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Abstract

A key attribute of a well functioning machine tool is its high repeatability and accuracy. As the number

of axes in a machine tool increases, so does the potential for error. This work focuses on determining the

geometrical errors of all axes of a five-axis machine tool by the use of a standard laser tracker. The mea-

suring setup and the method of calculating the errors of the rotational axes are described in detail. The

variability of the measured results is evaluated, and measures for reducing the measurement uncertainty

of laser tracker measurements of machine tool axis motion is proposed. Based on the measured errors, a

compensation strategy is developed. The method of compensation is based on reconstruction of the NC-

code, and Python scripts are used to generate the compensated NC-data. The compensation strategy’s

effectiveness is verified for the translational errors of the linear axes, and the results are comparable to

those achieved by other researchers.

Sammendrag

En av hovedegenskapene til en velfungerende verktøymaskin er dens repeterbarhet og nøyaktighet. N̊ar

antall akser i en verktøymaskin øker, øker ogs̊a potensialet for feil. Denne oppgaven fokuserer p̊a å

finne alle de geometriske feilene til en fem-akse verktøymaskin ved å bruke en vanlig laser tracker.

Måleoppsettet og metoden som er brukt for å kalkulere de geometriske feilene til rotasjonsaksene er

beskrevet i detalj. Variasjonen i de m̊alte fielene blir behandlet og vurdert, og m̊ater å redusere

m̊aleusikkerheten ved m̊aling av aksebevegelsene i verktøymaskiner med laser tracker blir foresl̊att. Basert

p̊a de m̊alte feilene utvikles det en kompensasjonsstrategi. Kompensasjonsmetoden er basert p̊a å endre

NC-koden, og Python script blir brukt til å generere kompenserte NC-data. Effektiviteten til kompen-

sasjonsstrategien blir vist p̊a translasjonsfeilene til de lineære aksene, og resultatene er sammenlignbare

med de som andre forskere har oppn̊add.
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Chapter 1

Introduction

1.1 Background and Motivation

As machine tools transitioned from being entirely manual to being numerically controlled, opportunities

for improving the geometrical accuracy expanded beyond mechanical optimization. The geometrical

accuracy of machine tools can be improved by identifying the geometric errors of the machine tool and

applying a compensation algorithm to eliminate them. The interest for numerical compensation based

on software saw an increase in the 1970’s. In 1977, Prof. R. Hocken received the CIRP Taylor Medal, for

implementing this kind of error compensation on a Moore N.5 coordinate measuring machine (CMM)

[1].

The incentive for implementing numerical compensation on machine tools is not the achievable precision

in itself, as some companies achieved impressive sub-micron level accuracy through mechanical optimiza-

tion alone. However, the investment in both time and manual labour was substantial [2]. Some of the

benefits and limitations of numerical compensation is presented in the following section.

1.2 Why Perform Numerical Compensation of a Machine Tool?

Benefits of performing a numerical compensation of geometric errors in a machine tool:

• Compensation of geometric errors means that the movement of the machine axes are closer to the

ideal intended movement. This will consequently result in a part geometry in closer conformance

to the modeled geometry. This means higher part accuracy, and thereby higher part quality.

• By measuring the geometric errors of the machine tool with consequent re-compensation throughout

the life time of the machine tool, volumetric accuracy is assured and maintained. Geometric errors

are sure to ”evolve” or change with time as a result of aging, wear, collisions, relocation of the

machine tool, changes in the thermal environment or changes in the foundation making the need

to repeat the compensation process evident [3].

• As D.C. Thompson states [4]: ”The availability of modern computational tools makes the appli-

cation of active and precalibrated error compensation an economical alternative to designing and

building for absolute accuracy. Thus the mechanical accuracy of the machine need only be suffi-

cient to allow error compensation to the desired level of accuracy...” What he means is that the

opportunities available with modern computational tools, allows for machines to be produced with

larger tolerances than before because the potential for numerical compensation is so great. This

means that machine tools can be produced faster and cheaper while still meeting the high demand

for accuracy in the industry.

1



However, numerical compensation is not the answer to every aspect of machine tool accuracy. The

limitations of the principle are the following:

• Although the geometric errors of the machine tool can be compensated for, stability cannot be

compensated into a machine tool. Long term stability is a feature which must be built into the

machine from the beginning.

• Geometric changes arising from thermo-elastic deformations may still be present.

• The degree to which the machine tool is able to reproduce a movement remains the limit for the

achievable accuracy.

• Numerical compensation of a machine tool may involve having to drive several axes simultaneously

during cutting that otherwise would be stationary. This may result in reduced stiffness and may

introduce additional errors if the driven axes have significant reversal error, limited least increment

step or other positioning accuracy characteristics that vary with the direction of motion.

• A compensation method which includes compensation in the functional orientation ideally requires

three orthogonal rotational axes to compensate for all angular errors in all axes. However, few

machine tool are configured this way. Typically, with certain axis-positions, the spindle of the

machine tool can end up being parallel with the rotational axis. In this singular configuration, the

motion needed to compensate for angular errors may not be available to the machine control system.

This can lead to very rapid motion in machine axes and consequently large elastic deformations

in the machine structure due to large acceleration forces. If the machine is cutting, this might

lead to rough surface quality or other part errors. The rapid motion may also increase the power

consumption of the axis drives which again may lead to increased thermo-elastic deformation in

the machine structure. Compensation of the functional orientation in close proximity to singular

configurations of machine axes should therefore be handled with great care.

• As stated in the last point on benefits of numerical compensation, the geometrical requirements

of the machine tool components and assembly may be relaxed to a certain degree if numerical

compensation is added. However, the tolerances of the machine tool parts and assembly may also

greatly impact the stiffness and repeatability of the motion of the machine axes. Misalignment of

the spindle may also impact tool wear. This should be taken into account when designing machine

tools to be numerically compensated [3].

1.3 Problem Description

When machining large parts on five-axis machines, geometrical errors, especially those associated with

the rotational axes, may propagate as relatively large deviations in both position and inclination of

geometrical features. Before tracking interferometers were invented, measuring and compensating for

the geometrical errors of CNC machine tools and CMMs was a slow and tedious process which could

go on for several days. With the entry of high accuracy tracking laser interferometers, the measuring

and compensation process has become significantly faster, and may be executed in a matter of a few

hours. The commercial systems utilize specialized tracking interferometers made only for measuring

the axis-motions of machine tools and CMMs. Although these systems offer unprecedented measuring

precision, using a more versatile conventional laser tracker may be more appropriate in some cases.

• Can acceptable measurement uncertainty be achieved using a versatile laser tracker?

• Based on the measured geometrical errors of the machine tool; what is the achievable accuracy

improvement using a self-developed compensation strategy?

2



1.4 Project Scope

A method for measuring the geometrical errors of the linear axes was implemented successfully in the

specialization project in the fall of 2020 (see appendix B). However, the measured errors were the result

of only one round of measurement, and the variability of the measured errors could therefore not be

evaluated. The measurement of the linear axes will be repeated in this work using the same method as

in the specialization project report. The variability of the resulting errors will be evaluated and discussed.

The geometric errors of the rotational axes will be measured using a similar method to that for the linear

axes. A compensation strategy will be developed to compensate for the measured geometrical errors.

Rigid body motion is assumed, meaning that the measured errors are assumed not to be influenced by

any deformations due to tool mass and/or workpiece mass. The measured errors of one axis are also

assumed independent of the position of the other axes.

1.5 Thesis Structure

The thesis is structured around the IMRaD (Introduction, Method, Results and Discussion) framework,

however, it also includes a theory chapter.

The theory chapter starts by introducing machine tool kinematics with focus on five-axis machines. The

kinematics of the machine tool used in this work is also presented. Chapter 2.2.1 aims to explain how

the motion of the machine axes can be represented mathematically, and builds the foundation for the

kinematic model of a machine tool. Chapter 2.3 and 2.4 introduce the errors that exist in the linear

and rotational axes respectively, according to the international standards. Based on the mathematical

representation of rigid body motion and the error definition, chapter 2.5 presents the quasi-static error

models of the linear and rotational axes. Chapters 2.6 and 2.7 presents ways of measuring geometric errors

in machine tools and introduce the basic principle of measurement uncertainty. In chapter 2.8, some

of the sources of uncertainty specific to the measuring instrument used in this work are discussed. The

final part of the theory chapter is dedicated to numerical compensation. Chapter 2.9 gives an overview

of some of the basic principles of numerical compensation, while chapter 2.9.1 introduces different types

of geometric compensation.

The method chapter usually only presents the method used to obtain the results. In this work, the results

are strictly defined as the measured errors of the machine axis movement before and after compensation,

and are presented in chapter 4. Although the principle of the measurement method and error calculation

was not developed during the project period, the implementation and execution can be considered part

of the results. Thus, chapter 3 also include part of the project results and applies to the curve fitting

and compensation procedure as well. Some of the scripts produced and used in the project are presented

in chapter 3, and the rest can be found in the appendix.

As previously mentioned, chapter 4 contains the measured errors of the machine tool axis motion before

and after compensation. The results are presented, and discussed briefly. The variability of the results

and the uncertainty of the measurement is discussed in depth in chapter 5. Finally, in chapter 6, a

conclusion is made and further work suggested.

The contents of an appendix are mostly for reference. Although that is true for most of the appendix in

this thesis, I would like to highlight the conference paper in appendix A. The paper was submitted to

CIRP (College International pour la Recherche en Productique) on May 4th as a proposed contribution

to the 15th edition of the conference on Intelligent Computation in Manufacturing Engineering (ICME).

the conference was to be held on 14-16 July 2021 in the Gulf of Naples, Italy, but will be held digitally

due to Covid-19. The paper was accepted on May 26th, and will be included in the Technical Programme

of the CIRP ICME ’21 as well as in the Proceedings.
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Chapter 2

Theory

2.1 Machine Tool Kinematics

Machine tools can be configured in a number of different ways and may have anywhere from a single

axis to a double digit number of axes. An axis represents a degree of freedom, DOF, and the number

varies depending on the number of the axes the machine tool has. The movements required to achieve the

desired size and shape of the workspace leads to typical kinematics solutions and machine configurations.

An example is the production of cylindrical parts or other parts of rotational symmetry. For this kind of

production, a cylindrical workspace is appropriate which may be achieved using two linear axes. Machine

tools of this type are called turning lathes. Milling machines generally have a minimum of three linear

axes making up a workspace with a square or rectangular cross-section. The position of the linear axes

vary. In some machine tools, all of the linear motion is made at the tool end while the workpiece is

stationary. In other machines, the X- and Y-axes may be located at the workpiece end, while the Z-axis

is at the tool end of the machine tool.

As previously mentioned, machine tools may also have more than just two or three axes. Machine tools

with five axes have become very popular because of their great versatility. Five axes allows the tool to

not only be positioned at any position in the working volume, but the orientation of the tool relative to

the workpiece may also be varied. This allows for several faces of a workpiece to be machined in a single

setup, and allows greater freedom regarding tooling. An endmill might for instance be used, oriented at

a 45◦ angle relative to the workpiece, to make a chamfer instead of using a dedicated chamfering tool.

The configuration of the five axes vary, and many different machine configurations exist. A common way

of characterizing the configuration of the different axes is by a sequence of capital letters. Starting from

the left, the first letter is the axis closest to the workpiece. R represents a rotational axis, and L a linear

axis. The letter all the way to the right is the axis closest to the tool. LLLRR, RRLLL and RLLLR

are three examples of configurations of three linear and two rotary axes, which is the most common in

five-axis machine tools. A short description of each of these configurations follows [5]:
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• LLLRR: A spindle head with two axes of rotation is mounted at the end of the X-, Y- and Z-axes.

One of the axes of rotation twists the spindle head, while the other tilts it. This designation does

not define whether the X-, Y- and Z-motions are made at the workpiece end of the machine or at the

tool end. In Figure 2.1(a), the linear motion is made at the tool end. This machine configuration

is typically used to machine large moulds and dies, and are referred to as gantry machine tools.

• RRLLL: This configuration has a worktable with two rotary axes fitted to it. One rotates the

table, while the other tilts it. The tilt motion can be compared to a cradle motion. The three

linear motions are typically made at the tool end of the machine, but the worktable may also be

provided with one of the linear axes (see Figure 2.1(b)).

• RLLLR: The worktable is provided with one rotational degree of freedom giving it the ability to

revolve around its own axis. At the tool end, the spindle is able to tilt or swivel. These types

of machines are especially suited for tall cylindrical workpieces with various geometrical feauters

along their perimiter (see Figure 2.1(c)).

Figure 2.1: Three different configurations of five-axis machine tools along with their kinematic chains -

(a): LLLRR, (b): RRLLL, (c): RLLLR [5]
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2.1.1 Kinematic Chain

When talking about the structure of a machine tool, and the configuration of the axes, the term kine-

matic chain is often mentioned. By making a quick web-search and navigating to the Wikipedia page

- ”Kinematic chain” one can read that ”In mechanical engineering, a kinematic chain is an assembly

of rigid bodies connected by joints to provide constrained (or desired) motion that is the mathematical

model for a mechanical system” [6]. This describes it really well. Although nothing is entirely rigid,

the components making up a machine tool may be assumed to be rigid bodies. The joints connecting

these rigid bodies limit their relative motion, and may have one or more DOFs. Ken Waldron and Jim

Schmiedleler describe a kinematic joint as ”a connection between two bodies that constrains their relative

motion” [7]. In higher pair joints contact happens at points or along lines, while contact in lower pair

joints occurs over surfaces. The advantage with lower pair joints is the low wear and friction which can

be achieved by distributing the load over a large contact area and trapping a thin layer of lubricant in

the small gap between surfaces.

There are six different types of lower pair joints, and two of them are largely used in machine tools.

The joint types in question are prismatic and revolute joints. Both only have one DOF. A Revolute

joint consists of two surfaces cylindrical in shape, one internal surface, and one external. The joint is

constructed so that rotation is only permitted on one of the bodies relative to the other. A prismatic

joint is similar to the revolute joint in the sense that it has an internal and an external surface and allows

only one degree of freedom. However, the degree of freedom of a prismatic joint is along the direction

of extrusion of the two contacting surfaces. On the left side of figure 2.1, the kinematic chains of the

machines on the right is displayed. In the figure, prismatic joints are denoted with a lower case d, and

revolute joints with the greek letter θ.

2.2 Deckel Maho DMU 50 eVolution

The Deckel Maho DMU 50 eVolution (hereafter referred to as just ”the DMU 50”) is an example of a

machine tool of the RRLLL configuration, but unlike the machine in figure 2.1(b), the two rotational

axes in the DMU 50 are not orthogonal to each other. According to the ISO standard number 841 on

coordinate system and motion nomenclature, ”A, B and C define rotary axes about linear axes X, Y

and Z respectively” [8]. The C-axis of the DMU 50 follows this convention, but the B-axis is wrongly

termed according to the standard since this rotational axis does not coincide with the Y-axis or any

of the translational axes of the machine tool. The configuration of the axes in the kinematic chain is

schematically visualized in Figure 2.2 (right) and in Figure 2.3.

Figure 2.2: Deckel Maho DMU 50 eVolution axis configuration [9]
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Figure 2.3: Kinematic chain of the Deckel Maho DMU 50 eVolution

2.2.1 Mathematical Representation of Machine Motion

As we now know the configuration of the axes and the way in which they are connected and move

relative to each other, let us have a quick look at how the motions of the machine tool can be represented

mathematically. The following section is based on the book ”Modern Robotics - Mechanics, Planning

And Control” by Kevin M. Lynch and Frank C. Park [10].

In order to completely describe a rigid body’s position and orientation in three dimensional space, a

minimum of six numbers is needed. A common way of representing a rigid body’s position and orientation

is to attach a reference frame to the body. The position and orientation of the body in relation to a

fixed reference frame is then described using a 4 x 4 matrix called a homogeneous transformation matrix

(HTM). A homogeneous transformation matrix takes on the form

T =

[
R p

0 1

]
=




r11 r12 r13 p1
r21 r22 r23 p2
r31 r32 r33 p3
0 0 0 1


 , R ∈ SO(3), p ∈ R3 (2.1)

The set of all transformation matrices are called the special eucledian group, SE(3), and they inhibit

some properties worth noting:

Every transformation matrix in SE(3) has an inverse matrix of the form

T−1 =

[
R p

0 1

]
=

[
RT −RT p
0 1

]
∈ SE(3). (2.2)

T1T2, the product of two transformation matrices is also a transformation matrix in SE(3), transformation

matrices are associative, meaning that (T1T2)T3 is equal to T1(T2T3), they are generally not commutative,

meaning that T1T2 is not equal to T2T1.

Not only can the 4 x 4 matrix describe the position and orientation of the rigid body, but it can also

translate or rotate a vector or a frame in addition to change the representation of a vector or a frame
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from coordinates in one frame to coordinates in another frame. Perhaps the main reason for using 4 x 4

matrices in this application is that these operations can be executed using simple linear algebra [10].

Any position and orientation of a rigid body in three dimensional space can be described by a position

vector p ∈ R3, and a rotation matrix R ∈ R3×3. If we consider a space frame {s} and a body frame {b},
the position of the rigid body can be described as

p = p1x̂s + p2ŷs + p3ẑs (2.3)

And the axes of the body frame {b} can be described as

x̂b = r11x̂s + r21ŷs + r31ẑs (2.4)

ŷb = r12x̂s + r22ŷs + r32ẑs (2.5)

ẑb = r13x̂s + r23ŷs + r33ẑs (2.6)

which in matrix form is

p =



p1
p2
p3


 , R = [x̂b, ŷb, ẑb] =



r11 r12 r13
r21 r22 r23
r31 r32 r33


 (2.7)

A rigid body only has three degrees of freedom in rotation, and therefore only three of the nine elements

in the rotation matrix can be chosen independently. As such, the position and orientation of the rigid

body can be described by six individual parameters. The six constraints on the rotation matrix can be

described as follows:

1. The three column vectors of the rotation matrix represent the unit axes of the body frame in space

frame coordinates, hence all three column vectors must be unit vectors and satisfy:

r211 + r212 + r213 = 1 (2.8)

r221 + r222 + r223 = 1 (2.9)

r231 + r232 + r233 = 1 (2.10)

2. The three column vectors of the rotation matrix must be orthogonal to each other, which is the

same as the dot product equalling to zero: x̂b · ŷb = x̂b · ẑb = ŷb · ẑb = 0 or:

r11r12 + r21r22 + r31r32 = 0 (2.11)

r12r13 + r22r23 + r32r33 = 0 (2.12)

r11r13 + r21r23 + r31r33 = 0 (2.13)

Which can be written more compactly as a single set of constraints on the rotation matrix R,

RTR = I, (2.14)

where RT denotes the transpose of R and I denotes the identity matrix.

To follow convention and make sure that the coordinate frame is right-handed, which would mean that

x̂b × ŷb = ẑb, one last constraint must be placed on the rotation matrix. This is also equivalent to the

determinant of the matrix being equal to one. The formula for calculating the determinant of a 3 × 3

matrix is given as
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detM = aT (b× c) = cT (a× b) = bT (c× a). (2.15)

By substituting the columns of R into the formula, the last constraint is made

detR = 1 (2.16)

Had we allowed for left-handed coordinate systems as well, the constraint would have been detR = ±1.

