
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f E
ng

in
ee

rin
g

Cy
be

rn
et

ic
sD

om
ain Adaptation for D

etection of M
aritim

e Vessels in Im
ages

Kristoffer Landsnes

Domain Adaptation for Detection of
Maritime Vessels in Images

A Comparative Study on the Effects of Targeted
Detection Pre-Training Using Real-World Data

Master’s thesis in Cybernetics and Robotics
Supervisor: Edmund Brekke
Co-supervisor: Øystein Kaarstad Helgesen
July 2021

M
as

te
r’s

 th
es

is

Kristoffer Landsnes

Domain Adaptation for Detection of
Maritime Vessels in Images

A Comparative Study on the Effects of Targeted
Detection Pre-Training Using Real-World Data

Master’s thesis in Cybernetics and Robotics
Supervisor: Edmund Brekke
Co-supervisor: Øystein Kaarstad Helgesen
July 2021

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Engineering Cybernetics

Abstract

Object detection is imperative for situational awareness in autonomous systems, promoting safe
and controlled autonomous navigation. Maritime camera-based object detectors, though being one
of the key-systems for providing rich object structure-information, are often based on incomplete
and small-scale datasets for training and evaluation.

In this thesis, we explore the effects of pre-training and fine-tuning object detectors for maritime
vessel detection; referred to as targeted detection pre-training. Existing annotated maritime data
is acquired, resulting in three experimental datasets of optical images for detection pre-training.
The largest of which, comprises a total of 17,871 images with 95,398 labeled maritime vessels. In
a real-world setting, domain adaptive fine-tuning is executed on a manually labeled target domain
dataset representing the operational area of the autonomous ferry milliAmpere.

The state-of-the-art EfficientDet-D3 detector is selected in accordance with inference time require-
ments from the sensor rig of milliAmpere. Fine-tuning into the target domain is executed for full
fine-tuning (FF), frozen backbone (FB) and fine-tuning of the EfficientDet-D3 prediction heads
only (HO).

Based on reported COCO AP metrics on the target domain test set and several case-study scenarios,
we highlight our main findings. 1) Targeted detection pre-trained models consistently converge faster
and to higher performance scores than all baselines, even for fewer fine-tuned epochs. 2) Targeted
detection pre-trained models are more robust, mitigating false-negative predictions in challenging
scenarios while producing tighter and more confident predicted bounding boxes. 3) More freezing is
inferior to full fine-tuning when the pre-training and target tasks and labels are the same.

Targeted detection pre-training is found highly beneficial for improving maritime vessel detection
in the target domain, encouraging the adoption of this scheme for faster stream-lined and more
robust detector development on small-scale maritime target datasets.

i

Sammendrag

Deteksjon av objekter er imperativt for situasjonsforst̊aelse i autonome systemer og bidrar til trygg
og kontrollert autonom navigasjon. I maritime miljøer er kamerabaserte detektorer et av de vik-
tigste systemene som gir tilgang p̊a detaljert strukturell informasjon om objekter, men ofte er slike
detektorer basert p̊a ufullstendige og sm̊askala datasett for trening og evaluering.

I denne avhandlingen undersøker vi effekten av pre-trening og finjustering av objekt-detektorer
for deteksjon av maritime fartøy; ogs̊a kalt m̊alrettet deteksjons pre-trening. Eksisterende annotert
maritim data er ervervet og benyttet til å designe tre eksperimentelle datasett med optiske bilder for
deteksjons pre-trening. Det største datasettet best̊ar av totalt 17,871 bilder med 95,398 annoterte
maritime fartøy. Domeneadaptiv finjustering utføres p̊a et eget-annotert m̊aldomene datasett, som
representerer operasjonsomr̊adet til den autonome fergen milliAmpere.

State-of-the-art detektoren, EfficientDet-D3, er valgt i samsvar med krav til deteksjonstid fra sen-
sorriggen til milliAmpere. Finjustering inn i m̊aldomenet utføres for full finjustering (FF), fryst
konvolusjonsnettverk (FB) og finjustering av EfficientDet-D3 prediksjonshodene (HO).

Basert p̊a COCO AP ytelseskriterium p̊a m̊aldomenets testsett og flere case-studie scenarioer,
fremhever vi hovedfunnene v̊are. 1) M̊alrettede deteksjons pre-trente modeller konvergerer kon-
sekvent raskere og til høyere ytelse enn alle basislinje (baseline) modeller, selv for færre finjusterte
epoker. 2) M̊alrettede deteksjons pre-trente modeller er mer robuste og avverger falske-negative
prediksjoner i utfordrende scenarier, mens de produserer mer presise bounding-bokser med høyere
trygghet. 3) Mer fryste parametere gir d̊arligere ytelse enn for full finjustering n̊ar pre-trening
oppgaven og m̊aldomenets oppgave samt annoterings klassene er de samme.

M̊alrettet deteksjonstrening er funnet meget gunstig for å forbedre deteksjon av maritime fartøy i
m̊aldomenet og motiverer videre bruk av denne teknikken for raskere og mer robust detektorutvikling
p̊a sm̊askala maritime m̊aldatasett.

ii

Preface

This thesis marks the end of my Master of Science (MSc) degree in Cybernetics and Robotics at
the Norwegian University of Science and Technology (NTNU). The thesis is written in the spring
semester of 2021 under the guidance of Edmund Brekke and co-supervisor Øystein K. Helgesen.
Parts of the thesis are motivated or adapted from the author’s unpublished specialization project
[56] conducted in the fall of 2020, as follows:

• Parts of chapter 2.

• Parts of chapter 3.

• Parts of section 4.1 - 4.2.

I would like to thank Edmund Brekke and Øystein K. Helgesen for support and invaluable feedback
on drafts of this thesis, provided even during weekends and holidays. The experiments and results
in this thesis would not have been possible without the annotated Hurtigruten dataset, provided
by DNV (Det Norske Veritas), together with instructions from Kristian B. Karolius. Øystein K.
Helgesen and Erik Wilthil further provided kayak videos recorded in experiments on milliAmpere,
used in this thesis. I would also like to thank Andreas T. Henriksen who has been an important
sparring-partner and challenged my ideas and experiment choices.

Lastly, this thesis would not have been possible without the unconditional support of my parents.

Trondheim, July 2021

Kristoffer Landsnes

iii

ACRONYMS

ANN Artificial Neural Network. iii, 6–8

ASV Autonomous Surface Vessels. iii, 1, 103

BiFPN Bi-directional Feature Pyramid Network. iii, 14, 61

CNN Convolutional Neural Network. iii, 6–11, 13, 14, 28, 37, 100

COLREGs Convention on the International Regulations for Preventing Collisions at Sea. iii, 1

DA Domain Adaptation. iii, 2, 23, 24, 55, 85, 87, 102

DCNN Deep Convolutional Neural Network. iii, 2, 21, 22, 24–26, 30, 87, 100, 101

DNN Deep Neural Network. iii, 6, 25, 26

EO Electro-optical. iii, 3, 50, 51

FLOPS Floating Point Operations. iii, 14

FPN Feature Pyramid Network. iii, 9, 11, 13, 14

FPS Frames Per Second. iii, 3, 12, 13, 45, 50, 52, 58, 87, 89

IOU Intersection over Union. iii, 10, 13, 16, 18, 27–29, 47, 61, 62, 65, 72, 76

LIME Local Interpretable Model-Agnostic Explanations. iii, 101, 104

mAP Mean Average Precision. iii, 2, 10, 12–15, 18, 20, 27–30, 57, 58

MMD Mixed Maritime Dataset. iii, 56, 64, 74–77, 82, 87

MSE Mean Squared Error. iii, 6

NIR Near-Infrared. iii, 2, 43

NMD Nordic Maritime Dataset. iii, 55, 56, 64, 70, 72, 74–77, 82, 85, 87, 88, 94, 100

NMS Non-Maximum Suppression. iii, 10, 12, 13, 62, 87

RoI Region-of-interest. iii, 9–11

RPN Region Proposal Network. iii, 9–11

iv

SGD Stochastic Gradient Descent. iii, 58, 67

SHAP SHapley Additive exPlanations. iii, 101, 104

SMD Singapore Maritime Dataset. iii, 2, 4, 5, 20, 21, 43–50, 55, 56, 64–70, 74–77, 82, 85, 87,
100, 102

SVM Support Vector Machine. iii, 10, 100

VIS Visual-Optical. iii, 2, 32, 43–45

XAI Explainable Artificial Intelligence. iii, 101, 104

v

TABLE OF CONTENTS

1 Introduction 1

1.1 Problem formulation . 3

1.2 Contributions . 4

1.3 Report outline . 5

2 Object detection 6

2.1 Artificial neural networks . 6

2.2 Convolutional neural networks . 7

2.3 Object detection . 8

2.3.1 Concepts in object detection . 8

2.4 Object detection architectures . 10

2.4.1 R-CNN family . 10

2.4.2 You Only Look Once (YOLO) . 12

2.4.3 EfficientDet . 14

2.4.4 CenterNet . 15

2.5 Performance metrics . 15

2.5.1 Precision-recall . 17

2.5.2 Precision-recall curve . 17

2.5.3 Average precision . 17

2.5.4 Mean average precision . 18

2.5.5 Average recall . 18

3 Related work 19

3.1 Maritime environment . 19

3.1.1 Maritime detection . 20

vi

3.1.2 Maritime environment datasets . 21

3.2 Transfer learning . 21

3.2.1 Transfer learning background . 22

3.2.2 Domain adaptation . 23

3.2.3 Fine-tuning & pre-training . 24

3.3 Summary . 30

4 Datasets 31

4.1 Grini dataset . 31

4.2 Brekke & Lopez dataset . 32

4.3 Hurtigruten dataset . 34

4.3.1 Dataset exploration . 35

4.3.2 Dataset post-processing . 37

4.3.3 Dataset statistics . 41

4.4 Singapore maritime dataset . 43

4.4.1 Dataset exploration . 44

4.4.2 Dataset post-processing . 49

4.4.3 Dataset statistics . 49

4.5 Target domain dataset . 50

4.5.1 Custom dataset design . 51

5 Experiment design 54

5.1 Targeted detection pre-training . 54

5.2 Experimental datasets . 55

5.3 Detector considerations . 56

5.4 EfficientDet TensorFlow configuration . 58

5.5 Performance metrics and terminology . 61

6 Experiments 63

6.1 Experiment overview . 63

6.2 Unseen target domain . 64

6.2.1 Singapore maritime dataset . 64

6.2.2 Nordic maritime dataset . 70

6.2.3 Mixed maritime dataset . 74

6.3 Seen target domain . 78

6.3.1 Baselines . 78

vii

6.3.2 Targeted detection pre-training . 81

7 Results 84

7.1 Unseen target domain . 84

7.1.1 Main results . 84

7.2 Seen target domain . 86

7.2.1 Main results . 86

7.3 Class-awareness . 88

7.3.1 Main results . 88

7.4 Case-studies . 89

7.4.1 Occluded boats open-sea . 89

7.4.2 Ferry front-on . 91

7.4.3 Approaching kayak . 93

7.5 Video inference . 96

8 Discussion 98

8.1 Target domain dataset limitations . 98

8.2 Domain distances . 100

8.3 Reported metrics & trustability . 100

8.4 Targeted detection pre-training . 101

9 Conclusion & future work 103

9.1 Future work . 104

Bibliography 105

viii

CHAPTER 1

INTRODUCTION

Autonomous navigation has in recent years become an increasingly hot topic of research. The
potential advantages are many-fold and expand beyond efficient route planning, reduced labor-cost
and increased traffic safety. Autonomous cars are often featured in the news with impressive results
from companies such as Tesla, Uber and Google. On the other hand, Autonomous Surface Vessels
(ASV) engender a research branch with just as large implications. ASVs are considered one of the
eight most important future maritime technologies [93].

The future, on the other hand, may be closer than expected. The Yara Birkeland project, a
collaboration between Kongsberg and Yara, is in the final stage of launching their zero-emission
autonomous container ship, projected to perform fully-autonomously by 2022 [9]. An autonomous
navigation system for ferry traversing and docking provided by Kongsberg was used to autonomously
conduct the world’s first adaptive ferry transit with passengers in 2020 [7]. The Mayflower Au-
tonomous Ship, is projected to cross the Atlantic ocean fully-autonomously during 2021 [8].

An autonomous navigation system inherently depends on a complex pipeline of environmental
perception, situational-awareness and robust algorithms for collision-avoidance. The first step in
such a pipeline is perceiving and locating surrounding objects, or detecting objects.

The detection of objects is imperative seen in relation to the Convention on the International
Regulations for Preventing Collisions at Sea (COLREGs) [48], which is a set of rules regulating
several aspects of maritime navigation, including collision avoidance. Collision scenarios often occur
in close proximity navigation, such as crossing situations and while overtaking another vessel (rule
13-15).

Active non-visual sensors, such as lidar and radar, provide precise positional information of the
surrounding environment and vessels. Standalone, radar and lidar struggle to perform accurate
obstacle detection and are often used in fused sensor systems.

Helgesen [42] implemented a sensor fusion system of active and passive sensors. Helgesen found that
fusing lidar and radar measurements improved tracking accuracy, while the addition of infrared
camera measurements further increased tracking robustness. Turøy [105] developed a COLREGs
collision compliant system based on collision avoidance (COLAV) with AIS transmitted signals.
Turøy further implemented an IPDA lidar tracking system, verifying robust obstacle avoidance for
the COLAV method.

Smaller boats often do not have AIS transmitters and while possible to detect by non-visual sensors,
either standalone or fused, object detection in optical images have proven to be a valuable addition
by providing accurate localization and object structure-information [52] extendable for integration
into camera tracking and obstacle avoidance systems. For instance, by detecting objects such as
sea kayaks and boats without radar reflector or AIS transmitters [15].

1

In line with recent advances in deep learning, Deep Convolutional Neural Network (DCNN)
methods are considered state-of-the-art in object detection [51]. Deploying deep learning based
object detectors for maritime object detection is not a new phenomena.

The Mask R-CNN [40] architecture was deployed in a study comparing detection performance of
an unmanned bridge with a human navigator for ship navigation [15]. Blanke et al. found the
Mask R-CNN to detect objects faster than its human counterpart, but pointed out the need for
more training data to improve the detector’s performance in certain situations, making it more
suitable as an extra fifth sense for the human navigator. Nita and Vandewal [72] similarly present
generalization issues for the Mask R-CNN when training on a small custom dataset.

Tangstad [102] utilized Faster R-CNN [86] to detect maritime objects for collision avoidance. Simi-
lar to other research [67], Tangstad scraped maritime images from large universal detection datasets
[26]. Grini [35] trained the YOLOv3 [82] and SSD [63] one-stage detectors for boat and building
detection on a manually collected and annotated dataset of 1,916 images, partially from local mar-
itime waters in Trondheim, made available for this thesis. The detectors demonstrate robustness
on evaluation, though struggling with overfitting behaviour due to the small data foundation.

The Singapore Maritime Dataset (SMD) [79] is, to the best of our knowledge, the largest publicly
available maritime dataset with instance labels for different vessel types, spanning over 30,000
labeled frames from the Visual-Optical (VIS) and Near-Infrared (NIR) spectra. The SMD has
been treated as to represent a maritime benchmark dataset [70], with a proposed dataset split and
benchmark results from the Faster R-CNN and a pseudo-mask supervised Mask R-CNN.

The computer vision community evolves in an extremely rapid pace. One of the corner-stones in
this evolution is based on transfer learning and particularly pre-training. Pre-training on a source
task has proven to transfer useful features for a target task [32]. In object detection, this discovery
has been widely accepted by using large-scale classification datasets, such as ImageNet [26], for
pre-training the feature extracting modules of object detection architectures to learn more low-
level generic and transferable features [111]. A subsequent stage of fine-tuning the object detector
adapts the more domain and task-specific features.

Novel work in the field adopts large-scale classification pre-training; such as YOLO based detectors
[82] [83] [84] and region based detectors [34] [33] [86] [40]. Kornblith et al. [54] demonstrate that
ImageNet pre-trained features are less generic than previously thought. He et al. [41] further
challenge the concept of large-scale classification pre-training for detection, by showing that training
an object detection architecture from scratch, with a modified training schedule, achieves similar
detection performance to models pre-trained on ImageNet.

Larger available detection datasets, such as the partially-labeled OpenImages [55] of 1.9 million
images and Objects365 [91] consisting of more than 600,000 images, have inspired more in-depth
research on the effects of detection pre-training. Pre-training and fine-tuning for the same task
is intuitively logical, as to update the relevant parameters for solving the target task during pre-
training. For the detection task, this is referred to as targeted detection pre-training.

Li et al. [60] find that targeted detection pre-training produces superior target domain detec-
tion performance compared to classification pre-training. It provides faster convergence to higher
detection scores, measured in Mean Average Precision (mAP), and improved fine-localization ca-
pabilities, better capturing the spatial entirety of detected objects. Similar results are presented
by Zhong et al. [113], additionally pointing out that the whole detection network’s feature repre-
sentations are adapted more towards detection. Shao et al. [91] similarly report an overall higher
achieved mAP from detection pre-training. Generally, [60] [113] [91] all use rather large detec-
tion pre-training datasets based on OpenImages, Objects365 and bounding box labeled ImageNet.
Nevertheless, targeted detection pre-training always outperforms from scratch training and classi-
fication pre-training.

In this thesis, we present the first experiments with targeted detection pre-training in maritime
environments, designed from theory in Domain Adaptation (DA). Moreover, to the best of our
knowledge, we report detection results for the largest annotated maritime vessel dataset of optical
images to date, spanning a total of 17,871 images with 95,398 labeled vessels.

2

1.1 Problem formulation

The general problem of interest in this thesis is the detection of maritime vessels in optical camera
images. The images are colourized in three colour channels following the RGB (Red-Green-Blue)
colour model. By detection, we mean the localization and classification of objects in the scene.
The algorithm for detecting the objects, or the detector, locates the object by the pixel positions
of a rectangle enclosing the object in the image, referred to as a bounding box.

The detector is designed in accordance with a real-world application. In particular, the detector
is intended for future deployment and integration with the Electro-optical (EO) cameras of the
sensor rig of the autonomous ferry milliAmpere.

The sensor rig integrates video streams of five EO cameras as presented in figure 1.1a. Each
camera is of the type BlackFly S GigE with 2448 × 2048 resolution and frame-rate of 22 Frames
Per Second (FPS). An illustration of the integrated cameras on the sensor rig of milliAmpere is
presented in figure 1.1b. Due to bandwidth restrictions, each camera records images of 5 FPS with
1224 × 1024 resolution. As such, the designed detector must at least be capable of processing 25
FPS, considering a sequential feeding of one image at a time from each camera.

Based on the described detection setting of milliAmpere, two more observations are important.
Firstly, the mounted EO cameras of the sensor rig are rather close to the ocean surface. Secondly,
milliAmpere operates in the area around Ravnkloa, the harbour orifice of Trondheimsfjorden and
Nidelven. The first point defines the expected object viewpoint, which is rather close to the ocean
surface. The second point formulates the environment and situations to expect on deployment.
Together, these two points determine the requirements for the target domain.

A dataset representing the target domain must be designed for generalization during training of
the detector and in order to design test-scenarios in the wild. The images composing the dataset
should be of an as large diversity as possible, due the dynamical nature of maritime environments.
Optimally, including images of different weather conditions, lens water droplet occlusion, lens flare
from the sun, waves and still ocean surface, to mention some. Specific scenario testing and a video
inference test are imperative to ensure reliability and robustness of the designed detector.

(a) milliAmpere electro-optical camera setup

Source: [47]
(b) milliAmpere complete sensor rig

Figure 1.1: EO camera station milliAmpere. EO camera model-type: BFS PGE 50S5C-C.

So far, the real-world requirements for the detector design are presented.

However, this thesis also serves as a continuation from the author’s specialization project [56].
In the specialization project, techniques for improving object detection in maritime environments
without manually labeling more data were created, resulting in a weakly-supervised instance seg-
mentation scheme. Briefly, pixel-level mask annotations were automatically created from two

3

segmentation algorithms to supervise a Mask R-CNN [40].

In the writing of the specialization project, the author made several other observations regarding
maritime object detection research. Most important, a recurring observation is the use of partic-
ularly small and custom annotated datasets for supervising object detectors. This is in contrary
to the computer vision research field, where dataset size is tightly linked with the fast evolution in
the field, often spanning millions of images.

The background for this observation is firstly that many maritime datasets are not publicly available
[70]. Moreover, maritime object detectors are often designed for a specific target domain, from
which data must be sampled. Nevertheless, there exist large maritime datasets publicly available,
the most noteworthy large with bounding box ground truths is likely the SMD [79].

The following question has therefore largely guided the research of this thesis:

• “How can existing bounding box annotated maritime datasets be exploited to improve the
detection of maritime vessels in the target domain defined by milliAmpere?”

With “improve detection”, we mean to improve performance metric scores, but also possibly ame-
liorate performance more visible in scenario testing, as for instance better detection in challenging
scenarios and more consistent detections over time. The guiding question may permit us to shed
light on smarter methods for improving target domain performance than manually collecting and
labeling large amounts of target domain data, which is inherently laborious.

1.2 Contributions

The main contributions from this thesis may be summarized as follows.

• Presenting an overview of several state-of-the art object detectors.

• A literature survey on research in maritime object detection and environments.

• A literature survey on two topics in transfer learning. 1) Fine-tuning strategies and feature
transferability, 2) Recently published research in pre-training.

• A mapping and detailed overview of several maritime datasets. Additionally, an in-detail
walk through of the generation of the video-based SMD [79].

• The generation and labeling procedure of a custom target domain dataset for milliAmpere
of 1,061 images.

• The design of three experimental maritime bounding-box annotated datasets. Including; to
the best of our knowledge, the largest recorded maritime vessel detection dataset of optical
RGB images to date.

• Implementation details for the EfficientDet-D3 architecture, together with three custom fine-
tuning settings.

• To the best of our knowledge; The first formulation and conducted experiments of targeted
detection pre-training in maritime environments.

• Carefully designed experiments with concise baselines, resulting in 21 trained and evaluated
models on the target domain, including a class-aware target domain ablation study.

• Several case-studies and a video inference test from the target domain.

4

1.3 Report outline

• Chapter 2 presents theory related to the object detection task, as well as some of the state-
of-the art architectures.

• Chapter 3 conducts a literature survey on maritime object detection and transfer learning
techniques in computer vision.

• Chapter 4 presents all datasets explored in this thesis, including the SMD, the Hurtigruten
dataset; a private dataset provided by DNV for this thesis, and a custom designed target
domain dataset.

• Chapter 5 presents all aspects of the experiment design. Including; the targeted detection
pre-training formulation, all experimental datasets, the selected object detection architecture
and corresponding hyperparameters.

• Chapter 6 covers the execution and details of all conducted experiments. Firstly, present-
ing the experiments to obtain detection pre-trained weights, before executing the targeted
detection pre-trained experiments, fine-tuning into the target domain.

• Chapter 7 presents the results obtained when evaluating all models on the target domain test
set, as well as multiple case-studies to 1) Assess the effects of targeted detection pre-training
and detector robustness in the target domain 2) Execute a video inference test in the wild.

• Chapter 8 provides a further discussion of the results and potential error sources.

• Chapter 9 concludes the report with recommendations for future work.

5

CHAPTER 2

OBJECT DETECTION

This chapter treats the theoretical foundation in object detection, covering supervised learning
in the evolution from neural networks to state-of-the-art object detectors. Additionally, several
object detection performance metrics are presented.

2.1 Artificial neural networks

An Artificial Neural Network (ANN) is inspired by the neurons activated by electric impulses in
the human-brain.

ANNs consist of connected nodes in a network structure, with a corresponding weight on the
connecting edge between nodes. The input nodes in the input layer, simply propagate their input
values by their weighted edges. The following layer is normally a hidden-layer. If the network has
more than one hidden-layer, it is called a Deep Neural Network (DNN).

All nodes in a hidden layer are modelled as an approximation to a biological neuron, which math-
ematically is achieved by a non-linear activation-function. One common non-linear activation
function is the sigmoid function, σ(x) = 1

1+ex . The input to each node in the hidden layer is a
weighted sum of propagated input values, either from the input layer or a previous hidden layer,
and an additional bias from the bias-nodes in the network. The non-linear activation function out-
puts the mapped value [11]. The final output from the ANN is obtained from the output node(s)
in the output-layer. Figure 2.1 illustrates an ANN architecture with one hidden layer.

The above-described network has information flowing from the input nodes to the output nodes,
often called a feedforward neural network. Such networks are suited for supervised classification.
The weights in the network are learned during a training-procedure, supervised by ground-truth la-
bels. The bias nodes shifts the activation function while the non-linear activation functions enables
the network to find non-linear patterns in the inputted data. The network’s class predictions are
encapsulated in a loss-function, for instance Mean Squared Error (MSE), to quantify its classifica-
tion error from the ground truth. The learned weights are as such updated by the back-propagation
algorithm until training is completed.

Overfitting A more general concept of training neural networks, which includes the training of
ANNs and CNNs, is overfitting. Conceptually, if the loss-function of the neural network keeps
decreasing one might expect the classification performance to increase. However, the network
might become to specialized or overfitted to the data seen during training.

One way to counter this is by dividing the dataset into separate split sets designated for training
and testing. The network is trained on the training set and tested on the test set. Thus, enabling

6

Figure 2.1: Two-layer feedforward ANN

Source: [11]

a monitoring of the training and testing error separately. If the train-error keeps decreasing while
the test-error increases, it is a sign of overfitting. Additionally, the test set can be split into a
validation set and strict test set, where the validation set can be used for hyper-parameter tuning
and model-selection. The strict test set serves as a test of the predictive capacity on unseen samples
in the wild.

2.2 Convolutional neural networks

For image classification, Convolutional Neural Network (CNN)s are more suitable to use than
ANNs. Namely, because they take advantage of the spatial or grid-like structure inherent for the
pixels in images. A CNN normally consists of three types of layers which stacked together form a
CNN architecture.

Convolutional layers slides a learnable kernel over the pixels in the inputted image horizontally
and vertically. This is similar to a sliding window. The resulting output has a decreased dimension
and is often called a feature-map. That is, a lower-level resolution representation, containing the
kernel’s response from sliding over the pixels. The convolutional layer horizontally slides over all
pixels, if the stride is set to zero. By increasing the stride, the kernel will correspondingly skip
pixels horizontally, reducing the output dimension.

Pooling layers downsamples the feature map inputted, decreasing the resolution and easing the
amount of network parameters needed, while extracting distinct features. Max-pooling, outputs the
highest value of each grid-cell in the feature map, where the grid-size depends on the max-pooling
kernel size. This layer is not learnable.

The convolutional and pooling layers, are often referred to as the feature extraction part of the CNN.
Several stages of convolutional and pooling layers reduces the outputted feature map dimensions,
yielding high-level feature maps inputted to the fully connected layers for classification.

Fully connected layers denote the final stage of a CNN architecture, returning the class probabil-
ities. A feedforward neural network is found to perform well as the final classification layer [30].
The final output neurons’ activation function predicts the probability of a sample belonging to
each class. One such function is the softmax function.

An example of a CNN architecture is illustrated in figure 2.2.

7

Figure 2.2: CNN layers and architecture

Source: [13]

Regularization Another important concept in training ANNs and CNNs is regularization. Regu-
larization techniques are designed to mitigate overfitting by imposing the learning of a less complex
model. Methods such as dropout, which randomly drops the weight update of certain nodes during
training, or batch normalization [49], which introduces a layer for normalizing each batch of train-
ing samples to mitigate changing data distribution between layers, are commonly adopted [101].
The filters and max pooling layers in a CNN also serve as a regularization measure by restricting
the amount of learnable parameters.

2.3 Object detection

Before passing on to the main part of this chapter, we make a short review of the four most common
tasks in computer vision, presented in figure 2.3.

Image classification, is related to predicting the presence of objects belonging to a certain class
which occur in the scene. Object detection extends the image classification task, by requiring both
to classify and spatially locate all instances in the scene. Predictions for these two tasks are often
accompanied by a confidence score, indicating the level of certainty in the observed class in the
image or in a specific predicted spatial location.

Segmentation, on the other hand, demands pixel-level accuracy when classifying and localizing
objects. We separate between semantic and instance segmentation. Semantic segmentation aims
to localize all pixels belonging to a class. As observed in figure 2.3c, where all pixels belonging
to the sheep class are marked blue. Instance segmentation further separates between instances of
each class, treating each instance as a unique instance of the class.

For the remaining part of this chapter, object detection is the main focus.

2.3.1 Concepts in object detection

Modern object detection architectures are composed of modules, often with specific terminology in
the object detection research environment. Here, we clarify some of the most important concepts
and building-blocks.

Backbone A backbone simply refers to the feature extraction network used in an object detection
architecture. This is the same as a CNN without its outputting fully-connected layer. As it is
often preferable to reduce training time for deep-learning based object detectors, it is common
practice to use backbones with pre-trained weights. Conceptually, this practice is categorized as
transfer learning, treated in section 3.2. In essence, the backbone is trained for classification on
a large-scale dataset, such as ImageNet [26], before fine-tuning the object detection architecture
on a different dataset. A famous backbone is ResNet [39], introduced in 2015. ResNet managed

8

(a) Classification (b) Object detection

(c) Semantic segmentation (d) Instance segmentation

Figure 2.3: Main tasks in computer vision. Figure reused with permission from publisher.

Source: [61]

to train a deep architecture for improved performance on previous state-of-the-art, utilizing skip
connections to tackle the previous vanishing-gradient problem.

Feature Pyramid Network (FPN) FPN [62] (2016) was introduced to better detect objects of
different scales. Instead of utilizing feature maps of a fixed resolution for detection and classifica-
tion, the FPN creates a pyramid of feature maps with different resolutions. The down-sampling is
based on a standard CNN in a bottom-up pathway. The more semantic rich low-resolution layers
are combined with higher resolution layers by lateral skip connections and a top-down pathway
to retrieve feature maps of high semantic value at different scales. Combining this with a Faster
R-CNN architecture outperformed all previous models on the COCO-detection challenge [62]. The
RoI pooling layer of the Faster R-CNN thus extracts features from the FPN at different levels
according to the scale. The FPN with the lateral connections is illustrated in figure 2.4.

Figure 2.4: FPN building block with lateral connection and top-down pathway. ©[2016] IEEE.

Source: [62]

Region Proposal Network (RPN) RPN is one of the main components in two-stage object
detector architectures, explained below. Essentially, the RPN uses something called anchor boxes
for proposing regions in the feature map containing objects. The anchor boxes are rectangles
of fixed size and aspect ratio, which are used for each sliding-window location over the feature

9

map to capture objects of various shape and size. Each proposed region is assigned an objectness
score for the probability of containing an object of a class. Typically, the RPN produces a lot of
overlapping proposals, which can be countered by a following stage of Non-Maximum Suppression
(NMS). NMS removes proposed regions with a higher overlap than a predefined IOU threshold
based on the regions’ objectness score and is commonly adopted to filter out multiple bounding
box predictions and retain the best ones [83]. The remaining proposed regions are thereafter used
for classifying and detecting objects. RPNs were first introduced in the Faster R-CNN architecture
[86] (2015).

One-stage and two-stage detectors Modern object-detector architectures are divided into two
groups. Object detectors such as the Faster R-CNN and Mask R-CNN depend on region proposal
methods, such as RPN, for pinpointing the region of interest in an image. The region proposals
are thereafter processed for for classification and bounding box regression later in the detection
pipeline. Such methods are referred to as two-stage detectors and are highly accurate, but due to
the intermediary stage of region proposals, slower than one-stage detectors.

One-stage detectors learns class probabilities and bounding boxes as a regression problem over
the entire image. By avoiding the intermediary stage of region proposals, one-stage detectors
obtain a higher inference speed [51], by trading-off a lower accuracy. As follows, such methods are
considered more suitable for real-time object-detection. Two such methods are YOLO [83] and
SSD [63].

2.4 Object detection architectures

As the computer vision community is rapidly evolving, a review of the state-of-the-art object
detectors, together with their historical predecessors, is considered necessary. Both one-stage and
two-stage detectors are presented.

2.4.1 R-CNN family

Today’s two-stage detectors are largely based on the evolution of the R-CNN family of detectors.
The R-CNN architecture [34] was introduced in 2013, shortly followed by the Fast R-CNN [33] in
2015 and Faster R-CNN [86] later in 2015. The last model extending the R-CNN family is the
Mask R-CNN [40] from 2017.

R-CNN R-CNN uses a multi-step architecture, making it subject to multi-stage training. Firstly, a
selective search algorithm [106] is utilized for proposing regions in the image. The region proposals
are passed through a CNN feature extractor for extracting the feature maps. Further, each feature
map is passed to a Support Vector Machine (SVM), classifying the objects in the region. There
is one SVM specialized and trained for each class in the dataset. As a last step, a bounding-
box regressor is added for localization of the objects in the proposed regions. The mAP on the
VOC 2012 challenge was improved by over 30% compared to previous best results. Indicating
the significance and importance of this method. However, the R-CNN requires around 47s per
image on test inference and requires separate training of the feature extractor(pre-training and
fine-tuning), SVMs and bounding box regressors.

Fast R-CNN The forward pass of each proposed region through the feature extracting CNN
in R-CNN proves to be memory consuming and inefficient. To solve this, Girshick proposed to
extract all features from the image once, before extracting the relevant feature maps through a
Region-of-interest (RoI) pooling layer. The RoI pooling layer extracts a fixed size feature maps for
different sized regions, conserving their spatial information. Training Fast R-CNN on the Pascal
VOC 2007 dataset is 9 x faster than for R-CNN, while achieving a higher mAP score. Test time
inference similarly proved to be up to 213 x faster.

