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Abstract

The world is failing to stay on track to reach Sustainable Development Goal
7, ”ensure access to affordable, reliable, sustainable and modern energy for all”.
Five hundred eighty-five million people in Sub-Saharan Africa are expected to
live without access to a reliable energy source by 2030. It is not a question of
a greener, more sustainable energy source but the immediate need for energy.
This study aimed to simplify the site selection process for new power-producing
projects by documenting the existing electrical infrastructure, as distance to the
grid is a critical cost parameter. We studied the possibility of inferring power
lines using nighttime lights. Small settlements, buildings and even street lamps
emit light radiance detectable by satellites. Nighttime lights functioned as nodes
in a graph and were connected by Dijkstra’s algorithm. The resulting path was
the assumed power line layout in a country.

We studied previous research concerning power line inference and planning. The
methodology aimed to reproduce and better the most promising research. Fur-
ther, alternative approaches, such as street network detection using satellite im-
agery, were investigated to determine how methods could be transferred to power
line inference.

The implemented solution makes use of water bodies, populated areas and convo-
lutional filters to preprocess nighttime lights. Road networks, elevation changes,
and protected areas determined the path’s cost. We gathered open-source power
line data from 34 European countries to determine the quality of the predictions.
The lack of documentation in Sub-Saharan Africa restricted validation opportun-
ities. The layers and filters aimed to remove natural light sources and noise while
cost layers facilitated real-world grid design.

Finally, we scrutinized predicted paths to identify possible method improvements.
The detailed maps illustrated complications with the methodology and external
factors. The predicted paths of power lines achieved an Intersection-over-Union
score of 0.29. The results were below industry standards of 0.5, deeming the
predicted paths unsuitable as infrastructure documentation in projects. Errors
in methodology partially explained the low evaluation metrics, but a significant
share was attributed to low-quality validation data.



Sammendrag

Verden holder ikke følge med FNs bærekraftig utviklingsm̊al 7, ”ensure access
to affordable, reliable, sustainable and modern energy for all”. Fem hundre
åttifem millioner mennesker i Afrika sør for Sahara forventes å leve uten tilgang
til en p̊alitelig energikilde innen 2030. Det er ikke snakk om en grønnere, mer
bærekraftig energikilde, men det primære behovet for energi. Denne studien
forsøkte å forenkle stedvalgprosessen for nye energiprosjekter ved å dokumentere
den eksisterende elektriske infrastrukturen. I denne oppgaven undersøkte vi
muligheten for å utlede kraftledninger ved bruk av nattlys. Sm̊a bosetninger,
bygninger og til og med gatelamper avgir lysstr̊aling oppdagbart av satellitter.
Nattlys fungerte som noder i en graf og ble koblet sammen med Dijkstras algor-
itme. De resulterende koblingene var det antatte strømlinjenettet i et land.

Vi studerte tidligere forskning om predikering av kraftledninger. Den primære
kilden til relatert arbeid brukte Dijkstras algoritme og nattlys og forslagene
deres for fremtidig arbeid ble implementert. Samtidig gjennomførte vi et lit-
teraturstudie som studerte overlappende problemer, for eksempel deteksjon av
gatenettverk ved hjelp av satellittbilder, for å avgjøre hvordan metoder kan
overføres til det aktuelle domenet.

Den implementerte løsningen bruker vannforekomster, befolkede omr̊ader og kon-
volusjonsfilter til å forbehandle nattlys. Veinettverk, høydeendringer og natur-
reservater bestemte kostnaden ved veivalg. Vi samlet data fra ideele organisas-
joner i 34 europeiske land for å bestemme kvaliteten p̊a de utledede strømlinjene.
Mangelen p̊a dokumentasjon i Afrika sør for Sahara begrenset valideringsmu-
ligheter. Lagene og filtrene hadde som m̊al å fjerne naturlige lyskilder og støy,
mens kostnadslagene muliggjorde strømnettdesign som i virkeligheten.

Til slutt gransket vi de predikerte strømlinjene for å identifisere mulige metode-
forbedringer. De detaljerte kartene illustrerte komplikasjoner med metodikken
og eksterne faktorer. De predikerte strømlinjene oppn̊adde en Intersection-over-
Union poengsum p̊a 0.29. Resultatene var under industristandarder og egnet
seg ikke som dokumentasjon av strømlinjer. Feil i metodikk forklarte delvis de
lave poengsummene, men en betydelig andel ble tilskrevet valideringsdata av lav
kvalitet.
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Chapter 1

Introduction

The introduction will present the motivation and background of the study. In
addition, the chapter provides an explicit definition of the master thesis’ research
goal and methods. Finally, we provide a brief outline for the thesis.

1.1 Background & Motivation

Well-documented power line layout data is challenging to obtain in underdeveloped
countries. Data is fragmented across different companies and governmental bod-
ies, requiring extensive efforts to get a complete overview. Reliable infrastructure
data is a vital factor when planning new projects. In this master thesis, we aim
to predict the layout of power lines in a country based on nighttime lights. The
predictive model uses nighttime lights as a proxy for electricity consumption and
links all light hotspots using the shortest path algorithm. The shortest path
algorithm is guided by various data layers aiming to encourage actual electrical
grid design. The purpose is to create a model to generate a reliable dataset of
power lines where documentation is absent.

Power producers spend significant time and resources to assess a site’s suitability.
In the early stages of site selection, there is a coarse screening process discard-
ing unsuitable sites. Enernite is a company providing data, data analysis and
planning support for power producers in Sub-Saharan Africa (SSA). This master
thesis conducts a study to assist Enernite in one of its most common challenges,
providing accessible and reliable electricity infrastructure data. Power producers
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CHAPTER 1. INTRODUCTION

have expressed difficulties concerning data collection when considering sites in
different regions of a country or even multiple countries. Data source fragmenta-
tion complicates and delays data collection, forcing producers to spend time and
resources on a potentially unsuitable site. An important parameter considered
in site selection is the distance to existing electricity infrastructure, indicating
investments required to connect. A complete dataset of the transmission and
distribution grids in Sub-Saharan Africa facilitates distance-to-grid calculations,
increasing the efficiency of the site selection phase.

The emphasis on Sub-Saharan Africa results from the lack of efforts to stay on
track to reach Sustainable Development Goal 7. The United Nations established
the Sustainable Developments Goals in 2015, where Goal 7 captures the electricity
access challenges of SSA: ”ensure access to affordable, reliable, sustainable and
modern energy for all”. In 2019, the Energy Progress Report estimated that 650
million people would remain without access to a reliable energy source in 2030.
The population in SSA make up 90% of these 650 million. Enernite has already
experience increased demand for projects in SSA, and that the region will be the
recipient of increased investments and focus over the next decade.

Well-documented infrastructure is a luxury few countries provide, especially in
Sub-Saharan Africa. Data providers exist, but platforms are tailored to indi-
vidual countries. This master thesis is based solely on open-source data. Open-
StreetMap and other geospatial data sources are comparable in completeness and
accuracy to commercial providers in certain countries, but infrastructure data is
lacking in Sub-Saharan Africa. Algorithms and models created in this master
thesis were applied and validated in Europe, where electrical grids are docu-
mented. OpenInfraMap stated in an email (R. Garret, personal communication,
25. April 2021) that transmission networks (> 200kV ) are complete in Europe.
However, lower voltages are under-mapped everywhere, except the UK, France
and the Czech Republic, which provide some open power network data.

1.2 Research Goals

The work conducted in this thesis aims to study two research goals.

RG1: Improve the state of the art methods for distribution grid pre-
diction by introducing new data layers for filtering and weighting of
the shortest path algorithm.

The current state of the art methods using nighttime lights for estimating the lay-
out of power lines only applies OpenStreetMap roads networks to assist Dijkstra’s

2



CHAPTER 1. INTRODUCTION

shortest path. This thesis aims to study the impact of a population filter and an
urban area filter to better model human activity. In addition, data layers with
protected areas and slopes are introduced to implement constraints experienced
in real-world power line layout design.

RG2: Assess the reliability of predicted distribution grid layouts.

The validity and accuracy of predictions must be determined to have any value
for solar power producers. A challenge in remote sensing is the validity of a
model in various geographical areas. This study plans to validate model outputs
in a large geographical area, most European countries, to indicate the model’s
general validity. All data is available globally, ensuring model applicability in
regions other than the studied area.

1.3 Research Methods and Outline

In order to achieve the research goals, a literature review of relevant theory,
datasets, and state of the art methods was conducted. The acquired knowledge
was then applied to improve the state of the art methods and validate new find-
ings. The thesis starts by studying theory and related work before describing the
methodology and validation process. Theory and related work was studied to
be able to improve on the state of the art methods, thus contributing to solving
RG1. Further, the model is implemented and applied in many European coun-
tries before validation against open-source data. This approach aims to solve
RG2.

3



CHAPTER 1. INTRODUCTION

Figure 1.1: Simplified overview. Input data in green, the model in yellow, model
outputs in blue, and the evaluation metrics in white.

Chapter 2 makes up the research phase of the report. The chapters aim to give
the reader insights into relevant theory, the current state of the art methods
and possible improvements. Chapter 3 continues by describing aspects of the
methodology and the reasoning behind implemented changes. Chapter 4 covers
the practical implementation and the experimental results. Finally, chapters 5
and 6 quantitatively and qualitatively assess the method and results.