The set of 3×3 rotation matrices that follow the constraints stated above are called the special orthogonal

group SO(3). A group in mathematics consists of a set of elements and an operation on two elements

(matrix multiplication for SO(n)) such that for all A, B in the group, the properties listed below are

satisfied:

• Closure: AB is also in the group

• Associativity: (AB)C = A(BC)

• Identity element existence: There exists an element A−1 such that A−1 = A−1A = I

Angular Velocity

Considering a coordinate frame with unit axes {x̂, ŷ, ẑ} attached to a rotating body, the time derivatives

of the unit axes can be determined. The frame is examined at times t and t + ∆t. The change in

orientation can be expressed as ∆θ - the rotation angle about some unit rotation axis passing through

the center of the coordinate frame ŵ. The axis is coordinate free - not yet represented in any particular

reference frame. As ∆t approaches zero, the ratio ∆θ/∆t becomes the rate of rotation θ̇, and ŵ can

be regarded as the instantaneous axis of rotation. The rotation axis ŵ and rate of rotation θ̇ can be

combined to define the angular velocity w as follows:

w = ŵθ̇ (2.17)

The time derivative of each unit axis becomes:

˙̂x = w × x̂, (2.18)

˙̂y = w × ŷ, (2.19)

˙̂z = w × ẑ. (2.20)

In order to represent the equations above in coordinates, a frame of reference in which to represent ω

must be chosen. Considering a fixed-frame {s} and a body frame {b}, the orientation of the body frame

in fixed-frame coordinates can be expressed at time t by the rotation matrix R(t). The first column

of R(t), r1(t), describes x̂ in fixed-frame coordinates. Similarly, the second and third columns of R(t),

r2(t) and r3(t), express ŷ and ẑ respectively. At time t, let ωs ∈ R3 be the angular velocity expressed in

fixed-frame coordinates, equations 2.18-2.20 can be expressed in fixed-frame coordinates as:

ṙi = ωs × ri, i = 1, 2, 3 (2.21)

which may be rearranged into the following single 3× 3 matrix equation:

Ṙ =
[
ωs × r1 ωs × r2 ωs × r3

]
= ωs ×R (2.22)
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Figure 2.4: Left: The instantaneous angular velocity vector. Right: Calculating the angular velocity of

the unit axis x̂ [10].

To eliminate the cross product on the right hand side of equation 2.22, ωs×R may be rewritten as [ωs]R,

where [ωs] is the 3 × 3 skew-symmetric representation of ωs ∈ R3. Given a vector x = [x1x2x3]T ∈ R,

the skew-symmetric representation of the vector x is

[x] =




0 −x3 x2
x3 0 −x1
−x2 x1 0


 . (2.23)

[x] being skew-symmetric means that

[x] = −[x]T . (2.24)

The set of all 3 × 3 real skew-symmetric matrices is called so(3) and is the lie algebra of the lie group

SO(3).

A property of rotation matrices and skew-symmetric matrices is that given any ω ∈ R3 and R ∈ SO(3),

the following is always true

R[ω]RT = [Rω]. (2.25)

With skew-symmetric notation, equation 2.22 can be rewritten as

[ωs]R = Ṙ. (2.26)

Post-multiplying by R−1 yields

[ωs] = ṘR−1 (2.27)

By writing the rotation matrices in explicit form with subscripts, ωb can be obtained by ωs using the

subscript cancellation rule. In summary

ṘR−1 = [ωs], (2.28)

R−1Ṙ = [ωb] (2.29)

relate the angular velocity ω represented in two different coordinates frames together.
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Exponential Coordinate Representation of Rotation

Exponential coordinates for rotation parametrize a rotation matrix in terms of a rotation axis (repre-

sented by a unit vector ω̂) and an angle of rotation θ about that axis; the vector ω̂θ ∈ R3 then serves as

the three-parameter exponential coordinate representation of the rotation. If ω̂ and θ is written individu-

ally, the representation is termed the axis-angle representation of a rotation. The exponential coordinate

representation can be interpreted in any of the following three ways equivalently:

• the axis ω̂ and rotation angle θ such that, if a frame initially coincident with {s} were rotated by

θ about ω̂, its final orientation relative to {s} would be expressed by R

• the angular velocity ω̂θ expressed in {s} such that, if a frame initially coincident with {s} followed

ω̂ for one unit of time (i.e., ω̂θ is integrated over this time interval), its final orientation would be

expressed by R

• the angular velocity ω̂θ expressed in {s} such that, if a frame initially coincident with {s} followed

ω̂ for θ units of time (i.e., ω̂ is integrated over this time interval), its final orientation would be

expressed by R

Figure 2.5: Vector p(0) rotated by an angle θ about the rotation axis ω̂ to p(θ) [10].

In figure 2.5, the three dimensional vector p0 is rotated by θ about ω̂ to p(θ). Since the rotation axis, ω̂

is of unit length, the rotation can be considered achieved by the vector p(0) rotating at a constant rate

of 1 rad/s from t = 0 to t = θ. With p(t) defined as the path traced by the tip of p(0) as it rotates, the

velocity of p(t), denoted ṗ, is then given by

ṗ = ω̂ × p. (2.30)

The angle Φ is considered constant. Then, the tip of the vector p(t) traces out a circle with radius

||p||sinΦ about the ω̂-axis. ṗ is tangent to the circle path with magnitude ||p||sinΦ according to eq.

2.30. The differential equation can be expressed as

ṗ = [ω̂]p (2.31)

using the skew-symmetric representation of the rotation axis ω̂. The initial condition of the differential

equation is p(0) = 0. The solution to this linear differential equation is given by

p(t) = e[ω̂]tp(0) (2.32)

and since t and θ are equivalent in this case, it may be written

p(t) = e[ω̂]θp(0) (2.33)
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Now, by expanding the matrix exponential, e[ω̂]θ, in the series form and simplifying, we end up with

Rodrigues’ formula:

Rot(ω̂, θ) = e[ω̂]θ = I + sinθ[ω̂] + (1− cosθ)[ω̂]2 ∈ SO(3). (2.34)

Figure 2.6: Body frame {b} obtained by rotating a coordinate frame originally coincident with the fixed

frame {s} by an angle θ1 = 30◦ about the rotation axis ω̂ = (0, 0.866, 0.5) [10].

As an example, considering the rotation angle of θ1 = 30◦ = 0.524 rad about the rotation axis ω̂ in figure

2.6 to obtain the orientation of body frame {b} in fixed-frame, {s} coordinates. The unit axis ω̂ is given

as (0, 0.866, 0.5). The rotation matrix representation of the body frame {b} can be calculated as

R = e[ω̂1]θ1 (2.35)

= I + sinθ1[ω̂1] + (1− cosθ1)[ω̂1]2 (2.36)

= I + 0.5




0 −0.5 0.866

0.5 0 0

−0.866 0 0


 + 0.134




0 −0.5 0.866

0.5 0 0

−0.866 0 0




2

(2.37)

=




0.866 −0.250 0.433

0.250 0.967 0.058

−0.433 0.058 0.899


 . (2.38)

The orientation of the frame {b} can be represented by R or by the unit axis ω̂ = (0, 0.866, 0.5) and the

angle θ1 = 0.524 rad , i.e., the exponential coordinates ω̂1θ1 = (0, 0.453, 0.262) [10].
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2.3 Geometric Errors of Linear Axes

Each linear axis has six individual errors. Three translational and three angular errors. The translational

errors are further divided into the linear positioning errors, and straightness errors. According to the

naming convention in ISO 230-1 on Geometric accuracy of machines operating under no-load or quasi-

static conditions [11], the geometric errors are denoted by a capital E, followed by a subscript where the

first letter denotes the direction of the deviation and the second letter denotes the name of the axis. For

example, EYX denotes the translational deviation in Y-direction when the X-axis is moved (see figure

2.7). This type of error is also called a straightness error. If the letters in the subscript are the same,

i.e. EXX, the error is called the linear positioning error. This error is different from the straightness

errors as it arises from errors in the control of the numerically controlled axis as well, rather than the

purely geometric nature of the origin of the straightness errors. ”The straightness and angular errors are

considered pure geometric errors, whereas the linear displacement (positioning) errors are a function of

both geometry and the axis drive system characteristics” [11].

As for the angular errors, they follow the same naming convention as the translational errors only

differing in the first letter of the subscript. This first letter now represents the axis about which the

angular deviation occurs. The rotational axes about the X- Y- and Z-axes are termed the A-, B- and

C-axes respectively, as defined in ISO 841 [8]. As an example, the angular error EAX is the angular

deviation about the A-axis as the X-axis is moved (see figure 2.7). Still considering the X-axis, the

angular errors EAX, EBX and ECX are also referred to as the roll- yaw- and pitch angles of the axis

respectively [11].

Figure 2.7: ”Angular and translational error motions of a component commanded to move along a

(nominal) straight line trajectory parallel to the X-axis” [11]
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2.3.1 Squareness Errors Between Axes of Linear Motion

In ISO 230-1 [11], squareness error between two axes of linear motion is defined as ”the difference between

the inclination of the reference straight line of the trajectory of the functional point of a linear moving

component with respect to its corresponding principal axis of linear motion and (in relation to) the

inclination of the reference straight line of the trajectory of the functional point of another linear moving

component with respect to its corresponding principal axis of linear motion”.

In other words, the squareness error between two axes of linear motion is calculated by the slopes of the

two straightness errors associated with the two axes. Taking the X- and Z-axes as an example: When the

straightness errors EZX and EXZ have been measured, two reference straight lines are fitted to the data

using e.g. the least squares method. The angles between the reference straight lines and the nominal X-

and Z-axis, θX,ZX and θZ,ZX (see figure 2.8), may then be calculated [12]. The squareness error between

the X- and Z-axes may then be calculated as [11]:

EB(0Z)X = EB0X = θX,ZX − θZ,ZX (2.39)

A positive squareness error means that the angle between the two axes considered is larger than 90◦,

and conversely a negative squareness error means that the angle is smaller than 90◦. In a machine tool

with three mutually orthogonal axes, there are three squareness errors[13].

Figure 2.8: Example of squareness error between X- and Z-axis of linear motion [11]
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2.4 Geometric Errors of Rotational Axes

A machine tool usually has at least one axis of rotation. This may be a tool holding spindle unit (in

the case of the machine tool being a milling machine), or a work holding spindle unit (lathe). A spindle

unit consists of a spindle housing, or stator, a bearing and a spindle - the rotating element also called

rotor. It is not uncommon for a lathe machine tool to have two work holding spindle units rotating about

the same axis of rotation opposite of each other. This setup makes machining both ends of a workpiece

in one operation possible. Milling machines typically just have one tool holding spindle unit, although

production machines with a master and a slave tool holding spindle unit is not uncommon. Machining

centers with both tool holding and work holding spindle units are also popular machines for prototyping

and complex machining operations in general.

Aside from the two types of spindle units previously mentioned, machine tools may have one or more

numerically controlled axes of rotation. These may be rotary (swivelling) tables or rotary (swivelling)

heads. A rotary table usually holds a workpiece and has the capability to angularly position it in the

workspace. A rotary head usually holds a tool, and can position it angularly in the workspace.

As for the linear axes, the geometrical errors associated with a rotary axis can be divided into ”error

motions of axis of rotation” and ”position and orientation errors (axis shift) of axis average line”. Figure

2.9 (left) shows the error motions of an axis of rotation and Figure 2.9 (right) shows the location and

orientation errors of the axis average line.

As is the case with the linear axes, the rotational axes also have six individual errors. Referring to Figure

2.9 (left), these are the radial error motions in X- and Y-direction (denoted by EXC and EYC), the axial

error motion (EZC), the two tilt error motions (EAC and EBC) and finally the angular positioning error

motion (ECC). The angular error motion ECC is similar to the linear positioning error of the linear axes

with regard to the origin of the error being affected by the numerical control of the axis [11].

In addition to the errors of the axis, there are four more errors regarding the location and orientation

of the axis itself. These errors are denoted the same way as the other errors but with the addition of a

zero between the two letters in the subscript. Referring to Figure 2.9 (right), EX0C and EY0C are the

errors of the position of C in X- and Y-axis directions respectively, and EA0C and EB0C are the error of

the orientation of C in A- and B-axis directions respectively. The last two errors can also be considered

as the squareness error of C to X and Y respectively [11].

2.5 Kinematic Model

Error Representation

As explained in section 2.2.1, the position and location of a rigid body in three dimensional space can

be described by a position vector p describing the position of a coordinate frame attached to the rigid

body (the body frame {b}), and a 3× 3-matrix R describing the orientation of the unit axes of the body

frame. The orientation may be represented by a regular rotation matrix, on exponential coordinate form

as a the skew-symmetric matrix [ω̂]θ or in axis-angle form as the skew-symmetric matrix representation

of the unit rotation axis [ω̂] multiplied by the rotation angle θ.

Infinitesimal Rotations

As previously mentioned, the set of all 3 × 3 skew-symmetric matrices is called so(3) or the lie algebra

of the lie group SO(3). These matrices can be used to represent rotations on axis-angle or exponential

coordinate form, but ”they are not themselves rotations: the skew-symmetric matrices are derivatives”

[14]. An infinitesimal rotation matrix has the form
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Figure 2.9: Left: Error motions of an axis of rotation. Right: Location and orientation errors of axis

average line (adapted from [11])

I +Adθ, (2.40)

where dθ is vanishingly small and A ∈ so(n), for instance with A = Lx,

dLx =




1 0 0

0 1 −dθ
0 dθ 1


 . (2.41)

An advantage to infinitesimal rotations is that the order in which they are applied is irrelevant, meaning

that infinitesimal rotation matrices to the first order are commutative [14].

Quasi-static Error Model of Linear Axes

The angular and translational errors of a linear axis are described in the quasi-static error model of the

axis. The error model was presented and used to measure and calculate the errors of all three linear axes

in the specialization project in the fall of 2020 (see appendix B, section 2.5).

The error model is a homogeneous transformation matrix where the angular errors are represented on

exponential coordinate form as a 3×3 skew-symmetric matrix, and the translational errors in X-, Y-, and

Z-direction is represented as the fourth column vector. The following matrix equation is the quasi-static
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error model of the X-axis, where the homogeneous transformation matrix (4 × 4) represents the axis

motion including the angular and translational errors assuming small angular errors.




∆x(x)

∆y(x)

∆z(x)

0


 =




1 −ECX(x) EBX(x) EXX(x) + x

ECX(x) 1 −EAX(x) EYX(x)

−EBX(x) EAX(x) 1 EZX(x)

0 0 0 1







xx
yx
zx
1




The matrix equation solves the deviation in X-, Y-, and Z-direction of an X-axis displacement compared

to the ideal X-axis displacement with no errors. From the matrix equation, the following equations can

be derived:

∆x(x) = −yxECX(x) + zxEBX(x) + EXX

∆y(x) = xxECX(x)− zxEAX(x) + EYX

∆z(x) = −xxEBX(x) + yxEAX(x) + EZX

Quasi-Static Error Model of Rotational Axes

The quasi-static error model of a rotational axis, here taking the C-axis as an example, can be described

by the following transformation using homogeneous transformation matrices:

TCS = TOSTSSTESTCC, (2.42)

where TOS is the position of the origin of the body coordinate frame {C}

TOS =




1 0 0 OXC

0 1 0 OYC

0 0 1 0

0 0 0 1


 ,

TSS is the squareness error of the C-axis

TSS =




1 0 SYC 0

0 1 −SXC 0

−SYC SXC 1 0

0 0 0 1


 ,

TEC is the translational and angular errors as a function of the C-axis position

TES =




1 −ECC EBC EXC

ECC 1 −EAC EYC

−EBC EAC 1 EZC

0 0 0 1




and TCC is the nominal angular position of the C-axis [15].

TCS =




cosC −sinC 0 0

sinC −cosC 0 0

0 0 1 0

0 0 0 1




Neglecting the squareness errors for now, the volumetric error components as a function of the C-axis

position can be described by the following matrix equation:
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


∆x(C)

∆y(C)

∆z(C)

0


 =




−ECC(C)sinθ −ECC(C)cosθ EBC(C) EXC(C)

ECC(C)cosθ −ECC(C)sinθ −EXC(C) EYC(C)

−EBC(C)cosθ + EAC(C)sinθ EBC(C)sinθ + EAC(C)cosθ 0 EZC(C)

0 0 0 1







xC
yC
zC
1


 ,

which yields the following three equations [16]

∆x(C) = −ECC(C)(xCsinC + yCcosC) + EBC(C)zC + EXC(C)

∆y(C) = −ECC(C)(xCcosC − yCsinC)− EAC(C)zC + EYC(C)

∆z(C) = [−EBC(C)cosC + EAC(C)sinC]xC + [EBCsinC + EAC(C)cosC]yC + EZC(C).

2.6 Measuring Geometric Errors

The methods used for obtaining the errors of a machine tool may be divided into two main categories:

Direct and indirect error measurement. In this thesis, the definitions of direct and indirect measurements

follows that of Schwenke et. al. in [17]. Direct measurement means measuring each error individually,

while indirect measurements measures the effects of several errors superimposed on each other. In the

indirect error measurement method, the collected data must be treated extensively in order to extract

the individual errors.

2.6.1 Direct Measurement

Schwenke et. al. [17] further divide the direct measurements into three groups based on the instruments

used and their metrological reference. The first group contain the methods where artefacts such as

straightedges, line scales or step gauges are used. These methods are covered by ISO 230-1 [11]. In 8.2.2.1,

the measurement of straightness error motions using a straightedge is described. The straightedge is used

as the straightness reference, and a linear displacement sensor is used to observe the relative deviation

between the tool holding and the work holding side of the machine tool as it is moved along the travel of

the concerned axis. The linear displacement sensor shall be placed as close to the functional point on the

spindle as possible. The straightness errors of the straightedge should also be taken into account. If they

are unknown, they can be identified by performing measurements in a reversed setup (see figure 2.10).

In this setup, the straightedge and linear displacement sensor is turned 180◦ and the measurements

repeated. In this way, it is possible to separate the straightness error of the straightedge from the

straightness error of the linear axis. The following equations apply:

M(X) =
[E1(X) + E2(X)]

2
(2.43)

S(X) =
[E1(X)− E2(X)]

2
(2.44)

where M(X) is the straightness deviation of the reference surface of the straightedge at a given mea-

surement position X, S(X) is the straightness deviation of the axis of motion at a given measurement

position X and E1(X) and E2(X) are the measurement data obtained from the normal and reversed

setup respectively (see Figure 2.11)[11].

Other methods in this category are the ones using step gauges ore line scales. Next comes the methods

using laser light’s linear propagation and wavelength as reference. The third and final group measures

errors in reference to earths gravity field. The direction of the gravity vector then becomes the reference

to which geometric errors are measured [17].
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Figure 2.10: Measuring the straightness error using a straightedge [11]

Figure 2.11: Separating the straightness errors of the straightedge and the axis motion [11]
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2.6.2 Indirect Measurement

Indirect measurements usually means measuring deviations which are the result of several different indi-

vidual errors superimposed on each other. This measuring method often requires multi-axis movement

of the machine tool, and may involve the use of artefacts in different forms. A way of performing such an

indirect measurement is to measure a machined test piece in a CMM. However, many factors contribute

to the uncertainty of measurements made in this way. Clamping factors, tool wear, and other machining

parameters are examples of such factors.

Contour measurements use simultaneous movement of two or more axes to produce either a straight

line motion, or circular motions within the working volume of the machine tool. Deviations from the

programmed paths are then measured and analyzed either by special equipment such as a double ball

bar [18], or linear displacement probes [19]. The last example may be considered a whole separate

method of error measurement. In this method, a probe in the form of a precision sphere fixed to the

spindle of the machine tool, is moved together with the rotational axes in such a way that nominally,

no relative movement between the two should occur. The deviation, the unintended relative movement

between spindle and work table, is measured by three displacement sensors configured in a specific way

(see Figure 2.12).

Figure 2.12: The setup of the probe (precision sphere) and the displacement sensors called R-test [19]

Equipment used to evaluate errors directly, may also be used in the indirect measuring methods. An

example of this is the use of laser interferometry which traditionally is used to measure the errors of a

single axis at a time to determine the errors of several axes simultaneously. By using the principle of

multilateration, the length measurements obtained by an interferometer may be used to determine the

three dimensional coordinates of points on the spindle/work table of a machine tool from which several

errors may be calculated. However in practice, since the use of a conventional interferometer requires

manual interaction in order to change the measurement direction, this method is quite unfeasible. As

an alternative to this, a double ball bar possesses the ability to measure in every direction. However this

measuring instrument is somewhat limited in its usable stroke. An instrument with the ability to provide
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precise length measurements in every direction with a large range is the Lasertracer. This instrument

automatically tracks and follows the target reflector and in this way enables the measurement of a large

number of points in the machine working volume in a reasonable amount of time. The precision of the

Lasertracer is higher compared to conventional laser trackers because the length measurement is made

directly in reference to a stationary sphere. This helps to reduce the radial measurement uncertainty

[17].

