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Sammendrag

Anvendelser av avanserte MR-metoder i kreft- og nevroavbildning

Magnetisk resonansavbildning (MR) er en svært nyttig og allsidig ikke-invasiv medisinsk

bildemodalitet. I denne oppgaven ble avanserte MR-metoder innen kreft- og nevroavbild-

ning undersøkt. Nærmere bestemt fokuserte vi på utvikling og anvendelse av avansert dif-

fusjonsvektet avbildning (DWI), diffusjonstensoravbildning (DTI) og funksjonell MR (fMRI)

i prostatakreft og i den entorhinale korteksen i hjernen.

Prostatakreft er en av de vanligste kreftformene blant menn, og MR-avbildning er en viktig

del av diagnostiseringen. Det er imidlertid fortsatt behov for bedre verktøy for å skille mel-

lom kreftformer med høy og lav risiko. Den såkalte ’tilsynelatende’ diffusjonskoeffisienten

(ADC) fra konvensjonell DWI er mye brukt, men er en grov forenkling av den underliggende

mikrostrukturen til vevet. I artikkel I i denne oppgaven utvikler og anvender vi derfor en

ADC- og T2-avhengig to-komponent modell basert på kombinert T2-DWI, for å undersøke

om den har potensial for diagnostikk av prostatakreft. Vi fant ut at denne modellen var i

stand til å skille mellom tumor og normalt prostatavev, og viste noe korrelasjon med tumor-

aggressivitet. Våre funn indikerer dermed at den ADC- og T2-avhengige to-komponentmodellen

har potensial for diagnostisering og karakterisering av prostatakreft.

Den entorhinale korteksen (EC) er en del av hjernen som er involvert i kognitive prosesser

som minnedannelse, romlig navigasjon og tidsoppfatning. Den kan i hovedsak deles inn i

to underregioner, medial (MEC) og lateral (LEC) EC, som har både forskjellige funksjonelle

egenskaper og tilkoblinger til andre hjerneregioner. Selv om MEC og LEC har blitt mye stud-

ert hos andre dyr som for eksempel rotter, vet man fortsatt ikke nøyaktig hvor disse lig-

ger i den menneskelige hjernen. Et par tidligere fMRI-studier som undersøkte dette fant

funksjonelle forskjeller mellom posteromedial (pmEC) og anterolateral (alEC) EC, men det er

i



ii SAMMENDRAG

usikkerhet knyttet til hvilke metoder som bør brukes for å identifisere disse underregionene

hos mennesker. I artikkel II bruker vi derfor DTI og såkalt sannsynlighetsbasert traktografi

for å dele inn den menneskelige EC basert på strukturelle tilkoblinger til andre hjerneom-

råder som er kjent for å være koblet til enten MEC eller LEC. Videre, i artikkel III, hadde vi

som mål å utvide denne analysen til en kohort med både DTI- og fMRI-data, for å direkte

sammenligne resultatene fra å bruke strukturelle og funksjonelle koblinger for å dele inn EC.

Både DTI- og fMRI-resultatene fra de to artiklene støtter opp under inndelingen av den men-

neskelige EC inn i pmEC og alEC, selv om det var noen små forskjeller fra tidligere studier.

Korrekt lokalisering av MEC og LEC i den menneskelige hjernen har betydning for forskn-

ing innen både kognitiv nevrovitenskap og for studier på sykdommer som Alzheimers, som

starter i EC-området.

Til sammen viser forskningen i denne oppgaven hvordan avansert DWI og DTI kan brukes til

å modellere forskjellige typer vev. Den viser også at DTI og fMRI er i stand til å beskrive lig-

nende tilkoblinger mellom hjerneområder. Både kreft og nevroavbildning er svært relevante

fagområder for anvendelse av disse avanserte MR-metodene, som kan få økt betydning in-

nen kreft- og demensdiagnostikk i fremtiden.

Kandidat: Ingrid Framås Syversen

Institutt: Kavliinstitutt for nevrovitenskap

Veiledere: Christian F. Doeller, Pål Erik Goa og Tobias Navarro Schröder

Finansieringskilde: Fakultet for medisin og helsevitenskap, NTNU

Ovennevnte avhandling er funnet verdig til å forsvares offentlig

for graden ph.d. i medisinsk teknologi.

Disputas finner sted digitalt onsdag 15. desember 2021, kl. 12.15.



Summary

Magnetic resonance imaging (MRI) is a powerful and versatile non-invasive medical imag-

ing modality. In this thesis, advanced MRI methods in cancer and neuroimaging were in-

vestigated. More specifically, we focus on the development and application of advanced

diffusion-weighted imaging (DWI), diffusion tensor imaging (DTI) and functional MRI (fMRI)

in prostate cancer and the entorhinal cortex of the brain.

Prostate cancer is one of the most common types of cancer among men worldwide, and MRI

is essential in detection and staging of the disease. However, improved tools are needed to

distinguish between low-risk and high-risk cancer, and the widely used mono-exponential

apparent diffusion coefficient (ADC) derived from DWI is a crude simplification of the un-

derlying tissue microstructure. In paper I of this thesis, we therefore develop and apply an

ADC- and T2-dependent two-component model based on combined T2-DWI, in order to

investigate its diagnostic potential in prostate cancer. We found that signal fractions of a

slow diffusion component estimated from this model were able to significantly discriminate

between tumor and normal prostate tissue, and showed a fair correlation with tumor ag-

gressiveness. Our findings thus indicate that the ADC- and T2-dependent two-component

model shows potential for diagnosis and characterization of prostate cancer, although it only

performed similarly, and not better than more conventional diffusion models.

The entorhinal cortex (EC) is a part of the hippocampal formation of the brain involved in

cognitive processes such as memory formation, spatial navigation and time perception. It

can be divided into two main subregions—medial (MEC) and lateral (LEC) EC—which differ

in both functional properties and connectivity to other regions, and these have been widely

studied and defined in rodents. Despite previous attempts to localize the human homo-

logues of the subregions using fMRI, where they were identified as posteromedial (pmEC)

and anterolateral (alEC) EC, uncertainty remains about the choice of imaging modality and

iii
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seed regions for connectivity analysis. In paper II, we therefore use DTI and probabilistic

tractography to segment the human EC based on differential connectivity to other brain re-

gions known to project selectively to MEC or LEC. Furthermore, in paper III, we aimed to

extend this analysis to a cohort with both DTI and resting-state fMRI data, in order to di-

rectly compare the results from using structural and functional connectivity to segment the

EC. Both the DTI and fMRI results from the two papers support the subdivision of the human

EC into pmEC and alEC, although with a larger medial-lateral component than in the pre-

vious fMRI studies. We also showed that the segmentation results using DTI are relatively

reproducible across cohorts and acquisition protocols. Correctly delineating the human

homologues of MEC and LEC has importance not only for research in systems and cogni-

tive neuroscience, but also for translational studies on neurodegenerative processes such as

Alzheimer’s disease, which starts in the EC and transentorhinal area.

In conclusion, the research in this thesis demonstrates how advanced DWI and DTI can be

used to model different types of tissue. It also shows that DTI and fMRI are able to simi-

larly describe connectivity between brain regions. Both cancer and neuroimaging are highly

relevant disciplines for applications of these advanced MRI methods, which might gain in-

creased importance in diagnosis and management of cancer and dementia in the future.
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Chapter 1

Introduction

Magnetic resonance imaging (MRI) has become an invaluable tool in medical imaging due

to its versatility and non-invasiveness [1–3]. Since its invention in the 1970s [4–6], technolog-

ical developments in both hardware and software have moved the boundaries for possible

applications of this powerful imaging modality. Today, it is widely used for both clinical and

research purposes and across a range of disciplines. This thesis will focus on applications

of advanced MRI methods in cancer and neuroimaging. More specifically, we will look into

prostate cancer and the entorhinal cortex of the human brain, using diffusion-weighted and

functional MRI. Research in both of these fields is important in a global health perspective,

as cancer and dementia are among the most common causes of death [7–9].

1.1 Magnetic resonance imaging

MRI is based on the principles of magnetic resonance of nuclear spins [1–3, 10–13]. The

most frequently used nucleus in MRI is the proton, due to its abundance in biological tissue,

but also other atoms with uneven mass numbers have these magnetic properties. To acquire

an MR image, so-called MR sequences are performed, where different combinations of ra-

diofrequency (RF) pulses and magnetic field gradients are applied to sample the k-space of

an object. The contrast in the resulting image—which is obtained by Fourier transforming

the recorded k-space—is governed by different relaxation processes and magnetic suscep-

tibility effects, but also by more advanced mechanisms such as diffusion and blood flow. A

thorough introduction to the basic principles of MRI can be found in textbooks such as [1–3].

1



2 CHAPTER 1. INTRODUCTION

1.1.1 Diffusion-weighted MRI

Diffusion is the random movement of molecules in a medium due to thermal energy [14].

In biological tissue, the diffusion of water molecules depends on the structure of the tis-

sue. This water movement can be probed using diffusion-weighted imaging (DWI), enabling

extraction of information about the underlying tissue microstructure and function [2, 15].

Example applications are in cancer imaging to characterize tumors, and in neuroimaging to

identify white matter tracts.

In order to make an MR sequence diffusion-weighted, a pair of diffusion-sensitizing gradi-

ents can be added to a spin-echo (SE) sequence (Figure 1.1a) [3, 16]. Applying a gradient will

dephase the spins, and if we then wait a certain diffusion time ∆ before applying a reversed

gradient to rephase the spins, some of them will have moved in the meantime due to dif-

fusion. Because they now have a different position than during the first diffusion gradient,

they will experience a different field strength, and the signal will not be perfectly refocused

(Figure 1.1b-d). The presence of diffusion therefore reduces the MR signal. Thus, the more

the water molecules have diffused, the lower the signal. This signal reduction is exponential

and is given by

SI = SI0e−b·ADC (1.1)

where SI is the measured signal intensity, SI0 is the signal intensity in the absence of diffusion-

weighting, b is the so-called b-value and ADC is the apparent diffusion coefficient. The b-

value is the degree of diffusion weighting in the image, and is determined by

b = γ2G2δ2
(
∆− δ

3

)
(1.2)

where γ is the gyromagnetic ratio of the nucleus, G is the diffusion gradient strength and δ

is the duration of the gradient. The ADC of the tissue can then be determined by acquiring

diffusion-weighted images at two or more b-values.

1.1.1.1 Biophysics of water diffusion in biological tissue

The diffusion of water molecules in the body is in many cases not free, but hindered or re-

stricted by different structures and barriers in the tissue [17]. This is why the diffusion mea-

sured with DWI is not the true diffusivity of single water molecules, but rather an appar-
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RF pulse
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Signal
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Gdiffusion δ δ
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(a)

(b) (c) (d)

Figure 1.1: Schematic illustration of the principles of a diffusion-weighted sequence. (a)
After excitation, two diffusion gradients (Gdiffusion) are added on each side of a 180° pulse to
make the spin-echo sequence sensitive to diffusion. They are each applied for a duration
δ, with the time ∆ between them. Gx, Gy and Gz denote the gradients applied in the x-, y-
and z-direction, respectively. (b) All spins have the same phase immediately after excitation.
(c) When the first diffusion gradient has been applied, the phase of the spins is dependent
on their position. (d) The signal is rephased after the second diffusion gradient. However, if
some of the spins have diffused and changed position between the gradients, they will not
be perfectly rephased and the resulting signal will be lower than if there were no diffusion.
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ent diffusion coefficient (ADC) of the tissue dependent on its underlying microstructure. In

those cases where there are no obstacles for the water molecules and the diffusion is truly

free (Figure 1.2a,d,e), the diffusion is a Gaussian process and the mean squared 3D displace-

ment of a molecule is given by 〈
r 2〉= 6Dt (1.3)

where t is the time and D is the diffusivity or diffusion coefficient (unit: mm2/s) [14]. The net

displacement of the water molecules will increase linearly with time, and the measured ADC

is independent of the diffusion time of the DWI sequence. However, if the water molecules

are hindered by structures in the tissue such as macromolecules, fibers and cells (Figure

1.2b,d,e), the net displacement will be lower than in the free diffusion case and depends on

the geometry of the obstacles. The measured ADC is also in this case independent of the dif-

fusion time, except for very short time windows where the water molecule does not diffuse

far enough to encounter any hindrances. In other cases, the diffusion might be restricted, for

(a) (b) (c)Free Hindered Restricted

(d) (e)

p
Time

p
Time

D
is

p
la

ce
m

en
t

A
D

C

Figure 1.2: Illustration of free, hindered and restricted diffusion. (a) Free diffusion: Water
molecules (small blue circles) diffusing freely in matter. (b) Hindered diffusion: The diffu-
sion of the water molecules is hindered by different structures (green circles) in the tissue,
e.g. macromolecules or fibers. (c) Restricted diffusion: The diffusion of water molecules in-
side a cell (big yellow circle) is restricted by the cell membrane. (d) The net displacement of a
water molecule as a function of time for free (blue line), hindered (green line) and restricted
(red line) diffusion. (e) The ADC evolution over time for free, hindered and restricted diffu-
sion.
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example if the water molecules are trapped inside a an enclosed compartment such as a cell

(Figure 1.2c,d,e). This will limit the maximal possible net displacement so that it is no longer

linear, and this is therefore a non-Gaussian diffusion process. Consequently, the measured

ADC will decrease with increasing diffusion times [18].

Because the diffusion mechanisms of the tissue within a single voxel might be a mixture of

free, hindered and restricted diffusion, more advanced diffusion models are needed to char-

acterize this. Although Equation 1.1 often is a decent approximation when using b-values in

the clinical range, the diffusion signal clearly deviates from a mono-exponential decay when

using very high b-values (> 1000-1500 s/mm2) [19]. While some of the more advanced dif-

fusion models try to mathematically characterize this deviation, other models describe the

signal as composed of several water components, each with its own mono-exponential ADC

[18, 20, 21]. One example is the bi-exponential model, where the signal is modeled as com-

ing from two separate tissue components with different signal fraction contributions: one

component with slow diffusion and one component with fast diffusion [22, 23]. The "slow"

component is thought to represent the restricted diffusion within cells, whereas the "fast"

component represents extracellular water. Thus,

SI

SI0
= SFsl ow exp

(−b · ADCsl ow
)+SF f ast exp

(−b · ADC f ast
)
, (1.4)

where SFsl ow and SF f ast are the signal fractions of the slow and fast component, respectively,

and SFsl ow+SF f ast = 1. These signal fractions have shown promise as imaging biomarkers in

tumor detection and characterization [22–24]. In addition, more complex restriction spec-

trum imaging (RSI) models with even more diffusion components have been investigated,

representing a similar multi-exponential signal decay [25–27].

1.1.1.2 Diffusion tensor imaging

In addition to being restricted to different compartments, the diffusion can also be restricted

along certain directions, which can be measured using diffusion tensor imaging (DTI). This

is an expansion of conventional DWI, where diffusion anisotropy—that is, diffusion with di-

rectional dependence—is exploited to trace the paths of the water molecules [3, 28, 29]. By

measuring the diffusion along at least six independent directions, a diffusion tensor D can

be reconstructed:
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D =


Dxx Dx y Dxz

Dx y D y y D y z

Dxz D y z Dzz

 (1.5)

The subscripts x, y and z denote combinations of diffusion in different directions. This dif-

fusion tensor can then be used to for example calculating the fractional anisotropy (FA)—a

scalar between 0 and 1 that describes the degree of anisotropy, where 0 means that the diffu-

sion is completely isotropic (equal diffusion in all directions) and 1 means that the diffusion

is infinitely anisotropic (diffusion in one direction only). One example of anisotropic diffu-

sion is within the myelinated fiber tracts of the brain, where the water can diffuse more freely

along the direction of the fibers than across them. By creating an FA map of the brain, it is

possible to visualize this anisotropy and hence the major white matter pathways of the brain.

1.1.2 Functional MRI

Until now, we have focused on MR techniques for imaging and providing information about

the anatomy and structure of the tissue. However, it is also possible to use MRI to obtain an

indirect measure of brain function—so-called functional1 MRI (fMRI) [2, 30–32]. This imag-

ing technique is based on the principles of neurovascular coupling, which means that the

blood flow and blood oxygenation in the brain are dependent on neuronal activity. It has

become a valuable tool in human neuroscience research, but is also used clinically in for ex-

ample neurosurgical planning [33, 34].

The crucial contrast mechanism in fMRI is the blood-oxygenation-level-dependent (BOLD)

response following increased brain activity [35, 36]. Oxygen is transported in the blood at-

tached to hemoglobin (Hb) molecules, which can be oxygenated (oxy-Hb) or deoxygenated

(deoxy-Hb). While oxy-Hb is weakly diamagnetic, deoxy-Hb is strongly paramagnetic and

will disturb the local magnetic field, thus decreasing the transverse relaxation times of the

nearby tissue [37]. Therefore, if the level of oxy-Hb compared to deoxy-Hb changes over time,

there will be signal fluctuations that can be detected with fMRI. This BOLD response follow-

ing a brief stimulus can be characterized by the hemodynamic response function (Figure

1Note that the term "functional MRI" is sometimes also used for all other types of MRI than pure anatomical
imaging, including DWI and dynamic contrast-enhanced MRI. Here, we will use "fMRI" only for BOLD func-
tional imaging.
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1.3a) [38, 39]: A transient energy demand due to neuronal activity first results in increased

levels of deoxy-Hb, reducing the detected signal. Then, because of the increased need for

glucose and oxygen, there will be an increase in both blood flow and blood volume in or-

der to supply more oxy-Hb, which gives a peak in the detected BOLD signal. The signal will

at last decrease to a slightly lower level than the initial signal, before it gradually rises to

the baseline again. The BOLD contrast is governed by both T2 (spin-spin relaxation) and T2’

(susceptibility-induced intravoxel dephasing) transverse relaxation, and is therefore most of-

ten detected with T2*-weighted imaging, for example using a gradient-echo (GRE) sequence

(Figure 1.3b) [3, 40]. Several image volumes are usually acquired over a period of time to

measure fluctuations in the BOLD signal.
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Figure 1.3: Illustration of the hemodynamic BOLD response and a gradient-echo sequence
used for fMRI. (a) The BOLD response after a stimulus: First there is an initial dip, followed by
the BOLD signal peak. At last, there is a post-stimulus undershoot before the signal gradually
restores to the baseline level. (b) In a gradient-echo sequence, the read-out gradient Gx is
reversed after the initial application in order to refocus the signal for detection.

1.1.2.1 fMRI in practice

It is important to note that fMRI only provides an indirect measure of brain activity, and that

the data must be carefully acquired, preprocessed, analyzed and interpreted to get valid re-

sults. The neurovascular coupling mechanisms are still not fully quantitatively understood,
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and there is not a 1:1 linear relationship between neuronal activation and BOLD response

[39]. Furthermore, the BOLD signal is relatively weak, although it increases with increasing

field strength [40]. Appropriate acquisition and preprocessing protocols are crucial for mini-

mizing noise and other non-neural sources of signal variation. The actual design of the fMRI

experiment and the choice of analysis approach depend on the clinical or research question

in mind (see Section 1.3.2.1). It is therefore clear that expertise in fMRI methods, statistics

and neuroanatomy is important to perform such investigations in order to avoid invalid con-

clusions. Nevertheless, fMRI activation patterns have been qualitatively confirmed by other

modalities [41, 42], and it is a powerful tool when applied and interpreted correctly.

1.1.3 Echo-planar imaging

Since the contrast in DWI is based on the movement of water molecules in the tissue, it is

also highly sensitive to other sources of motion [2, 43]. This also applies to fMRI, where mo-

tion can give rise to fluctuations in the signal intensity that can interfere with the underlying

BOLD signal. The MR sequences for these applications should therefore be as short as pos-

sible in order to reduce the impact of motion on the acquisition. In the sequences presented

so far, only one line in k-space is acquired per repetition time (TR), and the length of the

acquisition therefore scales with N×TR where N is the number of k-space lines in the image

(Figure 1.4b). However, there exist sequences that are able to acquire several lines in k-space

after one excitation, potentially shortening the acquisition time by N-fold. One of these is

echo-planar imaging (EPI), which has become the workhorse in many DWI and fMRI appli-

cations.

The reason why EPI is able to acquire an image volume in such a short time, is because it

utilizes rapid switching of gradients in order to acquire several lines in k-space successively

(Figure 1.4a,c) [3, 44]. To traverse the k-space, the frequency encoding or read-out gradient

Gx is applied to move along kx, while the phase encoding gradient Gy is applied to move along

ky. Thus, when applying successive reversed read-out gradients with short phase encoding

gradient blips between them, the k-space is sampled in a raster-like pattern. This principle

can be applied to a number of different sequences, for example an SE DWI sequence or a

GRE fMRI sequence.
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Figure 1.4: Schematic illustration of an SE-EPI sequence and k-space traversal for different
types of sequences. (a) An EPI sequence is characterized by rapid reversals of the read-out
gradient (Gx), with short phase encoding blips (Gy) in between. (b) In a traditional MR se-
quence (e.g. as shown in Figures 1.1a, 1.3b), only one line in k-space is sampled per TR. (c)
The gradient switching in EPI enables raster-like sampling of several k-space lines per TR.
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1.1.3.1 EPI artifacts

Although EPI overcomes many of the challenges related to motion during scanning, it is in-

herently prone to a number of other image artifacts [2]. In sequences used for DWI and fMRI,

some of the most common ones are Eddy current artifacts, ghosting, geometric distortions

and signal loss.

The EPI artifacts are to a large extent caused by the way the sequence traverses the k-space

[3]. Because of rapid gradient switching, an additional current is introduced, which alters the

net magnetic gradient. This leads to Eddy current artifacts in the images, visible as scaling,

shearing and translation of voxels. For DWI, this is especially prominent due to the added

diffusion gradients. These currents can also create delays causing the spins to refocus at a

later stage. Combined with the fact that every other line in k-space is sampled in the reverse

direction, this can lead to ghosting where structures in the image are periodically repeated.

The latter two types of EPI artifacts, geometric distortions and signal loss, are related to mag-

netic susceptibility effects. EPI has a very low bandwidth in the phase encoding direction,

meaning that the frequency difference from one voxel to the next is very small. Therefore,

even small inhomogeneities in the local magnetic field will misplace the signal in the re-

sulting image, and the resulting geometric distortion appears as stretching or compression

of the imaged object in the phase encoding direction (Figure 1.5). This effect is especially

prominent near boundaries between low and high susceptibility, for example air-tissue or

bone-tissue interfaces. Furthermore, the susceptibility variations can cause signal loss due

to intravoxel dephasing. The sensitivity to magnetic susceptibility effects generally increases

with increasing field strength (due to faster T2* dephasing) [40]. Geometric distortions of-

ten increase with increasing spatial resolution (due to the longer duration of the read-out),

but on the other hand there is a trade-off because decreasing the voxel size can mitigate

signal loss (due to less intravoxel dephasing) [45]. Although there exist several different ac-

quisition, reconstruction and post-processing correction methods to mitigate these artifacts

[2, 3, 46–49], they are often not perfect and the image quality is still the main limitation of

EPI compared to more conventional MRI sequences.
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(a) (b)

(c) (d)

Figure 1.5: Examples of EPI artifacts. (a) Axial slice of a T2-weighted and (b) an SE-EPI DWI
image (b = 800 s/mm2) of the prostate, with posterior-anterior (top to bottom in the image)
phase encoding direction. Air in the rectum causes geometric distortions and increased sig-
nal intensity near the prostate border (red arrow). (c) Coronal slice of a T1-weighted and (b)
a GRE-EPI fMRI image of the brain, with left-right (right to left in the image) phase encoding
direction. The whole brain is heavily distorted and skewed.

