enig
Veldig
enig

Gruppen min kommuniserte godt i løpet av hvert prosjekt * 0 % 10,7 % 3,6 % 10,7 % 42,9 % 32,1 %

Gruppen min kommuniserte mest i starten av hvert prosjekt * 0 % 21,4 % 21,4 % 17,9 % 25 % 14,3 %

Gruppen min fordelte oppgaver, deretter arbeidet vi hver for
oss *

0 % 3,6 % 3,6 % 3,6 % 67,9 % 21,4 %

Jeg hadde god oversikt over prosjektets fremgang til enhver
tid *

0 % 3,6 % 14,3 % 14,3 % 32,1 % 35,7 %

Hele gruppen deltok i valg av teknologi og hva vi skulle
implementere *

0 % 3,6 % 3,6 % 7,1 % 32,1 % 53,6 %

Hvor enig er du i følgende påstander?

41,7 %

47,9 %

20,8 %

39,6 %

39,6 %

8,3 %

25 %

35,4 %

8,3 %

8,3 %

39,6 %

14,6 %

33,3 %

20,8 %

18,8 %

33,3 %

27,1 %

Spørreundersøkelse om bruk av Git i IT2810 – Rapport - Nettskjema https://nettskjema.no/user/form/submission/report.html?id=170303

2 of 6 7/2/21, 14:59

Svar fordelt på antall

Ikke relevant for
meg

Veldig
uenig

Litt
uenig

Verken
eller

Litt enig
Veldig
enig

Jeg måtte lære meg Git på egenhånd før jeg kunne starte med
prosjektet/utviklingen *

10 21 6 3 2 6

Git er lett å lære * 1 1 10 12 18 6

Git er lett å bruke * 1 1 4 7 25 10

Git er lett å forstå * 1 2 9 11 20 5

Jeg forstår hvordan Git fungerer * 0 1 2 3 16 26

Git er nødvendig for prosjektet jeg arbeider på * 0 0 0 3 10 35

Git hjelper meg i arbeidet mitt * 0 0 0 0 4 44

Git har gjort arbeid med andre enklere * 0 0 0 0 5 43

Git har vært demotiverende å bruke * 0 35 3 7 2 1

Git har vært tidvis frustrerende å bruke * 0 9 9 6 19 5

Git har bydd på mer trøbbel enn det har gitt belønning * 0 39 7 1 1 0

Git gjør utviklingsprosessen enklere * 0 1 0 1 10 36

Git gjør utviklingsprosessen mer effektiv * 0 0 0 3 8 37

Git har tillatt meg å fokusere på oppgaven jeg skal løse * 0 1 2 11 12 22

Git forhindret meg i å fokusere på webutvikling * 0 32 9 7 0 0

Jeg vet hva som er god Git praksis/Jeg har en mening om hva
som er god Git praksis *

0 0 3 5 20 20

Jeg har blitt flinkere til å bruke Git i løpet av Webutvikling * 2 3 5 10 15 13

Webutvikling har gjort fordelene med Git mer tydelige * 1 2 5 23 11 6

Det har vært gøy å bruke Git i utviklingsprosessen * 2 0 1 15 14 16

Jeg skulle ønske Git ble bedre forklart tidligere i studieløpet * 2 2 4 11 5 24

Svar fordelt på prosent

Ikke relevant for
meg

Veldig
uenig

Litt
uenig

Verken
eller

Litt enig
Veldig
enig

Jeg måtte lære meg Git på egenhånd før jeg kunne starte med
prosjektet/utviklingen *

20,8 % 43,8 % 12,5 % 6,2 % 4,2 % 12,5 %

Git er lett å lære * 2,1 % 2,1 % 20,8 % 25 % 37,5 % 12,5 %

Git er lett å bruke * 2,1 % 2,1 % 8,3 % 14,6 % 52,1 % 20,8 %

Git er lett å forstå * 2,1 % 4,2 % 18,8 % 22,9 % 41,7 % 10,4 %

Jeg forstår hvordan Git fungerer * 0 % 2,1 % 4,2 % 6,2 % 33,3 % 54,2 %

Git er nødvendig for prosjektet jeg arbeider på * 0 % 0 % 0 % 6,2 % 20,8 % 72,9 %

Git hjelper meg i arbeidet mitt * 0 % 0 % 0 % 0 % 8,3 % 91,7 %

Git har gjort arbeid med andre enklere * 0 % 0 % 0 % 0 % 10,4 % 89,6 %

Git har vært demotiverende å bruke * 0 % 72,9 % 6,2 % 14,6 % 4,2 % 2,1 %

Git har vært tidvis frustrerende å bruke * 0 % 18,8 % 18,8 % 12,5 % 39,6 % 10,4 %

Git har bydd på mer trøbbel enn det har gitt belønning * 0 % 81,2 % 14,6 % 2,1 % 2,1 % 0 %

Git gjør utviklingsprosessen enklere * 0 % 2,1 % 0 % 2,1 % 20,8 % 75 %

Git gjør utviklingsprosessen mer effektiv * 0 % 0 % 0 % 6,2 % 16,7 % 77,1 %

Git har tillatt meg å fokusere på oppgaven jeg skal løse * 0 % 2,1 % 4,2 % 22,9 % 25 % 45,8 %

Git forhindret meg i å fokusere på webutvikling * 0 % 66,7 % 18,8 % 14,6 % 0 % 0 %

Jeg vet hva som er god Git praksis/Jeg har en mening om hva
som er god Git praksis *