On machine tools such as parallel kinematic machines and hybrid machines, direct measurement of

geometric errors may not be possible at all, or may only function for a few errors. In these cases indirect

measurement methods are the only ones which can provide a complete picture of the geometric errors of

the machine tool [17].

2.7 Measurement Uncertainty

Measurement uncertainty is related to the observation of the effects of other phenomena than the ones

you intend to observe. This might be for instance the change of the refractive index of air which leads to

a change in a laser distance measurement, or the thermal expansion of a gauge block measured using a

micrometer when the goal of the measurement is to determine an estimate of the true value of the length

dimension of the gauge block.

When the result of a measurement of some physical quantity is given, there should always follow a num-

ber indicating how precise the measurement result is. This is of great importance to those who depend

on, use or in other ways are interested in the results of measurements. If no such indication is given,

comparing different measurement results is difficult. An easy to understand, commonly accepted proce-

dure for evaluating the quality of measurements is therefore necessary for determining and expressing

the measurement’s uncertainty [20].

Uncertainty, which means ”doubt”, is in the context of measurement a sort of doubt as to how accu-

rately the result of a measurement represents the true value of the measurand (the quantity subject to

measurement). Uncertainty in measurement is defined as ”parameter, associated with the result of a

measurement, that characterizes the dispersion of the values that could reasonably be attributed to the

measurand” [20].

In assessment of the uncertainty in measurement the approaches generally fit into either what is known as

Type A evaluation, or Type B. Type A evaluation of uncertainty is defined as the ”method of evaluation

of uncertainty by the statistical analysis of series of observations”, and Type B the ”method of evaluation

of uncertainty by means other than the statistical analysis of series of observations” [20].

Based on repeated measurements or observations, the expected value is often best estimated by the

arithmetic mean or average of the observations

q̄ =
1

n

n∑

k=1

qk. (2.45)

The observed values of the measurand will vary because of random effects or random variations in the

quantities affecting the value of the measurand. Two parameters often used to estimate the variance of

the probability distribution and describe the dispersion of the observed values about their mean are the

experimental variance of the observations calculated as

s2(qk) =
1

n− 1

n∑

j=1

(qj − q̄)2, (2.46)

and its positive square root - the experimental standard deviation
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s(qk) =
√
s2(qk) =

√√√√ 1

n− 1

n∑

j=1

(qj − q̄)2. (2.47)

The best estimate of the the variance of the mean is given by

s2(q̄) =
s2(qk)

n
, (2.48)

and the estimated standard deviation of the mean is given as the positive square root of the estimated

variance of the mean

s(q̄) =
√
s2(q̄) =

√
s2(qk)

n
(2.49)

2.8 Laser Tracker

The instrument used for obtaining the measurements used in this work is the Leica Absolute Tracker

AT960 MR. For details on the working principles of laser trackers I refer to section 2.6 of the specialization

project (see appendix B).

Sources of Uncertainty in Laser Tracker Measurement

Huo & Cheng [21] classifies the uncertainty errors of laser tracker measurement into four categories:

1. Static or quasi-static uncertainty sources

2. Dynamic uncertainty sources

3. Fitting and evaluation algorithm related uncertainty sources

4. Measuring strategy/sequence related uncertainty sources

In their article, they provide the following figure as an overview of the sources of uncertainty associated

with a general laser tracker measurement:

Figure 2.13: Overview of sources of uncertainty in laser tracker measurement [21]

As seen in the figure, the static/quasi-static sources of uncertainty can further be divided into geometric

errors and non-geometric errors. The geometric sources of uncertainty include inaccuracies in the rota-

tional axes of the tracker, mirror center offset, imperfections of the spherically mounted retroreflector

(SMR) and datum point errors. These are the most significant sources of uncertainty, and are subject to
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error compensation by the manufacturers who all have their own error correction algorithms and calibra-

tion processes. Non-geometric sources of uncertainty are those related to variations in the wavelength of

the laser light and thermally induced distortions of the laser light source and other mechanical and opti-

cal components in the tracker structure. Variations in the refractive index of the medium the laser light

travels in influences the wavelength of the light and thereby the calculation of the measured distance.

The sensitivity of a laser distance measurement to environmental factors influencing the refractive index

of air is summarized in Table 2.1.

Table 2.1: Sensitivity of laser distance measurements to environmental parameters [17]

Condition Uncertainty Resulting uncertainty

Air temperature 1◦ C 1 µm/m

Air Pressure 1 hPa 0.3 µm/m

Humidity 10 % RH 0.1 µm/m

CO2 content 100 ppm 14 nm/m

The dynamic source of uncertainty stems from dynamic errors such as instrument- or workpiece vibra-

tions, servo errors in the mirror steering control system and acceleration of the reflector. The latter is an

issue when acquiring measurements in scanning mode (high continuous sampling rate). While these error

types are present in a laser tracker measurement system, some of them are considered negligible in mag-

nitude and difficult to evaluate. The uncertainty of laser tracker measurements are highly non-uniform

in space, which gives rise to uncertainty related to the measurement strategy and the sequence in which

points are measured. The last source of uncertainty is that of the fitting and evaluation algorithm used

on the discrete points measured.

2.8.1 Hexagon Inspire measuring software

Inspire is a versatile measuring software made for any portable measuring arm or laser tracker for probing

and scanning. It features tools for constructing and fitting geometry to measured points, and evaluation

of measured points and features according to the common standards on geometric dimensioning and

tolerancing. Inspire also offers automation functionality for repetitive measurement operations [22].

2.9 Numerical Compensation

In this thesis, numerical compensation is used as the name of the process of compensating for geometric

errors on numerically controlled machine tools. As stated in ISO/TR 16907 [3], by numerically compen-

sating for the geometric errors of a machine tool, the accuracy of parts produced on the machine may be

increased, the cost of manufacturing and assembling machines may be decreased and the maintenance

cost during the life cycle of the machine may be lowered.

One can say there are two stages to numerically compensate the geometric errors in a machine tool. One

is to compensate the spatial coordinate of the functional point to eliminate translational errors. The

functional point of a machine tool is defined as ”the cutting tool centre point or point associated with

a component on the machine tool where the cutting tool would contact the part for the purposes of

material removal”. The other is to compensate the functional orientation. The functional orientation is

the ”relative orientation between the component of the machine tool that carries the cutting tool and

the component of the machine tool that carries the workpiece”.

A volumetric error model is a model describing the resulting errors in both the machine tool’s functional

point and functional orientation. These errors may arise from individual error motions in addition to

orientation errors of the machine tool axes. This model also includes axis-positions and other struc-

tural loop variables like tool lengths and tool offsets. The structural loop is defined as the ”assembly of
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components, which maintains the relative position between two specified objects”. An example of this

would be everything connecting the workpiece and the cutting tool in a milling machine such as spindle

bearings, slideways, machine frame and work table. Based on the volumetric error model, a volumetric

compensation can be executed. Just the functional point of the machine can be compensated, making it

a voulumetric compensation of the functional. The compensation can include the functional orientation

as well, which is called a volumetric compensation of functional point and functional orientation. An

interesting thing to note is that since the compensations are done at the functional point, i.e. at the tip

of the cutting tool, in the case that a spherical cutting tool is used, such as a ball nose endmill, a com-

pensation of the functional point actually represents a full volumetric compensation for that particular

case. The reason for this being that errors in functional orientation does not affect the geometry of the

workpiece when a spherical cutting tool is used.

The volumetric error model may be a kinematic error model, or a spatial error grid. A kinematic error

model is a mathematical error model describing the structural loop of a machine tool as a kinematic chain

and describes the errors that are taken into account. A kinematic error model may be represented in a

number of different ways such as e.g. homogeneous transformation matrices. A kinematic error model

may include errors from elastic deformation as a result of loads from acceleration/deceleration or other

mechanical loads such as heavy tools, heavy workpieces etc. called quasi-rigid body behavior. A specific

type of kinematic error model is the rigid body kinematic error model. In this model, all the elements

of the structural loop is considered as entirely rigid. This means that the effects of external loads are

neglected. Also, the the errors of one axis is assumed independent from the position of other axes.

Compensation for the errors represented in the rigid body kinematic error model is called a rigid body

kinematic compensation. A statement on which errors are included in the error model is recommended.

Another way of representing the volumetric error model is in the form of an error table. An error table

is a table containing the values of each of the errors associated with an axis at several different linear

or angular command positions in each axis. For a linear axis, the error table usually contains both

the translational error motions (positioning and straightness errors) and the angular error motions (roll,

pitch and yaw). Similarly for the rotational axes, both the translational error motions (axial and radial

error) in addition to the angular error motions (tilt error and angular positioning errors). Reversing the

sign of the errors in the error table results in a compensation table - the amount by which the motion

must be corrected in order to obtain a geometrically correct movement.

A spatial error grid is a three dimensional representation of the errors of the machine tool. While the

error table represents the error in a single axis, the error grid represents the resulting error in position

and orientation from the errors of all the axes influencing the position of the functional point at each

sampling point. The values in the error grid are the superposition of the effects of geometric errors in

multiple axes. Just as reversing the sign of the error table results in the compensation table, reversing

the sign of the error grid results in the compensation grid.

In the error grid as well as in the error table or any other representation of the geometric errors in a

machine tool, the errors are reported in a certain set of sampling points, a certain set of positions of the

linear and rotational axes. This means the errors are represented in a discrete way, with error values

”jumping” from one value to another. To completely represent the errors of the entire working volume of

a machine tool, an infinite number of sampling points would have to be evaluated. This is obviously not

feasible. Therefore, for points in the working volume not equal to the sampling points, geometric error

values are interpolated from the neighbouring sampling points to estimate the error value to a sufficient

degree of accuracy [3].
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2.9.1 Types of Geometric Compensation

Error compensation can be divided into two different types depending on the repeatability of the ma-

chine tool - ’pre-calibrated error compensation’ and ’active error compensation’ In ’pre-calibrated error

compensation’, the errors are measured on one occasion an then used for later compensation of machine

motion. This presupposes that the process of measuring and the errors themselves are highly repeatable.

’active error compensation’ on the other hand continuously evaluates the errors while the machining

process takes place. This method does not require the same repeatability as the pre-calibrated one [23].

ISO/TR 16907 [3] defines and standardises different forms of numerical compensation in machine tools.

The following part aims to summarize these types of compensations.

Compensation for Positioning Errors of Linear Axes Along Specific Lines, L-POS

This compensation method only compensates for the positioning error along specific lines in the working

volume. It will not reduce the straightness error of axes, and it will not compensate for angular errors

except on those specific lines. Taking the X-axis of a machine tool as an example: The linear positioning

error EXX is compensated and brought as close to the nominal position as possible. This includes

compensating for the effect of angular errors in the axis, but not compensating the angular error itself.

The straightness errors, EYX and EZX are left uncompensated. The compensation (and measurement)

is typically performed in the centre of travel of the other axes or the most frequently used machine tool

volume.

Compensation for Straightness errors of Linear Axes Along Specific Lines, L-STR

The straightness errors are compensated along specific lines in the working volume. With the application

of this compensation method alone, the positioning error of axes will not be compensated, and angular

errors will affect the straightness of lines parallel to the compensated line.

Compensation for Squareness Error Between Axes of Linear Motion at Specific Lines, L-

SQU

Errors in squareness between linear axes are compensated, but only along specific lines in the working

volume. Angular error motion of the axes will affect squareness error at other measurement lines, and

the positioning error of axes are not compensated.

Compensation for the Angular Error Motions of Linear Axes on 3-D Position of Functional

Point in the Working Volume, L-ANG

The angular error motion of the machine tool is compensated by adjusting the three-dimensional position

of the functional point in the working volume. The remaining errors will be entirely a result of positioning

and straightness errors. Errors in the functional orientation will remain unchanged, and machining with

large diameter cutting tools will reveal these angular errors. Cutting operations using tools with spherical

tips can be fully compensated using this method.

Physical Compensation for Errors in Functional Orientation, FOR

Complete compensation of errors in the functional orientation of a machine tool require three numerically

controlled orthogonal rotary axes where a minimum of two of these can not be parallel to the spindle

axis. The functional orientation errors arising from errors in both the rotary axes and the linear axes are

compensated using this method. This method should be implemented in combination with the L-ANG
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ang R-ANG methods. If not, unintended X-, Y- and Z-movements should be compensated by other

means.

Volumetric Compensation of Linear Axes, L-VOL

This method has the potential to completely compensate for the effects of all geometric errors in the

linear axes of a machine tool. The method combines the L-POS, L-STR, L-SQU and L-ANG compen-

sations. Since the rotational axes are not used to compensate for angular error in the linear axes, direct

measurement of angular errors will still show the uncompensated error motions. Cutting with tools

having a large contact area will also reveal the effects of the angular errors. Spherical tool cutting will

be completely compensated for all geometric errors of the linear axes.

Volumetric Compensation of Linear Axes Including Functional Orientation, L-VOL+

This compensation is a combination of L-VOL and FOR, meaning that the requirement regarding the

rotary axes remains the same.

Compensation for Positioning Errors of Rotary Axes, R-POS

Similarly as for the linear axes, this compensation reduces the rotational positioning errors of the rotary

axes.

Compensation for Position and Orientation Errors of Rotary Axes, R-RAX

Compensation for radial errors in a rotary axis at a specific elevation above the table surface, or at a

specific tool length in the case of a rotating tool. At other elevations or tool lengths, tilt errors will affect

the radial error of the axis.

Compensation for Position and Orientation Errors of Rotary Axes, R-POR

Both positioning and orientation errors of the rotary axes are compensated in this method, not to be

confused with the angular positioning errors as covered by the R-POS method. An axis average line of

the rotation is typically defined.

Compensation for the Tilt Error Motions of Rotary Axes on 3-D Position of Functional

Point in the Working Volume, R-ANG

This compensation method reduces the effects of tilt error motions in the rotary axes on the functional

point. Functional orientation, however, remains uncompensated. As for L-ANG, cutting with spherical

tools will be completely compensated for the effects of angular error motions in the rotary axes, while

cutting with large diameter cutting tools will still be affected by the angular error motions.

Volumetric Compensation for Rotary Axis Errors, R-VOL

R-VOL is a combination of several compensations - R-POS, R-RAX, R-POR and R-ANG. Functional

orientation remains uncompensated.

Volumetric Compensation for Rotary Axis Errors Including Functional Orientation, R-

VOL+

The same combination of compensations as R-VOL with the addition of FOR - compensation of functional

orientation.
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In addition to these standard compensations, machine tool manufacturers may define their own specific

error compensation strategies for the linear and rotary axes termed L-SPEC and R-SPEC in ISO 16907

[3].

2.9.2 Where is Numerical Compensation Applied?

Numerical compensation may be applied on-line or off-line, meaning that the compensation may be

applied directly on the machine controller, or off-line as alterations to the NC-data fed to the machine

controller (Figure 2.14). Some machines have compensations built-in, such as backlash compensation,

which means that compensation also can be applied both on- and off-line in combination.

CAD/CAM Postprocessor

CL-data
generation

NC-data
generation

Machine controller

Numerical
Compensation

Figure 2.14: Numerical compensation may be applied either off-line, on-line or as a combination of both

2.9.3 Other Influences on the Application of Numerical Compensation of

Geometric Errors

Temperature

Temperature may affect both the determination of the geometric errors along with the geometric per-

formance of the machine. Testing the influence of thermal effects on the machine tool according to

ISO 230-3 prior to determining geometric errors, compensation and validation would be good practice.

The machine tool’s stability with regard to temperature variation and the errors this brings will set

limitations as to what precision is attainable through other compensations.

Repeatablility

Several things affect the repeatability of the machine tool. Mechanical play in machine parts can cause

reversal error in machine axes and thereby a reduced repeatability. Friction and wear, thermal effects

of machine tool components and plastic deformation of components or foundations over time are other

examples of things that may affect repeatability.

This also sets an upper limit to what precision is achievable through compensation. The effects of some

short-term repeatability issues can be reduced to a certain degree by averaging at least over measurements

in different directions if geometric errors are taken as an example.
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Machine Tool Least Increment Step

The least increment the machine axes can be moved will directly affect the least amount of compensation

that can be applied.

Workpiece- and Tool Mass

Typically, the geometric accuracy of machine tools are evaluated in quasi-static no-load conditions. In

some cases though, it might be more appropriate to evaluate errors including the mass of the workpiece

or the tool.
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Chapter 3

Method

3.1 Repeating the Measurements of the Linear Axes

In the specialization project report written in the fall of 2020 (see appendix B), the geometric errors of

the linear axes was measured once. In this work, a new configuration of the points on the spindle is

chosen and measured four times in order to evaluate the variability of the results (see Figure 3.1).

Figure 3.1: Configuration of the measured points on the spindle

The measuring procedure followed is essentially the same as the one in the specialization project. The

position of the three points fixed to the machine spindle assembly is acquired by sequentially measuring

the position of the Red Ring Reflector (RRR) on each of the three positions on the spindle. Sequentially

measuring means that the movement of the axis is made with the RRR fixed to a single magnet holder,

and the position measured at each increment along the axis movement. The machine axis is then reset,

the RRR moved to the next magnet holder, and the process repeated. The measurements are acquired

using the stable points mode in Inspire. This means that the software detects when the machine is

stationary, and then executes the measurement. This procedure is carried out four times per linear axis

of the machine (see Figure 3.2).

After acquiring the measurements of the points along each linear axis, the origin and axes of the fixed
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coordinate frame of the machine must be established. Firstly, the magnet holder fixed to the spindle is

used to measure points along the rotational motion of the spindle. The spindle is unlocked and manually

indexed during this measuring process. From the measured points along the spindle rotation motion, a

circle is constructed and fitted by the least squares method in Inspire. A line representing the direction

of the Z-axis is made, and another line is constructed to represent the direction of the X-axis. The

measurement data of one of the points on the spindle is used as input for these lines. The coordinate

frame is aligned to the X-axis line, the Z-axis line and the constructed circle feature. The constructed

features and the coordinate frame alignment can be seen in Figure 3.3.

The raw measurement data of every point is then exported to a csv-file, before it is used to calculate the

errors using the same approach as in the specialization project. The magnitude of each error is averaged

over the four rounds of measurements made, and the standard deviation of the error in each measured

point is calculated. The Python scripts used to calculate the errors of the linear axes from the raw

measurement data can be read in Appendix C.1 and C.2.

Figure 3.2: Acquisition of the four rounds of measurements for each of the linear axes of the DMU 50

3.2 Determining the Errors of the Rotational Axes

Three non-colinear points are chosen on the machine table as shown in Figure 3.4. The setup also ensures

that the height of the measured point relative to the table surface is different for each point when the axes

are in the zero-position. The three points, K, P, Q have coordinates (xCK, yCK, zCK), (xCP, yCP, zCP) and

(xCQ, yCQ, zCQ). oxyz is the reference coordinate frame, and oCxCyCzC is the C-axis coordinate frame.

The homogeneous coordinates of oC is
[
xo yo zo 1

]T
in the reference coordinate frame before the

axes are moved. If there are no errors in the motion of the rotational axes, the homogeneous coordinates
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Figure 3.3: Constructed features and alignment of the coordinate frame in Inspire
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and the homogeneous coordinates of point P are
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The coordinates of point P (x′Pt, y
′
Pt, z

′
Pt) are then measured using the laser tracker. The three volumetric

error components at the point P is then
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1


 (3.3)

which can be substituted into the error model from chapter 2 to obtain the following three equations

x′Pt − xCP cosC + yCP sinC − xo = −ECCt(C)(xCP sinC + yCPcosC) + EBCt(C)zCP + EXCt(C)

y′Pt − xCP sinC − yCP cosC − yo = ECCt(C)(xCP cosC − yCP sinC)− EACt(C)zCP + EYCt (3.4)

z′Pt − zCP − zo = [EBCt(C)cosC + EACt(C)]xCP + [EBCt(C)sinC + EACt(C)cosC]yCP + EZC(C).

Performing the same procedure on points K and Q yields the following set of equations written on matrix

form
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Figure 3.4: The setup for measuring the errors of the B- and C-axis of the Deckel Maho DMU 50

eVolution.