1.2 Cancer

Cancer is the general term for a group of diseases characterized by rapid and uncontrolled

cell proliferation, and is the second leading cause of death globally [7, 50]. It is caused by

genetic mutations of the cells, either arising spontaneously during cell division or caused by

external factors damaging the DNA, transforming them into "immortal" cancer cells [51, 52].

The cancer cells can grow in solid tumors or be disseminated in body fluids. Furthermore,

they can invade other tissues or spread to other parts of the body. There are many different

types of cancer, and they are characterized both by what type of cells and from which organ

they originate from. However, cancer is a very heterogeneous disease and the same type

of diagnosis can have highly different outcome prognoses. There is still a need for earlier

diagnosis, better risk prediction and more efficient treatments of cancer.
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1.2.1 Prostate cancer

Prostate cancer is one of the most common types of cancer among men worldwide [53]. 27%

of the cancer diagnoses among men in Norway are prostate cancers, and approximately one

in eight men will develop prostate cancer by the age of 75 [54]. They are usually so-called

adenocarcinomas, developing from the glandular cells of the prostate [55]. The prostate can

be divided into four main zones (Figure 1.6)—the peripheral zone (PZ), transition zone (TZ),

central zone (CZ) and anterior fibromuscular stroma (AFMS) [56]. The PZ is the largest area,

and 70-80% of the cancers originate there, compared to 20-25% in the TZ and CZ [57, 58].

Prostate cancers are often slow-growing and asymptomatic at the time of diagnosis, and

symptoms like pain or difficulties urinating are usually a sign that the cancer is advanced

or has spread to other parts of the body [59, 60].

Figure 1.6: Illustration of the anatomy of the prostate (sagittal view). The prostate gland is
located inferior to the bladder, and encapsulates the urethra and the ejaculatory duct. It con-
sists of the peripheral zone (PZ, purple), transition zone (TZ, green), central zone (CZ, blue)
and anterior fibromuscular stroma (AFMS, bright red/pink). Reproduced with permission
from [61].

To diagnose and stage prostate cancer, a combination of clinical examination, prostate-

specific antigen (PSA) measurements, imaging and biopsy is the standard in Norway [59, 60].

The biopsy is often targeted using ultrasound or MR images. The prostate cancer diagnosis is

determined from the biopsy, and staged according to the Gleason grading system (Table 1.1)

[62, 63]. Appropriate treatment is then decided based on the risk, together with other factors
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Table 1.1: Gleason grading system for prostate cancer risk groups based on histopathological
assessment. The new Gleason Grade Group system was designed to provide a better repre-
sentation of the actual risk than the old Gleason scores, although both of them are often used
together.

Risk group Gleason score Gleason Grade Group

Low (or very low) ≤ 6 1
Intermediate (favorable) 7 (3+4) 2
Intermediate (unfavorable) 7 (4+3) 3
High 8 4
Very high 9-10 5

such as the age, health condition and the personal preferences of the patient. Available treat-

ment types include prostatectomy, radiotherapy, chemotherapy, hormone treatment and ac-

tive surveillance. However, it can be difficult to determine the tumor aggressiveness and op-

timal treatment accurately, and both over- and undertreatment remain a major challenge in

prostate cancer management [64, 65].

1.2.2 MRI in prostate cancer

MRI is often performed before a biopsy when there is suspicion of prostate cancer, in order

to detect and characterize possible lesions and determine the locations of targeted biopsies

[59, 60, 66, 67]. Such a diagnostic protocol usually consists of T2-weighted imaging and DWI

(Figure 1.7), and sometimes also dynamic contrast-enhanced imaging (DCE), according to

the Prostate Imaging-Reporting and Data System (PI-RADS) [68]. This set of standardized

guidelines assists the radiologist in predicting the probability that a cancer is clinically sig-

(a) (b) (c)

Figure 1.7: Examples of MR images used for prostate cancer diagnostics. Axial view of a (a)
T2-weighted image, (b) DWI image (b = 800 s/mm2) and (c) ADC map of the prostate. The
red arrows denote a PZ lesion scored as PI-RADS 5.



14 CHAPTER 1. INTRODUCTION

Table 1.2: PI-RADS scores for radiological assessment of the likelihood of clinically signifi-
cant prostate cancer. The score is determined using a combination of T2-weighted imaging,
DWI and DCE.

Likelihood of clinically significant cancer PI-RADS score

Very low 1
Low 2
Intermediate 3
High 4
Very high 5

nificant (Table 1.2). While DWI is the dominant factor for determining the PI-RADS score for

PZ cancers, T2-weighted imaging is predominantly used for cancers in the TZ, and in certain

cases DCE is used for support.

1.2.2.1 DWI and mono-exponential ADC

Prostate cancer is often visible on diffusion-weighed images as focal areas with high signal

intensity, with correspondingly low mono-exponential ADC (≤ 1000 µm2/s) [68]. The low

ADC is commonly interpreted as abnormally restricted diffusion due to densely packed can-

cer cells in the tumor [69, 70]. To create these ADC maps, DWI is usually performed along

three orthogonal directions at two different b-values. The so-called trace-weighted images—

that is, the geometric mean of the images from the three directions—are then used to calcu-

late the mono-exponential ADC (Equation 1.1) [3].

However, although DWI and ADC maps generally perform well at detecting prostate can-

cer, there are some limitations to the method. Firstly, even though ADCs have been shown

to correlate with histopathological Gleason scores, there is considerable overlap between

risk groups [70, 71]. The accuracy of distinguishing between low-risk and high-risk cancer

is variable, which can make it challenging to select the appropriate treatment [72–74]. Be-

nign prostatic hyperplasia (BPH) also shows a low ADC and can in some cases be mistaken

as malignant [75]. Furthermore, the actual ADCs calculated depend on the sequence pa-

rameters and vary between sites and vendors, making it difficult to use standardized ADC

thresholds [76]. Another important limitation is that the mono-exponential ADC model is

an over-simplification that does not correctly represent the heterogeneity of the underlying

tissue microstructure [77]. Although tumors have densely packed cancer cells, they can also

have concomitant edema and necrosis with increased ADC, which can disguise the reduced
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ADC from the restricted water within the cells [78, 79]. A bi-exponential model or RSI might

therefore be better approximations of this heterogeneous tissue diffusion and have shown

promise in prostate cancer characterization [22, 23, 27]. However, the tissue components of

these models in reality have additional dependencies to those described in Equation 1.4.

1.2.2.2 ADC- and T2-dependent two-component model

In addition to different ADCs, tissue components can also have different T2-values. These

can be modeled similarly to the ADC components using bi-exponential modeling on images

with different echo times (TEs), although it is unclear whether the identified components

have a one-to-one correspondence where the same subpopulations of water molecules are

isolated by the ADC vs. T2 bi-exponential models [77, 80]. Traditionally, ADCs and T2 values

have been assumed to be independent of each other, but previous work suggests an interde-

pendence of these values in biological tissue [81, 82]. What has been known, however, is the

T2 shine-through effect, characterized by hyperintense signal in DWI caused by tissue with

long T2. In clinical imaging, this is usually considered an inconvenience that is attempted

to be eliminated [83]. Nevertheless, this principle could in theory be used to actively tune

the diffusion signal from the water molecules based on their T2 values, but this has not been

widely explored. In DWI there is a trade-off when it comes to the TE used in the sequence:

while a shorter TE yields more signal and less T2 shine-through, a longer TE has also been

shown to provide a better tumor conspicuity [84]. By varying the TE of the sequence, signal

from diffusion components with distinct T2 values can potentially be isolated.

In the prostate, the interdependence between T2 and ADC has been shown to be differ-

ent for tumor, normal tissue and BPH [84–86]. This relationship could potentially be ex-

ploited for prostate cancer diagnosis. By performing DWI using a set of different b-values

and TEs, it would in theory be possible to isolate the signal from subvoxel populations of

water molecules with specific paired T2 values and ADCs associated with different compo-

nents of the prostate tissue. This combined T2- and diffusion-weighted imaging (T2-DWI)

approach provides a matrix of signal values for each voxel that can be used for model fitting.

A three-component model using this imaging technique has been suggested, with the pur-

pose of distinguishing the prostate tissue components epithelium, stroma and lumen [87].

However, during clinical diagnostic imaging protocols, a relatively short acquisition time is

crucial. Also, very complex models might be too computationally demanding in a clinical



16 CHAPTER 1. INTRODUCTION

setting. A model with only two components might therefore be easier to implement in the

diagnostic pathway. The components are similar to those in the ADC-based bi-exponential

model, with a fast component representing water in the glandular lumen with long T2 and a

high ADC, and a slow component representing water inside the cells with a shorter T2 and

lower ADC (Figure 1.8). This two-component model is obtained by adding TE dependence

to Equation 1.4, so that the signal fractions are also dependent on the exponential T2 decay:

SI
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T2,sl ow

)
exp
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(
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T2, f ast

)
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)
.
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(a) (b)"Slow" component:
→ Low ADC
→ Short T2

"Fast" component:
→ High ADC
→ Long T2

Figure 1.8: Illustration of the slow and fast diffusion components of the ADC- and
T2-dependent two-component model. (a) While the slow component represents water
molecules restricted by cell membranes, (b) the fast component represents water in the glan-
dular lumen.

1.3 Neuroimaging

Neuroimaging is the art of imaging the anatomy or the function of the brain [33, 88]. There

exist a variety of different techniques used to image the brain either directly or indirectly,

for example MRI, computed tomography (CT), positron emission tomography (PET), single-

photon emission computed tomography (SPECT), magnetoencephalography (MEG) and elec-

troencephalography (EEG). They can be used in clinical diagnostics or disease management

for head trauma, stroke, brain tumors and neurodegenerative diseases, among others, and

advanced methods are also used for neurosurgical planning. Another important application

of neuroimaging is in research.
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1.3.1 Neuroscience research

In neuroscience, the goal is to study and understand the structure and function of the ner-

vous system, where the brain is the most central organ [89]. It is made up of billions of neu-

rons, which are highly interconnected to operate this highly complex network. The cerebrum

of the brain is separated into two hemispheres that can be subdivided into four main lobes

(Figure 1.9). Each hemisphere has an outer layer of gray matter—the cerebral cortex—which

mainly consists of neuronal cell bodies, and an inner core of white matter, which mainly

consists of bundles of myelinated axons—so-called fiber ’tracts’ that enable communication

between brain regions.

Figure 1.9: Illustration of brain lobes and hemispheres of the cerebrum. The frontal, pari-
etal, occipital and temporal lobes are shown from a side view (left), and the left and right
hemispheres are shown from a top view (right). Reproduced with permission from [90].

Neuroscience research is a highly interdisciplinary field and can be categorized into several

different subdisciplines, although they also often tend to merge together. Some examples

are systems neuroscience, which studies the structure and function of neural circuits and

systems [91]; cognitive neuroscience, which studies how cognitive functions are produced

by neural circuity [92]; and translational neuroscience, where neuroscience is translated and

applied for development of clinical applications and treatments for nervous system disor-

ders [93]. There is a wide variety of methods and approaches that can be used to investigate

the brain [88, 89]. While a lot of the current knowledge in neuroscience has been obtained

through basic research in animals [94], for example in rodents and non-human primates,
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human neuroscience research is more limited by ethical constraints on invasive procedures.

Therefore, neuroimaging has become the essential tool to investigate the human brain in

vivo. However, even though the increasing sophistication of available methods have en-

hanced our understanding of this enormously complex organ, there are still many unan-

swered questions.

1.3.1.1 Entorhinal cortex

The entorhinal cortex (EC) is a part of the hippocampal formation located in the medial tem-

poral lobe (MTL) of the brain (Figure 1.10). It is central in episodic memory encoding, spatial

navigation and time perception [95–99], and it processes and relays information between

the neocortex and the hippocampus [100–102]. The EC can be divided into two main sub-

regions, ’medial’ (MEC) and ’lateral’ (LEC) entorhinal cortex, which differ in both functional

properties and connectivity to other regions [103–105]. Roughly speaking, the MEC mainly

supports allocentric processing of space [106–109], while LEC mainly supports processing

of objects and time [98, 108, 110, 111], although this traditional view is to some degree a

simplification [112, 113]. Both the location and the function of the MEC and LEC have been

identified and widely studied in rodents and non-human primates. However, the human ho-

mologues of these regions and their exact locations have not been studied at the same level

of detail. Although there have been previous fMRI studies which suggest that the homo-

logue subregions are located posteromedially (pmEC) and anterolaterally (alEC) in the EC,

respectively [114, 115], it remains unclear whether the results could be affected by the na-

ture of the imaging modality or the choice of brain regions used to identify the MEC and LEC

homologues—particularly in light of new findings from rodents which have substantially re-

vised the classical model of EC connectivity [112]. Identifying these subregions is important

for functional and cognitive studies of the EC and also for research on neurodegenerative

diseases such as Alzheimer’s, which is the most common form of dementia and originates in

the EC and transentorhinal area [8, 116, 117].

1.3.2 MRI in neuroscience

MRI has become an essential tool in human neuroscience research, due to its non-invasiveness,

versatility and superior soft tissue contrast [88, 89, 119]. Depending on the type of research,

MRI studies can include scanning of both patients and/or healthy volunteer participants.
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Figure 1.10: Sagittal slice of a structural MR image showing the medial temporal lobe, with
delineations of the entorhinal cortex (pink), hippocampus (blue), perirhinal cortex (yellow),
parahippocampal cortex (green) and amygdala (red). A = anterior, P = posterior. Reproduced
with permission from [118].

There are several types of MRI that are frequently used to investigate the brain, ranging from

"standard" structural imaging to more advanced functional and modeling approaches, often

also in combination. The actual choice of methods will depend on the particular research

question in mind. Following the recent years’ rapid development in both hardware and com-

putational power, a new world of possibilities have opened up, enabling novel MRI methods

and neuroscientific advances that were previously inaccessible.

1.3.2.1 fMRI and functional connectivity

One of the most widely used types of MRI in neuroscience is functional MRI [120, 121]. As

explained in Section 1.1.2, fMRI exploits the fluctuation in BOLD signal over time in order to

indirectly measure brain activity. There are several possible investigation approaches avail-

able. For example, in task-based fMRI, the participants undergo various tasks in order to

detect the locations and patterns of brain activity during the task. The nature of such a task

can range from simple visual stimuli to highly complex navigation and memory paradigms,

seeking to identify which brain regions are involved in certain cognitive processes and how

they are involved. In resting-state fMRI (rs-fMRI), on the other hand, the participants do

not perform any tasks, but are instead scanned at rest over a period of time with a BOLD-
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sensitive sequence. While various forms of data- and process-related modeling approaches

are often used in task-based fMRI, most rs-fMRI analyses are considered model-free or data-

driven.

Resting-state fMRI can be used to investigate functional connectivity, i.e. to identify brain

regions and networks that share functional properties [121, 122]. This is done by quantifying

temporal correlations of voxels and regions in the brain, assuming that functionally con-

nected regions show correlated activity. The BOLD signal in these resting-state networks is

characterized by low-frequency variations over time [123]. However, it is important to pre-

process, analyze and interpret the rs-fMRI data carefully, because signal fluctuations can

arise from other sources than the BOLD response. It is especially important to mitigate

and be aware of scanner noise and physiological sources of noise such as heart rate, res-

piration and head motion. Appropriate preprocessing of the data is therefore crucial. It is

also important to be aware of practical considerations of the actual data acquisition, such

as participant instructions (e.g. "think about nothing"; eyes closed vs. eyes open, fixation),

acquisition length, and temporal and spatial resolution [122, 124]. Then, for the functional

connectivity analysis itself, various methods can be used. One example is independent com-

ponent analysis (ICA), a data-driven approach where mathematical algorithms are used to

decompose the signal into separate frequency components that are statistically independent

of each other [121, 122]. Another example is seed-based analysis, where a region of interest

(ROI) is defined and the temporal correlation between this ROI and the rest of the voxels in

the brain is calculated (Figure 1.11). Although this approach requires an a priori hypothesis

on which seed regions to investigate, it is a relatively simple and powerful method to detect

functionally connected regions. Previous work has shown that seed-based analysis and ICA

yield similar functional connectivity networks [122].

Despite the growing interest in rs-fMRI over the years, it has not been without controversy

[124]. There have been questions about the sources of the resting-state fluctuations, nega-

tive correlations, and whether correlation really implies connectivity. Direct measures us-

ing implanted electrodes and calcium imaging in monkeys and mice have, however, con-

firmed that these low-frequency BOLD fluctuations correspond to actual neuronal activity

[125, 126]. Furthermore, functional connectivity estimates have been shown to be stable

across studies, although reliability and reproducibility vary [122]. A number of resting-state
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Figure 1.11: Example of a functional connectivity map overlaid on a structural MR image,
obtained by using a retrosplenial cortex ROI (bright yellow area) as seed in temporal corre-
lation analysis of rs-fMRI data. The resulting functionally connected areas, denoted by the
red-yellow color map, are part of the so-called default mode network.

networks have been identified, such as the default mode network, salience network, auditory

network, visual network, sensorimotor network and dorsal attention network, among others

[121]. However, one limitation of these functional connectivity measures is that they do not

provide information about directionality or causality of the connections, in addition to that

there might be dynamic changes in functional connectivity over time [40, 127]. Also, note

that while functional connectivity indicates that the brain regions are involved in the same

functional processes, and function generally is constrained by anatomy, it does not neces-

sarily mean that the regions are directly connected with brain fibers [122, 127]. Alternative

methods are needed in order to examine such direct anatomical connections. Nevertheless,

rs-fMRI is a robust and useful method for characterizing large-scale brain systems, which

can be obtained relatively fast and easy.

1.3.2.2 DTI and structural connectivity

Another important imaging modality in neuroscience is diffusion tensor imaging (DTI) [129].

As mentioned in Section 1.1.1.2, FA maps can be used to visualize the major white matter

pathways of the brain (Figure 1.12a). However, in order to reconstruct the fiber tracts in

a more detailed manner and investigate structural connectivity between specific brain re-

gions, so-called tractography can be performed [129–131]. For this purpose, a minimum

of 30-60 unique diffusion directions should be acquired to reduce the uncertainty in the

estimated fiber directions. There exist two main groups of approaches: deterministic and
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Figure 1.12: Deterministic vs. probabilistic tractography approaches. (a) Color-coded FA
map obtained from DTI, showing the degree and direction of the diffusion anisotropy. Red
color denotes principal diffusion direction left↔right, green denotes anterior↔posterior,
and blue denotes superior↔inferior. (b) In deterministic tractography, only one single fiber
direction is represented per voxel, and the modeled tracts follow these principal directions.
(c) In probabilistic tractography, connectivity paths are generated based on a probability
distribution of diffusion directions for each voxel. Reproduced with permission from [128].

probabilistic tractography. In deterministic tractography, single tracts are reconstructed by

following the principal direction of the diffusion tensor from voxel to voxel (Figures 1.12b,

1.13a). However, this is a "winner takes all" approach where only one fiber direction is con-

sidered per voxel, and it does not take into account that each voxel can contain fibers dis-

persed in several different directions. Probabilistic tractography, on the other hand, handles

this by estimating a fiber orientation distribution function (fODF) with several possible path

directions for each voxel [132–135].

The fODFs for probabilistic tractography can be modeled in several different ways. One

widely used is the "ball and stick" model, where the diffusion signal is split into isotropic

components (multi-shell "balls" with different diffusivities), and infinitely anisotropic com-

ponents for each fiber orientation ("sticks") [132, 133]. Another approach is the "ball and

zeppelin" model, which is slightly different, but still models the diffusion signal as separate

isotropic and anisotropic components [135]. In both these types of models, the signal S

within a voxel when applying the k th diffusion gradient is a weighted sum of attenuated sig-
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Figure 1.13: Structural connectivity path representations from deterministic vs. probabilis-
tic tractography. (a) In deterministic tractography, single tracts are reconstructed. (b) The
connectivity paths in probabilistic tractography are represented as a probability map of the
existence of a tract in each voxel (brighter color means higher probability). Reproduced with
permission from [136].

nal fractions f from the isotropic partial volume component E PV and the anisotropic com-

ponent E AN :

S(θk ,φk )/S0 = Sk /S0 = (1− f AN )E PV
k + f AN E AN

k , (1.7)

where θ and φ denote the angles of the diffusion gradient direction, S0 is the non-diffusion-

weighted signal, and 0 ≤ f AN ≤ 1. The underlying idea is then that the measured anisotropic

diffusion signal S AN can be considered as the spherical convolution of the fODF F and an

impulse response function R:

S AN (θ,φ) = F (θ,φ)⊗R(θ,φ). (1.8)

The main difference between the "ball and stick" and "ball and zeppelin" models is that the

latter gives a width to the deconvolution kernel when determining the fODF. This can sup-

press false positive fiber crossings, and also performs better at detecting crossing fibers in

areas of low anisotropy.

After estimating voxel-wise fODFs for the whole brain, structural connectivity paths are cre-

ated by drawing a sample from the fODF and following that direction to the next voxel [132,

133]. This is performed iteratively in order to build up a probability map of the paths, which
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instead of depicting single tracts provides a confidence measure of the existence of a tract

in that voxel (Figures 1.12c, 1.13b). The advantage of this approach over deterministic trac-

tography is the possibility to model smaller tracts and crossing fibers. However, it is still

important to interpret the results carefully, as there is currently no ’gold standard’ for vali-

dating human tractography results. Estimated connection probabilities also depend on fac-

tors such as paths lengths and seed ROI sizes, and do not provide any information about the

directions of projections. Nevertheless, DTI tractography is a powerful tool and currently the

best alternative for in vivo comparison of structural connectivity with functional connectiv-

ity measures from fMRI.



Chapter 2

Aims of the thesis

The overall aim of this thesis was to apply advanced MRI methods to research areas in can-

cer and neuroscience. More specifically, the key goal was to develop and investigate DWI

and fMRI methods in prostate cancer and the entorhinal cortex of the brain.

The main objectives of the research presented in this thesis were:

1. To develop and investigate the diagnostic potential of an ADC- and T2-dependent two-

component model in prostate cancer, based on combined T2-DWI (Paper I).

2. To use DTI and probabilistic tractography to investigate structural connectivity be-

tween the EC and associated brain regions, in order to identify human homologues of

MEC and LEC based on differential connectivity following new insights from rodent

anatomy (Paper II).

3. To investigate reproducibility of DTI results in the EC, and to use both DTI and fMRI

to compare structural and functional connectivity between the EC and associated re-

gions, in order to identify human homologues of MEC and LEC based on differential

combined connectivity (Paper III).
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Chapter 3

Summary of papers

3.1 Paper I

Exploring the diagnostic potential of adding T2 dependence in diffusion-

weighted MR imaging of the prostate

The purpose of this paper was to investigate the diagnostic potential of signal fractions es-

timated from an ADC- and T2-dependent two-component model using combined T2- and

diffusion-weighted imaging (T2-DWI).

76 patients, of which 62 had post-MRI biopsy-confirmed prostate cancer and 14 with BPH,

underwent combined T2-DWI at 3T following prostate cancer suspicion. The acquisition

protocol consisted of two TEs of 55 and 73 ms and two b-values of 50 and 700 s/mm2, pro-

viding a set of four measurements per voxel. The patients were split into a training and test

set, and the data from the training set were used to globally optimize the T2 values of the slow

and fast components of the two-component model. Literature ADCs of 0.3 and 2.6 µm2/ms

were used throughout the analyses for the slow and fast components, respectively. The re-

sulting fixed T2 values and ADCs of the components were then used to estimate the signal

fraction of the slow component for the test set patients in tumor, BPH and normal tissue

ROIs. For comparison, the slow component of a pure ADC-dependent bi-exponential model

was also calculated, in addition to the mono-exponential ADC.