0 % 0 % 6,2 % 10,4 % 41,7 % 41,7 %

Jeg har blitt flinkere til å bruke Git i løpet av Webutvikling * 4,2 % 6,2 % 10,4 % 20,8 % 31,2 % 27,1 %

Webutvikling har gjort fordelene med Git mer tydelige * 2,1 % 4,2 % 10,4 % 47,9 % 22,9 % 12,5 %

Det har vært gøy å bruke Git i utviklingsprosessen * 4,2 % 0 % 2,1 % 31,2 % 29,2 % 33,3 %

Jeg skulle ønske Git ble bedre forklart tidligere i studieløpet * 4,2 % 4,2 % 8,3 % 22,9 % 10,4 % 50 %

Spørreundersøkelse om bruk av Git i IT2810 – Rapport - Nettskjema https://nettskjema.no/user/form/submission/report.html?id=170303

3 of 6 7/2/21, 14:59

Hvordan brukte du/gruppen din Git/GitLab?

Svar fordelt på antall

Ikke brukt Brukte noen ganger Brukte ofte Brukte hele tiden

Tilbakemeldinger på merge requests * 19 10 10 9

Issues for å dele opp oppgaver * 0 3 12 33

Task board for oversikt av issues * 12 8 6 22

Løse merge conflicts * 2 15 11 20

Issues ble tagget i commit-meldinger * 5 6 16 21

Arbeid på separate branches * 0 1 7 40

Svar fordelt på prosent

Ikke brukt Brukte noen ganger Brukte ofte Brukte hele tiden

Tilbakemeldinger på merge requests * 39,6 % 20,8 % 20,8 % 18,8 %

Issues for å dele opp oppgaver * 0 % 6,2 % 25 % 68,8 %

Task board for oversikt av issues * 25 % 16,7 % 12,5 % 45,8 %

Løse merge conflicts * 4,2 % 31,2 % 22,9 % 41,7 %

Issues ble tagget i commit-meldinger * 10,4 % 12,5 % 33,3 % 43,8 %

Arbeid på separate branches * 0 % 2,1 % 14,6 % 83,3 %

Hvor enig er du i følgende påstander?

Svar fordelt på antall

Ikke relevant for
meg

Veldig
uenig

Litt
uenig

Verken
eller

Litt enig
Veldig
enig

Jeg vil bare dele kode jeg er trygg på at er god * 1 3 11 9 16 8

Jeg synes det er greit at gruppemedlemmer ser koden jeg har
skrevet *

1 0 0 1 7 39

Jeg synes det er greit at faglærer får se hvordan jeg jobber
gjennom Git-historikken min *

1 0 2 4 8 33

Jeg synes det er greit at fremmede ser koden jeg har skrevet * 1 0 2 7 15 23

Jeg er komfortabel med å gi tilbakemeldinger på andres kode * 1 0 9 3 15 20

Jeg synes det var vanskelig å vurdere kvaliteten på andres kode * 1 3 11 7 20 6

Jeg er komfortabel med å gi tilbakemeldinger på kode skrevet av
noen jeg ikke kjenner *

1 0 6 4 21 16

Jeg vil bare gi tilbakemeldinger på kode skrevet av noen jeg
kjenner *

1 26 8 10 3 0

Jeg er komfortabel med å få kritikk mot egen kode * 1 0 2 1 20 24

Jeg tar meg nær av tilbakemeldinger som går på kvaliteten av
koden min *

1 13 15 13 4 2

Jeg ble bedre i webutvikling av å vurdere andres kode * 2 4 5 6 22 9

Jeg får tilbakemeldinger som hjelper meg med å forbedre koden
min *

2 2 11 5 21 7

Jeg opplevde tilbakemeldingene jeg fikk som nyttige * 2 1 6 8 24 7

Jeg var enig i tilbakemeldingene jeg fikk på innleveringene mine * 1 1 6 9 28 3

Det er mer komfortabelt å gi tilbakemeldinger som anonym * 1 0 0 6 12 29

Svar fordelt på prosent

Ikke relevant for
meg

Veldig
uenig

Litt
uenig

Verken
eller

Litt enig
Veldig
enig

Jeg vil bare dele kode jeg er trygg på at er god * 2,1 % 6,2 % 22,9 % 18,8 % 33,3 % 16,7 %

Jeg synes det er greit at gruppemedlemmer ser koden jeg har
skrevet *

2,1 % 0 % 0 % 2,1 % 14,6 % 81,2 %

Spørreundersøkelse om bruk av Git i IT2810 – Rapport - Nettskjema https://nettskjema.no/user/form/submission/report.html?id=170303

4 of 6 7/2/21, 14:59

Jeg synes det er greit at faglærer får se hvordan jeg jobber
gjennom Git-historikken min *

2,1 % 0 % 4,2 % 8,3 % 16,7 % 68,8 %

Jeg synes det er greit at fremmede ser koden jeg har skrevet * 2,1 % 0 % 4,2 % 14,6 % 31,2 % 47,9 %

Jeg er komfortabel med å gi tilbakemeldinger på andres kode * 2,1 % 0 % 18,8 % 6,2 % 31,2 % 41,7 %

Jeg synes det var vanskelig å vurdere kvaliteten på andres kode * 2,1 % 6,2 % 22,9 % 14,6 % 41,7 % 12,5 %

Jeg er komfortabel med å gi tilbakemeldinger på kode skrevet av
noen jeg ikke kjenner *