1 0 0 0 zCP −ŷCP
0 1 0 −zCP 0 x̂xP
0 0 1 ŷCP −x̂CP 0

1 0 0 0 zCQ −ŷxQ
0 1 0 −zCQ 0 x̂CQ
0 0 1 ŷCQ −x̂xQ 0

1 0 0 0 zCK −ŷCK
0 1 0 −zCK 0 x̂CK
0 0 1 ŷxK −x̂xK 0







EXCt(C)

EYCt(C)

EZCt(C)

EACt(C)

EBCt(C)

ECCt(C)




=




∆Kxt

∆Kyt

∆Kzt

∆Pxt

∆Pyt

∆Pzt

∆Qxt

∆Qyt

∆Qzt




(3.5)

where ∆ijt (i = K, P or Q, j = x, y or z) denotes the volumetric error component at point i, in the direction

of the j-axis at the tth step. ∆ixt = x′it − x̂Ci − xo, ∆iyt = y′it − ŷCi − yo and ∆izt = z′it − ẑCi − zo, where

x̂Ci = xCicosC− yCisinC and ŷCi = yCicosC + xCisinC, (i = K, P or Q) [16].

Six equations can be extracted from this overdetermined system of equations to form a new system:




1 0 0 0 zCP −ŷCP
0 1 0 −zCP 0 x̂xP
1 0 0 0 zCQ −ŷxQ
0 0 1 ŷCQ −x̂xQ 0

0 1 0 −zCK 0 x̂CK
0 0 1 ŷxK −x̂xK 0







EXCt(C)

EYCt(C)

EZCt(C)

EACt(C)

EBCt(C)

ECCt(C)




=




∆Pxt

∆Pyt

∆Qxt

∆Qzt

∆Kyt

∆Kzt




(3.6)

Care has to be taken to select the correct equations. Zhenjiu Zhang and Hong Hu explain this in detail

in their articles on geometric error identification in machine tools [24][16].

Solving this system of equations yields the following expressions for the errors of the C-axis [16]:
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EXC(C) = ∆Pxt +
M

N

[
ŷCP −

zCP (ŷCQ − ŷCP )

zCQ − zCP

]
− zCP (∆Qxt −∆Pxt)

zCQ − zCP

EYC(C) = ∆Pyt −
M

N

[
x̂CP −

zCP (x̂CP − x̂CK)

zCP − zCK

]
− zCP (∆Pyt −∆Kyt)

zCP − zCK

EZC(C) = ∆Qzt +
M

N

[
ŷCQ(x̂CK − x̂CP )

zCP − zCK
− x̂CQ(ŷCP − ŷCQ)

zCQ − zCP

]
− ŷCQ(∆Kyt −∆Pyt)

zCP − zCK
+
x̂CQ(∆Qxt −∆Pxt)

zCQ − zCP
(3.7)

EAC(C) =
∆Kyt −∆Pyt

zCP − zCK
+
x̂CP − x̂CK
zCP − zCK

· M
N

EBC(C) =
∆Qxt −∆Pxt

zCQ − zCP
+
ŷCQ − ŷCP
zCQ − zCP

· M
N

ECC(C) =
M

N
(3.8)

where

M = (∆Qxt −∆Pxt)(x̂CK − x̂CQ)(zCP − zCK) + [(∆Pyt −∆Kyt)(ŷCK − ŷCQ) + (∆Kzt −∆Qzt)(zCP−
zCK)](zCQ − zCP )

N = (x̂CK − x̂CQ)(ŷCP − ŷCQ)(zCP − zCK)(x̂CK − x̂CP )(ŷCK − ŷCQ)(zCQ − zCP )

The position of the three points located on the machine table are measured sequentially four times (see

Figure 3.5(right)). An increment of 20 degrees was chosen for the C-axis, and 10 degrees for the B-axis.

A new alignment of the coordinate frame was made for each of the two rounds of measurements. A circle

was constructed for each of the two rotational axes with the measured positions of one of the points

located on the machine table as input. A line representing the direction of the Z-axis perpendicular

to the machine table when C = 0◦ is constructed. The line representing the direction of the X-axis is

constructed the same way as for the linear axes, but the line is projected onto the plane spanned out by

the circle features for each rotational axis (see Figure 3.5(left)). The Python scripts used to calculate

the errors of the rotational axes from the raw measurement data can be read in Appendix D.1 and D.2.

3.3 Volumetric Error Model

Based on the 21 measured and modelled geometric errors of the machine tool, a model containing all

error motions of the machine tool may be made [12]. By joining the error models of each of the linear

axes, the volumetric error in the working volume may be calculated. The error model of a linear axis

can be represented by a Homogeneous Transformation Matrix (HTM). With the assumption of small

angular errors, the error model of the X-axis takes on the form:




1 −ECX(x) EBX(x) EXX(x) + x

ECX(x) 1 −EAX(x) EYX(x)

−EBX(x) EAX(x) 1 EZX(x)

0 0 0 1


 (3.9)

Although this error model provides a complete description of the error in tool center position, a more

common way of representing straightness error is by extracting the inclination of the straightness errors

of each individual axis, and then synthesize a squareness error.
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Figure 3.5: Left: Constructed features and alignment of the coordinate frame in Inspire. Right: The

measured points for the B-axis (top) and C-axis (bottom).

3.3.1 Squareness Errors of Translational Axes

As a linear axis moves, straightness errors affect the movement of the functional point on the moving

component traveling along the axis. A squareness error describes the deviation of a reference straight

line fitted to the trajectory of the functional point as the axis moves, to the nominal direction of the

axis.

For modeling of translation using HTMs, a local coordinate system is assigned to each axis. When the

axes are in their zero position, the origins of the three local coordinate systems are defined as being

coincident with the reference coordinate system of the machine. The local coordinate system’s axes are

also defined coaxial with the reference coordinate system’s axes. Considering the movement of one of

these axes affected only by squareness error. The squareness error makes the actual movement line of

the axis coordinate system inclined compared to the nominal axis direction, and no longer parallel or

coaxial. This is well illustrated in Figure 3.6.

Figure 3.6: The motion of the X-axis affected by squareness error [13]
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The translational transformation matrix along an arbitrary direction can be represented by the following

transformation matrix:




1 0 0 m · kx
0 1 0 m · ky
0 0 1 m · kz
0 0 0 1


 (3.10)

here, k = [kx, ky, kz, 1]T represents the unit direction vector of the line along which the translation takes

place, and m the nominal displacement along the axis. Knowing the squareness error of the axis in

question, the unit vector is established using equation 3.11.

nX = [cos(EC(0X)Y), sin(EC(0X)Y), 0] (3.11)

Using the unit vector obtained using eq. 3.11, the squareness error model of the X-axis is represented

as:




1 0 0 xcos(EC(0X)Y)

0 1 0 xsin(EC(0X)Y)

0 0 1 0

0 0 0 1


 (3.12)

Then, considering the Z-axis with squareness errors of the Z-axis to the X-axis (EB(0X)Z) and squareness

error of the Z-axis to the Y-axis (EA(0Y)Z). The unit vector of the actual translation direction can be

obtained using the equation:

nZ = [sin(EB(0X)Z), cos(EB(0X)Z)sin(EA(0Y)Z), cos(EB(0X)Z)cos(EA(0Y)Z)] (3.13)

Making the squareness error model of the Z-axis:




1 0 0 zsin(EB(0X)Z)

0 1 0 zcos(EB(0X)Z)sin(EA(0Y)Z)

0 0 1 zcos(EB(0X)Z)cos(EA(0Y)Z)

0 0 0 1


 (3.14)

Applying the assumption of small angular errors provides the following squareness error models of the

X- and Z-axis respectively [13]:




1 0 0 xEC(0X)Y

0 1 0 xEC(0X)Y

0 0 1 0

0 0 0 1


 and




1 0 0 zEB(0X)Z

0 1 0 zEA(0Y)Z

0 0 1 z

0 0 0 1


 (3.15)

3.3.2 Integrating the Squareness Errors

As described in the theory chapter, squareness errors of translational axes are the sum of the angular

deviation of the reference straight line fitted to the measured straightness error data to the nominal axis

of the two axes in question. This means that the squareness errors are synthesized from two angles, one

for each of the concerned axes. When compensating for squareness errors, this is usually done in only

one of the concerned axes. In the following, the X-axis is the datum axis and the squareness errors are

compensated in the Y- and Z-axis.

Integrating the squareness errors, the three HTMs describing the motion of the X-, Y- and Z-axis are:
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


1 −ECX(x) EBX(x) EXX(x) + x

ECX(x) 1 −EAX(x) EYX(x)

−EBX(x) EAX(x) 1 EZX(x)

0 0 0 1


 (3.16)




1 −ECY(y) EBY(y) EXY(y) + yEC(0X)Y

ECY(y) 1 −EAY(y) EYY(y) + y

−EBY(y) EAY(y) 1 EZY(y)

0 0 0 1


 (3.17)




1 −ECZ(z) EBZ(z) EXZ(z) + zEB(0X)Z

ECZ(z) 1 −EAZ(z) EYZ(z) + zEA(0Y)Z

−EBZ(z) EAZ(z) 1 EZZ(z) + z

0 0 0 1


 (3.18)

3.4 Curve Fitting of Measured Errors

To be able to compensate for errors in every position along each of the axes on the machine, one approach

is to make an analytical model of the discrete error data measured. This may be done by curve fitting a

polynomial to the measured error data using the least squares method. The degree of polynomial suitable

to represent the measured data depends on the shape of the measured errors. If a clear linear relationship

can be seen between the axis travel and the error, a straight line may provide an accurate representation.

However, if the error fluctuates along the travel of the axis, then a higher order polynomial may be more

appropriate. In this section, the process of developing an analytical model to continuously represent the

errors along the travel of each axis will be shown in detail.

The function ”curve fit” was made (Listing 3.1), which takes the name of the error and the degree of

polynomial to be fitted to the measured data as inputs. The first part of the function (line 5-12) opens

the text file containing the measured errors. The data is separated into two arrays, one containing the

error values and the other containing the displacement along the axis. The next part of the script (line

20-62) constructs the reference straight line of the straightness errors of each axis, and calculates the

angle between this line and the nominal axis. The first if-statement checks if the error is a straightness

error or a linear positioning error. In the case of a linear positioning error (e.g. EYY), no reference

straight line is made. If the error is a straightness error (e.g. EXY), a reference straight line is fitted

using the numpy.polyfit function once again. The slope of the reference straight line in relation to the

nominal axis is calculated based on the dot product of the directional vectors of the two. The algorithm

then decides if the angle is positive or negative according to ISO 841 ([8]).

Before curve fitting, the straightness deviation stemming from the angular deviation of the reference

straight line is subtracted from the straightness error (see Figure 3.7(right)) (line 66). numpy.polyfit is

then used to fit a polynomial of the specified degree to the errors (see Figure 3.7(left)) (line 70). The

function uses the least squares method of fitting the function. The function outputs a list of coefficients

for the polynomial, along with the residual of the fitted curve. This is stored in the variable ”curve error”.

The residual is the sum of the squared deviations of the curve fit and is assigned to the local variable

”residual error” (line 73). Dividing the residual by the number of data points yields the mean squared

error of the curve fit assigned to the local variable ”MSE error” which is returned by the function (line

74). Next, an array of displacement values for plotting the fitted polynomial is made. An if-statement

checks the axis-direction and constructs the array accordingly (line 78-81). The polynomial is then made

from the array of coefficients returned by the numpy.polyfit function. An if-statement checks if the

polynomial is linear or of a higher degree before the polynomial is assigned to ”error model” (line 83-88).
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Listing 3.1: The curve fit function

1 de f c u r v e f i t ( e r ro r , degree ) :

2

3 # Treat ing the text f i l e conta in ing the e r r o r va lue s

4

5 with open ( f ’ { e r r o r } . tx t ’ ) as f i l e :

6 d0 = f i l e . read ( )

7 d1 = d0 . s p l i t ( ’ \n ’ )

8 d2 = [ i . s p l i t ( ’ , ’ ) f o r i in d1 ]

9 d3 = [ d2 [ i ] [ 0 ] . s p l i t ( ’ ’ ) f o r i in range ( l en ( d2 ) ) ]

10

11 Axis = np . z e r o s ( l en ( d3 )−1)

12 e r ro r paramete r = np . z e r o s ( l en ( d3 )−1)

13

14 f o r i in range ( l en ( d3 )−1) :

15 Axis [ i ] = f l o a t ( d3 [ i ] [ 0 ] )

16 e r ro r paramete r [ i ] = f l o a t ( d3 [ i ] [ 1 ] )

17

18 # Checking i f the e r r o r i s a s t r a i g h t n e s s e r r o r

19

20 i f e r r o r [−2] != e r r o r [−1] and e r r o r [−2] != ’A ’ and e r r o r [−2] != ’B ’ \
21 and e r r o r [−2] != ’C ’ :

22

23 # Construct ing the r e f e r e n c e s t r a i g h t l i n e

24

25 s t r a i g h t l i n e f i t = np . p o l y f i t ( Axis , e r ror parameter , 1)

26 s t r a i g h t l i n e f i t [ 1 ] = 0 .

27 r e f s t r a i g h t l i n e = s t r a i g h t l i n e f i t [ 0 ] ∗ Axis +\
28 s t r a i g h t l i n e f i t [ 1 ]

29

30 # Construct ing ve c t o r s f o r the r e f e r e n c e s t r a i g h t l i n e and the nominal\
31 # ax i s . Then c a l c u l a t i n g the ang le based on the dot product

32

33 a = np . array ( [ Axis [−1] ∗ 1e3 − 0 , r e f s t r a i g h t l i n e [−1] − \
34 r e f s t r a i g h t l i n e [ 0 ] ] )

35 b = np . array ( [ Axis [−1]∗ 1e3 − 0 , 0 − 0 ] )

36 l en a = np . sq r t ( a [ 0 ]∗∗2 + a [ 1 ] ∗ ∗ 2 )
37 l en b = np . sq r t (b [ 0 ]∗∗2 + b [ 1 ] ∗ ∗ 2 )
38 ang le = np . a r c co s ( ( a @ b) /( l en a ∗ l en b ) )

39

40 # Determining the s i gn o f the ang le

41

42 i f e r r o r [−1] == ’X ’ :

43 i f e r r o r [−2] == ’Y ’ :

44 i f r e f s t r a i g h t l i n e [−1] < r e f s t r a i g h t l i n e [ 0 ] :

45 ang le = −1 ∗ ang le

46 i f e r r o r [−2] == ’Z ’ :

47 i f r e f s t r a i g h t l i n e [−1] > r e f s t r a i g h t l i n e [ 0 ] :

48 ang le = −1 ∗ ang le

49 i f e r r o r [−1] == ’Y ’ :

50 i f e r r o r [−2] == ’X ’ :

51 i f r e f s t r a i g h t l i n e [−1] > r e f s t r a i g h t l i n e [ 0 ] :

52 ang le = −1 ∗ ang le

53 i f e r r o r [−2] == ’Z ’ :

54 i f r e f s t r a i g h t l i n e [−1] < r e f s t r a i g h t l i n e [ 0 ] :

55 ang le = −1 ∗ ang le

56 i f e r r o r [−1] == ’Z ’ :

57 i f e r r o r [−2] == ’X ’ :

58 i f r e f s t r a i g h t l i n e [−1] > r e f s t r a i g h t l i n e [ 0 ] :

59 ang le = −1 ∗ ang le

60 i f e r r o r [−2] == ’Y ’ :

61 i f r e f s t r a i g h t l i n e [−1] < r e f s t r a i g h t l i n e [ 0 ] :

62 ang le = −1 ∗ ang le
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63

64 # Subtract ing the angular dev i a t i on from the s t r a i g h t n e s s dev i a t i on

65

66 e r ro r paramete r = er ro r paramete r − r e f s t r a i g h t l i n e

67

68 # F i t t i n g the polynomial to the measured data

69

70 cu rv e e r r o r = np . p o l y f i t ( Axis , e r ror parameter , degree , f u l l = True , \
71 cov = False )

72 i f c u r v e e r r o r [ 1 ] . s i z e > 0 :

73 r e s i d u a l e r r o r = cu rv e e r r o r [ 1 ] [ 0 ]

74 MSE error = r e s i d u a l e r r o r / l en ( e r ro r paramete r )

75

76 # Construct ing the array o f ax i s−di sp lacements

77

78 i f Axis [−1] < 0 :

79 ax i s = np . arange (0 , Axis [−1] − 1 , −1.)

80 e l s e :

81 ax i s = np . arange (0 , Axis [−1] + 1 , 1 . )

82

83 er ror mode l = np . array ( cu r v e e r r o r [ 0 ] [ 0 ] ∗ ax i s ∗∗ degree )

84 i f degree == 1 :

85 er ror mode l = er ror mode l + cu rv e e r r o r [ 0 ] [ 1 ]

86 e l s e :

87 f o r i in range (1 , degree ) :

88 er ror mode l = er ror mode l + cu rv e e r r o r [ 0 ] [ i ] ∗ ax i s ∗∗( degree − i )

89

90 i f e r r o r [−2] != e r r o r [−1] and e r r o r [−2] != ’A ’ and e r r o r [−2] != ’B ’ \
91 and e r r o r [−2] != ’C ’ :

92

93 re turn Axis , e r ror parameter , ax i s , e rror model , MSE error , \
94 r e f s t r a i g h t l i n e , ang le

95

96 re turn Axis , e r ror parameter , ax i s , e rror model , MSE error
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Figure 3.7: Example of fitted polynomials to the measured data. Left: The linear positioning error of

the X-axis with the fitted polynomial. Right: The straightness error in Y-direction for the X-axis before

and after subtracting the angular deviation. The reference straight line is also plotted.

A second function called ”squareness” (Listing 3.2) was made to calculate the squareness error of axes.

The function takes two inputs: axis1 and axis2. The function then uses the returned angle values from

the curve-fit function and adds these together. The squareness error between axis1 and axis2 is returned.
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Listing 3.2: The squareness function

1 de f squarenes s ( axis1 , ax i s 2 ) :

2 s qua r en e s s e r r o r = c u r v e f i t ( f ’ E { ax i s2 }{ ax i s1 } ’ , 1) [ 6 ] + \
3 c u r v e f i t ( f ’ E { ax i s1 }{ ax i s2 } ’ , 1) [ 6 ]

4 re turn s qua r en e s s e r r o r

3.5 Compensation

The position of the tool-tip relative to the workpiece is described through the forward kinematics of the

machine tool as the position (xW , yW , zW ) and the orientation (iW , jW , kW ). Knut Sørby thoroughly de-

scribed the kinematics of the Deckel Maho in his article ”Inverse kinematics near singular configurations”

[9] and the following formulas were derived:

i =
1

2
(
√

2cCsB − sCcB + sC), (3.19)

j =
1

2
(
√

2sCsB + cCcB − cC), (3.20)

k =
1

2
+

1

2
cB , (3.21)

x =

√
2

2
[XsC + (Y + Z − d)cC ]sB +

1

2
[−Y + Z − d− (Y + Z − d)cB ]sC +XcCcB , (3.22)

y =

√
2

2
[(Y + Z − d)sC −XcC ]sB +XsCcB +

1

2
[(Y + Z − d)cCcB + (Y − Z + d)cC ], (3.23)

z =
1

2
[−
√

2XsB + (Y + Z − d)cB − Y + Z + d]. (3.24)

The formulas describing the inverse relationship were derived and established as:

B = arccos(2k − 1), (3.25)

C = arctan
[
(1− k)i+

√
2(k − k2)j,

√
2(k − k2)i+ (k − 1)j

]
, (3.26)

X =
[
− y

√
2(k − k2)− x+ 2xk

]
cosC +

[
x
√

2(k − k2) + 2yk − y
]
sinC + (d− z)

√
2(k − k2), (3.27)

Y =
[
x
√

2(k − k2) + yk
]
cosC +

[
y
√

2(k − k2)− xk
]
sinC − z + d− dk + zk, (3.28)

Z =
[
x
√

2(k − k2) + yk − y
]
cosC +

[
y
√

2(k − k2)− xk + x
]
sinC + d− dk + zk. (3.29)

These formulas are based on the ideal kinematics of the machine tool. All machines are subject to errors

of different sources and of different magnitudes. In this work, an error model for the geometric errors of

a five axis machine tool is presented. Integrating this error model into the model of the ideal machine

kinematics is done in the following way:

Referring to Figure 3.8, the following transformations in the form of HTMs can be established:

39



T 1
0 =




1 0 0 0

0 1 0 0

0 0 1 d

0 0 0 1


 (3.30)

T 2
1 =




1 0 0 0

0 c45◦ −s45◦ 0

0 s45◦ c45◦ 0

0 0 0 1


 (3.31)

T 3
2 =




cB sB 0 0

sB cB 0 0

0 0 1 0

0 0 0 1


 (3.32)

T 4
3 =




1 0 0 0

0 c45◦ s45◦ 0

0 −s45◦ c45◦ 0

0 0 0 1


 (3.33)

T 5
4 =




1 0 0 0

0 1 0 0

0 0 1 −d
0 0 0 1


 (3.34)

Tw5 =




cC sC 0 0

−sC cC 0 0

0 0 1 0

0 0 0 1


 (3.35)

T t0 =




1 0 0 X

0 1 0 Y

0 0 1 Z

0 0 0 1


 (3.36)

T tw = T 5
wT

4
5 T

3
4 T

2
3 T

1
2 T

0
1 T

t
0 (3.37)

Figure 3.8: Side view illustration of the DMU 50 [9]

Including the error models of the different axes presented in this work as well as in the specialization

project, the ideal transformations can be ”updated” to include the geometric errors:
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
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cB sB 0 0
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
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
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1 −ECB EBB EXB
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−EBB EAB 1 EZB
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
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
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

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4 =




1 0 0 0

0 1 0 0

0 0 1 −d
0 0 0 1




Tw5,e =




cC sC 0 0

−sC cC 0 0

0 0 1 0

0 0 0 1







1 −ECC EBC EXC

ECC 1 −EAC EYC

−EBC EAC 1 EZC

0 0 0 1



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


1 0 0 X

0 1 0 0

0 0 1 0

0 0 0 1







1 −ECX EBX EXX

ECX 1 −EAX EYX

−EBX EAX 1 EZX

0 0 0 1







1 0 0 0

0 1 0 Y
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



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
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


1 0 0 0

0 1 0 0
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



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
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3
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0
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Huang et al. [25] derived formulas for the tool axis orientation vector and tool center position including

the geometric errors. Ignoring the higher-order terms, the formulas are short and simple. However,

the derivation of similar formulas for the DMU 50 results in expressions spanning several pages. A

compensation strategy using the explicit analytical formulas for the forward kinematics was discarded.