Faster R-CNN Faster R-CNN improves the region proposal methods of its predecessors, previ-
ously carried out by the selective search algorithm. The selective search algorithm proposes regions

10

Figure 2.5: Faster R-CNN architecture. Figure reused with permission from publisher.

Source: [86]

based on a hierarchical grouping of sub-regions from different cues, such as colour and texture.
Inherently the algorithm is slow in its iterative process of merging sub-regions. Thus, Ren et al.
propose to use a RPN, described in section 2.3.1. The RPN enables more robust object-detection
for objects of different sizes due to the anchor boxes. The same RoI pooling layer is utilized.
The performance improvements are clear, improving Fast R-CNN’s reported mAP on Pascal VOC
2007 by 3% with a 10 x faster inference time, reporting 0.5 fps. The Faster R-CNN architecture is
visualized in figure 2.5.

Mask R-CNN Instance segmentation has proved to be a valuable addition for a multi-task loss in
the object detection pipeline [38]. Exploiting semantic features in an object detection architecture
is further found to improve the detection performance [32] [19]. This observations makes the Mask
R-CNN [40] a very interesting architecture.

Mask R-CNN has been a popular choice of architecture for the object detection and instance
segmentation task in recent years. Since Mask R-CNN predicts the localization of instances in the
bounding box and pixel-wise mask format, it is required to be supervised with both bounding box
and mask annotations.

The network is a further development of Faster R-CNN, improved and changed for three different
parts. Firstly, a ResNet-FPN architecture is used as backbone, for efficient multi-scale detection
and feature map extraction, particularly improving small object detection. Secondly, the RoI
pooling layer is replaced with a new pooling layer named RoIAlign. RoI pooling utilizes two-steps
of quantization for extracting the pooled feature map, causing misalignment from the pooling layer
and the extracted feature map. RoIAlign is replacing the two-stages of quantization with bilinear
interpolation and pooling to retrieve a better aligned feature map. Lastly, a fully convolutional
mask head branch is added for predicting the pixel-wise mask for each RoI in parallel with the
bounding box recognition head. He et al. found it important to predict the masks for each class
independently, without competition amongst classes. The total loss-function of the architecture
consist of the classification, bounding box regression and segmentation mask loss in a multi-task
loss function; L = Lcls + Lbox + Lmask. Figure 2.6 illustrates the final Mask R-CNN architecture.

Mask R-CNN outperforms all previous contestants in the COCO 2016 detection challenge, even
though the reported inference speed is 5 fps, proving to be slower than the preceding Faster R-CNN.
An interesting result is the Mask R-CNN’s sensitivity to the mask branch for object detection. The
architecture reportedly performs better object detection with the mask branch, than without. This
is stated to be solely because of the multi-task loss that includes the mask-loss. In other words, the
isolated instance segmentation improves object detection for the architecture. Similar observations
for a general CNN architecture is found in [19].

This can be linked to several benefits of pixel-wise annotation:

11

• Bounding box annotations tend to include background and features outside the object.

• Mask annotations gives pixel-level accuracy.

• Masks can benefit from richer and more structured representations

Figure 2.6: Mask R-CNN architecture. ©[2017] IEEE.

Source: [40]

Mask R-CNN extensions There exists several versions and extensions of Mask R-CNN. Ten-
sormask and BMask R-CNN are two such methods.

Tensormask [20] examines mask predictions in dense regular grids through a dense window sliding
method, making it a one-stage method. As it does not produce better results than Mask R-
CNN for instance segmentation, rather a different methodology, it will not be discussed further.
It has further been pointed out that Mask R-CNN does not utilize the shape features of the
object instances it aims to segment. [22] addresses this by leveraging boundary information in a
new mask-head parallelly learning mask and object boundary, in an architecture named BMask
R-CNN. BMask R-CNN outperforms Mask R-CNN on the COCO dataset, and particularly for
metrics demanding fine localization(AP75).

2.4.2 You Only Look Once (YOLO)

The development of one-stage object detection architectures is to a large extent based on the
ground-breaking work represented by the YOLO-family of detectors. The YOLO detectors have
evolved in six stages from the original paper [83] published in 2016, with additional instance
segmentation versions such as YOLACT [17] existing.

For this review, the initial concepts in YOLOv1 [83] are presented with a brief summary of im-
provements leading to one of the state-of-the-art detectors today, scaled-YOLOv4. YOLO-V5 is
omitted as it is not peer-reviewed at the time of writing this thesis.

YOLOv1 YOLOv1 [83] (2016) is inspired by convolutional networks such as GoogleNet [98].
YOLOv1 phrases the object detection problem as a regression problem to predict bounding boxes
and their confidence, together with corresponding class probabilities, from an image in one evalu-
ation. Hence, the catchy name “You only look once”.

Each inputted image of 448 × 448 resolution is divided into grid cells, S × S, with S = 7, where
one grid cell can predict B = 2 bounding boxes. By using NMS for conserving the predictions of
highest confidence, the process from input to prediction stage is presented in figure 2.7. In 2016,
YOLOv1 reported the first real-time object detection architecture with lower but comparable mAP
scores to the current state-of-the-art Faster R-CNN, with an astounding inference time of 45 FPS.

YOLOv2 - YOLOv3 YOLOv2 and v3 successively improve some of the drawbacks from YOLOv1.
Namely, that the maximum detectable objects per image is 49, upper-bounded by the grid cell size.
Moreover, the two possible bounding boxes (B = 2) to predict per grid cell, which can only belong
to one class, diminishes the detection of multiple small and clustered objects.

12

Figure 2.7: YOLO model overview as illustrated in Figure 2 of [83]. ©[2016] IEEE.

Source: [83]

In YOLOv2 [84] (2016), three significant changes are introduced to mitigate the localization er-
rors and additionally reported low recall of YOLOv1. Batch normalization [49] is added as a
regularization tool, improving initial mAP with 2%. The Darknet-19 convolutional base replaces
the previously used customized GoogleNet, requiring close to 3 billion less operations in a for-
ward pass, while maintaining accuracy. Darknet-19 is additionally in pre-training fine-tuned for
448×448 resolution image classification, allowing filter adjustment and increasing mAP with close
to 4%. Anchor boxes are adapted for predicting k = 5 bounding boxes per grid cell, k found from
a clustering algorithm on the bounding boxes in Pascal VOC 2007 [29], improving recall signifi-
cantly. Yolov2 outperforms Faster R-CNN on the mAP metric on Pascal VOC 2007, while running
inference at 40 FPS, 5-8 × faster than Faster R-CNN.

In YOLOv3 [82] (2018), several small adjustments are adapted to speed up YOLOv2. YOLOv3
includes the prediction of an objectness score to predicted bounding boxes, with the addition of
multi-label class predictions, allowing an object to belong to multiple classes. Multi-scale bounding
box prediction for three scales is adopted, with feature extraction similar to FPN [62]. DarkNet-19
is redesigned with the addition of shortcut connections and more convolutional layers into a more
accurate feature extractor named DarkNet-53. DarkNet-53 provides more fine-grained information,
particularly useful for small object detection. Overall, YOLOv3 is a fast detector, comparable to
state-of-the-art detectors for lower IOU thresholds, though struggling for higher IOU thresholds
and medium and large size object detection.

YOLOv4 YOLOv4 [16] (2020) reported state-of-the-art results on COCO of 43.5 mAP with in-
ference speed of 65 FPS. YOLOv4 leverage several new concepts to obtain this high score and
is designed with the goal of training efficiently on one GPU. A new backbone, CSPDarknet53 is
utilized to mitigate the vanishing gradient problem and motivate more robust feature propagation.
Feature extraction over different scales in a pyramid approach, is performed with PANet. Also,
various different data augmentation techniques are adopted to improve performance. Particularly
the new mosaic augmentation, which encourages the detection of small objects by tiling and merg-
ing together images. Self-adversarial training, different activation functions, a new NMS technique
and cross mini-batch normalization include some of the concepts tested in the development of
YOLOv4. The reader is referred to [16] for more details.

Scaled-YOLOv4 [108] (2021) is one of the state-of-the-art object detectors at the writing of this
thesis. Scaled-YOLOv4 is based on a similar scaling methodology to EfficientDet, explained in
section 2.4.3. Three factors are scaled; image size resolution, the amount of layers and the channels
in the backbone, while focusing on high inference speed and accuracy. Dissimilar to EfficientDet,
Wang et al. initially conduct depth-scaling before making other scaling adjustment according to
real-time inference time requirements. New concepts in designing and scaling CNNs [107] are used

13

to optimize the computation load of different backbones to achieve this.

Upon its publishing, the scaled-YOLOv4 large model, achieved the highest reported COCO mAP of
56.0. For different scaled-YOLOv4 models of similar accuracy to EfficientDets, the scaled-YOLOv4
versions are significantly faster.

2.4.3 EfficientDet

The one-stage EfficientDet [101] family of detectors is tightly connected to the backbones with very
similar name, EfficientNet [99]. In line with reason trends in the computer vision community, these
architectures address the issue of designing feature extractors and detectors capable of achieving
the same or better accuracy of predecessors, but with fewer network parameters and Floating Point
Operations (FLOPS).

EfficientNet CNNs or ConvNets typically trade-off their accuracy by the available computational
resources and constraints posed on inference time. The EfficientNet [99] (2019) family of feature
extractors are designed as to provide different backbones with high classification accuracy, fewer
network parameters and implicitly faster inference time.

The recent development of ConvNets results in more accurate but significantly larger architec-
tures. Comparing GoogLeNet [98] with the more recent and accurate GPipe giant neural network
AmoebaNet [46], the network parameters have increased almost by two orders of magnitude. More-
over, common approaches for increasing classification accuracy in ConvNets are based on increasing
depth [98] [39], width [100] or resolution [46]. While each of these scaling factors have their benefits,
the combined effect of scaling all factors simultaneously is not extensively researched.

Tan and Le point out that increasing one dimension, such as resolution, also intuitively requires
more depth, to adapt the receptive fields, and more width, to capture fine-detailed features of the
increased amount of pixels. A neural-architecture search [100] is performed to establish an baseline
architecture, EfficientNet-B0, weighting all these three scaling factors. By simply changing a com-
pound scaling coefficient φ, the user can select a more accurate and parameter-heavy architecture,
ranging from B0-B7.

The largest scaled architecture, EfficientNet-B7, achieves state-of-the-art top-1 accuracy of 84.3%
on ImageNet, with 8.4 x times fewer parameters and 6.1 x faster inference time to previous best
performing CNN, proving the usefulness of compound-scaling. Additionally, from class activation
maps, compound scaling is found to activate features more explainable of complete object regions,
than for single-factor scaling.

EfficientDet The EfficientDet [101] (2020) family of detectors further integrates the same compound-
scaling methodology of EfficientNet, to design a set of efficient and highly accurate object detection
architectures. In the design process, Tan et al. contribute with two progressively new concepts.

Firstly, previous methods in multi-scale feature fusion, based on the original FPN architecture
[62], are extended. In particular, repeated blocks of bidirectional pathways form a weighted Bi-
directional Feature Pyramid Network (BiFPN). Only input nodes of multi-level edges are kept in
the input to each block, with an additional edge connection from the input nodes to the output
nodes. More interestingly, all node edges contain weights to also learn the feature-fusion from
different feature levels (P3-P7), implemented in a modified softmax function during training.

Secondly, the EfficientNet backbone is integrated together with the BiFPN, forming a complete
object detection architecture compound-scalable over the EfficientNet backbone, weighted BiFPN
and a box and classification network. Similar to EfficientNets the EfficientDets range from D0-D7,
with an additional D7x model using a larger backbone and also the P8 feature level. D0 has an
image input size of 512× 512, while D7 is inputted images of 1536× 1536 resolution.

Overall, the EfficientDet detectors prove to be highly efficient in terms of model parameters while
providing a much smaller amount of FLOPS compared to previous state of the art detectors. The
EfficientDet-D7 architecture achieves 55.1 mAP on COCO test-dev, with up to 9x times fewer
model parametes and 42x fewer FLOPs than competing state-of-the-art detectors on publishing in

14

Figure 2.8: EfficientDet architecture. ©[2020] IEEE.

Source: [101]

2020. The complete architecture is displayed in figure 2.8

2.4.4 CenterNet

CenterNet [28] (2019) introduces a conceptually new manner of performing object detection. Upon
its publishing in 2019, CenterNet exceptionally outperformed all comparable one-stage detectors
with over 4.9 percentage points on the COCO test-dev, which is considerable in a research field
moving as fast as computer vision.

The CenterNet architecture can be seen as an extension of previous work in paired keypoint
object detection. In 2018, the CornerNet [58] architecture was published as a remedy to former
object detection architectures’ dependency on anchor boxes. Instead of using a fixed amount of
anchor boxes guided by the regression process over ground truth objects, an object is detected and
represented as a pair of keypoints. The top-left and bottom-right corners are detected in separate
modules with a corresponding class heatmap and an embedding distance vector deciding if the
keypoints constitute an object or not. As Duan et al. point out, the corner pooling layer utilized
in CornerNet detects corner features consistently by trading-off a lower degree of visual context
understanding of the objects.

Duan et al. extend the CornerNet architecture by detecting keypoint triplets, to better perceive
the center part of proposed objects and include more global context understanding of the visual
object information. Intuitively, a high class-prediction for paired keypoints to contain a class,
should likewise be true for the center point of the object. Two new two-directional pooling layers
are also introduced to better generate more characteristic features in proposals and the internal
perception of these features for the central parts of the object.

CenterNet2 [114] (2021) was published at the writing of this thesis, achieving an mAP of 56.4
on COCO test-dev, outperforming both EfficientDets and YOLOv4-CSP. Due to time-constraints,
CenterNet2 is unfortunately not treated in detail.

2.5 Performance metrics

In object detection, another layer of complexity is added in assessing model performance compared
to the traditional machine learning classification task. Since the objective is not only classifying
an object in the scene but also localizing it, the performance metric needs to somehow measure
the localizing predictive capacity of an object detection model.

To define a performance metric for the classification and localization of an object thus requires; a
clearly defined localization format predicted from the detection-model, a strict classification of the

15

prediction’s validity, and a methodology for assessing the prediction’s performance.

In recent years, the format for localizing objects is almost exclusively recognized as a rectangle
enclosing the predicted localization of the object, referred to as a bounding box. To quantitatively
say something about this bounding box prediction, we need to compare it with the ground truth.
The ground truth is essentially the supervised in supervised-learning; it is the true label which we
compare the predicted label with. For the object detection task, the label is the bounding box.
Thus, we have two set of bounding boxes: the inferred bounding boxes from the object detector,
and the true bounding boxes, or the ground truths.

Starting from here, how is it possible to infer knowledge about the performance of a predicted
bounding box compared to the corresponding ground truth bounding box?

An intuitive method would be to compare how much the inferred bounding box overlaps with the
true bounding box. If there is no overlap, inherently this prediction would be a false observation
of an object. Contrarily, if it completely overlaps, it must be a true observation of the object.
This concept is often referred to as Intersection over Union (IOU) in object detection and
is important to give a measure of the predicted bounding box’s overlap to the ground truth, and
separate between true and false observations of objects.

IOU =
At ∩Ap

At ∪Ap
(2.1)

At, Ap denotes the true and predicted bounding box area. IOU therefore returns a number in range
from zero to one.

However, to infer more information about the object detector’s detection performance, a more
direct classification is desirable. If an IOU threshold is set, where all IOU values below and above
are treated separately, four different detection classifications are possible.

• True-positive (TP): The predicted bounding box is above the IOU threshold and correctly
predicted the localization of an object.

• False-positive (FP): The predicted bounding box is below the IOU threshold and falsely
predicted the localization of an object.

• False-negative (FN): It is not predicted a bounding box, while there exists a ground truth
object in the scene. Missed detection.

• True-negative (TN): It is not predicted a bounding box and there is no ground truth object
in the scene.

Intuitively, TNs are normally diregarded as they do not contribute to information about the de-
tector’s performance. Some visualized examples of the different detection classifications are shown
in figure 2.9.

Figure 2.9: True positive, false positive and false negative examples. Red is ground truth, green is
predicted bounding box. Courtesy of M. E. Aidouni.

Source: [12]

16

2.5.1 Precision-recall

Precision and recall are two metrics defined from the different classifications of detections in list
2.5. They are defined as follows:

precision =
TP

TP + FP
=

TP∑
i

DOi
(2.2)

DOi represents a detected objected. Thus the denominator represents the number of detected
objects returned from the detector.

recall =
TP

TP + FN
=

TP∑
i

GTi
(2.3)

GTi represents each ground truth object. So, the denominator represents the number of ground
truth objects.

It can be observed that the precision and recall are interlinked. Ideally, a precision and recall
of one would represent a perfect detector, where all predicted bounding boxes match the ground
truth boxes and no ground truth boxes are overseen. It is however more common to find a trade-off
between the two metrics.

On the one hand, having a high precision with low recall implies a detector very accurately localizing
its detected objects, though often missing objects in the scene. On the other hand, having a high
recall with low precision would oppositely imply a detector rarely missing objects but also rarely
detecting and localizing them in a precise manner, with substantial amount of FP predictions.

Inherently, the precision and recall scores are dependent on the detector’s confidence threshold.
That is, the model’s confidence in observing an object of a class. Only predictions with a confidence
score above the confidence threshold are taken into consideration in calculating the precision and
recall.

2.5.2 Precision-recall curve

As discussed in section 2.5.1, different confidence scores from the object detection model will give
different precision and recall. The precision-recall curve, summarizes the precision and recall pairs
for different confidence score thresholds.

The best precision-recall curve is by definition the curve consecutively trading-off high precision
values for the same recall values. In other words, the curve centered towards the upper-right corner.
For instance, the blue curve is considered better than the green curve in figure 2.10.

2.5.3 Average precision

The precision-recall curves are less quantitative when comparing several models’ performance. The
curves can intersect each other, be noisy and often tend to have a saw-tooth shape. Deciding on
the best curve is therefore not necessarily conclusive.

Another popular metric using the precision-recall curve to output only a single number is the
average precision or AP. AP averages the precision correspondingly for all recall values, and can
be seen as the area under the precision-recall curve.

Because of the often saw-tooth behaviour of the precision-recall curve, the calculation normally
requires an interpolation step, previously done in an 11-point interpolation for each 0.1 recall value,
for instance in the Pascal VOC 2008 competition [29]. The green area in figure 2.10 presents an
example of calculated AP based on more recently developed method; sampling the recall value

17

in rectangular blocks, every time the maximum precision drops, which provides a more accurate
approximation.

Figure 2.10: Precision-recall curves. The AP for the green curve is denoted by the green area
under the curve.

Source: [43]

2.5.4 Mean average precision

The mean average precision, or mAP, is simply the mean of the AP of all classes. Inherently
the metric is informative for the overall detection performance over all classes in the dataset. For
class-imbalanced datasets the metric is useful, not weighting biases due to the restricted area size
of one under the curve. The metric is commonly used for different IOU thresholds T, denoted
as mAP@[T]. The main metric in the COCO detection challenge [61] is the mAP@[0.5:0.05:0.95],
averaging the mAP score over IOU thresholds from 0.5 to 0.95 with a 0.05 increment. Thus
providing a measure which penalizes poor localization over a representative interval of thresholds.
As the reader will observe, the conducted experiments in this project thesis are mainly evaluated
by the COCO metrics as explained in section 5.5.

2.5.5 Average recall

Similar to recall as for precision, there exists an average recall, or AR, metric. The metric is
calculated over several IOU thresholds, typically starting from 0.5 since detection performance is
proved to correlate strongly with AR for recall values over 0.5 [44]. AR is a useful metric for
measuring high recall and fine object localization.

18

CHAPTER 3

RELATED WORK

The literature survey in this chapter aims to explore two different topics.

Firstly, it is considered important to understand the typical situations encountered in a maritime
environment, further motivating an exploration of optical image maritime datasets. In addition,
maritime object detection research is presented.

Secondly, transfer learning is commonly adopted in computer vision. We motivate a review of the
theoretical background and research related to object detection.

3.1 Maritime environment

It is important to understand the domain where we want to deploy an object detector. The object
detection task in a maritime environment is a computer vision problem phrased in challenging con-
ditions. A thorough analysis of the difficulties of video object detection in maritime environments
is discussed in [78]. The paper discusses the challenges of separating between foreground objects
and background in the presence of the dynamical nature of the ocean, the movements of the optical
sensor and challenging detection conditions (fog, rain, substantial wakes, high correlated nature of
waves and more).

For the detection task in still-images, some of these challenges would be less present, as for instance
spatio-temporal correlation of background between frames. Nevertheless, the environment natu-
rally poses challenging conditions for an object detector to perform robustly. Classical computer
vision methods typically aim to perform a background modelling or horizon-detection for object
detection [78][112]. Comparisons of background subtraction methods in video [80] has shown how
the methods potentially struggle to generalize to new data and precisely model the foreground -
background separation. Even though object detectors can perform well to high-quality tailored
datasets, their robustness to new real-world images can not be guaranteed. This can be linked to
the lack of an established benchmark dataset for computer vision in maritime environments.

Some challenges to be tackled in a maritime environment are:

• Clustered objects: A grouping of vessels, typically in the horizon (background) or tight group-
ings of small vessels close to the camera.

• Blurred images: Weather conditions such as rain or fog, causing undesired blur in the image.

• Lens occlusions: Water droplets on the lense, occluding objects in the image.

19

• Lens flare: Scattered light in the lens, caused by strong reflections in very bright conditions.
Typically caused by reflection from the waves or low-hanging sun conditions.

• Viewpoint changes: Over-represented point-of-view of vessels in the dataset. E.g front-side
of boat might occur less than its side.

3.1.1 Maritime detection

Due to the complexity of maritime environments, deep learning methods achieve state-of-the-art
results for the object detection task [70]. Moosbauer et al. tackled the object detection task in mar-
itime environments by training the Faster R-CNN and Mask R-CNN architectures on the bounding
box annotated SMD dataset [79]. Other work also utilize the R-CNN family of detectors [67] [102].
Tangstad trained a Faster R-CNN architecture for ship detection in a collision avoidance setting.
One example of work using multiple types of deep-learning based detectors is Grini [35]. Grini
trained two different one-stage detectors on boat and building detection in maritime environments.
With exception of [70], the other presented papers depend on either scraping boat images from
large universal datasets or custom designing datasets, resulting in generally small-scaled datasets.

Hammedi et al. [37] further explore maritime object detection in channel and fluvial environments.
Five one-stage detector architectures as well as the two-stage Faster R-CNN are benchmarked on a
custom labeled dataset of 2,488 images, labeled for various object types such as vessels, riverside,
and persons. Faster R-CNN reports the best performance on the dataset, though not achieving
real-time performance or generalization to the riverside class, which is the majority class of the
dataset. Even though their results provide a solid foundation for comparison of different detection
architectures, the dataset is inherently class imbalanced and the reported results do not provide a
thorough comparison among the architectures.

Mask R-CNN [40] was also deployed in a study comparing detection performance of an unmanned
bridge with a human navigator for ship navigation [15]. Blanke et al. found the Mask R-CNN
to detect and classify objects 24s faster than its human counterpart on average, quantified from
recorded eye fixation of an object lasting over 100 ms, by using a specialized eye-tracking software.
Figure 3.1 demonstrates one such example. The utilized dataset of 517 images includes two classes;
buoy and a generic ship class. Even with train time augmentation, the dataset is considered
very small for fully fine-tuning the Mask R-CNN, possibly causing some overfitting behaviour
explanatory of the high reported mAP scores.

For increased classification performance and detection of small objects, proven to be particularly
difficult, Blanke et al. pinpoint the need for more training data to improve the detector’s per-
formance in certain situations. In conclusion, Blanke et al. propose the detection system as an
additional fifth sense for a human navigator, and in particular highlights the importance of such
an electronic outlook detection system for objects such as kayaks and sea boats, which do not have
radar reflectors or AIS transmitters on board.

Figure 3.1: Human navigator visualized eye tracking of objects [15]. Right frame marks fixated
object in yellow with red boundary.

Source: [15]

20

As specified in [70], due to the lack of a common maritime benchmark dataset, benchmarking
performance of different research is difficult. Based on this research, we motivate a more thorough
review into maritime environment datasets.

3.1.2 Maritime environment datasets

Large datasets are considered important in enabling DCNNs to generalize well to a domain. How-
ever, large datasets for object detection and segmentation requires large amount of effort to an-
notate. Particularly, annotated datasets of maritime vessels are rare and hard to find. Unlike
facial detection or pedestrian detection, maritime vessel detection has no large public available
benchmark dataset. Extensive annotated marine datasets, such as VesselID-539 [27], proves to be
a significant contribution for future research. However, since the dataset mostly contains images
of reoccurring large cruise and container-ships we look further for a more diverse dataset. The
Marvel dataset [36], used in maritime vessel recognition [97] comprises of 2 million boat images of
collected on the web. Indeed the Marvel dataset creates a good benchmark dataset for maritime
vessel classification and recognition. However, it lacks bounding box annotations and is not very
class diverse. Online databases of ship images exist [4] for web-scraping. This goes beyond the
scope of this project.

Figure 3.2: Example image VesselID-539. ©[2020] IEEE.

Source: [27]

The most established benchmark dataset in maritime environments, also containing bounding box
labels is, to the knowledge of the author, the SMD [79]. The SMD spans over 30,000 thousand
bounding box labeled frames collected from Singapore maritime waters. This dataset has addi-
tionally been treated in an attempt to establish a maritime benchmark dataset, with a distinct
train, validation and test set by [70]. The SMD is treated in detail in section 4.4.

3.2 Transfer learning

Transfer learning is a field within machine learning. Transfer learning includes a variety of tech-
niques for reusing previously learned knowledge and apply it in solving a new problem. Generally,
such techniques are indispensable for machine learning problems where the data might be biased
or scarcely available, motivating the reuse of similar datasets with different labels, distribution, or
prediction task.

To illustrate, one might imagine a classifier intended to learn and predict different vehicle classes.

21

Unfortunately, suitable training data is hard to come by and it is preferable to avoid the manual
sampling and annotation of images. A classifier already trained to recognize generic vehicles may
be adapted to reuse knowledge and successfully generalize to a small amount of images of different
vehicle classes.

In this section a theoretical review of transfer learning is conducted, before presenting related work
in transfer learning for DCNNs and object detectors.

3.2.1 Transfer learning background

In a machine learning problem, training is performed on the training set to learn a predictive
function, which is presumably capable of generalizing to new samples introduced in the test set.
However, if either one of the datasets is biased or unrepresentative of the underlying dataset
distribution, prediction performance suffer and generalization to new samples in the test set is
questionable.

In object detection, the prediction task is the classification and localization of objects. There are
several scenarios where training to test set dissimilarity may occur. For instance, the training set
could include a large weight of small boat types while the test set includes mostly large ships.
Moreover, specific background and weather conditions may be overrepresented in one of split sets.
As follows, the learning task of predicting boats is the same, but the training and test sets are
not representative of one another. What is more, if the test set includes more fine-grained boat
classes, while the train set treats all boats in an agnostic manner (one generic class), the labels are
additionally no longer similar.

Transfer learning essentially addresses all of the described problems. The training and testing
set is used to illustrate the transfer learning formulation, however we underline that the following
definitions are far more general. The reader is encouraged to read the remaining part of this section
in parallel with the notations defined in table 3.1. All notations are defined in accordance with
one of the corner-stone surveys in transfer learning [74].

Let each dataset in the above-described setting be representative of a domain, D. The training
set constitutes the source domain, DS , while the test set constitutes the target domain, DT . Each
domain is composed of two different constituents; a feature space X and a marginal distribution
P (X) over the feature space. A general domain is therefore defined as D = {X , P (X)}.

In order to finalize the necessary terminology for the machine learning model, the well-known
prediction function and labels must be defined. In the context of transfer learning, these definitions
relates to the learning task. A task T thus includes a label space Y and a prediction function f(·)
such that T = {Y, f(·)}. The prediction function is learned from the data samples with the
corresponding labels, which pairwise are represented as {xi, yi} for xi ∈ X and yi ∈ Y. The
predicted label for a newly introduced data sample x is thus f(x), which also can be phrased as a
conditional distribution over the data sample in a discriminative learning setting, P (y|x). Where
the conditional distribution represents the decision boundary between datapoints in the feature
space.

Finally, the source and target domain can generally be defined as follows.
DS = {(xS1 , yS1), · · · , (xSnS

, ySnS
)} where xSi ∈ XS and ySi ∈ YS . Similarly, the target domain

is defined as DT = {(xT1
, yT1

), · · · , (xTnT
, yTnT

)} where xTi
∈ XT and yTi

∈ YT . Typically,
the amount of samples in the target domain, nT is substantially smaller than the source domain
samples nS . Transfer learning is defined as follows in [74].

Definition 3.2.1 (Transfer learning). “Given a source domain DS and learning task TS , a
target domain DT and learning task TT , transfer learning aims to help improve the learning of
the target predictive function fT (·) in DT using the knowledge in DS and TS , where DS 6= DT , or
TS 6= TT .”[74]

Based on the transfer learning in definition 3.2.1, there are generally four possible transfer learning
settings.

22

Notation Description Notation Description

X Input feature space P (X) Marginal distribution
Y Label space P (Y |X) Conditional distribution
T Learning task DS Source domain
Subscript S, T Source, Target DT Target domain

Table 3.1: Transfer learning notation.

1) DS = DT and TS = TT

2) DS 6= DT and TS = TT

3) DS = DT and TS 6= TT

4) DS 6= DT and TS 6= TT

The first case defines a traditional machine learning problem. In other words, the source and target
domains are equal and the learning task is the same. However, the following cases define various
possible transfer learning settings. Since a domain is defined as D = {X , P (X)}, either the feature
space X or the marginal distribution P (X) are unequal when DS 6= DT . Similarly for the learning
task, T = {Y, P (Y |X)}, either the label space, Y, or the conditional distribution, P (Y |X), are
different when TS 6= TT .

Case 2 - 4 each define a transfer learning setting in the literature. Pan and Yang, use data
availability in source and target domains as a defining factor for each transfer learning setting.
There seems to be disagreement in the literature of the importance of data availability in each
domain [109]. For simplicity, the remaining part of this section do not take data availability into
account.

Case 2 defines a transfer learning setting thoroughly explored in the literature [109], namely Domain
adaptation (DA), which is in-detail covered in section 3.2.2.

Case 3 is defined as inductive transfer learning, while case 4 is defined as unsupervised transfer
learning by [74]. Both of these cases experience a change in the learning task and have stricter
requirements for successful transfer learning. As these cases are less relevant for this thesis, they
are not treated in detail.

3.2.2 Domain adaptation

DA is one of the special cases of transductive transfer learning [74]. Formally, defined as follows:

Definition 3.2.2 (Transductive transfer learning). “Given a source domain DS and learning
task TS , a target domain DT and learning task TT , transductive transfer learning aims to improve
the learning of the target predictive function fT (·) in DT using the knowledge in DS and TS , where
DS 6= DT and TS = TT .”[74]

An unequal source and target domain implies either that XS 6= XT or that P (XS) 6= P (XT). DA
is essentially defined by a changing marginal distribution between the source and target domain;
P (XS) 6= P (XT). Thus, strategies in DA aim to overcome the distribution differences in the
source and target domain to enable generalization to the target domain predictive function fT (·).
To further shed light on what a changing marginal distribution signifies, some common domain
shifts, also referred to as data shifts, must be explained.

Assuming a source domain’s marginal distribution P (XS) is unequal to the target domain marginal
distribution P (XT), the conditional distributions of the learning tasks may still be equal, ensuring
a similar learning task. In other words, P (Y |XS) = P (Y |XT) such that TS = TT , where we have
assumed the same label space Y for both domains. This is referred to as a prior shift [109].

23

However, this is rarely the case. As follows, DA typically needs to handle the case where TS ≈ TT
due to a covariate shift in the source and target domain. A covariate shift implies P (Y |XS) ≈
P (Y |XT) or P (Y |XS) 6= P (Y |XT), often occurring as a result of a sample-selection bias. A sample-
selection bias is the result of collecting data from various data sources, missing data samples or by
introducing other biases in the dataset creation, for instance favoring the representation of certain
samples based on subjectivity. As such, the source domain may be tailored to fit a particular
distribution and do not well represent generalization for samples in the target domain.

As pointed out by Shimodaira [94], a machine learning model trained on a source domain does
not perform optimally on a target domain with a different marginal distribution. The following
section presents different manners of conducting transfer learning and DA for DCNNs and object
detectors.

3.2.3 Fine-tuning & pre-training

In this section, novel and recently researched methods in transfer learning for DCNNs and object
detection architectures are presented.

Firstly, it is of interest to assess transfer learning strategies conducted by altering the training
procedure of the architecture in question. Usually, such methods differ by the amount of parameters
which are subject to re-training and those who are frozen, or not subject to training. We refer to
this topic as fine-tuning strategies. Such methods are characterized as supervised DA methods.

The second topic to investigate is pre-training. Pre-training is commonly adopted before fine-tuning
on smaller-scale target data. Our objective is to summarize common pre-training paradigms on
the classification and object detection task.

Fine-tuning strategies

Fine-tuning and pre-training are inherently linked. DCNNs and object detector backbones are
typically pre-trained on large-scale classification datasets. The pre-trained weights are thereafter
used for weight initialization, followed by another subsequent training cycle which fine-tunes into
the target domain, represented by a small-scale dataset.

Depending on the source and target task similarity, as well as the label space, it might be necessary
to entirely replace the top layers of the pre-trained DCNN. We refer to such operations as off-the-
shelf methods, which essentially replaces some of the layers (shelves) before fine-tuning the resulting
architecture.