The optimal T2 values for the two-component model were found to be 45 and 180 ms for

the slow and fast components, respectively. All three analyzed models showed a signifi-
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cant difference between PZ tumors and normal tissue, while no significant differences were

found between non-PZ tumors and BPH. Receiver operating characteristics (ROC) analysis

also showed a very good diagnostic performance of all models in separating between tu-

mor and normal tissue voxels, although the two-component model yielded slightly higher

sensitivity, specificity and area under the ROC curve than the two other models. Spearman

correlation between calculated tumor values and Gleason Grade Group for all three models

was fair, but not significant. However, the bi-exponential model and mono-exponential ADC

showed slightly higher correlations than the two-component model.

In conclusion, signal fraction estimates from an ADC- and T2-dependent two-component

model based on combined T2-DWI can differentiate between tumor and normal prostate

tissue, and show potential for prostate cancer diagnosis. The model performed similarly to

conventional diffusion models.

3.2 Paper II

Structural connectivity-based segmentation of the human entorhinal cortex

The goal of this paper was to use DTI and probabilistic tractography to segment the EC

into the human homologues of MEC and LEC. For years, the accepted model of EC con-

nectivity was centered around the idea of two dual streams of information via MEC and LEC

and the parahippocampal and perirhinal cortices, respectively, but new insights from ro-

dent anatomy has led to revisions of this traditional view. Furthermore, previous attempts to

identify the subregions were based on fMRI.

Structural and diffusion MRI data from 35 healthy adults were obtained from the MGH-

USC Human Connectome Project. DTI data were acquired at 3T with b-values of 0, 1000,

3000, 5000 and 10,000 s/mm2. ROIs of the EC, presubiculum, distal CA1 + proximal subicu-

lum (dCA1pSub), retrosplenial cortex (RSC) and posterolateral orbitofrontal cortex (OFC)

were obtained using automated cortical parcellation. Probabilistic tractography was run

between the EC and the other ROIs in order to create maps of connectivity. These struc-

tural connectivity maps were then used to segment the EC into the MEC and LEC homo-

logues, by performing voxel-wise hard segmentation based on which other ROI show the
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strongest connectivity with that voxel. MEC was defined as being more strongly connected

with presubiculum and RSC, whereas LEC was defined as being more strongly connected

with dCA1pSub and OFC. The resulting degree of posterior-anterior (PA) and medial-lateral

(ML) orientation of the border between the EC subregions was calculated as a percentage be-

tween 0 and 100%, depending on the angle between the center of gravity vectors from MEC

to LEC and a pure PA or ML vector.

All ROIs showed clear structural connectivity paths to the EC, where presubiculum and RSC

were more strongly connected with medial and posterior EC, while dCA1pSub and OFC were

more strongly connected with lateral and anterior EC. Using EC connectivity with different

combinations of other ROIs all showed a segmentation into posteromedial (pmEC) and an-

terolateral (alEC) EC, such that the border between them was oriented both towards the PA

and ML axes. Different seed ROIs resulted in varying degrees of PA and ML orientation of the

border between the subregions, with a larger variation along the ML than PA axis. However,

all DTI segmentation approaches showed a higher degree of ML orientation of the border

and a correspondingly lower degree of PA orientation than previous fMRI studies attempting

to subdivide the EC.

In conclusion, the DTI results from this paper support the subdivision of the human MEC

and LEC homologues into pmEC and alEC, in line with previous fMRI studies. However,

there are some differences between the results from the different modalities and seed regions

regarding the degree of orientation of the subregion border along the PA and ML axes.

3.3 Paper III

Investigating structural and functional connectivity of human entorhinal

subregions using DTI and fMRI

The main purpose of this paper was to investigate and compare structural and functional

connectivity between the EC and associated brain regions, and use this to predict the loca-

tions of the human homologues of MEC and LEC. Furthermore, we also wanted to investi-

gate the reproducibility of segmentation results obtained from the previous DTI study.
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Structural, diffusion and functional MRI data from 103 healthy adults were obtained from

the WU-Minn Human Connectome Project. 3T and 7T data were acquired with b-values

of 0, 1000, 2000, 3000 s/mm2 and 0, 1000, 2000 s/mm2, respectively. 7T resting-state fMRI

data were acquired in runs of 16 minutes, separately with posterior-anterior and anterior-

posterior phase encoding directions. The same ROIs were used as in paper II, and the MEC

and LEC connectivity definitions were also the same. Probabilistic tractography was run on

the DTI data to create EC maps of structural connectivity with the other ROIs, and seed-

based functional connectivity analysis was run on the rs-fMRI data to create EC maps of

functional connectivity for with other ROIs. MEC and LEC homologue segmentation was

performed separately for the modalities using different combinations of seed ROIs, and both

with separate and combined field strength (for DTI) and phase encoding direction (for fMRI).

The degree of PA and ML subdivision was calculated for all the different segmentation ap-

proaches. Resulting MEC and LEC ROIs from the DTI analysis were then used as seeds for

functional connectivity analysis, and resulting MEC and LEC ROIs from the rs-fMRI analysis

were used as seeds for tractography.

Structural and functional connectivity maps showed similar patterns of connectivity with

the other ROIs within the EC. While presubiculum and RSC were more strongly connected

with posterior and medial EC, dCA1pSub and OFC were more strongly connected with ante-

rior and lateral EC. Using DTI and rs-fMRI to segment the EC subregions resulted in similar

locations of the MEC and LEC homologues, namely posteromedial and anterolateral EC, re-

spectively. The modalities also yielded similar orientations of the subregion border along the

PA axis, but had a larger variation along the ML axis. The DTI-based segmentation results

were similar to the previous DTI study. Furthermore, tractography and functional connec-

tivity analyses performed on MEC and LEC homologues defined from the opposite modality

showed differential, but similar functional and structural connectivity patterns.

In conclusion, both DTI and fMRI subdivide the human EC into pmEC and alEC, although

with slight differences along the PA and ML axes. The resulting EC subregions show dif-

ferential connectivity to other brain regions, but the structural and functional connectivity

patterns are similar. Segmentation results from using DTI were found to be relatively repro-

ducible across studies.
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Discussion

4.1 Main findings

4.1.1 Paper I

ADC + T2-dependent two-component model has potential for prostate cancer diagnosis

The aim of paper I was to develop and investigate the diagnostic potential of the ADC- and

T2-dependent two-component model, and we showed that the signal fraction of the slow

component of the model was able to significantly discriminate between tumor and normal

prostate tissue. Furthermore, the signal fraction had a fair correlation with tumor aggres-

siveness, although not significant. However, when we compared it with the bi-exponential

model and mono-exponential ADC, all three performed similarly. Our two-component model

thus shows promise for prostate cancer diagnosis, but does not at this stage show notable

benefits over the conventional models.

Although all three compared models performed similarly, the bi-exponential model and mono-

exponential ADC showed almost equal numerical results throughout the analyses, whereas

the two-component model showed slightly different results than the two others. An emerg-

ing question is therefore: Does the added T2 dependence of the two-component model pro-

vide more or other information about the underlying tissue microstructure than the con-

ventional models? While the mono-exponential ADC only represents the mean diffusion of

the tissue, both the bi-exponential and the two-component models represent a slow and a

fast diffusion component—intracellular and extracellular water, respectively. Because both

these models used the same ADCs of the components in these analyses, a plausible inter-
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pretation is that the added T2 dependence of the components in the two-component model

would further tune and "filter" the diffusion signal of the components. While a high b-value

will attenuate water with high ADC and thus emphasize the signal from the component with

low ADC (which is also characterized by short T2), a longer TE will on the contrary empha-

size the signal with a longer T2 (which is also characterized by higher ADC). If the slow com-

ponents of the two models truly represent exclusively intracellular water, this would mean

that the slow component of the two-component model represents a sub-population of wa-

ter molecules compared to the slow component of the bi-exponential model. However, this

is still a simplification and it is more likely that the components represent mixtures of wa-

ter populations. Neither the intracellular nor the extracellular water have the exact same

ADC and T2 values throughout the whole prostate. When comparing the ADCs and T2 val-

ues from the two-component model with values calculated for a similar three-component

model representing the prostate tissue components epithelium, stroma and lumen [87], our

slow component appears to be approximately equivalent to the epithelium, while our fast

component might be a mixture of stroma and lumen.

4.1.2 Papers II & III

Both DTI and fMRI subdivide the human EC into posteromedial and anterolateral parts

The main aims of paper II and III were to use DTI and rs-fMRI to predict the locations of the

human homologues of MEC and LEC following new insights from rodent anatomy, and our

results from both modalities suggest that these are located posteromedially (pmEC) and an-

terolaterally (alEC) in the EC, respectively. This is in line with the findings from previous fMRI

studies [114, 115]. Although there were slight quantitative differences between our struc-

tural and functional connectivity-based results in how the border between the subregions

was oriented, they showed qualitatively similar patterns of connectivity within the EC. The

resulting subregions also showed differential patterns of connections to the rest of the brain

that were similar across structural and functional connectivity. Furthermore, comparing the

results from the two papers showed that the DTI results were relatively reproducible across

different acquisition protocols and cohorts of participants. For the fMRI results, however,

we cannot make any claims about reproducibility as different seed regions were investigated

across studies, although the resulting pmEC and alEC locations were qualitatively similar.
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In addition to predicting the locations of pmEC and alEC, it would also be interesting to

describe the nature of the border between them—i.e. if there is a sharp or more gradient-

like border. While there is a very sharp, cytoarchitectonically and projection-defined border

between MEC and LEC in rodents, the non-human primate EC is suggested to have a topo-

graphical connectivity gradient along a rostrolateral to caudomedial axis which does not ad-

here to any distinct cytoarchitectonic division [137–139]. One might therefore assume that

also the human EC has such a gradient along the anterolateral to posteromedial axis. The

reason for this difference between rodents and primates might be that primates integrate

together the information processed in the MEC and LEC to a larger extent—combining as-

pects of space, object and time processing—although this is just speculation. Other relevant

factors could be that rodents have poorer vision that primates, and their prefrontal cortex

is also smaller and less differentiated [140, 141]. Although we provide a probability map of

the confidence of MEC and LEC homologue locations in paper III which shows a gradual

"transition" between the two subregions, this should not be directly interpreted as an actual

gradient between them, and defining this was out of the scope of our work. Future studies

should address this question by investigating both structural and functional connectivity to

even more brain regions in detail, in order to map the topography of connections that might

project only to subparts of MEC and LEC.

4.2 Methodological considerations

4.2.1 Paper I

We chose to develop and apply a two-component model to the data acquired from com-

bined T2-DWI. A simpler approach for this type of data would be to merely calculate the

change in ADC and T2 as a function of changing TE and b-value, respectively. Some of the

previous studies using combined T2-DWI primarily investigated this, and found that there

were differences in how these changed in tumor, BPH and normal prostate tissue [84–86].

More specifically, there appears to be a natural pattern in how these values behave that is

somehow disrupted in tumors. This is in line with our results from supplementary analyses

in the paper, at least for PZ tumors. On the other hand, we could have moved in the opposite

direction and applied a more complex model. In our study, however, we were limited by the

amount of data available for model fitting, with only 2×2 measurements per voxel. Further-
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more, our goal with this paper was to investigate a model which might be a more accurate

representation of the tissue microstructure than the mono-exponential ADC and include T2

dependence, but still simple enough to be feasible in a clinical setting. The total acquisition

time of the combined T2-DWI protocol was just above 3 minutes, which is in the same order

of magnitude as a clinical DWI scan. In comparison, acquisition times for RSI or a combined

T2-DWI scan with 3×3 measurements can be in the range from 5 to 15 minutes [27, 84, 87].

Because of limitations in the available data points compared to the number of free vari-

ables of the two-component model, we adapted the ADCs of the components from a bi-

exponential model [21]. These were then used to globally optimize the T2 values of the com-

ponents. Ideally, with a larger number of data points, we would globally optimize the ADCs

and T2 values together, in order to find the values that would best fit our data and repre-

sent two optimal ADC- and T2-dependent components of the prostate tissue. Although we

already represent two components with ADCs and T2 values of 0.3 µm2/ms and 45 ms and

2.6 µm2/ms and 180 ms, respectively, these might not be the optimal components for our

specific research question, and the residuals of the model fitting could possibly have been

reduced with more specifically optimized ADCs and T2 values. As we hypothesize our slow

component to be restricted water within tumor cells, the optimal ADC and T2 value for this

component should be closely matched with the actual physical values of these cells, in order

for our two-component model to be maximally sensitive to them.

The limitation in available data points is also the most important limitation of the paper.

However, as already mentioned, there is a trade-off between the amount of data and clinical

feasibility. One possible workaround could be to acquire a wide range of TEs and b-values

for research purposes, and then use all this data to optimize the ADCs and T2 values of the

two components. This will give the opportunity to find values that are specifically optimized

for the ADC- and T2-dependent two-component model, and the improved fitting stability

provided by the additional data will increase the confidence of these values. The optimized

ADCs and T2 values could then be applied to the two-component model in a clinical setting.

Choosing the appropriate b-values and TEs of the clinical sequence will also be important

for maximizing the sensitivity to the ADCs and T2 values of the components, and b-values

higher than those used in our current T2-DWI protocol might be needed. Although the clin-

ical T2-DWI acquisition would again be limited by the number of data points, the gained
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accuracy from the optimized parameter values might weigh up for the possible loss in fitting

quality. This approach would allow for an improved evaluation of the diagnostic potential of

the two-component model, which would be interesting especially in terms of any potential

for predicting tumor aggressiveness.

One possible source of bias in our paper was that the diffusion times of the acquisition also

varied with TE. For TE = 55 ms, δ = 11.6 ms and ∆ = 23.9 ms, while for TE = 73 ms, δ = 20.6 ms

and ∆ = 32.9 ms. This was an unfortunate effect of using two separate standard vendor DWI

sequences for acquisition of the two TEs, and the mitigation for this would be to use a des-

ignated combined T2-DWI sequence with fixed δ and ∆. However, this raises an important

question: How much of the observed signal behavior depends on variation in TE, and how

much is because of varying diffusion times? While the TE tunes the signal according to the T2

of the tissue, the ∆ can directly affect the measured ADC, especially in cases where the time

scale corresponds with the length scale of microstructures in the tissue. In one of the pre-

vious combined T2-DWI studies in prostate cancer, they also report varying ∆ with TE, but

they do not explicitly investigate the effect of this [84]. Another important question is: What

is the shortest ∆ that can be used to detect the restricted diffusion within the cancer cells?

If ∆ is too short, most of the water molecules do not interact with the cell membrane, and

the measured diffusion will not appear restricted. One study investigated the effect of vary-

ing ∆ for constant b-values in a glioma xenograft model in mice, and found that the water

molecules started approaching this truly restricted diffusion regime at ∆ = 40 ms [18]. How-

ever, this is highly dependent on the type of cells and their size and intracellular diffusivity.

Other studies performing advanced diffusion modeling in the prostate have reported using

∆ in the range 25-78 ms [22, 27, 84]—although many studies do not report it at all. Future

studies should more rigorously investigate the differential effects of varying both TE and ∆

in combined ADC- and T2-dependent diffusion models.

4.2.2 Papers II & III

We chose to use probabilistic tractography for examination of DTI structural connectivity,

as seeding the tractography from the EC to the other ROIs would then create probability

maps of connectivity. Another possible approach is deterministic tractography. However,

this would only allow for the mapping of one possible tract per seed voxel in the EC ROI, thus

not providing the same broad distribution of paths. A great benefit of probabilistic tractogra-
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phy is that this technique is able to detect also smaller, splitting and crossing paths because

more than one fiber direction is possible per voxel, and it is more robust in the presence of

noise—in deterministic tractography it can be difficult to move past a noisy voxel. On the

contrary, any erroneous paths will tend to disperse quickly due to the probabilistic nature of

the method. The confidence of the paths estimated will increase with the number of sam-

pled paths per seed voxel. We did not perform a rigorous investigation on what number of

samples would be required to get robust results, but rather chose a relatively high number

of 250,000, which is considerably higher than a selection of other tractography-based seg-

mentation studies which used 5,000-100,000 samples [142–145]. Both the estimation of the

whole-brain fODFs and running the tractography with such a high number of samples were

highly time-consuming processes, but this was mitigated by eventually running the compu-

tations on a graphics processing unit (GPU) [146, 147].

In this work, we used three different DTI datasets with different acquisition parameters and

properties. For paper II, DTI data were acquired on a customized 3T scanner with very high

gradient performance (maximum gradient strength 300 mT/m), enabling an ultra-high max-

imum b-value of 10,000 s/mm2 (256 directions) [148, 149]. A high gradient strength is essen-

tial to achieve such high b-values in practice without too much T2 signal loss caused by long

TEs, and it has also been shown to increase detection of complex fiber structures at con-

stant b-value. Furthermore, the ability to reliably resolve more than one fiber direction in

each voxel is strongly dependent on the number of gradient directions—as many as 84-112

might be needed for this, dependent on the b-value [150]—and to detect three fiber orien-

tations, the b-value should not be lower than 3000 s/mm2 [133]. The spatial resolution of

this dataset was 1.5 mm isotropic. The DTI data in paper III were acquired on scanners with

lower gradient performance—although still better than most conventional scanners—with

a maximum gradient strength of 100 mT/m and 70 mT/m for 3T and 7T, respectively [151].

The b-values were also lower than in paper II, but with a higher spatial resolution: At 3T,

maximum b-value was 3000 s/mm2 (90 directions × 2) with 1.25 mm isotropic resolution,

while at 7T, maximum b-value was 2000 s/mm2 (65 directions × 2) with 1.05 mm isotropic

resolution. These datasets acquired at the two field strengths therefore have slightly different

properties. The 3T data have a higher maximum b-value and angular resolution, and thus

have a higher ability to resolve crossing fibers. On the other hand, the 7T data have a higher

spatial resolution which is less prone to partial volume effects. Using both of these in com-
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bination could therefore potentially provide more information about the underlying white

matter microstructure. Although we performed tractography for the field strengths sepa-

rately and then merged the connectivity maps for the final analyses, there also exist frame-

works for data fusion where the DTI analysis is performed on the joint dataset, in order to

fully exploit the benefits of their complementary features [135]. The field strength in itself

is also an important difference between the two datasets. Although 7T has a higher baseline

signal-to-noise ratio (SNR) than 3T, the T2 is shorter at 7T, so with the relatively long TEs used

in DTI together with a smaller voxel size most of the SNR benefit from the increase in field

strength is lost. In addition, the SE-EPI sequences used for DTI is vulnerable to B+
1 transmit

inhomogeneities at 7T leading to signal and contrast variations across the brain. This signal

reduction is especially prominent for the MTL, and for the DTI data in paper III we actually

found the SNR measures in the EC to be lower for 7T than for 3T. All in all, the DTI datasets

used across the two papers have different strengths and weaknesses. The 3T DTI dataset

used in paper II has a higher maximum b-value, gradient strength and number of gradient

directions. The DTI data used in paper III, on the other hand, have a higher spatial resolution

and also a considerably higher sample size. Nevertheless, all three DTI datasets are of very

high quality, and showed similar results for the MEC and LEC segmentation.

For the rs-fMRI analyses, seed-based functional connectivity analysis was performed. This

was considered to be the suitable approach as we wanted to investigate the structural con-

nectivity seeded from pre-defined ROIs, and it is relatively straightforward to implement.

There exist other, more complex analysis methods and models to investigate resting-state

structural connectivity, e.g. ICA, graph theory or the so-called ConGrads approach [115, 121,

152]. However, performing a more complex analysis does not necessarily mean that the re-

sults will be better, and both ICA and seed-based analysis have been shown to detect similar

resting-state networks [122]. An important point is also that we wanted the functional con-

nectivity analysis to resemble the principles of the DTI structural connectivity analysis in or-

der to enable inter-modality comparisons between seed ROIs, and the seed-based approach

was therefore an appropriate choice.

Because both the DTI and rs-fMRI data were acquired using EPI sequences, reduced im-

age quality and artifacts is a limitation to this work. The MTL is generally a difficult area

to image using EPI, and this is especially pronounced for fMRI, where gradient-echo EPI
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sequences are normally used [153, 154]. The EC is particularly prone to artifacts such as

geometric distortions and signal dropout due to its spatial proximity to air cavities. There

are several possible mitigations for these problems, but unfortunately the images acquired

in the Human Connectome Project were not specifically optimized for the MTL. However,

the data were already distortion corrected in the preprocessing pipeline, although this is not

able to recover all the signal loss. The data quality is therefore the major limitation of our

rs-fMRI analyses. Among sequence parameters that can be tuned to optimize image quality

in the EC are phase encoding direction, TE, TR, various acquisition acceleration techniques,

spatial resolution, shimming, bandwidth, and also the choice of head coil [45, 155–159]. Un-

fortunately, tweaking the parameters to improve one aspect of the data quality can enhance

other artifacts. To increase SNR and sensitivity to the BOLD signal, field strength can be in-

creased from 3T to 7T, although this will also increase the amount of geometric distortions

and signal loss. The participants investigated in paper III actually had both 3T and 7T rs-

fMRI data available, but we chose to use only the 7T data because the SNR and functional

connectivity measures of the EC in the 3T data were not sufficient for our research question.

The 7T rs-fMRI data were acquired in runs with both PA and AP phase encoding, and they

showed almost opposite patterns of signal loss and SNR reductions in anterior and posterior

parts of the EC, respectively. We chose to average the final functional connectivity analyses

across both phase encoding directions to try to even out these effects.

Susceptibility-related artifacts are an issue also for DTI data, but not as bad as for fMRI since

spin-echo EPI sequences are normally used. Could a possible mitigation for severe signal

loss and artifacts in fMRI of the MTL therefore be to replace the gradient-echo sequence

with spin-echo? At first thought this might seem counter-intuitive, as the BOLD effect leads

to increased intravoxel dephasing that is usually detected with T2*-weighted imaging, and

one would think that using SE sequences will also then compromise the BOLD sensitivity.

This is partly true, but there are two sides to this story, as briefly touched upon in Section

1.1.2. The BOLD contrast is governed by two mechanisms of transverse relaxation—both T2’

and T2 [40, 160–162]. The T2’ intravoxel dephasing effect is most prominent near larger ves-

sels, and increases linearly with increasing field strength. However, there is also a T2 effect

due to diffusion of spins through microgradients caused by the deoxy-Hb-induced local sus-

ceptibility inhomogeneities. This mechanism is most prominent near capillaries, resulting

in a T2-weighted BOLD contrast that is more localized to tissue than to larger veins. Further-
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more, this effect is proportional to the square of the magnetic field strength, so that while the

T2’ and T2 effects are comparable at 3T, the T2 effect is actually dominant at 7T. At ultra-high

field strengths, it might therefore be beneficial to use SE sequences to isolate and exploit this

effect [163, 164]. This is basically like a micro-"diffusion-weighted" fMRI sequence—only

without external diffusion gradients, because the local susceptibility inhomogeneities act as

small intrinsic diffusion gradients! The resulting potential increase in functional spatial res-

olution could be particularly beneficial for characterization of the EC subregions. However,

such an approach is not without challenges, which is one of the reasons that SE fMRI is not

widely used today [165]. Firstly, the challenges with B+
1 inhomogeneities of SE sequences at

7T would have to be addressed [166]. Secondly, introducing the 180° RF pulse would also

increase the specific absorption rates (SAR). One way to mitigate the SAR deposition could

be to reduce the flip angles or to adjust and reduce the slice package to only image the MTL

and the hippocampal formation, and then to only investigate local functional connectivity.

This would be helpful to improve the temporal resolution as well, because SE requires longer

TEs and thus longer TRs, so that some kind of acquisition acceleration approach might be

needed [167]. Nevertheless, despite its challenges, 7T SE-EPI would be an interesting ap-

proach for improving fMRI data quality in the EC.

For delineation of ROIs used for the connectivity analyses, we used automated cortical par-

cellation. This was first and foremost because with the high total number of participants it

would have been an extremely time-consuming task to do manual delineation of all ROIs.