A compensation strategy based on the deviation between the ideal kinematics and the actual kinemat-

ics was developed. The strategy compensates for the translational errors of the linear axes, and the

translational errors arising from both the translational and the angular errors of the rotational axes.

The angular errors of the linear axes are neglected in this work. The functional orientation of the tool

remains uncompensated in this compensation strategy. Referring to section 2.9.1, the compensation

strategy combines L-POS, L-STR, L-SQU and R-ANG.

Let Pideal be the position of the tool based on the ideal machine kinematics when only the linear axes

are moved:

Pideal, linear = T t0P (3.39)

The actual position reached by the tool Pactual can be calculated by including the error models of each

linear axis:

Pactual, linear = eTX0
eTYX

eTZY P (3.40)

In equation 3.40, the angular errors are neglected.

The volumetric deviation elinear between Pactual, linear and Pideal, linear is found by subtracting the actual

position by the ideal position. The compensation value clinear is the deviation with reversed sign.

The compensation values for the rotational axes are found in a similar way. The desired position of

the rotational axes is read from the NC-code generated by the post-processor. Considering a coordinate

system located in the center of the machine table, the ideal position of a point on the machine table

Pideal, rotational is then calculated using the transformation based on the forward kinematics. The actual

position reached by the point on the machine table Pactual, rotational is calculated by reading the errors

from the polynomials fitted to the measured and calculated error data. The coordinate system is rotated

by the amount of each angular error. It is then translated by the amount of the translational errors

before it is rotated according to the desired position of the B- and C-axis. The deviation erotational is

calculated as the difference between the actual and the ideal position, as for the linear axes.

In practice, the compensation values arising from the errors in the rotational axes crotational are calculated

first and added to the desired X-, Y- and Z-coordinates. The compensation values based on the errors of

the linear axes are then calculated based on these coordinates. The compensation strategy is summarized

in Figure 3.9.
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Read desired position from NC-data

Movement of rotational axes?

Yes

Calculate Crotational

No

Add Crotational to NC-data

Calculate Clinear

Add Clinear to NC-code

Figure 3.9: The compensation strategy
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3.6 Compensation Procedure

Based on the volumetric error model, including the continuously modelled errors, a compensation function

is made. It compensates for the deviation in tool center position from the nominal position.

Referring to the flow chart of the compensation strategy in Figure 3.9, the compensation values based

on the errors of the rotational axes needs to be calculated first. A Python script was made to calculate

the position of a point on the work table of the DMU 50 after uncompensated rotation of both rotational

axes. The script can be read in Listing 3.3. First, the packages needed in the script are imported. In this

case, only numpy and the self-made function curve fit is needed. The curve fit function for the rotational

axes is similar to that for the linear axes in Listing 3.1, and can be read in Appendix E. The parameter

d (vertical distance from machine tool coordinate frame to the rotation center of the B- and C-axis) is

then defined as 154.996 mm, the value given by the machine manufacturer. The transformation-function

T r based on the ideal machine tool kinematics is then defined (line 6-48), taking the rotation angle of

the B- and C-axis in degrees as arguments. The B- and C-angle is converted to radians, and the sine

and cosine to these angles are defined. Sine and cosine of 45◦ is also defined. The HTMs defined in the

code that follows are recognized as the ideal forward kinematics of the DMU 50 as previously described

(eq 3.30 - 3.35). The product of the matrix multiplication of all the defined HTMs are returned as T.

Another four separate functions are then defined (line 50-94). The three first functions are simple rotation

matrices about the X-, Y- and Z-axes, and the fourth is a translation-matrix.

The following function T er (line 96-128) returns a transformation matrix similar to that returned by

T r, but including the errors of B- and C-axis. The errors of the rotational axes are first defined using

the average values calculated from the four repetitions of measurements (line 98-103 and line 113-118).

The rotation matrices are then constructed based on the measured errors, before the translation matrices

are constructed (line 105-111 and line 120-126). The rotation matrices constructed from the measured

errors are then multiplied first, before the translation matrices are multiplied. Lastly, the transformation

based on the ideal forward kinematics is multiplied with the product of all the previous matrices (line

128).

The last few lines of the script (line 131-133) demonstrates how the deviation between the transformation

based on the ideal kinematics and the one including the errors is found. The output of the three print

commands is shown in Figure 3.10. By reversing the signs of the deviation in X-, Y-, and Z-direction, the

volumetric compensations values to compensate for the translational and angular errors of the rotational

axes are derived.

Listing 3.3: Script to calculate deviation in uncompensated rotation motion

1 import numpy as np

2 from CurveF i t t i ngFunc t i on ro ta t i ona l import c u r v e f i t as c f r o t

3

4 d = 154.996

5

6 de f T r (B, C) :

7

8 B = np . deg2rad (B)

9 C = np . deg2rad (C)

10

11 s B , c B = np . s i n (B) , np . cos (B)

12 s C , c C = np . s i n (C) , np . cos (C)

13 s 45 , c 45 = np . s i n (np . p i /4) , np . cos (np . p i /4)

14

15 T d = np . array ( [ [ 1 , 0 , 0 , 0 ] ,

16 [ 0 , 1 , 0 , 0 ] ,

17 [ 0 , 0 , 1 , d ] ,

18 [ 0 , 0 , 0 , 1 ] ] )

19

20 T 45 = np . array ( [ [ 1 , 0 , 0 , 0 ] ,
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21 [ 0 , c 45 , −s 45 , 0 ] ,

22 [ 0 , s 45 , c 45 , 0 ] ,

23 [ 0 , 0 , 0 , 1 ] ] )

24

25 T B = np . array ( [ [ c B , −s B , 0 , 0 ] ,

26 [ s B , c B , 0 , 0 ] ,

27 [ 0 , 0 , 1 , 0 ] ,

28 [ 0 , 0 , 0 , 1 ] ] )

29

30 T n45 = np . array ( [ [ 1 , 0 , 0 , 0 ] ,

31 [ 0 , c 45 , s 45 , 0 ] ,

32 [ 0 , −s 45 , c 45 , 0 ] ,

33 [ 0 , 0 , 0 , 1 ] ] )

34

35 T nd = np . array ( [ [ 1 , 0 , 0 , 0 ] ,

36 [ 0 , 1 , 0 , 0 ] ,

37 [ 0 , 0 , 1 , −d ] ,

38 [ 0 , 0 , 0 , 1 ] ] )

39

40 T C = np . array ( [ [ c C , s C , 0 , 0 ] ,

41 [−s C , c C , 0 , 0 ] ,

42 [ 0 , 0 , 1 , 0 ] ,

43 [ 0 , 0 , 0 , 1 ] ] )

44

45

46 T = T d @ T 45 @ T B @ T n45 @ T nd @ T C

47

48 return T

49

50 de f r o t x ( ang le ) :

51

52 c , s = np . cos ( ang le ) , np . s i n ( ang le )

53

54 T x = np . array ( [ [ 1 , 0 , 0 , 0 ] ,

55 [ 0 , c , −s , 0 ] ,

56 [ 0 , s , c , 0 ] ,

57 [ 0 , 0 , 0 , 1 ] ] )

58

59 re turn T x

60

61 de f r o t y ( ang le ) :

62

63 c , s = np . cos ( ang le ) , np . s i n ( ang le )

64

65 T y = np . array ( [ [ c , 0 , −s , 0 ] ,

66 [ 0 , 1 , 0 , 0 ] ,

67 [ s , 0 , c , 0 ] ,

68 [ 0 , 0 , 0 , 1 ] ] )

69

70 re turn T y

71

72 de f r o t z ( ang le ) :

73

74 c , s = np . cos ( ang le ) , np . s i n ( ang le )

75

76 T z = np . array ( [ [ c , −s , 0 , 0 ] ,

77 [ s , c , 0 , 0 ] ,

78 [ 0 , 0 , 1 , 0 ] ,

79 [ 0 , 0 , 0 , 1 ] ] )

80

81 re turn T z

82

83 de f t r a n s l a t e ( d i sp lacement ) :

84
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85 X = disp lacement [ 0 ]

86 Y = disp lacement [ 1 ]

87 Z = disp lacement [ 2 ]

88

89 T = np . array ( [ [ 1 , 0 , 0 , X] ,

90 [ 0 , 1 , 0 , Y] ,

91 [ 0 , 0 , 1 , Z ] ,

92 [ 0 , 0 , 0 , 1 ] ] )

93

94 re turn T

95

96 de f T er (B, C) :

97

98 E XB = c f r o t ( ’ E XB avg . ’ , 4) [ 3 ] [ round (B) ] ∗ 1e−3

99 E YB = c f r o t ( ’ E YB avg . ’ , 4) [ 3 ] [ round (B) ] ∗ 1e−3

100 E ZB = c f r o t ( ’ E ZB avg . ’ , 8) [ 3 ] [ round (B) ] ∗ 1e−3

101 E AB = c f r o t ( ’ E AB avg . ’ , 7) [ 3 ] [ round (B) ] ∗ 1e−6

102 E BB = c f r o t ( ’ E BB avg . ’ , 7) [ 3 ] [ round (B) ] ∗ 1e−6

103 E CB = c f r o t ( ’ E BB avg . ’ , 7) [ 3 ] [ round (B) ] ∗ 1e−6

104

105 T E XB = t r an s l a t e ( [ E XB, 0 , 0 ] )

106 T E YB = t r an s l a t e ( [ 0 , E YB, 0 ] )

107 T E ZB = t r an s l a t e ( [ 0 , 0 , E ZB ] )

108

109 T E AB = ro t x (E AB)

110 T E BB = ro t y (E BB)

111 T E CB = ro t z (E CB)

112

113 E XC = c f r o t ( ’E XC avg . ’ , 8) [ 3 ] [ round (C) ] ∗ 1e−3

114 E YC = c f r o t ( ’E YC avg . ’ , 8) [ 3 ] [ round (C) ] ∗ 1e−3

115 E ZC = c f r o t ( ’ E ZC avg . ’ , 8) [ 3 ] [ round (C) ] ∗ 1e−3

116 E AC = c f r o t ( ’E AC avg . ’ , 7) [ 3 ] [ round (C) ] ∗ 1e−6

117 E BC = c f r o t ( ’ E BC avg . ’ , 7) [ 3 ] [ round (C) ] ∗ 1e−6

118 E CC = c f r o t ( ’ E BC avg . ’ , 7) [ 3 ] [ round (C) ] ∗ 1e−6

119

120 T E XC = t r an s l a t e ( [ E XC, 0 , 0 ] )

121 T E YC = t r an s l a t e ( [ 0 , E YC, 0 ] )

122 T E ZC = t r an s l a t e ( [ 0 , 0 , E ZC ] )

123

124 T E AC = ro t x (E AC)

125 T E BC = ro t y (E BC)

126 T E CC = ro t z (E CC)

127

128 re turn T E AB @ T E BB @ T E CB @ T E AC @ T E BC @ T E CC @ T E XB @ \
129 T E YB @ T E ZB @ T E XC @ T E YC @ T E ZC @ T r (B, C)

130

131 p r i n t ( T r (90 , 90) @ np . t ranspose ( [ 1 7 9 . 0 0 9 , 94 .545 , 143 .533 , 1 ] ) )

132 p r i n t ( T er (90 , 90) @ np . t ranspose ( [ 1 7 9 . 0 0 9 , 94 .545 , 143 .533 , 1 ] ) )

133 p r i n t ( ( T r (90 , 90) @ np . t ranspose ( [ 1 7 9 . 0 0 9 , 94 .545 , 143 .533 , 1 ] ) ) \
134 − ( T er (90 , 90) @ np . t ranspose ( [ 1 7 9 . 0 0 9 , 94 .545 , 143 .533 , 1 ] ) ) )

Figure 3.10: Output of the three print commands in Listing 3.3. The first line shows the coordinates

of the point after transformation using the ideal kinematics, the second shows the coordinates of the

point after transformation including the errors of the rotational axes and finally the third line shows

the deviation between the two transformations. The output is given in homogeneous coordinates (four

columns).
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The compensation values obtained from the script in Listing 3.3 should then be added to the ideal

NC-data generated by the postprocessor.

The NC-data including the compensation values for the errors of the rotational axes can then be used as

input in the script in Listing 3.4. The script imports the curve fit function for the linear axes (Listing

3.1) in addition to the squareness function (Listing 3.2). The transformation function for the linear axes

using ideal kinematics is then defined as T (line 5-28), which takes an array with displacement values in

X-, Y-, and Z-direction as input. The transformation matrix is returned.

Te (line 30-75) takes two arguments, one being the desired displacement, and the other being the the

desired three dimensional position. The coordinates of the desired position (line 36-38) is used to define

the three translational errors in each linear axis by reading the value of the fitted polynomial at the

desired positio (line 40-50). The squareness errors are then defined (line 53-55) before the transformation

matrices for each of the three axes are constructed (line 58-68) and the product of the multiplication

returned as Te (line 73-75).

As a proof-of-concept, the same displacements and positions as the ones used for measuring the geomet-

rical errors are used as the NC-data. compensation takes the NC-data as input (line 90), and constructs

an empty array for the compensated NC-data (line 91-92). For every row in the array of NC-data, the de-

sired position is read as the next row in NC-data (line 94). The displacement equals the desired position

(line 95). The nominal position is then calculated as the product of the initial coordinates and the ideal

transformation (line 96). The actual position is calculated using the transformation matrix including

the geometrical errors (line 97). The deviation between them is calculated as a simple difference (line

99), and the compensation values are generated and added to the nominal NC-data (line 100-101). The

array of compensated NC-data is returned.

Figure 3.11 shows the two arrays of NC-data. On the left is the ideal NC-data, and on the right is the

NC-data compensated for the translational errors of the linear axes. The compensated NC-data was

applied on the DMU 50, and the geometric errors were measured another four times. The results are

presented in the following chapter.

Listing 3.4: Script to generate compensated NC-data

1 import numpy as np

2 from CurveF i t t i ngFunc t i on l i n ea r import c u r v e f i t as c f

3 from squarenes s import squarenes s as s

4

5 de f T( disp lacement ) :

6

7 X = disp lacement [ 0 ]

8 Y = disp lacement [ 1 ]

9 Z = disp lacement [ 2 ]

10

11 T X = np . array ( [ [ 1 , 0 , 0 , X] ,

12 [ 0 , 1 , 0 , 0 ] ,

13 [ 0 , 0 , 1 , 0 ] ,

14 [ 0 , 0 , 0 , 1 ] ] )

15

16 T Y = np . array ( [ [ 1 , 0 , 0 , 0 ] ,

17 [ 0 , 1 , 0 , Y] ,

18 [ 0 , 0 , 1 , 0 ] ,

19 [ 0 , 0 , 0 , 1 ] ] )

20

21 T Z = np . array ( [ [ 1 , 0 , 0 , 0 ] ,

22 [ 0 , 1 , 0 , 0 ] ,

23 [ 0 , 0 , 1 , Z ] ,

24 [ 0 , 0 , 0 , 1 ] ] )

25

26 T = T X @ T Y @ T Z

27

28 return T
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29

30 de f T e ( displacement , p o s i t i o n ) :

31

32 X = disp lacement [ 0 ]

33 Y = disp lacement [ 1 ]

34 Z = disp lacement [ 2 ]

35

36 pos X = po s i t i o n [ 0 ]

37 pos Y = po s i t i o n [ 1 ]

38 pos Z = po s i t i o n [ 2 ]

39

40 E XX = c f ( ’E XX avg . ’ , 4) [ 3 ] [ round ( pos X ) ] ∗ 1e−3

41 E YX = c f ( ’E YX avg . ’ , 5) [ 3 ] [ round ( pos X ) ] ∗ 1e−3

42 E ZX = c f ( ’ E ZX avg . ’ , 8) [ 3 ] [ round ( pos X ) ] ∗ 1e−3

43

44 E XY = c f ( ’E XY avg . ’ , 8) [ 3 ] [ round ( pos Y ) ] ∗ 1e−3

45 E YY = c f ( ’E YY avg . ’ , 6) [ 3 ] [ round ( pos Y ) ] ∗ 1e−3

46 E ZY = c f ( ’ E ZY avg . ’ , 4) [ 3 ] [ round ( pos Y ) ] ∗ 1e−3

47

48 E XZ = c f ( ’ E XZ avg . ’ , 8) [ 3 ] [ round ( pos Z ) ] ∗ 1e−3

49 E YZ = c f ( ’ E YZ avg . ’ , 7) [ 3 ] [ round ( pos Z ) ] ∗ 1e−3

50 E ZZ = c f ( ’ E ZZ avg . ’ , 6) [ 3 ] [ round ( pos Z ) ] ∗ 1e−3

51

52

53 S YX = s ( ’Y ’ , ’X ’ )

54 S ZY = s ( ’Z ’ , ’Y ’ )

55 S ZX = s ( ’Z ’ , ’X ’ )

56

57

58 T e X = np . array ( [ [ 1 , 0 , 0 , E XX + X] ,

59 [ 0 , 1 , 0 , E YX ] ,

60 [ 0 , 0 , 1 , E ZX ] ,

61 [ 0 , 0 , 0 , 1 ] ] )

62

63 T e Y = np . array ( [ [ 1 , 0 , 0 , E XY + Y ∗ S YX ] ,

64 [ 0 , 1 , 0 , E YY + Y ] ,

65 [ 0 , 0 , 1 , E ZY ] ,

66 [ 0 , 0 , 0 , 1 ] ] )

67

68 T e Z = np . array ( [ [ 1 , 0 , 0 , E XZ + (−Z) ∗ S ZX ] ,

69 [ 0 , 1 , 0 , E YZ + (−Z) ∗ S ZY ] ,

70 [ 0 , 0 , 1 , E ZZ + Z ] ,

71 [ 0 , 0 , 0 , 1 ] ] )

72

73 T e = T e X @ T e Y @ T e Z

74

75 return T e

76

77 X = c f ( ’E XX avg . ’ , 4) [ 0 ]

78 #Y = c f ( ’ E YY avg . ’ , 6) [ 0 ]

79 #Z = c f ( ’ E ZZ avg . ’ , 8) [ 0 ]

80 NC data = np . z e r o s ( ( l en (X) , 4) )

81 #NC data = np . z e r o s ( ( l en (Y) , 4) )

82 #NC data = np . z e r o s ( ( l en (Z) , 4) )

83 f o r i in range ( l en (NC data ) ) :

84 NC data [ i ] = [ 0 . , 0 . , 0 . , 1 ]

85 NC data [ i ] [ 0 ] = X[ i ]

86 #NC data [ i ] [ 1 ] = Y[ i ]

87 #NC data [ i ] [ 2 ] = Z [ i ]

88

89

90 de f compensation (NC data ) :

91 NC data comp = np . z e r o s ( ( ( l en (NC data ) ) , 4) )

92 NC data comp [ 0 ] = [ 0 . , 0 . , 0 . , 1 ]
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93 f o r i in range (1 , l en (NC data ) ) :

94 d e s i r e d p o s i t i o n = NC data [ i ]

95 d isp lacement = d e s i r e d p o s i t i o n

96 nomina l po s i t i on = T( disp lacement ) @ np . t ranspose ( [ 0 , 0 , 0 , 1 ] )

97 a c t u a l p o s i t i o n = T e ( displacement , d e s i r e d p o s i t i o n ) \
98 @ np . t ranspose ( [ 0 , 0 , 0 , 1 ] )

99 dev i a t i on = a c t u a l p o s i t i o n − nomina l po s i t i on

100 compensat ion va lues = −1 ∗ dev i a t i on

101 NC data comp [ i ] = NC data [ i ] + compensat ion va lues

102

103 re turn NC data comp

104

105 Compensated NC data = compensation (NC data )

Figure 3.11: The NC-data generated based on the ideal kinematics (left) and the NC-data compen-

sated for the translational errors of the linear axes (right). Both arrays are expressed in homogeneous

coordinates.