Fine-tuning strategies differ in the amount of frozen parameters and layers in the DCNN. For
instance, in object detection architectures it is possible to freeze the entire convolutional base, or
backbone, and only fine-tune the classification and bounding box heads. Additionally it is possible
to adapt fine-tuning into different modules of an object detection architecture.

In this section we mainly separate between two popular strategies.

• Full fine-tuning : All layers and parameters are subject to update during training.

• Gradual fine-tuning : The lower level layers are frozen while the deeper layers unfreeze se-
quentially from the deepest to more shallow layers.

Fine-tuning background Fine-tuning is based on the transferability of learned features in DC-
NNs. An architecture pre-trained on a large-scale dataset has already learned more generic lower-
level features, which have been found to be representative for many datasets and tasks [111]. The
pre-trained architecture is thereafter subject to fine-tuning on a new dataset. The fine-tuning is
essentially necessary for adapting the deeper layers, which captures more specific and complex
object features relevant for the task and the new domain.

24

Yosinski et al. [111] highlight the importance of the source and target task similarity when fine-
tuning a DCNN. If the source and target task are very distant, reusing pre-trained features are
significantly less efficient, though still better than random initialization in some cases. Moreover,
initializing from pre-trained features may provide a boost in performance which lasts even after fine-
tuning into the new domain. On the other hand, techniques which do not train all layers may risk
to deteriorate performance due to the co-adapted interactions between neurons. In conclusion, the
findings of [111] are also very relevant for object detection architectures, which inherently depend
on the feature extraction of the DCNN backbone module.

Chu et al. [23] conduct extensive experiments for assessing the suitability of different fine-tuning
settings for transferring features in DCNNs. Based on their selected six target datasets, vari-
ous dataset splits and different freezing and fine-tuning settings, a total of 138 experiments are
conducted. The overall results from the conducted experiments provide two main findings.

Firstly, it is found that keeping as many layers as possible from a pre-trained model is the most
beneficial. In other words, randomly initializing lower level layers may upper-bound model perfor-
mance, compared to fully fine-tuning copied layers.

Secondly, fully fine-tuning of the copied layers is better than freezing and particularly when more
target data is available. The more distant the source and target domain, the more inferior is
freezing layers. Moreover, freezing may be beneficial for smaller target domain datasets, if the
source and target domain distance is small. In their experiments, the domain distance is measured
amongst other as the cosine distance of the source and target datasets’ fully connected layers’ mean
response. In conclusion, a fully fine-tuning scheme is the simplest and most reliable fine-tuning
option.

Ouyang et al. [73] provide more insight into the effects of the target domain dataset class-distribution
when fine-tuning object detection architectures. With class-distribution, what is meant is the num-
ber of samples of each class for the dataset. A commonly encountered problem when collecting
and designing target domain datasets is collecting enough samples of each desired class. This can
be caused by a natural bias of instances in the foreground, e.g there are more pedestrians than
stop signs in the street, or the lack of time to generate a diverse and large enough target domain
dataset. Often this problem is handled by performing agnostic object detection [50][70] or merging
classes into a superclass [73].

Ouyang et al. explore this phenomena further for datasets with long-tail class distributions, in
essence where the majority of the samples are represented by a few classes. In their experiments,
training and test sets are created from the large scale ImageNet detection dataset, consisting
of 200 object classes. GoogLeNet [98] is adapted for object detection and different fine-tuning
settings. Class-imbalanced datasets oversample features from certain object classes, which hinders
satisfactory learned feature representation of the underrepresented classes. As follows, Ouyang
et al. find that detection accuracy improves when reducing training dataset class instances by as
much as 40%, if the class-samples are more evenly distributed.

Furthermore, Ouyang et al. experiment with backbone freezing of selected layers in GoogLeNet
[98]. Overall, fine-tuning on the detection dataset is consistently best when all layers are subject to
training. The performance likewise decrease with the amount of frozen layers, even though Ouyang
et al. point out that it is possible to achieve only slightly worse performance than fully fine-tuning
when freezing some of the lower level layers, which remarkably reduces the amount of parameters
to train.

Before passing on to the less explored gradual fine-tuning setting, we note that the undoubtedly
most common and well-documented fine-tuning strategy is full fine-tuning.

Gradual tuning

Montone et al. [68] present one of the novel methods for fine-tuning DNNs while addressing the
problematic of catastrophic forgetting. Namely, that during a full fine-tuning training scheme, all
parameters are trainable and thusly, the model performs substantially worse on the initial source
task. This may or may not be problematic depending on the use-case. Nevertheless, Montone
et al. design a fine-tuning scheme that trades-off performance and catastrophic forgetting, retaining

25

performance on the initial task as well as similar performance to full fine-tuning on the target task.

One of the main arguments behind the gradual tuning is based on the following observation. The
loss function and its internal neuron weights, which are the basis for training a DNN, heavily
depend on interconnected weights through the neurons on different layers in the architecture. As
such, the evaluated loss function gradient with respect to one of the weight vectors, inherently is
also a function which depends on the manner the weight vector is connected to other neurons in
the neural architecture. A full-fine tuning scheme may overwrite a good feature for solving the
task, based on its connection to upper layers, which a gradual feature update starting from the
upper levels would avoid.

In their experiments, Montone et al., design two different feedforward neural networks with two and
three fully connected hidden layers, trained and evaluated on eight variations of the MNIST dataset
for two different tasks A and B. In the gradual fine-tuning scheme, the output layer is initially
unfrozen before subsequently unfreezing each hidden layer when the networks performance stops
increasing. The full-fine tuning scheme simply keeps all layers trainable.

For almost all of the eight dataset experiment settings, both in single and multi task experiments,
the catastrophic forgetting was smaller. The performance of the new task, or the target task,
is either similar or better which motivates using the gradual tuning scheme also for improved
performance at a new task. Even though their results are interesting, the transferability to DCNNs
and to more challenging domains is not directly clear. The synthetic modifications of the MNIST
dataset are most likely less challenging than in transfer learning settings for RGB images from
more different domains.

Gradual fine-tuning has been explored together with synthetic data. Reiersen [85] fine-tunes a
detector in a few-shot learning setting to improve target domain performance of real-world images
from pre-training on synthetic data. The reported results overall indicate a fully fine-tuning scheme
is superior to a gradual fine-tuning of the convolutional base. Henriksen [43] addresses a similar
setting for different object classes and a larger real-world image dataset. Henriksen additionally
implements a gradual fine-tuning of the entire Mask R-CNN architecture, from the detection and
mask heads to the convolutional base. His results indicate better adaptation of domain invariant
features from gradual fine-tuning than fully fine-tuning, with marginally improved performance
scores.

Pre-training

The most common transfer learning approach for DCNNs and object detectors, is based on the
paradigm of large-scale pre-training followed by a subsequent stage of fine-tuning. In particular,
from the early developments in deep learning based object detectors, such as R-CNN [34] and
YOLO [83], classification pre-training on ImageNet [26] for the feature extracting backbone was
established as a common practice. The same practice has been adopted for instance segmentation
architectures such as Mask R-CNN [40]. To benchmark performance between architectures, fine-
tuning is executed on datasets as COCO [61] or previously Pascal VOC [29].

For the remaining part of this section, the ImageNet classification dataset [26] is referred to as
ImageNet-CLS, while ImageNet-LOC denotes ImageNet-CLS with additional bounding box labels.

Image classification pre-training Large-scale image classification pre-training of the feature-
extracting backbone in object detection architectures is common practice.

He et al. [41] question the importance of large-scale classification pre-training. The Mask R-
CNN architecture is experimented with for different variations of backbones, both with ImageNet-
CLS pre-trained weights and randomly initialized backbone weights. Different variations of batch
normalization [49] are proposed to mitigate normalization issues for small batch sizes when training
from scratch. Model performance is benchmarked by fine-tuning and evaluating on the COCO
dataset with the COCO metrics [1] for the detection task. As such, the effect of fine-tuning with
and without ImageNet-CLS pre-trained weights is isolated.

26

Overall, He et al. find that ImageNet-CLS pre-trained weights have a clear effect on the conver-
gence speed, when assessing the mAP validation curve with regard to training iterations, as pre-
sented in figure 3.3. On the other hand, the randomly initialized counterpart achieves comparable
performance, if trained similar in length to the total ImageNet-CLS pre-training and fine-tuning
training. The longer training scheme adapts the learning of more generic low/mid level features
typically learned during ImageNet pre-training. Similar observations are done for larger and wider
architectural modifications of Mask R-CNN.

Moreover, these observations hold even when using as little as 10% of COCO training data (10k
Images), after adapting hyperparameters and training schedule. In addition, there is little perfor-
mance gains from ImageNet-CLS classification pre-training on the target task when well-localized
spacial context is considered. Actually, higher IOU threshold AP metrics improve when the back-
bone weights are randomly initialized. Indicating, that classification pre-training does not transfer
directly or benefits fine-localization of objects.

The results of He et al. question the formerly accepted ImageNet-CLS pre-training, indicating this
paradigm has rather been a work-around for the lack of target domain data. Moreover, when
the source pre-training and target task are significantly different, acquiring more target data may
prove more useful. However, it should also be mentioned that ImageNet-CLS pre-training has not
shown to deteriorate target domain task performance. Since the convergence speed is significantly
faster with this method, it is still a convenient option for fine-tuning into a target domain dataset
if the user does not have access to more data and/or GPU resources. It is not further discussed if
the results for smaller-scale target datasets dissimilar to COCO, would report similar results.

Figure 3.3: Validation AP curves for Imagenet-CLS pre-trained and randomly initialized models.
©[2020] IEEE.

Source: [41]

Even though He et al. quantitatively analyse the mAP metric, other potential effects of training
from random initialization and skipping ImageNet-CLS pre-training are not discussed.

This topic has further been explored by Shinya et al. [95]. By analysing the eigenspectrum of the
feature maps of different layers of the Faster R-CNN and Mask R-CNN architecture, Shinya et al.
highlight important observations regarding the training and generalization to COCO, with and
without ImageNet-CLS pre-training.

Firstly, it is found that models which obtain the same accuracy with and without ImageNet-
CLS pre-training behave differently. Based on the eigenspectrum analysis, which essentially covers
which feature map is responsible for what information at a point in time, there are indications that
ImageNet-CLS pre-training features are easily forgotten during fine-tuning. Moreover, based on
an intrinsic architecture algorithm which proposes the channel width of an object detector based
on its eigenspectra, it is found that ImageNet-CLS pre-trained models generate a more narrow

27

eigenspectrum than the models trained from scratch. The ImageNet-CLS pre-trained models do
have an increase in parameters which are not reflected by improved performance on the mAP
metric on COCO evaluation.

The usefulness of ImageNet-CLS pre-training is not disregarded, even though Shinya et al. point
out the need for better methods for compressing and reusing the most task-relevant features learned
in pre-training. In particular, this is an issue since the classification and detection task are very
different and information is rapidly lost during fine-tuning.

Object detection pre-training In this section, it is desired to explore the effects of object
detection pre-training and its effect when fine-tuning into a target domain for the detection task.
We refer to this general concept as targeted pre-training. That is, pre-training on the same task
which is later desired for fine-tuning. Which in this case is targeted detection pre-training. As this
topic has become popular in very recent times, we present several newly published research papers.

Recent work [60] has more extensively explored the effects of classification and detection pre-
training before fine-tuning into a smaller target dataset for three different tasks in computer vision;
image classification, object detection and semantic segmentation. Li et al. present some of the novel
work on the effects of classification and detection pre-training. The motivation behind comparing
these pre-training schemes are two-fold.

Firstly, pre-training on the object detection task has not been as extensively researched as image
classification pre-training [34] [41]. Nevertheless, detection pre-training on COCO [61] is still one
of the most commonly applied transfer learning settings for training and testing object detectors on
small-scale target datasets in most practical applications. One reason that this type of pre-training
has not been researched as extensively, is the lack of large-scale object detection training datasets
comparable in size to image classification datasets such as ImageNet-CLS. To further shed light on
the effect of large-scale detection pre-training, Li et al. utilize the recently published OpenImages
[55], which consists of 1.9 million images with 15.4 million bounding box annotated instances.

Secondly, detection pre-training both learns the classification and localization of objects. Thus,
a network which performs object detection should implicitly also learn richer object features. Li
et al. argue that a detection network’s access to orthogonal semantic information such as the
spatial context of the object encourages the learning of such features. Previous work [31] indicates
that CNNs possess a certain level of bias towards texture features, while other work [88] indicates
shape features are implicitly learned. Clearly, a more thorough review of the effects of detection
pre-training is a very interesting research contribution. Li et al. also apply feature activation maps
for visualizing which parts of the object that has the highest activation when detected.

Li et al. conduct their pre-training experiments in the following manner. The Sniper [96] detec-
tor architecture is utilized. All detection pre-training experiments are firstly pre-trained on the
ImageNet-CLS before subsequently fine-tuned on one of the three different datasets; OpenImages,
ImageNet-LOC and COCO. Image classification pre-training is executed on ImageNet-CLS only.
For the object-detection task, the Pascal VOC [29] dataset represents the target dataset. For image
classification and semantic segmentation, various target datasets are used, which we do not detail
report here.

The reported mAP scores for the detection task with different IOU thresholds are presented in fig-
ure 3.4a. The most inferior model is the model pre-trained on the ImageNet-CLS. Furthermore, the
models pre-trained on object detection datasets prove to generally improve for all IOU thresholds,
but particularly for the higher IOU thresholds. This indicates that detection pre-training favours
the recognition of spatial object features and mostly benefits detections where fine-localization
of objects are important. This observation is supported by the activation map presented in fig-
ure 3.4b. The first row of activation maps are pre-trained on ImageNet-CLS while the second row
is pre-trained on OpenImages. The OpenImages pre-trained model demonstrates higher neuronal
activation for the spatial entirety of the object, while the ImageNet-CLS pre-trained model favours
more discriminative object features. Similar observations are made for the semantic segmentation
task. Contrarily, object detection pre-training is not found to benefit fine-tuning for the image
classification task, where recognizing an object from a subset of features is beneficial.

28

(a) mAP for different IOU thresholds
(b) Backbone activation for different pre-training,
Conv5

Figure 3.4: Object detection pre-training performance results and visualized backbone activations
[60]. Courtesy of Hengduo Li.

Source: [60]

Based on the datasets used for object detection pre-training, Li et al. claim that the amount of
samples in the pre-training dataset does not affect the detection fine-tuning results notably. The
crucial factor is whether the datasets contains approximately above one million instances or not.
Furthermore, larger pre-training datasets implicitly perform better for detecting occluded objects.

Shao et al. present several interesting pre-training experiments with the Objects365 dataset [91].
Objects365 consists of over 600,000 training images with over 10 million bounding box labels,
and is a useful addition to the partially labeled large-scale detection dataset OpenImages [55].
Additionally, the Objects365 is more diverse than both COCO and OpenImages, with significantly
more variation of different object categories per image.

The FPN and RetinaNet detectors are fine-tuned on COCO with pre-trained weights from different
combinations of ImageNet-CLS, OpenImages and Objects365. Figure 3.5 presents the mAP scores
on COCO for the different pre-training combinations. Overall, training from scratch on COCO
converges to the same score as for ImageNet-CLS pre-training. Training from scratch on Objects365
or subsequent detection pre-training on Objects365 after ImageNet-CLS initial pre-training, is
largely superior to training from scratch on COCO or with only ImageNet-CLS pre-training. Both
in terms of convergence speed and final mAP scores.

Figure 3.5: Results for fine-tuning on COCO for different pre-training tasks and settings [91].
©[2019] IEEE.

Source: [91]

29

To elaborate, after 90,000 fine-tuning iterations, the models pre-trained on Objects365 report 5.6
and 5.9 percentage-point gain on the mAP metric compared to ImageNet-CLS pre-training. More-
over, the Objects365 pre-trained models fine-tuned for 90,000 iterations, outperform the ImageNet-
CLS pre-trained models fine-tuned for 540,000 iterations, with 2.7 percentage-points. The findings
of Shao et al. indicate that targeted pre-training for detection is highly beneficial for fully anno-
tated datasets. The improved localization ability from the detection pre-training and the diversity
of object categories in Objects365 is explanatory for much of the performance gain. In addition,
the pre-training of the detector heads, which only occur during detection pre-training, is in the
ablation studies found to be a very important part of the improved localization ability.

Weakly-supervised object detection pre-training A more experimental approach which is
significantly cheaper for obtaining detection labels to use in pre-training, is designed by Zhong
et al. [113]. In their experimental setup, a weakly supervised pre-training algorithm based on class-
activation maps is utilized for generating bounding box labels for two versions of the ImageNet-
CLS dataset. The pseudo-labeled datasets are subsequently used for pre-training a Faster R-CNN,
before fine-tuning it on the downstream task, which is represented by the Pascal VOC and COCO
dataset in two separate learning settings for object detection.

Compared to the ImageNet-CLS classification pre-trained baselines, the weakly supervised detec-
tion pre-trained model consistently performs better on all mAP and AP metrics for both of the
learning settings for both versions of ImageNet-CLS. In addition, the detection pre-training regime
is found to be stronger either when the pre-training dataset is larger or when the target domain
dataset represented by the downstream task, is smaller.

Similar to previous findings in detection pre-training [60], the convergence speed is significantly
faster from detection pre-training than classification pre-training, giving a large initial boost on
reported mAP. Zhong et al. also find that detection pre-training is a strong cue for adapting the
whole network’s feature representation more towards detection, and not only the backbone weights
as previously thought. This is also logical, considering that in classification pre-training only the
backbone is trained, while the remaining parts of an object detector is randomly initialized.

3.3 Summary

Maritime environments prove to pose challenging conditions for detection and the lack of available
large-scale annotated datasets do not ease the task. Traditional object detection methods typically
use horizon-detection and local background subtraction in maritime environments, often suffering
from the dynamical nature of the environment. State-of-the-art object detection models are deep
learning based DCNNs. Maritime object detection research are often based on two-stage detectors,
such as Faster R-CNN or Mask-RCNN, subject to fine-tuning on custom small-scale target domain
datasets [35] [15] [37].

Transfer learning is one of the corner-stones in the evolution of deep learning. Object detection
architectures adopt the pre-training & fine-tuning paradigm. Pre-training the backbone on a
large-scale dataset is used to learn more general transferable features, while fine-tuning adapts
more domain-specific features for solving the fine-tuning task [111]. When fine-tuning for the
detection task, detection pre-training has proven more beneficial than classification pre-training of
the backbone, providing faster convergence and overall better reported performance scores [60] [91].
This scheme, called targeted detection pre-training, is mostly researched for large-scale pre-training
datasets (> 600,000 images).

The transferability of different fine-tuning strategies depend on the source to target domain distance
and the target domain dataset size [111]. Full fine-tuning is often superior to fine-tuning strategies
utilizing more freezing [23] [73], particularly for dissimilar domains. Gradual fine-tuning of layers in
a DCNN or modules in an object detection architecture may prove beneficial [43], however subject
to specific hyperparameter considerations of the gradual fine-tuning scheme.

30

CHAPTER 4

DATASETS

In this chapter, we provide an overview over all the datasets explored in this thesis.

4.1 Grini dataset

In his master’s thesis, Grini [35] designed several datasets, based on optical images from Norwegian
maritime environments, including Trondheimsfjorden. Grini annotated a total of 1,916 images,
later divided into separate datasets.

All data is made available for this thesis. The delivered data by Grini is delivered in used train
and test splits with slightly different folder names for the datasets than reported in his thesis.
We do our best efforts for matching folder names consistently. Table 4.1 presents the amount of
annotated images and instances per dataset, after filtering out images without existing annotation
files and vice versa.

Dataset summary
Dataset Annotated images Boats Buildings

Trondheimsfjorden 337 482 -
BoatsFar 1214 3413 -

BoatsClose 35 90 2
MooredBoats 107 300 263

Total 1693 4285 265

Table 4.1: Labeled images and instances in Grini dataset.

As a first observation, the boat annotations labeled by Grini are class agnostic with regard to
different boat-types. That is, the boat annotations are solely labelled boat without separating
between different boat-types. As such, it is empirically observed a variety of different boat types,
kayaks and sailboats with, and without sail, in the generic boat class. The Trondheimsfjorden
and MooredBoats are the only datasets which contain images from Trondheimsfjorden and the
Nidelven river.

Some example images for different environments and conditions are shown in figure 4.1. The
sample images nicely display the diversity of the Grini dataset.

31

(a) Fjord with lens water droplet occlusion (b) Fjord in sunny conditions

(c) Canal-like environments (d) Clear conditions in harbour

Figure 4.1: Example images from Grini dataset for different conditions

4.2 Brekke & Lopez dataset

The Brekke & Lopez dataset was collected by Edmund Brekke and Michael Ernesto Lopez in 2019.
The annotated dataset consists of images in the VIS and infrared (IR) spectra, captured on board
the Norwegian ferry Hurtigruten, mostly in open-sea conditions and on docking, as well as more
city-like environments from canals in Amsterdam. We refer to the sub datasets as HurtigrutenBL

and AmsterdamBL.

The two sub datasets provide two different sets of class labels, one fine-detailed set, consisting
of 39 classes, and a more simplified version. The majority of the 39 classes account for very few
annotated objects, thus the simplified labels are adopted. The simplified labels consist of nine
unique classes, as presented in table 4.2.

Class-labels
Airplane

Barge
Building

Helicopter
Kayak

Motorboat
Motorboat with priority
Sailboat with sails down

Sailboat with sails up

Table 4.2: Simple class-labels in Brekke & Lopez dataset

32

Since only the visual spectrum images are of interest for this thesis, the IR images are disregarded
in our exploration of the two sub datasets. An overview of the annotated images is presented in
table 4.3. The HurtigrutenBL dataset accounts for the large majority of the annotated images.

Annotated images
HurtigrutenBL AmsterdamBL Total count

Annotations 713 114 827

Table 4.3: Overview visual spectrum images Brekke & Lopez dataset

Moreover, we present an overview of the simplified class labels for both of the sub datasets in
table 4.4. As a first observation, the Brekke & Lopez dataset is strongly class-imbalanced and
consists of several classes which are not boat-types. In particular, the Airplane, Catamaran,
Helicopter and Kayak classes have very few instance samples.

The non boat-type classes include different types of flying vehicles, such as Airplane and Helicopter.
In addition, a large amount of buildings are labeled, typically appearing close to harbours and on
docking.

The boat-classes are overrepresented by motorboat samples, labeled according to their location in
the scene. In total, there are 1,518 motorboat samples. The sailboats instances, separated by the
presence of raised sails, are not noteworthy. Lastly, the Kayak class is practically not represented
in the dataset with a total of eight instances.

In conclusion, the Brekke & Lopez dataset is most suitable to treat in a class-agnostic manner
with regard to boat-types. Some samples from the respective sub-datasets are visualized in figure
4.2.

Class-labels summary
Class HurtigrutenBL AmsterdamBL Total count

Airplane 3 0 3
Barge 35 62 97

Building 1,386 1,047 2,433
Catamaran 0 2 2
Helicopter 1 0 1

Kayak 6 2 8
Motorboat 429 440 869

Motorboat with priority 604 45 649
Sailboat with sails down 44 14 58

Sailboat with sails up 17 2 19
Class total 2,525 1,614 4,139

Table 4.4: Class-labels visual spectrum images dataset Brekke & Lopez dataset

33

(a) Sample image AmsterdamBL (b) Sample image HurtigrutenBL

Figure 4.2: Sample images Brekke & Lopez dataset

4.3 Hurtigruten dataset

The Hurtigruten dataset is a set of frames captured from recorded videos of the cruise ship Hur-
tigruten’s journey along the coast-line of Norway. The videos are online available as a part of a
Norwegian television-show called “Hurtigruten minute by minute” [6]. The dataset is labeled with
bounding-box annotations and provided for this master thesis with the courtesy of DNV. This
particular dataset is composed of videos captured on the journey from Bergen to Kirkenes. All
annotation files are provided in the Pascal VOC XML format [29].

We summarize some initial observations when exploring the dataset.

• Dataset partition: The dataset is divided into 32 distinct episodes. Each episode contains
images from the starting harbour and the journey towards the destination harbour.

• Class-awareness: The dataset is labelled with a total of 27 different maritime object classes.

• Diversity : The videos are recorded over a continuous time-period and in different geographical
locations, providing many different maritime detection conditions.

Based on these initial observations, we highlight some benefits in utilizing this dataset for training
and testing an object detector. Each episode represents one journey, from dock to dock. Therefore,
each episode mostly contains unique instances, which is convenient for designing a unique and
clearly defined dataset split, without reoccurring and resembling instances in the training and
testing set. As such, mitigating sample leakage1.

The large amount of maritime object classes in the dataset might prove suitable for class-aware
object detection, even though the class-balance must be further explored. The episodes, which
originates from different geographical locations and points-in-time, provides a diverse dataset. In
total, the episodes represent a wide range of different backgrounds, object viewpoints, weather and
lighting conditions, which is promising for designing a robust object detector based on the dataset.
To illustrate, four sample images are presented in figure 4.3.

The following exploration of the dataset is divided into three separate parts.

1) Section 4.3.1 undergoes a more in-depth exploration and quality-checking of the Hurtigruten
dataset.

1Images containing strongly resembling instance viewpoint and scenes in training set and the validation-test set,
potentially causing overfitting.

34

(a) Ep1 - Daylight (b) Ep18 - Twilight

(c) Ep13 - Sunny with lens flare (d) Ep29 - Rainy with water droplet lens occlusion

Figure 4.3: Sample images Hurtigruten dataset.

2) Section 4.3.2 explains considerations and actions performed in the post-processing of the
quality-checked Hurtigruten dataset.

3) Lastly, section 4.3.3 analyses dataset statistics and presents a complete mapping of the post-
processed Hurtigruten dataset as well as a proposed dataset split.

4.3.1 Dataset exploration

Following the first initial exploration, it is deemed important to quantify and quality-check the
Hurtigruten dataset in detail. Since the frames are already captured and labeled from videos, an
initial assumption is that every annotation file contains the presence of an object and is not empty.
However, this assumption will also be tested to ensure the dataset is properly quality-checked. As
such, the steps for quality-checking the dataset are sequentially presented.

Duplicate file naming The first observation concerns the naming of the image and annotation
files. Several image files, with their corresponding annotation files, have what appears to be
duplicates in the same folder. That is, there exists an image “image1.jpg” and an image called
“image1 (2).jpg”, indicating that the image has been saved two times and a copy has been added
to the folder with the automatically assigned sub string (2) from the operating system. The same
is observed for the xml annotation files. 206 such image files are found in Episode 15 and 24 in
Episode 18. During inspection, the double-named images, seem to be unique in almost all cases.
One exception in the episode 15 folder is manually handled and deleted, however these cases are
corner-cases. Based on this observation, it is preferable to keep all the images and annotations with
existing double names. To avoid future confusion with the (2) extension, we rename all the double-
named images and their corresponding annotations through a script. Inherently, this renaming
has no practical implications except mitigating possible file name confusion. Our renaming simply
replaces the substring (2) with 2, indicating that the filenames are intentionally named and not
double-saved.

Image file types The delivered dataset consists of a mix of PNG and JPG images. Indeed,

35

this observation is curious considering the images are saved from similar video streams. However,
we find it necessary to decide on one image format to mitigate artifact bias from different image
formats. Firstly, it is observed that the definitive majority of the images were already saved in
JPG formats(approximately 72%). Furthermore, as the JPG image format has a lossy compression
process, there is no way to restore previously known information. The decision is therefore to save
all images in the JPG format, and hence re-save the PNG images to JPG. Inherently, the PNG
image format would be preferable as to not introduce artifacts into the scene. However, considering
that all other datasets treated in this chapter are also saved in JPG format, it is natural to strive
for the same image format for the Hurtigruten dataset.

Image and annotation file count A last step in quality-checking the dataset is to ensure that
all images and annotation files have a unique one-to-one matching. In other words, there are
no images without an annotations file and there are no annotation files without an image. This
analysis is performed on the dataset after removing the duplicate in episode 15. In particular, it
is found some discrepancies in 8 of the 32 episodes as presented in table 4.5. It can be observed
that depending on the episode, there exist both images without annotation files and annotation
files without corresponding images.

All the episodes in table 4.5 are filtered through a script, leaving only unique one-to-one matched
images and annotations remaining.

Annotated file discrepancies
Episode Count discrepancy
Ep1 -1
Ep3 -3
Ep8 -2
Ep10b 7
Ep12 -2
Ep14 -1
Ep18 3
Ep23 1

Table 4.5: Image and annotation discrepancies per episode Hurtigruten dataset. Negative numbers indi-
cate the presence of more annotation files than images. Positive numbers indicate the presence of fewer
annotation files than images.

Empty annotation files As mentioned introductory, a reasonable assumption is that every image
with an annotation file, also contains annotated objects. That is, there are no annotation files which
are empty. Nevertheless, it is considered necessary to check if this assumption is true. Indeed,
it turns out that there are 16 images with empty annotation files. The images are spread out in
different folders as presented in table 4.6. All the annotation files and corresponding images are
deleted, as they represent only a marginal part of the total dataset, and as relabeling frames is
time-consuming and avoided in this context.

Empty annotation files
Episode Count
Ep2 1
Ep3 1
Ep5 1
Ep7 1
Ep10b 2
Ep15 6
Ep17 2
Ep18 2

Table 4.6: Empty annotation file count per episode Hurtigruten dataset

36

Dataset summary After performing all the previous data cleaning steps, we shortly summarize
some of the main characteristics of the Hurtigruten dataset in table 4.7. The dataset consists of a
total of 4,700 images, all in 1920 × 1088 resolution. There is a total of 27 different classes and a
total of 18,167 labeled instances. A detailed class summary is omitted here, as the later performed
post-processing changes relevant dataset properties. Nevertheless, it is noted that the dataset is
heavily imbalanced towards different types of pleasure crafts.

Cleaned dataset summary
Image size Labeled images Labeled instances Object classes
1920× 1088 4,700 18,167 27

Table 4.7: Summary of Hurtigruten dataset after cleaning

4.3.2 Dataset post-processing

The Hurtigruten dataset, mainly due to the manner of which it has been acquired, contains certain
characteristics which need to be discussed. The post-processing procedure is designed with the
intention of enabling the Hurtigruten dataset for merging with other datasets, which is further
discussed in chapter 5. In particular, we highlight three main observations from the dataset images
which are considered in the post-processing procedure.

1) Tv-channel watermark : The watermark of the channel airing the tv-show, NRK, is fixed in
the upper right corners of all the images as can be observed in figure 4.3b.

2) Fixed boat hull : The front part of the ferry’s hull is present in all the images.

3) Occurring cables: A cable presumably connected to the mast above the camera station,
occurs in some of the labeled episodes as visualized in figure 4.3c.

The three above-mentioned points do not necessarily represent any issues for using the dataset
for object detection, which is the considered context. Simply due to the fact that most of the
characteristics are reoccurring unlabeled fixed objects in the scene. An object detector would be
guided by ground truth supervision to learn from the labeled informative regions in the scene.

On the other hand, utilizing the raw dataset in combination with other data sources might prove
harmful. The Hurtigruten portion of such a combined dataset would repeatedly provide a boat-
like unlabeled object (the boat hull) in the same geometrical location of the scene. The effects
of combining such images with other images containing labeled objects in the same placement is
uncertain. Recent research demonstrates that using uneven zero-padding on CNNs [14] causes a
spatial bias for feature extraction, potentially creating blind spots and misdetection of objects in
the scene. In this case, where the boat hull is not zero-valued pixels, but rather contains similar
features to desirable detectable objects, it is likely to deteriorate detection performance while
causing a bias towards the lower part of the scene. Therefore, the boat hull is considered vital to
include in the post-processing procedure.

The same issue is not as present for the tv-channel watermark due to its small area and placement
in the very upper-right corner of the scene, where it is reasonable to expect background pixels
from images of different data sources. This assumption might not hold, depending on the camera
viewpoint and object placement in images from other data sources, which might be in the upper-
right corner in special cases. As the procedure of handling the watermark is found to be quite
simple, this step is furhter included in the post-processing procedure.

Lastly, the occurring cable is only present in a subset of the frames in 6 of the total 32 episodes.
One might regard the cable as nothing more than natural noise and is not necessary to manually
handle.

Tv-channel watermark handling To remove the watermark, the intuitive approach is designing
an algorithm which gradually fills the watermark with pixels of similar colour distribution to a

37

close neighborhood of pixels which are not a part of the watermark. Instead of designing such an
algorithm from scratch, existing methods are firstly assessed.

The OpenCV library [18] provides a specific method which is very similar to our specific use-case.
The inpaint() function is used for restoring images with noise and strokes, back to an original
state by filling in the bad pixels with neighbouring pixels. The method is implemented with two
different algorithm choices for filling in the pixels. The first method [103], referred to as the Telea
method, fills in a desired pixel region by using a weighted sum of nearby pixels by weighting more
nearby pixels higher. The Fast Marching method is used to inpaint subsequent pixels in a heuristic
approach.

The second method is based on principles from fluid dynamics and travels along the edge of the
pixel region to fill pixels with colour while reducing the minimum variance in the region. The
method is referred to as NS, indicating the use of Navier-Stokes equations.

In our initial experiments, both methods are found to perform satisfactory and it is decided to
use the Telea method for filling in the watermark. The process for filling in the watermark can be
summarized in three separate points.

1) Locate the region of the watermark, which is the same for all images.

2) Generate a global mask of the watermark for pinpointing the pixel regions to fill in each
image.

3) Fill the watermark with the chosen filling method and re-generate all images with the wa-
termark filled.