Also, it would require anatomical skills beyond the level of an MRI physicist, although there

exist protocols to guide such manual segmentations [168]. The number of participants in-

cluded in this work would probably then have been much lower, compromising the statisti-

cal power of the results. However, when defining the ROIs in MNI space, some of them were

manually adjusted if needed. All ROIs were also masked by ROIs from the individual partici-

pants’ automated parcellation in order to increase anatomical accuracy. Nevertheless, even

though the segmentations from FreeSurfer have been found to be relatively reliable [169],

there is still some uncertainty associated with these ROI placements. This would primarily

be problematic for the DTI analyses, where paths are seeded on a voxel-by-voxel level. Al-

though it is unlikely that the probabilistic tractography would detect a significant number

of white matter tracts in e.g. air voxels, voxels might be classified as the wrong cortical re-

gion. For example, we cannot rule out that some of the edge voxels in the EC ROIs for some
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of the participants might also contain parts of the adjacent parahippocampal and perirhinal

cortices. Small inaccuracies in the ROIs could also in theory affect the fMRI analyses, but

is less problematic because of the spatial smoothing of the data and averaging across seed

ROIs before the functional connectivity estimation. At last, the fact that some of the ROIs

were located relatively close to each other could have introduced a bias to parts of the con-

nectivity results. In tractography, the connectivity probability is dependent on the length of

the paths, among others. We set a minimum path length of 5 mm to prevent "false" short-

range connections, although the apparent connectivity between EC and presubiculum and

dCA1pSub would still be stronger than between EC and RSC and OFC. For rs-fMRI, spatial

autocorrelation could be a problem when the ROIs are located very close to each other. This

is difficult to prevent when using presubiculum and dCA1pSub to define the EC subregions,

but this is the reason we also chose to use RSC and OFC for comparison. The two different

pairs of seed ROIs yielded qualitatively similar results although there were some quantitative

differences in the degree of PA and ML orientation of the border between the subregions. A

combination of these pairs of ROIs was therefore used for the final segmentations.

We developed a novel method for estimating the "degree" of posterior-anterior (PA) and

medial-lateral (ML) orientation of the border between the MEC and LEC segmentations.

Because our segmentation results appeared be qualitatively more ML subdivided than the

previous fMRI studies, we wanted to somehow quantify the difference in subdivision along

the PA and ML axes. This was determined by first calculating the center of gravity of the

MEC and LEC, and the vector between these centers of gravity. Then, the angle between this

vector and a pure PA or ML vector was calculated. The degree of PA and ML orientation of

the border was then defined from 0 to 100%, such that an angle of 0° corresponds to a 100%

PA or ML orientation, whereas an angle of 90° corresponds to 0% (i.e. perpendicular to that

axis). Although this method could yield imprecise results if the shapes of the segmentations

were very irregular, the calculated degrees of PA and ML orientation of the borders generally

showed good agreement with the visual appearance of the segmentations. An alternative

method could have been to split the EC into posterior/anterior and medial/lateral halves

and calculate the percentage overlap between these and the MEC and LEC segmentations,

but we think that our approach provides a better representation of how the subregions are

oriented in space with respect to each other.
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4.3 General discussion

4.3.1 Advanced diffusion models in prostate cancer

Applying advanced diffusion models to DWI of prostate cancer is an interesting field of re-

search which is both scientifically and clinically relevant. Because of the non-invasiveness

of MRI, the potential of imaging the microstructure is intriguing and might be an alternative

to biopsies in the future—or at least to more confidently determine whether a biopsy is nec-

essary. Beyond the traditional mono-exponential ADC, the bi-exponential and RSI models

have received most attention, in addition to alternatives such as diffusion kurtosis imaging

[22, 23, 170, 171]. For example in RSI, a range of different number of components have been

investigated, with different signal components arising from e.g. intracellular restricted water,

hindered diffusion in extracellular extravascular space, free diffusion of water, and pseudo-

diffusional flow effects, among others [27]. Although these only depend on ADCs and not on

T2 values, they have shown promising results in studies. However, many of these also have

the "problem" of long acquisition times and data-intensive analyses. When already investi-

gating advanced diffusion models at this complexity level, T2 dependence and other possible

dependencies should therefore be considered as well.

As already mentioned, increasing the number of TEs and b-values acquired could be a way

to strengthen the ADC- and T2-dependent two-component model, as the behavior of ADCs

and T2 values as a function of TE and b-value might be non-linear, but these additional data

points can also be used to extend the model. In our two-component model, we assume that

the prostate tissue can be represented with only two components: one component with low

ADC and short T2, and one component with high ADC and long T2. However, previous stud-

ies suggest that there is also a fraction of the signal that has low ADC and relatively long T2

in prostate tumors [84, 85]. This might reflect extracellular water that is restricted by densely

packed cancer cells, or water inside cell nuclei. As tumor cells have an elevated nuclear sig-

nal fraction compared to healthy cells [172], isolating the signal with low ADC and relatively

long T2 might be an interesting approach to combined T2-DWI. This could be done by ex-

tending the two-component model with a nuclear signal fraction using different ADCs and

T2 values for the nucleus and the cytosol [173]. Another approach that is comparable to RSI

is to increase the number of components identified with combined T2-DWI-based models,

even beyond the previously investigated three-component model [87]. In one study where
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they examined a range of different numbers of RSI components they found that four com-

ponents gave the best model fit, and a similar comparison could be carried out using ADC-

and T2-dependent multi-component models. Either way, using T2-dependence in diffusion

modeling of the prostate is an approach that might provide additional information about the

underlying tissue microstructure, and further investigation is warranted.

Although applying more and more complex models for cancer diagnosis is intriguing, many

of these face challenges when it comes to clinical feasibility because of extensive acquisi-

tion times and data-intensive analyses. However, this does not mean that we should stop

developing and investigating such models. They contribute to our understanding of tissue

microstructure and cancer biology, and how these relate to the MRI parameters. This gained

information can then be extracted to optimize and create simplified clinically relevant pro-

tocols for cancer diagnosis. Also, in the future, technical advances in hardware and software

might enable widespread direct clinical application of these advanced models.

4.3.2 Structural and functional connectivity of the brain

An important question when investigating DTI and rs-fMRI together is how structural and

functional connectivity correlate with each other, and whether they can be directly com-

pared at all. Both the acquisition and analysis principles of the two approaches are very

different—in addition to their underlying mechanisms. Although the EC segmentation re-

sults from using both modalities were qualitatively similar to each other in paper III, a lim-

ited number of seed regions were examined, and this can therefore not be automatically

generalized to be valid for all connections across the brain. Furthermore, the measured

connectivity might be different from the underlying true connectivity. Combinations of DTI

and fMRI have been used both for clinical and research purposes. Clinical applications in-

clude neurosurgical planning and investigation of tumors, trauma and dementia [174–177],

but these usually focus on the complementary information provided by the two modalities

rather than comparing the structural and functional connectivity directly. In neuroscience

research, however, DTI and fMRI have been used to investigate their relationship both qual-

itatively and quantitatively.

Neuroimaging studies have indicated that there generally is a correlation between structural

and functional connectivity, but there are some important differences [127, 178–180]. It has
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been shown that low values of functional connectivity are not found when there is strong

structural connectivity, whereas strong functional connectivity commonly exist between re-

gions without direct structural connectivity [181, 182]. Thus, the relationship between struc-

tural and functional connectivity is robust when direct structural connections are present,

but functional connectivity strengths can still vary over a wide range in the absence of direct

structural connections. Strong functional connectivity in these cases might be mediated by

indirect structural connections or inter-regional distance. This is consistent with our re-

sults from paper III where we seeded structural and functional connectivity analyses from

the MEC and LEC segmentations: The structural connections were largely preserved in the

functional connectivity maps, but the functional connections were more extensive. How-

ever, note that the appearance of these maps depends on the selected thresholding level,

and that structural connectivity from probabilistic tractography is inherently weakened with

increasing distance. Functional connectivity analysis, on the other hand, is sensitive to also

the long-range correlations. Furthermore, the EC connectivity patterns with the other ROIs

were similar for both modalities, and this can then be explained by the fact that we already

had established the structural connectivity between the EC and the other ROIs in paper II

(in addition to studies in other species), and that significant functional connectivity there-

fore also should be present. However, while structural connectivity is highly stable over time,

functional connectivity can substantially reconfigure—it is dynamic. Although rs-fMRI ex-

periments have been shown to yield stable functional connectivity networks in as little as

five minutes, there is still variability between scanning sessions and participants [122, 182].

There have also been attempts to model the relationship between functional and structural

connectivity mathematically [183, 184], but because of the aforementioned reasons this is a

highly complex task. Other approaches include joint connectivity analyses on fused DTI and

fMRI data [185–188]. At last, a relatively simple and widely used application of combined

DTI and fMRI that should be mentioned is to define a seed ROI for structural connectivity

analysis from functional connectivity analysis, or vice versa [188–190].

When comparing structural and functional connectivity, it is also important to be aware of

their definitions. The definition of structural connectivity is generally agreed upon: The ex-

istence of white matter tracts between two brain regions [127]. Functional connectivity, on

the other hand, has been subject to more controversy [191]. In fMRI analyses, it is usually

defined as regions with temporal correlation of brain activity [192]. However, this defini-
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tion does not necessarily mean that there is any kind of communication or transfer of in-

formation between the regions. Does correlation actually equal connectivity? Furthermore,

neither structural nor functional connectivity provide any information about the direction-

ality of the connections or causal relationships. A third type of connectivity describes this,

namely effective connectivity [127, 192]. This is defined as the influence one neural system

exerts over another, either directly or indirectly, and can be considered as a special case of

functional connectivity. One suggested method for estimating effective connectivity is with

the use of covariances with or without time shifts [193]. Although our results in paper III

showed a relatively good agreement between structural and functional connectivity of the

EC, it is possible that effective connectivity would have been a more suitable approach for

our research question than functional connectivity. This is dependent on whether the con-

nectivity relationship between the EC and the associated regions is best described by syn-

chronized patterns of activity, or if they influence each other in a more sequential or hierar-

chical manner.

Finally, can "connectivity strength" really be quantified at all in order to directly compare

structural and functional connectivity? As previously mentioned, structural connectivity is

a relative measure that depends on a number of factors including path lengths, seed ROI

sizes, number of possible path directions per voxel, and acquisition parameters. Functional

connectivity also depends on the acquisition, data quality and preprocessing. Even though

strong structural and functional connectivity strengths have been correlated, it is impor-

tant to keep these limitations in mind when interpreting the results. In paper II, we did not

impose any assumptions about the structural connectivity strengths, but only normalized

the connectivity maps by their maximum value. The resulting MEC and LEC segmentations

therefore had unequal sizes. In paper III, on the other hand, we normalized all the connec-

tivity maps such that the resulting MEC and LEC segmentations always had the same size.

Not much is known about whether this is actually the case in humans, but we chose to do

this to try to counterbalance apparent functional connectivity differences caused by spatial

proximity and SNR variations of the brain regions. It is therefore important to realize that our

results represent relative and not absolute measures of connectivity strength. Nevertheless,

they provide information about the intrinsic structural and functional connectivity patterns

of the EC.
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4.3.3 Applications of advanced MRI methods across disciplines

Until now, we have discussed the MRI methods for cancer and neuroimaging separately. Dif-

ferent clinical and research fields often also use different advanced applications of MRI. For

example, although simple DWI is not only used for cancer imaging, but also routinely used

for e.g. stroke and head trauma, DTI is on the other hand not widely used clinically outside

the brain. Furthermore, there is a variability between the types of MRI used for different

types of cancer. Can different disciplines learn more from each other in the future?

The prostate contains glandular tissue, which means there is a diffusion anisotropy that can

be mapped with DTI. Different studies have shown a variety of higher, lower or unchanged

FA values in prostate cancer, and its significance therefore remains controversial [194]. Al-

though concomitant edema can decrease the FA values, they can also be increased by com-

pression of tracts by the tumor. However, another interesting approach is to perform ac-

tual tractography of the glandular tracts. It is reasonable to expect that the normal glandu-

lar pattern is somehow disrupted in tumors, and this has also been shown in a few studies

[195, 196]. What might seem counter-intuitive, though, is that the fiber tract density actually

has been found to be higher in cancer than in normal tissue. A suggested explanation for this

is an increased amount of neuronal fibers in prostate cancers [197, 198], and tractography is

usually not designed to differentiate between different types of tracts. Maybe including TE

and diffusion time dependence in fODF models can aid such specificity? Another applica-

tion to tractography in the prostate could be instead of detecting significant, solid tumors, to

use slight changes in the anisotropy profiles of the tracts for detecting pre-tumorous cancer

cells that are sparsely distributed in normal tissue. Not only might these cause perturbations

of the glandular fiber pattern, they might also cause intra-glandular blockages past which the

water molecules cannot diffuse.

For rather obvious reasons, rs-fMRI cannot be directly applied to the prostate, but there are

still some principles that can be adapted for cancer imaging. The sequence used in fMRI

is normally a T2*-weighted sequence which is sensitive to oxygenation effects of the blood.

Because tumors are often characterized by abnormal vasculature, haemorrhages and hy-

poxia, which is a lack of oxygen, this preponderance of deoxy-Hb can be detected by T2*-

weighted imaging, either with or without contrast agent enhancement. However, hypoxic

tumors will probably already have progressed to a size where they are detectable with other
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imaging modalities, but it could provide additional information about tumor aggressiveness.

Hypoxia is usually associated with more aggressive cancers that are less responsive to treat-

ment. The use of T2*-weighted dynamic susceptibility contrast (DSC) MRI for prediction

of treatment response and patient prognosis has already been investigated in rectal cancer,

with promising results [199, 200].

Different types of MRI are often used for diagnosis of different types of cancer. As mentioned

in Section 1.2.2, T2-weighted imaging and DWI constitute the backbone of a diagnostic pro-

tocol for prostate cancer—DCE can also be included but usually has less of an importance

[68]. In breast cancer, on the other hand, the standard is to use T2-weighted imaging and

DCE, whereas DWI is not routinely used [201]. This of course has to do with the different mi-

crostructure of prostate and breast tissue and tumors, although advanced diffusion models

also have shown promise in the breast [202, 203]. Cancer is a highly diverse group of diseases,

therefore also requiring different MRI methods [70]. Nevertheless, DWI is very versatile, and

advanced diffusion modeling can be tailored to characterize a variety of tissue compositions.

Different numbers of tissue components and choice of b-values, TEs and diffusion times can

be used to design an appropriate model. DTI is also a possible application for cancers in tis-

sue with highly directionally arranged structures, e.g. in muscle [204]. As noted in Section

4.3.1, however, such advanced models might not be clinically feasible at the current stage,

but this could change in the future.

If we shift our focus over to the identification of the human homologues of MEC and LEC, ad-

vanced diffusion modeling of the gray matter tissue could potentially provide additional in-

formation about the cellular microstructure. There are cytoarchitectonic differences through-

out the human EC [205], and although there might not be a sharp border between the subre-

gions, it would be interesting to use high-resolution advanced DWI to characterize a possible

gradient between them. The ADC- and T2-based two-component could be applied for this,

or a similar model with even more components.

There is also a potential for extending the principles related to TE and diffusion time de-

pendence to DTI and advanced diffusion models for tractography. In fact, the co-dependent

relationship of ADCs and T2 values was actually first described in DWI and DTI of the brain

and nervous system [81, 82, 206]. While water inside the axons has a long T2 and highly
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anisotropic diffusion, water within the myelin sheath has a short T2 and lower diffusion

anisotropy. An fODF model with both ADC and T2 dependence, based on similar principles

as our two-component model for the prostate, could therefore be used to more accurately

extract the signal fraction and anisotropic diffusion of the axon component. This might im-

prove fiber tracking and possibly also tract specificity.

4.4 Implications and impact

The findings of this work first and foremost have implications for research in prostate cancer

and neuroscience, but might have potential clinical value in the future. There are immense

ongoing research efforts in these fields, in order to ultimately improve the understanding of

and clinical care in cancer and neurodegenerative diseases.

The results from paper I show the potential of using an ADC- and T2-dependent two-component

model based on combined T2-DWI for prostate cancer diagnosis. Although the model per-

formed similarly, but not notably better than more conventional models at this stage, further

improvements might change this. Our results can be used as a starting point for other re-

searchers to further improve both the imaging protocol and parameters of the two-component

model. There is hope that this added T2 dependence of advanced diffusion modeling can

provide more information about the underlying tissue microstructure in prostate cancer. In

the future, this understanding might aid characterization of tumor aggressiveness and treat-

ment stratification.

The locations of the human homologues of MEC and LEC predicted in paper II and III using

both DTI and fMRI support and strengthen the previously suggested subdivision into pmEC

and alEC, although with a larger medial-lateral component. Correctly delineating these sub-

regions is of importance not only for research in systems neuroscience, but also for cognitive

neuroscience research on memory formation, spatial navigation and time processing—e.g.

to disentangle cognitive functions such as processing of space vs. time. Furthermore, it can

aid translational studies on neurodegenerative processes such as Alzheimer’s disease, which

starts in the EC and transentorhinal area. Knowing the locations of the human EC subre-

gions will be important for investigation of how MEC and LEC are differentially affected in

early Alzheimer’s.



48 CHAPTER 4. DISCUSSION

Both cancer and dementia are huge global health care problems, and will probably keep

increasing in the future as the population grows older. While cancer is already one of the

leading causes of death, the incidence of dementia is expected to rise sharply in the future—

in 2015, dementia affected 47 million people worldwide, but this is predicted to increase to

132 million by 2050 [7–9]. Basic research in these fields is crucial to know more about the

diseases. Advanced MRI methods have the potential to serve as a powerful and non-invasive

tool for improving their detection and diagnosis, and enhance understanding in order to

potentially find new treatments or cures.
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Conclusions and future perspectives

In this work, the aim was to develop and apply advanced MRI methods to research areas in

cancer and neuroscience. The papers included in this thesis focus on how advanced DWI

and fMRI can be used in characterization of prostate cancer and the entorhinal cortex.

First, we showed that a novel ADC- and T2-dependent two-component model based on com-

bined T2-DWI is able to differentiate between tumor and normal prostate tissue, and has a

fair correlation with tumor aggressiveness. Although it only performed similarly, and not

significantly better than an only ADC-based bi-exponential model and mono-exponential

ADC, it shows promise for diagnosis and characterization of prostate cancer and should be

further investigated using a wider range of b-values, TEs and diffusion times.

We then applied DTI and rs-fMRI together with known anatomical connections from other

species, in order to segment the EC into the human homologues of MEC and LEC. Our results

showed that the human EC can be subdivided into posteromedial (pmEC) and anterolateral

(alEC) parts. This is similar to the findings from previous fMRI studies, although with more

of a medial-lateral orientation of the border between the subregions. We also showed that

using structural and functional connectivity from the same seed regions both resulted in

qualitatively similar segmentation results and connectivity patterns within the EC. Further-

more, we found the DTI results to be relatively reproducible across participant cohorts and

acquisition protocols.

In conclusion, the research in this thesis demonstrates how advanced DWI can be used to

model different types of tissue, by incorporating different parameters describing the T2 re-

49
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laxation, diffusivity and diffusion anisotropy of the underlying microstructure. It also shows

that measures of structural connectivity derived from DTI and functional connectivity from

fMRI are able to similarly describe relationships between brain regions. It is evident that

both cancer and neuroimaging are highly relevant disciplines for applications of advanced

MRI methods.

In the future, we can expect that the use of such advanced MRI methods will be facilitated

and enhanced by improvements in both hardware and software. The dependence on T2

relaxation and diffusion times will probably receive more attention in advanced diffusion

modeling, also in DTI. Furthermore, as part of ongoing efforts to map the human brain con-

nectome, we will get a better understanding of structural and functional connectivity, and

how these measures derived from DTI and fMRI relate to each other. Even though many

advanced MRI methods are currently limited to research use and are not widely used in the

clinic, this can change in the future. Technological advances that will potentially be of impor-

tance include moving to higher field strengths, applying new motion correction techniques,

and increased use of machine learning and artificial intelligence. This of course also intro-

duces new challenges, but the MRI research community has previously shown the ability to

overcome these. In the last 20 years there have been improvements in MRI methods that

seemed impossible at the time, so who knows where the next 20 years will take us? We have

still not reached the limit of what is possible with this powerful and versatile modality, but

the development and application of advanced MRI methods will lead us closer.
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[169] D. Sederevičius, D. Vidal-Piñeiro, Sørensen, K. van Leemput, J. E. Iglesias, A. V. Dalca,

D. N. Greve, B. Fischl, A. Bjørnerud, K. B. Walhovd, and A. M. Fjell, “Reliability and sen-

sitivity of two whole-brain segmentation approaches included in FreeSurfer – ASEG

and SAMSEG,” NeuroImage, vol. 237, p. 118113, 2021.

[170] R. L. Brunsing, N. M. Schenker-Ahmed, N. S. White, J. K. Parsons, C. Kane, J. Kuperman,

H. Bartsch, A. K. Kader, R. Rakow-Penner, T. M. Seibert, D. Margolis, S. S. Raman, C. R.

McDonald, N. Farid, S. Kesari, D. Hansel, A. Shabaik, A. M. Dale, and D. S. Karow, “Re-

striction spectrum imaging: An evolving imaging biomarker in prostate MRI,” Journal

of Magnetic Resonance Imaging, vol. 45, no. 2, pp. 323–336, 2017.

[171] S. Suo, X. Chen, L. Wu, X. Zhang, Q. Yao, Y. Fan, H. Wang, and J. Xu, “Non-Gaussian

water diffusion kurtosis imaging of prostate cancer,” Magnetic Resonance Imaging,

vol. 32, no. 5, pp. 421–427, 2014.

[172] L. J. Edens, K. H. White, P. Jevtic, X. Li, and D. L. Levy, “Nuclear size regulation: from

single cells to development and disease,” Trends Cell Biol, vol. 23, no. 4, pp. 151–9,

2013.

[173] N. S. White and A. M. Dale, “Distinct effects of nuclear volume fraction and cell diame-

ter on high b-value diffusion MRI contrast in tumors,” Magn Reson Med, vol. 72, no. 5,

pp. 1435–43, 2014.

[174] J. L. Ulmer, C. V. Salvan, W. M. Mueller, H. G. Krouwer, G. O. Stroe, A. Aralasmak, and

R. W. Prost, “The role of diffusion tensor imaging in establishing the proximity of tumor

borders to functional brain systems: Implications for preoperative risk assessments

and postoperative outcomes,” Technology in Cancer Research & Treatment, vol. 3, no. 6,

pp. 567–576, 2004.

[175] T. Schonberg, P. Pianka, T. Hendler, O. Pasternak, and Y. Assaf, “Characterization of

displaced white matter by brain tumors using combined DTI and fMRI,” NeuroImage,

vol. 30, no. 4, pp. 1100–1111, 2006.

[176] D. J. Werring, C. A. Clark, G. J. Barker, D. H. Miller, G. J. M. Parker, M. J. Brammer,

E. T. Bullmore, V. P. Giampietro, and A. J. Thompson, “The structural and functional



70 BIBLIOGRAPHY

mechanisms of motor recovery: complementary use of diffusion tensor and functional

magnetic resonance imaging in a traumatic injury of the internal capsule,” Journal of

Neurology, Neurosurgery & Psychiatry, vol. 65, no. 6, pp. 863–869, 1998.

[177] M. Bouts, C. Möller, A. Hafkemeijer, J. C. van Swieten, E. Dopper, W. M. van der Flier,

H. Vrenken, A. M. Wink, Y. A. L. Pijnenburg, P. Scheltens, F. Barkhof, T. M. Schouten,

F. de Vos, R. A. Feis, J. van der Grond, M. de Rooij, and S. Rombouts, “Single subject

classification of Alzheimer’s disease and behavioral variant frontotemporal dementia

using anatomical, diffusion tensor, and resting-state functional magnetic resonance

imaging,” J Alzheimers Dis, vol. 62, no. 4, pp. 1827–1839, 2018.