Theoretical Background (Chapter 2): This chapter provides the necessary
theoretical background to understand the problem and the methods used. In
addition, the primary data source, the Suomi National Polar-orbiting Partnership
(S-NPP) satellite, is covered. The chapter also presents insight into the most
recognized research based on nighttime lights. The theoretical background is
explained through a review of related work.

Methodology (Chapter 3): After providing theoretical background and relevant
research in chapter 2, chapter 3 presents the implemented methods. This chapter
gives the reader reasoning behind applied datasets and methods. Different aspects
of the study, costs and filters, are presented and linked to the real-world challenges
of grid design. Finally, the chapter presents the validation process and evaluation
metrics.

Experiments and Results (Chapter 4): Experiments presents all steps neces-
sary to reproduce the experiments made in the thesis. The chapter provides a
detailed description of each dataset, covering data source, resolution and neces-

4



CHAPTER 1. INTRODUCTION

sary preprocessing before usage. This chapter first presents a baseline model. The
baseline model is used as a benchmark for improvements. The chapter continues
by presenting the impact of proposed filters and new cost layers.

Discussion (Chapter 5): Prediction of distribution grids using night lights is a
method with high uncertainty and many limitations. This chapter discusses the
practical applicability of the obtained results.

Conclusion and Future Work (Chapter 6): The last chapter summarizes the
main findings and presents our perspective on the results. Finally, we present
suggestions for future work.

5



Chapter 2

Theoretical Background

The following chapter provides an introduction to key concepts, methods, and
relevant literature. We first cover prominent research based on nighttime lights
and argue for their suitability as a consumption proxy. The chapter gives a brief
overview of the satellite program, its surveying capabilities and areas of applica-
tion. Further, the differentiation of grid categories and studies optimizing power
line design are reviewed. Although the amount of research using nighttime lights
for distribution grid inference is limited, nightlights and energy transmission line
design is widely studied. This chapter is divided into three fundamental sections;
Nighttime lights (2.1), pathfinding (2.2), and electrical grids (2.3).

2.1 Night Time Lights

Street lamps, flashing billboards, oil flares, forest fires, northern lights are all
sources of light pollution captured by the night light sensor onboard satellites.
Despite natural phenomena, night lights have been valuable when used as a proxy
of human activity. They can provide insights at finer scales than what is found
in national statistics. Most notably are insights into impoverished regions of the
world, where statistics are absent or of low-quality [1], [2]. The human activity
proxy has been applied to monitor urban expansion [3], [4] and to estimate GDP
[5]. Li [6] studied nighttime light dynamics under the Iraqi civil war, and Zhao
[7] applied daily nighttime light data to study the impact of natural disasters.

6



CHAPTER 2. THEORETICAL BACKGROUND

2.1.1 Electricity Consumption Proxy

The failure to stay on track to reach SGD 7 has motivated remote sensing of
night lights research. Multiple studies have used nightlights to estimate access
rates in rural and developing regions of the world. Doll [8] presented the first
satellite-derived estimates of rural electrification rates in developing countries.
The study suggested that night lights are sufficient for detecting small human
settlements. In addition, their findings include alarmingly low electrification rates
in Sub-Saharan Africa, supporting this thesis’ purpose. Dugoua and his team [9]
applied night lights to study rural electrification rates in India. The paper found
that rural electrification rates derived by nighttime luminosity were surprisingly
accurate. Night lights were also experimented with as a proxy for poverty and
financial inclusion but performed significantly worse than access rates.

Falchetta [10] performed a similar study using higher-resolution data and derives
electricity rates in Sub-Saharan Africa from a combination of nighttime lights,
land cover, and population data. Their results are broadly consistent at both
province- and national-level statistics. All studies come to similar conclusions,
suggesting that night lights are a well-functioning proxy for electricity access
rates. The alternatives to using night lights as targets would be to use another
proxy for electricity consumption. The team behind OpenGridMap [11] suggested
targets derived by buildings. A critical difference between using night lights and
buildings as targets is the availability of data sets. Nighttime lights are available
globally, but open-source building footprints vary greatly in coverage and quality
depending on the country.

2.1.2 Night Time Light Data Source

There exists a wide range of satellite sensors capturing nighttime lights. Table
2.1 provides an overview of some sensors capturing nighttime lights. The table is
a simplified version of what was provided by Levin [12]. In the process of satellite
selection, we evaluated parameters such as spatial resolution, availability, amount
of preprocessing required, and research based on the sensor. The parameter
excluding most satellite sensors was the availability of data products. Sensors
such as EROS-B can provide night lights at resolutions of 0.7 by 0.7 meters [13],
but data is captured on-demand.

7



CHAPTER 2. THEORETICAL BACKGROUND

Sensor Spatial Res. (m) Temporal Res. Products
DMSP/OLS 3000 Daily (1992-2013) Free, calibrated
VIIRS/DNB 500 Daily (2012 - present) Free, science

grade monthly
composites

LuoJia1-01 130 15 day revisit time Free, calibrated
Landsat 8 15-30 Sporadic (2013) Free, only very

bright objects
detected

EROS-B 0.7 On demand Commercial

Table 2.1: Overview of select night light sensors

Landsat 8 captures night lights through an optical imagery sensor. The sensor
provides data at better spatial resolutions than VIIRS/DNB but captures night
lights infrequently. Sporadic capturing complicates the use of data in research.
Thus most researchers prefer VIIRS/DNB over Landsat 8 for night lights research
but are optimistic for Landsat 10 [14]. LuoJia1-01 (LJ1-01) is a small satellite
explicitly launched for acquiring nighttime lights. LJ1-01 regularly provides data
at 130 m resolution through an online portal [15]. VIIRS/DNB provided daily
images, but this study did not require frequencies above monthly, meaning that
the biweekly frequency of LJ1-01 was equally suitable.

The DMSP/OLS was considered the primary NTL-data source but was discon-
tinued in 2013 and, therefore, not suitable for this project. The spatial resolu-
tion is also inferior compared to the alternatives. The sensor was replaced by
VIIRS/DNB, which has been the primary data source in scientific research. The
preprocessed night lights published by the Earth Observation Group (EOG) are
easily accessed through an online portal. The processing removed natural phe-
nomena and other noise, which were unwanted for this study. All parameters
considered, both LuoJia1-01 and VIIRS/DNB were suitable sensors. The pre-
processing removes unwanted natural phenomena such as sunlight, moonlight,
data affected by lightning, and stray lights. The necessary steps to go from raw
sensor data to a science grade radiance raster are thoroughly described in Elvidge
[16]. As far as the author knows, the free, high resolution, science grade rasters
are one of a kind.

8



CHAPTER 2. THEORETICAL BACKGROUND

2.1.3 Soumi NPP Mission

The Suomi National Polar-orbiting Partnership (Suomi NPP) is, as of May 2021,
a fully operational earth-orbiting satellite. NASA launched the satellite in Oc-
tober 2011 with an initial planned mission duration of 5 years. However, the
Suomi NPP continues to monitor the Earth’s health today. Five instrument
suites comprise the satellite’s surveying capabilities.

The Ozone Mapping and Profiler Suite’s (OMPS) monitors ozone levels. Data
captured by OMPS plays a vital role in ozone-related research, such as the mon-
itoring of the ozone hole in the Antarctic [17]. Clouds and the Earth’s Radiant
Energy System (CERES) keeps track of the Earth’s emitted and reflected energy.
Research of long term changes in the climate applies energy and reflectance data
provided by CERES. Other instruments aboard the Suomi NPP satellite include
the Cross-track Infrared Sounder (CrIS) and Advanced Technology Microwave
Sounder(ATMS), which acquire temperature, pressure and moisture data used
for weather predictions. The last and largest instrument suite flying on the Suomi
NPP is the Visible Infrared Imaging Radiometer Suite (VIIRS). VIIRS captures
data on the visible and infrared spectra. The radiometric data’s most common
use cases include monitoring phytoplankton, ocean colour, fires, and vegetation
development.

2.1.4 VIIRS/DNB

The launch of Suomi NPP and VIIRS Day/Night Band (DNB) has significantly
improved NTL data quality. Before the launch of Suomi NPP, the Defense Met-
eorological Satellite Program Operational Linescan System (DMSP/OLS) data
was the primary data resource for night light related research [16], [18]. Data
collected by DMSP/OLS is publicly available from 1992 to 2013 at a spatial
resolution of 3000m. The Day/Night band in VIIRS captures natural and ar-
tificial lighting from the Earth’s surface and atmosphere at a spatial resolution
of 15 arc seconds (450m)[19]. Interestingly, the primary purpose of DNB was
to observe clouds lit by moonlight, which in turn was to be used for weather
predictions. However, the Day/Night Band has increased the opportunities for
night lights research by significantly improving night lights’ data quality. In ad-
dition to improving the spatial resolution, the DNB exceeds the quality of OLS
by avoiding saturation in urban areas. Avoidance of light saturation is possible
due to a broader dynamic range. Unsaturated data in urban areas is crucial when
monitoring changes in urban areas but has a limited impact on this study.