The location of the watermark is found by a trial and error approach, consisting of drawing different
bounding boxes to enclose the the watermark until satisfactory boundaries are found. The bounding
box with satisfactory tightness on the watermark is visualized in figure 4.4a. Secondly, one of the
episode images with very dark background conditions are chosen for generating the watermark
mask. This is chosen as the watermark is white, and with a dark background a simple thresholding
of the image accurately yields a precise watermark mask. After generating the watermark mask
locally inside the approximated bounding box, a coordinate transformation is performed to map the
local mask to a global mask. The global mask, which is used for the in-filling of all images is shown
in figure 4.4b. Lastly, the generated global mask is utilized for in-painting all images’ watermarks
with the default Telea inpainting method for the OpenCV inpaint() function, as presented in
figure 4.4c.

38

(a) Step 1: Tv-channel watermark located with green bounding
box

(b) Step 2: Mapping the thresholded local mask to a global mask

(c) Step 3: The final in-painted image without watermark

Figure 4.4: The watermark handling procedure for the Hurtigruten dataset.

Fixed boat hull handling The fixed boat hull is handled by designing an algorithm which crops
each image into two separate images, while omitting any pixels covered by the boat hull. We refer
to this procedure as tiling. Each image is tiled on the center point of the boat hull as demonstrated
in figure 4.5a. Subsequently, each tiled image results in two smaller tiles with the same annotated
objects.

The tiling algorithm is designed to keep all the intersecting objects with over 10% of its original area
size contained in the generated tile. Figure 4.5b and figure 4.5c demonstrate one such example,
where the boat caught in the middle of the tiles is partially labeled in the resulting tiles. In
this manner the dataset also includes incoming and exiting vessels as part of the dataset, which
encourages the detection of vessels based on a subset of their features. Such instances are considered

39

Post-processed dataset summary
Labeled images Labeled instances Object classes

6,775 17,696 27

Table 4.8: Summary of the post-processed Hurtigruten dataset; after cleaning and tiling post-processing.
Tiles vary in size.

important for learning a detector to detect entering/exiting foreground objects quickly.

Furthermore, based on the tiling boundaries, objects very close to the boat hull with a steep
viewpoint are naturally discarded as they exceed the tiling boundaries. In line with the problem
formulation in section 1.1, this is considered beneficial. Namely, because the designed detector is
intended for deployment close to the water surface. As follows, the remaining labeled instances in
the tiled dataset will more closely resemble the expected viewpoint of objects in the target domain.

Table 4.8 summarizes the Hurtigruten dataset after the tiling procedure is performed. The reader
might observe that the amount of images from the summarized dataset before tiling (table 4.7) is
not doubled in size, as one might expect when generating two tiles per image. The explanation
behind this, is that there is no guarantee that each tile produced from an image contains labeled
instances. A total of 2,625 tiles with no labeled instances present were discarded in the tiling
procedure. As such, the total labeled images sum to 6,775.

Moreover, the image sizes of the tiles are omitted, as they slightly differ in size. The left generated
tiles are reported as 909 × 809 pixels resolution while the right tiles becomes slightly larger with
931×809 resolution. The tile height of 809 is equal for both tiles. In total, the tiled dataset contains
471 discarded instance labels which have been either located in between the tiling boundaries
without sufficient area overlap, or placed below the tiling window.

(a) Tiling boundaries and annotated instances

(b) Left tile (c) Right tile

Figure 4.5: The Hurtigruten dataset tiling procedure.

40

Figure 4.6: Hurtigruten dataset post-processed. Top ten classes distribution.

4.3.3 Dataset statistics

The dataset statistics in this section concerns the post-processed Hurtigruten dataset. It is prior-
itized to shortly summarize key-observations regarding the classes in the dataset, as well as our
considerations in mapping dataset and creating a suitable dataset split.

The Hurtigruten dataset consists of 27 classes after post-processing. The top ten classes are
visualized in the barplot in figure 4.6. Overall, the large majority of the classes is some type of
pleasure craft. Of the total 17,696 instance labels in the dataset, a total of 13,171 belongs to the
three different pleasure craft classes in the lower three bars of the plot in figure 4.6.

Inherently, the dataset is strongly class-imbalanced towards pleasure crafts. Of the remaining 17
classes, 15 classes represent different boat and vessel types with the addition of one buoy and
fish-farm class. The 15 boat classes include boat types such as kayak, ferry, barge, cargo vessels
and jetski. The instance labels are not specified for these classes as they represent only a small
fraction of the total instance label count. Based on these observations, the Hurtigruten dataset is
not considered suitable for class-aware object detection.

Episode conditions mapping To provide more insight into the dataset, a complete mapping of
each episode is conducted. In mapping the dataset, quantitative measures describing the dataset
diversity and conditions under which the instances have been acquired is considered the most
important. Since each episode contains an amount of images in the range from ten to several
hundreds, only distinct and easy recognizable measures such as weather, lighting conditions and
the presence of lens occlusions are recorded. More specific measures such as object viewpoint,
distribution of instance bounding box areas and class distributions per episode are considered too
detailed when making an overview dataset mapping. Moreover, due to the long duration of some
of the episodes, the weather and lighting conditions change accordingly, and the recorded condition
is representative for the majority of the frames.

Table 4.9 presents the dataset mapping and the proposed dataset split, which is discussed below.

41

Hurtigruten mapping per episode
Split Episode Lighting Weather Occlusion Images

Train

Ep1 Daylight Cloudy - 331
Ep3 Daylight Cloudy - 100
Ep4 Daylight Cloudy - 32
Ep6 Daylight Rainy 3 133
Ep7 Daylight Cloudy - 332
Ep8 Dark/Twilight Cloudy - 286
Ep9a Dark/Twilight Cloudy - 95
Ep9b Daylight Cloudy - 90
Ep10a Daylight Cloudy - 490
Ep10b Daylight Cloudy - 749
Ep11 Dark/Twilight Sunny - 302
Ep12 Dark/Twilight Sunny 3 245
Ep14 Daylight Sunny - 319
Ep15 Daylight Sunny - 958
Ep17 Daylight Cloudy - 243
Ep18 Daylight Sunny - 510
Ep20 Dark/Twilight Haze - 51
Ep21 Dark/Twilight Sunny - 74
Ep23 Daylight Cloudy - 155
Ep24 Daylight Cloudy - 108
Ep26 Daylight Cloudy - 100
Ep27 Daylight Cloudy - 85
Ep28 Daylight Cloudy - 63
Ep32 Daylight Sunny - 5

Validation

Ep2 Dark/Twilight Cloudy - 46
Ep5 Daylight Cloudy - 209
Ep13 Daylight Sunny - 58
Ep16 Daylight Sunny - 172
Ep19 Dark/Twilight Sunny - 167
Ep22 Daylight Cloudy - 127
Ep25 Daylight Cloudy 3 96
Ep29 Dark/Twilight Rainy 3 17
Ep30 Dark/Twilight Rainy 3 16
Ep31 Dark/Twilight Rainy 3 11

Table 4.9: Episode mapping Hurtigruten dataset post-processed. Cloudy is used to describe both clear
and cloudy sky conditions. Occlusion refers to lens occlusions caused by flaring light or water droplets.
Images refers uniquely to labeled images.

Proposed dataset split In addition to mapping the complete dataset, a dataset split used for
experimental dataset design in chapter 5 is proposed. Since the Hurtigruten dataset is not intended
for benchmarking detector performance in this thesis, but rather as an additional data contribution,
a test set is not designed as to maximize the training data. However, the proposed validation set
can easily be re-split by any user for creating a similarly distinct split. In designing the dataset split
of the Hurtigruten dataset, it is desired to represent the mapped conditions satisfactory in both
the training and validation set. The training and validation split is performed with the intention
of reserving approximately 85% of the images for training and 15% for validation. Our episode
choices for the dataset splitting process is summarized as follows.

Firstly, the occlusion and rain conditions are observably the rarest conditions that occur in the
dataset. To avoid splitting any episodes into the train and validation set, which would break
the condition of separated unique instances in the split, these episodes are examined carefully as
a starting-point. Episode 6 and 29-31 are the episodes in question with rainy conditions. The
intuitive split, results in keeping episode 6 for training, while reserving episode 29-31.

The reader might observe that episode 29-31 also includes lens occlusion conditions. To ensure

42

enough lens occlusion images for the validation set, episode 25 is additionally added. By keeping
episode 6 and 12 in the training set, same observable conditions are preserved for training.

The episodes captured in twilight and dark lighting conditions are overall less represented in the
dataset than the daylight conditions. Thus, episode 2 and 19 is added to the validation set to
further represent typical twilight sunset conditions and more cloudy sky conditions. Lastly, as
the remaining episodes are captured in daylight with either cloudy or sunny weather conditions,
episode 5, 13, 16, 22 and 25 is decided upon to finalize a validation set approximating 15% of the
total dataset size. The final training and validation set size are summarized in table 4.10.

Hurtigruten dataset split
Train Validation Total

5856 (86.4%) 919 (13.6%) 6775

Table 4.10: Hurtigruten post-processed dataset split summary.

4.4 Singapore maritime dataset

The SMD [79] is, to the knowledge of the author, the most complete online available maritime
dataset with bounding box annotations. In this short introductory summary of the dataset, the
reported dataset overview from the detailed analysis performed by Moosbauer et al. [70] is utilized,
as presented in table 4.11. The dataset contains VIS and NIR spectrum videos in 1080 × 1920
resolution, captured from maritime waters outside Singapore. In total, the dataset consists of 81
videos, of which 63 are annotated, providing 31,653 labeled frames and 240,842 instance labels.

The visual spectrum images are separated by the manner of which they were captured. 2,400
labeled frames and 3,173 instance labels are reported to be captured on board a moving vessel.
17,967 labeled frames and 154,495 instance labels were captured on shore a fixed platform in
maritime waters. Moreover, images from all spectra are labeled according to the their illumination
conditions and cover; haze, twilight, and daylight.

SMD properties
Subdataset Videos (annotated) Labeled frames Labeled instances
NIR 30 (23) 11,286 83,174
VIS on board 11 (4) 2,400 3,173
VIS on shore 40 (36) 17,967 154,495
Total 81 (36) 31,653 240,842

Table 4.11: Summary of SMD as reported by [70] in Table 1.

Source: [70]

Moosbauer et al. thoroughly analysed the SMD, its provided label discrepancies and proposed the
first official training, validation and test split of the dataset. The proposed split applied the label
instances’ tracking IDs to counter the appearance of the same instances in the training and test
set. We refer the reader to table 2 [70] for a more in-detail overview of the episodes used in the
dataset split.

Moosbauer et al. further provided several interesting observations regarding the SMD class distri-
bution. Of the ten object classes in the dataset, which are later discussed in detail in section 4.4.3,
the classes are over-represented by vessels and ships, denoted by the vessel/ship class. The other
classes vary between different boat types and various other maritime objects encountered, such as
buoys. Some sample images from the VIS spectrum are presented in figure 4.7.

The remaining parts of this section are structured in the following way.

• Section 4.4.1 presents the generation of the SMD and observations regarding the consistency

43

(a) Sample image on board (b) Sample image on shore

Figure 4.7: Sample images SMD VIS spectrum.

of the instance labels and classes.

• Section 4.4.2 presents post-processing considerations of the generated SMD.

• Section 4.4.3 covers some dataset statistics following our generation of the post-processed
SMD

.

4.4.1 Dataset exploration

In this section we report the detail in our exploration and generation of the SMD. As an additional
contribution, the dataset generation process, not particularly covered in previous work [70][79], is in
detail explained. The dataset exploration further includes observations regarding the preciseness of
the instance labels and discovered spatio-temporal discrepancies in the instance class assignments.
As this thesis researches visual spectrum object detection, the NIR images from the SMD are
neither reported nor utilized.

Dataset generation The SMD is generated from recorded videos on the AVI format, provided on
the Google site of Prasad [77]. As follows, the SMD generation process involves generating frames
from each provided video and matching with delivered ground truth files. The ground truths
and their description files [76], hosted on the same site, include a horizon, object detection and
object tracking ground truth. We refer the reader to the original paper [79] and the ground truth
description file [76] for further details regarding the ground truth annotation files. All label types
for the object detection ground truth file is presented in figure 4.8. As the reader might observe,
the SMD is annotated with the possibility of assessing objects based on motion and distance type
in addition to standard bounding boxes.

In the SMD generation process, only the object detection ground truth bounding boxes is of inter-
est, even though the object tracking ground truth is also utilized for quality checking consistency
of the class assignment for the labeled instances.

44

Figure 4.8: SMD object detection ground truth description.

Source: [76]

Following the downloading of the videos and annotations, the frame generation process consists of
five similar steps for the VIS on board and on shore videos.

1) Find annotated videos: Filter out the videos with existing object ground truth files from the
ground truth folder, ObjectGT.

2) Frame-generation: Generate the frames from each of the videos.

3) Frame to ground truth matching : Match each frame with corresponding video frame annota-
tions from ObjectGT.

4) Annotation format : Generate the annotations on desired labeling format. The PASCAL
VOC XML format is used in our case.

5) Clean annotations: Remove frames without useful annotations.

Our code for the frame generation and annotation matching is based on own observations as well as
one online GitHub repository [104] analysing the dataset. Since most of the scripts utilized for the
frame generation process contains dependencies to several libraries and other custom frameworks
developed by the author, it is deemed more important to capture the documentation process
rather than displaying code source files. Most of the steps are easy to re-produce following our
documentation process.

The first step covers the mapping of videos with existing ground truth files. Similar to previ-
ous work [70], it is found four on board and 36 on shore videos with existing ground truths.
This filtering is simply done by matching each video prefix with the annotation prefixes in the
ObjectGT folder. For instance, the on board video MVI 0790 VIS OB.avi is matched with
MVI 0790 VIS OB ObjectGT.mat.

The second step generates all the frames for each video. The common frame rate for all videos
are found to be 30 FPS, as reported on the hosted google site. All the frames for each video is
generated using the python adapted VideoCapture() function from the OpenCV [18] library.

In the third step, a quite time-demanding issue is encountered. Initially, each generated frame
from a video is assumed to have a matching annotation from the corresponding ground truth file.
Or in other words, each video should generate the same amount of frames that exist in the ground
truth file. However, this is not the case for three separate videos, as presented in table 4.12. As
such, the matching of frames to annotation for the three particular videos is neither one-to-one nor
unique. This issue indicates that there are discrepancies in either the hosted ground truth files or
the videos.

45

Mismatched video frames to ground truth
Subdataset Video name Frame count Ground truth frame count

On board
MVI 0790 VIS OB 600 1,010
MVI 0799 VIS OB 600 601

On shore MVI 1584 VIS 539 550

Table 4.12: Mismatch in amount of generated frames to amount of frames expected from ObjectGT
Singapore dataset.

Initially, it was investigated if the videos were generated with an inconsistent frame-rate. However,
as we found no further basis for this hypothesis, we further investigated the labeled frame count
overview of each video in Table 2 of [70]. Using MVI 0790 VIS OB as a sample video, Moosbauer
et al. record 1,010 labeled frames. Thus, the issue is pinpointed to be either a discrepancy in our
video generation or in the recorded labeled frames from [70].

It is found that Moosbauer et al. have reported the labeled frame overview based on the amount of
existing ground-truth and not the labeled frames after matching to annotated frames. Moreover,
their frame matching process is performed by generating all video frames and matching them to the
annotation files corresponding to the same time-stamp2. As such, the amount of labeled frames are
upper-bounded by the amount of generated frames per video. We follow the same methodology,
implying that all the labeled frames for the videos in table 4.12 are upper-bounded by the “Frame
count” column.

The fourth step involves the processing of annotation files from the MAT Matlab file format. One
example of the annotations for the first 12 frames of MVI 0790 VIS OB ObjectGT.mat is presented
in figure 4.9. Essentially, this processing step is a simple parsing problem, which is handled by
reading each mat file through the loadmat function from the Scipy library. Finally, each frame is
matched to its corresponding annotation and written to the Pascal VOC XML annotation format.

Figure 4.9: ObjectGT annotation example MVI 0790 VIS OB ObjectGT.mat Singapore dataset

In the fifth and last step, some simple quality checks are performed. It is considered most important
to ensure that each frame is indeed annotated with the presence of an object, as this is not checked
during the frame to annotation matching of step three. Especially for the on board videos, which
experience substantial camera movement due to waves and movement from the boat of which the
videos are recorded, it turns out that several of the annotated frames only contains background.

Of the on shore videos, no cases of empty annotated frames are encountered. In the on board
dataset, particularly the two videos mentioned in table 4.12, represent some discrepancies. To
elaborate, for MVI 0790 VIS OB, only 302 of the matched ground truth frames are annotated
with the presence of an object. Similarly, for MVI 0799 VIS OB, only 480 of the 600 matched
ground truth frames contain annotated objects.

The annotated frames and the total instances of the SMD dataset, after this final step, is summa-
rized in table 4.13. The reader can observe that particularly the on shore dataset differs from the

2Pointed out by Sebastian Moosbauer in personal correspondence

46

purely ground truth based summary by [70] presented in table 4.11, with 418 fewer labeled frames.

SMD properties
Subdataset Videos (annotated) Labeled frames Labeled instances
VIS on board 11 (4) 1,982 3,053
VIS on shore 40 (36) 17,967 154,494
Total 51 (40) 19,949 157,547

Table 4.13: Summary of SMD properties from our generation process.

Annotation observations To ensure that the quality of the bounding box annotations of the
SMD is satisfactory, the annotation files are systematically quality checked together with visualized
samples. Since the images and corresponding xml annotation files are generated by the author, file
naming discrepancies and differences in image file types, as encountered in section 4.3, are easily
avoidable. Overall, two observations, the latter of which already mentioned in [70], are necessary
to discuss.

Firstly, a small subset of the the bounding box coordinates are observed to be negative. In best
faith, all instance labels were assumed valid in the process of generation the SMD annotations.
From the ground truth description file [76], all x and y coordinates are defined as positive from the
upper left corner. Most of the observed negative values are observed to be barely out of range (e.g
xmin = −3), while still covering the objects satisfactory. The observed negative values are likely
caused by discrepancies in the labeling process or video resizing. Based on empirical observations,
any bounding box exceeding the image boundary with more than 13 pixels, is discarded, while the
bounding boxes below this value are reset to the image boundary value on the edge(s) exceeded.
This is further discussed in section 4.4.2.

Secondly, the bounding box tightness of the annotated objects is inconsistent. In essence, if utilizing
the same terminology as [59] which define the tightness of a bounding box; the bounding box is
considered tight if it touches the enclosed object’s contours on every one of the bounding box
edges. This is not consistently the case for the SMD and poses a delicate problem to handle.
Mainly, as there is no way to quality check all the bounding boxes’ tightness quantitatively, since
the bounding boxes are implicitly the only ground truth localizing the objects in the scene and a
total relabeling is out of question.

Moosbauer et al. treated this problem by changing the IOU threshold on inference for their trained
detectors. Even though this is a valid solution, there is no guarantee that lowering the IOU
threshold will well-counter the presence of too many background or too few object foreground
pixels in the ground truths during training. Another solution would be to marginally expand or
contract the bounding boxes by a certain percentage, as performed in the ablation studies of [45].
However, this procedure would negatively affect the precisely annotated ground truths. Generally,
the discussed issue is not feasible to properly mitigate without reannotating the entire dataset. We
consider two options to counter the imprecise ground truths.

• Training on SMD only : Put more emphasis to metrics assessing predictions with a lower
IOU threshold.

• Training on a mix of SMD and other datasets: Do not make any adjustments.

When training on a mix different data, we justify that not making any adjustments to the ground
truths is the fairest evaluation since the imprecise ground truths are generally observed to be the
exception rather than the rule.

Class observations The majority of labeled classes of the SMD vary between different sub-types
of boats, as the reader may observe in the ground truth description of figure 4.8. Additionally, as
underlined by Moosbauer et al. and later discussed in section 4.4.3, the SMD is strongly imbalanced
towards the ship/vessel class. However, two other observations are prioritized to discuss here.

The boat sub-types, hereby referred to as the boat classes, are not mutually exclusive. For instance,

47

there is not clear separation in the definition of a sample belonging to the Boat class and the Speed
boat class. A speed boat is inherently also a boat. Additionally, it is empirically observed that
several of the boat classes resemble one another or are not distinctly separated between in the
labeling procedure. Figure 4.10 presents three such examples. The speed boat from figure 4.10c
resembles the annotated ferries in figure 4.10b more than the speed boat in figure 4.10a. Moreover,
the speed boat in figure 4.10a is more similar to typical ferry from the best of knowledge to the
author. Since the SMD has been labeled by a variety of different students [77], it seems the boat
classes have been defined slightly different by each individual.

(a) MVI 0799 - speed boat (b) MVI 1474 - ferry (c) MVI 1584 - speed boat

Figure 4.10: Speed boat or ferry? Samples from SMD with specified ground truth labels.

The last point to discuss is the Other class. This particular class is observed to contain both
boat instances and pure background pixels. As such, it is neither a mutual exclusive relationship
between this class and the generic Boat class. The Other class is further discussed in the following
point regarding class assignment inconsistencies.

Class assignment inconsistencies In exploring the SMD we discover some inconsistencies in
the class-labeling, similar to reported by [70]. The inconsistencies are possible to quantify thanks
to the tracking id labeling provided with the dataset. To clarify, each video contains an object
ground-truth, which frame-wise annotate all the bounding boxes of the objects in scene, as well
as their class. In addition, the tracking ground-truth frame-wise assigns an id and class-type for
every object annotated in the video, over the complete duration of the video. Therefore, from the
tracking ground-truth it is possible to assert that each tracked object is only assigned to one class.
In other words, if a tracked object switches between several classes, which it should not, this is
easy to observe.

In total, we find that 6.7% of all individual tracks in the SMD are subject to a class assignment
inconsistency. In total, 27.5% of the videos contain one or more class switching tracks. However,
the class assigment inconsistency is mostly observed to change between different boat classes. For
instance, one object labeled boat is labeled ship/vessel at a later occurence. This observation
motivates the usage of SMD in a class-agnostic setting, where such a class inconsistency would be
insignificant. Some few empirical observations of class switches between buoy and boat are also
observed as visualized in figure 4.11. These cases are handled in in the post-processing procedure
of section 4.4.2.

48

(a) MVI 0790 VIS OB frame 253. (b) MVI 0790 VIS OB frame 259.

Figure 4.11: Class assignment inconsistency illustrated for the same object instance in
MVI 0790 VIS OB. Visualized with Remo.

4.4.2 Dataset post-processing

Based on observations from section 4.4.1 and previous experiments conducted on the SMD [70],
the SMD is arguably best suited for class-agnostic object detection. As such, class-imbalance and
class assignment inconsistencies are easily handled by encapsulating all boat-related classes in a
generic boat class. Three adjusted steps of post-processing are performed on the raw generated
SMD.

Firstly, as discussed by Moosbauer et al., the videos captured in 30 FPS generate a large quantity
of practically identical frames. It is observed to particularly be the case for the on shore videos,
which are recorded from a stand-still platform often with static scene and many anchored-up ships.
Using all these frames represents a potential oversampling bias [71]. Therefore, similar to [70], we
downsample the generated frames by a factor of two, using every other frame. However, in contrast
to Moosbauer et al., we only do this for the on shore generated frames, as the on board frames do
not suffer from a similar static scene and often includes objects moving in reference to the camera.

Secondly, as we in this thesis aim to perform maritime vessel detection, an agnostic relabeling of
the SMD needs removal of some of the minority classes. In essence, all instance labels from the
Swimming person, Flying bird/plane and Buoy class are deleted. Moreover, the Other class found
to also annotate pure background pixels is handled. Empirically, the Other class discrepancy is
found to occur in the MVI 1584 VIS generated frames. 270 Other labels from these frames are
hence deleted.

The final step is to create a meaningful split of the SMD. Since this is already proposed in [70],
with measures to counter the reoccurrence of the same instances in the split sets, we use this
split with a few alterations. Firstly, in our experiment design later presented in chapter 5, it is
not desired to benchmark performance on the SMD. Thus, a test set is not strictly necessary. To
maximize training data, we merge the training and validation set of [70] to a new training set.
The proposed test set is used as the new validation set. Again, we refer the reader to Table 2
[70] for a detailed episode overview. Lastly, not reported in detail by Moosbauer et al., the on
shore video MVI 0799 VIS OB.avi is deleted from the split. The background for this decision is
varying degree of lens focus and zoom in the recorded video, causing many unusable frames and
annotations3.

4.4.3 Dataset statistics

Figure 4.12 presents the class distribution of the post-processed SMD, not separating between
the split sets. The class distribution is presented as to give the reader a sense of the severe
class imbalance of the SMD. As introductory mentioned, the Vessel/ship class represents the large
majority of the dataset. Of the post-processed SMD, a total of 76.6% of the instance labels belong
to this class.

3Pointed out by Sebastian Moosbauer in personal correspondence and observed by the author on inspection.

49

Figure 4.12: Post-processed SMD class distribution after downsampling and class removal, before
agnostic relabeling.

The agnostic relabeling of the post-processed SMD is simply performed by relabeling all of the
classes in figure 4.12 to a generic Boat class. Table 4.14 summarizes the total images in the training
and validation set of the post-processed SMD.

SMD dataset split
Train Validation Total

7,478 (71.9%) 2,916 (28.1%) 10,394

Table 4.14: SMD post-processed dataset split summary.

4.5 Target domain dataset

In this section, the target domain dataset is created in accordance with the surrounding environ-
ment of the autonomous ferry milliAmpere.

milliAmpere is intended to operate in the crossing of the Nidelva river at the interception of the
Ravnkloa dock. A custom sampled dataset from the Ravnkloa harbour and the harbour orifice
towards the Trondheimsfjorden is therefore acquired by the author on the 17th of April 2021.
All images and videos were sampled in accordance with other students at NTNU which sampled
different types of sensor data in harbour and open-sea environments for different scenarios. All
images acquired are taken on board milliAmpere, which was rigged and manoeuvred by Martin
Gerhardsen and Martin Græsdal. A marker boat was rented, rigged and manoeuvred by Thomas
Hellum and Kristian Auestad.

The collected images and videos are acquired by a portable mobile phone and the EO cameras
installed on the sensor rig of milliAmpere. The portable mobile phone was used as an additional
data source as this device gave more flexibility in viewpoint angle and enabled easier scenario
creation by filming from a variety of angles. The utilized iPhone X recorded images of 2048×1536
resolution and videos of 1280× 720 with 30 FPS. The EO cameras of milliAmpere recorded videos
of 1224× 1024 resolution with 5 FPS.

The intention behind the dataset acquisition was two-fold. Firstly, it was desired to capture more
target domain images, particularly for a large variety of classes. However, since the experiments
were conducted over one afternoon, the class diversity were dependent on vessel types entering and

50

leaving the harbour that day. Secondly, is was regarded as crucial to attain a set of videos and
images for final scenario testing of the designed detectors in the wild.

(a) milliAmpere electrical autonomous ferry (b) Experiment overview

Figure 4.13: Experiments in Ravnkloa and Trondheimsfjorden. The left-most boat in the right
image is the rented marker boat.

4.5.1 Custom dataset design

Grini sampled data from the target domain in 2019, in particular the dataset named Trondheims-
fjorden and MooredBoats (see table 4.1). These datasets, with boat labels only, are included in our
designed target domain dataset. Simply, as to get more labeled data, while also ensuring a more
diverse dataset which is less prone to sample-selection bias caused by sampling images over one
experimental day only. In the splitting of the dataset, later described, it is assured that samples
from Grini are represented in the training, validation and test split.

At the day of collecting data, a rather limited amount of vessel types were encountered. Overall,
with the marker boat, a total of eight unique moving instances were encountered, not taking into
account some samples of different docked boats. The instances vary between classes such as dinghy,
ferry, and different sized motorboats. Most of these instances were captured on video and often
occur alone in the foreground in the scene. In other words, many of the videos are essentially
a single-object detection problem. The reason for this, is simply that there were few occasions
for capturing moving multi-objects. However, with the aid of the marker boat and other more
fortunate situations, several multi-object videos were acquired.

After assessing all the collected videos and frames, it was decided to add another object-type
frequently faced in the target domain. Namely, samples of kayaks, which is one of vessel types of
smallest object size and which often passes by in close proximity of surrounding boats, making it
a challenging and important object to properly detect. To acquire such data, it was decided to
re-use existing data, rather than waiting to cross kayak boats during additional experiment days.

One open-access video passing through Nideleven and into the harbour at Skansen4, was scraped
from Youtube. Three additional videos were provided by Erik Wilthil and Øystein Helgesen,
acquired in challenging lighting conditions from the EO camera station at milliAmpere. A total
of eight kayak videos are generated of these two unique instances, with largest possible variation
in object-viewpoint, distance to object, and varying background. The two kayak instances are
visualized in figure 4.14, though we note that a lot of different object-viewpoint samples are added
in the final dataset.

4https://youtu.be/TrpChlmCe_8

51

https://youtu.be/TrpChlmCe_8

(a) Kayak sample milliAmpere EO camera station (b) Kayak sample scraped from Youtube

Figure 4.14: Kayak samples in target domain

In total, after filtering out videos considered less useful, it remains a total of 29 videos, where eight
are kayak videos. Additionally, 32 still images are added containing more harbour-like conditions
of docked boats and similar. Instead of using a few videos with long duration it was intentionally
chosen to select many videos of short duration, as to mitigate too similar object appearance in the
succeeding step of the frame generation. All videos are downsampled to 5 FPS for frame-generation,
as to avoid oversampling of instances, considering the generated frames are to be merged with data
from Grini. Another benefit of using this frame-rate follows in the dataset splitting.

All the generated frames are labeled using the intuitive LabelMe [89] annotation tool. In our
labeling methodology the most important point has been to lable as class-aware as deemed useful
as well as fitting the bounding boxes as tight as possible to the enclosed objects, touching one of
the object boundaries on each side. As follows, four separate classes are separated between; Kayak,
Motorboat, Dinghy and Ferry.

One example of a labeled motorboat as seen from the LabelMe user-interface is presented in
figure 4.15. For kayaks or boats with a clear contour from someone manoeuvring the vessel, the
driver has been included in the bounding box as we argue these features are useful for recognizing
in particular kayaks and dhingys.

Figure 4.15: Sample image annotated from LabelMe

In a similar manner, the Trondheimsfjorden and MooredBoats dataset of Grini, previously agnos-
tic labeled with the Boat label, are relabeled. As the dataset consists of a variety of different
boat-types, it is found that only relabeling ferries, which there are notably many of, is the most
meaningful measure as to attempt creating a more balanced class-aware target domain dataset.
A total of 118 ferry instances are relabeled. Additionally, it is observed that Grini has labeled
sailboats inconsistently both with the inclusion of the masts but also without. This was not found
time to correct.

To summarize, table 4.15 displays all labeled images from each dataset. The accumulated images
from Trondheimsfjorden and MooredBoats are denoted as Grini target. As the “Dinghy” class is a
severe minority class, 39 dinghy samples are merged into the motorboat class of Custom collected.

Dataset split To design the training, validation and test split it is considered vital to avoid

52

Dataset Images Motorboat Ferry Kayak

Grini target 441 593 118 -
Custom collected 620 340 225 154

Table 4.15: Overview target domain dataset. Images refer to labeled images. Each class name
refers to labeled instances.

sample leakage between the training, and validation-test set. Particularly since the target domain
dataset is rather small, it would prove detrimental to have too similar images in the training and
validation-test set, potentially causing a trained model to overfit.

The first measure to counter this, is to designate every video to a one of the split sets. As follows,
all generated frames from a video is uniquely enclosed in one of the split sets. Nevertheless, since
many of the videos capture the same object instances, it is found further necessary to manually
ensure that the observed appearance between the videos in training and validation-test, are not too
similar. Mainly, object appearance, distance and viewpoint are used as metrics for this procedure.
One disadvantage of designating videos to each split, is that ensuring a strict percentage of frames
to each split is significantly harder, considering that the videos are of different length and represents
different amount of frames.

Moreover, our custom collected dataset contains more samples around Ravnkloa, which is consid-
ered closer to the target domain than many of Grini’s open-sea images from Trondheimsfjorden.
We therefore make sure the validation and test set contains sufficient of our collected images. Some
videos are also strictly reserved to the test set as they represent particularly interesting case-study
scenarios.

Grini’s frames, also observed to be largely generated from videos, are manually split into a training,
validation and test split with the objective of creating a 75-10-15 % split, evenly distributing the
respective class instances over the split sets. The custom collect data is split by designating videos
to each split set, while conserving even class distribution over the split sets and subjectively ensuring
not too similar object appearance and viewpoint occurring in the training and validation-test set.

The final split is presented in table 4.16, and as the reader might observe, our collected dataset
ended up with a larger validation and test set than intended, due to the video designation of each
split set.

Dataset Train Validation Test Total

Grini target 336 47 58 441
Custom collected 350 113 157 620

Target domain dataset 686 (64.7%) 160 (15.1%) 215 (20.2%) 1,061

Table 4.16: Overview target domain dataset split by sub dataset. The count per set refers to
labeled images.

Conclusive remarks The process of generation the target domain dataset has been both time-
demanding and laborious, demonstrating for the author and hopefully for the reader, that collecting
and annotating a well-representative dataset from a domain is not trivial. The author’s data
collection, frame generation, labeling and split set construction with the Grini dataset images,
represents between one-two weeks of workload, including the planning process for the dataset
collection day. Optimally, the target domain dataset would have been collected over more points
in time and with a larger variety of weather conditions and unique instances, to better represent
the target domain. Due to time-constraints, this was not achievable.

53

CHAPTER 5

EXPERIMENT DESIGN

It is desired to design our experiments as to benefit from the maritime datasets covered in chapter 4,
in a manner improving detection performance in the target domain, in line with section 1.1. We
adopt targeted detection pre-training [91] [60] to address this. Considerations for adapting this
scheme is covered in section 5.1.