[178] D. J. Werring, C. A. Clark, G. J. M. Parker, D. H. Miller, A. J. Thompson, and G. J. Barker,

“A direct demonstration of both structure and function in the visual system: Combin-

ing diffusion tensor imaging with functional magnetic resonance imaging,” NeuroIm-

age, vol. 9, no. 3, pp. 352–361, 1999.

[179] P. Hagmann, L. Cammoun, X. Gigandet, R. Meuli, C. J. Honey, V. J. Wedeen, and

O. Sporns, “Mapping the structural core of human cerebral cortex,” PLOS Biology,

vol. 6, no. 7, p. e159, 2008.

[180] S. J. Teipel, A. L. W. Bokde, T. Meindl, E. Amaro, J. Soldner, M. F. Reiser, S. C. Herpertz,

H.-J. Möller, and H. Hampel, “White matter microstructure underlying default mode

network connectivity in the human brain,” NeuroImage, vol. 49, no. 3, pp. 2021–2032,

2010.

[181] M. A. Koch, D. G. Norris, and M. Hund-Georgiadis, “An investigation of functional

and anatomical connectivity using magnetic resonance imaging,” NeuroImage, vol. 16,

no. 1, pp. 241–250, 2002.

[182] C. J. Honey, O. Sporns, L. Cammoun, X. Gigandet, J. P. Thiran, R. Meuli, and P. Hag-

mann, “Predicting human resting-state functional connectivity from structural con-

nectivity,” Proceedings of the National Academy of Sciences, vol. 106, no. 6, pp. 2035–

2040, 2009.

[183] A. Messé, H. Benali, and G. Marrelec, “Relating structural and functional connectivity

in MRI: a simple model for a complex brain,” IEEE Trans Med Imaging, vol. 34, no. 1,

pp. 27–37, 2015.



BIBLIOGRAPHY 71

[184] H. Huang and M. Ding, “Linking functional connectivity and structural connectivity

quantitatively: A comparison of methods,” Brain Connect, vol. 6, no. 2, pp. 99–108,

2016.

[185] L. J. O’Donnell, L. Rigolo, I. Norton, W. M. Wells, C.-F. Westin, and A. J. Golby, “fMRI-

DTI modeling via landmark distance atlases for prediction and detection of fiber

tracts,” NeuroImage, vol. 60, no. 1, pp. 456–470, 2012.

[186] F. D. Bowman, L. Zhang, G. Derado, and S. Chen, “Determining functional connectiv-

ity using fMRI data with diffusion-based anatomical weighting,” NeuroImage, vol. 62,

no. 3, pp. 1769–1779, 2012.

[187] F. Calamante, R. A. J. Masterton, J.-D. Tournier, R. E. Smith, L. Willats, D. Raffelt, and

A. Connelly, “Track-weighted functional connectivity (TW-FC): A tool for characteriz-

ing the structural–functional connections in the brain,” NeuroImage, vol. 70, pp. 199–

210, 2013.

[188] D. Zhu, T. Zhang, X. Jiang, X. Hu, H. Chen, N. Yang, J. Lv, J. Han, L. Guo, and T. Liu,

“Fusing DTI and fMRI data: A survey of methods and applications,” NeuroImage, vol.

102, pp. 184–191, 2014.

[189] P. J. Broser, S. Groeschel, T.-K. Hauser, K. Lidzba, and M. Wilke, “Functional MRI-

guided probabilistic tractography of cortico-cortical and cortico-subcortical language

networks in children,” NeuroImage, vol. 63, no. 3, pp. 1561–1570, 2012.

[190] G. Douaud, N. Filippini, S. Knight, K. Talbot, and M. R. Turner, “Integration of struc-

tural and functional magnetic resonance imaging in amyotrophic lateral sclerosis,”

Brain, vol. 134, no. 12, pp. 3470–3479, 2011.

[191] A. A. Fingelkurts, A. A. Fingelkurts, and S. Kähkönen, “Functional connectivity in the

brain—is it an elusive concept?” Neuroscience & Biobehavioral Reviews, vol. 28, no. 8,

pp. 827–836, 2005.

[192] K. J. Friston, “Functional and effective connectivity in neuroimaging: A synthesis,” Hu-

man Brain Mapping, vol. 2, no. 1-2, pp. 56–78, 1994.

[193] M. Gilson, R. Moreno-Bote, A. Ponce-Alvarez, P. Ritter, and G. Deco, “Estimation of

directed effective connectivity from fMRI functional connectivity hints at asymme-



72 BIBLIOGRAPHY

tries of cortical connectome,” PLOS Computational Biology, vol. 12, no. 3, p. e1004762,

2016.

[194] C. Li, M. Chen, S. Li, X. Zhao, C. Zhang, M. Liu, and C. Zhou, “Diffusion tensor imaging

of prostate at 3.0 Tesla,” Acta Radiologica, vol. 52, no. 7, pp. 813–817, 2011.

[195] W. Tian, J. Zhang, F. Tian, J. Shen, T. Niu, G. He, and H. Yu, “Correlation of diffusion

tensor imaging parameters and Gleason scores of prostate cancer,” Experimental and

therapeutic medicine, vol. 15, no. 1, pp. 351–356, 2018.

[196] N. Gholizadeh, P. B. Greer, J. Simpson, J. Denham, P. Lau, J. Dowling, H. Hondermarck,

and S. Ramadan, “Characterization of prostate cancer using diffusion tensor imaging:

A new perspective,” European Journal of Radiology, vol. 110, pp. 112–120, 2019.

[197] C. Magnon, S. J. Hall, J. Lin, X. Xue, L. Gerber, S. J. Freedland, and P. S. Frenette, “Au-

tonomic nerve development contributes to prostate cancer progression,” Science, vol.

341, no. 6142, p. 1236361, 2013.

[198] A. Olar, D. He, D. Florentin, Y. Ding, and G. Ayala, “Biologic correlates and significance

of axonogenesis in prostate cancer,” Human Pathology, vol. 45, no. 7, pp. 1358–1364,

2014.

[199] I. F. Syversen, K. M. Bakke, E. Grøvik, A. Negård, S. H. Holmedal, L. G. Lyckander, K. I.

Gjesdal, S. Meltzer, and K. Røe Redalen, “PO-0983: Prediction of chemoradiotherapy

response in rectal cancer using static and dynamic R2* MRI,” Radiotherapy and On-

cology, vol. 127, p. S545, 2018.

[200] K. M. Bakke, S. Meltzer, E. Grøvik, A. Negård, S. H. Holmedal, K. I. Gjesdal, A. Bjørnerud,

A. H. Ree, and K. R. Redalen, “Sex differences and tumor blood flow from dynamic sus-

ceptibility contrast MRI are associated with treatment response after chemoradiation

and long-term survival in rectal cancer,” Radiology, vol. 297, no. 2, pp. 352–360, 2020.

[201] F. Sardanelli, C. Boetes, B. Borisch, T. Decker, M. Federico, F. J. Gilbert, T. Helbich, S. H.

Heywang-Köbrunner, W. A. Kaiser, M. J. Kerin, R. E. Mansel, L. Marotti, L. Martincich,

L. Mauriac, H. Meijers-Heijboer, R. Orecchia, P. Panizza, A. Ponti, A. D. Purushotham,

P. Regitnig, M. R. Del Turco, F. Thibault, and R. Wilson, “Magnetic resonance imaging of

the breast: Recommendations from the EUSOMA working group,” European Journal

of Cancer, vol. 46, no. 8, pp. 1296–1316, 2010.



BIBLIOGRAPHY 73
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Abstract

Background

Magnetic resonance imaging (MRI) is essential in the detection and staging of prostate can-

cer. However, improved tools to distinguish between low-risk and high-risk cancer are

needed in order to select the appropriate treatment.

Purpose

To investigate the diagnostic potential of signal fractions estimated from a two-component

model using combined T2- and diffusion-weighted imaging (T2-DWI).

Material and methods

62 patients with prostate cancer and 14 patients with benign prostatic hyperplasia (BPH)

underwent combined T2-DWI (TE = 55 and 73 ms, b-values = 50 and 700 s/mm2) following

clinical suspicion of cancer, providing a set of 4 measurements per voxel. Cancer was con-

firmed in post-MRI biopsy, and regions of interest (ROIs) were delineated based on radiol-

ogy reporting. Signal fractions of the slow component (SFslow) of the proposed two-

component model were calculated from a model fit with 2 free parameters, and compared to

conventional bi- and mono-exponential apparent diffusion coefficient (ADC) models.

Results

All three models showed a significant difference (p<0.0001) between peripheral zone (PZ)

tumor and normal tissue ROIs, but not between non-PZ tumor and BPH ROIs. The area

under the receiver operating characteristics curve distinguishing tumor from prostate voxels

was 0.956, 0.949 and 0.949 for the two-component, bi-exponential and mono-exponential
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models, respectively. The corresponding Spearman correlation coefficients between tumor

values and Gleason Grade Group were fair (0.370, 0.499 and -0.490), but not significant.

Conclusion

Signal fraction estimates from a two-component model based on combined T2-DWI can dif-

ferentiate between tumor and normal prostate tissue and show potential for prostate cancer

diagnosis. The model performed similarly to conventional diffusion models.

Introduction

Magnetic resonance imaging (MRI) has been essential in the detection and staging of prostate

cancer for several years [1, 2]. Different sequences are performed, where T2-weighted and dif-

fusion-weighted imaging (DWI) constitute the basis of such a diagnostic protocol [3]. Prostate

cancer is usually detected as homogeneous moderately hypointense focal areas on T2-weighted

images, with a relatively low apparent diffusion coefficient (ADC). The Prostate Imaging-

Reporting and Data System (PI-RADS) guidelines are used to detect clinically significant can-

cer, based on a combination of DWI, T2-weighted imaging and also dynamic contrast-

enhanced (DCE) MRI [3]. For peripheral zone (PZ) cancers, DWI is the dominant factor for

determining the PI-RADS score, while for non-PZ cancers, T2-weighted images are predomi-

nantly used. However, despite these standardized guidelines, the accuracy of detecting and

staging clinically significant cancer is still variable, and overtreatment is a major problem [4–

6]. Improved diagnostic tools are needed in order to better stratify patients to active surveil-

lance or radical treatment. In addition, it can be challenging to separate between non-PZ can-

cers and benign prostatic hyperplasia (BPH) with low ADC, as these have similar imaging

characteristics [7].

Low ADC in the prostate is commonly interpreted as restricted diffusion due to densely

packed cells in tumor tissue [8]. However, this simplification does not consider the different

mechanisms of the underlying tissue microstructure. One suggested extension to this is the bi-

exponential model, which consists of a slow diffusion component representing the restricted

diffusion within cells, and a fast diffusion component representing extracellular water [9]. This

model has shown promising results in previous studies [10, 11].

Another common assumption is that T2 values and ADCs are independent of each other.

However, studies have shown an interdependence of these parameters which appears to differ

between tumor, normal prostate tissue and BPH [12–14], which could potentially be exploited

for diagnosis. By performing DWI at different echo times (TE), it is possible to isolate the sig-

nal from subvoxel populations of water molecules with specific paired T2 values and ADCs

associated with different components of the prostate. A three-component model using this

principle has been suggested [15]. However, for such a model to be clinically feasible, it needs

to have a relatively short acquisition time and a low computational cost. A simpler two-

component model fulfills these requirements and would be consistent with a simple represen-

tation of the prostate: Water in the glandular lumen with long T2 and a high ADC, and water

inside the cells with a shorter T2 and lower ADC [12].

In this work, we estimate signal fractions in a slow and a fast diffusion component using

combined T2- and diffusion-weighted imaging (T2-DWI), and compare these between tumor,

normal tissue and BPH in order to investigate the diagnostic potential of the model.
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Materials and methods

Patients

76 patients underwent an extended MRI exam as part of the integrated cancer care pathway

following prostate cancer suspicion. Of these, 62 patients had post-MRI biopsy-confirmed

cancer and were assigned randomly to a training and a test set (see Table 1 for details). The

inclusion criteria were tumor in any prostate zone that both had a PI-RADS and a location-

matched Gleason score. The 14 included patients without detected cancer had BPH lesions,

characterized by visually low ADC and a negative biopsy. An overview of the patient and case

selection process can be found in the S1 Fig. The study was approved by the Regional Commit-

tee for Medical and Health Research Ethics Central Norway (identifier REK 2017/520), and all

participants provided written informed consent before enrollment.

MRI protocol

Imaging was performed on a 3T MRI scanner (Magnetom Skyra, Siemens Medical Systems,

Erlangen, Germany) using body surface coils. The combined T2-DWI was added at the end of

a clinical protocol.

Table 1. Summary of patient characteristics for the 62 included patients with biopsy-confirmed cancer.

Parameter Training set Test set

Number of patients 31 31

PSA level (ng/mL) 11.0 ± 8.6 11.4 ± 15.7

PI-RADS score

2 2 2

3 7 5

4 8 6

5 14 18

Gleason Grade Group

1 6 4

2 7 15

3 10 5

4 4 3

5 4 4

Cancer location

PZ 25 24

TZ 3 4

CZ 1 0

AFMS 2 3

Treatment

RARP 15 14

Radiation therapy 8 7

Hormone therapy 2 1

Active surveillance 6 9

PSA = prostate-specific antigen, PI-RADS = Prostate Imaging-Reporting and Data System, PZ = peripheral zone,

TZ = transition zone, CZ = central zone, AFMS = anterior fibromuscular stroma, RARP = robotic assisted radical

prostatectomy.

Note—Data are numbers of patients, except for PSA level which is given as mean ± standard deviation. There were 2

and 7 missing PSA values in the training and test set, respectively. The Gleason Grade Group is based on biopsy

scores after MRI, except for the patients who underwent RARP, where the histopathological Gleason Grade Group

was used. Note that the tumors might extend over multiple prostatic zones, and that the cancer location denoted is

the primary tumor location.

https://doi.org/10.1371/journal.pone.0252387.t001
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The transversal combined T2-DWI acquisition consisted of two fat-suppressed, single-shot,

monopolar spin-echo echo-planar imaging (EPI) sequences with TE = 55 and 73 ms, respectively.

Each of these sequences had repetition time (TR) = 4200 ms, b-values = 50 and 700 s/mm2 (three

directions; number of excitations (NEX) = 2 and 4, respectively), resolution = 2.0×2.0×3.0 mm3,

field of view = 256×256 mm2, imaging and reconstruction matrix = 128×128, 26 slices, generalized

autocalibrating partial parallel acquisition (GRAPPA) factor 2 and acquisition time 1:38 minutes.

The only differences between the sequences at the two TEs were the diffusion times and gradient

amplitudes: at TE = 55 ms, δ = 11.6 ms and Δ = 23.9 ms, while at TE = 73 ms, δ = 20.6 ms and

Δ = 32.9 ms. This protocol provides a 2×2 matrix of trace-weighted diffusion measurements

for each voxel, where each measurement is associated with a different combination of TE and

b-values.

Preprocessing

All analyses were performed using MATLAB (version R2019b, MathWorks, Natick, MA,

USA) unless stated otherwise. Code used for model fitting is available on GitHub at https://

github.com/ntnu-mr-cancer/T2-DWI.

The trace-weighted images at each TE and b-value were co-registered to the image with the

lowest TE and b-value with Elastix, using a multiresolution rigid registration scheme [16, 17].

The scanner’s autogenerated ADC map for TE = 73 ms was also co-registered to the same

image because the regions of interest (ROIs) were to be delineated on this map. To only correct

for potential motion of the prostate and not of other internal structures, a box-shaped ROI

covering the prostate was defined for each patient and used as a mask for the co-registration.

ROI delineation. For each cancer patient, one tumor ROI was manually delineated using

ITK-SNAP (www.itksnap.org) [18] on the scanner’s autogenerated ADC map for TE = 73 ms,

with corresponding T2-weighted images used for support. The delineation was performed

based on the clinical radiologist’s PI-RADS annotation and the tumor ROI was characterized

by focal low ADC under (or around) 1000 μm2/ms. All tumor ROI locations were confirmed

to be cancer by matching with biopsy reports in the patient journal, and cross-checked with

histology slides if available (n = 29). For the PZ tumor patients, one normal tissue ROI was

also delineated, characterized by visually high ADC in the PZ (around 2000 μm2/ms). For both

the tumor and normal tissue ROIs, respectively, only one tumor lesion or normal area were

considered per ROI. For each BPH patient, one ROI was manually delineated of one or more

proliferative BPH nodule(s) with visually low ADC (under/around 1000 μm2/ms) in the non-

PZ, also visible as a nodule on T2-weighted images. All ROIs were delineated by a basic scien-

tist (IFS, 1 year of experience in prostate MRI) and validated by a radiology resident (ES, 1

year of experience in prostate MRI, supervised by an experienced radiologist).

Two-component model

We modeled the MR signal as water in two separate components: a slow diffusion component

with low ADC and short T2, and a fast component with high ADC and long T2. Thus, the 2×2

matrix of signal intensities SI from the combined T2-DWI were fitted to the following equa-

tion:

SI
SI0

¼ SFslow exp �
TE

T2slow

� �

exp � b � ADCslowð Þ þ SFfast exp �
TE
T2fast

 !

exp � b � ADCfast

� �
; ð1Þ

where the subscripts “slow” and “fast” denote the values of slow and fast components, respectively.

SI0 is the signal intensity at TE = 0 and b = 0, SF is the signal fraction of the components, and
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SFslow+SFfast = 1. In order to reduce the number of free parameters in the model, ADCslow =

0.3 μm2/ms and ADCfast = 2.6 μm2/ms globally optimized for a biophysically similar bi-exponen-

tial model were used [19]. This results in four free parameters (SI0, SFslow, T2slow, T2fast) to the

four measurements.

T2slow and T2fast were then globally optimized for the entire population of voxels across all

patients in the training set by minimizing a global cost function while fitting the 2×2 signal to

Eq 1 using a range of T2 values determined from a previous preliminary study [20]. The cost

function was defined as the sum of the root-mean-square error (RMSE) of the fit of all

included voxels. By keeping T2slow and T2fast fixed for each iteration, only two parameters

were fitted for each voxel in this process. The optimal T2 values were then used for further

analysis, where the two remaining free parameters SI0 and SFslow were determined on a voxel-

by-voxel basis by fitting the 2×2 signal to the two-component model for all included patients.

All voxels inside the box-shaped ROIs were analyzed. The average size of the box ROIs was

approximately 167,000 voxels. However, to reduce noise effects, voxels were excluded that had

a value equal to or below three times the noise floor, defined as the average signal intensity of

background voxels. Voxels with an apparent negative ADC or T2 value were also excluded. On

average, approximately 10% of the voxels in the tumor, normal and BPH ROIs were excluded.

Bi-exponential model

For comparison, we also investigated a purely ADC-dependent bi-exponential model:

SI
SI0

¼ SFslow expð� b � ADCslowÞ þ SFfast expð� b � ADCfastÞ; ð2Þ

where SFslow+SFfast = 1, ADCslow = 0.3 μm2/ms and ADCfast = 2.6 μm2/ms as in the two-com-

ponent model [19]. SI0 and SFslow were fitted to the two b-value measurements at TE = 73 ms.

Mono-exponential ADC

Using

SI
SI0
¼ expð� b � ADCÞ; ð3Þ

SI0 and ADC were fitted to the two b-value measurements at TE = 73 ms.

An extended analysis with even more model comparisons can be found in the S1 Appendix.

Statistical analysis

The first part of the statistical analysis was divided into PZ and non-PZ tumors. Note that all

PZ analyses were performed on the test set only, while the non-PZ analyses were carried out

on all available patients due to the low sample size. For the PZ analyses, the Wilcoxon signed-

rank test was used to test for statistical significance between mean SFslow (for both the two-

component and bi-exponential models) and ADC of the tumor and normal tissue ROIs

(n = 24). For the non-PZ analyses, BPH ROIs from the BPH patients (n = 14) were used for

comparison with the non-PZ tumor ROIs (n = 13), and the Mann-Whitney U test was used to

test for statistical significance between these. All tests were two-sided. After a Bonferroni cor-

rection for 9 multiple comparisons (including the correlation described in the following para-

graph), p<0.006 was considered statistically significant.

The remainder of the statistical analyses were carried out on the whole test set with both PZ

and non-PZ tumors together. Voxel-wise receiver operating characteristics (ROC) analysis

PLOS ONE Diagnostic potential of adding T2 dependence in DWI of the prostate
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was performed comparing the SFslow and ADCs in the tumor ROIs with the rest of the area

inside the box-shaped ROIs. Note that although the ROC analysis was performed only on the

test set, the optimal threshold value was calculated from the training set and applied on the test

set in the calculation of sensitivity and specificity. Furthermore, the Spearman correlation

coefficient (ρ) was calculated between the mean SFslow and ADC of the tumor ROIs and the

Gleason Grade Group.

Results

The optimal T2 values for the two-component model were determined to be T2slow = 45 ms

and T2fast = 180 ms (Fig 1).

Box plots of estimated SFslow (for both the two-component and bi-exponential models) and

ADC for different ROIs are shown in Fig 2. In the PZ analyses, all metrics show a significance

between tumor and normal ROIs. In the non-PZ analyses, no metrics show a significant differ-

ence between the tumor and BPH ROIs, although the two-component model yields the lowest

p-value.

Fig 3 shows examples of calculated SFslow and ADC maps for PZ and non-PZ tumors

and BPH, as well as corresponding histology slides for the PZ and non-PZ tumors and a

T2-weighted image for the BPH case. SFslow (for both the two-component and bi-exponential

models) and ADC yield good tumor conspicuity for both tumor cases. In the BPH case, the

lesion is visible both on the SFslow maps and the ADC map, although with a slightly lower con-

trast than the tumors.

Fig 1. Surface curve showing the total root-mean-square error (RMSE) from fitting the two-component model with a

range of T2slow and T2fast values for the training set, scaled so that the highest RMSE equals 1. The total RMSE is at a

minimum for T2slow = 45 ms and T2fast = 180 ms.

https://doi.org/10.1371/journal.pone.0252387.g001
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ROC curves and results from the ROC analysis are shown in Fig 4 and Table 2, respectively,

and show that SFslow (for both the two-component and bi-exponential model) and ADC have

very good diagnostic performance. However, although the sensitivity, specificity and area

under the ROC curve (AUC) are very similar for all metrics, SFslow from the two-exponential

model yields slightly higher values than the other two, which are nearly identical to each other.

Note the very different optimal threshold values for SFslow from the two-exponential and bi-

exponential models of 0.67 and 0.42, respectively. This means that�67% and 42% of the voxels

should be in the SFslow components to be classified as tumor tissue. In the case of ADC, the

value needs to be under the respective optimal threshold to be classified as tumor.

In Fig 5, the mean SFslow and ADC from the tumor ROIs are plotted as a function of Glea-

son Grade Group. The Spearman correlation coefficient was found to be ρ = 0.370 (p = 0.040)

and ρ = 0.499 (p = 0.004) for SFslow for the two-component and bi-exponential model, respec-

tively, and ρ = -0.490 (p = 0.005) for ADC.

Discussion

In this study, 62 patients with prostate cancer and 14 patients with BPH underwent combined

T2-DWI. From this, signal fractions were estimated using a two-component model based on

both T2 and ADC dependence. The purpose was to investigate the diagnostic potential of this

model in comparison with results from conventional diffusion models. Our results show that

SFslow from the two-component model is higher in PZ tumors than in normal tissue, and in

non-PZ tumors than in BPH, although only significant in the former case. SFslow shows good

diagnostic properties and a fair correlation with tumor aggressiveness.