49



Chapter 4

Results

4.1 Uncompensated Error Motion

Following are the resulting average errors calculated from the measured points on the linear as well as

on the rotational axes. For each calculated point, the average standard deviation of the four rounds of

measurement is indicated in the form of error bars.

The linear positioning error, Eij when i = j, is the largest translational error in all three linear axes.

The peak magnitudes are approximately 20.5 µm for the X-axis, 40.8 µm for the Y-axis and −16.5 µm

for the Z-axis. The straightness errors of the linear axes have much lower peak magnitudes.

4.1.1 X-axis

The linear positioning error EXX shows a clear increasing trend although the measurement uncertainty

indicated by the error bars is quite high. The two straightness errors EYX and EZX are much lower. EYX

Shows a clear decreasing trend, while no clear trend can be seen for EZX. The measurement uncertainty

is also much higher for the latter than for EYX.

The angular errors have relatively low magnitudes compared to the magnitude of the measurement

uncertainty. It is therefore difficult to draw any conclusions from the presented data.
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Figure 4.1: Plot of the average translational error of the X-axis
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Figure 4.2: Plot of the average angular error of the X-axis
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4.1.2 Y-axis

The linear positioning error is almost double the magnitude as that of the X-axis, topping out at 48 µm.

The measurement uncertainty varies from one point to another, but appears to be somewhat lower than

for the linear positioning error of the X-axis. The two straightness errors are relatively low, especially

EXY having a peak absolute value of just over 5 µm. The measurement uncertainty for EXY is also quite

low on average compared to the other errors of the Y-axis.

There is also great variation in the measurement uncertainty of the angular errors. As is the case for the

X-axis, drawing any conclusions based on the measured data proves difficult also for the Y-axis.
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Figure 4.3: Plot of the average translational error of the Y-axis
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Figure 4.4: Plot of the average angular error of the Y-axis
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4.1.3 Z-axis

Again the linear positioning error is the dominant error. It also has the largest measurement uncertainty

of the three translational errors of the Z-axis. The straightness errors are about half the magnitude of

the linear positioning error. EYZ shows significantly lower measurement uncertainty then the other two

errors.

The angular error in A-axis direction shows larger magnitude than the other two angular errors, but the

measurement uncertainty is also larger, making the result inconclusive.
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Figure 4.5: Plot of the average translational error of the Z-axis
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Figure 4.6: Plot of the average angular error of the Z-axis
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4.1.4 B-axis

What immediately stands out about the translational errors of the B-axis is the magnitude of the

measurement uncertainty, which is quite large. The magnitude of the measured errors is at the same

time quite low, which makes it hard to interpret the data.

The angular errors of the B- and C-axes are represented with the same Y-scale, and compared to those

of the C-axis, the angular errors of the B-axis are negligable.
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Figure 4.7: Plot of the average translational error of the B-axis
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Figure 4.8: Plot of the average angular error of the B-axis
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4.1.5 C-axis

The translational errors of the C-axis show somewhat clearer characteristics than those of the B-axis,

although the measurement uncertainty is still high compared to the error magnitude. EZC stands out as

the largest error. It also appears in a cyclic manner.

EAC shows the clearest tendency out of the three angular errors, but the measurement uncertainty is

higher than for the other two angular errors which also have much lower error magnitudes.
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Figure 4.9: Plot of the average translational error of the C-axis
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Figure 4.10: Plot of the average angular error of the C-axis
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4.2 Compensated Error Motion

Following are the results of the measurements made on the DMU 50 after applying the compensated NC-

data generated by the compensation algorithm implemented in the Python-script (Listing 3.4). Only

the results of the translational errors are included, as the angular errors of the linear axes remain

uncompensated.

4.2.1 X-axis

The maximum magnitude of EXX is almost halved from 20.6 µm to 10.4 µm, while the minimum

magnitude only differs by 1 µm. EZX was initially low, and remains so also after compensation. The

maximum magnitude of the error shows an increase after compensation. The variability is high compared

to the error magnitude. In the case of EYX, the variability is low compared to the variability of the

other two translational errors. As the error shows a nearly linear relationship with the axis travel,

the squareness error dominates. By comparing the plots pre and post compensation, it can clearly be

observed that the squareness error compensation has improved the axis motion and reduced the overall

error. The maximum absolute error magnitude was improved from 6.6 µm before compensation, to 1.3

µm after compensation.
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Figure 4.11: Plot of the average compensated translational error of the X-axis
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4.2.2 Y-axis

A clear improvement in the linear positioning error is observed. The pre-compensation peak magnitude

was 40.8 µm, and has been reduced to approximately 10 µm. The two straightness errors have seemingly

increased in magnitude. The assumed reason for this increase in error magnitude is the way the coordinate

system was constructed in relation to the measurement data. This will be discussed in depth in chapter

5.
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Figure 4.12: Plot of the average compensated translational error of the Y-axis
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4.2.3 Z-axis

Although the peak magnitudes of the linear positioning error of the Z-axis have increased slightly from the

pre-compensated motion, most of the measured points have been brought closer to zero. The variability

of the measured results is relatively large also in this error. The straightness error EXZ remains largely

the same as the pre-calibration values, while EYZ has been reduced substantially.
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Figure 4.13: Plot of the average compensated translational error of the Z-axis
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Chapter 5

Discussion

5.1 Variability of the Measured Errors

In the process of measuring the error motions of a CNC machine tool, there are numerous sources of error

which can impact the measurements. By sources of error, factors influencing the value of the measured

parameter other than the factors that were intended to be measured is meant. Examples of such sources

of error for laser tracker measurement of CNC machine tool error motion are:

• Thermal expansion

• Uncertainty in laser length measurement

• Uncertainty in laser tracker angle measurement

• Other uncertainties related to the laser tracker measurement (see chapter 2.8)

• Vibration

All of these error sources, and more, contribute to the variability of the measured errors. However, some

sources of error contribute more than others. A quantitative evaluation of the contribution of each is

near impossible, but in some cases an error source dominates the uncertainty budget.

5.1.1 Measurement Uncertainty

A pattern can be recognized in the measured errors where some of the translational errors show much

less variability than others. Referring to chapter 4, it can be observed that errors EYX and EYZ have

very short error bars compared to the other errors, indicating a higher measurement quality. A possible

explanation to this is proposed based on the assumed influence of the movement of the machine axis and

the angular measurement of the laser tracker. Generally speaking, the linear positioning repeatability is

lower than the repeatiability of the position in the transverse directions. Depending on the position of the

laser tracker in relation to the axis movements of the machine, the influence of the angle performance on

the evaluation of the error varies. With the setup used in this work, the errors in Y-direction have a low

sensititvity to the angle performance of the laser tracker. The influence of the machine axis movements

and the influence of the angle performance of the laser tracker is summarized in Table 5.1. For EYX and

EYZ, the influence of both are low. This coincides well with the observed variability of the measurement

results.

Based on the proposed relation between the position of the laser tracker and the variability in the

measured results, a new and improved method of measuring the geometric errors of the linear axes can

be developed. As presented in Table 5.1, two of the in total six straightness errors had low influence both
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Table 5.1: Influence of the machine tool and the laser tracker on the variability of the measured trans-

lational errors of the linear axes

Influence on variability (X-axis) EXX EYX EZX

Machine tool performance High Low Low

Laser tracker performance High Low High

Influence on variability (Y-axis) EXY EYY EZY

Machine tool performance Low High Low

Laser tracker performance High Low High

Influence on variability (Z-axis) EXZ EYZ EZZ

Machine tool performance Low Low High

Laser tracker performance High Low High

from the axis motion of the machine tool and from the angle performance of the laser tracker. Referring

to Figure 5.1, the setup used to measure the errors in this work is similar to that illustrated in Pos. 1. By

moving the laser tracker (referred to as LT in Figure 5.1) to the positions indicated in Pos. 2 and Pos.

3, a reduction in measurement uncertainty may be achieved. In Pos. 2, EXY would have low influence

from both the machine axis motion and the angle performance of the laser tracker. The same goes for

EXZ. In Pos. 3, EZX and EZY would also have lower measurement uncertainty than in Pos. 1. The

linear positioning errors EXX and EZZ are both highly influenced by both machine axis motion and laser

tracker angle performance when measured in with the setup in Pos. 1. The repeatability of the machine

axis motion is considered constant in this work, and hence will always influence the measurement result

of the linear positioning errors of the machine tool. However, the influence of the angle performance of

the laser tracker can be made lower by positioning the laser tracker in line with the axis motion. This

means that the influence of the angle performance on EXX is lower in Pos. 2, and in Pos. 3 for EZZ.

Position 1 and 2 are practically feasible. The horizontal orientation of the laser tracker in position 3

however, is outside of the recommended use of the laser tracker.

XX
Z

LT

Y
LT

X
Z

Y

LT

X Y

Machine tool

Z

Machine toolMachine tool

Pos. 1 Pos. 2 Pos. 3

Figure 5.1: Three proposed positions of the laser tracker in order to minimize measurement uncertainty

Table 5.2 shows the assumed influences of machine axis motion and laser tracker angle performance using

the three alternative measuring setups illustrated in Figure 5.1.

The lower measurement uncertainty achieved by having multiple measurement setups presupposes linear
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Table 5.2: Influence of the machine tool and the laser tracker on the variability of the measured trans-

lational errors of the linear axes with alternative positions of the laser tracker

Influence on variability (X-axis) EXX EYX EZX

Machine tool performance High Low Low

Laser tracker performance Low Low Low

Influence on variability (Y-axis) EXY EYY EZY

Machine tool performance Low High Low

Laser tracker performance Low Low Low

Influence on variability (Z-axis) EXZ EYZ EZZ

Machine tool performance Low Low High

Laser tracker performance Low Low Low

axis movement and is hence only valid for the translational errors of the linear axes. Both the translational

and rotational movement of the rotational axes depends heavily on the angle performance of the laser

tracker, and the measurement uncertainty will always suffer as a result of this dependency. This can

easily be observed particularly for the translational errors of the B-axis and the axial error of the C-axis,

where the variability of the measured results are quite large.

5.1.2 Y-axis Straightness Errors

The measured straightness errors of the Y-axis after compensation seem to indicate that the errors have

increased in magnitude as opposed to the straightness errors of the X- and Z-axis where the straightness

error magnitudes have decreased. A proposed cause of this inconsistency is the alignment of the coordi-

nate system which the axis movements are measured in reference to. The uncompensated axis motion

was first measured in reference to a coordinate system fitted to the uncompensated X- and Z-axis motion.

Then compensation was applied, and a new coordinate system alignment was made to the compensated

motion of the X- and Z-axis. Ideally, the same coordinate frame alignment should be used in both mea-

surement setups to best be able to directly compare the results. However, since the measurements were

made at different times, the setup had to be taken down after measuring the uncompensated motion and

reset for measuring the axis-motion after compensation was applied. This means a new frame alignment

had to be made for measuring the compensated axis-motion, which may slightly affect how the errors

are represented. The new frame alignment will mainly affect the straightness error representation. A

small change in the angle of the axes in the reference coordinate system will have little influence on the

representation of the linear positioning errors.

An improvement to the measurement and compensation procedure is proposed where the measurement

of the uncompensated axis motion is measured and the errors determined in the same measurement

setup, and with the same reference coordinate system frame alignment, as the compensated axis motion

is measured. This will ensure that the errors are compared to the same reference coordinate system.
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Chapter 6

Conclusion and Further Work

The uncertainty in the error measurement is quite high for some of the translational errors of the

linear axes, which makes determining the correct compensation values difficult. On the other hand,

a few of the errors show very little variability between subsequent measurements - low measurement

uncertainty, which forms a good base on which to determine compensation values. By analysis of the

factors contributing to the measurement uncertainty in laser tracker measurement, a new measuring

procedure aimed at minimizing the measurement uncertainty based on repositioning the laser tracker

was proposed. The validity of the proposed measuring procedure presupposes linear axis-movement, and

will therefore not be effective for the rotational axes of the machine tool.

A compensation strategy was developed which first uses the measured errors of the rotational axes to

determine compensation values in the linear axes. These compensation values are added to the compen-

sation values of the linear axes to construct compensated NC-code. The effectiveness of the compensation

method on the linear axes was verified by repeating the error measurement using compensated NC-data.

The results showed improvement in the linear positioning error of all three linear axes of the machine

tool comparable to that achieved by Liu et. al [26] and Cui et. al [27]. The straightness errors of the

X- and Z-axis was also improved, while the Y-axis showed slight deterioration. An explanation for this

discrepancy as the result of using different reference coordinate frame alignments was proposed.

Further Work

The measuring and compensation procedure should be repeated, and the effectiveness re-verified in-

cluding the proposed changes to the measurement procedure. The compensation strategy needs further

refinement and could be integrated in the post-processor of a CAD-CAM system, or a stand-alone post-

processor.

The errors of the linear axes were already established in the work on the specialization project report. In

this work, the measurement procedure was repeated, and the variability of the measured errors evaluated.

A similar method for determining the errors of the two rotational axes was implemented, and the same

approach to evaluate the variability was used.
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1. Introduction 

In numerical compensation of machine tools the 

geometrical errors of the machine must be identified, and a 

compensation algorithm for eliminating the errors must be 

applied. Numerical compensation has been around for 

decades, and the interest for numerical compensation based on 

software saw an increase in the 1970’s. In 1977, Prof. R. 

Hocken received the CIRP Taylor Medal for implementing 

error compensation on a coordinate measuring machine [1]. 

Before numerical compensation entered the industry in the 

1980’s, accuracy of machine tools was ensured exclusively 

through mechanical optimization. While impressive sub-

micron level accuracy was reached by some companies, the 

investment in both time and manual labour was substantial 

[2]. As both the power and availability of computational tools 

increased, the possibility for applying active pre-calibrated 

error compensation became a reality and a way of saving cost 

compared to manufacturing machine tools for absolute 

accuracy [3]. This concept justifies a change in how machine 

tools are manufactured in the sense that instead of 

manufacturing machine tools with very high mechanical 

accuracy, the machine tool only needs to be built with the 

required precision to be compensated to the correct level of 

accuracy. The ISO technical report on numerical 

compensation of machine tools, ISO/TR 16907:2015 [4] lists 

this as one of the major potential benefits of numerical 

compensation, reducing the overall cost of machine tool 

production. 

Five-axis machines are geometrically complex machine 

tools with high versatility. With the addition of two rotational 

axes to the common three-axis milling machine, complex 

three-dimensional shapes can be machined with the tool 

perpendicular to the workpiece surface, ensuring optimal tool-

workpiece interaction. Being able to machine inclined 

surfaces and chamfers using a standard face milling tool or an 

endmill may reduce the investment necessary in either time 

spent on several workpiece setups or in specialized tooling. 

Part accuracy may also be enhanced as the need for several 

workpiece setups is reduced as several sides of the same 

workpiece may be machined in the same setup. 
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However, as the opportunities in terms of part complexity, 

efficiency enhancement and convenience increase with the 

addition of the rotational axes, so does the potential for errors. 

Each additional axis introduces its own set of error parameters 

influencing part accuracy and quality. These errors may have 

different sources, and include [4]: Component imperfections, 

alignment errors, elastic deformation of components, thermo-

mechanical errors, loads and load variations, interpolation 

errors, errors in motion control and control software and 

errors in compensation. The error model of the machine tool 

also grows in complexity with the addition of the rotational 

axes. 

 

Nomenclature 

Error parameters of machine axes according to ISO 230-

1:2012 [5]: 

Eij          Where E indicates “error”, i indicates direction of

 error motion (i = X, Y, Z, B or C). In the case where

 i = j, the error is called the linear positioning error 

 (linear axis) or angular positioning error (rotational 

 axis). When i = A, B or C and i ≠ j, the error is called 

 angular error motion (linear axis) or tilt error motion 

 (rotational axis). If i = X, Y or Z and i ≠ j, the error is 

 called straightness error motion (linear axis). If i = X 

 or Y and j = B or C, the error is called a radial error

 motion and if i = Z the error is called axial error 

 motion (rotational axis). 

Ei(0j)k Squareness error in direction of i-axis of k-axis in 

 reference to the j-axis.  

HTM     Homogeneous transformation matrix 

TCP Tool Center Position 

2. Machine Kinematics 

In a previous work done by Sørby [6], the forward 

kinematics of the Deckel Maho DMU 50 eVolution, hereafter 

referred to simply as the DMU 50, was developed. A number 

of coordinate frames were defined and the transformations 

between them described by a series of homogeneous 

transformation matrices. In Figure 1, the coordinate frames 

are drawn onto a schematic side view of the worktable and 

spindle of the DMU 50. 

The following HTMs describe the transformations between 
the coordinate frames using the shorthand notation sin = s 
and cos = c : 
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Figure 1: Side view of a five-axis machine with non-orthogonal rotary axes. 

Shown with the B-axis in B = 0º position [6]. 
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The coordinate transformation from the milling tool’s 

coordinate frame to the workpiece coordinate frame can be 

expressed by multiplications of transformation matrices: 

 
1 5 1 4 1 3 1 2 1 1 1

5 4 3 2 1 0 0
( ) ( ) ( ) ( ) ( ) ( )

t w t

w
T T T T T T T T

− − − − − −
=  (1.8) 

3. Error Model 

3.1 Linear Axes 

Each axis of a machine tool has its own associated errors. 

Each axis has six position dependent geometric errors – three 

of them translational and three of them angular. It is also 

common to separate the straightness error motions of the 

linear axes into straightness errors and squareness errors. This 

means there exist three additional error parameters for the 

linear axes and another two per rotational axis. Lastly, 

location errors of the rotational axes may be included in the 

error model, but they will be neglected in this work. 