9



CHAPTER 2. THEORETICAL BACKGROUND

The DNB is capable of detecting radiance values at a minimum of 3 ∗ 10−5 W
m2sr ,

which in practical terms is comparable to a single, isolated street lamp [20].
Despite improvements, natural challenges of night light-capturing persist. Night
Light instruments are prone to the midnight sun and short nights as it narrows
the satellite’s overpass window. The impact of short nights is visualized in Figure
2.1. Monthly composites from January 2020 (left) and May 2020(right) provided
by the Earth Observation Group (EOG) were visualized in QGIS. Both com-
posites are of the same area, but short nights resulted in the absence of data
in the right image. The top section of Figure 2.1a also illustrates the impact of
aurora borealis.1 The black area in 2.1b does not imply that no night lights were
observed, but the quality of the data was too low to be included in the monthly
composite.

(a) Data coverage January, Europe (b) Data coverage May, Europe

Figure 2.1: Side by side visualization of nightlights over Europe impacted by
short nights

2.2 Pathfinding

Pathfinding is the problem of finding the shortest path between a start point and
a destination. Several variants of the problem exist; the variant depends on the
nature of the problem. The most common cases are finding the shortest path
between:

• One start node and a single goal node

• One start node and multiple goal nodes

• All nodes

1Northern Lights

10



CHAPTER 2. THEORETICAL BACKGROUND

The number of sources and destinations represent the main differences invariants,
but edges and edge weights can introduce other criteria to a problem. Typical ap-
plications of pathfinding are satellite navigation [21] and network package routing
[22].

This thesis’s distribution grid layout problem is similar to finding the shortest
paths between all nodes. In addition, a combination of datasets is used to calcu-
late the cost of traversal, thus incorporating multiple criteria in the found path. A
random target point, a well-lit pixel, is chosen as the source. The process expands
until all nodes have been visited and all target points have been discovered.

Dijkstra Dijkstra’s algorithm (DA) is a shortest path algorithm developed by
Edsger W. Dijkstra in 1959. The note written by Dijkstra [23] introduces the
algorithm as a solution for finding the shortest path between a start and goal
node, but it is today commonly applied to find the shortest path between a start
node and all other nodes. When predicting the layout of a nation’s distribution
grid, a randomly selected electrified settlement is set as the source node and the
rest as destinations. The cost matrix value gives the expense of travelling from
a cell to a neighbour in the specified position. The cost of a cell is calculated
based on distance, road networks, protected areas and slope. Cost calculations
are further discussed in Section 3.2.

A fundamental feature of Dijkstra’s is the usage of a priority queue. The al-
gorithm sorts a queue of unvisited nodes by costs in increasing order, continu-
ously expanding the closest or cheapest node. An edge’s weight gives the cost of
traversing a node. The original algorithm’s logic applies to a graph with a set of
vertices and edges but also holds for matrix-based problems.

√
2 1

√
2

1 0 1√
2 1

√
2

Table 2.2: Cost calculation kernel

Table 2.2 shows the kernel for calculating traversal costs from the current location.
Traversal costs are the product of the kernel value and the cost raster value at the
same index. The kernel accounts for increased travel distance along the diagonal
by a factor of

√
2. The center cell in Table 2.2 is our current position. Table

2.3 shows an example cost raster and calculated traversal costs from the starting
position. Cell S indicates the starting cell. The first iteration of Dijkstra’s
shortest path will traverse either directly west, east, or south as they offer the
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cheapest travel.

1 1 1 S 1
1 2 2 1 1
1 2 2 5 1
1 2 2 1 1
1 T 1 1 1

- - -
1*1 0 1*1√

2 ∗ 2 1*1
√

2 ∗ 1

Table 2.3: Example cost raster and kernel applied to the starting location

Dijkstra’s expands greedily, ensuring the shortest path to the current location. In
other words, the greedy property implies that once the current location is a target
point, the shortest path is also discovered. When a target point, cell T in Table
2.4, is explored, the costs along the path connecting S and T are zeroed. The
link between target points is classified as a power line, and the model can reuse
the link for further exploration without additional cost. This modified version of
DA creates a minimum spanning tree between all target points.

1 1 1 S 1
1 2 2 1 0
1 2 2 5 0
1 2 2 0 1
1 T 0 1 1

Table 2.4: Shortest path

Facebook Engineering introduced the modified version of DA described above in
2019. The engineers published the method encouraging further research using
DA and nighttime lights for distribution grid prediction [24].

2.3 Electrical Grids

Electrical grids can be divided into two main categories; transmission grid and
distribution grid. The transmission grid operates at high voltage levels because
power transfer is more efficient at higher voltages. While the primary purpose of
the transmission network is bulk transportation of power, the distribution grid
provides access and usable energy to smaller entities such as solar farms and rural
areas. The voltage level distinguishing transmission from distribution varies from
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country to country. For practical purposes, this report makes a clear separation.
The distribution grid concerns all power lines carrying less than 69 kilovolts (kV),
and everything above is classified as the transmission grid.2

The separation of the two is crucial for the practical applicability of the project.
Transmissions grids, hereafter called high voltage (HV) lines, are provided by a
single national agency in most countries, making data collection simple. Data
collection of distribution grids, hereafter called medium voltage (MV) lines, suffer
from more fragmentation as governments tender regional work to regional suppli-
ers. This paper’s experiments and purpose predict the layout of medium voltage
lines while a country’s high voltage lines are an essential input parameter.

2.3.1 Energy Transmission Line Design

Multiple studies have applied pathfinding algorithms for optimizing power line
design. The goals of these studies were not to validate the layout of an existing
grid but to suggest a path for new builds. The methodology varies from linear
programming to evolutionary algorithms [25], [26]. Regardless of methodology,
most studies implement a penalty function or cost structure aiming to mimic
economic and environmental costs, for instance, in [27], [28]. Two commonly
cited cost structures were proposed in [29], [30]. The cost structures consist of
both environmental and economic parameters. The primary factor is the length
of the path, and the second factor is closeness to roads. Both papers implement
a cost parameter based on buildings, requiring planned paths to avoid buildings.
Nighttime lights are not available at resolutions where avoiding buildings makes
sense and was therefore discarded. Further, both papers suggest a parameter
based on soil type or similar to incorporate the risk of landslides and a parameter
for protected areas.

2.3.2 Documenting Power Lines

A broad literature review suggested two main methods for documenting power
lines. The deciding factor between the categories was the dependency on hu-
man interaction. Traditional mapping methods are time-consuming and manual
processes that require significant resources. Modern cartography research has
focused on creating tools and applications simplifying the mapping process [31],
[32].

2This distinction is based on the ANSI standard https://electrical-engineering-portal.com/
ansi-standard-c84-1
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On the other hand, simultaneous advancements in machine learning and remote
sensing have presented exciting research areas, such as detecting man-made ob-
jects from outer space. Support vector machines and neural networks have pro-
duced extensive and accurate spatial data sets of street networks [33], [34]. The
resolution of remote sensing has previously limited the detection of man-made
objects to large objects [35]. Newer satellites and sensors can provide data at
centimetre resolution, reducing the detectable object size requirements. An ob-
ject detection approach for high voltage pylons was implemented in [32]. The
project applied machine learning helping mapping professionals efficiently docu-
ment transmission lines in Nigeria, Zambia, and Pakistan. Object detection al-
gorithms were trained to suggest areas of interest, likely containing a pylon. The
area-of-interest proposed by the algorithm was subsequently checked by a human
who pinpointed the pylon’s position. The approach optimized the transmission
line mapping process. We considered the implemented methodology unsuitable
for distribution grid inference due to different prerequisites. Differences between
transmission grids and distribution grids include the size of structures supporting
lines and the use of underground cables. Detecting giant steel pylons is signific-
antly easier than detecting a wooden pole, and underground cables are naturally
undetectable at the surface.

In [11], Rivera created OpenGridMap. OpenGridMap was a platform provid-
ing data sufficient for simulation studies. The project was discontinued, but the
proposed methodologies for power line inference are still highly relevant. The
initial paper provided an application for efficiently mapping electrical infrastruc-
ture. The application gathered location, images and labels3 from crowd-sourcing
communities. A professional validated mapped features before being accepted to
the platform, thus guaranteeing correct labels and accurate data. The authors
proposed various methods for distribution grid inference utilizing crowd-sourced
data. The authors do not perform any quantitative experiments but provide fig-
ures of inferred power lines. Based on visual inspection, the most promising ap-
proach applied Dijkstra’s algorithm to connect buildings, travelling along streets
and using transformers as the source. The algorithm was implemented at a
neighbourhood-level scale.

A variation of the power line inference methods proposed in OpenGridMap was
further studied in [36]. In 2019, a team at Facebook Engineering proposed a
modified version of Dijkstra’s algorithm using nighttime lights as targets [24].
Their work was further explored by Arderne [36] who created an open-source
application, Gridfinder, for power line prediction using the modified version of
Dijkstra’s algorithm. The methodology differs from other related research in

3I.e. Substation, transformer
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terms of providing a global-scale method. The study acquired official distribu-
tion grids in 14 selected countries for validation. The countries represented a
wide range of electricity access rates and income levels to indicate results’ quality
globally. The team introduced a minimum Intersection-over-Union (IoU) score of
0.5 for a satisfactory prediction. Predicted power lines were validated at decreas-
ing resolutions until the IoU-criteria was met. The highest validation resolution
was 500m, which was the resolution of night lights provided by VIIRS/DNB, and
the lowest was 100 km. The average country exceeded the 0.5 IoU requirement
at a resolution of 15 km. Gridfinder incorporates documented power lines in
OpenStreetMap through a cost matrix, where all cells containing power lines are
explored without additional cost. Dijkstra is a greedy algorithm, exploring the
lowest costs first. Zeroing OSM power lines’ costs implies that they will be a part
of the predicted distribution grid.
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Chapter 3

Methodology

This chapter presents the methods and processes used in the project. Firstly,
the preprocessing and methods necessary for creating the targets raster and cost
raster are presented. Secondly, the chapter proposes a configuration of costs and
filters based on the experiments. Lastly, the path prediction method, Dijkstra’s,
is reviewed.