Fig 2. Box plots showing the distribution of mean SFslow (from the two-component and bi-exponential models) and ADC of the different ROIs. Upper row: PZ

tumors (n = 24) compared to normal tissue (n = 24). Bottom row: Non-PZ tumors (n = 13) compared to BPH (n = 14). p<0.006 was considered statistically

significant.

https://doi.org/10.1371/journal.pone.0252387.g002
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Global T2 optimization was performed both to reduce the number of free variables and to

isolate components with distinct, paired ADC and T2 values. Comparing the results with a

model fit with the T2 values as free variables (see S1 Table) showed the benefit of optimizing

the T2 values in advance. To further reduce the number of free variables, the ADCs were

adapted from a bi-exponential model [19]. The signal fraction estimates for the slow compo-

nent in that paper were markedly lower than our SFslow estimates from the two-component

model, but closer to the values obtained with our bi-exponential model, indicating a depen-

dence of SFslow on T2. This implies that the two-component and bi-exponential models do not

isolate identical subvoxel populations of water molecules, because the added T2 dependence

actively tunes the diffusion signal from the prostate tissue, in agreement with other studies per-

formed with combined T2-DWI [12–14]. A previous three-component model based on com-

bined T2-DWI estimated the T2 values of the epithelium, stroma and lumen to be 50 ms, 80

Fig 3. Examples of estimated value maps for three different patients. SFslow (from the two-component (TC) and bi-

exponential (BE) models) maps and corresponding ADC map are shown for a PZ tumor patient, a non-PZ tumor

patient and a BPH patient, respectively. For the tumor patients, histology slides are also shown for comparison, while a

corresponding T2-weighted image is shown in the BPH case as histology was not available for this patient. The lesions

are denoted on the ADC maps with red arrows. On the histology slides, the PZ tumor is denoted with a solid line,

while the non-PZ tumors are denoted with dotted lines. Example maps from more cases can be found in the S2 Fig.

https://doi.org/10.1371/journal.pone.0252387.g003
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ms and 665 ms, respectively [15], which would suggest that our slow component is approxi-

mately equivalent to the epithelium, whereas the fast component is a mixture of stroma and

lumen.

The two-component model performed similarly to the bi-exponential model and the

mono-exponential ADC. All three models showed a highly significant difference between PZ

tumors and normal tissue, and while no significant differences were found between non-PZ

tumors and BPH, the two-component model performed slightly better than the others in that

case. In the ROC analysis, where all three models showed an excellent diagnostic performance,

the two-component model also performed marginally better than the other two. However, the

bi-exponential model and ADC showed a somewhat better correlation with tumor aggres-

siveness, although none of them significant. Interestingly, in all the analyses, the bi-exponential

model and ADC both show very similar results that are slightly different from the two-compo-

nent model, which could suggest that our model extracts additional information from the

underlying tissue compared to the other models. Although our two-component model

Fig 4. ROC curves for SFslow (for the two-component model in green and for the bi-exponential model in yellow)

and ADC (in dashed purple). Voxels within tumor ROIs (n = 6569) were compared with voxels outside (n = 254,112).

https://doi.org/10.1371/journal.pone.0252387.g004

Table 2. Summary of Receiver Operating Characteristics (ROC) results.

Model AUC Optimal threshold Sensitivity (%) Specificity (%)

SFslow, two-component model 0.956 0.67 92.6 85.8

SFslow, bi-exponential model 0.949 0.42 92.3 85.4

ADC (μm2/ms) 0.949 1.17 92.3 85.4

AUC = area under curve, SF = signal fraction, ADC = apparent diffusion coefficient.

https://doi.org/10.1371/journal.pone.0252387.t002
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performed similarly to conventional models, and not significantly better, the method shows

diagnostic promise and should be further optimized and investigated in a larger number of

patients, in order to more rigorously evaluate its ability to predict tumor aggressiveness.

One reason for the similar performance between the two-component and bi-exponential

models and ADC could be that the tumor, normal tissue and BPH ROIs used in this study

were all delineated on ADC maps. Delineating the ROIs based on MR images and not histopa-

thology of prostatectomy specimens can give a bias in the results, such that it is more difficult

to see improvements in other models if ADC is used as a reference. Nevertheless, we chose to

use radiology for the delineation because including only prostatectomy patients would give a

bias towards highly aggressive cancer, as well as reducing the number of patients available.

Another reason that the models perform so similarly could be that the bi-exponential model

and ADC are calculated at the longest TE. Therefore, they are also implicitly influenced by the

T2 relaxation of the tissue to a higher degree than if the shorter TE was used. However, we

chose to use TE = 73 ms since this was TE closest to the one used in [19]. A calculation with

TE = 55 ms is carried out in the S1 Table for comparison.

We show that SFslow from the two-component model has diagnostic potential in prostate

cancer. Some might argue that a more complex model would give a better representation of

the underlying tissue microstructure, but our focus was to apply a model that would be feasible

in a clinical setting, where time is a limiting factor. Our T2-DWI protocol had a comparable

acquisition time to that of a standard clinical prostate DWI sequence, and there are only two

variables to be estimated, given fixed ADCs and T2 values of each signal component. However,

these values should be further optimized by exploring a wider range of TEs and b-values, in

order to potentially increase the diagnostic performance of the method. Furthermore, since

the main focus of our work was to investigate clinical feasibility of the two-component model,

we did not perform a thorough evaluation of repeatability and reproducibility, which should

also be addressed in the future.

Our study had some limitations. Firstly, the images were not corrected for geometric distor-

tions caused by the EPI sequence, although no severe distortions were noted during visual

inspection of the images. Secondly, the sequence parameters of the combined T2-DWI were

introduced to see whether there were any effects of varying the TE in DWI, and it was made as

short as possible to fit in at the end of a clinical protocol, with TEs and b-values close to clinical

DWI parameters. The low number and short range of these parameters limit the sensitivity of

the T2 values and ADC of the components. At last, because a standard vendor DWI sequence

Fig 5. Mean tumor ROI values plotted as a function of Gleason Grade Group (blue dots) for SFslow (from the two-component and bi-exponential models) and

ADC. The red line represents the least-square fit to the data.

https://doi.org/10.1371/journal.pone.0252387.g005
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was used for the combined T2-DWI, the acquisition at the different TEs had different diffusion

times (Δ and δ), which can also affect the apparent TE dependence of ADC [21]. This should

be addressed when designing new combined T2-DWI protocols.

In conclusion, signal fraction estimates from a two-component model based on combined

T2-DWI can differentiate between PZ tumors and normal prostate tissue and show potential

for prostate cancer diagnosis. The model performed similarly to conventional diffusion mod-

els. However, the method should be further optimized for clinical purposes and investigated in

a larger number of patients.
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the tables and figures, and the statistical measures reported.

(XLSX)

S1 Fig. Patient and ROI selection.

(PDF)

S2 Fig. Examples of estimated value maps for three different patients. SFslow (from the two-
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S2 Fig. Examples of estimated value maps for three different patients. SFslow (from the 
two-component (TC) and bi-exponential (BE) models) maps and corresponding ADC map 
are shown for a PZ tumor patient, a non-PZ tumor patient and a BPH patient, respectively. 
For the tumor patients, histology slides are also shown for comparison, while a corresponding 
T2-weighted image is shown in the BPH case as histology was not available for this patient. 
The lesions are denoted on the ADC maps with red arrows. On the histology slides, the 
tumors are denoted with dotted lines. 



S1 Appendix 
Supplementary methods 

Alternative models 

To evaluate the individual effects of ADC and T2 on the two-component model, we extended 

the analysis and compared the results with signal fractions from three alternative models. 

First, to investigate the effect of globally optimizing the T2 values, we fitted the two-

component model, 

𝑆𝑆𝑆𝑆
𝑆𝑆𝑆𝑆0

= 𝑆𝑆𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑒𝑒𝑒𝑒𝑒𝑒 �−
𝑇𝑇𝑇𝑇

𝑇𝑇2𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
�𝑒𝑒𝑒𝑒𝑒𝑒(−𝑏𝑏 ∗ 𝐴𝐴𝐴𝐴𝐴𝐴𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) + 𝑆𝑆𝑆𝑆𝑓𝑓𝑓𝑓𝑠𝑠𝑓𝑓  𝑒𝑒𝑒𝑒𝑒𝑒 �−

𝑇𝑇𝑇𝑇
𝑇𝑇2𝑓𝑓𝑓𝑓𝑠𝑠𝑓𝑓

� 𝑒𝑒𝑒𝑒𝑒𝑒�−𝑏𝑏 ∗ 𝐴𝐴𝐴𝐴𝐴𝐴𝑓𝑓𝑓𝑓𝑠𝑠𝑓𝑓� , (1) 

with no constraints on the T2 values. Also here, we set SFslow+SFfast=1, ADCslow=0.3 µm2/ms 

and ADCfast=2.6 µm2/ms (19). This leaves four free parameters (SI0, SFslow, T2slow, T2fast) to 

be fitted to the four measurements. 

The second one was an ADC-dependent bi-exponential model, but at TE=55 ms: 

𝑆𝑆𝑆𝑆
𝑆𝑆𝑆𝑆0

= 𝑆𝑆𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑒𝑒𝑒𝑒𝑒𝑒(−𝑏𝑏 ∗ 𝐴𝐴𝐴𝐴𝐴𝐴𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) + 𝑆𝑆𝑆𝑆𝑓𝑓𝑓𝑓𝑠𝑠𝑓𝑓 𝑒𝑒𝑒𝑒𝑒𝑒�−𝑏𝑏 ∗ 𝐴𝐴𝐴𝐴𝐴𝐴𝑓𝑓𝑓𝑓𝑠𝑠𝑓𝑓� , (2) 

where SFslow+SFfast=1, ADCslow=0.3 µm2/ms and ADCfast=2.6 µm2/ms as in the two-

component model (19). SI0 and SFslow were fitted to the two b-value measurements at TE=55 

ms. 

The third model was a T2-dependent bi-exponential model: 

𝑆𝑆𝑆𝑆
𝑆𝑆𝑆𝑆0

= 𝑆𝑆𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑒𝑒𝑒𝑒𝑒𝑒 �−
𝑇𝑇𝑇𝑇

𝑇𝑇2𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
�+ 𝑆𝑆𝑆𝑆𝑓𝑓𝑓𝑓𝑠𝑠𝑓𝑓  𝑒𝑒𝑒𝑒𝑒𝑒 �−

𝑇𝑇𝑇𝑇
𝑇𝑇2𝑓𝑓𝑓𝑓𝑠𝑠𝑓𝑓

� , (3) 

with SFslow+SFfast=1, where we used the globally optimized T2slow and T2fast from the two-

component model. SI0 and SFslow were fitted to the two TE measurements at b=50 s/mm2 and 

b=700 s/mm2 separately. 



ADC and T2 

For comparison, we also calculated the ADC at TE=55 ms, and T2 values at both b-values. 

Using 

𝑆𝑆𝑆𝑆
𝑆𝑆𝑆𝑆0

= 𝑒𝑒𝑒𝑒𝑒𝑒(−𝑏𝑏 ∗ 𝐴𝐴𝐴𝐴𝐴𝐴) , (4) 

SI0 and ADC were fitted to the two b-value measurements at TE=55 ms. Similarly, using 

𝑆𝑆𝑆𝑆
𝑆𝑆𝑆𝑆0

= 𝑒𝑒𝑒𝑒𝑒𝑒 �−
𝑇𝑇𝑇𝑇
𝑇𝑇2
� , (5) 

SI0 and T2 were fitted to the two TE measurements at b=50 s/mm2 and b=70 s/mm2 

separately. 

Furthermore, the changes in ADC and T2 as a function of TE and b-value, respectively, were 

also calculated to see how they affect each other. 

Statistical analysis 

The statistical analyses were divided into PZ and non-PZ tumors. Note that all PZ analyses 

were performed on the test set only, while the non-PZ analyses were carried out on all 

patients due to the low sample size. 

The 9 metrics subject to statistical analyses were as following: SFslow for the four alternative 

model calculations; ADC at TE=55 ms and T2 at both b-values; and the change in T2 values 

and ADCs as a function of b-value and TE, respectively. For the PZ analyses, the Wilcoxon 

signed-rank test was used to test for statistical significance between the tumor and normal 

tissue ROIs (n=24). For the non-PZ analyses, BPH ROIs from the BPH patients (n=14) were 

used for comparison with the non-PZ tumor ROIs (n=13), and the Mann-Whitney U test was 

used to test for statistical significance between these. All tests were two-sided. After a 



Bonferroni correction for 27 multiple comparisons (including the analyses in the main 

manuscript), p<0.0019 was considered statistically significant. 

All results (including the metrics from the main manuscript) are shown in S1 Table. 
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Abstract 

The medial (MEC) and lateral entorhinal cortex (LEC), widely studied in rodents, are well 

defined and characterized. In humans, however, the exact locations of their homologues 

remain uncertain. Previous functional magnetic resonance imaging (fMRI) studies have 

subdivided the human EC into posteromedial (pmEC) and anterolateral (alEC) parts, but 

uncertainty remains about the choice of imaging modality and seed regions, in particular in 

light of a substantial revision of the classical model of EC connectivity based on novel 

insights from rodent anatomy. Here, we used structural, not functional imaging, namely 

diffusion tensor imaging (DTI) and probabilistic tractography to segment the human EC 

based on differential connectivity to other brain regions known to project selectively to MEC 

or LEC. We defined MEC as more strongly connected with presubiculum and retrosplenial 

cortex (RSC), and LEC as more strongly connected with distal CA1 and proximal subiculum 

(dCA1pSub) and orbitofrontal cortex (OFC). Although our DTI segmentation had a larger 

medial-lateral component than in the previous fMRI studies, our results show that the human 

MEC and LEC homologues have a border oriented both towards the posterior-anterior and 

medial-lateral axes, supporting the differentiation between pmEC and alEC. 

 

Keywords: MRI, DTI, diffusion tensor imaging, structural connectivity, entorhinal cortex, 

MEC, LEC, segmentation, subregions 
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1 Introduction 

The entorhinal cortex (EC) is a part of the medial temporal lobe, and a central structure for 

memory formation and navigation (Eichenbaum et al., 2007; Moser and Moser, 2013; Suzuki 

and Eichenbaum, 2000). It is classically viewed as a hub for processing and relaying 

information from the neocortex to the hippocampus, and vice versa (Buzsáki, 1996; Lavenex 

and Amaral, 2000). The EC can be divided into two main subregions – ‘medial’ entorhinal 

cortex (MEC) and ‘lateral’ entorhinal cortex (LEC) – which differ in both functional properties 

and connectivity with other regions (Canto et al., 2008; Kerr et al., 2007; van Strien et al., 

2009). Both the function and anatomy of the EC subregions have been widely studied in 

rodents and non-human primates. Based mainly on research in rodents, the MEC is 

associated with spatial processing in a global, allocentric frame of reference, given the 

prevalence of spatially modulated cells such as grid and head direction cells (Fyhn et al., 

2004; Hafting et al., 2005; Høydal et al., 2019; Knierim et al., 2014). In contrast, the LEC 

contains cells that are sensitive to the presence of objects in a local frame of reference or 

processing of time (Deshmukh and Knierim, 2011; Knierim et al., 2014; Tsao et al., 2013; 

Tsao et al., 2018). However, although recent years have seen a stark increase in functional 

imaging studies of the human EC (Bellmund et al., 2019; Chen et al., 2019; Montchal et al., 

2019; Maass et al., 2015; Navarro Schröder et al., 2015; Reagh and Yassa, 2014; Schultz et 

al., 2012), the exact locations of the human homologues of MEC and LEC remain somewhat 

uncertain. This is an ongoing challenge for functional studies of the EC in humans and also 

makes it difficult to conduct translational research on the origins of neurodegenerative 

processes such as occurring in Alzheimer’s disease, which starts in the EC and 

transentorhinal area (Braak and Braak, 1992). 

In anatomical and functional studies of the human brain, magnetic resonance imaging (MRI) 

has become an invaluable tool. Functional MRI (fMRI) studies have shown that the 

properties of the rodent and non-human primate EC also apply to the human EC (Doeller et 

al., 2010; Reagh and Yassa, 2014; Schultz et al., 2012). Based on the subdivision of the 

rodent EC into MEC and LEC, studies have tried to localize their respective homologue 

regions in humans. Previous fMRI studies tested connectivity 'fingerprints’ of EC subregions 

to other parts of the brain. Studies in rodents and non-human primates have demonstrated a 

largely similar organization of EC connectivity across species (Canto et al., 2008), thus 

predicting distinct fMRI connectivity fingerprints for the two subregions in humans as well. 

The resulting delineations of putative human homologue regions of the rodent MEC and LEC 

were labeled posteromedial EC (pmEC) and anterolateral EC (alEC), based on the outcome 

of two independent fMRI studies that tested local and global connectivity, respectively 

(Maass et al., 2015; Navarro Schröder et al., 2015). However, it remains unclear whether the 
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results were affected by the nature of the imaging modality (fMRI) or the choice of seed brain 

regions used to identify the subregions. 

In addition to the neuroimaging modality, the second reason for a re-evaluation has gained 

additional importance since the assumption about EC connectivity on which parts of the 

previous fMRI studies (Maass et al., 2015; Navarro Schröder et al., 2015) were based has 

been recently revised. For years, the existence of two parallel cortical connectivity streams 

through the EC has been the accepted model (Nilssen et al., 2019; Ranganath and Ritchey, 

2012; Witter et al., 2017). This comprises one pathway into the hippocampus via the 

parahippocampal/postrhinal cortex (PHC/POR) and MEC (the “where” pathway), and a 

parallel pathway via the perirhinal cortex (PRC) and LEC (the “what” pathway). However, 

recent evidence substantially challenged this view. Doan and colleagues found that POR in 

rats, which corresponds to the PHC in humans, does also project to LEC. These authors 

further argue that existing data in monkeys substantiate this notion (Doan et al., 2019). This 

is in line with new findings in humans indicating that the hippocampal-entorhinal-neocortical 

connections are far more complex than a pure segregation into “where” and “what” pathways 

(Huang et al., 2021). 

In order to identify the human homologues of MEC and LEC, we should take advantage of 

known unique connections to each subregion. For example, in rodents the presubiculum 

projects almost exclusively to MEC, whereas distal CA1 and proximal subiculum 

(dCA1pSub, i.e. the border region between CA1 and subiculum) project most strongly to 

LEC (Caballero-Bleda and Witter, 1993; Honda and Ishizuka, 2004; Witter and Amaral, 

1991; Witter and Amaral, 2021). Meanwhile, the retrosplenial cortex (RSC) and the 

posterolateral orbitofrontal cortex (OFC) are respectively selectively connected with MEC 

and LEC (Hoover and Vertes, 2007; Jones and Witter, 2007; Kondo and Witter, 2014; 

Saleem et al., 2008; Witter and Amaral, 2021; Wyss and Van Groen, 1992). To investigate 

the connectivity between these regions, there are several imaging modalities available. An 

alternative method to the widely used fMRI functional connectivity is to instead study 

structural connectivity using diffusion tensor imaging (DTI), another type of MRI (Powell et 

al., 2004; Zeineh et al., 2012). Here, one exploits the diffusion of water molecules inside 

white matter tracts and uses this to map the paths of these fibers – so-called tractography 

(Mori et al., 1999; Mori and Zhang, 2006). Mapping DTI connectivity from cortices that 

project selectively to either EC subregion could provide a novel line of evidence to identify 

MEC and LEC (Ezra et al., 2015; Máté et al., 2018; Saygin et al., 2011). 

The objective of this study is therefore to identify the human homologues of the rodent MEC 

and LEC using DTI, incorporating the novel insights from rodent anatomy. To achieve this, 
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we performed probabilistic tractography on high-quality DTI data acquired by the Human 

Connectome Project (Fan et al., 2016). We identify the EC subregions by analyzing the 

connectivity from regions of interest (ROIs) that project selectively to either of them and 

compare these to the results from previous fMRI studies. 

2 Materials and methods 

2.1 MRI data 

Publicly available structural and diffusion MRI data from 35 healthy adults were obtained 

from the MGH-USC Human Connectome Project database (https://ida.loni.usc.edu, 

http://db.humanconnectome.org), in line with the MGH-USC HCP Data Agreement. All 

participants provided written informed consent, and the experiments were approved by the 

institutional review board of Partners Healthcare (Fan et al., 2016). The data were acquired 

on a Siemens 3T Connectom scanner with maximum gradient strength of 300 mT/m and 

slew rate 200 T/m/s (McNab et al., 2013; Setsompop et al., 2013). Structural T1-weighted 

images were acquired using a 3D magnetization-prepared rapid gradient-echo (MPRAGE) 

sequence at 1 mm isotropic resolution. Diffusion data were acquired using a spin-echo echo-

planar imaging (EPI) sequence at 1.5 mm isotropic resolution, with b-values of 1000 s/mm2 

(64 directions), 3000 s/mm2 (64 directions), 5000 s/mm2 (128 directions) and 10,000 s/mm2 

(256 directions). One non-diffusion-weighted (b = 0) image was collected every 14 image 

volumes. 

2.2 Preprocessing 

The MRI data were minimally preprocessed by the Human Connectome Project as 

described in (Fan et al., 2014). In brief, this preprocessing pipeline included gradient 

nonlinearity correction, motion correction, Eddy current correction and b-vector correction. 

2.2.1 Registration 

Both structural and diffusion images were brain extracted using the brain mask from running 

the FreeSurfer (version 7.1.1, https://surfer.nmr.mgh.harvard.edu/) functions recon-all and 

dt-recon on the participant’s structural and diffusion images, respectively (Fischl et al., 2002; 

Fischl et al., 2004), before refining the result using the FMRIB Software Library’s (FSL; 

version 5.0.9, http://fsl.fmrib.ox.ac.uk/fsl/) function BET (Jenkinson et al., 2012; Smith, 2002). 

For the diffusion images, brain extraction and registration were performed on the 

participant’s average b = 1000 image. The individual brain-extracted structural and diffusion 

images were registered to each other, as well as to the MNI152-09b standard brain template 

(Fonov et al., 2009), using symmetric non-linear registration in the Advanced Neuroimaging 
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Toolbox (ANTs; version 2.3.4, http://stnava.github.io/ANTs/) based on mutual information 

(Avants et al., 2011). 

2.2.2 Regions of interest 

Regions of interest (ROIs) including the EC, presubiculum, CA1 and subiculum were 

extracted from the automated cortical and subcortical parcellation obtained from running 

FreeSurfer’s recon-all and segmentHA_T1 functions on the MNI152-09b template (Fischl et 

al., 2002; Fischl et al., 2004; Iglesias et al., 2015). The EC ROI was further refined by 

masking it by a probabilistic EC ROI, thresholded at 0.25 from the Jülich-Brain 

Cytoarchitectonic Atlas (Amunts et al., 2020). Since the resulting EC ROI extended too far 

posteriorly towards the parahippocampal cortex and laterally beyond the collateral sulcus, 

we also performed a manual adjustment. We created ROIs of distal CA1/proximal subiculum 

by splitting each of the two hippocampal structures in half along its proximodistal axis. Of all 

voxels encompassing CA1, the half located distally was included, and of all the voxels 

encompassing subiculum, the half located proximally was included: these two halves thus 

make up what we here define and refer to as ‘distal CA1/proximal subiculum’ (dCA1pSub). 

To create RSC and OFC ROIs, respectively, the FreeSurfer parcellations named “isthmus 

cingulate” and “lateral orbitofrontal” were used as a starting point. The final RSC ROI was 

obtained by tailoring the isthmus cingulate and removing the excess superior areas, while 

the final OFC ROI was obtained by extracting the posterolateral quadrant of the lateral 

orbitofrontal area. All resulting ROIs are shown in Supplementary Figures 1-5. The ROIs 

were registered to the participants’ individual spaces by applying the calculated 

transformations from ANTs. To increase the anatomical precision of the ROIs, the registered 

ROIs were then masked by respective participant-specific FreeSurfer parcellations. 