2,1 % 0 % 12,5 % 8,3 % 43,8 % 33,3 %

Jeg vil bare gi tilbakemeldinger på kode skrevet av noen jeg
kjenner *

2,1 % 54,2 % 16,7 % 20,8 % 6,2 % 0 %

Jeg er komfortabel med å få kritikk mot egen kode * 2,1 % 0 % 4,2 % 2,1 % 41,7 % 50 %

Jeg tar meg nær av tilbakemeldinger som går på kvaliteten av
koden min *

2,1 % 27,1 % 31,2 % 27,1 % 8,3 % 4,2 %

Jeg ble bedre i webutvikling av å vurdere andres kode * 4,2 % 8,3 % 10,4 % 12,5 % 45,8 % 18,8 %

Jeg får tilbakemeldinger som hjelper meg med å forbedre koden
min *

4,2 % 4,2 % 22,9 % 10,4 % 43,8 % 14,6 %

Jeg opplevde tilbakemeldingene jeg fikk som nyttige * 4,2 % 2,1 % 12,5 % 16,7 % 50 % 14,6 %

Jeg var enig i tilbakemeldingene jeg fikk på innleveringene mine * 2,1 % 2,1 % 12,5 % 18,8 % 58,3 % 6,2 %

Det er mer komfortabelt å gi tilbakemeldinger som anonym * 2,1 % 0 % 0 % 12,5 % 25 % 60,4 %

Hvor enig er du i følgende påstander?

Svar fordelt på antall

Ikke relevant
for meg

Veldig
uenig

Litt
uenig

Verken
eller

Litt enig
Veldig
enig

GitLab gjør det enklere å følge opp fremgangen på
kodebasen/prosjektet *

1 0 0 3 14 30

GitLab har gjort det enklere å dele opp utviklingsoppgaver i mindre
oppgaver *

1 0 2 0 15 30

GitLab gjør det enklere å fordele arbeidsoppgaver * 1 0 0 6 14 27

Gruppen min brukte funksjonaliteten til GitLab til arbeidsfordeling * 1 0 0 3 20 24

GitLab gjør gruppearbeid med fremmede enklere * 10 0 1 2 6 29

GitLab gjør samarbeidet mer konkurrerende(Antall commits, antall
issues fullført, linjer kode osv.) *

1 9 9 10 15 4

Git fungerer best hvis alle gruppemedlemmer ligger på samme
ferdighetsnivå *

2 1 9 12 16 8

GitLab gjør det enklere å arbeide sammen med noen som er på et
lavere ferdighetsnivå enn deg selv *

3 1 6 18 13 7

GitLab gjør det vanskeligere å arbeide sammen med noen som er på et
lavere ferdighetsnivå enn deg selv *

3 8 12 19 4 2

Utvikling med GitLab gjør gruppemedlemmer som får til mindre til
syndebukker *

2 5 17 8 14 2

Git gjør forskjeller i ferdighetsnivå mer synlig * 1 2 2 7 27 9

Arbeid med GitLab gjør det verre å være på et lavere ferdighetsnivå enn
sine gruppemedlemmer *

5 7 7 16 9 4

Git gjør det enklere å jobbe distribuert(Ikke på fysisk samme plass) * 1 1 0 1 6 39

GitLab gjør prosjektarbeidet mindre sosialt(Gjennom å jobbe adskilt og
mindre behov for å møtes) *

3 10 15 12 7 1

Git fører til at de flinkeste overkjører de dårligste i
utviklingsprosessen(Skrive om mye kode, gjør mye av arbeidet selv
osv.) *

2 8 7 9 18 4

Alle på gruppen min bidro omtrent like mye til prosjektene våre * 1 7 10 6 17 7

Gruppen min hjalp hverandre med å lære * 1 1 3 4 18 21

Alle på gruppen min var på omtrent samme nivå * 1 6 11 9 15 6

Svar fordelt på prosent

Ikke relevant
for meg

Veldig
uenig

Litt
uenig

Verken
eller

Litt enig
Veldig
enig

Spørreundersøkelse om bruk av Git i IT2810 – Rapport - Nettskjema https://nettskjema.no/user/form/submission/report.html?id=170303

5 of 6 7/2/21, 14:59

GitLab gjør det enklere å følge opp fremgangen på
kodebasen/prosjektet *

2,1 % 0 % 0 % 6,2 % 29,2 % 62,5 %

GitLab har gjort det enklere å dele opp utviklingsoppgaver i mindre
oppgaver *

2,1 % 0 % 4,2 % 0 % 31,2 % 62,5 %

GitLab gjør det enklere å fordele arbeidsoppgaver * 2,1 % 0 % 0 % 12,5 % 29,2 % 56,2 %

Gruppen min brukte funksjonaliteten til GitLab til arbeidsfordeling * 2,1 % 0 % 0 % 6,2 % 41,7 % 50 %

GitLab gjør gruppearbeid med fremmede enklere * 20,8 % 0 % 2,1 % 4,2 % 12,5 % 60,4 %

GitLab gjør samarbeidet mer konkurrerende(Antall commits, antall
issues fullført, linjer kode osv.) *

2,1 % 18,8 % 18,8 % 20,8 % 31,2 % 8,3 %

Git fungerer best hvis alle gruppemedlemmer ligger på samme
ferdighetsnivå *

4,2 % 2,1 % 18,8 % 25 % 33,3 % 16,7 %

GitLab gjør det enklere å arbeide sammen med noen som er på et
lavere ferdighetsnivå enn deg selv *