Figure 3.1: Simplified overview of the project

Figure 3.1 illustrates the data flow and order of operation in the project. Green
entities represent input data, and input data are split into four categories. Masks
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are data layers used to mask and remove targets. The shortest path algorithm
will connect targets and uses costs data layers as guidance when predicting distri-
bution grids. The last category of input data is the ground truth. A yellow entity
indicates preprocessing and contains keywords for required steps. Red squares
indicate datasets after preprocessing of the input data. Temporary datasets (red
entities) are used as masks, model inputs or for validation. The blue entity il-
lustrates the output of Dijkstra’s shortest paths. Finally, the predicted grid is
validated against the validation raster, which produces evaluation metrics. The
figure fails to illustrate the iterative process where improvements in the evalu-
ation metrics are used as the basis for the inclusion or exclusion of costs and
masks.

3.1 Targets Raster

The targets raster is a binary raster of electrified settlements. A target cell is
the representation of an area assumed connected to the grid. A target cell can
also be described as an electrified settlement, a pixel of the nighttime light ras-
ter, averaged over 12 months, emitting stable light radiance. Dijkstra’s primary
goal is to connect all targets. Lines connecting targets make up the predicted
layout of the distribution grid in a country. This section introduces the inten-
ded logic of filters and the processing of targets. Nighttime lights were assumed
to be an appropriate consumption proxy, supported by the promising electricity
access results. We chose VIIRS/DNB as the nighttime light data source due to
the vast amount of research and preprocessed composites, facilitating power line
prediction focus.

3.1.1 Preprocessing Night Time Lights

VIIRS/DNB captures anthropogenic and natural light sources. When applying
night lights to model electrical grids, it is crucial to filter out natural lights, as
they are not connected to any electrical grid. This study averages 12 months of
radiance values, the entire year of 2020. Averaging composites limits the impact
of ephemeral lights. Examples of ephemeral lights are forest fires and gas flares.
A fire lasting for a week would inflate radiance values in that month’s composite
but would be negligible after 12-month averaging.

Further, a convolutional filter is applied to the averaged night lights raster. Ra-
diance values of raster cells are dependent on the intensity of neighbouring cells;
adjacent cells to a bright cell are also bright. The convolutional filter’s intended
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purpose is to concentrate light at the source. The convolutional filter is a coun-
terpart to saturated target areas. Urban areas and their surroundings tend to all
pass the binary threshold, resulting in a large cluster of target points. Convolu-
tion concentrates radiance values in the centre of a high-radiance cluster.

(a) Before convolution (b) After convolution

Figure 3.2: Impact of convolution filter visualized

Figure 3.2 shows the result of applying the convolutional filter. Pixel values in
the left image [3.2a] are emitted radiance, where bright yellow indicates high
radiance. Dark blue in the right image is pixels without light radiance. The filter
and images were created by Facebook Engineering [24].

The final step of preprocessing night lights applied a binary threshold. The
threshold created a binary targets raster, where 1-valued cells represent a spot
connected to the grid. For example, the red pixels in Figure 3.2b were most likely
above the threshold and classified as target points.

3.1.2 External Masks

This paper proposes four different data layers for the removal of target points.
A data layer containing a country’s water bodies was applied to remove target
points on the water. Possible lighting sources on the water are fishing boats,
light pollution from a nearby city or lighthouses. Although anthropogenic, these
targets are unlikely connected to the distribution grid. The water mask removes
yellow cells on water. Two different population thresholds were examined; pop-
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ulation greater than zero and greater than ten. The intended logic of a popu-
lation threshold mask is that documented human settlements are more likely to
be connected to the electrical grid. The criteria require electrified cells to have
documented population. Thus, removing all target points with no documented
population. The population layer is proposed as a mask, not a cost, considering
that large parts of the Sub-Saharan population live without power.

The remaining two masks are a slope layer and an urban areas layer. The slope
mask removes all electrified settlements where the slope is above 30%. The filter
eliminates targets in hillsides or other places where electrified settlements were
deemed unlikely. Lastly, a mask of urban areas intends to remove all target points
where no buildings or settlements are documented. Urban areas are a symbol of
human presence and activity and represent points of electricity consumption. The
expected downside of an urban-area mask is the removal of target points in rural
areas.

3.2 Cost Raster

The secondary raster in this project is the cost raster. Its task is to guide Dijk-
stra’s Algorithm by penalizing or rewarding specific paths. The optimal cost
raster imposes constraints similar to those considered in a real-world grid design.
For example, the shortest path algorithm is rewarded (less penalized) for choos-
ing a road path, simplifying maintenance access. A cost raster is a model of
real-world grid design and would ideally enforce all grid design constraints.

C = min(R,L) (3.1)

Two data layers comprise the cost raster in [36], OSM power lines and OSM
Roads. The implementation differentiates between the various road types (Table
4.2) and all power lines are zero-cost. If an area contains multiple costs (eq. 3.1),
the minimum is assigned. This master thesis implemented additional cost data
layers, which required reformulation of cost calculation.

C = (αR+ βS + γP ) ◦ L (3.2)

In equation 3.2, C denotes the cost raster, R the roads, S the slope, P protected
areas, and L is the HV-lines raster, and α, β, γ are scalars. The reformulation
facilitates the combination of multiple cost layers. A cell’s cost with a high slope
in a protected area is now due to both parameters. The presence of HV-lines is
still the dominant factor. The HV-lines raster is constructed such that 0-values
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indicate HV-lines, and all other cells are valued 1. The cost raster is the element-
wise product of the HV-lines raster and summed cost of R,S, P . A cell’s cost is
zeroed if HV-lines are present but remains unchanged otherwise.

3.2.1 Continued Cost Data Layers

The transmission grid plays the role of the trunk in the electrical grid tree, while
distribution grids represent branches. HV-lines are incorporated in the cost raster
as distribution grids are always connected to the transmission grid. A zero cost
cell will consistently be expanded by Dijkstra, ensuring free travel along with
a nation’s transmission network. In addition, the street network in a country
is implemented to reward travel in cells containing roads. Roads are a crucial
factor in grid design as they ease maintenance access and are designed to minimize
travel time between human activity hotspots. Further, various road categories
have different costs to take road size into account. Street network’s impact in
distribution grid prediction or planning is widely recognized [11], [25], [30], [37]
also found improvements when differentiating costs by road type.

3.2.2 New Costs Data Layers

Protected areas and national parks are introduced as a new cost metric with
the motivation to penalize power lines in protected areas. Norwegian authorities
require additional research, impact assessments, and permissions if intervening
with national parks[38]. The same logic was assumed relevant in all European
countries. A wide range of protected area categories exists, often with different
levels of regulation. The variations in regulations across countries and protected
area types complicate the differentiation of costs. This study generalizes and
considers all protected areas the same. Finally, the same slope raster introduced
as a target mask is also proposed as a cost raster. Power lines are designed to
avoid touching the ground or underlying vegetation at all times. The intended
logic of slopes as a cost parameter is to penalize traversals where an increased
number of pylons are required to cope with rapid elevation changes.

3.3 Optimizing the Configuration

In order to find the optimal configuration of masks and costs scalars, new features
will be validated in a step by step process. The first goal is to implement a baseline
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model with parameters similar to what has been tested in previous studies. The
second goal is to improve on the state of the art method. The experiments
will firstly determine the optimal target raster. Modifiable parameters in the
target raster are the radiance threshold and different masks. The best performing
radiance threshold will be the threshold used in further optimization. Masks will
be tested similarly, meaning that a mask is kept if it improves the results. All
changes are validated in all countries and only kept if it improves the average
result. A downside of this step-by-step process is that it will not detect synergies
between all combinations of masks. However, the masks proposed above remove
different targets and performance loss of not testing all possible combinations
was considered negligible.

The cost optimization process aims to find the best combination of scalars. Equa-
tion 3.2 contains three tunable parameters; the roads scalar, the protected areas
scalar, and the slope scalar. All possible combinations of scalars, 0, 1, 5, 10, 100,
will be tested for the protected areas and slope layer. By keeping the roads scalar
constant, improvements in validation metrics can be attributed to the proposed
new cost data layers.

3.4 Validation Process

The following sections present evaluation metrics, how predictions were validated,
and the limitations of the validation method. To properly assess the quality of a
prediction, several evaluation metrics were used. The predictions of the algorithm
were validated in a pixel-by-pixel manner. A positive prediction describes a pixel
where the algorithm outputted grid, while a negative prediction means no-grid.
The main components of all evaluation metrics are the classifications of the pixel
predictions. A True Positive (TP) is the event when both the prediction and
the ground truth agree on the presence of grid in a pixel. False Positive (FP)
if the prediction is positive, but no power line is documented in the ground truth
dataset. False Negative (FN) if no-grid is predicted, but the ground truth
pixel contains power lines. Lastly, True Negative (TN) if both ground truth
and the prediction is negative. The guess classifications presented above can be
further combined into evaluation metrics.