The error model of a linear axis based on HTMs can be 

represented in the following way taking the X-axis of the 

DMU 50 as an example: 
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Similarly, the error model for the Y- and Z-axis including 

squareness errors becomes: 
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3.2 Rotational Axes 

Similar to the error model for the linear axes, the error 

model for the rotational axes takes on the form: 

 

 
0

e B

OB SB EB BB
T T T T T=  (1.12) 

 

where, 

 

 

 

1 0 0

0 1 0

0 0 1 0

0 0 0 1

XB

YB

OB

O

O
T =

 
 
 
 
 
 

 (1.13) 

 

 

0

0

0 0

1 0 0

0 1 0

1 0

0 0 0 1

B B

A B

SB

B B A B

E

E
T

E E

−
=

−

 
 
 
 
 
 

 (1.14) 

 

 

 

1

1

1

0 0 0 1

CB BB XB

CB AB YB

EB

BB AB ZB

E E E

E E E
T

E E E

−

−
=

−

 
 
 
 
 
 

 (1.15) 

 

 

0 0

0 0

0 0 1 0

0 0 0 1

B B

B B

BB

c s

s c
T

−

=

 
 
 
 
 
 

 (1.16) 

 

Neglecting the squareness errors, the error model for the B-

axis is [7]: 
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4. Error Measurement 

Compensation of machine tools requires quantitative 

knowledge of the errors of the machine tool. In this work, a 

Leica Absolute Tracker AT960 MR was utilized to collect the 

three-dimensional coordinates of the retro reflector in order to 

calculate the errors of the linear as well as the rotational axes. 

The laser tracker uses a laser length measurement in addition 

to two angular measurements to calculate the position of the 

retro reflector in a three-dimensional spherical coordinate 

system. 

 

4.2 Measuring Procedure 

 

The measuring and calculation procedure is based on the 

method described by Zhang & Hu [8]. By measuring three 

points on the spindle and on the worktable at several axis-

displacements evenly distributed throughout the travel of the 

axes, all position dependent geometric errors can be 

calculated. 
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Three reflector positions were chosen on the spindle of the 

DMU 50 (see Figure 2). The three positions on the spindle 

was measured sequentially through 11 points distributed 

evenly over the travel of the linear axes. The measuring 

procedure was carried out four times (see Figure 3). 

 

 

Figure 2: The three reflector positions chosen on the spindle of the DMU 50 

 

 

Figure 3: The four repetitions of measured points along each linear axis. 

 

 

Figure 4: The three reflector positions chosen on the worktable of the  

DMU 50 

 

 

Figure 5: The four repetitions of measured points along each rotational axis. 

The rotational axes were also measured a total of four times, 

with 19 and 18 points distributed along the travel of the B- 

and C-axis, respectively (see Figure 4 and Figure 5). The 

resulting errors are shown in Figure 6 and Figure 7.
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Figure 6: Errors of the linear axes. (a): Translational errors of the X-axis. (b): Angular errors of the X-axis. (c): Translational errors of the Y-axis. 

(d): Angular errors of the Y-axis. (e): Translational errors of the Z-axis. (f): Angular errors of the Z-axis.
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Figure 7: Errors of the rotational axes. (a): Translational errors of the B-axis. (b): Angular errors of the B-axis. (c): Translational errors of the C-axis. (d): 

Angular errors of the C-axis.

 

5. Error Compensation 

Based on the ideal forward kinematics of the DMU 50,  

formulas for the TCP and the inclination of the Z-axis can be 

found [6]. In theory, by substituting the ideal machine 

kinematics with the error models for each axis, similar 

formulas of the forward kinematics including all error 

parameters could be found. However, in practice the 

expressions of the kinematics including all error parameters 

are complex and difficult to use in a compensation algorithm. 

Similar to the work of Lee et. al [9], polynomials were 

fitted to the error data calculated from the measurement data. 

A reference straight line is also fitted to the calculated error 

data in order to determine the squareness errors of the linear 

axes (see Figure 8). 

A compensation strategy was developed to compensate for 

the translational errors of the linear axes and the translational 

errors arising from both the translational and angular errors of 

the rotational axes. (The angular errors of the linear axes are 

neglected in this work.) Compensated NC-data is generated 

based on the ideal NC-data generated by the postprocessor. 

Based on the error models of all axes, the deviation between 

the position reached with ideal kinematics, and the position 

reached with the error models substituted into the ideal 

kinematics, is calculated. The compensation value (deviation 

with reversed sign) is then added to the nominal NC-code to 

generate the compensated NC-code. 

 

Let Pideal be the position of the tool based on the ideal 

machine kinematics when only the linear axes are moved: 

 

 
, 0

t
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P T P=  (1.18) 

 

The actual position reached by the tool Pactual  can be 

calculated by including the error models of each linear axis: 

 

 
, 0
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P T T T P=  (1.19) 

 

In eq. 1.19, the angular error terms are neglected. 

 

 

Figure 8: A fifth degree polynomial fitted to the calculated straightness error 

EYX and the reference straight line fitted to the error parameter 
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The volumetric deviation elinear between Pactual,linear and 

Pideal,linear is found by simply subtracting the actual position by 

the ideal position. The compensation value clinear is the 

deviation with reversed sign. 

 

The compensation values for the rotational axes are found 

in a similar way. The desired position of the rotational axes is 

read from the NC-code generated by the post-processor. 

Considering a coordinate system located in the center of the 

machine table, the ideal position of a point on the machine 

table Pideal,rotational  is then calculated using the transformation 

based on the forward kinematics. The actual position reached 

by the point on the machine table Pactual,rotational  is calculated 

by reading the errors from the polynomials fitted to the 

measured and calculated error data. The coordinate system is 

rotated by the amount of each angular error, then it is 

translated by the amount of the translational errors before it is 

rotated according to the desired position of the B- and C-axis. 

The deviation erotational is calculated as the difference between 

the actual and the ideal position as for the linear axes. 

In practice, the compensation values arising from the errors 

in the rotational axes crotational  is calculated first and added to 

the desired X-, Y- and Z-coordinates. The compensation 

values based on the errors of the linear axes are then 

calculated based on these coordinates. The compensation 

strategy is summarized in Figure 9. 

 

The result of compensation of the linear axes is shown in 

Figure 10. The maximum error value was reduced by 49 % 

for EXX, and by 78 % for EYY. 

 

 

Figure 9: Compensation strategy 

 

6. Measurement Uncertainty 

When a number is assigned to any physical quantity as the 

result of a measurement, some quantitative indication of the 

quality of the measurement should be given. This indication 

serves as the foundation on which the users of the 

measurement evaluate its reliability [10]. 

A Type A evaluation of uncertainty was done on the 

measured and calculated errors displayed in Figure 6 and 

Figure 7. Based on four repetitions of measurements for each 

axis, the measurement uncertainty was estimated as the 

standard deviation of the measured data. The measurement 

uncertainty is indicated in the plots as error bars. 

There are numerous sources of uncertainty in a 

measurement made by a laser tracker. One of these sources is 

the repeatability of the angular encoders of the laser tracker. 

The Maximum Permissible Error related to the angle 

performance, i.e. length measurements perpendicular to the 

direction of the laser beam, is MPE = ± 15 µm + 6 µm/m [11]. 

This is a relatively large uncertainty compared to that of the 

absolute distance measurement where the given MPE is ± 10 

µm. However, measurements in the direction of the laser 

beam made without breaking the laser beam, will depend 

mostly on the interferometer uncertainty, with an MPE of 0.4 

µm + 0.3 µm/m. Therefore a pattern can be recognized in the 

measured errors where some of the translational errors show 

much less variability than others. EYX and EYZ stands out as 

having much higher repeatability than the other error 

measurements. An explanation to this observation is proposed 

based on the assumed influence of the movement of the 

machine axis and the angular measurement of the laser 

tracker. Generally speaking, the linear positioning 

repeatability of a machine tool is lower than the repeatability 

of the position in the transverse directions. Depending on the 

position of the laser tracker in relation to the axis movements 

of the machine, the influence of the angle performance on the 

evaluation of the error varies. With the setup used in this work 

(see Figure 3), the errors in Y-direction have a low sensitivity 

to the angle performance of the laser tracker. Referring to 

Table 1, the influence of machine axis movement and that of 

the angular measurements of the laser tracker are both low. 

This coincides well with the observed variability of the 

measurement results. 

 

Table 1: Influence of the machine tool and the laser tracker on the variability 

of the measured linear errors of the linear axes. 

Influence on variability (X-axis) EXX EYX EZX 

Machine tool performance High Low Low 

Laser tracker performance High Low High 

 
Influence on variability (Y-axis) EXY EYY EZY 

Machine tool performance Low High Low 

Laser tracker performance High Low High 

 
Influence on variability (Z-axis) EXZ EYZ EZZ 

Machine tool performance Low Low High 

Laser tracker performance High Low High 
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7. Conclusion 

This paper presents a compensation strategy for all axes of 

a five-axis machine tool. Compensation values are calculated 

based on the deviation between the ideal forward kinematics 

of the machine tool and the forward kinematics including the 

errors of each axis. Error measurement is achieved using a 

conventional laser tracker using laser distance measurement 

and two angular measurements in a spherical coordinate 

system. The effectiveness of the compensation strategy on the 

translational errors of the linear axes is demonstrated using 

the same method of error measurement. 

 

Figure 10: The result of compensation of the translational errors of the linear 

axes. (a): Translational errors of the X-axis. (b): Translational error 

parameters of the Y-axis. (c): Translational errors of the Z-axis. 
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Abstract

A prerequisite for improving the positioning accuracy of any machine tool is understanding the
build-up of the machine and how the different error parameters associated with each machine axis
affect tool position and inclination. The first step then, is defining the kinematic model of the
machine tool and determine the error parameters associated with each link in the kinematic chain
resulting in the volumetric error. In this project, the kinematic model of the Deckel Maho DMU
50 eVolution is reviewed and the geometrical error parameters of the linear axes are defined. The
mathematical error model is established based on homogeneous transformation matrices, and this
is used to create a system of equations which can be solved to obtain an equation for each of the
six error parameters of a linear axis. The working principle of the laser tracker is briefly presented,
and the uncertainty of measurements made with the laser tracker is touched on. By measuring
three points on the spindle of the machine tool traveling along each of the three linear axes, the
error parameters are obtained through the mathematical error model. The measuring procedure is
described in detail.
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1 Introduction

1.1 Background and Motivation

A huge advantage with five-axis machine tools are their versatility. With two rotational axes in
addition to the three linear axes, complex three-dimensional shapes can be machined with the tool
perpendicular to the workpiece surface, ensuring optimal tool-workpiece interaction. The spindle
axis may also be inclined to accomodate for instance side milling a chamfer using an end mill instead
of a chamfering tool. Aside from machining complex shapes such as dies and fixtures, being able to
machine several different faces of a part in one operation is a big advantage and can lead to both
significant time savings and improved part accuracy. However, with two rotational axes and more
complicated machine geometry and kinematics, comes more potential for geometrical errors.

Until the 1980s, there was no mathematical compensation of machine tools. Precision was ensured
by expensive mechanical optimization by precision machining and manual craftsmanship. Sub-
micron precision could be achieved by this method, but the time- and resource-investment was
considerable. D. C. Thompson [1] states that: ”The availability of modern computational tools
makes the application of active and precalibrated error compensation an economical alternative to
designing and building for absolute accuracy. Thus the mechanical accuracy of the machine need
only be sufficient to allow error compensation to the desired level of accuracy...”

In the past decade, several of the large machine tool manufacturers have commercialized systems for
automatically measuring and compensating for volumetric errors in the machine geometry [2]. This
is usually done by measuring an artefact of known dimension, such as a sphere, with a digital touch
trigger probe at several different rotation- and tilt angles of the rotational axes [3, 4]. On many CNC
machine tools, a numerical compensation system for linear positioning errors is already in use. The
cause of these errors are typically deviation from the specified pitch of the ball screw or a systematic
error in a linear encoder. Some machines also have the capability to compensate for straightness
deviations or squareness errors. Volumetric error compensation is a further development of these
simpler compensations. The goal of volumetric error compensation is to tune the commanded x-,
y- and z-coordinates along with the commanded rotations of the rotational axes to eliminate error
in the tool center position and inclination [2].

There has been done a substantional amount of research into the field of geometric error mapping
and mathematical compensation of CMMs and machine tools over the years. In 1995, Mahburbur,
Lappalainen and Karjalainen [5] used a double ball bar to measure and identify the geometric
errors of a CNC machine tool. They presented two different numerical methods for compensating
for the measured geometric errors in the post processor: The Newton-Raphson iteration method
and a method based on redefinition of task points. Comparison of the two methods showed that
the Newton-Raphson method was more converging than than the other method, but they both
successfully decreased the tool position error substantially after only one iteration.

Ten years later, Schwenke et. al. [6] used a self-developed tracking interferometer, of improved
precision compared to commercial tracking interferometers, to measure the geometric errors of
machine tools by the multilateration method. Monte-Carlo-Techniques was used in order to evaluate
the uncertainties associated with the measurements. The measurement method was verified through
experiments on a high accuracy CMM, a large horizontal arm CMM and a machine tool.
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1.2 Problem Description

When machining large parts on five-axis machines, geometrical errors, especially those associated
with the rotational axes, may manifest themselves as relatively large deviations in both position
and inclination of geometrical features. Before tracking interferometers were invented, measuring
and compensating for the geometrical errors of CNC machine tools and CMMs was a slow and
tedious process wich could go on for several days. With the entry of high accuracy tracking laser
interferometers, the measuring and compensation process has become significantly faster, and may
be executed in a matter of a few hours. The commercial systems utilize specialized tracking inter-
ferometers made only for measuring the axis-motions of machine tools and CMMs. Although these
systems offer unprecedented measuring precision, using a more versatile conventional laser tracker
may be more appropriate in some cases. The question that needs answering then, is if sufficient
error compensation and volumetric accuracy can be achieved using a versatile commercial laser
tracker and simple measuring and compensation methods?

1.3 Project Scope

The goal of this work is to determine the error parameters of a specific machine tool, the Deckel
Maho DMU 50 eVolution. The kinematics of the machine has been thoroughly defined and described
by Knut Sørby in his article ”Inverse kinematics of five-axis machines near singular configurations”
[7]. This work will focus on acquiring reliable and accurate measurement data using the Leica
Absolute Tracker AT960 laser tracker. The geometric errors that exist will be defined and evaluated,
focusing firstly on the error parameters associated with the linear axes.

2 Theory

2.1 CNC Machine Tools and Their Geometry

There are many different types of machine tools in use in the industry. They all utilize a subtractive
cutting process, whether it be turning, milling, grinding or a combination of these. According to
the authors of ”CIRP Encyclopedia of Production Engineering”, ”...it can be said that a machine
tool is used to directly or indirectly make every modern man-made object. All manufacturing
machines and objects are made and operate due to components made on machine tools including
other machine tools. As such, machine tools are often called “mother machines.””.

The simplest form of machine tool has only two axes. This type of machine tool is used to execute
what is called a turning process. In this process the workpiece is clamped to the rotating element of
the machine, the spindle. Outside of the spindle, the tool is mounted on a tool support which has
linear movement perpendicular to the spindle axis. This axis is termed the X-axis. The Z-axis runs
co-linear to the spindle axis. Conventional machines used for milling operations utilizes a minimum
of three linear axes. In milling operations the workpiece is held stationary while the tool is clamped
to the rotating spindle. The machine has two linear axes perpendicular to each other. The one with
the longest travel is usually labeled as the X-axis. The Z-axis runs perpendicular to the XY-plane
defined by the X- and Y-axes [8].

The two setups mentioned above are the most basic ways to set up the axes. However, many more
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combinations of axes and spindles exist. In recent years, machines with five axes and machines
combining turning and milling have become popular. Five-axis machines can have different setups,
but most have three linear axes and two rotational axes. This enables the machine to tilt the tool in
relation to the workpiece. This generally makes machining complex three dimensional shapes faster
and more accurate [8]. The principal difference between how 3D shapes are machined on three-
and five-axis machines is shown in figure 1. When making 3D-profiles on a three-axis machine, a
milling tool with a spherical shape must be used, while on a five-axis machine, the tool axis can
be indexed to be perpendicular with the workpiece surface at any given position. This allows for
inclined surfaces to be machined with regular flat end mills for instance.

Figure 1: three-(left) and five-axis (right) machining of 3D shape

2.2 Deckel Maho DMU 50 eVolution

The Deckel Maho DMU 50 eVolution is a five-axis milling machine. The machine geometry is
unusual in the way that the two rotational axes are not perpendicular to each other. Generally the
naming convention on rotational axes is that the rotational axis A rotates about the linear X-axis,
similarly B rotates about Y and C about Z [9]. The B axis in this machine does not rotate about
the Y-axis, but about an axis inclined 45 degrees in relation to the Y- and Z-axes. The C and B
axes intersect in a point a distance d from the fixed coordinate frame x0y0z0 (see figure 2). With
a working range of the C-axis of (−∞,∞) and a B-axis range of [0◦, 180◦] the machine is able to
obtain a tool orientation perpendicular to every point on the surface of a half-sphere mounted on
the work table.

2.3 Kinematics

In the following, the work done by Professor Knut Sørby [7] on defining and describing the kine-
matics of the Deckel Maho DMU 50 eVolution is summarized.

The kinematics of the machine describe the motions of the machine without considering masses or
accelerations. The forward kinematics is a set of transformations used to obtain the cutter location
from the axis variables X, Y, Z, B and C. Eight coordinate frames are used to obtain the kinematic
equations for the machine:
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1. x0y0z0 is the base coordinate frame of the machine. It is located at the surface of the work
table when the B- and C-axis are both in the 0◦ position.

2. x1y1z1 is a translation of x0y0z0 a distance d along the z0-axis to the intersection point
between the B- and C-axis.

3. x2y2z2 is a rotation of x1y1z1 at an angle +45◦ about x1 to align with the B-axis.

These three coordinate frames are fixed, and do not move with the motion of the machine
axes.

4. x3y3z3 is a rotation of x2y2z2 at an angle B around z2.

5. x4y4z4 rotates x3y3z3 back −45◦ about x3.

6. x5y5z5 translates x4y4z4 a distance −d back to the surface of the work table. This coordinate
frame is always centered in the work table, also after the B-axis has been rotated.

7. xwywzw rotates x5y5z5 an angle −C about z5 to obtain the workpiece coordinate frame.

8. xtytzt ia a coordinate frame fixed to the milling tool with the origin at the tip of the tool.