2.3 DTI analysis 

All DTI analyses were performed in the participant’s native diffusion space. Voxel-wise fiber 

orientation distribution functions (fODFs) were computed by running the FSL function 

bedpostx on the diffusion data, using the zeppelin deconvolution model, a Rician noise 

model, and burn-in period 3000 (Sotiropoulos et al., 2016). Probabilistic tractography 

between the EC and presubiculum, dCA1pSub, RSC and OFC ROIs was then performed by 

running FSL’s probtrackx2 on the fODFs (Behrens et al., 2007; Behrens et al., 2003b). 

Tractography was performed both in ROI-by-ROI and voxel-by-ROI connectivity mode, with 

number of samples 250,000, minimal path length 5 mm, and a midline termination mask 

(Behrens et al., 2003a; Ezra et al., 2015; Johansen-Berg et al., 2004; Máté et al., 2018; 

Saygin et al., 2011). For tractography between EC and presubiculum, paths were excluded if 

they reached the dCA1pSub ROI, while for tractography between EC and dCA1pSub, paths 

were excluded if they reached the presubiculum ROI – and equivalently for tractography 



6 
 

between EC and RSC/OFC. For both bedpostx and probtrackx2, parameters were run with 

default values unless otherwise specified. ROI-by-ROI connectivity mode provides 

probability maps of the connectivity paths between the ROIs, while voxel-by-ROI connectivity 

mode provides probability maps of the voxel-wise connectivity of the EC ROI with the other 

ROIs, respectively. All tractography results were registered to MNI space and further 

analyses were performed there to facilitate inter-participant comparisons. 

2.4 MEC and LEC segmentation 

The voxel-wise connectivity maps were normalized to [0,1] by dividing them by the maximum 

probability for each hemisphere separately, and then thresholded by 0.01 to reduce false 

positive connections (Behrens et al., 2003a; Saygin et al., 2011). This threshold was 

determined empirically by testing a range of thresholds and choosing the one that in most 

cases removed connections outside the grey matter, because due to remaining distortions in 

the DTI images some of the EC ROIs slightly extended into air voxels. Crucially, we then 

define the MEC as the region that is most strongly connected with the presubiculum and/or 

RSC, while the LEC is the region that is most strongly connected with dCA1pSub and/or 

OFC (Caballero-Bleda and Witter, 1993; Honda and Ishizuka, 2004; Hoover and Vertes, 

2007; Jones and Witter, 2007; Kondo and Witter, 2014; Saleem et al., 2008; Witter and 

Amaral, 1991; Witter and Amaral, 2021; Wyss and Van Groen, 1992). For each participant, a 

hard segmentation was performed on the normalized and thresholded voxel-wise 

connectivity maps using FSL’s find_the_biggest (Behrens et al., 2003a; Johansen-Berg et 

al., 2004), where the voxels that had a stronger connection probability with the 

presubiculum/RSC than with dCA1pSub/OFC were classified as MEC, and vice versa for 

LEC. 

2.5 Group analysis 

Group probability maps of the connectivity paths between the ROIs, as well as group 

probability maps of voxel-wise connectivity, were created by summing and averaging all the 

individual maps. Inter-participant segmentation variability maps were created by adding 

together all the individual participants’ MEC and LEC segmentations, respectively. Group 

MEC and LEC segmentation were performed similarly to the individual segmentation: The 

group voxel-wise connectivity maps were first smoothed with a Gaussian kernel of 1 mm and 

thresholded by 0.01, and then a hard segmentation was performed equivalently to the 

single-participant segmentation by comparing the connection probabilities of EC with 

presubiculum/RSC vs. dCA1pSub/OFC. Four different segmentations were performed with 

all the 2×2 combinations of seed regions, in addition to a combined segmentation approach 
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where the connectivity maps for presubiculum + RSC and for dCA1pSub + OFC, 

respectively, were combined and averaged before segmentation. 

2.6 Segmentation comparisons 

To assess the different segmentation approaches and compare the resulting locations of 

MEC and LEC, we calculated the orientation of the MEC-LEC border along the posterior-

anterior (PA) and medial-lateral (ML) axes, respectively. This was performed by first 

calculating the centers of gravity of the differently defined MECs and LECs, and the vector 

between these centers of gravity. Next, the angle between this vector and a pure PA or ML 

vector was determined. We defined the PA axis as the long axis of the hippocampus. The 

degree of PA- or ML-oriented border was then defined between 0 and 100% such that an 

angle of 0° to the PA or ML vector means that the border is 100% oriented along the PA or 

ML vector, respectively. Correspondingly, an angle of 90° would mean that the border is 0% 

oriented along the respective axis, i.e. it is orthogonal to that axis. In addition, the different 

segmentations were compared with respect to the sizes of the resulting MECs and LECs, 

and the size ratios between these were calculated. All these segmentation comparisons 

were also carried out on the two fMRI-based segmentations of pmEC and alEC available for 

download from earlier studies (Maass et al., 2015; Navarro Schröder et al., 2015). 

3 Results 

To visualize the connectivity paths between the EC and the regions hypothesized to be 

connected with its subregions, we ran probabilistic tractography between the regions. By 

seeding paths from all voxels in the EC, presubiculum, dCA1pSub, RSC and OFC ROIs, 

maps of the connectivity paths between the EC and the other ROIs were created. The 

resulting group averaged paths are shown in Figure 1. In all figures, blue color schemes are 

used for MEC-related regions, i.e. presubiculum and RSC, while red color schemes are used 

for LEC-related regions, i.e. dCA1pSub and OFC. The maps show that all the regions exhibit 

clear connectivity with the EC. Connections with dCA1pSub extend further anteriorly in the 

EC than the connections with the presubiculum, and the connections with presubiculum and 

RSC seem to take a similar route to the EC. The paths between OFC and EC, however, 

stand out from the others as they take a more lateral route, but the inferior part seems to 

pass close to dCA1pSub. Note that the colormap intensity in these maps does not represent 

the actual number of white matter tracts, but instead scales with the probability that the true 

path between the ROIs lies in that point. Corresponding connectivity paths for one example 

participant are shown in Supplementary Figure 6. 
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Figure 1: Group average connectivity paths between EC and presubiculum, dCA1pSub, RSC and OFC. 
Connectivity patterns are shown on sagittal (left) and coronal (right) slices in MNI space. The colormap intensity 
represents the number of probabilistic paths running through that voxel. A: Paths between EC and presubiculum, 
B: Paths between EC and dCA1pSub, C: Paths between EC and RSC, D: Paths between EC and OFC.  
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Because we wanted to segment the EC into the MEC and LEC homologues based on the 

connectivity with other regions, a voxel-by-voxel measure of connectivity probability was 

needed. We therefore also ran the tractography only seeding from the EC ROIs. Then, for 

each voxel in the ROI, we counted how many of the seeded paths reached the other ROIs. 

These connectivity counts were normalized to a probability, providing connectivity maps for 

the EC with the other four ROIs. The resulting smoothed and thresholded group averaged 

connectivity maps are shown in Figure 2. The sagittal slices show that the connectivity with 

presubiculum and RSC appears to be strongest in the posterior part of the EC, whereas the 

connectivity with dCA1pSub and OFC is strongest anteriorly in the EC. Further, the 

presubiculum connectivity does not show a clear medial-lateral gradient, but the connections 

with dCA1pSub, RSC and OFC are stronger laterally in the EC in the selected coronal slices. 

Corresponding connectivity maps for one example participant are shown in Supplementary 

Figure 7. 

For segmentation into the MEC and LEC homologues, the main hypothesis was that these 

regions could be identified based on connectivity with presubiculum vs. dCA1pSub, 

respectively. The actual segmentation was performed on a voxel-by-voxel level in the EC 

determining with which of the other two regions the connection probability was highest, using 

the connectivity maps described in the previous paragraph. For comparison, the MEC-LEC 

segmentation was also performed based on connectivity with RSC vs. OFC, respectively. 

This was first performed individually for all participants, and inter-participant segmentation 

variability maps for the presubiculum vs. dCA1pSub and RSC vs. OFC segmentation 

approaches are shown in Figure 3. For most participants, MEC is clearly located more 

posteriorly and LEC is located more anteriorly for both segmentation approaches, and in 

addition they are located more medially and laterally with respect to each other for the 

presubiculum vs. dCA1pSub approach. The RSC vs. OFC approach also shows this medial-

lateral trend of MEC and LEC across participants, although not as clear as for presubiculum 

vs. dCA1pSub. Corresponding MEC and LEC segmentations for one example participant are 

shown in Supplementary Figure 8. 
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Figure 2: Group average maps of EC connectivity with presubiculum, dCA1pSub, RSC and OFC. The 
maps are shown on sagittal (left) and coronal (right) slices in MNI space. The colormap intensity represents the 
fraction of paths seeded from that EC voxel that reached the other ROI. A: EC connectivity with presubiculum, B: 
EC connectivity with dCA1pSub, C: EC connectivity with RSC, D: EC connectivity with OFC.  
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Figure 3: Inter-participant segmentation variability maps for different segmentation approaches. Results 
are shown on sagittal (left) and coronal (right) slices in MNI space. The colormap intensities represents the 
number of participants for which that voxel was classified as MEC or LEC, respectively. A: MEC prediction based 
on higher connectivity with presubiculum than with dCA1pSub, B: LEC prediction based higher connectivity with 
dCA1pSub than with presubiculum, C: MEC prediction based on higher connectivity with RSC than with OFC, D: 

LEC prediction based on higher connectivity with OFC than with RSC.  
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The same connectivity-based MEC-LEC segmentation was performed on a group level using 

the group averaged connectivity maps from Figure 2. As described above, the group 

segmentation was also performed using two different approaches – presubiculum vs. 

dCA1pSub, and RSC vs. OFC – and the resulting segmentations are shown in Figure 4. We 

see that for the MEC and LEC predictions from presubiculum vs. dCA1pSub, there is a clear 

medial-lateral (ML) and posterior-anterior (PA)-oriented border between the subregions. For 

RSC vs. OFC, however, the PA-oriented border is most prominent, but it is also slightly ML-

oriented, most visible in the left EC. Because the results from the two approaches were 

slightly different, we also tried to interchange the ROI combinations, and MEC and LEC 

segmentations from using presubiculum vs. OFC and RSC vs. dCA1pSub can be seen in 

Supplementary Figure 9. Furthermore, to include all the information from the 2×2 

combinations of seed regions into one final segmentation, we performed another approach 

where we averaged the connectivity maps for presubiculum and RSC, and the maps for 

dCA1pSub and OFC (Figure 5A and B). Figure 5C shows the resulting MEC and LEC 

homologues from this combined segmentation approach. With this approach, as with 

separate combinations of seed regions, we find both a PA- and ML-oriented (although most 

visible in the left hemisphere) border between MEC and LEC. These final MEC and LEC 

masks are also available in the Supplementary files. 

In a next step, since the borders of the segmentations from different approaches showed 

slightly different orientations along the posterior-anterior (PA) and medial-lateral (ML) axes, 

we wanted to quantify this directional difference by calculating the “degree” of PA- and ML-

orientation of the borders. This was defined as a percentage from 0 to 100%, dependent on 

the angle between the MEC-LEC center of gravity vector and a pure PA or ML vector. Table 

1 shows the resulting degrees of PA- vs. ML- oriented borders for the different segmentation 

approaches including the fMRI segmentations from previous studies (Maass et al., 2015; 

Navarro Schröder et al., 2015). The center of gravity vectors are also plotted in a common 

reference frame in Supplementary Figure 10. All DTI segmentation approaches have a 

border with a PA-orientation of around 50-60%, and a varying degree of ML-orientation from 

6% for RSC vs. OFC up to 67% for presubiculum vs. dCA1pSub. The borders between the 

segmentations from fMRI have a high PA-orientation of around 92%, and a lower degree of 

ML-orientation than all of the DTI approaches. Interestingly, when comparing the different 

combinations of DTI approaches, using dCA1pSub as the defining region for LEC yields a 

higher degree of ML-orientation than using OFC. Similarly, using RSC as the defining region 

for MEC yields a slightly higher degree of PA-orientation of the border than using 

presubiculum, but this is less prominent. 
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Figure 4: Group segmentations of MEC and LEC from different approaches. Results are shown on sagittal 
(top left) and coronal (top right) slices and 3D-rendered (bottom left) in MNI space. The MEC and LEC predictions 
are shown in blue and red, respectively. A: MEC and LEC prediction based on connectivity with presubiculum vs. 
dCA1pSub, B: MEC and LEC prediction based on connectivity with RSC vs. OFC. S = superior, I = inferior, A = 
anterior, P = posterior, R = right, L = left. 
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Figure 5: Group connectivity maps and segmentation using a combined approach with presubiculum + 
RSC vs. dCA1pSub + OFC. A: EC connectivity with presubiculum + RSC combined. B: EC connectivity with 
dCA1pSub + OFC combined. C: MEC and LEC prediction based on connectivity with presubiculum + RSC vs. 
dCA1pSub + OFC combined. 
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Table 1: Degree of posterior-anterior (PA) or medial-lateral (ML)-orientation of the border between MEC 
and LEC for different segmentation approaches. The degree of PA- or ML-orientation is given as a 
percentage between 0 and 100%, dependent on the angle between the MEC-LEC center of gravity vector and 
the pure PA or ML vector, respectively. All numbers are given as the mean of both hemispheres ± mean absolute 
deviation. 

Segmentation approach 
Posterior-anterior (PA) axis Medial-lateral (ML) axis 

Angle (°) % PA Angle (°) % ML 

DTI 

Presubiculum/dCA1pSub 45.1 ± 3.0 49.9 ± 3.3 29.8 ± 1.9 66.9 ± 2.1 

RSC/OFC 39.7 ± 15.3 55.9 ± 17.0 84.5 ± 11.1 6.1 ± 12.3 

Presubiculum/OFC 41.3 ± 17.3 54.1 ± 19.3 81.2 ± 10.3 9.8 ± 11.5 

RSC/dCA1pSub 33.9 ± 1.2 62.3 ± 1.3 64.9 ± 18.8 27.9 ± 20.9 

Presubiculum+RSC/dCA1pSub+OFC 37.5 ± 10.6 58.3 ± 11.8 73.1 ± 17.4 18.7 ± 19.3 

fMRI 
Navarro Schröder et al. 6.8 ± 1.8 92.4 ± 2.0 85.5 ± 0.7 5.0 ± 0.8 

Maass et al. 6.6 ± 0.5 92.7 ± 0.6 87.9 ± 0.9 2.4 ± 1.0 

 

Finally, we wanted to compare the resulting sizes of the MEC and LEC homologues from all 

the different segmentation approaches, and these are shown in Table 2. For all DTI 

approaches, the MEC is larger than LEC, while fMRI on the other hand yields a larger LEC 

than MEC. The subregions are most equally sized when using the RSC vs. dCA1pSub 

approach. 

Table 2: Resulting sizes of MEC and LEC for different segmentation approaches, and the size ratio 
between MEC and LEC. The numbers of voxels are given for the ROIs in MNI space with 0.5 mm isotropic 
resolution. 

Segmentation approach 
Size (# voxels) MEC/LEC 

size ratio MEC LEC 

DTI 

Presubiculum/dCA1pSub 12759 7763 1.64 

RSC/OFC 12971 8727 1.49 

Presubiculum/OFC 13614 6979 1.95 

RSC/dCA1pSub 11045 10282 1.07 

Presubiculum+RSC/dCA1pSub+OFC 13571 7379 1.84 

fMRI 
Navarro Schröder et al. 12802 16028 0.80 

Maass et al. 3776 11008 0.34 

 

4 Discussion 

In this study, we used DTI and probabilistic tractography in 35 healthy adults to segment the 

human EC into homologues of what in other mammals have been functionally and 

cytoarchitectonically defined as MEC and LEC. We based the segmentation on EC 

connectivity with four brain regions known to selectively project to either of the EC 

subregions in multiple species. Different combinations of these four regions all showed both 
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a posterior-anterior (PA) and a medial-lateral (ML)-oriented border between the human 

homologues of MEC and LEC. This orientation of the thus defined border is similar to that 

defined in previous fMRI studies resulting in the definition of the two subregions as pmEC 

and alEC (Maass et al., 2015; Navarro Schröder et al., 2015). Note however that our DTI 

results show a larger degree of ML-orientation, and a correspondingly lower degree of PA-

orientation of the border between the subregions compared to the previous fMRI results. 

The results from our study substantiate the pmEC and alEC subdivision of the human EC 

suggested in previous fMRI studies (Maass et al., 2015; Navarro Schröder et al., 2015). 

Although some earlier fMRI studies on mnemonic processing in the EC found a dissociation 

primarily along the medial-lateral axis (Reagh and Yassa, 2014; Schultz et al., 2012), it is 

important to realize that even the orientation of the cytoarchitectonically defined border 

between MEC and LEC in rodents does not align along a pure medial-to-lateral axis. Rather, 

the MEC in rodents is actually located in the posterior-medial EC, and the LEC is located in 

the anterior-lateral EC (van Strien et al., 2009). Also, in macaque monkeys, tracing studies 

show differential connectivity in caudal vs. rostral portions (Witter and Amaral, 2021). A pure 

medial-lateral subdivision of human EC is thus not to be expected. Nevertheless, the 

somewhat different orientations of the border between the human homologues of MEC vs. 

LEC subdivisions found using DTI vs. fMRI studies raises the question of which of the two 

imaging modalities should be preferred to define the position and orientation of this border. 

There are several possible explanations as to why our DTI study showed slightly different 

segmentation results than the fMRI studies. First, DTI and fMRI are two different imaging 

modalities with inherently different mechanisms of connectivity. While DTI exploits the 

diffusion of water molecules in order to trace the structural paths of connectivity between 

brain regions (Mori et al., 1999; Mori and Zhang, 2006; Powell et al., 2004; Zeineh et al., 

2012), fMRI identifies functional connectivity by correlating blood-oxygen-level-dependent 

(BOLD) signals across time (Van Dijk et al., 2010). Although structural and functional 

connectivity in theory should be closely linked, they are in reality quantitatively difficult to 

compare because of the complexity of the connectivity mechanisms of the brain (Huang and 

Ding, 2016; Messé et al., 2015). Another reason for the different results between this and the 

previous studies could be the use of different seed regions to identify the MEC and LEC 

homologues. While we used presubiculum and RSC to define MEC, and dCA1pSub and 

OFC to define LEC (Caballero-Bleda and Witter, 1993; Honda and Ishizuka, 2004; Hoover 

and Vertes, 2007; Jones and Witter, 2007; Kondo and Witter, 2014; Saleem et al., 2008; 

Witter and Amaral, 1991; Witter and Amaral, 2021; Wyss and Van Groen, 1992), one of the 

fMRI studies investigated differential connectivity of PHC vs. PRC and distal vs. proximal 

subiculum (Maass et al., 2015), whereas the other used regions in a posterior-medial vs. an 
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anterior-temporal cortical system (Navarro Schröder et al., 2015). The new insights from 

rodent anatomy indicate that while PHC area TH is connected with the MEC, PHC area TF is 

connected with the LEC (Witter and Amaral, 2021). As area TF is located more laterally than 

TH, this might in part explain why the previous fMRI study where they used connectivity with 

the whole PHC to define the pmEC (Maass et al., 2015) showed a lower medial-lateral 

component of their pmEC-alEC segmentation than our results. In order to determine to 

which extent each of these reasons contributed to the different subdivision results across 

studies, both imaging modalities and different seed regions should be investigated more 

rigorously in one single, larger cohort of participants. 

Interestingly, using different seed regions to identify MEC and LEC resulted in varying 

degrees of PA- and ML-orientation of the border between them. It is unclear whether this is 

inherently linked to the DTI method, or due to an actual connectivity difference between the 

regions. Using presubiculum and dCA1pSub as the seed regions, which are situated 

medially and laterally with respect to each other, respectively, resulted in a border with 

higher degree of ML- than PA-orientation. On the other hand, using RSC and OFC, which 

are situated posteriorly and anteriorly in the brain, respectively, resulted in a border with 

higher degree of PA- than ML-orientation. Although it is not unnatural to assume that the 

brain is organized such that connected regions are situated more closely to each other, this 

could also be an effect of using probabilistic tractography, where the apparent connectivity 

probability depends on e.g. the length of the path and the size of the ROIs (Behrens et al., 

2007). In other species, including rodents and monkeys, the presubiculum and RSC show 

inputs to the EC with a similar spatial distribution (Witter and Amaral, 2021), aligning with our 

maps of connectivity paths with these two seed regions. However, comparing the different 

MEC and LEC segmentations from the different seed region combinations shows that while 

interchanging presubiculum and RSC yields only slightly different orientation of the border 

along the PA and ML axes, the difference when interchanging dCA1pSub and OFC is more 

substantial. In other species, dCA1pSub are known to project to both rostral and dorsolateral 

parts of EC, whereas posterolateral OFC mainly projects dorsolaterally in the EC (Kondo 

and Witter, 2014; Saleem et al., 2008; Witter and Amaral, 1991; Witter and Amaral, 2021). 

Whether these regions in humans project to different parts of the homologue of LEC, or 

whether our results are affected by using DTI and probabilistic tractography, should be 

further investigated by also comparing EC functional connectivity to these areas using fMRI. 

Note also that the topography of projections from dCA1pSub along the medial-lateral axis of 

the EC depends on where the seed is placed along the posterior-anterior axis of the 

dCA1pSub (Witter and Amaral, 2021), which emphasizes the importance of carefully defined 

seed ROIs. 
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In order to determine and compare the connectivities between the EC and the other ROIs, 

we normalized the connectivity maps by dividing them by the maximum probability of each 

map. This could introduce a bias in the results. By doing this, we intrinsically assume that the 

maximum connectivity strength to each of the other ROIs are equal, and the segmentation 

process does not take into account that the MEC connections might be stronger than the 

LEC connections, or vice versa. However, little is known about the strength of connectivities 

at this level of detail, particularly since it is not straightforward to examine or even define 

connectivity strength. Connectivity strength surely depends on axonal density, but other 

factors like synaptic density and efficacy are other important variables. Nevertheless, even if 

we were to know that some of the connections are stronger than the others, probabilistic 

tractography provides a relative instead of an absolute measure of connectivity and is also 

dependent on path lengths, ROI sizes and the number of possible path directions in a voxel. 

Normalizing the connectivity maps based on different connectivity strengths would therefore 

be a highly complex task. Therefore, we did not impose any further assumptions about 

connectivity strengths in our analyses. 

Our study has some limitations. To define our ROIs, we chose to use regions from automatic 

cortical segmentation protocols. This could have influenced the anatomical precision of our 

analysis. Manual segmentation would be labor-intensive and requires high skills in 

neuroanatomy, possibly limiting the number of participants that could be included in the 

study. However, we manually adjusted some of the automatically segmented ROIs, and also 

intersected the registered ROIs from MNI space with the participants’ individual automatic 

segmentations in order to increase the anatomical accuracy. Another limitation is that there 

are inherent challenges to the EPI sequence used for diffusion imaging. This results in a 

generally low signal-to-noise ratio in the EC and the whole medial temporal lobe. In addition, 

these regions appear geometrically distorted in the EPI images, and although this has been 

corrected for, it is not possible to recover all of the lost signal. Imperfect correction can also 

affect the accuracy of the ROIs. Because of the probabilistic nature of the tractography 

technique it is unlikely that noise will introduce false connections, but it can leave some 

connections undetected. At last, a relatively low number of participants were included in our 

study, which might have influenced the statistical power of the results. 