6,2 % 2,1 % 12,5 % 37,5 % 27,1 % 14,6 %

GitLab gjør det vanskeligere å arbeide sammen med noen som er på et
lavere ferdighetsnivå enn deg selv *

6,2 % 16,7 % 25 % 39,6 % 8,3 % 4,2 %

Utvikling med GitLab gjør gruppemedlemmer som får til mindre til
syndebukker *

4,2 % 10,4 % 35,4 % 16,7 % 29,2 % 4,2 %

Git gjør forskjeller i ferdighetsnivå mer synlig * 2,1 % 4,2 % 4,2 % 14,6 % 56,2 % 18,8 %

Arbeid med GitLab gjør det verre å være på et lavere ferdighetsnivå enn
sine gruppemedlemmer *

10,4 % 14,6 % 14,6 % 33,3 % 18,8 % 8,3 %

Git gjør det enklere å jobbe distribuert(Ikke på fysisk samme plass) * 2,1 % 2,1 % 0 % 2,1 % 12,5 % 81,2 %

GitLab gjør prosjektarbeidet mindre sosialt(Gjennom å jobbe adskilt og
mindre behov for å møtes) *

6,2 % 20,8 % 31,2 % 25 % 14,6 % 2,1 %

Git fører til at de flinkeste overkjører de dårligste i
utviklingsprosessen(Skrive om mye kode, gjør mye av arbeidet selv
osv.) *

4,2 % 16,7 % 14,6 % 18,8 % 37,5 % 8,3 %

Alle på gruppen min bidro omtrent like mye til prosjektene våre * 2,1 % 14,6 % 20,8 % 12,5 % 35,4 % 14,6 %

Gruppen min hjalp hverandre med å lære * 2,1 % 2,1 % 6,2 % 8,3 % 37,5 % 43,8 %

Alle på gruppen min var på omtrent samme nivå * 2,1 % 12,5 % 22,9 % 18,8 % 31,2 % 12,5 %

For å bli med i trekning av gavekort, bruker du lenken du får tilsendt i epost-kvitteringen du mottar når du har sendt inn svaret ditt.

Se nylige endringer i Nettskjema

Spørreundersøkelse om bruk av Git i IT2810 – Rapport - Nettskjema https://nettskjema.no/user/form/submission/report.html?id=170303

6 of 6 7/2/21, 14:59

133

A.6 Results questionnaire TDT4140

Rapport fra «Spørreundersøkelse om bruk av Git i TDT4140»

Innhentede svar pr. 2. juli 2021 14:58

Hvorfor bruker du Git?

Svar fordelt på antall

Påstanden er ikke relevant for
meg

Veldig
uenig

Litt
uenig

Verken
eller

Litt enig
Veldig
enig

Det kreves i forbindelse med
skoleprosjekter *

0 2 0 1 13 27

Det er relevant for jobb etter studiet * 0 1 2 3 18 19

Jeg bruker det for egne prosjekter * 4 7 6 7 11 8

Det forenkler arbeid med andre * 0 0 0 0 13 30

Svar fordelt på prosent

Påstanden er ikke relevant for
meg

Veldig
uenig

Litt
uenig

Verken
eller

Litt enig
Veldig
enig

Det kreves i forbindelse med
skoleprosjekter *

0 % 4,7 % 0 % 2,3 % 30,2 % 62,8 %

Det er relevant for jobb etter studiet * 0 % 2,3 % 4,7 % 7 % 41,9 % 44,2 %

Jeg bruker det for egne prosjekter * 9,3 % 16,3 % 14 % 16,3 % 25,6 % 18,6 %

Det forenkler arbeid med andre * 0 % 0 % 0 % 0 % 30,2 % 69,8 %

Hvor erfaren vil du si at du er med bruk av Git? *
Svar Antall Prosent

Ikke erfaren 6

Litt erfaren 25

Ganske erfaren 9

Veldig erfaren 3

Hvor mye erfaring hadde du med webutvikling før du tok emnet? *
Svar Antall Prosent

Null erfaring 17

Litt erfaring 19

En del erfaring 6

Mye erfaring 1

Hvordan arbeidet dere sammen? *
Svar Antall Prosent

Satt oftest hver for oss og jobbet 11

Satt oftest sammen og jobbet 8

Satt både mye sammen og mye adskilt 24

Huk av de påstandene om å arbeide hver for seg som du kjenner deg igjen i *
Svar Antall Prosent

Leverte svar: 43

Påbegynte svar: 0

Antall invitasjoner sendt: 0

Med fritekstsvar

14 %

58,1 %

20,9 %

7 %

39,5 %

44,2 %

14 %

2,3 %

25,6 %

18,6 %

55,8 %

Spørreundersøkelse om bruk av Git i TDT4140 – Rapport - Nettskjema https://nettskjema.no/user/form/submission/report.html?id=203071

1 of 6 7/2/21, 15:00134

Svar Antall Prosent

Jeg kunne enkelt kontakte gruppen min hvis jeg slet 9

Det var frustrerende å løse bugs alene 4

Det ble hver enkelt sitt ansvar å gjøre jobben sin 6

Det fungerte bra å jobbe alene 5

Det var demotiverende å jobbe alene 1

Gruppearbeidet ble mindre sosialt når vi satt adskilt 10

Git/GitLab gjorde arbeidet mitt mer effektivt 9

Git/GitLab gjorde arbeidet mitt mindre effektivt 0

Git/GitLab gjorde arbeidet mindre gøy å holde på med 1

Huk av de påstandene om å arbeide sammen som du kjenner deg igjen i *
Svar Antall Prosent

Git/GitLab gjorde gruppearbeidet mer sosialt 3

Programmering var vanskelig å gjøre alene 4

Git/GitLab gjorde det enklere å hjelpe hverandre med utviklingen 9

Jeg lærer bedre av å forklare og få forklart hvordan koden fungerer 5

Git/GitLab gjorde det enklere å få alle til å jobbe like mye 4

Git/GitLab ga en bedre oversikt over prosjektet 11

Det var bedre å være flere til å løse bugs som oppstod 5

Hvor enig er du i følgende påstander om måten gruppen din kommuniserte?