Precision is a validation metrics that represents the ratio of TP over the total
of positive predictions. A low precision score is the result of a large amount of
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false positives, implying an overestimation of positives.

Precision =
TP

TP + FP
(3.3)

Recall measures the ratio of found positives overall existing positives. A high
recall score suggests that the algorithm was successful in finding/recalling most
of all existing positives in the ground truth dataset. A positive prediction in all
pixels will achieve a perfect recall score. As precision penalizes the presence of
false positives, the two metrics are often used in parallel.

Recall =
TP

TP + FN
(3.4)

F1 Score is a metric that combines Precision and Recall. The combination
eliminates the shortcomings of individual metrics. A high precision and high
recall results in a high F1 score.

F1 = 2
Precision ∗Recall
Precision+Recall

=
TP

TP + 1
2 (FP + FN)

(3.5)

Accuracy Accuracy is a measure of a prediction’s overall correctness. The
metric is commonly used, but the descriptive property is reduced when applied
to an unbalanced dataset. This thesis does not apply accuracy as a validation
metric due to the significant imbalance in the presence of grid versus no-grid. The
average European country consists of 98% no-grid pixels. In the average case, an
all no-grid prediction achieves an accuracy score of 98% while completely failing
to predict the layout of the distribution grid. Due to the imbalance between
positives and negatives in this application, accuracy was not measured.

Accuracy =
TP + TN

TP + TN + FP + FN
(3.6)

Intersection-over-Union Intersection-over-Union (IOU) is a validation met-
ric introduced to fill the gap of accuracy in imbalanced datasets. The metric does
not include TNs, thus avoiding score-inflation. IOU is applied in object detec-
tion tasks and a score above 50% or 0.5 is considered satisfactory by industry
standards.

IOU =
TP

TP + FP + FN
(3.7)
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3.4.1 Buffering of Ground Truth

When validating the predicted power lines, it is interesting if a prediction is right
or wrong and how wrong it is. A prediction parallel and close to a real-world
grid line is an interesting finding and not directly wrong. In order to reward the
algorithm for selecting a path close to a real-world power line, the ground truth
vector data set is buffered by 1000 meters before being rasterized. The buffering
will classify predictions within a kilometre of actual power lines as true positives.

The logic behind the implementation of the buffer is related to the early screening
phase of a project. Power producers have expressed a need to discard completely
unrealistic sites, for example, where the closest infrastructure is many kilometres
away. Validation without the buffer would set higher requirements for the pre-
dictions in terms of accuracy.

3.4.2 Processing Predictions

High voltage lines are included in the cost world as zero cost. The method
will predict power lines in all zero-cost cells. Thus, HV-line predictions can not
be counted as true positive. The predicted power lines raster will be element-
wise multiplied with the high voltage lines raster. High voltage lines are zero-
valued and will remove all predictions where they are present. The process avoids
artificially good results, where validating rewards recreation of the input data.
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Chapter 4

Experiments and Results

The following chapter is comprised of two main sections. The first section
provides all steps necessary to reproduce the experiments carried out in this
thesis. We introduce the datasets, where and how to download them, and the
required preprocessing for a dataset to be compatible with the methods. The
second section presents the experimental results. Results are presented and ana-
lyzed in two different manners. The first analysis is a comparative study where
improvements are measured against a baseline model, and the second presents
analysis results through case studies. The case studies illustrate the pros and
cons of the implemented methodology.

4.1 Experiments

The conducted experiments inferred distribution grids in 34 European countries.
Each country was predicted on a stand-alone basis, thus missing potential syner-
gies across national borders. These implications would be detrimental to trans-
mission line predictions but were considered negligible for distribution grids. The
experiments were computationally costly but were conducted using parallel pro-
gramming. The implementation facilitated efficient run-through of approximately
30 parameter configurations. Each configuration ran for all 34 different countries.
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4.1.1 Selection of Study Area

Europe was selected as the region of interest due to their leading position within
open-source infrastructure data. The validation process of this project relied
solely on open-source data, and the quality and completeness of that data are
of high importance. Figure 4.1 illustrates the vast completeness differences in
OpenStreetMap power line data when comparing Central Europe to Sub-Saharan
Africa. The visualization was provided by www.openinframap.com[39]. Despite
lacking power line data, Sub-Saharan African countries have substantial datasets
with street networks [40]. Research Goal 2 was to determine the reliability of
grid predictions, thus requiring validation data. The initial selection included all
European countries, but challenges concerning size and data availability excluded
some countries [Table 4.1].

Open Infrastructure Map  about | stats

200 km
© OpenStreetMap contributors, OpenInfraMap | © MapTiler © OpenStreetMap contributors

(a) OSM power line data in Europe

Open Infrastructure Map  about | stats

500 km
© OpenStreetMap contributors, OpenInfraMap | © MapTiler © OpenStreetMap contributors

(b) OSM power line data in Africa

Figure 4.1: Comparison of the documented power lines in Europe and Africa

Admin Boundaries [41] is a dataset with information about a country’s borders.
Natural Earth Data provides global coverage, but only European boundaries were
downloaded. The minimum mapping unit or the resolution of Admin Boundaries
is 10 meters. Modifications to the out-of-the-box admin boundaries are due to
complications with size, outlying islands, or location. Table 4.1 lists countries
and the modifications made.
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Country Modifcation Cause
France Trimmed Outlying Areas (French Guiana)
Portugal Trimmed Outlying Areas (Azores, Madeira)
Netherland Trimmed Outlying Areas (Antilles)
Norway Dropped N of slope-dataset
Sweden Dropped N of slope-dataset
Finland Dropped N of slope-dataset
Island Dropped N of slope-dataset
Vatican Dropped Size (Too Small)
Monaco Dropped Size (Too Small)
Liechtenstein Dropped Size (Too Small)
Andorra Dropped Size (Too Small)
Russia Dropped Size (Memory Limitations)

Table 4.1: Modified countries

The primary function of the admin boundary file is the clipping of nighttime lights
and other datasets to each specific country. In addition, the admin boundary
file functions as an administrator of processes. Gridfinder runs processes on a
country-by-country basis and uses the list of countries in the admin boundary
file as a list of tasks to be completed.

4.1.2 Datasets Applied for Grid Layout Prediction

A wide range of datasets from multiple sources was used to arrive at the final
product of estimated grid layouts all over Europe. This section describes the
datasets’ attributes, source, and preprocessing required. Firstly, the nighttime
lights are presented. The datasets used in cost calculations, street networks,
transmission grids, slope, and protected areas are covered. Finally, the section
covers mask datasets and the ground truth; population, urban areas, water bodies
and distribution grids.

4.1.3 VIIRS Night Time Lights

Night Time Lights (NTL) can be downloaded from the Earth Observation Group
[42]. NTL are provided at a spatial resolution of approximately 450 meters at the
equator. The EOG provides daily, monthly, and annual composites of night lights.
This experiment uses all monthly composites of 2020. The final NTL target
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raster is based on 12 months of data, the 70th percentile of each grid cell and a
threshold of 0.2 W

m2sr . The threshold was chosen based on anecdotal experiments.
These steps reduce the presence of ephemeral and natural lights. This raster was
compatible with Dijkstra’s, but a convolutional filter and masks were applied to
increase the quality of results. The NTL raster was the fundamental matrix, and
all other datasets were resampled to match the resolution of this raster.

Figure 4.2: Process from raw data to targets with night time lights

Figure 4.2 illustrates the preprocessing of night lights. The rightmost image in
Figure 4.2 displays a targets raster in Switzerland.

4.1.4 Costs

OpenStreetMap OSM data [43] was downloaded for all of Europe in a single
file. Geofabrik[44], a German OSM consultancy firm, provides downloadable
osm.pbf files containing all available OSM data by region. This study downloaded
the European file and later clipped the data to individual countries using poly-
files. Polyfiles are sequences of points describing the administrative boundary of
a region or country. Using the processing tool osmfilter[45], the OSM data of
interest, roads and power lines were extracted from the pbf files and converted
to geopackages.

Roads After the abovementioned steps, road networks were available as geo-
packages for all European countries. Rasterization of the street networks was
necessary as geo-packages are vector files. The conversion was done using ras-
terio’s rasterize [46], where the night light raster was used as target resolution.
OSM road network data contains a high-level categorization of road types, ran-
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ging from service roads to motorways. This categorization was used as the basis
for the raster burn-in values shown in Table 4.2. The lowest cost is assigned if a
pixel contains multiple road categories.