Section 5.2 present all datasets utilized for the conducted experiments in chapter 6. Including
useful dataset statistics and each experimental dataset’s relation to the target domain dataset.

As specified in section 1.1, the objective of this thesis is additionally to design a detector adhering
to real-world deployment requirements. Section 5.3 explains in detail our procedure for choosing
such a detector based on deployment requirements and available implementations/frameworks.

To the best of our ability, all details necessary for reproducing our experiments with the chosen
detector implementation are presented in section 5.4. In addition to presenting baseline hyper-
parameter settings, data pipeline considerations and the GPU cloud framework, three different
fine-tuning strategies utilized in the experiments, are in detail covered.

Lastly, the utilized performance metrics for reporting of the experiments are presented in sec-
tion 5.5.

5.1 Targeted detection pre-training

Targeted detection pre-training has proven to be beneficial for improving detection performance
when fine-tuning into a target domain. Even though the performance gain is often linked to the
size of the pre-training dataset [60], diversity and object variety are found to similarly be important
[91].

None of the explored datasets in chapter 4 can be considered large-scale seen in relation to for
instance OpenImages [55] or Objects365 [91] treated in section 3.2.3. Nevertheless, in maritime
object detection, many of these datasets are undoubtedly large-scale. In order to utilize these
datasets in a manner benefiting target domain performance, targeted detection pre-training is an
unexplored and interesting approach.

Optionally, it would be possible to combine all the explored datasets in chapter 4, including the
target domain dataset, to maximize training data and establish a large-scale maritime dataset.
Such an approach is however problematic.

Firstly, the target domain dataset would be underrepresented, making model selection unreliable
while likely causing unexplainable predictions on deployment in the wild. Moreover, the marginal

54

distribution of the dataset would be strongly skewed towards the mixed source domain marginal
distributions, limiting target domain performance [94]. Furthermore, the split sets would suffer
from a sample-selection bias and a covariate shift. Lastly, there is no consistent way of linking
transferability between each source domain and the target domain.

Targeted detection pre-training is defined according to transfer learning terminology in section 3.2,
as follows for this thesis:

Definition 5.1.1 (Targeted detection pre-training). “Consider a maritime source domain
DSM unequal but of close proximity to a maritime target domain DTM , where P (XS) 6= P (XT).
Both domains contain objects of the same class, implying the same label space Y. The learning
tasks are the same, TSM = TTM , namely detecting objects. How does pre-training an object
detector on DSM improve the performance of the learned target predictive function fTM (·) during
fine-tuning on DTM?”

A source to target domain measure is not quantitatively defined, but the maritime source domains
are assumed similar and close to the target domain. According to DA definitions, we additionally
note that a stricter definition includes a covariate shift between DSM and DTM , implying TSM ≈
TTM in definition 5.1.1.

Each experimental dataset and corresponding source domain, as well as the target domain, are
covered in section 5.2. Moreover, as the target domain dataset is small-scale, additional fine-tuning
options to full fine-tuning are meaningful to consider, as later presented in section 5.4.

5.2 Experimental datasets

This section covers details regarding each experimental dataset and their relation to the target
domain dataset. Each experimental dataset is representative of a source domain related to the
target domain.

Chapter 4 presents four maritime datasets from section 4.1 - 4.4 and the target domain dataset in
section 4.5. We consider HurtigrutenBL (section 4.2), the Hurtigruten dataset (section 4.3), and
the SMD (section 4.4) for generating experimental datasets. The Grini dataset is not considered,
as this already is used to generate the target domain dataset.

Due to inherent class-imbalance for most of these datasets, all datasets are treated class-agnostic,
with one generic vessel class; Boat. This condition also fulfills definition 5.1.1 in section 5.1,
asserting similar label space for source domains and the target domain.

All of the experimental datasets only contain a training and validation split. This is done to
maximize training data and as the models trained on these datasets are not intended for perfor-
mance benchmarking, but model selection only. Therefore, an out-of-sample dataset is not strictly
required, and is omitted.

All of the experimental datasets and the target domain dataset are presented in table 5.1, together
with the respective amount of object size ratios of all the ground truth bounding boxes as defined
by the COCO area classification, covered in section 5.5, in table 5.2.

Singapore Maritime Dataset (SMD) is essentially our post-processed version of the SMD in
table 4.14. The SMD presents quite similar object viewpoints as the target domain dataset, even
though most instances are captured in open-sea environments with a clear horizon. The majority
of the instances are based on ships and vessels of different sizes and includes a total of 76,596
ground truth instances from the total 10,394 labeled images.

Nordic Maritime Dataset (NMD) consists of combined images from the post-processed Hur-
tigruten dataset split in table 4.10 and HurtigrutenBL (randomly split into train and validation)
both containing images from Nordic maritime waters. The NMD is designed as to subjectively
represent a source domain similar to the target domain dataset. However, the majority of the im-
ages, originating from Hurtigruten dataset, represents a quite different object viewpoint, though

55

providing a large variety of different boat types, weather conditions and backgrounds.

All non-boat type classes are deleted from both of the datasets before agnostic relabeling of the
boat classes to Boat, which explains some of the observed discrepancies in the image count of
Hurtigruten in table 5.1 compared to table 4.10. The bounding box areas of the NMD are more
skewed towards small instances than observed in the SMD. What is more, there are generally fewer
instances per image, counting a total of 18,802 instances distributed over 7,477 labeled images.

Mixed Maritime Dataset (MMD) is designed as to maximize dataset size, while disregarding
the previous finesse of clearly separating the source domains. MMD is simply generated by com-
bining the training and validation set of SMD and NMD, thus representing a mix of the two source
domains. As follows, the images contain a large variety of boat types from different maritime envi-
ronments. A total of 95,398 ground truth instances are available in the 17,871 labeled images. As
follows, the object size ratios of the MMD inherits its properties from the two underlying datasets.

Target domain is the custom designed target domain dataset with the following split previously
presented in table 4.16. The target domain dataset has quite few instances per image, counting a
total of 1,440 instances and 1,061 images. Thus, many of the images contain a single object, which
is explanatory from the collected images by the author, covered in section 4.5.1. Moreover, from
table 5.2 the target domain dataset is observed to to include significantly fewer small instances,
and more large instances, than the experimental datasets.

Name Sub dataset Train Val Test Total Instances

SMD - 7,478 (71.9%) 2,916 (28.1%) - 10,394 76,596

NMD
Hurtigruten 5,845 919 - 6,775 17,667
HurtigrutenBL 606 107 - 713 1,135

Total 6,451 (86.3%) 1,026 (13.7%) - 7,477 18,802

MMD - 13,929 (77.9%) 3942 (22.1%) - 17,871 95,398

Target - 686 (64.7%) 160 (15.1%) 215 (20.2%) 1,061 1,440

Table 5.1: Experimental datasets and target domain dataset. MMD is the combination of SMD and
NMD. Total refers to total labeled images. Instances refers to total amount of instances. All percentages
in Train and Val are calculated from Total on the same row.

Name Small Medium Large

SMD 29.8% 53.0% 17.2%

NMD 48.6% 40.7% 10.7%

MMD 33.5% 50.6% 15.9%

Target 10.5% 60.2% 29.7%

Table 5.2: Experimental datasets and target domain dataset. Object size ratios of all ground truth
bounding box areas, COCO classified.

5.3 Detector considerations

In this thesis, several architectures have been considered with inspection of the respective code-
bases. In particular, it has been prioritized to choose a state-of-the-art detector with several
stable and well-tested implementations. The EfficientDet [101] architecture is finally selected for
performing all experiments. We highlight some of the advantages in using this architecture.

• State-of-the-art : EfficientDet, even though published in 2020, still reports performance close
to the most recently published architectures [108].

56

• Flexible architecture: One of the unique features of EfficientDet is its flexibility. EfficientDet
is actually a family of detectors and by simply changing one parameter in the implementa-
tion, the total architecture and resulting inference time and performance metrics are altered
accordingly, as presented in section 2.4.3.

• Existing implementations: Since the detector has existed for over a year at the writing of
this thesis, there are plenty of implementations to choose between.

After deciding on the detector architecture, the next step is to decide on an implementation of the
architecture to use. In choosing an implementation several criteria have been considered.

• Reported performance: Does the implementation report similar performance scores as the
original EfficientDet paper [101].

• GPU compatibility : Which GPU resources are compatible with the implementation.

• Fine-tuning strategies: Which fine-tuning strategies are available in the implementation.

• Community adoption: Is the implementation well-adopted by the computer vision community
on GitHub.

• Framework preferences: Which deep learning framework is used for implementation. We
separate between PyTorch [75] and TensorFlow [10].

Two different implementations satisfying our requirements are tested. Firstly, the original Ten-
sorFlow implementation [2], which provided the reported performance scores in [101], is tested.
Secondly, a PyTorch re-implementation [5] motivated by the author’s preference for PyTorch, is
tested. The GBL3-720 dataset, created in the author’s specialization project [56] and consisting of
2360 images of 720 × 720 resolution with three classes, is used for sanity-checking the implemen-
tations’ performance. As reported in [56], we know the Faster R-CNN achieves an mAP of 20.2
on this dataset. Based on reported COCO scores, we expect EfficientDet-D2 (see Table 2 [101]) to
perform better, or on par, with the Faster R-CNN mAP score (see Table 11 [86]).

The PyTorch re-implementation reports similar performance scores as the original paper. More-
over, the PyTorch framework accepts annotation files on the JSON format, easily convertible from
the PASCAL VOC XML format. Multiple models are trained on the benchmark dataset for this im-
plementation on Google Colaboratory with delivered GPU resources. We test the D0, D1, D2 and
D3 EfficientDet models for different optimizers and learning rates. Training from the pre-trained
COCO weights is very slow and converges surprisingly slow to any satisfactory performance scores.
As neither D2 or D3 improves on the Faster R-CNN benchmark score and as the sample predictions
are inherently untrustworthy, we refrain from using this implementation.

The TensorFlow original implementation requires the transformation of JSON annotations to Ten-
sorFlow records (TFRecords). This is trivially performed from the suggested transformation script
provided in the GitHub repo [2]. Similar tests are performed for this implementation with more
promising results. A must faster convergence from the COCO pre-trained weights is promising,
and similarly we find the original hyperparameters [101] to outperform the Faster R-CNN bench-
mark score for EfficientDet-D2 and D3, which is expected. Sample predictions and loss curves are
also observed to be reliable.

As follows, the TensorFlow original implementation is selected. The inference time for all Effi-
cientDet models is presented in figure 5.1. More details regarding this implementation is treated
in section 5.4.

57

Figure 5.1: Reported inference time EfficientDet models, TensorFlow original implementation. mAP is
reported on COCO test-dev.

Source: [2]

5.4 EfficientDet TensorFlow configuration

In this section, all details and considerations necessary for reproducing our experiments in chap-
ter 6, with the chosen EfficientDet implementation, are documented. More specific hyperparameter
tuning is in-detail reported in the respective experiment sections of chapter 6.

Model selection EfficientDet-D3 is selected for all experiments.

This choice is based on the inference time requirements treated initially in section 1.1. In essence,
we search for an architecture which can guarantee a frame-rate of 25 FPS or higher for a batch
size of one image. From the reported inference times from figure 5.1, EfficientDet-D3 is the best
option guaranteeing this.

GPU resources All experiments are trained in a Google Colaboratory pro subscription, enabling
24 hours of training on one single GPU. As the acquired GPU differs, depending on available
resources from Google, we do not report any GPU specifications.

Hyperparameter baseline configuration In the initial testing of the EfficientDet TensorFlow
implementation, we find that most of the original hyperparameters from [101] works well and are
hence reused. The hyperparameters presented here are either changed from the original hyperpa-
rameters or presented due to their importance. We do note that exponents of base number 10 is
written as e, i.e 10−3 = e-3.

All models are trained with Stochastic Gradient Descent (SGD) with a weight-decay of 4e-5 and
a momentum of 0.9. We apply a warm up learning rate from 1e-4 linearly increased until reaching
the default learning rate of 1e-3 over the first training epoch. During subsequent training the
learning rate is annealed down with cosine decay annealing [65] to improve SGD performance. The
SiLU(Swish-1) activation function [81] is used without exponential moving average decay, as initial
tests found no benefit in this, dissimilar to the original paper [101]. Gradient clipping is further
adopted to mitigate exploding gradients.

Random horizontal flipping and scale jittering are used as baseline data augmentations for each in-
putted image, similar to [101]. While the horizontal flipping augmentation is quite self-explanatory,
scale jittering crops each image after randomly resizing it from a value in the range [0.1, 2]. For nor-
malizing pixel values, the dataset RGB mean and standard deviation parameters are overwritten
from calculations of each dataset used for training.

58

Hyperparameter EfficientDet reference

Learning rate learning rate: 1e-3
Warm up learning rate lr warmup init: 1e-4
Warm up epochs lr warmup epoch: 1.0
Decay method lr decay method: ’cosine’
Mixed precision mixed precision: false
Exp. moving average decay moving average decay: 0

Horizontal random flipping input rand hflip: true
Scale jittering min jitter min: 0.1
Scale jittering max jitter max: 2.0

RGB mean mean rgb:
RGB standard deviation stddev rgb:

Anchor box scale anchor scale: 4.0
Anchor box aspect ratios aspect ratios: [0.5, 1.0, 2.0]

Table 5.3: EfficientDet TensorFlow implementation hyperparameters specified in config file to obtain
baseline hyperparameters. RGB mean and standard deviation are left empty as these hyperparameters are
adjusted for each dataset.

The default anchor box parameters of [101] are utilized, with default anchor box scale of 4.0 and
aspect ratios of [0.5, 1.0, 2.0].

Mixed precision is disabled during training due to the randomly allocated GPU resource of Google
Colaboratory. All training is further performed with a batch size of 4 and gradient checkpointing
to reduce GPU memory requirements. Gradient checkpointing essentially stores checkpoints in the
computation graph of TensorFlow to calculate the gradients at backpropagation for less required
GPU memory, which is found necessary for training EfficientDet-D3 on one GPU resource.

Table 5.3 presents the specified hyperparameters in the config file, which together with default
settings in the config file hparams config.py [2] produces the baseline hyperparameters.

Dataset pipeline In the data processing during training time, each image is resized to the target
image size of EfficientDet-D3 of 896×896 by bilinear interpolation. All image resizing is performed
in the training pipeline.

All datasets are locally shuffled within the training, validation and test set. All dataset annotations
are thereafter converted to the TensorFlow annotation format, TFRecord, which stores sequences
of images and annotations in shards. All shards within a split set are additionally globally shuffled
during training. The amount of images and annotations within one shard depends on the available
images in the split sets, but is typically between 700-1000 images.

An epoch, signifying one pass over the training set, is calculated by taking the training iteration
step multiplied with the batch size, divided by the training dataset size.

EfficientDet fine-tuning strategies The chosen TensorFlow implementation of EfficientDet-
D3 [2], provides hyperparameter options for altering the training strategy of the detector. The
TensorBoard graph of the main building-blocks is visualized in figure 5.2. In this thesis, we separate
between three different training strategies as follows:

1) Full fine-tuning(FF): All parameters are subject to training.

2) Frozen backbone(FB): All parameters except the backbone are trainable.

3) Head only(HO): All parameters are frozen except the class/box prediction heads.

To give some more detail into these different fine-tuning strategies, we provide a more in-detail
explanation of the EfficientDet architecture before specifying the detector-specific parameters used
to enable each respective fine-tuning scheme.

59

The EfficientDet-D3 architecture is presented in figure 5.2 with its core components. All of these
components are the same for all scalable versions of the EfficientDet detector family. The flow
for EfficientDet-D3 of each component transpires in the following way. An image of 896 × 896 is
inputted to the architecture. The EfficientNet-B3 backbone downsamples the image by a factor of
two for each feature level, for a total of seven levels. Each level is denoted as Pi where i ∈ [1, 7]. In
other words, the first feature layer, P1 represents a feature map downsampled by two with spatial
resolution 448× 448, while P7’s feature maps are 7× 7.

As stated in the original paper [101], the BiFPN accepts features from the P3-P7 level. This stream
of features are represented by the right-most arrow connecting the backbone to the BiFPN as five
unique tensors in figure 5.2. In addition, the reader can observe the two resampling blocks also
connecting the backbone to the BiFPN, which are used for adding another coarse representation
of the smaller and more semantically rich feature maps from the backbone.

The BiFPN has a repeated block of six fpn cells for the D3 architecture with 160 input channels.
These values may also be observed from Table 1 [101], which presents the amount of channels and
layers for the BiFPN and box/class network in accordance with the scaling factor φ = 3. Finally,
the box/class prediction heads which consists of two separate heads for predicting the object class
and bounding box coordinates consist of four layers each for D3.

Figure 5.2: EfficientDet-D3 architecture TensorBoard graph. Annotated by author.

The config file parameters used for enabling each the fine-tuning options are specified in table 5.4.
A few observations regarding the fine-tuning schemes are worth noting.

Firstly, the FF tuning scheme essentially is a traditional full fine-tuning scheme, where all parts of

60

Fine-tuning strategy EfficientDet reference

FF var freeze expr: None
FB var freeze expr: ’(efficientnet)’
HO var freeze expr: ’(efficientnet|fpn cells|resample p6)’

Table 5.4: EfficientDet fine-tuning strategies with config file reference.

the detector are trained and the backbone overwrites previously pre-trained features.

The FB tuning scheme, essentially conserves pre-trained features in the backbone. Since the
BiFPN has weighted edges connecting the FPN cells, the multi-scale feature fusion is adapted
during training. In this manner, the architecture learns the best way of combining pre-trained
features for better feature fusion.

The HO tuning scheme has a very restricted learning capability. In fine-tuning with this scheme,
training is significantly faster as only the box and classification network parameters are updated.
From table 5.4, only the resample p6 is included in the HO freezing expression. The P7 resampling
layer is not frozen, as to also adapt the deepest layer with most domain specific feature to the
training dataset.

As a last note, we discuss a potential gradual fine-tuning scheme of the backbone and why it has
not been implemented. Firstly, a gradual-fine tuning, though indicating improved performance
for some architectures, has no consistent scheme for guaranteeing this. Such an implementation
would be dependent on the author’s decisions regarding performance stagnation for unfreezing the
succeeding layer as well as corresponding learning-rates. Additionally, implementing this would
represent a time-demanding altering of the training scheme to make a reliable and automatized
tuning scheme. The creators of the EfficientDet architecture have discussed implementing this
tuning scheme on an opened GitHub issue [3], and similar to them, we refrain from this due to a
most likely marginal impact.

Experimental data augmentation In the experiments, it is also experimented with modern
and more experimental strategies for designing data augmentation schemes.

Firstly, a custom data augmentation technique designed for improving fine-tuning of object detec-
tors by exploring adversarial examples is considered, named Det-AdvProp [21]. In the EfficientDet
TensorFlow implementation, the training scheme is not available. However, the pre-trained COCO
weights obtained using such a scheme, reporting +1.1 COCO AP improvement for EfficientDet
detectors, are tested.

Secondly, an augmentation scheme called AutoAugment [24], which learns augmentation policies
from datasets is tested. As the augmentation policies are dependent on the datasets reported
by the paper [24], a custom policy proven to perform good for object detection, provided in the
TensorFlow EfficientDet implementation, is tested.

K-means - anchor box aspect ratios An open-source implementation based on k-means for
optimizing the anchor box aspect ratio parameters of the EfficientDet detectors as to have the best
IOU to each training dataset’s clustered ground truth bounding boxes, is partially utilized in the
conducted experiments. The implementation [57] works in a similar manner to the YOLOv2 [84]
anchor box prior algorithm.

5.5 Performance metrics and terminology

In this thesis we utilize the arguably most common performance metric in the computer vision
community, based on the COCO benchmark dataset [61].

The choice of reported COCO metrics depends on which aspect of model performance that is desired
to measure, which will differ subject to the experiment’s nature. We specify the terminology that

61

is used for all following experiments in this project thesis which follows the terminology from [1].

• AP : Refers to the AP -defined metric in [1] for all reporting purposes. This is the same as
mAP@[0.5 : .0.05 : 0.95] and is the main metric in the COCO detection challenge.

• AR: The mean average recall for same IOU thresholds as AP .

• AP50, AP75: Refer to the mean average precision for IOU threshold 0.5 and 0.75.

• APs, APm, APl: Similar to the first defined AP , but for objects of small, medium or large
size. The sizes are specified in table 5.5.

• APclass: Reports the average precision for the class, for the same IOU thresholds as AP .

Do note: AP reports the mean average precision for all classes, which can be seen as the mean of
APclass for all classes.

COCO area definitions
Area classification Area size (A)

Small A < 322

Medium 322 < A < 962

Large A > 962

Table 5.5: COCO area definitions [1]

Inference time / latency Inference time is reported for a batch size of one, as to best mimic
the intended sequential image feeding in deployment on milliAmpere, as discussed in section 1.1.
Moreover, inference time is reported as end-to-end latency of EfficientDet-D3. That means, the
inference time includes image preprocessing, pure inference time, post-processing and NMS. This is
the only realistic inference time to report, as opposed to only pure inference time, since deployment
on milliAmpere would need to include all these aspects in generating a prediction.

Loss monitoring The total validation loss of EfficientDet-D3 is reported to capture overfitting
behaviour and monitor the each trained model’s generalization to the validation set. Also the total
training loss is monitored, to observe learning improvements over time and as to be seen in relation
to the validation loss.

Model weight saving Model weights are saved from observations on validation loss stagnation
and validation AP curves during training time.

Confidence score threshold All predictions presented in this thesis is performed for the default
classification confidence score threshold of 0.4 for the EfficientDet TensorFlow implementation.

62

CHAPTER 6

EXPERIMENTS

In this chapter, all experiments are conducted and reported.

6.1 Experiment overview

As a continuation from the experiment design in chapter 5, this section is dedicated to present
the experiment overview and details. As presented in the experiment overview in table 6.1, the
experiments are initially separated into two phases.

The first phase, referred to as the unseen target domain experiments, is designed for generating the
targeted detection pre-trained weights for each of the experimental datasets treated in section 5.2.
The EfficientDet-D3 detector, initialized from COCO pre-trained weights, is fully fine-tuned on
the three experimental datasets for the class-agnostic Boat class. All details and considerations
for training, hyperparameter tuning and model selection are covered in section 6.2.

The resulting models, or the unseen target domain models, are later evaluated on the target
domain test set in section 7.1. The thought behind doing so, is to observe how a model trained on
a maritime source domain transfers into the completely unseen target domain. As such, shedding
light on the pure transferability between each of the source domains and the target domain.

The second phase, referred to as the seen target domain experiments, are the main experiments
of this thesis. The three explored fine-tuning settings of section 5.4; full fine-tuning (FF), frozen
backbone (FB) and fine-tuning the class/box prediction heads (HO) are tested for fine-tuning into
the target domain. This is performed for four different pre-trained weights; baseline weights from
pre-training on COCO, and the three resulting detection pre-trained weights acquired from the
first phase. In total, 12 models are therefore fine-tuned on the target domain.

The models obtained from the second phase, the seen target domain models, are evaluated on the
target domain test set in section 7.2. This experiment design provides a comparable basis between
fine-tuning settings, the targeted detection pre-trained models and the baselines.

For both of the experiment phases, model training has been conducted in a sequential manner,
where a model often build on hyperparameters from a previous one. The respective experiment
sections therefore present partial results regarding the choice of model, as to motivate the author’s
reflection process in conducting the experiments.

Lastly, not covered in detail in this chapter, an ablation study on the effects of fine-tuning into
the target domain when introducing class-awareness, is additionally executed and evaluated on the
target domain test set in section 7.3.

63

Model Weights Dataset Fine-tune settings

1. Unseen target domain
D3-SMD COCO SMD FF
D3-NMD COCO NMD FF
D3-MMD COCO MMD FF

2. Seen target domain

D3{·}-Db COCO Target HO, FB, FF
D3{·}-DSMD COCO ⇒ SMD Target HO, FB, FF
D3{·}-DNMD COCO ⇒ NMD Target HO, FB, FF
D3{·}-DMMD COCO ⇒ MMD Target HO, FB, FF

Table 6.1: Experiment overview. Weights are initialized pre-trained weights before training on the training
dataset, specified in Dataset. Transfer settings: HO=Head-only, FB=Frozen backbone, FF=Full-fine
tuning. Empty curly bracket subscript for phase 2 models is either HO, FB or FF, depending on the
fine-tuning setting used for each model.

6.2 Unseen target domain

The first experimental phase covers the experiments for obtaining the targeted detection pre-trained
weights. The EfficientDet-D3 model is fully fine-tuned on each of the experimental datasets covered
in section 5.2 and evaluated on the respective validation sets.

As it is desired to fit each unseen target model to its respective experimental dataset in the best
manner, specific hyperparameters and data augmentation schemes are in-detail reported. For
simplicity, the hyperparameter tuning is divided into two separate parts.

Firstly, hyperparameters strictly dependent on the training dataset, such as aspect ratio and
dataset mean and standard deviation adjustments, are referred to as dataset-specific hyperparame-
ters. Secondly, hyperparameters related to model training, mainly treating learning rate consider-
ations, are referred to as model-specific hyperparameters. This partitioning is clearly not mutually
exclusive, as all hyperparameters inherently depend on the dataset. Nevertheless, it is chosen as
to structure the experiments clearer.

Validation losses and sample predictions are presented where considered informative. Unless oth-
erwise specified, all baseline settings from section 5.4 are adopted. Lastly, all model names used for
the unseen target model experiments in section 6.2.1 - 6.2.3, are local in the scope of the respective
section and the same model names may be reused in several of the sections. The final best reported
model in each section is evaluated on the target domain test set in section 7.1.

6.2.1 Singapore maritime dataset

The initial experiments covers the models trained on the SMD dataset, treated in section 5.2.
As this is the first large-scale maritime dataset used for training EfficientDet-D3, a more detailed
discussion of the hyperparameter reflection process is presented. The same reflection process is
treated more briefly in the following unseen target experiments.

Lastly, the AdvProp pre-trained weights covered in section 5.4 are tested, as to make a further
basis of the feasibility and effect of using these pre-trained weights.

Dataset-specific hyperparameters

The first dataset-dependent hyperparameters necessary to modify, are the dataset colour distribu-
tion mean and standard deviation, denoted by the three colour channels red, green and blue as
RGB. These values are used in the normalization of pixel values and are essential to adjust from
the default values. The mean and standard deviation values are easily found by calculating the
mean and standard deviation over all image pixels for all images and respective colour channels.
The SMD specific RGB mean and standard deviation values are presented in table 6.2.

64

SMD RGB mean and std
Mean Std

[136.570, 167.393, 180.491] [43.315, 36.592, 40.503]

Table 6.2: SMD RGB mean and standard deviation.

As EfficientDet is an anchor-based detector, it is very important to ensure that the default anchor
boxes satisfactory cover the bounding boxes of the instances in SMD. The anchor boxes are config-
ured by their scale and aspect ratio. Without configuring these two parameters properly, certain
objects may be completely impossible to detect as their scale or bounding box aspect ratio are not
covered by the EfficientDet anchor boxes.

Figure 6.1 presents the aspect ratios and bounding box areas for all instances in the training and
validation set of the SMD. All instances are adjusted for the bilinear interpolation image resizing to
896×896 performed for the EfficientDet-D3 in the TensorFlow implementation. The reader should
notice that bilinear interpolation, unlike other padding-based resizing methods which conserves
image aspect ratios, impacts the bounding box aspect ratios and bounding box areas of images
where the height and width are unequal.

The aspect ratios in figure 6.1a are presented in a barplot format to better observe the accumulated
aspect ratios which are below the lowest default value (0.5) and above the largest default value
(2.0). The training and validation set are observed to represent the same ratios of aspect ratios
for each of the aspect ratio ranges, indicating the instances in the training set well represents the
instances in the validation set.

There is reason to believe a larger aspect ratio might be beneficial. In particular, from the columns
larger than and including “2-3” in figure 6.1a, over 15,000 instance labels are most likely not
satisfactory covered by the largest default anchor aspect ratio. Moosbauer et al. attempted to
add an additional anchor aspect ratio of 3.0 to the Faster R-CNN architecture to address this
observation. However, pointing out that the SMD is insufficiently large for training all network
parameters with this additional anchor aspect ratio. We argue that the same problematic is likely
to be present for EfficientDet-D3 with our processing of the SMD, which is also smaller in size
than of Moosbauer et al.

To better visualize the anchor aspect ratios and the distribution of the ground truth bounding
boxes, the ground truth bounding box aspect ratios are plotted in the format of a scatter plot in
figure 6.2. It is observed that most of the instances are well-covered by the default anchor aspect
ratios. However, there are several instances with aspect ratio (w/h) larger than 2.0, below the
green line in figure 6.2.

To avoid changing the default aspect anchor ratios in a manner affecting the instances already
satisfactory enclosed, it is decided to attempt the k-means algorithm presented in section 5.4. The
algorithm proposes the three following new aspect ratios; 1.0, 2.0 and 3.8 which for 6.53% less
cases have an IOU below 50% with the ground truth bounding boxes.

The bounding box area plot in figure 6.1b is designed as a histogram plot, where very large areas
(> 18,000) are stacked in the right-most column of 18,000 to provide more fine-details regarding
the smaller and medium sized areas. Based on the COCO area definitions, small areas are below
1,024 pixels, while medium areas are above this and below 9,216 pixels. All areas above 9,216 are
defined as large instances. Also for the bounding box areas, the training and validation set are
well representative for different values.

No adjustments are carried out for the default anchor box scale. Lowering the lowest anchor scale
was considered, however due to the max size of objects in the dataset, we would risk not capturing
the largest objects, which would not represent a good trade-off.

65

(a) Aspect ratio barplot distribution by split (b) Area histogram by split

Figure 6.1: SMD bounding box aspect ratios and areas by split, after adjusting for bilinear interpolation
image resizing to 896× 896 . All areas larger than 18,000 pixels are added in the final histogram column
of 18,000 in figure 6.1b. Green is training set samples, orange is validation set samples.

Figure 6.2: SMD ground truth bounding box aspect ratios. Scatter plot. Adjusted for bilinear interpola-
tion resizing to 896× 896. Aspect ratio lines are default anchor box aspect ratios.

66

Model-specific hyperparameters

Of the model-specific hyperparameters, only the learning rate is altered as to limit the amount of
hyperparameters subject to tuning. The learning rate, regulating the step-size of the gradient in
the selected SGD optimizer, has a large effect on the loss convergence and smoothness. A larger
learning rate typically delivers faster model convergence on the risk of more unstable training and
sub-optimal convergence. Contrarily, a smaller learning-rate generally needs more training epochs
for convergence and risks getting stuck at local minimum points.

The best manner of finding a suitable learning rate is through empirical observations of the training
and validation loss curves. Moreover, since the SMD is generated from 40 videos of rather similar
object-viewpoint and background, it is pointed out that many of the frames are rather similar.
Each batch of images may therefore, even after random shuffling, contain quite similar images.
As follows, a low learning rate may be convenient for avoiding too fast initial convergence and
potential overfitting.

We consider two different learning rates initially.

1) Default learning rate from table 5.3 of 1e-3.

2) A lower learning rate of 5e-4 with warm up learning rate of 1e-4.

The lower learning rate of 5e-4 is tested based on empirical observations from a couple of training
runs.

Model runs

All experiments are conducted and evaluated in a sequential manner to find the best set of combined
hyperparameters. All models are trained with default batch size (4) and adjusted RGB mean and
standard deviation from table 6.2. The amount of training epochs are adapted from observed
validation loss stagnation, initially tested for 18 epochs for all models in this section.

Initially, it is prioritized to find a suitable learning rate before adapting dataset dependent hyper-
parameters. The two models are referred to as follows:

1) D3-lr1: Baseline settings and default learning rate of 1e-3.

2) D3-lr2: Baseline settings with learning rate 5e-4.

Figure 6.3 presents the total training and validation loss for each of the respective models. The
lower learning rate model, D3-lr2, is observed to be most suitable as D3-lr1 overfits the model after
only a few thousand training iterations (around two epochs). As D3-lr1 is undoubtedly overfitting,
only D3-lr2 is evaluated on the validation set as presented in table 6.3. The model weights are saved
on epoch seven, or training iteration 13,076. In other words, passing over the dataset solely seven
times is sufficient to obtain a well-fitted model, indicating the SMD is a rather simple dataset.
Similar observations are found in [69], obtaining the best model after fine-tuning only one epoch
for Faster R-CNN. The total training time is as approximately 4h30 minutes.

67

(a) Loss curves D3-lr1 (b) Loss curves D3-lr2

Figure 6.3: Loss curves D3-lr1 and D3-lr2 on SMD. D3-lr1 stopped early due to overfitting. Orange is
training loss, blue is validation loss. 0.6 TensorBoard smoothing.

In line with the experimental methodology, D3-lr2 is adapted for testing the anchor box aspect
ratios proposed by the k-means algorithm. We refer to this model as D3-KMM.

3) D3-KMM: D3-lr2 hyperparameters with new anchor box aspect ratios of 1.0, 2.0 and 3.8.

The validation loss, strongly resembling the one of D3-lr2 in figure 6.3b, is omitted. D3-KMM
obtains the best reported model weights at epoch 17 and overall fails to match or outperform the
evaluated validation set scores of D3-lr2, as can be seen in table 6.3. This might be a consequence of
the imprecise annotated ground truth bounding boxes of the SMD, as pointed out in section 4.4.1.
Similarly, the smallest anchor box aspect ratio of 1.0 for D3-KMM, is most likely missing a lot of
the smaller aspect ratio objects captured by D3-lr2.

As introductory explained, the Det-AdvProp pre-trained COCO weights are also tested in this
section. This is conducted as an initial test, both to assess the potential performance benefit of
using these weights and observe practical implications during training. As such, D3-lr2 is re-trained
with the Det-AdvProp pre-trained weights, hereby referred to as D3-Adv.