Svar fordelt på antall

Ikke relevant for
meg

Veldig
uenig

Litt
uenig

Verken
eller

Litt enig
Veldig
enig

Gruppen min kommuniserte godt i løpet av hver sprint * 0 1 0 1 7 2

Gruppen min kommuniserte mest i starten av hver sprint * 0 1 2 1 5 2

Gruppen min fordelte oppgaver, deretter arbeidet vi hver for
oss *

0 0 1 2 6 2

Jeg hadde god oversikt over prosjektets fremgang til enhver
tid *

0 1 2 2 6 0

Hele gruppen deltok i valg av teknologi * 0 1 2 2 3 3

Svar fordelt på prosent

Ikke relevant for
meg

Veldig
uenig

Litt
uenig

Verken
eller

Litt enig
Veldig
enig

Gruppen min kommuniserte godt i løpet av hver sprint * 0 % 9,1 % 0 % 9,1 % 63,6 % 18,2 %

Gruppen min kommuniserte mest i starten av hver sprint * 0 % 9,1 % 18,2 % 9,1 % 45,5 % 18,2 %

Gruppen min fordelte oppgaver, deretter arbeidet vi hver for
oss *

0 % 0 % 9,1 % 18,2 % 54,5 % 18,2 %

Jeg hadde god oversikt over prosjektets fremgang til enhver
tid *

0 % 9,1 % 18,2 % 18,2 % 54,5 % 0 %

Hele gruppen deltok i valg av teknologi * 0 % 9,1 % 18,2 % 18,2 % 27,3 % 27,3 %

Hvor enig er du i følgende påstander?

Svar fordelt på antall

Ikke relevant for
meg

Veldig
uenig

Litt
uenig

Verken
eller

Litt enig
Veldig
enig

Jeg måtte lære meg Git på egenhånd før jeg kunne starte med
prosjektet/utviklingen *

4 8 8 10 8 5

20,9 %

9,3 %

14 %

11,6 %

2,3 %

23,3 %

20,9 %

0 %

2,3 %

7 %

9,3 %

20,9 %

11,6 %

9,3 %

25,6 %

11,6 %

Spørreundersøkelse om bruk av Git i TDT4140 – Rapport - Nettskjema https://nettskjema.no/user/form/submission/report.html?id=203071

2 of 6 7/2/21, 15:00

Git er lett å lære * 0 2 13 14 14 0

Git er lett å bruke * 0 2 6 12 21 2

Git er lett å forstå * 0 5 13 9 15 1

Jeg forstår hvordan Git fungerer * 0 2 6 7 22 6

Git er nødvendig for prosjektet jeg arbeidet på * 0 0 2 2 9 30

Git hjelper meg i arbeidet mitt * 0 0 1 1 17 24

Git har gjort arbeid med andre enklere * 0 0 1 2 12 28

Git har vært demotiverende å bruke * 0 21 5 9 7 1

Git har vært tidvis frustrerende å bruke * 0 4 9 5 16 9

Git har bydd på mer trøbbel enn det har gitt belønning * 0 24 13 3 2 1

Git gjør utviklingsprosessen enklere * 0 0 0 4 17 22

Git gjør utviklingsprosessen mer effektiv * 0 0 0 5 17 21

Git har tillatt meg å fokusere på oppgaven jeg skal løse * 0 0 3 15 19 6

Git forhindret meg i å fokusere på programmeringen * 0 15 18 6 4 0

Jeg vet hva som er god Git praksis/Jeg har en mening om hva
som er god Git praksis *

0 1 13 6 21 2

Jeg har blitt flinkere til å bruke Git i løpet av
Programvareutvikling *

0 1 1 5 17 19

Programmering har gjort fordelene med Git mer tydelige * 1 0 1 12 21 8

Det har vært gøy å bruke Git i utviklingsprosessen * 0 2 5 16 15 5

Jeg skulle ønske Git ble bedre forklart tidligere i studieløpet * 0 0 0 4 9 30

Svar fordelt på prosent

Ikke relevant for
meg

Veldig
uenig

Litt
uenig

Verken
eller

Litt enig
Veldig
enig

Jeg måtte lære meg Git på egenhånd før jeg kunne starte med
prosjektet/utviklingen *

9,3 % 18,6 % 18,6 % 23,3 % 18,6 % 11,6 %

Git er lett å lære * 0 % 4,7 % 30,2 % 32,6 % 32,6 % 0 %

Git er lett å bruke * 0 % 4,7 % 14 % 27,9 % 48,8 % 4,7 %

Git er lett å forstå * 0 % 11,6 % 30,2 % 20,9 % 34,9 % 2,3 %

Jeg forstår hvordan Git fungerer * 0 % 4,7 % 14 % 16,3 % 51,2 % 14 %

Git er nødvendig for prosjektet jeg arbeidet på * 0 % 0 % 4,7 % 4,7 % 20,9 % 69,8 %