Category Costs
Motorway 1/10
Trunk 1/9
Primary 1/8
Secondary 1/7
Tertiary 1/6
Unclassified 1/5
Residential 1/4
Service 1/3

Table 4.2: Road categories and costs

Power Lines Power lines go through the same conversion process as the street
network [43]. OSM has labelled data with a ”power” tag, facilitating for power
line filtering. Data labelled with the key-value pairs power:line and power:cable
extracted layout and voltages. The power line dataset was then split into costs
and validation depending on the voltage level of the line or cable. HV lines made
a cost layer while MV lines created the validation set. In Figure ??, HV lines are
COLOR, and MV lines are COLOR. The power line cost dataset for a country
is valued at 0 when a raster-cell contains a transmission grid and one elsewhere.
Slope A slope dataset was created using Shuttle Radar Topography Mission’s
(SRTM) Digital Elevation Model (DEM)[47]. DEM tiles are available for down-
load in two sizes, 5 x 5 degrees and 30 x 30 degrees. Tiles N30W030, N30E000
and N30E030 (Figure 4.3) provide a near-complete coverage of European coun-
tries. The data has a spatial resolution of 3 arc-seconds, approximately 90m. The
slope dataset was created using the built-in DEM to slope method in QGIS. This
method requires a scale factor, which was calculated using the average latitude
of the region.

s = 111320 ∗ cos(Lat ∗ π

180◦
) = 78715 (4.1)

The scale factor (4.1) will accurately convert from DEM to slope in areas close
to 45th parallel north, but errors increase the further away from the 45th parallel
they get. Slope-costs are derived from a rough categorization, displayed in Table
4.3. While errors in slope calculations will lead to the misclassification of some
raster cells, the impact was considered negligible. The slope raster was resampled
by averaging to match the spatial resolution of nighttime lights and clipped to
individual countries.
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Degrees Costs
30 < 3
20− 30 2
< 20 1

Table 4.3: Slope costs

A downsampled slope raster cell’s value is the basis of the assigned cost. The cost
of slope values are found in Table 4.3. The configuration of slope costs is based
on anecdotal experiments. NASA does not provide SRTM DEM data above
60 degrees north. The lacking coverage forced removal of northern European
countries [Table 4.1].

Figure 4.3: Downloaded DEM data in Europe.

Protected Areas The protected areas dataset was downloaded from Protected
Planet[48], a platform with extensive geographical data regarding terrestrial and
marine protected areas. The exact dataset used for generating a cost layer is
the World Database on Protected Areas (WDPA). WDPA is a global dataset.
Preprocessing of WDPA consisted of rasterization and resampling to night light’s
resolution before clipping to individual countries. Cells within a protected area
are assigned a value of 1; all other cells are valued at 0.
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4.1.5 Filters

Population Population data was downloaded from the Global Human Settle-
ment Layer (GHSL)[49]. GHLS provides data related to human presence on the
planet through data sets such as population and built-up areas. The spatial
resolution of the population data is nine arc-seconds, approximately 270m, and
covers the whole globe. The population raster was resampled by averaging to
NTL’s resolution. A binary threshold was applied to the resampled population
layer to create a mask. Two masks were created, greater than zero and greater
than ten.

Land Cover The 2019 land cover classification dataset is provided by the Cli-
mate Change Initiative (CCI)[50]. The raster values inform about the type of
land cover based on the Land Cover Classification System (LCCS)[51]. The ras-
ter comes with a spatial resolution of 300m. Therefore, resampling was necessary
to match the night lights raster. LCCS resampling was done using the median,
as values are categorical. Two masks were extracted from the LCCS dataset; an
urban area mask and a water bodies mask. Urban areas are denoted by a cell
value of 190 and water bodies by 210.

Slope The same slope dataset used for costs was also applied to create a slope
mask. The difference in processing from costs to mask is the burn-in values
assigned. A slope mask cell was valued one if the slope was less than 30 degrees
and 0 if above, thus removing all targets in steep hills.

4.2 Results

The following section will present two sets of results. Each set of results is linked
to a specific research goal. Firstly, we introduce the baseline model, as implemen-
ted in [36]. Further, we validate the proposed improvements from the Methodo-
logy chapter (3). The suggested improvements include new masks and new cost
layers. Model iteration results are analyzed comparatively. This aspect is linked
to improving on the state of the art methods.1 Secondly, we present maps and
key metrics from two countries, Switzerland and Spain, and an overview from
the complete data set. Switzerland is an outlier in terms of outstanding perform-
ance, while Spain represents the average country and results. Their metrics are
reviewed in a general perspective and will be used to answer Research Goal 2.

1Research Goal 1 [Sec 1.2]
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4.2.1 Baseline Model and Suggested Improvements

Model iteration results are presented in two categories; masks and costs. Results
presented describe the average results of all countries unless stated otherwise.
The baseline model uses a brightness value threshold of 0.1 and road networks
as costs. Complete tables of results for each model can be found in Appendix .1.

Masks

Table 4.4 shows the obtained evaluation metrics for different model configura-
tions. All masks removed target points from the targets raster, which limits
the chance of increased recall rates with additional masks. Additional masks
decreased recall rates in 84% of the individual country simulations.

Precision Recall IoU F1
Baseline 0.303 0.868 0.279 0.430
Watermask 0.303 0.868 0.279 0.430
Watermask + Pop0 0.311 0.844 0.282 0.433
Watermask + Pop10 0.318 0.791 0.275 0.425
Watermask + Pop0 + Slopemask 0.310 0.840 0.280 0.431
Watermask + Pop0 + Urbanmask 0.418 0.447 0.235 0.373

Table 4.4: Mask configuration results

The water mask shows no changes after rounded to three decimals but pro-
duced slightly higher results than the baseline model. The two different popula-
tion masks produced different results, where Pop10 improved precision twice as
much as Pop0. However, Pop0 achieved higher metrics in the remaining three
categories. We expected the Pop10 mask to provide lower recall scores as the
mask removes the same target points as Pop1, and many more. Pop10 achieved
overall lower results than the baseline model. The next mask implemented was
Slopemask. Slopemask performed worse than its predecessor, Pop0, by all metrics.
Finally, target points were filtered to by urban areas. The urban filter signific-
antly increased precision but almost halved recall rates. Pop10 and Urbanmask

obtained the two best precision scores, which also removed the most target points.
Both masks removed noise from the target raster but removed many valid targets
in the process.
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Costs

Table 4.5 shows the results of various cost configurations. PAcost=100 means that
the scalar of the cost layer, Protected Areas, is set to 100.2 The cost experiments
used target rasters filtered by Watermask + Pop0, and their results should be
compared to the scores in row two. The cost raster with protected areas costs of
1 and slope penalization multiplied by 5 achieved the best scores.

Precision Recall IoU F1
Baseline 0.303 0.868 0.279 0.430
Watermask + Pop0 0.311 0.844 0.282 0.433
PAcost=1 + Slopecost=0 0.320 0.826 0.288 0.441
PAcost=0 + Slopecost=1 0.327 0.813 0.291 0.445
PAcost=100 + Slopecost=100 0.328 0.806 0.290 0.444
PAcost=1 + Slopecost=5 0.330 0.807 0.292 0.446

Table 4.5: Cost configuration results

Changing costs had little impact on results, as can be seen if comparing the most
extreme cost configuration of PAcost=100+Slopecost=100 with the best performing
configuration. Regardless, the introduction of protected areas and slopes as a cost
layer improved the overall results.

4.2.2 General Results and Case Studies

While the first section focused on comparing different configurations, this sec-
tion focuses on the overall quality of the results. Table 4.6 contains the met-
rics obtained for Switzerland, Spain, and the average results. Presented res-
ults and maps are created with mask Watermask + Pop0 and cost configuration
PAcost=1 + Slopecost=5. Three maps were produced for each country, the first
illustrating the cost raster, the second presents target points and predicted power
lines, and the last contains predicted power lines and buffered ground truth.

2Referring to scalars in cost equation 3.2
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Precision Recall IoU F1
Average 0.3281 0.7980 0.2889 0.4426
Switzerland 0.5747 0.8989 0.5398 0.7011
Spain 0.2905 0.7678 0.2670 0.4215

Table 4.6: Evaluation metrics in Switzerland and Spain

Switzerland

Measured by F1 score, Switzerland performed five percentage points better than
the second-best and 35 percentage points above average. Figure 4.4 illustrates
the extraordinary nature in Switzerland, with the Swiss Alps dominating the
south. The large red areas are a result of steep hills, greatly increasing the cost
of travel. Although steep hills increase the path cost, they are often accompanied
by valleys. Valleys are suitable for roads, power lines and human settlements.
In the enlarged focus area in Figure 4.4,. The juxtaposition of steep hills and
valleys reduces the freedom for Dijkstra’s and practically enforces a path.

Costs
0
0	-	6
6	-	9
9	-	12
12	-	15
>	15

Switzerland

Figure 4.4: Cost raster in Switzerland

Figure 4.5 illustrates the target raster and predicted power lines combined. All
yellow dots and areas are connected by black lines representing electrified set-
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tlements and the predicted grid. The map illustrates how no yellow pixel, an
electrified settlement, is left unconnected to the grid. This feature is desirable in
countries with a single electricity grid but undesirable in countries with significant
usage of off-grid power plants. Switzerland and most European countries have
a single national high voltage network functioning as a stem for the distribution
grid tree. The inhabitable area in the south of Switzerland is almost exclusively
in the valleys. Target points fall in natural lines, which help Dijkstra’s algorithm
finding the correct path. If we view the enlarged areas in figures 4.4 and 4.5), we
can see that the cost world succeeds in facilitating real-world grid design. The
predicted power lines lie in the green lane of the cost world. The enlarged area
is the same in both maps, the city of Martigny and its surroundings.