5 Conclusions 

Our DTI results support the definition of pmEC and alEC as the human homologues of MEC 

and LEC. Also inspired by novel insights coming from rodent anatomy, we present a 

segmentation based on a combination of differential presubiculum/RSC and dCA1pSub/OFC 

structural connectivity which indicates a border between the two subdivisions of EC with an 
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orientation that is angled both towards the posterior-anterior axis, as well as to the medial-

lateral axis. The fact that there are some differences in the orientation of the border based 

on DTI and fMRI data in addition to the seed regions used, indicates the need for 

investigation in a larger number of participants across both modalities. 

Acknowledgements 

This study was supported by the Norwegian University of Science and Technology. 

Data were provided by the Human Connectome Project, MGH-USC Consortium (Principal 

Investigators: Bruce R. Rosen, Arthur W. Toga and Van Wedeen; U01MH093765) funded by 

the NIH Blueprint Initiative for Neuroscience Research grant; the National Institutes of Health 

grant P41EB015896; and the Instrumentation Grants S10RR023043, 1S10RR023401, 

1S10RR019307. 

Competing interests 

The authors declare no competing interests. 

Supplementary files 

• MEC and LEC homologue masks in MNI152-09b space, defined from the combined 

presubiculum+RSC vs. dCA1pSub+OFC approach (MEC_LEC_segmentations.zip). 

References 

Amunts, K., Mohlberg, H., Bludau, S., Zilles, K., 2020. Julich-Brain: A 3D probabilistic atlas 

of the human brain's cytoarchitecture. Science 369, 988-992. doi:10.1126/science.abb4588 

Avants, B.B., Tustison, N.J., Song, G., Cook, P.A., Klein, A., Gee, J.C., 2011. A reproducible 

evaluation of ANTs similarity metric performance in brain image registration. Neuroimage 54, 

2033-2044. doi:10.1016/j.neuroimage.2010.09.025 

Behrens, T.E., Johansen-Berg, H., Jbabdi, S., Rushworth, M.F., Woolrich, M.W., 2007. 

Probabilistic diffusion tractography with multiple fibre orientations: What can we gain? 

Neuroimage 34, 144-155. doi:10.1016/j.neuroimage.2006.09.018 

Behrens, T.E., Johansen-Berg, H., Woolrich, M.W., Smith, S.M., Wheeler-Kingshott, C.A., 

Boulby, P.A., Barker, G.J., Sillery, E.L., Sheehan, K., Ciccarelli, O., Thompson, A.J., Brady, 

J.M., Matthews, P.M., 2003a. Non-invasive mapping of connections between human 

thalamus and cortex using diffusion imaging. Nature Neuroscience 6, 750-757. 

doi:10.1038/nn1075 



20 
 

Behrens, T.E., Woolrich, M.W., Jenkinson, M., Johansen-Berg, H., Nunes, R.G., Clare, S., 

Matthews, P.M., Brady, J.M., Smith, S.M., 2003b. Characterization and propagation of 

uncertainty in diffusion-weighted MR imaging. Magnetic Resonance in Medicine 50, 1077-

1088. doi:10.1002/mrm.10609 

Bellmund, J.L., Deuker, L., Doeller, C.F., 2019. Mapping sequence structure in the human 

lateral entorhinal cortex. eLife 8. doi:10.7554/eLife.45333 

Braak, H., Braak, E., 1992. The human entorhinal cortex: normal morphology and lamina-

specific pathology in various diseases. Neuroscience Research 15, 6-31. doi:10.1016/0168-

0102(92)90014-4 

Buzsáki, G., 1996. The Hippocampo-Neocortical Dialogue. Cerebral Cortex 6, 81-92. 

doi:10.1093/cercor/6.2.81 

Caballero-Bleda, M., Witter, M.P., 1993. Regional and laminar organization of projections 

from the presubiculum and parasubiculum to the entorhinal cortex: an anterograde tracing 

study in the rat. Journal of Comparative Neurology 328, 115-129. 

doi:10.1002/cne.903280109 

Canto, C.B., Wouterlood, F.G., Witter, M.P., 2008. What Does the Anatomical Organization 

of the Entorhinal Cortex Tell Us? Neural Plasticity 2008, 381243. doi:10.1155/2008/381243 

Chen, X., Vieweg, P., Wolbers, T., 2019. Computing distance information from landmarks 

and self-motion cues - Differential contributions of anterior-lateral vs. posterior-medial 

entorhinal cortex in humans. Neuroimage 202, 116074. 

doi:10.1016/j.neuroimage.2019.116074 

Deshmukh, S.S., Knierim, J.J., 2011. Representation of non-spatial and spatial information 

in the lateral entorhinal cortex. Frontiers in Behavioral Neuroscience 5, 69. 

doi:10.3389/fnbeh.2011.00069 

Doan, T.P., Lagartos-Donate, M.J., Nilssen, E.S., Ohara, S., Witter, M.P., 2019. Convergent 

Projections from Perirhinal and Postrhinal Cortices Suggest a Multisensory Nature of Lateral, 

but Not Medial, Entorhinal Cortex. Cell Reports 29, 617-627.e617. 

doi:10.1016/j.celrep.2019.09.005 

Doeller, C.F., Barry, C., Burgess, N., 2010. Evidence for grid cells in a human memory 

network. Nature 463, 657-661. doi:10.1038/nature08704 



21 
 

Eichenbaum, H., Yonelinas, A.P., Ranganath, C., 2007. The Medial Temporal Lobe and 

Recognition Memory. Annual Review of Neuroscience 30, 123-152. 

doi:10.1146/annurev.neuro.30.051606.094328 

Ezra, M., Faull, O.K., Jbabdi, S., Pattinson, K.T., 2015. Connectivity-based segmentation of 

the periaqueductal gray matter in human with brainstem optimized diffusion MRI. Human 

Brain Mapping 36, 3459-3471. doi:10.1002/hbm.22855 

Fan, Q., Nummenmaa, A., Witzel, T., Zanzonico, R., Keil, B., Cauley, S., Polimeni, J.R., 

Tisdall, D., Van Dijk, K.R., Buckner, R.L., Wedeen, V.J., Rosen, B.R., Wald, L.L., 2014. 

Investigating the capability to resolve complex white matter structures with high b-value 

diffusion magnetic resonance imaging on the MGH-USC Connectom scanner. Brain 

Connectivity 4, 718-726. doi:10.1089/brain.2014.0305 

Fan, Q., Witzel, T., Nummenmaa, A., Van Dijk, K.R.A., Van Horn, J.D., Drews, M.K., 

Somerville, L.H., Sheridan, M.A., Santillana, R.M., Snyder, J., Hedden, T., Shaw, E.E., 

Hollinshead, M.O., Renvall, V., Zanzonico, R., Keil, B., Cauley, S., Polimeni, J.R., Tisdall, D., 

Buckner, R.L., Wedeen, V.J., Wald, L.L., Toga, A.W., Rosen, B.R., 2016. MGH-USC Human 

Connectome Project datasets with ultra-high b-value diffusion MRI. Neuroimage 124, 1108-

1114. doi:10.1016/j.neuroimage.2015.08.075 

Fischl, B., Salat, D.H., Busa, E., Albert, M., Dieterich, M., Haselgrove, C., van der Kouwe, A., 

Killiany, R., Kennedy, D., Klaveness, S., Montillo, A., Makris, N., Rosen, B., Dale, A.M., 

2002. Whole brain segmentation: automated labeling of neuroanatomical structures in the 

human brain. Neuron 33, 341-355. doi:10.1016/s0896-6273(02)00569-x 

Fischl, B., van der Kouwe, A., Destrieux, C., Halgren, E., Ségonne, F., Salat, D.H., Busa, E., 

Seidman, L.J., Goldstein, J., Kennedy, D., Caviness, V., Makris, N., Rosen, B., Dale, A.M., 

2004. Automatically parcellating the human cerebral cortex. Cerebral Cortex 14, 11-22. 

doi:10.1093/cercor/bhg087 

Fonov, V.S., Evans, A.C., McKinstry, R.C., Almli, C.R., Collins, D.L., 2009. Unbiased 

nonlinear average age-appropriate brain templates from birth to adulthood. Neuroimage 47, 

S102. doi:10.1016/S1053-8119(09)70884-5 

Fyhn, M., Molden, S., Witter, M.P., Moser, E.I., Moser, M.-B., 2004. Spatial Representation 

in the Entorhinal Cortex. Science 305, 1258-1264. doi:10.1126/science.1099901 

Hafting, T., Fyhn, M., Molden, S., Moser, M.B., Moser, E.I., 2005. Microstructure of a spatial 

map in the entorhinal cortex. Nature 436, 801-806. doi:10.1038/nature03721 



22 
 

Honda, Y., Ishizuka, N., 2004. Organization of connectivity of the rat presubiculum: I. 

Efferent projections to the medial entorhinal cortex. Journal of Comparative Neurology 473, 

463-484. doi:10.1002/cne.20093 

Hoover, W.B., Vertes, R.P., 2007. Anatomical analysis of afferent projections to the medial 

prefrontal cortex in the rat. Brain Structure & Function 212, 149-179. doi:10.1007/s00429-

007-0150-4 

Huang, C.-C., Rolls, E.T., Hsu, C.-C.H., Feng, J., Lin, C.-P., 2021. Extensive Cortical 

Connectivity of the Human Hippocampal Memory System: Beyond the “What” and “Where” 

Dual Stream Model. Cerebral Cortex. doi:10.1093/cercor/bhab113 

Huang, H., Ding, M., 2016. Linking Functional Connectivity and Structural Connectivity 

Quantitatively: A Comparison of Methods. Brain Connectivity 6, 99-108. 

doi:10.1089/brain.2015.0382 

Høydal, Ø.A., Skytøen, E.R., Andersson, S.O., Moser, M.B., Moser, E.I., 2019. Object-vector 

coding in the medial entorhinal cortex. Nature 568, 400-404. doi:10.1038/s41586-019-1077-

7 

Iglesias, J.E., Augustinack, J.C., Nguyen, K., Player, C.M., Player, A., Wright, M., Roy, N., 

Frosch, M.P., McKee, A.C., Wald, L.L., Fischl, B., Van Leemput, K., 2015. A computational 

atlas of the hippocampal formation using ex vivo, ultra-high resolution MRI: Application to 

adaptive segmentation of in vivo MRI. Neuroimage 115, 117-137. 

doi:10.1016/j.neuroimage.2015.04.042 

Jenkinson, M., Beckmann, C.F., Behrens, T.E., Woolrich, M.W., Smith, S.M., 2012. FSL. 

Neuroimage 62, 782-790. doi:10.1016/j.neuroimage.2011.09.015 

Johansen-Berg, H., Behrens, T.E., Robson, M.D., Drobnjak, I., Rushworth, M.F., Brady, 

J.M., Smith, S.M., Higham, D.J., Matthews, P.M., 2004. Changes in connectivity profiles 

define functionally distinct regions in human medial frontal cortex. Proceedings of the 

National Academy of Sciences of the United States of America 101, 13335-13340. 

doi:10.1073/pnas.0403743101 

Jones, B.F., Witter, M.P., 2007. Cingulate cortex projections to the parahippocampal region 

and hippocampal formation in the rat. Hippocampus 17, 957-976. doi:10.1002/hipo.20330 

Kerr, K.M., Agster, K.L., Furtak, S.C., Burwell, R.D., 2007. Functional neuroanatomy of the 

parahippocampal region: The lateral and medial entorhinal areas. Hippocampus 17, 697-

708. doi:10.1002/hipo.20315 



23 
 

Knierim, J.J., Neunuebel, J.P., Deshmukh, S.S., 2014. Functional correlates of the lateral 

and medial entorhinal cortex: objects, path integration and local-global reference frames. 

Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences 

369, 20130369. doi:10.1098/rstb.2013.0369 

Kondo, H., Witter, M.P., 2014. Topographic organization of orbitofrontal projections to the 

parahippocampal region in rats. Journal of Comparative Neurology 522, 772-793. 

doi:10.1002/cne.23442 

Lavenex, P., Amaral, D.G., 2000. Hippocampal-neocortical interaction: A hierarchy of 

associativity. Hippocampus 10, 420-430. doi:10.1002/1098-1063(2000)10:4<420::Aid-

hipo8>3.0.Co;2-5 

Máté, A., Kis, D., Czigner, A., Fischer, T., Halász, L., Barzó, P., 2018. Connectivity-based 

segmentation of the brainstem by probabilistic tractography. Brain Research 1690, 74-88. 

doi:10.1016/j.brainres.2018.03.010 

McNab, J.A., Edlow, B.L., Witzel, T., Huang, S.Y., Bhat, H., Heberlein, K., Feiweier, T., Liu, 

K., Keil, B., Cohen-Adad, J., Tisdall, M.D., Folkerth, R.D., Kinney, H.C., Wald, L.L., 2013. 

The Human Connectome Project and beyond: initial applications of 300 mT/m gradients. 

Neuroimage 80, 234-245. doi:10.1016/j.neuroimage.2013.05.074 

Messé, A., Benali, H., Marrelec, G., 2015. Relating structural and functional connectivity in 

MRI: a simple model for a complex brain. IEEE Transactions on Medical Imaging 34, 27-37. 

doi:10.1109/tmi.2014.2341732 

Montchal, M.E., Reagh, Z.M., Yassa, M.A., 2019. Precise temporal memories are supported 

by the lateral entorhinal cortex in humans. Nature Neuroscience 22, 284-288. 

doi:10.1038/s41593-018-0303-1 

Mori, S., Crain, B.J., Chacko, V.P., van Zijl, P.C., 1999. Three-dimensional tracking of axonal 

projections in the brain by magnetic resonance imaging. Annals of Neurology 45, 265-269. 

doi:10.1002/1531-8249(199902)45:2<265::aid-ana21>3.0.co;2-3 

Mori, S., Zhang, J., 2006. Principles of diffusion tensor imaging and its applications to basic 

neuroscience research. Neuron 51, 527-539. doi:10.1016/j.neuron.2006.08.012 

Moser, Edvard I., Moser, M.-B., 2013. Grid Cells and Neural Coding in High-End Cortices. 

Neuron 80, 765-774. doi:10.1016/j.neuron.2013.09.043 

Maass, A., Berron, D., Libby, L.A., Ranganath, C., Düzel, E., 2015. Functional subregions of 

the human entorhinal cortex. eLife 4, e06426. doi:10.7554/eLife.06426 



24 
 

Navarro Schröder, T., Haak, K.V., Zaragoza Jimenez, N.I., Beckmann, C.F., Doeller, C.F., 

2015. Functional topography of the human entorhinal cortex. eLife 4, e06738. 

doi:10.7554/eLife.06738 

Nilssen, E.S., Doan, T.P., Nigro, M.J., Ohara, S., Witter, M.P., 2019. Neurons and networks 

in the entorhinal cortex: A reappraisal of the lateral and medial entorhinal subdivisions 

mediating parallel cortical pathways. Hippocampus 29, 1238-1254. doi:10.1002/hipo.23145 

Powell, H.W., Guye, M., Parker, G.J., Symms, M.R., Boulby, P., Koepp, M.J., Barker, G.J., 

Duncan, J.S., 2004. Noninvasive in vivo demonstration of the connections of the human 

parahippocampal gyrus. Neuroimage 22, 740-747. doi:10.1016/j.neuroimage.2004.01.011 

Ranganath, C., Ritchey, M., 2012. Two cortical systems for memory-guided behaviour. 

Nature Reviews: Neuroscience 13, 713-726. doi:10.1038/nrn3338 

Reagh, Z.M., Yassa, M.A., 2014. Object and spatial mnemonic interference differentially 

engage lateral and medial entorhinal cortex in humans. Proceedings of the National 

Academy of Sciences 111, E4264-E4273. doi:10.1073/pnas.1411250111 

Saleem, K.S., Kondo, H., Price, J.L., 2008. Complementary circuits connecting the orbital 

and medial prefrontal networks with the temporal, insular, and opercular cortex in the 

macaque monkey. Journal of Comparative Neurology 506, 659-693. doi:10.1002/cne.21577 

Saygin, Z.M., Osher, D.E., Augustinack, J., Fischl, B., Gabrieli, J.D., 2011. Connectivity-

based segmentation of human amygdala nuclei using probabilistic tractography. Neuroimage 

56, 1353-1361. doi:10.1016/j.neuroimage.2011.03.006 

Schultz, H., Sommer, T., Peters, J., 2012. Direct Evidence for Domain-Sensitive Functional 

Subregions in Human Entorhinal Cortex. The Journal of Neuroscience 32, 4716-4723. 

doi:10.1523/jneurosci.5126-11.2012 

Setsompop, K., Kimmlingen, R., Eberlein, E., Witzel, T., Cohen-Adad, J., McNab, J.A., Keil, 

B., Tisdall, M.D., Hoecht, P., Dietz, P., Cauley, S.F., Tountcheva, V., Matschl, V., Lenz, V.H., 

Heberlein, K., Potthast, A., Thein, H., Van Horn, J., Toga, A., Schmitt, F., Lehne, D., Rosen, 

B.R., Wedeen, V., Wald, L.L., 2013. Pushing the limits of in vivo diffusion MRI for the Human 

Connectome Project. Neuroimage 80, 220-233. doi:10.1016/j.neuroimage.2013.05.078 

Smith, S.M., 2002. Fast robust automated brain extraction. Human Brain Mapping 17, 143-

155. doi:10.1002/hbm.10062 

Sotiropoulos, S.N., Hernández-Fernández, M., Vu, A.T., Andersson, J.L., Moeller, S., 

Yacoub, E., Lenglet, C., Ugurbil, K., Behrens, T.E.J., Jbabdi, S., 2016. Fusion in diffusion 



25 
 

MRI for improved fibre orientation estimation: An application to the 3T and 7T data of the 

Human Connectome Project. Neuroimage 134, 396-409. 

doi:10.1016/j.neuroimage.2016.04.014 

Suzuki, W.A., Eichenbaum, H., 2000. The Neurophysiology of Memory. Annals of the New 

York Academy of Sciences 911, 175-191. doi:10.1111/j.1749-6632.2000.tb06726.x 

Tsao, A., Moser, M.B., Moser, E.I., 2013. Traces of experience in the lateral entorhinal 

cortex. Current Biology 23, 399-405. doi:10.1016/j.cub.2013.01.036 

Tsao, A., Sugar, J., Lu, L., Wang, C., Knierim, J.J., Moser, M.-B., Moser, E.I., 2018. 

Integrating time from experience in the lateral entorhinal cortex. Nature 561, 57-62. 

doi:10.1038/s41586-018-0459-6 

Van Dijk, K.R., Hedden, T., Venkataraman, A., Evans, K.C., Lazar, S.W., Buckner, R.L., 

2010. Intrinsic functional connectivity as a tool for human connectomics: theory, properties, 

and optimization. Journal of Neurophysiology 103, 297-321. doi:10.1152/jn.00783.2009 

van Strien, N.M., Cappaert, N.L.M., Witter, M.P., 2009. The anatomy of memory: an 

interactive overview of the parahippocampal–hippocampal network. Nature Reviews 

Neuroscience 10, 272-282. doi:10.1038/nrn2614 

Witter, M.P., Amaral, D.G., 1991. Entorhinal cortex of the monkey: V. Projections to the 

dentate gyrus, hippocampus, and subicular complex. Journal of Comparative Neurology 307, 

437-459. doi:10.1002/cne.903070308 

Witter, M.P., Amaral, D.G., 2021. The entorhinal cortex of the monkey: VI. Organization of 

projections from the hippocampus, subiculum, presubiculum, and parasubiculum. Journal of 

Comparative Neurology 529, 828-852. doi:10.1002/cne.24983 

Witter, M.P., Doan, T.P., Jacobsen, B., Nilssen, E.S., Ohara, S., 2017. Architecture of the 

Entorhinal Cortex A Review of Entorhinal Anatomy in Rodents with Some Comparative 

Notes. Frontiers in Systems Neuroscience 11. doi:10.3389/fnsys.2017.00046 

Wyss, J.M., Van Groen, T., 1992. Connections between the retrosplenial cortex and the 

hippocampal formation in the rat: a review. Hippocampus 2, 1-11. 

doi:10.1002/hipo.450020102 

Zeineh, M.M., Holdsworth, S., Skare, S., Atlas, S.W., Bammer, R., 2012. Ultra-high 

resolution diffusion tensor imaging of the microscopic pathways of the medial temporal lobe. 

Neuroimage 62, 2065-2082. doi:10.1016/j.neuroimage.2012.05.065 

 



26 
 

 

Supplementary Figure 1: EC ROI. The ROI is shown in green on a sagittal (left) and a coronal (right) slice in 
MNI space. 

 

Supplementary Figure 2: Presubiculum ROI. The ROI is shown in light blue on a sagittal (left) and a coronal 

(right) slice in MNI space. 

 

Supplementary Figure 3: dCA1pSub ROI. The ROI is shown in pink on a sagittal (left) and a coronal (right) 
slice in MNI space. 
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Supplementary Figure 4: RSC ROI. The ROI is shown in purple on a sagittal (left) and a coronal (right) slice in 

MNI space. 

 

Supplementary Figure 5: OFC ROI. The ROI is shown in dark red on a sagittal (left) and a coronal (right) slice 
in MNI space. 
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Supplementary Figure 6: Connectivity paths between EC and presubiculum, dCA1pSub, RSC and OFC 
for one example participant. The paths are shown on sagittal (left) and coronal (right) slices in MNI space. The 
colormap intensity represents the number of probabilistic paths running through that voxel. A: Paths between EC 
and presubiculum, B: Paths between EC and dCA1pSub, C: Paths between EC and RSC, D: Paths between EC 
and OFC. 
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Supplementary Figure 7: Maps of EC connectivity with presubiculum, dCA1pSub, RSC and OFC for one 
example participant. The maps are shown on sagittal (left) and coronal (right) slices in MNI space. The 
colormap intensity represents the fraction of paths seeded from that EC voxel that reached the other ROI. A: EC 
connectivity with presubiculum, B: EC connectivity with dCA1pSub, C: EC connectivity with RSC, D: EC 
connectivity with OFC.  
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Supplementary Figure 8: Segmentations of MEC and LEC from different approaches for one example 
participant. The results are shown on sagittal (top left) and coronal (top right) slices and 3D-rendered (bottom 
left) in MNI space. The MEC and LEC predictions are shown in blue and red, respectively. A: MEC and LEC 
prediction based on connectivity with presubiculum vs. dCA1pSub, B: MEC and LEC prediction based on 
connectivity with RSC vs. OFC. S = superior, I = inferior, A = anterior, P = posterior, R = right, L = left. 
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Supplementary Figure 9: Group segmentations of MEC and LEC from different approaches. The results 
are shown on sagittal (top left) and coronal (top right) slices and 3D-rendered (bottom left) in MNI space. The 
MEC and LEC predictions are shown in blue and red, respectively. A: MEC and LEC prediction based on 
connectivity with presubiculum vs. OFC, B: MEC and LEC prediction based on connectivity with RSC vs. 
dCA1pSub. S = superior, I = inferior, A = anterior, P = posterior, R = right, L = left.  
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Supplementary Figure 10: Center of gravity vectors between MEC-LEC segmentations in the axial (top) 
and sagittal (bottom) planes, showing the angles between the orientation of the MEC-LEC border and the 
pure PA and ML axes in the left hemisphere. The PA axis vector is shown in black, the ML axis vector is 
shown in grey (visible in the axial view only), and the colors of the MEC-LEC vectors for all the different 
segmentation approaches are explained in the legend box on the bottom right. On the bottom left, illustrations of 
the anatomical directions of the vector plots are shown (M = medial, L = lateral, P = posterior, A = anterior, I = 
inferior, S = superior, C = caudal, R = rostral). The posterior-anterior axis is defined along the long axis of the 
hippocampus in the sagittal plane. Note that the length of the vectors shown here does not correspond to the real 
distance between the MEC and LEC centers of gravity. The origin of the vectors corresponds to the MEC center 
of gravity, which are not the true MEC locations for the different segmentation approaches, but shifted in space 
so that all vectors originate in the same point. 
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