4) D3-Adv: D3-lr2 hyperparameters with EfficientDet-D3 Det-AdvProp pre-trained weights.

A general observation from D3-Adv is the increased training time and slow validation AP conver-
gence. The best model weights and evaluated validation AP score is found at epoch 17, after ap-
proximately 16h training, with a substantially worse performance on all reported validation scores
than both D3-lr2 and D3-KMM, as presented in table 6.3. It is possible a much longer training
scheme and possibly higher learning rate could benefit better from the Det-AdvProp pre-trained
weights. However, this approach is not further pursued due to time-constraints. In conclusion,
the Det-AdvProp pre-trained weights are not found beneficial and are neither considered for any
future experiments in this thesis.

Lastly, the reader has most likely observed the poor performance on the APs for all the four
models. This observation indicates a decrease in anchor box scale could also be useful to test.
Unfortunately, due to time-constraints, such a model was not found time to test.

AP AP50 AP75 APs APm APl Epoch

D3-lr2 38.9 76.2 35.9 1.08 26.7 55.7 7
D3-KMM 36.8 71.4 33.9 1.00 25.2 53.0 17
D3-Adv 34.1 70.1 29.2 0.80 24.2 48.0 17

Table 6.3: SMD models validation set scores. bold is the overall best reported score.

68

(a) Distant boats horizon (b) Close medium and small boats

(c) Tank vessels close (d) Twilight conditions

Figure 6.4: Sample predictions D3-lr2 on SMD. Images cropped for visibility.

Best model

As such, the final selected model providing targeted detection pre-trained weights for the SMD
and which is further evaluated on the target domain test set in section 7.1, is D3-lr2, later renamed
to D3-SMD in section 7.1.

Sample predictions

A few sample predictions of the best model, D3-lr2, are presented in figure 6.4. D3-lr2 seems to
generalize well to many of the encountered situations in the SMD. All of the various distant boats
are well-detected in figure 6.4a, while the same is observed for the closer boats in figure 6.4b.
In figure 6.4c many of the large occluded tankers are accurately detected in addition to the un-
occluded small boat and tanker in the left part of the scene. The last sample from twilight
conditions in figure 6.4d, proves that in more challenging conditions D3-lr2 generates some FN
predictions for distant and partially occluded samples. Overall, D3-lr2 performs rather well in the
presented situations.

69

6.2.2 Nordic maritime dataset

This section treats all the trained models on NMD, presented in section 5.2. Hyperparameter
selection is presented in a similar manner of the preceding section, separating between dataset and
model-specific hyperparameters.

Dataset-specific hyperparameters

The first hyperparameter to adjust, is the RGB mean and standard deviation. Table 6.4 presents
the calculated values for the NMD. It is observed that all the colour channel means, but particularly
the green and blue, are significantly lower than for the SMD (see table 6.2). Therefore, in a general
sense the NMD contains darker images than the SMD.

NMD RGB mean and std
Mean Std

[119.499, 120.302, 124.519] [43.023, 40.710, 40.181]

Table 6.4: NMD RGB mean and standard deviation.

The bounding box aspect ratio and area plots are for the training and validation set of the NMD
are presented in figure 6.5.

The bounding box aspect ratios in figure 6.5a are centered around the “1-2” column. As the
large majority of the bounding boxes are inside the default anchor boxes of 0.5, 1.0 and 2.0, the
default anchor box aspect ratios are considered suitable for the NMD. Moreover, the validation
and training set ratio seems consistent over different aspect ratio ranges. The same is observed for
the bounding box areas.

The bounding box area distribution presented in figure 6.5b, displays a very right-skewed bound-
ing box area distribution. The right-most accumulated samples with an area over 18,000 pixels
incorporates only a fraction of the total samples, dissimilar to the SMD. From the COCO area clas-
sifications (see table 5.2) only 10.7% of the bounding boxes are classified as large, while 48.6% of
the bounding boxes are small. We argue that these two observations motivate a potential decrease
in the anchor box scale.

The default anchor box scale is 4.0, currently limiting the smallest detectable object size to 32×32,
which is the limit for satisfactory detecting COCO classified small objects. With this scale, a large
part of the smallest objects are impossible to detect. By decreasing the anchor box scale to 3.0,
the resulting smallest detectable object is 24 × 24. As follows, only approximately 0.2% of the
largest objects of the NMD would be too large for detection, while capturing 15.4% more of the
smallest instances. A further decrease would compromise the detection of large objects and is
not pursued. The anchor scale calculations are performed by calculating the anchor scales on the
EfficientNet-B3 backbone and the corresponding pyramid levels for each anchor scale value.

Model-specific hyperparameters

In tuning the learning rate, the same two learning rates tested in section 6.2.1 are adopted.

The NMD is a challenging dataset compared to the SMD. The Hurtigruten dataset, treated in sec-
tion 4.3, composes most of the samples in the dataset, representing 27 different instance classes cap-
tured in various lighting and background conditions before agnostic relabeling. The HurtigrutenBL

samples, additionally add diverse samples captured closer to the ocean surface and in harbours.
It is therefore not unlikely that a higher learning rate and more training epochs are necessary for
generalizing properly to the dataset.

70

(a) Aspect ratio barplot distribution by split (b) Area histogram by split

Figure 6.5: NMD bounding box aspect ratios and areas by split, after adjusting for bilinear interpolation
image resizing to 896 × 896. All areas larger than 18,000 are accumulated in the rightmost column in
figure 6.5b. Green is training set samples, orange is validation set samples.

Model runs

Similar to section 6.2.1, we make successive runs for deciding on the best combination of hyperpa-
rameters. The RGB mean and standard deviation are adjusted to the values of table 6.4 and all
models are initially trained for 20 epochs. All other baseline settings are utilized as specified in
section 5.4.

To firstly pinpoint a suitable learning rate, the following two models are considered:

1) D3-lr1: Baseline settings with learning rate 1e-3.

2) D3-lr2: Baseline settings with learning rate 5e-4 and warm up learning rate of 1e-4.

The respective training and validation loss curves for the two 20 epoch training runs are presented
in figure 6.6. D3-lr1 is saved at epoch 20 at 32,280 training iterations, while D3-lr2 is saved on epoch
15 at 24,210 training iterations due to a stagnating validation loss, which is not easily observable
from figure 6.6b. D3-lr1 trains significantly faster than D3-lr2, unsurprisingly considering the
higher learning rate. Overall, D3-lr1 utilizes approximately 12 hours for training 20 epochs, while
D3-lr2 requires close to 17 hours.

Based on the presented validation set scores in table 6.5, it is observed that D3-lr1 outperforms
D3-lr2 on all reported performance metrics. It is not unlikely that D3-lr2 got stuck in a local
minima, causing the somewhat worse validation set scores.

71

(a) Loss curves D3-lr1 (b) Loss curves D3-lr2

Figure 6.6: Loss curves D3-lr1 and D3-lr2 on NMD. Orange is training loss, blue is validation loss. 0.6
TensorBoard smoothing, logarithmic y-axis scale for visibility of training loss.

Following the experiment methodology, D3-lr1 is adjusted with the proposed decreased anchor
scale of 3.0 to create a new model. This model is denoted as D3-As=3.0.

3) D3-As=3.0: D3-lr1 hyperparameters with anchor box scale of 3.0.

Since the loss curves of D3-As=3.0 resembles the loss-curves of D3-lr1, these are omitted. D3-
As=3.0’s evaluated validation set scores are presented in table 6.5. Overall, the AP metric has a
slight improvement of 0.2 percentage points from D3-lr1. It seems that this improved performance
is mostly explained from lower IOU thresholds, as the AP50 improves significantly more than AP75.
In addition, the APs clearly benefits from the decreased anchor scale of D3-As=3.0, improving with
2.5 percentage points. However, it is also observed that the improved APs is trading-off of a
decreased APl of 1.4 percentage points.

AP AP50 AP75 APs APm APl Epoch

D3-lr1 47.4 83.9 46.9 23.5 52.2 70.2 20
D3-lr2 46.1 81.6 44.9 21.6 51.8 68.6 15
D3-As=3.0 47.6 85.3 47.2 25.9 52.3 68.8 20

Table 6.5: NMD models validation set scores. bold is the overall best reported score.

Best model

D3-As=3.0 obtains the highest AP validation set score and is therefore selected as the model for
obtaining the targeted detection pre-trained weights for the NMD. In section 7.1, the same model
is evaluated on the target domain test set under the name D3-NMD.

Sample predictions

To further assess the trained models’ performance on the NMD, some sample predictions are
visualized. Firstly, it is of interest to visualize a prediction with smaller objects in the scene, as
to observe the effect of the changed anchor box scale of D3-As=3.0, compared to D3-lr1. Figure
6.7 presents such a sample for Ep16 from the Hurtigruten dataset. It can be observed that only
D3-As=3.0 manages to make any predictions for the smaller background boats, though still missing
the very smallest ones.

72

(a) Sample prediction D3-lr1 (b) Sample prediction D3-As=3.0

Figure 6.7: Sample predictions from Ep16 from Hurtigruten dataset D3-lr1 and D3-As=3.0.

In addition, figure 6.8 presents some predictions for the best model, D3-As=3.0, in different weather
conditions. D3-As=3.0 predicts all objects satisfactory and showcases the detector’s robustness for
different weather conditions. In addition, D3-As=3.0 is also capable of enclosing the complete
object contours, including antennas, as visualized in figure 6.8b.

(a) Rainy conditions Ep29 (b) Sunny conditions Ep19

Figure 6.8: Sample predictions D3-As=3.0 from Ep29 and Ep19 Hurtigruten dataset

Additionally, some examples from more harbour-like conditions are presented. Figure 6.9a presents
a sample image from HurtigrutenBL. The detection setting demonstrates that D3-As=3.0 has no
problems detecting large scale foreground objects simultaneously with smaller background objects.
The large motorboat on the left side of the scene is well-captured, while the background sailboat
and motorboat are also tightly captured in the predicted bounding boxes.

In figure 6.9b, D3-As=3.0 detects all the scattered objects in the sample image from Ep22. What
is more, the two occluded objects on the down right corner of the scene are separated between as
two unique instances. As the reader might remember, this was one of the reasons for designing
the tiling procedure of the Hurtigruten dataset (see section 4.3.2), as to include partial objects in
each tile. In cases like this, the tiled samples seen during training seem to benefit, as both objects
are detected based on a subset of their features.

73

(a) HurtigrutenBL (b) Harbour condition Ep22

Figure 6.9: Sample predictions D3-As=3.0 from Ep22 and HurtigrutenBL dataset

6.2.3 Mixed maritime dataset

The final unseen target domain experiment is conducted on the MMD dataset, treated in sec-
tion 5.2. All hyperparameters are presented in a similar manner as in the preceding unseen target
experiments.

Dataset-specific hyperparameters

The MMD RGB mean and standard deviation values to adjust are presented in table 6.6.

MMD RGB mean and std
Mean Std

[129.735, 141.977, 156.679] [43.859, 38.916, 40.808]

Table 6.6: MMD RGB mean and standard deviation.

Figure 6.10 presents the bounding box aspect ratio and area plots of the training and validation set
of MMD. For both of the plots, the training and validation set seems to be adequately distributed
for different aspect ratio and area ranges. Since the MMD inherits dataset properties of its two sub
datasets, the SMD and NMD, some of the similar dataset-specific hyperparameter observations as
in section 6.2.1 and section 6.2.2 are highlighted here.

The bounding box aspect ratios presented in figure 6.10a, have the largest count for the “0.5-1”
and “1-2” columns. For the unseen target domain experiments on the SMD in section 6.2.1, it was
unsuccessfully attempted to increase the highest anchor box aspect ratio due to the high count of
samples in the “2-3” column. The same experiment is therefore not pursued here, as additionally
there are even more samples in the lower aspect ratio columns. The default anchor box aspect
ratios, are considered well-suited for the MMD.

The bounding box area distribution in figure 6.10b presents a more right-skewed distribution,
similar to NMD. However, due to the additional samples from the SMD, there are almost 10,000
stacked samples with an area equal to or greater than 18,000 pixels. As such, a decrease in anchor
box scale, similar to the best NMD model in section 6.2.2, might more strongly affect the detection
performance on larger sized objects.

By decreasing the anchor box scale from the default value of 4.0 to 3.0, it is quantitatively observed
that a very small percentage of large bounding boxes are excluded (0.5%) while including 11.4%
more of the smallest bounding boxes in the dataset.

74

(a) Aspect ratio bar plot distribution by split (b) Area histogram by split

Figure 6.10: MMD bounding box aspect ratios and areas by split, after adjusting for bilinear interpolation
image resizing to 896 × 896. All areas larger than 18,000 are accumulated in the rightmost column in
figure 6.10b. Green is training set samples, orange is validation set samples.

Model-specific hyperparameters

The same two learning rates as tested in section 6.2.1 and section 6.2.2 are adopted.

The MMD consists of 13,929 mixed training images from the NMD and the SMD (see table 5.1).
Therefore, it is firstly expected that training might be rather time-consuming. Secondly, as the
MMD is arguably more diverse and each batch of images might contain completely different boat
instances and scenes, convergence might prove slow. As such, the highest of the two proposed
learning rates might be more beneficial for finishing training in reasonable time with sufficiently
fast convergence on the single GPU resource available.

Model runs

All models are adjusted for the RGB mean and standard deviation values presented in table 6.6
and attempted to train for 20 epochs with default baseline hyperparameters.

The two following models are initially trained to find a satisfactory learning rate.

1) D3-lr1: Baseline settings with default learning rate 1e-3.

2) D3-lr2: Baseline settings with learning rate 5e-4.

Due to an issue encountered during training, the training runs are not successfully finished for both
models and the loss curves are therefore omitted. In essence, the Google Colaboratory provided
GPU resource struggles to finish the training runs in a reasonable time even with the time-out
limit of 24 hours. It is therefore decided to do an intermediate assessment of the validation and
loss curves due to time-constraints. At this inspection, D3-lr2 is the only model with smoothly
converging loss curves and a gradually smooth increase in the validation AP curve. As follows,
D3-lr2 is the only model finished for training. The model weights are saved from epoch 20, at
training iteration 69,640. The final validation set score of D3-lr2 is presented in table 6.7.

75

AP AP50 AP75 APs APm APl Epoch

D3-lr2 42.5 78.7 41.0 8.7 33.9 58.6 20
D3-As=3.0 42.4 80.4 39.5 9.7 34.7 57.5 12

Table 6.7: MMD models validation set scores. bold is the overall best reported score.

The succeeding model, adjusting the anchor box scale of D3-lr2, is thereafter similarly trained for
20 epochs. We refer to this model as D3-As=3.0.

3) D3-As=3.0: D3-lr2 hyperparameters with anchor box scale of 3.0.

The loss curves of D3-As=3.0 are displayed in figure 6.11. The training finished at epoch 20
after approximately 29 hours training, with the best model saved at epoch 12 for 41,784 training
iterations. Even though it is not very clear from the validation loss, it did indeed start stagnating
at around 40,000 iterations.

Figure 6.11: D3-As=3.0 loss curves. Orange is training loss, blue is validation loss. 0.6 TensorBoard
smoothing.

Best model

Overall, as presented in table 6.7, D3-As=3.0 is not necessarily presenting an improvement of the
reported performance metrics scores of D3-lr2. The AP metric is on the contrary inferior to the
baseline AP of D3-lr2. This is mostly a consequence of the decreased performance on higher IOU
thresholds (AP75) and for larger objects (APl). Intuitively, D3-lr2 is the natural choice of final
model trained on the MMD.

Nevertheless, since both of the models are rather similar in reported performance, two more con-
siderations are taken into account. Namely, the fact that both models perform quite bad on APs

and that a majority of the ground truth samples (belonging to the SMD) are inherently imprecise
(see section 4.4.1). Due to the ground truth impreciseness, it is considered more important to
weight AP50 than AP75 as representative for model performance. Since AP only covers thresholds
from 0.5 and upwards, an improvement on AP50, as displayed by D3-As=3.0, is considered more
important than a higher AP75. As for the small objects, due to the general low scores on this
object size, we argue an increase in APs is important on the cost of trading-off a decrease in the
higher reported APl scores.

Therefore, the final model selected for providing the targeted detection pre-trained weights and
further evaluation on the target domain test set in section 7.1, is D3-As=3.0.

Sample predictions

To assess how D3-As=3.0 performs on each of the underlying source domains, a few sample pre-
dictions from the SMD and NMD are presented. Figure 6.12 presents two of the sample images

76

tested for predictions in figure 6.4 for the best unseen target domain model trained on the SMD.
D3-As=3.0 produces very similar predictions. However, for figure 6.12b, D3-As=3.0 manages to also
predict the left-most occluded boat hull, previously failed to detect in figure 6.4b.

(a) Distant boats horizon (b) Close medium and small boats

Figure 6.12: Sample predictions D3-As=3.0 on SMD samples. Images cropped for visibility.

The same sample images from the NMD presented in figure 6.9, are also tested for prediction
of D3-As=3.0 in figure 6.13. Overall, D3-As=3.0 predicts almost all of the objects, even though
the predicted bounding box of the large boat in figure 6.13a has a larger offset than observed in
figure 6.9a. Moreover, D3-As=3.0 does not manage to separate between the two small and highly
occluded instances in the bottom right corner of figure 6.13b, as previously observed in figure 6.9b.
Based on the presented sample predictions, D3-As=3.0 generalizes quite well to samples from both
the NMD and SMD. However, there are no indications that training on the MMD consistently
improves predictions in the two underlying source domains.

(a) HurtigrutenBL (b) Harbour condition Ep22

Figure 6.13: Sample predictions D3-As=3.0 from Ep22 and HurtigrutenBL dataset.

77

Target domain RGB mean and std
Mean Std

[114.766, 129.052, 148.058] [53.783, 56.067, 58.949]

Table 6.8: Target domain dataset RGB mean and standard deviation.

6.3 Seen target domain

This section covers all seen target domain experiments, which fine-tune into the target domain.
The experiments are designed as to first establish baseline models and suitable hyperparameters
for each of the fine-tuning settings (HO, FB, FF).

Further on, models initialized from the targeted detection pre-trained weights obtained in sec-
tion 6.2, are fine-tuned for the same established baseline hyperparameters. Reusing the same
hyperparameters for all seen target domain experiments is considered most fair for benchmarking
the baselines and the targeted detection pre-trained models.

1) Section 6.3.1 covers baseline experiments conducted on the target domain dataset from ini-
tialized COCO pre-trained weights. All final models presented in this section represent the
seen target domain model baselines and respetive established hyperparameters for each fine-
tuning setting.

2) Section 6.3.2 covers all experiments utilizing targeted detection pre-trained weights obtained
in section 6.2.

All hyperparameter considerations are presented in the same manner of section 6.2, separating
between dataset-specific and model-specific hyperparameters. The models are evaluated on the
target domain validation set with presented validation losses for a subset of the trained models.
Sample predictions are presented on the target domain test set uniquely, covered in section 7.2.
Lastly, all model names presented in this section have a global scope and are reused for reported
target domain test scores section 7.2.

6.3.1 Baselines

This section establishes the baseline models for all fine-tuning settings (HO, FB, FF), enabling
fair inter-model comparison in section 7.2. In addition to present hyperparameter considerations
in-detail, the AutoAugment [24] data augmentation scheme is also tested to address the small
target domain dataset size.

Dataset-specific hyperparameters

The RGB mean and standard deviation for the target domain dataset are presented in table 6.8.
The standard deviation values are observed to be between 10-15 pixels higher than of previous
presented datasets in section 6.2. Due to the small size of the target domain dataset, there are
clearly a larger colour variation between the images.

This observation potentially highlights one important characteristic of the target domain dataset.
As the colour channel standard deviation is high for the entire dataset, the smaller validation and
test set might be representative of quite different colour means than the training set. This is not
unlikely and could potentially affect the model selection monitored on the validation set to provide
models generalizing worse to the test set.

The bounding box aspect ratios and bounding box areas are presented in figure 6.14. Based on the
aspect ratio plot in figure 6.14a, the aspect ratios are evenly distributed around the aspect ratio
column “1-2”. The default anchor box aspect ratios of 0.5, 1.0 and 2.0 should therefore sufficiently
cover all the bounding boxes in the dataset.

78

The bounding box area distribution is presented in figure 6.14b. The majority of the target domain
instances are rather large, as observed in figure 6.14b from the rightmost column of stacked samples
over 18,000 pixels. Only 10.5% of the dataset are small objects (see table 5.2) while 29.7% are
large. Consequently, there is little support for decreasing the anchor box scales. Moreover, the
target domain bounding box area distribution is quite different from all of the treated datasets in
section 6.2.

A last observation from the bounding box area distribution of figure 6.14b, is the bounding box
area distribution per split. As presented in the target domain dataset split in table 4.16, the
validation and test set should respectively account for 15.1% and 20.2% of the labeled images.

However, there are largely more test set instance samples in the area ranges 0-2,500 and 7,500-
10,000, while there are more validation set samples around 5,000 pixels. Additionally, for the
stacked column at 18,000 pixels, the validation set portion is more than two times larger than the
test set. This observation further gives ground for expecting discrepancies between the reported
scores on the validation and test set, particularly for the size dependent AP metrics.

(a) Aspect ratio bar plot distribution by split (b) Area histogram by split

Figure 6.14: Target domain bounding box aspect ratios and areas by split, after adjusting for bilinear
interpolation image resizing to 896 × 896. All areas larger than 18,000 are accumulated in the rightmost
column in figure 6.14b. Green is training set samples, orange is validation set samples, red is test set
samples.

Model-specific hyperparameters

The lower learning rate of 5e-4 from previous experiments is adopted, before attempting adjust-
ments. Considering that the target domain is small and training time is likely quite short, an even
lower learning rate is unproblematic to test, if empirically observed to be necessary.

The same learning rate is tested for all fine-tuning settings. As the HO and FB fine-tuning setting
update fewer parameters during training, a lower learning rate could be beneficial for smoother
convergence. Nevertheless, adjustments to the proposed learning rate is only carried out if observed
necessary from the validation and training losses.

Data augmentation

As the target domain dataset solely consists of 1,061 images, it is only fair to consider more
aggressive data augmentation schemes in addition to the default horizontal flipping and scale
jittering. Additional data augmentation has not been significantly tested in the unseen target

79

(a) Loss curves D3HO-Db (b) Loss curves D3FB-Db (c) Loss curves D3FF -Db

Figure 6.15: Loss curves seen target domain baseline models.Orange is training loss, blue is validation
loss. 0.6 TensorBoard smoothing, logarithmic y-axis scale for visibility of training loss.

domain experiments in section 6.2, as typically more epochs were needed for convergence due to
the increased dataset size, and training time was already quite slow for these models.

Instead of applying a variety of different single augmentation transformations, the AutoAugment
[24] augmentation scheme treated in section 5.4 is adopted. The V2 augmentation policy, consisting
of variety of different geometrical and colour distribution augmentations are chosen.

Model runs

Initially, the default hyperparameters and baseline learning rate of 5e-4 with warm up learning rate
1e-4 are adopted for each fine-tuning setting, before considering further adjustments to the learning
rate. No adjustments are carried out for the anchor box parameters and each model is trained
for 20 epochs. We refer to each model according to their fine-tuning setting as the first subscript,
D3{·} (HO, FB, FF), and with the last subscript Db indicating the source domain baseline model
with COCO pre-trained weights.

• D3HO-Db: Head-only fine-tuning.

• D3FB-Db: Frozen backbone fine-tuning.

• D3FF -Db: Full fine-tuning.

D3HO-Db and D3FB-Db are trained for approximately 2.5 hours, while D3FF -Db is trained for four
hours. The training and validation loss of each model is presented in figure 6.15 with logarithmic
y-axis scale to more accurately observe the loss curves. All training losses and validation losses
decrease smoothly. Even though the validation loss of D3FB-Db in figure 6.15b possibly indicates
that training a few more epochs could be beneficial, this is attempted with no improvements.
D3FB-Db is therefore, similar to the other models, saved at epoch 20.

As to additionally test more data augmentation and preferably only for one model as a starting-
point, the fully fine-tuned D3FF -Db is adapted to include the AutoAugment-V2 augmentation
policy. This model is denoted as D3FF -Db-AA

• D3FF -Db-AA: D3FF -Db hyperparameters with AutoAugment-V2 augmentation policy.

D3FF -Db-AA is trained for 26 epochs before the validation loss starts stagnating at a total training
time of 7h30 minutes. The model weights are saved at epoch 23 for the highest evaluated validation
AP score.

All evaluated validation set scores are presented in table 6.9. APs metric is not reported due to
insufficient samples of small objects in the validation set for generating performance scores. D3FF -
Db reports the highest validation scores on all metrics, implying that the target domain dataset is

80

AP AP50 AP75 APm APl Epoch

D3HO-Db 37.4 71.8 31.3 37.5 38.3 20
D3FB-Db 45.7 83.0 45.3 46.7 46.6 20
D3FF -Db 51.4 85.6 56.3 57.3 49.7 20
D3FF -Db-AA 48.4 84.1 52.0 54.2 46.8 23

Table 6.9: Seen target domain baseline models validation set scores. APs not reported due to insufficient
samples in validation set. bold is the overall best reported score.

large enough for a updating all parameters in a full fine-tuning scheme. The two models with frozen
backbones, D3HO-Db and D3FB-Db performs significantly worse. Updating more parameters of
EfficientDet-D3 is superior to more freezing, also considering that D3FB-Db outperforms D3HO-Db.

D3FF -Db-AA does not manage to outperform its baseline model D3FF -Db. It is possible that
the D3FF -Db-AA could benefit from a different learning rate and by fewer and more tailored
augmentations for the target domain. However, data augmentation is not a fool-proof technique
for augmenting model performance and can, as observed here, even diminish performance.

In conclusion, all the baseline models D3HO-Db, D3FB-Db, D3FF -Db are selected for evaluation in
the target domain test set in section 7.2.

6.3.2 Targeted detection pre-training

In this section, all the targeted detection pre-training experiments are conducted. EfficientDet-D3
is in separate experiments initialized from the three different pre-trained weights from section 6.2,
before fine-tuning into the target domain dataset for all fine-tuning settings (HO, FB, FF), resulting
in nine unique models. All hyperparameters from section 6.3.1 are reused for training.

Hyperparameter discussion

As introductory mentioned, all hyperparameters from section 6.3.1 are adopted. However, this
decision deserves a short discussion.

In particular, the learning rate found in section 6.3.1, is the only hyperparameter subject to
discussion. The pre-trained weights used for initialization are obtained in section 6.2 after fine-
tuning on three experimental maritime datasets. As such, it is expected that these pre-trained
weights encapsulate some transferable and useful knowledge from each of the source domains. A
too high learning rate consequently risks forgetting substantial amount of this knowledge, resulting
in catastrophic forgetting, as discussed by Montone et al. [68].

A gradual fine-tuning scheme, not implemented in this thesis, has been found to counter this [68].
However, from the detection pre-training formulation in section 5.1, it is not intended to conserve
previously learned knowledge to maintain source domain performance, but rather use it to examine
improved target domain performance. In any case, the proposed learning rate from section 6.2 may
be sub-optimal. On the other hand, reusing the same learning rate establishes a solid basis for
benchmarking of all the seen target domain models. Additional trial and error testing of different
learning rates would also be inherently time-consuming for all of the nine models treated in this
section.

In conclusion, more fine-tuning of the learning rates in this section is possible and might prove
beneficial, but the reuse of the learning rate in section 6.3.1 is considered both meaningful and
more suitable for practical reasons.

81

Model runs

Following the hyperparameter discussion, all models are trained for exactly the same hyperparam-
eters as the baseline models of section 6.2. As it is not possible to exclude slower convergence from
the pre-trained weights, models still improving until the last trained epoch (20) are further trained
until validation loss stagnation.

Longer trained models have seen more images during training. For fair comparison with the
baselines, all models in this section should optimally be trained 20 epochs only, similar to the
baselines. However, as the baseline models are trained until validation loss stagnation, following
good training conduct, it is considered reasonable to do the same here.

Similar to section 6.3.1, each model is named according to the fine-tuning setting as the first
subscript D3{·}, with the last subscript, D{·}, indicating the source domain pre-trained weights.
For instance, D3HO-DSMD, denotes the model fine-tuned into the target domain with HO fine-
tuning setting and pre-trained weights from the SMD, or more specifically, the targeted detection
pre-trained weights from the globally named model, D3-SMD, in section 7.1.

In general, all models finish the initial training run of 20 epochs in the range of two-three hours,
with the HO and FB fine-tune settings unsurprisingly being the fastest. Loss curves are inspected in
detail for model selection and considering necessary extra training epochs. Due to space restrictions
in this section, we omit presenting any loss curves. All validation scores and trained epochs for
model selection are presented in table 6.10.

Similar to observations from the baseline runs in section 6.3.1, the FF transfer settings arguably
report the best validation scores. Even though D3FB-DSMD exceptionally reports the overall
highest AP75 amongst all models, all other AP metrics are highest reported for one of the FF
models.

Furthermore, considering the AP , AP50 and AP75 metrics, the NMD pre-trained models generally
outperform the SMD models. In addition, there are no consistent observations indicating that
the pre-trained weights from the larger MMD dataset gives any significant performance gains.
The overall best performing model on the validation set is however D3FF -DMMD, marginally
outperforming D3FF -DNMD.

Model AP AP50 AP75 APm APl Epoch

HO
D3HO-DSMD 48.4 78.6 55.3 36.5 51.9 24
D3HO-DNMD 51.1 85.3 56.1 57.1 49.9 24
D3HO-DMMD 49.4 83.0 51.6 52.6 49.7 20

FB
D3FB-DSMD 57.1 86.2 67.9 56.5 57.9 22
D3FB-DNMD 57.2 87.2 64.5 58.1 57.4 19
D3FB-DMMD 56.4 87.0 62.7 56.3 57.5 16

FF
D3FF -DSMD 58.0 87.9 66.3 60.1 57.3 25
D3FF -DNMD 58.2 87.7 66.9 59.2 58.2 15
D3FF -DMMD 58.3 88.0 66.9 58.4 58.7 26

Table 6.10: Seen target domain, targeted detection pre-trained models validation set scores. APs not
reported due to insufficient samples in validation set. Underlined metrics is the best for the group. Bold
is the overall best reported score. For tied values, both are highlighted. HO=Head-only, FB=Frozen
backbone, FF=Full-fine tuning.

Another observation which gives more insight into the transferability of the features learned dur-
ing pre-training, is the AP evaluation on the validation set executed during training time. The
validation scores reported in table 6.10 present the evaluated validation scores of each model from
its saved model weights, with the corresponding epoch. However, the same evaluation is also auto-
matically executed from the model weights temporarily saved every epoch, providing an AP curve
with training iterations on the x-axis. To illustrate, the validation AP curves of all the FF models
together with the FF baseline model D3FF -Db from section 6.3.1, are presented in figure 6.16.

82

One observation to highlight is the difference in convergence speed for the pre-trained models and
the baseline model. All the pre-trained models achieve an evaluated AP on the validation set equal
to or better than 40 percentage-points after only 500 training iterations, which is approximately
three epochs. That is, after seeing the target domain training set only three times1. Additionally,
all of the pre-trained FF models obtain an AP better than 50 percentage-points in the first 1,000
iterations. In comparison, D3FF -Db needs over 2,000 iterations to obtain a comparable score, before
slowly converging to its final reported validation AP score of 51.4 after 3,400 training iterations,
or 20 epochs (see table 6.9).

However, there is limited benefit from solely converging faster, considering the short training time
on the target domain training set. Thus, another key observation is the fact that the pre-trained
models also obtain a much higher validation AP score. As reported, without bells and whistles,
all FF pre-trained models manage to surpass 58.0 on the validation AP score. D3FF -Db on the
other hand, has no indications of ever achieving such a high score, considering its slow convergence
from the 2,000-3,000 training iterations, observable in figure 6.16d, as well as its validation loss
stagnation in figure 6.15c.

What is more, D3FF -DSMD, which obtains the highest initial validation AP score, observable from
the y-axis in figure 6.16a, reports an astonishing initial AP of 43.3 after one epoch. That is, after
one pass over the target domain training dataset.

In conclusion, targeted detection pre-training clearly has an effect on convergence speed and initial
performance in the target domain, but also the highest achievable validation set score. Further
observations regarding the performance on the target domain test set is reported in section 7.2.

(a) D3FF -DSMD (b) D3FF -DNMD

(c) D3FF -DMMD (d) D3FF -Db

Figure 6.16: Target domain validation AP curves; D3FF -DSMD, D3FF -DNMD, D3FF -DMMD and D3FF -
Db. 0.6 TensorBoard smoothing.

1One epoch indicates seeing the whole training set one time.

83

CHAPTER 7

RESULTS

In this chapter, evaluation on the target domain test set is conducted for all selected unseen
and seen target domain models in chapter 6. An additional study measuring the impact when
introducing class-aware labels in the target domain dataset is presented in section 7.3. In line
with our problem formulation, several case-studies are presented in section 7.4, as well as a video
inference test scenario in section 7.5. The overall best model is measured from the AP metric.

7.1 Unseen target domain

Model AP AP50 AP75 APs APm APl Epoch

D3-SMD 25.7 61.3 16.4 20.0 27.5 26.3 7
D3-NMD 35.2 77.7 23.4 10.0 29.6 42.5 20
D3-MMD 33.0 74.8 23.5 10.0 31.2 36.7 12

Table 7.1: Target domain test set scores, unseen target domain models. bold is the overall best reported
score. Epoch is the trained epochs used for model weight saving.