Target	Raster
Target

Prediction
Power	line
Switzerland

Switzerland

Figure 4.5: Predicted power lines in Switzerland

The last map combines the prediction with the actual power lines in Switzerland.
In Figure 4.6 the thick green lines represent the ground truth, and the black lines
are the predicted power lines. The density of power lines in the northern areas
of Switzerland creates an overweight of valid prediction layouts. The map illus-
trates complications of buffering ground truth in countries with near-complete
documentation of power lines. The focus area in the top left corner of the fig-
ure attempts to visualize a common pitfall of the method. The enlarged map
illustrates how to model predicted power lines connecting target points from the
west, while the ground truth connected the central area from the east.
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Prediction
Power	Line

Ground	Truth
Buffered
Switzerland

Switzerland

Figure 4.6: Predicted power lines and buffered ground truth in Switzerland

Spain

The evaluation metrics obtained in Spain were most similar, measured by absolute
difference, to the average results. The low IoU metrics for Spain and the average
country explains the results in a more general perspective. Object detection
standards consider IoU scores above 0.5 satisfactory, meaning a minimum 50%
overlap between the predictions and ground truth. The predicted power lines in
Spain scored 0.2670, far below industry standards. The metrics alone suggest
that the methodology used is unfit for its purpose, but some of the deficiencies
can be explained by external parameters. The produced maps aim to illustrate
errors explainable by the methodology as well as external parameters.
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Costs
0
0	-	6
6	-	9
9	-	12
12	-	15
>	15

Costs	Spain

Figure 4.7: Cost raster in Spain

The cost raster in Spain (Figure 4.7) differs greatly from what we observed in
Switzerland (Figure 4.4). Spain is a flatter country, and terrain proposed fewer
limitations for the path prediction algorithm. Fewer restrictions reduced the
likelihood of the algorithm accurately predicting the layout of the distribution
grid and were likely the case in most countries. The roads cost layer, which
was included in the baseline model, visualized in the appendix (Figure 1), was
vital for pathfinding in large similar-cost areas (large green areas in 4.7). The
enlarged area of the cost figure shows a wide range of costs; white lines indicate
high voltage power lines. Green is a flat area, and light green is a flat, protected
area. Yellow and red pixels indicate rough terrain, where red is the steepest or
roughest.

Figure 4.8 shows the predicted power lines in combination with ground truth.
The enlarged area illustrates the challenge with this study, the completeness
of the validation data set. Small areas of documented power lines appeared
disconnected from the nearby grid. The methods used assumed that all lights
were connected, thus creating a fully connected grid, thus incorrectly predicting
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grid lines where there were none. In addition, the focused area illustrates the
difference in the level of detail. Night lights identified electricity consumption
hotspots at a higher level of detail than what was documented in open source
power line data. The level of detail mismatch was found in the majority of
inspected countries; Switzerland was an exception. The figure also illustrates the
differences in coverage in different regions of the country. The high density of
green pixels in the northwest of Spain results from a more complete ground truth
data set. OpenStreetMap mapping processes are often local initiatives, which
can explain coverage differences.

Prediction
Power	Line

Ground	Truth
Buffered
Spain

Spain

Figure 4.8: Predicted power lines and buffered ground truth in Spain

Palma, Ibiza, and Menorca east of the mainland created a new challenge for
Dijkstra’s. The predicted path left the mainland at Cap Mart́ı, the easternmost
point in the area, disregarding the inadequate infrastructure. In addition, the
path’s first destination is Ibiza (western island), then Palma (middle island),
before arriving at Menorca (eastern island). The prediction illustrates the failure
to incorporate consumption loads. Palma, the central island, is more prominent in
size and population and requires significantly more power than the neighbouring
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islands. The actual power lines leave the mainland further north near Valencia,
a large city with adequate infrastructure, and goes directly to Palma.

4.2.3 General Observations

Cost methodology Figure 4.9 illustrates how the algorithm predicted power
line paths near a protected area. The area is the same as the focus-area in
Figure 4.7. The path tends to avoid crossing the protected areas, especially
where steep hills separate target points. The illustration validates the intended
logic of introducing the slope data layer and protected areas data layer as costs.
While the methodology worked as planned, there was no ground truth data in
the selected area to validated the predictions’ correctness.

Target	Raster
Target

Prediction
Power	Line

Costs
0
0	-	6
6	-	9
9	-	12
12	-	15
>	15

Costs	and	Predictions

Figure 4.9: Predictions around a protected area

Repeated transmission line branching Figure 4.10 illustrates an undesir-
able result of method design, present because high voltage lines have zero cost.
All distribution grids are connected to the transmission system, but real-world
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transmission grids are not connectable everywhere. The algorithm predicted
small MV-branches along 400 kV transmission lines, which would require a power
substation and transformer. It would not be cost-efficient to build a power sub-
station every 5 kilometres as the predicted paths would have required if they were
correct. Thus, the methodology fails to take connection limitations into account.
A different solution to power line prediction using substations as nodes could
solve this problem.

Target	Raster
Target

Costs
0	(HV	Line)

Prediction
Power	Line
Spain

Predictions	in	Spain

Figure 4.10: Transmission line branching

Parallel Grid Lines Power producers often build parallel grid lines for load
and redundancy reasons. Redundancy does not make sense from a minimization
of costs perspective, and power loads are not incorporated in the cost world. Thus
Dijkstra’s fails to incorporate these aspects of grid design. However, parallel grid
lines are most commonly used on high voltage networks, which are zero-cost
and automatically expanded by Dijkstra. In addition, the rasterization of vector
power lines downsamples the resolution to 450 m. Power lines less than 450 m
apart will be classified as a single power line. Figure 4.11 illustrates the two
cases. The left image shows an area east of Valladolid, Spain, with parallel
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high voltage lines at zero cost. The right image shows how parallel gridlines in
Switzerland were combined under rasterization; green pixels are the black lines
after rasterization.

Switzerland
Medium	Voltage	Lines
Ground	Truth

Spain
High	Voltage	Lines

Costs
0
0	-	6

Figure 4.11: Parallel power lines
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Discussion

This chapter discusses the results in a more general context. Firstly, we discuss
the overall quality of the results and how they compare to similar studies. The
second section discusses OpenStreetMap power line data quality and whether it
was suited for being used for validation. Continuing, we discuss the lack of formal
requirements for the predictions.

5.1 Results

The results and metrics obtained were far below those presented in [36]. This
thesis’ implemented validation method expected lower metrics, as there was dif-
ferent usage of OpenStreetMap data. Their paper validated predicted grids in
selected countries against official documentation and used all OpenStreetMap
power lines as zero-cost. Comparatively, this thesis used only transmission lines
as zero-cost. We argue that their results were too dependent on the quality of
OpenStreetMap power line data in the specific country, and the validation process
failed to explain the quality of night light grid prediction.

The results in Switzerland were far better than expected, but the performance
was unmatched by other countries. Two key factors can explain the great results;
the completeness of validation data and extreme terrain. The northern regions
of Switzerland had well-documented power lines, and the buffering of ground
truth created a forgiving world to predict in. Further, the extreme nature in the
south of Switzerland concentrates target points in the valleys. The valleys were
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easily identifiable in the cost world, and Dijkstra’s pathfinding was simplified.
A more representable set of results were obtained in Spain. The average results
are lacking in the context of object detection standards. The methodology fails
to consider several aspects of grid design, mainly the absence of transformers
and consumption loads. Although the pathfinding algorithm has limitations, the
selection of ground truth data sets significantly impacted the results. Populated
areas all over Europe were without documented power lines.

Most of the existing literature on power line layout focused on planning, and an
experiment’s correctness was rarely quantifiable. Placing the results in a greater
context is difficult, but qualitative assessments of predictions highlighted fun-
damental flaws in the applied methodology. The object detection results are
not directly comparable to our results. However, their efforts suggest that high
voltage power line documentation is a more significant challenge than assumed in
this thesis. Usage of high voltage lines as costs is a crucial aspect of the methodo-
logy. We assumed that high voltage lines were available in most countries, which
is correct for Europe, but the assumption will not necessarily hold in Sub-Saharan
Africa.

5.2 OpenStreetMap Power Line Data Quality

Research Goal 2 focused on prediction quality. Quality and accuracy were im-
portant as predicted distribution grids could be applied in practical applications.
Validation in Sub-Saharan Africa was avoided due to the lack of documented
power lines. Documentation of high voltage networks in Europe is near complete
[39], but distribution grid or medium voltage networks are under-documented
everywhere. Figure 5.1 illustrates the difference in the level of detail between
the predicted power lines and the buffer ground truth data set. The left image
show predicted power lines and buffered ground truth, and the right image shows
predicted power lines and population count; both images cover the outskirts of
Madrid, Spain.

42



CHAPTER 5. DISCUSSION

Prediction
Power	Line

Ground	Truth
Buffered

Prediction
Power	Line

Population	Count
0	-	250
250	-	500
500	-	750
>	750

Figure 5.1: Distribution grid completeness example. Madrid, Spain

The bright area in the bottom left corner is Madrid, which is a high population
density area. The purple spots east of Madrid are populated areas. As we can see
from the figure, there is a large discrepancy between the ground truth in the left
image and the purple areas in the right image. In 2020 a 100% of the population
in Spain had access to power[52], which strengthens the case of an incomplete
ground truth data set. Building on this, the observed values in the results section,
tables 4.5 and 4.6, all have high recall and low precision values. Two things could
explain low precision; Over-prediction of positives or incomplete validation data.
We can conclude that low precision can be partially explained by incomplete data
set.