Git hjelper meg i arbeidet mitt * 0 % 0 % 2,3 % 2,3 % 39,5 % 55,8 %

Git har gjort arbeid med andre enklere * 0 % 0 % 2,3 % 4,7 % 27,9 % 65,1 %

Git har vært demotiverende å bruke * 0 % 48,8 % 11,6 % 20,9 % 16,3 % 2,3 %

Git har vært tidvis frustrerende å bruke * 0 % 9,3 % 20,9 % 11,6 % 37,2 % 20,9 %

Git har bydd på mer trøbbel enn det har gitt belønning * 0 % 55,8 % 30,2 % 7 % 4,7 % 2,3 %

Git gjør utviklingsprosessen enklere * 0 % 0 % 0 % 9,3 % 39,5 % 51,2 %

Git gjør utviklingsprosessen mer effektiv * 0 % 0 % 0 % 11,6 % 39,5 % 48,8 %

Git har tillatt meg å fokusere på oppgaven jeg skal løse * 0 % 0 % 7 % 34,9 % 44,2 % 14 %

Git forhindret meg i å fokusere på programmeringen * 0 % 34,9 % 41,9 % 14 % 9,3 % 0 %

Jeg vet hva som er god Git praksis/Jeg har en mening om hva
som er god Git praksis *

0 % 2,3 % 30,2 % 14 % 48,8 % 4,7 %

Jeg har blitt flinkere til å bruke Git i løpet av
Programvareutvikling *

0 % 2,3 % 2,3 % 11,6 % 39,5 % 44,2 %

Programmering har gjort fordelene med Git mer tydelige * 2,3 % 0 % 2,3 % 27,9 % 48,8 % 18,6 %

Det har vært gøy å bruke Git i utviklingsprosessen * 0 % 4,7 % 11,6 % 37,2 % 34,9 % 11,6 %

Jeg skulle ønske Git ble bedre forklart tidligere i studieløpet * 0 % 0 % 0 % 9,3 % 20,9 % 69,8 %

Hvordan brukte du/gruppen din Git/GitLab?

Svar fordelt på antall

Ikke brukt Brukte noen ganger Brukte ofte Brukte hele tiden

Spørreundersøkelse om bruk av Git i TDT4140 – Rapport - Nettskjema https://nettskjema.no/user/form/submission/report.html?id=203071

3 of 6 7/2/21, 15:00

Tilbakemeldinger på merge requests * 10 20 7 6

Issues for å dele opp oppgaver * 2 6 6 29

Task board for oversikt av issues * 5 4 9 25

Løse merge conflicts * 2 12 14 15

Issues ble tagget i commit-meldinger * 7 11 9 16

Arbeid på separate branches * 0 0 5 38

Svar fordelt på prosent

Ikke brukt Brukte noen ganger Brukte ofte Brukte hele tiden

Tilbakemeldinger på merge requests * 23,3 % 46,5 % 16,3 % 14 %

Issues for å dele opp oppgaver * 4,7 % 14 % 14 % 67,4 %

Task board for oversikt av issues * 11,6 % 9,3 % 20,9 % 58,1 %

Løse merge conflicts * 4,7 % 27,9 % 32,6 % 34,9 %

Issues ble tagget i commit-meldinger * 16,3 % 25,6 % 20,9 % 37,2 %

Arbeid på separate branches * 0 % 0 % 11,6 % 88,4 %

Hvor enig er du i følgende påstander?

Svar fordelt på antall

Ikke relevant for
meg

Veldig
uenig

Litt
uenig

Verken
eller

Litt enig
Veldig
enig

Jeg vil bare dele kode jeg er trygg på at er god * 1 3 7 6 21 5

Jeg synes det er greit at gruppemedlemmer ser koden jeg har
skrevet *

0 0 0 2 11 30

Jeg synes det er greit at faglærer får se hvordan jeg jobber
gjennom Git-historikken min *

0 0 4 4 16 19

Jeg synes det er greit at fremmede ser koden jeg har skrevet * 0 1 5 8 18 11

Jeg er komfortabel med å gi tilbakemeldinger på andres kode * 0 2 9 5 17 10

Jeg synes det var vanskelig å vurdere kvaliteten på andres kode * 0 1 4 6 25 7

Jeg er komfortabel med å gi tilbakemeldinger på kode skrevet av
noen jeg ikke kjenner *

0 3 7 8 18 7

Jeg vil bare gi tilbakemeldinger på kode skrevet av noen jeg
kjenner *

0 9 17 8 7 2

Jeg er komfortabel med å få kritikk mot egen kode * 0 0 2 4 19 18

Jeg tar meg nær av tilbakemeldinger som går på kvaliteten av
koden min *

0 18 14 8 3 0

Jeg ble bedre i programmering av å vurdere andres kode * 6 0 2 9 20 6

Jeg får tilbakemeldinger som hjelper meg med å forbedre koden
min *

4 0 6 11 16 6

Jeg opplevde tilbakemeldingene jeg fikk som nyttige * 7 0 1 9 18 8

Jeg var enig i tilbakemeldingene jeg fikk på innleveringene mine * 6 0 6 11 12 8

Det er mer komfortabelt å gi tilbakemeldinger som anonym * 2 0 8 13 12 8

Svar fordelt på prosent

Ikke relevant for
meg

Veldig
uenig

Litt
uenig

Verken
eller

Litt enig
Veldig
enig

Jeg vil bare dele kode jeg er trygg på at er god * 2,3 % 7 % 16,3 % 14 % 48,8 % 11,6 %