Table 7.1 presents the target domain test set scores for the unseen target domain models, also
referred to as the unseen target models. The unseen target models are discussed stand-alone,
leaving a comparison with the seen target models to section 7.2.

7.1.1 Main results

• The source domains contain useful knowledge transferable into the target domain.

Even though the reported scores of the unseen target models vary, there is no doubt that all the
source domains contain useful information transferable into the target domain. The overall best
model, D3-NMD, reports AP of 35.2, AP50 of 77.7 and AP75 of 23.4, on inference in an entirely
unseen target domain.

As to give a sense of what this implies, the reader should consider that EfficientDet-D3 reports
AP of 47.2, AP50 of 65.9 and AP75 of 51.2, after training and evaluation on COCO test-dev
[101]. Certainly, these datasets are not comparable, however if considering the circumstances, the
reported test scores of D3-NMD are indeed quite good.

The largest performance decline is caused by penalized fine-localization of objects, represented by
AP75. It is also for this metric that there is the largest difference between the D3-NMD score (23.4)

84

and the EfficientDet-D3 COCO trained model (51.2). [101]. This observation does make sense,
taking into consideration that the class and box prediction heads of the unseen target models are
not tuned for the target domain.

• Features learned from the NMD transfer best to the target domain.

It is observed that D3-NMD is the overall best model, followed by D3-MMD and lastly D3-SMD.
D3-MMD is trained on the combination of the SMD and NMD datasets, which is by far the largest
dataset in terms of labeled images and instances. D3-NMD is trained on 45.7% of the dataset size
of D3-MMD (inferred from table 5.1) and nevertheless outperforms D3-MMD significantly for AP
and AP75.

Thus, for the dataset sizes treated in this thesis, a larger size and variety of images seen during
training do not indicate to improve feature transfer. However, NMD samples seem to consistently
improve target domain performance. This observation is firstly inferred from the fact than D3-
NMD standalone is the best model. Secondly, combining the worst performing source domain
dataset, SMD, together with NMD, delivers a better model than not doing so (D3-MMD > D3-
SMD). As follows, NMD appears to be the most suitable source domain for DA into the target
domain.

• Object sizes are not linked to transferability and target domain performance benefits

The object size ratio distribution of the source domains and the target domain are inherently
different, as presented in section 5.2 and from the area histograms presented in section 6.2 &
section 6.3. Generally, the target domain contains very few small objects (10.5%, see table 5.2),
and is heavily weighted by medium sized objects (60.2%), additionally with the highest weight of
largest objects (29.7%) of all treated experimental datasets.

The best unseen target model is D3-NMD, which contrarily has the highest weight of small objects
(48.6%, see table 5.2). Additionally, D3-NMD also reports the highest APl target domain test
set score, even though containing the lowest weight of large objects (10.7%) of all experimental
datasets. As such, there are no consistent indications that object size ratios in the experimental
training datasets are linked to target domain performance or size-dependent detection.

Sample predictions As to support the initial claim that the unseen target models perform well
in the target domain, a few sample predictions for the reported best model, D3-NMD, is visualized
in figure 7.1. The ground truths are omitted as there are very few foreground objects and the
predictions are inherently accurate.

Both in the multi-object scenario of figure 7.1a, and the single-object case of figure 7.1b, D3-NMD
accurately predicts all of the foreground objects. As such, we claim to have demonstrated one of
the initial objectives with the unseen target models; maritime source domains are inherently useful
for transferring useful knowledge into an unseen maritime target domain.

(a) Open-sea multiple objects (b) Fjord single object

Figure 7.1: Sample predictions unseen target domain; D3-NMD

85

7.2 Seen target domain

In this section, baseline models and targeted detection pre-trained models from section 6.3 are
evaluated on the target domain test set, as presented in table 7.2. Additionally, AR is reported as
to give more insight into the models’ production of FN predictions.

Model AP AP50 AP75 APs APm APl AR Epoch

HO

D3HO-Db 31.7 65.6 23.7 40.0 35.2 31.2 60.0 20
D3HO-DSMD 43.7(+12.0) 79.7 37.7 20.0 40.0 49.9 62.8 24
D3HO-DNMD 42.5(+10.8) 82.7 36.3 20.0 37.8 49.8 62.5 24
D3HO-DMMD 36.4(+4.7) 77.9 28.1 10.0 32.2 43.1 61.9 20

FB

D3FB-Db 32.1 65.5 25.2 40.0 34.8 32.5 59.9 20
D3FB-DSMD 45.4(+13.3) 81.7 41.3 20.0 42.4 50.2 63.3 22
D3FB-DNMD 47.2(+15.1) 85.9 42.9 20.0 40.1 56.8 63.9 19
D3FB-DMMD 45.8(+13.7) 83.6 42.6 20.0 40.2 53.3 65.2 16

FF

D3FF -Db 42.9 77.8 39.5 02.2 37.8 50.3 61.8 20
D3FF -DSMD 48.1 (+5.2) 84.8 44.3 20.0 42.1 56.1 64.2 25
D3FF -DNMD 48.8(+5.9) 85.4 45.9 20.0 40.7 59.6 64.5 15
D3FF -DMMD 48.1 (+5.2) 84.9 45.8 05.0 40.5 57.7 65.5 26

Table 7.2: Target domain test set scores, seen target domain models. Underlined metrics is the best for
the group. bold is the overall best reported score. For tied values, both are highlighted. HO=Head-only,
FB=Frozen backbone, FF=Full-fine tuning. For the AP metric, all percentage points improvement are
compared to the baseline per group. Epoch is fine-tuned epochs on the target domain, used for model
weight saving.

As a first note, a discrepancy is discovered for the target domain validation and test set. For all
seen target domain models, or seen target models, there is a large performance difference between
reported scores on the validation and test set.

Overall, all seen target models perform considerably better on the validation set than on the test
set, which can be observed by comparing table 6.9 and table 6.10 with reported test scores of
table 7.2. The discrepancy is in-depth elaborated upon in section 8.1. As of now, we underline the
two relevant consequences of this discrepancy for the remainder of this section.

1) The validation and test set undergo a covariate shift, which do not invalidate any reported
test scores, but motivates refraining from a thorough comparison of performance between
the split sets.

2) The APs metric is unreliable for benchmarking purposes.

7.2.1 Main results

• All baseline models are outperformed by the targeted detection pre-trained models.

Based on the model results, excluding details from the size dependent AP metrics, there is no
baseline model which outperforms its targeted detection pre-trained counterparts. In addition,
most of the pre-trained models are trained a comparable amount of epochs (±5) to the baselines,
but still vastly surpass their performance in many cases, particularly for the HO and FB fine-tuning
settings. These observations are consistent with reported validation scores from section 6.3.

• FF is the superior fine-tuning setting, while FB is better than HO.

Similar as observed from the target domain validation set, the FF fine-tuning setting is the best
performing fine-tuning option. Furthermore, FB outperforms HO, both for the baselines and the
targeted detection pre-trained models. These observations support experiments on fine-tuning in
the literature [23] and indicates that the target domain dataset is sufficiently large for adapting

86

all EfficientDet-D3 parameters and additional freezing of parameters is sub-optimal. As follows,
the target domain dataset is likely too large and the source and target domain distance not close
enough, for the FB models to further improve the FF models.

• Pre-training dataset similarity to the target domain is more important than dataset size.

The NMD pre-trained weights delivers the best FF and FB model, while the best HO model is
based on SMD pre-trained weights. The MMD pre-trained weights do not manage to deliver the
best model in any of the fine-tuning settings. Hence, similar to observed in section 7.2, it seems
that dataset feature similarity is more important than dataset size for successfully transferring
knowledge into the target domain. The results from the unseen and seen target models suggest
that the NMD dataset is most suitable for DA into the target domain.

• Targeted detection pre-training delivers better reported target domain performance, even for
fewer fine-tuned epochs.

Based on the validation curves in figure 6.16 and the author’s observations from HO and FB
validation AP curves, the pre-trained models experience an initial boost in AP followed by a
faster convergence. Subject to the fine-tuning setting, the targeted detection pre-trained models
also converge to better reported test set scores for similar or slightly more trained epochs compared
to the baseline models.

However, several targeted detection pre-trained models also report better test scores for fewer
trained epochs. The overall best model, D3FF -DNMD, improves on the baseline model, D3FF -Db,
with +5.9 percentage-points on the AP metric, while training five epochs shorter. Targeted detec-
tion pre-training therefore also provide a performance boost after fine-tuning, similar to observed
for DCNN fine-tuning [111].

• Mixed source domain pre-training produces higher target domain recall when adapted properly.

The overall results indicate that benefiting from mixed source domains, represented by targeted de-
tection pre-training on MMD, also requires updating the feature-fusion (FB) or backbone weights
(FF). This is observable from the HO setting, where D3HO-DMMD strongly deteriorates perfor-
mance compared to the other targeted detection pre-trained HO models.

On the other hand, the largest increase in the AR metric compared to the baseline scores, is
reported for the FB and FF models pre-trained on the MMD, D3FB-DMMD and D3FF -DMMD,
with a + 5.3 and + 3.7 increase compared to D3FB-Db and D3FF -Db. As such, we observe that pre-
training on mixed source domains mitigates FN predictions, on the cost of a lower AP . We argue
this observation supports an intuitive hypothesis. Increased dataset diversity expose the models to
a larger variety of object instances during pre-training training, delivering models capable of more
easily detecting new objects observed during fine-tuning.

• Detector inference times are in line with the problem formulation in section 1.1.

The inference time is not reported for all models, due to time-constraints. For the best reported
model, D3FF -DNMD, the frame-rate is 26 FPS for end-to-end processing. That is, image pre-
processing, pure inference time, post-processing and NMS. As such, the frame rate is above the
required 25 FPS as discussed in section 1.1. Similar inference times are found for the other trained
detectors, with slight differences depending on model weights. We note that this inference time is
in line with the TitanV GPU latency reported for EfficientDet-D3 of 27 FPS in the original paper
[101]. The allocated GPU resource for our reported inference time is the Nvidia Tesla P100.

87

7.3 Class-awareness

In this section, an additional study introducing class-aware labels in the target domain is presented.
The intention of this study is to observe the effects of targeted detection pre-training when the
source and target domain task changes. Specifically, following definition 5.1.1, TSM 6= TTM , due
to a changing source and target label space.

The three classes ferry, kayak and motorboat (mb) are introduced in the target domain dataset.
The class aware seen target models are trained under exactly similar settings as the agnostic seen
target models in section 7.2. Due to time-constraints, training is conducted only for the baselines
and the targeted detection pre-training on the consistently best dataset from section 7.2, the NMD.

Model AP AP50 AP75 APferry APkayak APmb Epoch

HO
D3HO-Db-AW 13.1 29.0 10.5 6.6 11.6 20.9 24
D3HO-DNMD-AW 16.4(+3.3) 34.8 13.1 14.9 3.3 31.2 22

FB
D3FB-Db-AW 13.1 27.4 8.7 6.8 8.3 24.2 23
D3FB-DNMD-AW 19.2(+6.1) 38.2 15.3 16.7 6.7 34.3 24

FF
D3FF -Db-AW 13.0 24.6 11.7 6.5 1.7 31.0 18
D3FF -DNMD-AW 16.7(+3.7) 31.8 15.8 15.3 4.9 29.8 11

Table 7.3: Target domain test set scores, class aware target models. Underlined metrics is the best for
the group. bold is the overall best reported score. For tied values, both are highlighted. HO=Head-only,
FB=Frozen backbone, FF=Full-fine tuning.For the AP metric, all percentage points improvement are
compared to the baseline per group. Epoch is fine-tuned epochs on the target domain, used for model
weight saving.

7.3.1 Main results

• Target domain class imbalance and changed source-target label space strongly deteriorates
performance.

As observed in table 7.3, all the class-aware models performs worse than the class-agnostic seen
target models from section 7.2. Firstly, as the source and target domain label space are now
different, it is natural to observe worse target domain performance [111]. More importantly, as
the target domain test set is inherently class imbalanced, fewer training samples are available for
generalizing the detector to each class. As such, an overall decline in reported performance test
scores are observed for all models, both baselines and targeted detection pre-trained models. In
particular, the APkayak, which is based on 154 instance labels (see table 4.15), strongly suffers
from this fact.

• Targeted detection pre-training consistently outperforms the baseline models, for similar and
less trained epochs.

Similar to the agnostic seen target models, targeted detection pre-training proves to ameliorate
the class aware baseline models. Even though there are some variety as to the class-reported AP
metrics, the AP , AP50 and AP75 are consistently best for the targeted detection pre-trained models
for each of the fine-tuning setting.

• More freezing delivers superior target domain performance when introducing fewer available
instances per class.

The overall best model is D3FB-DNMD-AW, which reports the highest AP score. In contrary to
the agnostic seen target models, FB is the best fine-tuning setting both for the baselines (tied with
HO) and the targeted detection pre-trained models. For the same fine-tuning setting, the largest
AP baseline improvement of +6.1 is observed. The FF models seem to require more training
instances per class for proper generalization. As follows, freezing the backbone and reusing learned
features from NMD is the superior option to obtain the best target domain performance for our
target domain dataset, which is not a general result with regard to freezing.

88

(a) Kayak. (b) Ferry (left) and motorboat (right).

Figure 7.2: Sample predictions best class-aware seen target model, D3FB-DNMD-AW. Figure 7.2a pre-
diction: Motorboat, 42% confidence. Figure 7.2b Predictions: (left) Motorboat 51% confidence, (right)
Motorboat 64% confidence.

Sample predictions A few samples predictions for the best model, D3FB-DNMD-AW, are pre-
sented as to demonstrate some of the characteristics from the class-aware models. D3FB-DNMD-
AW localizes the boats satisfactory in both of the sample images, even though struggling to predict
the correct classes. All predicted instances in the two samples images are predicted as to belong
to the motorboat class. Additionally, the confidence score is rather low, supporting previous argu-
ments regarding the models’ decreased robustness.

7.4 Case-studies

The case-studies present some scenarios encountered in the wild and are extracted from the target
domain test set, based on frames from 5 FPS scenario videos. We prioritize to present predictions
from the best reported seen target model, D3FF -DNMD, as well as its baseline, D3FF -Db, to shed
light on scenarios where the targeted detection pre-training may benefit particularly. Additionally,
as the best reported models are the models subject for deployment in the target domain, D3FF -
DNMD needs to be tested for robustness.

The case-studies are additionally designed as to analyse predictions in a spatio-temporal aspect.
The target domain dataset is largely based on generating frames from videos in the target domain,
as treated in section 4.5. As follows, each scenario in this section is conducted on the consecutive
generated frames originating from one of the sampled target domain test set videos.

7.4.1 Occluded boats open-sea

Scenario This scenario is designed as to observe the detectors’ capabilities in detecting an object
which disappears due to occlusion, before reappearing at a different spatial location. The scenario
is presented in figure 7.3. The leftmost gray boat passes behind the closest white boat on the left
side, before reappearing on the right side. This scenario isolates the fine-localization capabilities
of the detectors, as the two boats are overlapping in some the frames. In total, the scenario is
generated from a five second video, where we use three particular frames which demonstrates the
occlusion transition.

89

Figure 7.3: Multi-object occlusion scenario, first frame.

Prediction observations Figure 7.4 presents three hand-picked frames from the scenario and the
respective ground truths and predictions of D3FF -Db and D3FF -DNMD. The frames are picked as
to best illustrate the moment where the gray boat is not too clustered to the white boat, and thus
should be detectable.

Both D3FF -Db and D3FF -DNMD accurately predict the separated boats of the first frame. Sim-
ilarly, when the gray boat approaches the white boat in the sixth frame, right before becoming
entirely occluded, both of the models accurately detect the two boats. However, for the last pre-
sented frame, the models differ in their predictions. D3FF -Db only detects the leftmost white boat,
as presented in figure 7.4h, while D3FF -DNMD detects both of the boats, as seen in figure 7.4i.

By testing predictions for slightly lower score confidence thresholds (0.3), it is observed that D3FF -
Db is also capable of detecting the gray boat in the last presented frame. Implicitly, the targeted
detection pre-training seems to increase model confidence in its predictions. The same observation,
though hard to observe for the reader, is supported by the marginally tighter bounding boxes of
D3FF -DNMD compared to D3FF -Db. To conclude the scenario, D3FF -DNMD seems to be more
robust model in occlusion scenarios than D3FF -Db.

90

(a) Frame 1 - ground truth (b) Frame 1 - D3FF -Db (c) Frame 1 - D3FF -DNMD

(d) Frame 6 - ground truth (e) Frame 6 - D3FF -Db (f) Frame 6 - D3FF -DNMD

(g) Frame 17 - ground truth (h) Frame 17 - D3FF -Db (i) Frame 17 - D3FF -DNMD

Figure 7.4: Multi-object occlusion scenario, D3FF -Db and D3FF -DNMD predictions. Images cropped for
visibility.

7.4.2 Ferry front-on

Scenario This scenario presents one of the speed ferries which operates in the harbour orifice
towards Trondheimsfjorden. An overview of the scenario is presented in figure 7.5. All frames are
generated from a four second video in clear sky and weather conditions. This scenario is considered
important as to give a sense of the time for detecting approaching vessels. In order to manoeuvre
according to the movements of the ferry, early detection is crucial.

The scenario is considered rather simple as the ferry is relatively large as well as its contrasting
contours to the background buildings.

Prediction observations Figure 7.6 presents the ground truth and predictions for D3FF -Db and
D3FF -DNMD for three frames, selected as the start, mid and end of the generated frames from
the scenario video. Even though the cropped frames are not entirely aligned in figure 7.6, they are
indeed the same frames.

For this scenario, the accuracy of the EfficientDet-D3 detector is demonstrated. Both D3FF -Db

and D3FF -DNMD solely generate TP predictions for all of the sample frames. Actually, this is the

91

Figure 7.5: Ferry front-on scenario, first frame.

case for all of the total 20 frames for both of the detectors1. That is, the trained models accurately
detects the ferry without error in all of the 20 frames of the scenario video.

There are few other remarks to make as both detectors perform impeccably. As a last mention,
not observable in the prediction samples, D3FF -DNMD generally produces predictions of higher
confidence. As an example, the first frame prediction from D3FF -Db in figure 7.6b has 72% confi-
dence of finding a boat in the predicted bounding box, while D3FF -DNMD presents a confidence of
88% for the same frame, in figure 7.6c. Generally, we find D3FF -DNMD to produce more confident
predictions. A consequence of this is also tighter predicted bounding boxes.

1Observed on inspection by the author

92

(a) Frame 1 - ground truth (b) Frame 1 - D3FF -Db (c) Frame 1 - D3FF -DNMD

(d) Frame 10 - ground truth (e) Frame 10 - D3FF -Db (f) Frame 10 - D3FF -DNMD

(g) Frame 20 - ground truth (h) Frame 20 - D3FF -Db (i) Frame 20 - D3FF -DNMD

Figure 7.6: Ferry front-on scenario, D3FF -Db and D3FF -DNMD predictions. Images cropped for visibility.

7.4.3 Approaching kayak

Scenario The final case-study is likely one of the more challenging scenarios. It consists of 20
frames of a kayak instance, generated over a four second video captured from the sensor station
of milliAmpere, in the harbour area around Ravnkloa. The first frame, presented in figure 7.7,
represents the overall scenario. The kayak, marked with a red bounding box underneath the bridge,
approaches milliAmpere front-on before passing by on the port side.

93

Figure 7.7: Approaching kayak scenario, first frame. The kayak instance is in the upper left part of the
image, below the bridge, blending into the background.

The lighting conditions are quite unusual, with the sea surface appearing completely black. More-
over, the boat hull of milliAmpere is present in all the 20 test frames adding extra noise and possible
confusion for the detector. Since the target domain training set contains inherently few images
captured from the sensor station, this is likely one of the more challenging in the wild prediction
examples. Even though the colour of the kayak is in sharp contrast to the background, the kayak
is partially covered in shadow, which makes particularly the first few frames extra challenging.

Prediction observations Figure 7.8 presents ground truths and predictions for the FF seen target
models, D3FF -Db and the reported best model D3FF -DNMD. Four sample frames of different
distance and viewpoint of the kayak instance are chosen, by an interval of six frames.

Firstly, D3FF -Db is observed to severely struggle in this scenario. In empirically assessing predic-
tions for all 20 frames, D3FF -Db does not detect the kayak before the 13th frame, not visualized
here. Contrarily, D3FF -DNMD initially detects the kayak on the third frame, also not visualized.

Moreover, the detections in figure 7.8 showcases the increased robustness of the detection pre-
training on the NMD. D3FF -DNMD detects the kayak instance with high accuracy in all the
presented frames except the initial frame. Additionally, from empirical observations there are no
missed detection from the third frame and onward. One might also relate the consistent detection
capability to the increased AR score of D3FF -DNMD, mitigating FN predictions more frequently
observed in D3FF -Db.

D3FF -Db is the only model which makes FP predictions in this scenario. The FP prediction
appears for the boat hull of milliAmpere as presented in figure 7.9. Even though such FPs are easy
to handle by filtering out predictions overlapping with the hull on the lower part of the scene, it
indicates a lesser ability of separating foreground objects from noise.

94

(a) Frame 1 - ground truth (b) Frame 1 - D3FF -Db (c) Frame 1 - D3FF -DNMD

(d) Frame 6 - ground truth (e) Frame 6 - D3FF -Db (f) Frame 6 - D3FF -DNMD

(g) Frame 12 - ground truth (h) Frame 12 - D3FF -Db (i) Frame 12 - D3FF -DNMD

(j) Frame 18 - ground truth (k) Frame 18 - D3FF -Db (l) Frame 18 - D3FF -DNMD

Figure 7.8: Approaching kayak scenario, D3FF -Db and D3FF -DNMD predictions. Images cropped for
visibility. The ground truth is marked by a red bounding box, slightly blending into the background.

95

Figure 7.9: D3FF -Db FP prediction of boat hull - Frame 1.

7.5 Video inference

It is considered necessary to conduct a test on video inference in the wild, for a video of 25 FPS
in accordance with the problem formulation treated in section 1.1. The best reported model,
D3FF -DNMD, is run for inference on a selected video scenario from the Ravnkloa harbour area.

The scenario is created with a white marker boat approaching and passing by the camera, situated
on milliAmpere. It has been prioritized to present a challenging and realistic video inference
scenario, as the best developed detector has been empirically observed to perform very well on
single object scenarios. Four selected frames captured by pausing the video for different time
duration are presented in figure 7.10.

The detector has no problems in processing the video and generates predictions for all frames in
the video. The approaching white marker boat on the left side of the scene, is well detected for
the whole duration of the video, as may be observed in figure 7.10. One might consider this the
most important instance to properly detect, as it is initially on collision course with milliAmpere.

However, unlike previous scenarios, the video scenario sheds light on some previously unseen weak-
nesses with D3FF -DNMD, and also likely the other developed detectors. Namely, the detection of
clustered boats in the background. Overall, the boats on the right side of the scene are detected,
though not consistently and accurately over time for all instances.

Nevertheless, on the left side of the scene, D3FF -DNMD generates very large bounding box predic-
tions for the clustered sailboats in the background of the marker boat. For instance in figure 7.10d,
one large predicted bounding box covers most of the docked sailboats. Clearly, this is no accurate
prediction for separating between the docked boats. The poor performance for such instances
may be linked to the target domain dataset composition, which is largely based on single-instance
labeled images. Additionally, the images originating from the Grini dataset, where sailboats are
labeled for the whole masts, possibly hinders the detector in properly separating such instances
when closely clustered with multiple masts visible.

96

(a) Initial frame

(b) Intermediary second frame

(c) Intermediary third frame

(d) Last frame.

Figure 7.10: Video scenario, four sample frames acquired by pausing the video. D3FF -DNMD predictions.

97

CHAPTER 8

DISCUSSION

In this chapter, we present a further discussion on observations from chapter 7 as well as potential
sources of errors in the conducted experiments.

8.1 Target domain dataset limitations

The target domain dataset used in this thesis is created from labeled images from the Grini dataset,
as well as sampled images and videos by the author, counting a total of 1,061 images and three
classes, if treated class-aware. Due to the small dataset size, there are some encountered problems
which deserve a discussion.

Dataset bias Firstly, the target domain dataset is biased towards object instances and weather
conditions encountered at the time of sampling. The data reused from the Grini dataset is sampled
over one experimental day [35]. The similar is true for the author’s collected data. The lighting
and weather conditions occurring in the target domain dataset are therefore strongly affected by
the short sampling periods. Likewise, the amount of unique instances are observably quite few,
though not accounted for quantitatively.

In addition, while some instances are captured from camera pictures, other are captured on videos.
There are rarely many camera pictures of the same instances. On the other hand, one video
of a single instance, produces multiple frames of that same instance. This problem represents a
sample-selection bias towards the filmed instances and is essentially a consequence of choosing to
film certain instances, while taking pictures of other.

Furthermore, as our data collection was conducted with a marker boat, also used for simulating
scenarios, as for instance the occlusion scenario in section 7.4.1, the marker boat occurs more fre-
quently than other encountered motorboats. What is more, due to few encountered boat instances
in the target domain, the majority of the generated frames contain single instances, as opposed
to more challenging multi-object situations. As such, the designed detector’s robustness on more
challenging multi-object detection situations is uncertain. The challenging video inference scenario
in section 7.5, indicates difficulties in detecting clustered background boats, typically observed in
harbours.

Covariate shift Another related problem with the target domain dataset, which causes the pre-
viously mentioned validation and test set performance discrepancy in section 7.2, is a covariate
shift between the split sets. The covariate shift is to some extent caused by the manual splitting
procedure of the target domain dataset, as explained in section 4.5.1, as well as the scarce data
foundation from the 1,061 images and the already established sample-selection bias from the target
domain.

98

The dataset split was carried out manually as to avoid sample leakage1 between the training and
validation-test sets, while distributing the samples from each of the three classes evenly in each
split set. Even though such a procedure is subject to bias from the author, a random dataset split
would cause sample leakage as too many of the frames are generated from videos.

The majority of the 620 labeled images collected by the author, are generated from videos. These
labeled images were assigned to each split set, by assigning all the frames generated from one
unique video to one of the split sets. Especially for the small-scale validation and test set, this
procedure causes problems. Namely, because the validation and test set are overrepresented by
samples generated from quite few videos. As follows, the validation and test set internally undergo
a sample-selection bias and a covariate shift.

As pointed out introductory in section 7.2, two particular problems transpire from the dataset
split.

1) The validation and test set covariate shift causes very different reported scores for the two
split sets.

2) The object size distribution between the split sets are inconsistent, also causing insufficient
samples for evaluating APs properly.

The first problem is clear from the large performance difference of the seen target models’ reported
validation scores (see table 6.9 & table 6.10) and test scores (see table 7.2). It is inconclusive as to
which of the validation and test set that reports the most representative target domain performance
scores. However, as the validation and test set reported scores are consistent regarding the best
fine-tuning setting and the superior performance of the targeted detection pre-training, we argue
that the validity of the reported main results are conserved.

The second problem is an underlying problem of the internal sample-selection bias and the limited
data foundation from the target domain dataset. To give more insight into the split set object size
distributions, the COCO area classified object sizes of each target domain split set are presented
in table 8.1.

Area Train Val Test Total

Small 134 2 10 146
Medium 443 136 288 867
Large 308 78 41 427

Table 8.1: Target domain dataset. Amount of bounding boxes per split, COCO area-classified.

Observably, the split sets have a very different object size distributions. We do not claim that an
optimal split should have exactly equal weights of all object sizes. However, such disproportionate
object size weighting as currently observed, also strongly suggests that each split set most likely
contains very different images. In particular for small objects, which there are fewest samples of
in the target domain dataset.

For instance, 134 of the total 146 small bounding boxes are restricted to the training set. Consid-
ering that the training set makes up 64.7% of the target domain dataset (see table 5.1), a larger
quantity of the small object sizes should optimally be present in the validation and test set. Be-
sides, if considering that the test and validation set is respectively 20.2% and 15.1% of the target
domain dataset size (see table 5.1), the validation set also has an overweight of large samples
compared to the test set. Lastly, the 10 small objects in the test set are clearly not sufficient for
reporting metrics, causing APs to be quite unreliable.

1Also defined in section 4.3; Images containing strongly resembling instance viewpoint and scenes in training set
and the validation-test set, potentially causing overfitting.

99

8.2 Domain distances

One of the largest drawbacks of our result analysis in this thesis, is the lack of a quantitative analysis
of source to target domain distance. Optimally, such a measure would numerically or graphically
measure the similarity between one source domain and the target, to support observations from
the experiments and results.

As hypothesized in the experimental dataset creation of section 5.2, the NMD source domain is
subjectively closest to the target domain. The results from section 7.1 and section 7.2 supports
this hypothesis. The best reported unseen target model is D3-NMD, while the targeted detection
pre-trained models, pre-trained on NMD, perform best for two out of three fine-tuning settings.
As such, the features learned from NMD seems to be most transferable into the target domain.

To quantify why this is the case, is inherently more difficult, and have so far been avoided in the
presented results. Intuitively, the NMD images are captured in Nordic maritime waters with the
most similar boat instances and backgrounds to the target domain. Moreover, the RGB colour
mean of the NMD (see table 6.4) is closest to the target domain (see table 6.8), indicating a possibly
closer similarity in the RGB space. However, as the RGB mean is an accumulative metric, it is
not very meaningful.

While the SMD represents an object-viewpoint more similar to the target domain than the NMD,
it also includes a smaller variety of object types and is more heavily weighted towards larger
ship/vessel types, rarely encountered in the target domain. Moreover, as pointed out in section 7.1
and also observable in section 7.2, NMD contains the lowest ratio of large objects, whereas the
target domain contains the highest ratio among all datasets. Nevertheless, D3-NMD performs best
on APl, and targeted detection pre-training on the NMD reports the best APl for two out of three
fine-tuning settings. Further indicating, object size ratio similarity between source domain and
target domain have little effect.

To summarize, most of the above-mentioned arguments are solely hypotheses based on subjectivity
and some consistent reported test set observations. We therefore argue that a source to target
domain measure is necessary for making further observations. It was not found time to implement
any such measures in this thesis.

However, several options have been researched. Chu et al. [23] presented two distance measures
directly calculated from the mean responses of one of the fully connected layers of a DCNN, namely
the cosine distance and the maximum mean discrepancy between the mean responses. Similarly, an
SVM and CNN classifier were trained to separate between source and target domain images, using
the prediction accuracy as a similarity measure. It is however likely that the classifiers experience
a bias related to the different amount of images in the source domains and the target domain,
during training.

Additionally, generative models such as the Variational Auto Encoder [53] could be used for training
on source and target domain images, before inspecting the projected latent space of the encoder for
clusters of source and target domain image samples. Which would give a measure of the encoder’s
capability of separating between the images and implicitly the similarity of the domains.

8.3 Reported metrics & trustability

The reported metrics for all experiments in this thesis are the COCOAP metrics, which encapsulate
model performance into comparable numerical values. By using these metrics, the performance gain
delivered from targeted detection pre-training is suitably benchmarked with the baselines presented
in table 7.2 of section 7.2. Moreover, the seen target models’ performance can be compared with
the reported EfficientDet-D3 test set scores on COCO [101] (AP=47.2, AP50=65.9, AP75= 51.2),
to better understand the performance in a global perspective.

However, these metrics provide little insight into the explainability of certain detector predictions
for use-cases in the target domain. Overall, in the presented case-studies of section 7.4 and from

100

sample predictions, it is generally observed that D3FF -DNMD predicts tighter and more confident
bounding boxes than D3FF -Db. In the particular occlusion and kayak case-study, D3FF -DNMD

proves to detect objects unobservable by D3FF -Db. What is more, the case-study observations sug-
gest D3FF -DNMD is better suited for continuously detecting the same object after initial detection
than D3FF -Db, implying a more reliable detector.

These observations can be linked to the better reported target domain test set scores of D3FF -
DNMD versus D3FF -Db. Similarly, it is possible that larger variety of boat instances and situations
observed during pre-training for the the targeted detection pre-trained models, makes D3FF -DNMD

more suitable for robust detection performance in difficult conditions where D3FF -Db struggles.
Additionally, it is likely that the backbone features of the detection pre-trained models have higher
neuronal activation distributed over the entire object regions, as found in [60].

Nevertheless, additional performance metrics, as presented below, would be useful for further
confirming these observations. As such metrics have not been implemented in this thesis, the
presented results in section 7.1 - 7.3 are intentionally presented in a quite generic manner, looking
for patterns in the reported test score metrics.

To better understand the effects of the targeted detection pre-training, Explainable Artificial Intel-
ligence (XAI) methods would be useful. Methods for explaining the neuronal activation in a DCNN
are common in the literature [99] [60]. Li et al. [60] use class activation maps for demonstrating
the effect of detection pre-training on the backbone. Methods such as Grad-CAM [90] could be
implemented to further give insight into the learned backbone features with and without targeted
detection pre-training.

Methods for explaining the detection rather than the feature activation, are not extensively re-
searched to the same extent. Henriksen [43] used an XAI method named Local Interpretable
Model-Agnostic Explanations (LIME) [87], which makes perturbations to input images for assess-
ing the changes in the objectness scores and mask predictions of Mask R-CNN. The perturbed
image is thereafter presented with a colour map of the superpixels with the highest significance
for explaining the prediction. Such methods are also possible to implement by using the game-
theoretical concept of Shapley values [92] as designed in the SHapley Additive exPlanations (SHAP)
[66].