While a more complete data set would likely result in higher precision, we expect
decreased recall rates. In an attempt to measure the impact of incomplete data
sets, we look towards Great Britain and Germany, which are global leaders in open
source geospatial data. The table below, Table 5.1, presents evaluation metrics
for Switzerland, Spain, Germany, Great Britain, and the average country. As we
can see from the table, Germany and Great Britain perform comparably to Spain
and the average country.
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Precision Recall IoU F1
Average 0.3281 0.7980 0.2889 0.4426
Switzerland 0.5747 0.8989 0.5398 0.7011
Spain 0.2905 0.7678 0.2670 0.4215
Germany 0.3289 0.9282 0.3208 0.4857
Great Britain 0.2901 0.7079 0.2591 0.4116

Table 5.1: Evaluation metrics for the average country, Switzerland, Spain, Ger-
many and Great Britain.

Even though Germany and Great Britain are at the forefront of open-source geo-
graphical data, we cannot conclude that their power line data is complete. The
validation data incompleteness implications are complicated to quantify. The un-
certainty could be avoided by re-running simulations on guaranteed complete data
sets. The entire ground truth data set is visualized at www.openinframap.com[39].
The study failed to obtain a validation data set suitable for the resolution of
nighttime lights.

5.3 Method Limitations

The methodology requires high-quality data in multiple aspects. Primarily, the
method depends on night lights being an accurate proxy for electricity consump-
tion. Further, seven data layers were implemented either as masks or costs. The
method relies on both the quality of the data and the correctness of the logical
implementation. The target raster, Dijkstra’s limitations, and cost layers are
discussed to understand the results better.

5.3.1 Target Raster

The target raster is a binary representation of all pixels assumed connected to the
distribution grid. Dijkstra’s connects all target points and does not stop until all
points have been linked together. This feature implies that the quality of predic-
tions by Dijkstra is dependent on the input data set quality. There are two main
challenges concerning the quality of target points. The primary challenge is that
pixels are classified based on radiance intensity and not radiance source. Sev-
eral preprocessing steps were implemented to limit the impact of natural lights,
but there is no guarantee of removing all-natural sources. A secondary challenge
arises when predicting power lines in developing countries. A report presented in
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2018 by Dalberg Advisors and Lighting Global suggested that the current situ-
ation and future needs depend on off-grid solar power systems[53]. Dijkstra’s
algorithm assumes a single grid in each country and connects off-grid settlements
to the main grid.

Possible solutions to the off-grid challenge could be to remove target points
through preprocessing or avoid connecting them to the main grid. The first
solution would require an extensive data set of off-grid settlements and identify
unique attributes of these. The second approach could use a maximum cost for
cut-off. This approach assumes the off-grid systems are in regions far away from
the central grid, and the aggregated cost of connecting a target to the grid would
be considered too high.

5.3.2 Cost Layers

The main concern with new cost layers was the lacking impact they had on the
results. The cost layers marginally improved results, and extreme scalars had
less impact than we expected. To illustrate, Table 5.2 shows that the difference
in evaluation metrics between two extreme scalar configurations is almost non-
existent.

Precision Recall IoU F1
PAcost=0 + Slopecost=1 0.327 0.813 0.291 0.445
PAcost=100 + Slopecost=100 0.328 0.806 0.290 0.444
Differences 0.001 0.007 0.001 0.001

Table 5.2: Impact of scalars

The marginal differences suggest that new cost layers have little impact on results,
and significant methodology improvements are likely made elsewhere. The cost
configuration fine-tuning is more impactful after the fundamentals of the process
are in place, such as a proper ground-truth dataset.

5.3.3 Validation

The incompleteness of the ground truth data set remains the primary source of
uncertainty in this thesis, but multiple other factors could significantly impact
results. Power producers expressed that an overview of the local power infra-
structure was crucial in the early screening phase of the site selection processes.
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However, the expressed importance was not quantified in terms of a minimum
resolution or accuracy. Their requirements remained on an abstract level, which
complicated the assessment of evaluation metrics. Modifiable validation paramet-
ers are, for instance, spatial resolution and ground truth buffer size. Firstly, the
prediction and ground truth resolutions were set to be the same as the primary
data source. A decreased resolution could improve metrics [36] but was not ap-
plied in this thesis. Alternatively, we could have further increased the ground
truth buffer. The buffer of 1 km was arbitrary and implied that predictions were
classified as correct when within a kilometre from the actual grid. While logical
arguments back the resolution and buffer, they are not linked to industry-specific
requirements.
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Conclusion

This thesis inferred power lines based on nighttime lights using a modified version
of Dijkstra’s algorithm. The goal was to create a complete and reliable electricity
infrastructure data set in Sub-Saharan Africa by improving the state of the art
methods and validating predictions in a wide range of countries. This data set
would facilitate the initiation of new energy projects in the region. The results
showed promise in countries where electricity consumption strictly followed the
limitations imposed by cost world, such as the rough terrain in Switzerland.
However, when left with multiple suitable choices for path expansion, Dijkstra’s
algorithm could not accurately predict the power line layout. The performance
difference between the average and best-performing countries was approximately
30% measured by IoU and F1 score. The average IoU score of 0.29 fall short of
industry standards, and predictions were neither reliable nor accurate. Regardless
of the failure to deliver the thesis’ purpose, efforts must be made to increase the
access rates in Sub-Saharan Africa.

A crucial finding was that changing the cost configuration and introducing new
layers had a minimal impact on the results. The minimum and maximum values
for cost weights produced near-identical results, suggesting that improvements are
more likely achieved elsewhere. The target raster preprocessing had more impact
on results. Successful masks, such as the population mask, removed more noise
than valid targets and improved the baseline model. Overall imprecise results
could also suggest that the methodology is not suited for its purpose. Energy
transmission lines seldom have a single correct layout. Multiple paths might be
suitable, and the deciding factor can be an experts opinion or parameters not
accounted for in this implementation. Pathfinding for planning purposes and
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documentation purposes differ significantly in requirements. The vast amount of
relevant literature on planning versus documentation substantiate arguments of
documentation being an overly ambitious application.

Future Work Qualitative analysis identified multiple shortcomings of the im-
plemented methodology. The study’s main drawbacks were the incompleteness
of the validation data set and the impact zero-cost transmission lines had on the
predicted distribution grid. First, a more complete data set would have signific-
antly decreased the uncertainty of predictions. Current evaluation metrics offer
little explanatory value, and persistently low precision values can be attributed
to the systematic error. Further, we observed the undesired branching effects
transmission lines had when implemented at zero cost. We suggest a regional
approach for distribution grid inference. Inference at a regional scale would not
include transmission lines as part of the cost world, as transmission lines trans-
port power across regions. We suggest a combination of the Voronoi diagram
substation approach proposed in [11] and what is implemented in this paper
for further study. The approach uses substations with high to medium voltage
transformers as start nodes and night lights as targets. The method should, at a
minimum, solve the challenges caused by transmission lines.

New layers could also easily be implemented in the solution. The urban areas filter
significantly increased precision but removed too many valid targets resulting in
a decrease in overall metrics. A similar mask could be based on buildings. For
a pixel to qualify as an urban area, the majority needs to be a built-up area.
Implementing a new mask filtering on building presence would suggest a more
lenient requirement than urban areas. The desired result would be a similar
increase in precision and less decline in the recall score.

Nonetheless, it is essential to remember that even substantial improvements in
evaluation metrics will not guarantee usable results. We are uncertain if the
combination of nighttime lights and Dijkstra’s algorithm will ever be capable of
accurately documenting power lines.
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Appendix

.1 Code and Results

Algorithm 1 contains pseudocode for the modified version of Dijkstra’s algorithm.
A Python implementation of the pseudocode can be found at https://github.com/
carderne/gridfinder/blob/master/gridfinder/gridfinder.py. All necessary code to re-

Algorithm 1 Modified Version of Dijkstra’s Algorithm

T = Targets
C = Costs
s = Start
function Pathfinder(T, C, s)

distance[s] = 0
Q = PriorityQueue by distance
Push S to Q
while Q is not empty do

current = Q.pop()
for next in current.neighbours do

if n is target then
zero distances between current and n

else
Calculate updated distance
if next is unvisited then

dist add = distance[current] + C[next]
distance[next] = min(dist add, distance[next])
Push next to Q

else
Push next to Q

end if
end if

end for
end while
return distance

end function

create the experiments are provided in the Github Repository. Approximately
30 different parameter configurations were experimented with, each configuration
produced results in 34 countries. The raw result data was considered too much
to include in the appendix, but is available in the Github Repository.
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.2 Roads

The maps visualizing the cost raster in the two studied countries did not visualize
the road networks. Dijkstra’s algorithm traveled cheaper along known roads.
Costs were differentiated based on road category, categories are displayed in the
legend of Map 1 while the associated costs are displayed in the legend of Map 2.

Spain
Road	Category

Motorway
Trunk
Primary
Secondary
Tertiary

Road	Network	Spain

Figure 1: Road network Spain
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Cost
1/10
1/9
1/8
1/7
1/6
Switzerland

Road	Network	Switzerland

Figure 2: Road network Switzerland
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