Jeg synes det er greit at gruppemedlemmer ser koden jeg har
skrevet *

0 % 0 % 0 % 4,7 % 25,6 % 69,8 %

Jeg synes det er greit at faglærer får se hvordan jeg jobber
gjennom Git-historikken min *

0 % 0 % 9,3 % 9,3 % 37,2 % 44,2 %

Jeg synes det er greit at fremmede ser koden jeg har skrevet * 0 % 2,3 % 11,6 % 18,6 % 41,9 % 25,6 %

Jeg er komfortabel med å gi tilbakemeldinger på andres kode * 0 % 4,7 % 20,9 % 11,6 % 39,5 % 23,3 %

Jeg synes det var vanskelig å vurdere kvaliteten på andres kode * 0 % 2,3 % 9,3 % 14 % 58,1 % 16,3 %

Spørreundersøkelse om bruk av Git i TDT4140 – Rapport - Nettskjema https://nettskjema.no/user/form/submission/report.html?id=203071

4 of 6 7/2/21, 15:00

Jeg er komfortabel med å gi tilbakemeldinger på kode skrevet av
noen jeg ikke kjenner *

0 % 7 % 16,3 % 18,6 % 41,9 % 16,3 %

Jeg vil bare gi tilbakemeldinger på kode skrevet av noen jeg
kjenner *

0 % 20,9 % 39,5 % 18,6 % 16,3 % 4,7 %

Jeg er komfortabel med å få kritikk mot egen kode * 0 % 0 % 4,7 % 9,3 % 44,2 % 41,9 %

Jeg tar meg nær av tilbakemeldinger som går på kvaliteten av
koden min *

0 % 41,9 % 32,6 % 18,6 % 7 % 0 %

Jeg ble bedre i programmering av å vurdere andres kode * 14 % 0 % 4,7 % 20,9 % 46,5 % 14 %

Jeg får tilbakemeldinger som hjelper meg med å forbedre koden
min *

9,3 % 0 % 14 % 25,6 % 37,2 % 14 %

Jeg opplevde tilbakemeldingene jeg fikk som nyttige * 16,3 % 0 % 2,3 % 20,9 % 41,9 % 18,6 %

Jeg var enig i tilbakemeldingene jeg fikk på innleveringene mine * 14 % 0 % 14 % 25,6 % 27,9 % 18,6 %

Det er mer komfortabelt å gi tilbakemeldinger som anonym * 4,7 % 0 % 18,6 % 30,2 % 27,9 % 18,6 %

Hvor enig er du i følgende påstander?

Svar fordelt på antall

Ikke relevant
for meg

Veldig
uenig

Litt
uenig

Verken
eller

Litt enig
Veldig
enig

GitLab gjør det enklere å følge opp fremgangen på
kodebasen/prosjektet *

0 0 1 1 20 21

GitLab har gjort det enklere å dele opp utviklingsoppgaver i mindre
oppgaver *

0 1 3 7 15 17

GitLab gjør det enklere å fordele arbeidsoppgaver * 0 1 2 3 18 19

Gruppen min brukte funksjonaliteten til GitLab til arbeidsfordeling * 0 2 8 1 15 17

GitLab gjør gruppearbeid med fremmede enklere * 1 0 1 5 18 18

GitLab gjør samarbeidet mer konkurrerende(Antall commits, antall
issues fullført, linjer kode osv.) *

1 9 10 11 9 3

Git fungerer best hvis alle gruppemedlemmer ligger på samme
ferdighetsnivå *

1 1 8 12 13 8

GitLab gjør det enklere å arbeide sammen med noen som er på et
lavere ferdighetsnivå enn deg selv *

1 0 12 19 11 0

GitLab gjør det vanskeligere å arbeide sammen med noen som er på et
lavere ferdighetsnivå enn deg selv *

1 0 12 17 12 1

Utvikling med GitLab gjør gruppemedlemmer som får til mindre til
syndebukker *

0 8 14 9 12 0

Git gjør forskjeller i ferdighetsnivå mer synlig * 0 1 2 5 27 8

Arbeid med GitLab gjør det verre å være på et lavere ferdighetsnivå enn
sine gruppemedlemmer *

2 3 6 14 17 1

Git gjør det enklere å jobbe distribuert(Ikke på fysisk samme plass) * 0 0 0 3 14 26

GitLab gjør prosjektarbeidet mindre sosialt(Gjennom å jobbe adskilt og
mindre behov for å møtes) *

1 6 8 13 15 0

Git fører til at de flinkeste overkjører de dårligste i
utviklingsprosessen(Skrive om mye kode, gjør mye av arbeidet selv
osv.) *

0 2 13 12 12 4

Alle på gruppen min bidro omtrent like mye til prosjektene våre * 0 11 16 6 9 1

Gruppen min hjalp hverandre med å lære * 0 0 1 1 24 17

Alle på gruppen min var på omtrent samme nivå * 0 21 12 3 6 1

Svar fordelt på prosent

Ikke relevant
for meg

Veldig
uenig

Litt
uenig

Verken
eller

Litt enig
Veldig
enig

GitLab gjør det enklere å følge opp fremgangen på
kodebasen/prosjektet *

0 % 0 % 2,3 % 2,3 % 46,5 % 48,8 %

GitLab har gjort det enklere å dele opp utviklingsoppgaver i mindre
oppgaver *

0 % 2,3 % 7 % 16,3 % 34,9 % 39,5 %

GitLab gjør det enklere å fordele arbeidsoppgaver * 0 % 2,3 % 4,7 % 7 % 41,9 % 44,2 %