To better trust the detector in a spatio-temporal aspect and target domain deployment, where
it is desired that the detector continuously detects the object after the initial detection, longer
spatio-temporal case-studies, as well as quantitative metrics for observing lost track of detected
objects would be useful. Detection histograms, as presented by Blanke et al. [15] for different
object sizes, may be implemented to provide a visualization of detections over time, giving more
insight into the spatio-temporal aspect. For multi-object detection, this would require tracking
ID on the ground truth labels. Additionally, for trusting the detector in deployment, a simple
tracking algorithm, such as DeepSORT [110] may also be implemented to model the position and
velocity of the detected object, and improve detection performance for loss of detection, typically
occurring in occlusion situations.

8.4 Targeted detection pre-training

The results reported in section 7.1 - 7.3, provides a thorough foundation for shedding light on
the effects of targeted detection pre-training and source to target domain transferability. In this
section we present a further discussion on the targeted detection pre-training experiments.

Pre-trained weights All trained models in this thesis are originally initialized from COCO pre-
trained weights. The targeted detection pre-trained models are simply pre-trained a second time
on a maritime source domain dataset for object detection.

An interesting experiment, not conducted in this thesis, would be to train EfficientDet-D3 from
scratch on the same maritime source domain datasets. In such an experiment, it would be possible
to ablate the pure benefit of maritime targeted detection pre-training. This is however not con-

101

ducted, as the target domain dataset is too small in size for creating baseline models trained from
scratch to compare against. However, such an experiment would provide additional information
regarding the transferability between maritime source domains and the target domain.

Fine-tuning settings The three tested fine-tuning settings of this thesis (HO, FB, FF) are utilized
as tools for conducting DA in the experiments. As such, the fine-tuning settings are not thoroughly
compared against each other. Generally, it is observed that less freezing is superior to more freezing
for the small-scale target domain dataset, except for the case of class-awareness, where there are
fewer instances per class and freezing the backbone is more beneficial. A gradual fine-tuning scheme
could prove to be more beneficial [43], but also inferior [85] or similar in performance [68] as full
fine-tuning.

Targeted detection pre-training benefit The adoption of the targeted detection pre-training
scheme has largely been motivated as to attempt reusing existing annotated maritime datasets to
improve target domain performance. The reasoning behind this is simple; to avoid labeling data.
Labeling data is time-consuming and manual labor. However, the reported results on the effects
of targeted detection pre-training in chapter 7 are inherently linked to the target domain dataset
size, which deserves a further discussion.

The agnostic seen target model results of section 7.2, demonstrate that full fine-tuning is the
superior fine-tuning setting for all models, even for the target domain training set of solely 686
images (see table 5.1). Moreover, the FF baseline model, D3FF -Db, is outperformed by all FF
targeted detection pre-trained models. Also, as observed in section 6.3.2, the FF targeted detection
pre-trained models have a much faster convergence and higher final AP than the baseline FF model.

As presented in [41], the effect of large-scale classification pre-training diminishes compared to from-
scratch training if the detection architecture training schedule is modified accordingly, even for as
“little” as approximately 10,000 images. He et al. also recommend to focus on collecting target
data, while pointing out that classification pre-training clearly is beneficial for faster convergence
and if limited target data is available.

Similar dataset size ablation studies have not been conducted for detection pre-training. Nonethe-
less, [91] shows that targeted detection pre-training achieves a faster convergence and a performance
boost which is not achievable by from-scratch training, even for training on the full large-scale
COCO dataset. This is similar to our observations. Additionally, it is shown that the neuronal
activation between a classification and detection pre-trained model changes significantly [60].

The following question is therefore important to discuss: Is targeted detection pre-training some-
thing which should be further pursued?

As for the effects in the backbone neuronal activation, there is little basis for making conclusive
statements. To allocate more resources for collecting target data is undoubtedly necessary to
address problems with sample-selection bias and covariate shifts, as experienced in this thesis and
previously discussed in section 8.1. It is not unlikely that the targeted detection pre-training
benefits could be less significant for an overall larger target domain dataset.

However, depending on available resources and project time-constraints in designing and testing a
detector for real-world applications, collecting more target data is not always possible. The author
spent over a week designing the target domain dataset in this thesis. Allocating resources to do
similar efforts for every specific maritime deployment use-case would be inherently expensive for
the research community.

The explored targeted detection pre-training scheme presented in this thesis is a very good option
for faster stream-lined detector development with increased target domain performance for small-
scale maritime datasets. By using large existing annotated datasets, such as the publicly available
SMD, it is possible to increase detector robustness and target domain performance, without extra
cost in labeling and sampling more target domain data.

102

CHAPTER 9

CONCLUSION & FUTURE WORK

Camera-based object detection is one of the key sensors in the sensor suite of most autonomous
systems. For ASVs, object detectors are inherently useful for recognizing close-by vessels and
providing richer object-structure information than non-visual sensors.

In this thesis, a robust detector based on the EfficientDet-D3 architecture was designed and thor-
oughly use-case tested for maritime vessel detection on a meticulously designed target domain
dataset, resembling the operational area of the autonomous ferry milliAmpere.

A literature survey was first conducted. Maritime object detection research was often found to
be based on small-scale and custom annotated datasets [102] [15] [35]. Moreover, the consensus
of classification pre-training for object detectors was found less beneficial than previously thought
[41]. Detection pre-training, on the other hand, has proven to deliver faster convergence and overall
better target domain performance for subsequent detection fine-tuning [60] [91]. Pre-training and
fine-tuning for the detection task was defined as targeted detection pre-training.

Detection pre-training was conducted for EfficientDet-D3 with COCO initialized weights for three
experimental maritime datasets, the largest covering a total of 17,871 optical RGB images with
95,398 instance labels. Fine-tuning into the target domain with detection pre-trained weights was
conducted for three different fine-tuning settings; full fine-tuning (FF), frozen backbone (FB) and
fine-tuning of the EfficientDet-D3 prediction heads only (HO). Baseline models were fine-tuned for
the same fine-tuning settings, but with COCO initialized weights only.

The best reported model for evaluation on the target domain test set, was targeted detection pre-
trained. Even though fine-tuned for 25% fewer epochs, it outperformed the best baseline with +5.9
on the COCO AP metric. The reported metrics and several case-studies indicated that targeted
detection pre-training facilitated better detection robustness and fewer false-negative predictions.
A video inference test in the wild demonstrated the best reported model to adhere with inference
time requirements for deployment on milliAmpere, even though the detection of clustered docked
boats could be improved.

We further present some of our main findings:

• Targeted detection pre-trained models consistently converge faster and to higher performance
scores than all baselines, even for fewer fine-tuned epochs.

• Targeted detection pre-trained models are more robust, mitigating false-negative predictions
in challenging scenarios while producing tighter and more confident predicted bounding boxes.

• More freezing is inferior to full fine-tuning when the pre-training and target tasks and labels
are the same.

103

• The benefits of targeted detection pre-training seem to depend more on pre-training dataset
similarity to the target domain than the pre-training dataset size, even though this should be
further researched.

In conclusion, the targeted detection pre-training scheme has proven to highly benefit target domain
performance by transferring knowledge from existing annotated maritime datasets, resulting in a
robust detector suitable for deployment on milliAmpere. Our findings encourage the adoption of
this scheme for faster and more robust detector development for small-scale maritime datasets.

However, our designed target domain dataset experienced biases and a covariate shift which moti-
vates the collection of more target domain data to facilitate future detector design for milliAmpere.
Further ablation studies should also be conducted to confirm the generality of results concerning
targeted detection pre-training.

9.1 Future work

Based on the reported results in chapter 7 and discussion in chapter 8, there are several possibilities
for future work.

• More target domain data should be collected to mitigate the target domain dataset bias and
covariate shift experienced in this thesis. Optimally; reusing the annotated data used in this
thesis, while sampling more data from different weather conditions, more varied boat types
and multi-object situations. Additionally, satisfactory class-aware detection would need a
more class balanced target domain dataset.

• An improved target domain dataset split designed as to guarantee well-representative split
sets. A stratified dataset split, splitting on object classes, sizes, and potentially weather
conditions could be considered.

• Quantifiable spatio-temporal performance metrics to provide more insight into the detection
performance over time. For instance, a detection histogram of detected and missed instances
over time in different video scenarios in the wild.

• A real-time implementation on milliAmpere. As to observe constraints and challenges linked
to deployment, not covered in our case-studies.

• Better object detectors recently published in 2021 [114] [64] [25] may be considered to further
improve detection performance.

• Targeted detection pre-training ablation studies for different maritime target domains and
dataset sizes. Such studies would be interesting to analyse the generality of our results and
also the effect of targeted detection pre-training for smaller and larger target domain datasets.

• XAI methods for providing more insight into the explainability of detector predictions and
also better quantifying the effects of targeted detection pre-training. Methods like Grad-CAM
[90], LIME [87] or SHAP [66] could be considered.

• Implementing a domain distance measure would additionally give more insight into maritime
source to target domain similarity, and its importance for well adopted feature transferring.

• Gradual fine-tuning as a fine-tuning strategy could potentially better conserve pre-trained
features and further improve target domain performance, both with and without targeted
detection pre-training.

• Larger maritime pre-training datasets would also be beneficial to further ablate the effect of
pre-training dataset size for targeted detection pre-training.

104

BIBLIOGRAPHY

[1] Coco detection evaluation. https://cocodataset.org/#detection-eval, 2020. Accessed:
2020-15-12.

[2] Efficientdet automl, Github repository. https://github.com/google/automl/tree/

master/efficientdet, 2020. Accessed: 2021-06-05.

[3] Efficientdet automl gradual fine-tuning issue, Github repository. https://github.com/

google/automl/issues/798, 2020. Accessed: 2021-06-05.

[4] Shipspotting. http://www.shipspotting.com/gallery/, 2020. Accessed: 2020-23-10.

[5] Yet-another-efficientdet-pytorch,Github repository. https://github.com/zylo117/

Yet-Another-EfficientDet-Pytorch, 2020. Accessed: 2021-07-06.

[6] Hurtigruten minute by minute. https://tv.nrk.no/serie/

hurtigruten-minutt-for-minutt, 2021. Accessed: 2021-25-02.

[7] Autonomous ferry bastø fosen VI. https://www.kongsberg.com/fr/maritime/about-us/

news-and-media/news-archive/2020/first-adaptive-transit-on-bastofosen-vi/,
2021. Accessed: 2021-28-01.

[8] Mayflower autonomous ship. https://www.ibm.com/industries/federal/

autonomous-ship, 2021. Accessed: 2021-28-01.

[9] Yara birkeland. https://www.yara.com/news-and-media/press-kits/

yara-birkeland-press-kit/, 2021. Accessed: 2021-28-01.

[10] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis,
J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia,
R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray,
C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke,
V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and
X. Zheng. TensorFlow: Large-scale machine learning on heterogeneous systems, 2015. URL
http://tensorflow.org/. Software available from tensorflow.org.

[11] O. I. Abiodun, A. Jantan, A. E. Omolara, K. V. Dada, N. A. Mohamed, and H. Arshad.
State-of-the-art in artificial neural network applications: A survey. Heliyon, 2018.

[12] M. E. Aidouni. Evaluating object detection models: Guide
to performance metrics. https://manalelaidouni.github.io/

Evaluating-Object-Detection-Models-Guide-to-Performance-Metrics.html, 2019.
Accessed: 2021-06-05.

105

https://cocodataset.org/#detection-eval
https://github.com/google/automl/tree/master/efficientdet
https://github.com/google/automl/tree/master/efficientdet
https://github.com/google/automl/issues/798
https://github.com/google/automl/issues/798
http://www.shipspotting.com/gallery/
https://github.com/zylo117/Yet-Another-EfficientDet-Pytorch
https://github.com/zylo117/Yet-Another-EfficientDet-Pytorch
https://tv.nrk.no/serie/hurtigruten-minutt-for-minutt
https://tv.nrk.no/serie/hurtigruten-minutt-for-minutt
https://www.kongsberg.com/fr/maritime/about-us/news-and-media/news-archive/2020/first-adaptive-transit-on-bastofosen-vi/
https://www.kongsberg.com/fr/maritime/about-us/news-and-media/news-archive/2020/first-adaptive-transit-on-bastofosen-vi/
https://www.ibm.com/industries/federal/autonomous-ship
https://www.ibm.com/industries/federal/autonomous-ship
https://www.yara.com/news-and-media/press-kits/yara-birkeland-press-kit/
https://www.yara.com/news-and-media/press-kits/yara-birkeland-press-kit/
http://tensorflow.org/
https://manalelaidouni.github.io/Evaluating-Object-Detection-Models-Guide-to-Performance-Metrics.html
https://manalelaidouni.github.io/Evaluating-Object-Detection-Models-Guide-to-Performance-Metrics.html

[13] Z. Alom, T. Taha, C. Yakopcic, S. Westberg, P. Sidike, M. S. Nasrin, M. Hasan, B. V. Essen,
A. Awwal, and V. Asari. A state-of-the-art survey on deep learning theory and architectures.
Electronics, 8, 2019.

[14] B. Alsallakh, N. Kokhlikyan, V. Miglani, J. Yuan, and O. Reblitz-Richardson. Mind the pad
– CNNs can develop blind spots. ICLR, 2021.

[15] M. Blanke, S. Hansen, J. D. Stets, T. Koester, J. E. Brøsted, A. L. Maurin, N. Nykvist, and
J. Bang. Electronic outlook - a comparison of human outlook with a robotic solution. In
Proceedings of ICMASS, 2018.

[16] A. Bochkovskiy, C. Y. Wang, and H. Y. M. Liao. Yolov4: Optimal speed and accuracy of
object detection. ArXiv preprint arXiv:2004.10934, 2020.

[17] D. Bolya, C. Zhou, F. Xiao, and Y. J Lee. Yolact: Real-time instance segmentation. arXiv
preprint arXiv:1904.02689, 2019.

[18] G. Bradski. The OpenCV Library. Dr. Dobb’s Journal of Software Tools, 2000.

[19] S. Brahmbhatt, H. I. Christensen, and J. Hayes. Stuffnet: Using ‘stuff’ to improve object
detection. WACV, 2017.

[20] X. Chen, R. Girshick, K. He, and P. Dollár. Tensormask: A foundation for dense object
segmentation. arXiv preprint arXiv:1903.12174, 2019.

[21] X. Chen, C. Xie, M. Tan, L. Zhang, C. J. Hsieh, and B. Gong. Robust and accurate object
detection via adversarial learning. In Proceedings of CVPR, 2021.

[22] T. Cheng, X. Wang, L. Huang, and W. Liu. Boundary-preserving mask r-cnn. ECCV, 2020.

[23] B. Chu, V. Madhavan, O. Beijbom, J. Hoffman, and T. Darrell. Best practices for fine-tuning
visual classifiers to new domains. In ECCV Workshops, 2016.

[24] E. D Cubuk, B. Zoph, D. Mane, V. Vasudevan, and Q. V. Le. Autoaugment: Learning
augmentation policies from data. CVPR, 2019.

[25] X. Dai, Y. Chen, B. Xiao, D. Chen, M. Liu, L. Yuan, and L. Zhang. Dynamic head: Unifying
object detection heads with attentions. In Proceedings of CVPR, 2021.

[26] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Imagenet: A large-scale
hierarchical image database. CVPR, 2009.

[27] D.Qiao, G.Liu, F.Dong, S.Jiang, and L.Dai. Marine vessel re-identification: A large-scale
dataset and global-and-local fusion-based discriminative feature learning. IEEE Access, 2020.

[28] K. Duan, S. Bai, L. Xie, H. Qi, Q. Huang, and Q. Tian. Centernet: Keypoint triplets for
object detection. ICCV, 2019.

[29] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman. The PASCAL
visual object classes (VOC) challenge. IJCV, 2009.

[30] K. Fukushima. A hierarchical neural network capable of visual pattern recognition. Neural
Netw, 1988.

[31] R. Geirhos, P. Rubisch, C. Michaelis, M. Bethge, F. A. Wichmann, and W. Brendel.
Imagenet-trained cnns are biased towards texture; increasing shape bias improves accuracy
and robustness. ArXiv preprint arXiv:1811.12231, 2019.

[32] S. Gidaris and N. Komodakis. Object detection via a multi-region & semantic segmentation-
aware cnn model. ICCV, 2015.

[33] R. Girshick. Fast R-CNN. ICCV, 2015.

[34] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies for accurate
object detection and semantic segmentation. CVPR, 2013.

106

[35] S. Grini. Object detection in maritime environments: Systematic training and testing of
deep learning-based detection methods for vessels in camera images. Master’s thesis, NTNU,
http://folk.ntnu.no/edmundfo/msc2019-2020/grini_simen_msc_reduced.pdf, 2019.

[36] E. Gundogdu, B. Solmaz, V. Yücesoy, and A. Koç. Marvel: A large-scale image dataset for
maritime vessels. In Lecture Notes in Computer Science, volume 10115. Springer, Cham,
2016.

[37] W. Hammedi, M. Ramirez-Martinez, Metzli, P. Brunet, S.-M. Senouci, and M. A. Messous.
Deep learning-based real-time object detection in inland navigation. GLOBECOM, 2019.

[38] B. Hariharan, P. Arbeláez, R. Girshick, and J.-T. Malik. Simultaneous detection and seg-
mentation. ECCV, 2014.

[39] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. arXiv
preprint arXiv:1512.03385, 2015.

[40] K. He, G. Gkioxari, P. Dollár, and R. Girshick. Mask R-CNN. ICCV, 2017.

[41] K. He, R. Girshick, and P. Dollár. Rethinking imagenet pre-training. ICCV, 2019.

[42] Ø. K. Helgesen. Sensor fusion for detection and tracking of maritime vessels. Mas-
ter’s thesis, NTNU, https://folk.ntnu.no/edmundfo/msc2019-2020/masters_thesis_

helgesen_reduced.pdf, 2019.

[43] A.T. Henriksen. Domain adaptation for maritime instance segmentation: From synthetic
data to the real-world. a study on generation and use of synthetic data in convolutional
neural networks and on model-agnostic explenations in instance segmentation. Master’s
thesis, NTNU, https://ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/2631161, 2019.

[44] J. H Hosang, R. Benenson, P. Dollár, and B. Schiele. What makes for effective detection
proposals? IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016.

[45] C.-C. Hsu, K.-J. Hsu, C.-C. Tsai, Y.-Y. Lin, and Y.-Y. Chuang. Weakly supervised instance
segmentation using the bounding box tightness prior. In Proceedings of NeurIPS, 2019.

[46] Y. Huang, Y. Cheng, D. Chen, H. Lee, J. Ngiam, Q. V. Le, and Z. Chen. Gpipe: Efficient
training of giant neural networks using pipeline parallelism. In Proceedings of NeurIPS, 2019.

[47] E. H. Hølland. Maritime object detection using infrared cameras. Mas-
ter’s thesis, NTNU, https://ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/2625682?

locale-attribute=en, 2019.

[48] IMO. Convention on the international regulations for preventing collisions at sea, 1972 (COL-
REGs). https://www.imo.org/en/About/Conventions/Pages/COLREG.aspx. Accessed:
2021-08-03.

[49] S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network training by reducing
internal covariate shift. ArXiv preprint arXiv:1502.03167, 2015.

[50] Ayush Jaiswal, Yue Wu, Pradeep Natarajan, and Premkumar Natarajan. Class-agnostic
object detection. ArXiv preprint arXiv:2011.14204, 2020.

[51] L. Jiao, F. Zhang, F. Liu, S. Yang, L. Li, Z. Feng, and R. Qu. A survey of deep learning-based
object detection. IEEE Access, 2019.

[52] K. Kim, S. Hong, B. Choi, and E. Kim. Probabilistic ship detection and classification using
deep learning. Applied Sciences, 2018.

[53] D. P. Kingma and M. Welling. An introduction to variational autoencoders. ArXiv preprint
arXiv:1906.02691, 2019.

[54] S. Kornblith, J. Shlens, and Q. V. Le. Do better imagenet models transfer better? arXiv
preprint arXiv:1805.08974, 2018.

107

http://folk.ntnu.no/edmundfo/msc2019-2020/grini_simen_msc_reduced.pdf
https://folk.ntnu.no/edmundfo/msc2019-2020/masters_thesis_helgesen_reduced.pdf
https://folk.ntnu.no/edmundfo/msc2019-2020/masters_thesis_helgesen_reduced.pdf
https://ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/2631161
https://ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/2625682?locale-attribute=en
https://ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/2625682?locale-attribute=en
https://www.imo.org/en/About/Conventions/Pages/COLREG.aspx

[55] A. Kuznetsova, H. Rom, N. Alldrin, J. Uijlings, I. Krasin, J. Pont-Tuset, S. Kamali, S. Popov,
M. Malloci, A. Kolesnikov, T. Duerig, and V. Ferrari. The open images dataset v4: Unified
image classification, object detection, and visual relationship detection at scale. IJCV, 2020.

[56] K. Landsnes. Weakly-supervised instance segmentation for improved detection in maritime
environments. Specialization project at NTNU, 2021.

[57] M. N. S. Larcher. K-means anchors ratios calculator, Github repository. https://github.

com/mnslarcher/kmeans-anchors-ratios, 2020. Accessed: 2021-07-05.

[58] H. Law and J. Deng. Cornernet: Detecting objects as paired keypoints. In Proceedings of
ECCV, 2018.

[59] V. Lempitsky, P. Kohli, C. Rother, and T. Sharp. Image segmentation with a bounding box
prior. ICCV, 2009.

[60] H. Li, B. Singh, M. Najibi, Z. Wu, and L. Davis. An analysis of pre-training on object
detection. ArXiv preprint arXiv:1904.05871, 2019.

[61] T.-Y. Lin, M. Maire, S. Belongie, L. Bourdev, R. Girshick, J. Hays, P. Perona, D. Ramanan,
C. L. Zitnick, and P. Dollár. Microsoft COCO: Common objects in context. ECCV, 2014.

[62] T.-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and S. Belongie. Feature pyramid
networks for object detection. arXiv preprint arXiv:1612.03144, 2016.

[63] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C. Berg. SSD: Single
shot multibox detector. ECCV, 2016.

[64] Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, and B. Guo. Swin transformer:
Hierarchical vision transformer using shifted windows. ArXiv preprint arXiv:2103.14030,
2021.

[65] I. Loshchilov and F. Hutter. SGDR: stochastic gradient descent with restarts. ArXiv preprint
arXiv:1608.03983, 2016.

[66] S. M. Lundberg and S.-I. Lee. A unified approach to interpreting model predictions. In
Proceedings of NeurIPS, 2017.

[67] V. Marie, I. Bechar, and F. Bouchara. Real-time maritime situation awareness based on deep
learning with dynamic anchors. AVSS, 2018.

[68] G. Montone, J. K. O’Reagan, and A. V. Terekhov. Gradual tuning: a better way of fine
tuning the parameters of a deep neural network. NeurIPS, 2017.

[69] S. Moosbauer. Objetkdetektion in infrarot- und visuell-optischen videos mittels deep learning.
Master thesis at Leipzig University of Applied Sciences. Provided by Sebastian Moosbauer
in personal correspondence., 2019.

[70] S. Moosbauer, D. König, J. Jäkel, and M. Teutsch. A benchmark for deep learning based
object detection in maritime environments. CVPRW, 2019.

[71] Y. Niitani, T. Akiba, T. Kerola, T. Ogawa, S. Sano, and S. Suzuki. Sampling techniques for
large-scale object detection from sparsely annotated objects. CVPR, 2019.

[72] C. Nita and M. Vandewal. Cnn-based object detection and segmentation for maritime domain
awareness. SPIE: Artificial Intelligence and Machine Learning in Defense Applications II,
2020.

[73] W. Ouyang, X. Wang, C. Zhang, and X. Yang. Factors in finetuning deep model for object
detection. CVPR, 2016.

[74] S. J. Pan and Q. Yang. A survey on transfer learning. IEEE Transactions on Knowledge
and Data Engineering, 2010.

108

https://github.com/mnslarcher/kmeans-anchors-ratios
https://github.com/mnslarcher/kmeans-anchors-ratios

[75] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen,
Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. De-
Vito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and
S. Chintala. Pytorch: An imperative style, high-performance deep learning li-
brary. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and
R. Garnett, editors, Advances in Neural Information Processing Systems 32, pages
8024–8035. Curran Associates, Inc., 2019. URL http://papers.neurips.cc/paper/

9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf.

[76] D. K. Prasad. Singapore maritime dataset ground truth description. https://drive.

google.com/file/d/0B10RxHxW3I92NjRjZnN1bjVjelk/view, 2021. Accessed: 2021-22-04.

[77] D. K. Prasad. Singapore maritime dataset. https://sites.google.com/site/

dilipprasad/home/singapore-maritime-dataset, 2021. Accessed: 2021-22-04.

[78] D. K. Prasad, C.K. Prasath, D.Rajan, L.Rachmawati, E.Rajabally, and C.Quek. Challenges
in video based object detection in maritime scenario using computer vision. ArXiv preprint
arXiv:1608.01079, 2016.

[79] D. K. Prasad, D. Rajan, L. Rachmawati, E. Rajabally, and C. Quek. Video processing from
electro-optical sensors for object detection and tracking in a maritime environment: A survey.
IEEE Transactions on Intelligent Transportation Systems, 2017.

[80] D. K. Prasad, C.K. Prasath, D. Rajan, L. Rachmawati, E. Rajabally, and C.Quek. Object
detection in a maritime environment: Performance evaluation of background subtraction
methods. IEEE Transactions on Intelligent Transportation Systems, 2019.

[81] P. Ramachandran, B. Zoph, and Q. V. Le. Searching for activation functions. ArXiv preprint
arXiv:1710.05941, 2017.

[82] J. Redmon and A. Farhadi. Yolov3: An incremental improvement. arXiv preprint
arXiv:1804.02767, 2018.

[83] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi. You only look once: Unified, real-time
object detection. CVPR, 2016.

[84] Joseph Redmon and Ali Farhadi. Yolo9000: Better, faster, stronger. arXiv preprint
arXiv:1612.08242, 2016.

[85] M. Reiersen. Deep visual domain adaption: From synthetic data to the real world. Master’s
thesis, NTNU, https://ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/2576033, 2018.

[86] S. Ren, K. He, R. Girshick, and J. Sun. Faster R-CNN: Towards real-time object detection
with region proposal networks. In Proceedings of NeurIPS, 2015.

[87] M. T. Ribeiro, S. Singh, and C. Guestrin. ”why should i trust you?”: Explaining the
predictions of any classifier. SIGKDD, 2016.

[88] S. Ritter, D. G. T. Barrett, A. Santoro, and M. M. Botvinick. Cognitive psychology for deep
neural networks: A shape bias case study. ArXiv preprint arXiv:1706.08606, 2017.

[89] B. Russell, A. Torralba, K. Murphy, and W. T. Freeman. Labelme: a database and web-based
tool for image annotation. IJCV, 2007.

[90] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and D. Batra. Grad-cam:
Visual explanations from deep networks via gradient-based localization. In Proceedings of
ICCV, 2017.

[91] S. Shao, Z. Li, T. Zhang, C. Peng, G. Yu, X. Zhang, J. Li, and J. Sun. Objects365: A
large-scale, high-quality dataset for object detection. ICCV, 2019.

[92] L. S. Shapley. A value for n-person games. Contributions to the Theory of Games 2 (AM-28),
1953.

109

http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://drive.google.com/file/d/0B10RxHxW3I92NjRjZnN1bjVjelk/view
https://drive.google.com/file/d/0B10RxHxW3I92NjRjZnN1bjVjelk/view
https://sites.google.com/site/dilipprasad/home/singapore-maritime-dataset
https://sites.google.com/site/dilipprasad/home/singapore-maritime-dataset
https://ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/2576033

[93] R.A. Shenoi, J.A. Bowker, A.S. Dzielendziak, A.K. Lidtke, G. Zhu, F. Cheng, D. Argyos,
I.Fang, J. Gonzalez, and S. Johnson et al. Global marine technology trends 2030. Technical
report, University of Southampton: Southampton, UK, 2015.

[94] H. Shimodaira. Improving predictive inference under covariate shift by weighting the log-
likelihood function. Journal of Statistical Planning and Inference, 2000.

[95] Y. Shinya, E. Simo-Serra, and T. Suzuki. Understanding the effects of pre-training for object
detectors via eigenspectrum. ArXiv preprint arXiv:1909.04021, 2019.

[96] B. Singh, M. Najibi, and L. S. Davis. Sniper: Efficient multiscale training. NeurIPS, 2018.

[97] B. Solmaz, E. Gundogdu, V. Yucesoy, A. Koç, and A. A. Alatan. Fine-grained recognition of
maritime vessels and land vehicles by deep feature embedding. IET Computer Vision, 2018.

[98] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. E. Reed, D. Anguelov, D. Erhan, V. Vanhoucke,
and A. Rabinovich. Going deeper with convolutions. arXiv preprint arXiv:1409.4842, 2014.

[99] M. Tan and Q. V. Le. Efficientnet: Rethinking model scaling for convolutional neural net-
works. ICML, 2019.

[100] M. Tan, B. Chen, R. Pang, V. Vasudevan, and Q. V. Le. Mnasnet: Platform-aware neural
architecture search for mobile. arXiv preprint arXiv:1807.11626, 2018.

[101] M. Tan, R. Pang, and Q. V. Le. Efficientdet: Scalable and efficient object detection. In
Proceedings of CVPR, 2020.

[102] E.J Tangstad. Visual detection of maritime vessels. Master’s thesis, NTNU,
https://ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/2452113, 2017.

[103] A. Telea. An image inpainting technique based on the fast marching method. Journal of
Graphics Tools, 2004.

[104] B. Tilemachos. Singapore maritime dataset frames ground truth gener-
ation and statistics, Github repository. https://github.com/tilemmpon/

Singapore-Maritime-Dataset-Frames-Ground-Truth-Generation-and-Statistics,
2021. Accessed: 2021-22-04.

[105] K. Turøy. Closed-loop collision avoidance system for the revolt model-scale vessel. Master’s
thesis, NTNU, 2020.

[106] J. Uijlings, K. Sande, T. Gevers, and W. W. M. Smeulders. Selective search for object
recognition. International Journal of Computer Vision, 2013.

[107] C. Y. Wang, H. Y. M. Liao, I. H. Yeh, Y. H. Wu, P. Y. Chen, and J. W. Hsieh. Cspnet: A new
backbone that can enhance learning capability of CNN. ArXiv preprint arXiv:1911.11929,
2019.

[108] C. Y. Wang, A. Bochkovskiy, and H. Y. M. Liao. Scaled-yolov4: Scaling cross stage partial
network. ArXiv preprint arXiv:2011.08036, 2021.

[109] K. Weiss, T. M. Khoshgoftaar, and D. Wang. A survey of transfer learning. Journal of Big
Data, 2016.

[110] N. Wojke, A. Bewley, and D. Paulus. Simple online and realtime tracking with a deep
association metric. arXiv preprint arXiv:1703.07402, 2017.

[111] J. Yosinski, J. Clune, Y. Bengio, and H. Lipson. How transferable are features in deep neural
networks? NeurIPS, 2014.

[112] Y. Zhang, Q.-W. Li, and F.-N. Zhang. Ship detection for visual maritime surveillance from
non-stationary platforms. Ocean Engineering, 2017.

[113] Y. Zhong, J. Wang, L. Wang, J. Peng, Y.-X. Wang, and L. Zhang. DAP: detection-aware
pre-training with weak supervision. CVPR, 2021.

[114] X. Zhou, V. Koltun, and P. Krähenbühl. Probabilistic two-stage detection. ArXiv preprint
arXiv:2103.07461, 2021.

110

https://github.com/tilemmpon/Singapore-Maritime-Dataset-Frames-Ground-Truth-Generation-and-Statistics
https://github.com/tilemmpon/Singapore-Maritime-Dataset-Frames-Ground-Truth-Generation-and-Statistics

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f E
ng

in
ee

rin
g

Cy
be

rn
et

ic
sD

om
ain Adaptation for D

etection of M
aritim

e Vessels in Im
ages

Kristoffer Landsnes

Domain Adaptation for Detection of
Maritime Vessels in Images

A Comparative Study on the Effects of Targeted
Detection Pre-Training Using Real-World Data

Master’s thesis in Cybernetics and Robotics
Supervisor: Edmund Brekke
Co-supervisor: Øystein Kaarstad Helgesen
July 2021

M
as

te
r’s

 th
es

is

	Introduction
	Problem formulation
	Contributions
	Report outline

	Object detection
	Artificial neural networks
	Convolutional neural networks
	Object detection
	Concepts in object detection

	Object detection architectures
	R-CNN family
	You Only Look Once (YOLO)
	EfficientDet
	CenterNet

	Performance metrics
	Precision-recall
	Precision-recall curve
	Average precision
	Mean average precision
	Average recall

	Related work
	Maritime environment
	Maritime detection
	Maritime environment datasets

	Transfer learning
	Transfer learning background
	Domain adaptation
	Fine-tuning & pre-training

	Summary

	Datasets
	Grini dataset
	Brekke & Lopez dataset
	Hurtigruten dataset
	Dataset exploration
	Dataset post-processing
	Dataset statistics

	Singapore maritime dataset
	Dataset exploration
	Dataset post-processing
	Dataset statistics

	Target domain dataset
	Custom dataset design

	Experiment design
	Targeted detection pre-training
	Experimental datasets
	Detector considerations
	EfficientDet TensorFlow configuration
	Performance metrics and terminology

	Experiments
	Experiment overview
	Unseen target domain
	Singapore maritime dataset
	Nordic maritime dataset
	Mixed maritime dataset

	Seen target domain
	Baselines
	Targeted detection pre-training

	Results
	Unseen target domain
	Main results

	Seen target domain
	Main results

	Class-awareness
	Main results

	Case-studies
	Occluded boats open-sea
	Ferry front-on
	Approaching kayak

	Video inference

	Discussion
	Target domain dataset limitations
	Domain distances
	Reported metrics & trustability
	Targeted detection pre-training

	Conclusion & future work
	Future work

	Bibliography