Gruppen min brukte funksjonaliteten til GitLab til arbeidsfordeling * 0 % 4,7 % 18,6 % 2,3 % 34,9 % 39,5 %

Spørreundersøkelse om bruk av Git i TDT4140 – Rapport - Nettskjema https://nettskjema.no/user/form/submission/report.html?id=203071

5 of 6 7/2/21, 15:00

GitLab gjør gruppearbeid med fremmede enklere * 2,3 % 0 % 2,3 % 11,6 % 41,9 % 41,9 %

GitLab gjør samarbeidet mer konkurrerende(Antall commits, antall
issues fullført, linjer kode osv.) *

2,3 % 20,9 % 23,3 % 25,6 % 20,9 % 7 %

Git fungerer best hvis alle gruppemedlemmer ligger på samme
ferdighetsnivå *

2,3 % 2,3 % 18,6 % 27,9 % 30,2 % 18,6 %

GitLab gjør det enklere å arbeide sammen med noen som er på et
lavere ferdighetsnivå enn deg selv *

2,3 % 0 % 27,9 % 44,2 % 25,6 % 0 %

GitLab gjør det vanskeligere å arbeide sammen med noen som er på et
lavere ferdighetsnivå enn deg selv *

2,3 % 0 % 27,9 % 39,5 % 27,9 % 2,3 %

Utvikling med GitLab gjør gruppemedlemmer som får til mindre til
syndebukker *

0 % 18,6 % 32,6 % 20,9 % 27,9 % 0 %

Git gjør forskjeller i ferdighetsnivå mer synlig * 0 % 2,3 % 4,7 % 11,6 % 62,8 % 18,6 %

Arbeid med GitLab gjør det verre å være på et lavere ferdighetsnivå enn
sine gruppemedlemmer *

4,7 % 7 % 14 % 32,6 % 39,5 % 2,3 %

Git gjør det enklere å jobbe distribuert(Ikke på fysisk samme plass) * 0 % 0 % 0 % 7 % 32,6 % 60,5 %

GitLab gjør prosjektarbeidet mindre sosialt(Gjennom å jobbe adskilt og
mindre behov for å møtes) *

2,3 % 14 % 18,6 % 30,2 % 34,9 % 0 %

Git fører til at de flinkeste overkjører de dårligste i
utviklingsprosessen(Skrive om mye kode, gjør mye av arbeidet selv
osv.) *

0 % 4,7 % 30,2 % 27,9 % 27,9 % 9,3 %

Alle på gruppen min bidro omtrent like mye til prosjektene våre * 0 % 25,6 % 37,2 % 14 % 20,9 % 2,3 %

Gruppen min hjalp hverandre med å lære * 0 % 0 % 2,3 % 2,3 % 55,8 % 39,5 %

Alle på gruppen min var på omtrent samme nivå * 0 % 48,8 % 27,9 % 7 % 14 % 2,3 %

For å bli med i trekning av gavekort, bruker du lenken du får tilsendt i epost-kvitteringen du mottar når du har sendt inn svaret ditt.

Se nylige endringer i Nettskjema

Spørreundersøkelse om bruk av Git i TDT4140 – Rapport - Nettskjema https://nettskjema.no/user/form/submission/report.html?id=203071

6 of 6 7/2/21, 15:00

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

Åsm
und H

augse
G

it in an educational context

Åsmund Haugse

Git in an educational context

Master’s thesis in Computer Science
Supervisor: Trond Aalberg
July 2021

M
as

te
r’s

 th
es

is

	Contents
	List of Figures
	List of Tables
	Introduction
	Background and related work
	Git and GitLab
	Git in software development education
	Collaborative learning in computer science education
	Peer assessment
	Learning analytics
	Monitoring in computer-supported collaborative learning
	Mirroring tools

	Methodology
	Case studies
	TDT4140 Software Engineering (Spring 2021)
	IT2810 Web Development (Autumn 2020)
	Comparing the cases

	Online questionnaire
	GitLab mirroring tool
	Design and creation
	Interviews

	Dashboard design and implementation
	GitLab API and data collection
	Limitations and workarounds

	Software technology used
	Dashboard components
	Group selection
	Project period's issues and merge requests
	Project period's commits and lines of code
	Commit and code line distribution by members
	Project commits list

	Results
	Questionnaire results
	Mirroring tool results
	Qualitative attribute assumptions
	Component feedback
	Accuracy of visualized GitLab data points
	As a mirroring tool promoting self-reflection
	Anonymity of presented data
	Would educators use the dashboard?
	New features suggested

	Discussion
	What are students' perceptions on and experiences with using Git in an educational setting (RQ1)?
	How can GitLab's data points be visualized in a mirroring tool (RQ2)?
	What does a mirroring tool on GitLab data offer (RQ3)?
	Ethical concerns
	Validity of results

	Conclusion and future work
	References
	Appendices
	NSD application and confirmation
	Interview guide educators
	Interview guide TDT4140
	Interview guide IT2810
	Results questionnaire IT2810
	Results questionnaire TDT4140