Figure 2: The geometry of the Deckel Maho DMU 50 eVolution [7]

By using homogeneous coordinates (representing a 3-vector (x,y,z) as a 4-vector (x,y,z,1)), transla-
tion can be expressed by matrix multiplication. The transformation from the milling tool’s coordi-
nate frame to the workpiece coordinate frame can be represented by the transformation matrices
below. sφ and cφ is a shorthand notation for sinφ and cosφ respectively:
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T 1
0 =




1 0 0 0
0 1 0 0
0 0 1 d
0 0 0 1


 (1)

T 2
1 =




1 0 0 0
0 c45◦ −s45◦ 0
0 s45◦ c45◦ 0
0 0 0 1


 (2)

T 3
2 =




cB sB 0 0
sB cB 0 0
0 0 1 0
0 0 0 1


 (3)

T 4
3 =




1 0 0 0
0 c45◦ s45◦ 0
0 −s45◦ c45◦ 0
0 0 0 1


 (4)

T 5
4 =




1 0 0 0
0 1 0 0
0 0 1 −d
0 0 0 1


 (5)

Tw
5 =




cC sC 0 0
−sC cC 0 0

0 0 1 0
0 0 0 1


 (6)

T t
0 =




1 0 0 X
0 1 0 Y
0 0 1 Z
0 0 0 1


 (7)

T tw = T 5
wT

4
5 T

3
4 T

2
3 T

1
2 T

0
1 T

t
0 (8)

The resulting transformation matrix T tw contains four column vectors. Column one and two rep-
resents the inclination of the tool in the X- and Y-direction respectively. Column three represents
the tool inclination in the Z-direction, and column four contains the tool center position (TCP).
Together, column three and four make up the cutter location data commonly referred to as CL-
data. The CL-data is a function of the machine axis variables X, Y, Z, B and C. For a given set of
machine axis parameters, the CL-data can be found using the following equation:




i x
j y
k z
0 1


 = T tw




0 0
0 0
1 0
0 1


 (9)
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From equation 9, the following equations for the forward kinematics are found:

i =
1

2
(
√

2cCsB − sCcB + sC), (10)

j =
1

2
(
√

2sCsB + cCcB − cC), (11)

k =
1

2
+

1

2
cB , (12)

x =

√
2

2
[XsC + (Y + Z − d)cC ]sB +

1

2
[−Y + Z − d− (Y + Z − d)cB ]sC +XcCcB , (13)

y =

√
2

2
[(Y + Z − d)sC −XcC ]sB +XsCcB +

1

2
[(Y + Z − d)cCcB + (Y − Z + d)cC ], (14)

z =
1

2
[−
√

2XsB + (Y + Z − d)cB − Y + Z + d]. (15)

The forward kinematics are, as previously mentioned used to find the CL-data from the machine axis
variables. However, we usually go the other way, wanting to find the axis variables corresponding
to a certain cutter location. In other words we need the inverse kinematics of the machine tool.
The inverse kinematics can be found analytically and exact, or numerically to a certain predefined
precision. By using equation 9 and the relation

(T tw)−1 = Twt = T 0
t T

1
0 T

2
1 T

3
2 T

4
3 T

5
4 T

w
5 , (16)

a set of equations are derived, which are used for finding the analytical solution to the inverse
kinematics problem:




a11 a12
a21 a22
a31 a32
a41 a42


 = Twt




i x
j y
k z
0 1







0 0
0 0
1 0
0 1


 . (17)

The B-axis inverse solution can be found directly from equation 12. For the other inverse solutions,
eq 17 is used:

B = arccos(2k − 1), (18)

C = arctan
[
(1− k)i+

√
2(k − k2)j,

√
2(k − k2)i+ (k − 1)j

]
, (19)

X =
[
− y
√

2(k − k2)− x+ 2xk
]
cosC +

[
x
√

2(k − k2) + 2yk − y
]
sinC + (d− z)

√
2(k − k2),

(20)

Y =
[
x
√

2(k − k2) + yk
]
cosC +

[
y
√

2(k − k2)− xk
]
sinC − z + d− dk + zk, (21)

Z =
[
x
√

2(k − k2) + yk − y
]
cosC +

[
y
√

2(k − k2)− xk + x
]
sinC + d− dk + zk. (22)

Further details on the kinematics of the Deckel Maho DMU 50 eVolution is found in ”Inverse
kinematics of five-axis machines near singular configurations” by Professor Knut Sørby [7].
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2.4 Geometrical Errors

A five-axis machine tool usually has three linear and two rotational axes, each with their own
associated error parameters. Each linear axis has six error parameters - three translational error
parameters (EXX, EYX and EZX) in addition to three rotational error parameters (EAX, EBX and
ECX) [10] (naming according to ISO 230-1, see figure 3). To completely describe the geometric error
motions of the linear axes, the three squareness errors between each couple of axes, EC0X , EA0Z

and EB0Z are also considered [11] (figure 4). The linear error motion, EXX, is along the nominal
motion direction of the X-axis, while the other two linear error parameters, EYX and EZX, are
in the directions of the Y- and Z-axes, orthogonal to the X-axis. EXX, EYY and EZZ are called
the linear positioning error motions and are defined in ISO 230-1 as ”unwanted motion along the
direction of motion that results in the actual local position reached by the moving component at the
functional point differing from the local commanded position along the direction of motion” [12].
If the position of the measured point on the moving component differs from the target position, we
have a linear positioning deviation. This is the deviation in any given point along the motion of the
component. ”The straightness and angular errors are considered pure geometric errors, whereas the
linear displacement (positioning) errors are a function of both geometry and the axis drive system
characteristics” [12].

Figure 3: Error motions of a linear axis [13]
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Figure 4: Position and orientation errors of a linear axis [13]

Straightness deviations are measured against a reference straight line fitted to the measurement
data. The reference line can be constructed in either of three ways according to ISO 230-1:

1. Mean Minimum Zone Reference Straight Line
Arithmetic mean of two parallel straight lines in the straightness plane enclosing the measured
straightness deviations and having the least separation.

2. Least Squares Reference Straight Line
Straight line, where the sum of the squares of the measured straightness deviations is mini-
mum.

3. End Point Reference Straight Line
Straight line connecting the first and the last point of the measured straightness deviations.

Note that the reference straight line is computed from the measured deviations in two orthogonal
planes withing the boundary of the measurement being performed.

Although this is the international standard, in the literature it is common to see the error parameters
defined as zero in the initial position. For this reason the geometrical error parameters obtained in
this project are all set to zero in the initial position of the axes.
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2.5 The Error Model of a Linear Axis

As stated in the previous section, there are six geometrical errors associated with the motion of a
linear axis, one for each degree of freedom. Considering the reference coordinate frame oxyz and
the spindle coordinate frame moving in the x-direction oxxxyxzx The relationship between these
coordinate frames can be described by the following equation:




∆x(x)
∆y(x)
∆z(x)

0


 =




0 −ECX(x) EBX(x) EXX(x)
ECX(x) 0 −EAX(x) EY X(x)
−EBX(x) EAX(x) 0 EZX(x)

0 0 0 0







xx
yx
zx
1


 (23)

From equation 23 we get:

∆x(x) = −yxECX(x) + zxEBX(x) + EXX

∆y(x) = xxECX(x)− zxEAX(x) + EY X (24)

∆z(x) = −xxEBX(x) + yxEAX(x) + EZX

Which is the error model of the X-axis.

2.6 Laser Tracker

The laser tracker used in this project is a Leica Absolute Tracker AT960. It is a highly precise and
versatile measuring instrument which is able to quickly and efficiently obtain the three dimensional
coordinates of any point as long as there is a clear line of sight between the retro reflector and
the tracker. It uses a combination of absolute distance measurement and interferometric distance
measurement to obtain the distance between the tracker and the retro reflector to a very high degree
of precision. Interferometric distance measurements works by analyzing a light wave sent from the
interferometer and the returning wave reflected from a retro reflector. A superposition wave is
made by these two waves, and every time the two light waves are in phase, the superposition wave
peaks. By counting the number of peaks as the retro reflector is moved, the relative distance can
be measured to a precision equal to half of the wavelength of the light wave. In the case of the laser
light used in the Leica AT960, this equates to 0.32 µm. This type of measurement is also almost
instantaneous. However a limitation of this measuring principle is that it only measures relative
distance. There exists methods which measure absolute distance with high precision, however they
require that the reflector is absolutely stationary as the measurement is executed and the distance
calculated. The reason for this is that a ”wobble measurement” is used to determine the lowest
point on the wave. This requires that the light wave is stable for some amount of time, and is
obviously a big disadvantage in dynamic measuring operations. The waveform does not change
though, it only changes its relative position. Leica was the first manufacturer to combine the two
measuring methods into what they call ”AIFM”, ”Absolute Interferometer”. This technology uses
the unrivaled speed of the interferometer to monitor the relative position of the retro reflector as
the distance is calculated using the absolute distance measurement technology. In combination,
these two technologies provide an extremely precise length measurement while allowing the laser
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beam to be broken without having to return the reflector to a point of known distance from the
the interferometer [14].

With the distance to the retro reflector precisely measured by the AIFM, the spatial coordinate
of the reflector can be determined by combining the length measurement with measurements from
two angular encoders. The angular encoders measure two angles often referred to as azimuth
and elevation. Combined, these three measurements form a spherical coordinate system, and the
coordinates of the reflector can be determined by

x = rsinθcosφ

y = rsinθsinφ (25)

z = rcosθ

where (x, y, z) is the spatial coordinate, θ and φ are the azimuth and elevation angles and r is the
distance from the tracker to the reflector [15].

Figure 5: The spherical coordinate system of the laser tracker [16]

2.7 Multilateration

Multilateration is a method in which two or three dimensional coordinates are calculated from length
measurements only. In simple terms: ”If you know the distance of a point in space to at least three
other known points, then it’s coordinates can be determined” [17]. the length measurements are
made from several fixed points to a single target position. This method is the same used in GPS
(Global Positioning System) where the length measurements are made based on time of transmission
(TOT) of signals from several satellites to the target. This measuring method determines the
coordinates through the use of a non-linear least squares algorithm. The algorithm is used to fit all
the measurement variables to the system variables which are:

Coordinates of the measuring stations: (Xi, Yi, Zi)

”Dead path length” for each measuring station: Li

The coordinates of the target: (xj , yj , zj)

The measured variables are the distances from the zero point to the target: lij
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The deviation of the system variables to the following equation are minimized:

eij =
√

(xj −Xi)2 + (yj − Yi)2 + (zj − Zi)2 − (lij − Li), (26)

where eij is the residual for the i-th measurement and the j-th target point [18].

With regards to determining geometrical errors in machine tools and coordinate measuring ma-
chines, multilateration is the method of choice when using a laser interferometer such as the Etalon
LaserTRACER-NG. Unlike conventional laser trackers which employ distance measurement in the
form of incremental interferometric measurments and absolute distance measurement in addition
to two angular measurements (azimuth and elevation) to determine the position of the retro reflec-
tor, the LaserTRACER only makes use of the highly precise length measurement. This does not
allow for the determination of the retro reflector’s three dimensional position straight away, but as
mentioned previously, by repeating the measurement of the distance from the LaserTRACER to
the retro reflector a minimum of two times, the position can be calculated using multilateration.

2.8 Measurement Uncertainty

The yield of using the LaserTRACER and the multilateration method is unrivaled measuring pre-
cision. The LaserTRACER utilizes the accurate geometry of a highly precise ball with form errors
below 50 nm as it’s center of rotation and the inherent high resolution of laser interferometry
to achieve a measurement uncertainty on the sub-micron level. Etalon states that the expanded
measurement uncertainty of the LaserTRACER-NG is:

U = (0.2 + 0.3 · L/1000)µm,

where L is the measurement length in mm [19].

The Leica Absolute Tracker AT960 has slightly higher interferometric meassurement uncertainty,
but in the same order of magnitude:

MPE = (0.4 + 0.3 · L/1000)µm,

where L is the measurement length in mm.

The Leica AT960 uses, in addition to the highly precise length measurement, two additional angle
measurements (azimuth and elevation) to determine the retro reflector’s coordinates in a spherical
coordinate system. The uncertainty of the angle measurements are an order of magnitude larger
than that of the interferometric length measurements with Leica’s stated maximum permissible
error being:

MPE = (15 + 6 · L/1000)µm,

where L is the measurement length in mm [20].

Clearly, by determining the coordinates of the retro reflector using the spherical coordinate system
with the measured angles from the angular encoders leads to increased measurement uncertainty.
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3 Method

The following chapter will describe the method of obtaining the six error parameters associated
with a linear axis by measuring three points on the spindle at different axis-displacements. The
method is based on the work done by Zhenjiu Zhang and Hong Hu [15].

3.1 Extracting Geometrical Errors of a Linear Axis

Taking the X-axis of the Deckel Maho DMU 50 eVolution as an example, three points P , Q and K
on the spindle head is measured making sure these points do not lie on a straight line to each other.
A magnet holder is used to ensure the points stay in the same location relative to the spindle head
throughout the data acquisition. The coordinates of points P , Q and K are (xP , yP , zP ), (xQ, yQ,
zQ) and (xK , yK , zK) oxyz is the reference coordinate frame and oxxxyxzx is the coordinate frame
of the spindle head moving along the X-axis. Taking point P as an example the six geometrical
errors of the X-axis can be related to the volumetric errors of points on the spindle head. Let the
homogeneous coordinates of ox be [xo, yo, zo, 1]T in the reference coordinate frame. If there exists
no geometrical errors while the spindle head moves along the X-axis, the homogeneous coordinates
of ox [xot, yot, zot, 1]T at time t with a displacement of the X-axis equal to x can be obtained by
performing the following translation:




xot
yot
zot
1


 =




1 0 0 x
0 1 0 0
0 0 1 0
0 0 0 1







xo
yo
zo
1


 (27)

Then at this time, the coordinates of the point P in the reference coordinate frame can be found
by:




xPt
yPt
zPt
1


 =




1 0 0 xot
0 1 0 yot
0 0 1 zot
0 0 0 1







xxP
yxP
zxP
1


 =




1 0 0 xo + x
0 1 0 yo
0 0 1 zo
0 0 0 1







xxP
yxP
zxP
1


 (28)

The real position of point P with spatial coordinates (x′Pt, y
′
Pt, z

′
Pt) and homogeneous coordinates

[x′Pt, y
′
Pt, z

′
Pt, 1]T is then obtained by laser tracker measurement. The spatial coordinates are ob-

tained using the laser tracker’s spherical coordinate system. The position of P is influenced by the
geometrical errors of the axis, and will deviate from the theoretical position. The three components
of volumetric error ∆(x) at point P is ∆x(P ),∆y(P ) and ∆z(P ). The following relation can then
be established:




∆x(P )
∆y(P )
∆z(P )

0


 =




x′Pt
y′Pt
z′Pt
1


−




xPt
yPt
zPt
1


 =




x′Pt
y′Pt
z′Pt
1


−




1 0 0 xo + x
0 1 0 yo
0 0 1 zo
0 0 0 1







xxP
yxP
zxP
1


 =




x′Pt − xxP − xo − x
y′Pt − yxP − yo
z′Pt − zxP − zo

0




(29)
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If eq. (29) is substituted into the error model of the X-axis, we get:

∆x(P ) = x′Pt − xxP − xo − x = −yxPECX(x) + zxPEBX(x) + EXX

∆y(P ) = y′Pt − yxP − yo = xxPECX(x)− zxPEAX(x) + EY X (30)

∆z(P ) = z′Pt − zxP − zo = −xxPEBX(x) + yxPEAX(x) + EZX

By repeating the same procedure on points Q and K, we get:

∆x(Q) = x′Qt − xxQ − xo − x = −yxQECX(x) + zxQEBX(x) + EXX

∆y(Q) = y′Qt − yxQ − yo = xxQECX(x)− zxQEAX(x) + EY X

∆z(Q) = z′Qt − zxQ − zo = −xxQEBX(x) + yxQEAX(x) + EZX

∆x(K) = x′Kt − xxK − xo − x = −yxKECX(x) + zxKEBX(x) + EXX

∆y(K) = y′Kt − yxK − yo = xxKECX(x)− zxKEAX(x) + EY X

∆z(K) = z′Kt − zxK − zo = −xxKEBX(x) + yxKEAX(x) + EZX

Which can be rewritten as:




1 0 0 0 zxP −yxP
0 1 0 −zxP 0 xxP
0 0 1 yxP −xxP 0
1 0 0 0 zxQ −yxQ
0 1 0 −zxQ 0 xxQ
0 0 1 yxQ −xxQ 0
1 0 0 0 zxK −yxK
0 1 0 −zxK 0 xxK
0 0 1 yxK −xxK 0







EXX(x)
EY X(x)
EZX(x)
EAX(x)
EBX(x)
ECX(x)




=




x′Pt − xxP − xo − x
y′Pt − yxP − yo
z′Pt − zxP − zo

x′Qt − xxQ − xo − x
y′Qt − yxQ − yo
z′Qt − zxQ − zo

x′Kt − xxK − xo − x
y′Kt − yxK − yo
z′Kt − zxK − zo




(31)

As we see, there are nine equations, and only six unknown variables. As long as points P , Q and K
don’t lie on the same line, the rank of the coefficient matrix is six. This means that six equations
from eq. (31) can be chosen to form a new system of equations with a unique solution. Zhang and
Hu [15] explain thoroughy the selection process of the equations from (31) to form the new system:




1 0 0 0 zxP −yxP
0 1 0 −zxP 0 xxP
1 0 0 0 zxQ −yxQ
0 0 1 yxQ −xxQ 0
0 1 0 −zxK 0 xxK
0 0 1 yxK −xxK 0







EXX(x)
EY X(x)
EZX(x)
EAX(x)
EBX(x)
ECX(x)




=




x′Pt − xxP − xo − x
y′Pt − yxP − yo

x′Qt − xxQ − xo − x
z′Qt − zxQ − zo
y′Kt − yxK − yo
z′Kt − zxK − zo




(32)

Solving this system of equations yields the six error parameters as a function of the volumetric
error of the points P , Q, K, the position of the origin o of the reference coordinate system and the
displacement x:
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EXX(x) = dxP +
M

N

[
yxP −

zxP (yxQ−yxP )

zxQ − zxP

]
− zxP (dxQ − dxP )

zxQ − zxP

EYX(x) = dyP −
M

N

[
xxP −

zxP (xxP−xxK)

zxP − zxK

]
− zxP (dyP − dyK)

zxP − zxK

EZX(x) = dzQ +
M

N

[
yxQ(xxK − xxP )

zxP − zxK
− xxQ(yxP − yxQ)

zxQ − zxP

]
− yxQ(dyK − dyP )

zxP − zxK
+
xxQ(dxQ − dxP )

zxQ − zxP
(33)

EAX(x) =
dyK − dyP
zxP − zxK

+
xxP − xxK
zxP − zxK

· M
N

EBX(x) =
dxQ − dxP
zxQ − zxP

+
yxQ − yxP
zxQ − zxP

· M
N

ECX(x) =
M

N
,

where

M = (dxQ − dxP )(xxK − xxQ)(zxP − zxK) + [(dyP − dyK)(yxK − yxQ) + (dzK − dzQ)(zxP − zxK)](zxQ − zxP )

N = (xxK − xxQ)(yxP − yxQ)(zxP − zxK)− (xxK − xxP )(yxK − yxQ)(zxQ − zxP )

dxP = x′Pt − xxP − xo − x
dyP = y′Pt − yxP − yo (34)

dxQ = x′Qt − xxQ − xo − x
dzQ = z′Qt − zxQ − zo
dyK = y′Kt − yxK − yo
dzK = z′Kt − zxK − zo

The same approach is taken to set up a the system of equations for the Y- and Z-axes. By using
the same points on the spindle, the unreduced system of equations for the Y-axis is:




1 0 0 0 zyP −yyP
0 1 0 −zyP 0 xyP
0 0 1 yyP −xyP 0
1 0 0 0 zyQ −yyQ
0 1 0 −zyQ 0 xyQ
0 0 1 yyQ −xyQ 0
1 0 0 0 zyK −yyK
0 1 0 −zyK 0 xyK
0 0 1 yyK −xyK 0







EXY (y)
EY Y (y)
EZY (y)
EAY (y)
EBY (y)
ECY (y)




=




x′Pt − xyP − xo
y′Pt − yyP − yo − y
z′Pt − zyP − zo
x′Qt − xyQ − xo

y′Qt − yyQ − yo − y
z′Qt − zyQ − zo
x′Kt − xyK − xo

y′Kt − yyK − yo − y
z′Kt − zyK − zo




(35)

And by using the same strategy as for the x-axis system of equations, the reduced system of
equations is:
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


0 1 0 −zyP 0 xyP
0 0 1 yyP −xyP 0
0 1 0 −zyQ 0 xyQ
1 0 0 0 zyK −yyK
0 0 1 yyK −xyK 0
1 0 0 0 zyP −yyP







EXY (y)
EY Y (y)
EZY (y)
EAY (y)
EBY (y)
ECY (y)




=




y′Pt − yyP − yo − y
z′Pt − zyP − zo

y′Qt − yyQ − yo − y
x′Kt − xyK − xo
z′Kt − zyK − zo
x′Pt − xyP − xo




(36)

Similarly we get the reduced system of equations for the z-axis:




0 0 1 yzP −xzP 0
1 0 0 0 zzQ −yzQ
0 0 1 yzQ −xzQ 0
0 1 0 −zzK 0 xzK
1 0 0 0 zzP −yzP
0 1 0 −zzP 0 xzP







EXZ(z)
EY Z(z)
EZZ(z)
EAZ(z)
EBZ(z)
ECZ(z)




=




z′Pt − zzP − zo − z
x′Qt − xzQ − xo

z′Qt − zzQ − zo − z
y′Kt − yzK − yo
x′Pt − xzP − xo
y′Pt − yzP − yo




(37)

The solution of the six error parameters for the z-axis on the extended form is shown in the appendix.

3.2 Measuring Procedure

Firstly, the base coordinate system is set up. This is done using Hexagon’s metrology software -
Inspire. The retro reflector is placed on the spindle, and a circle is constructed from its rotation
(figure 6). The center point of the constructed circle is the origin, and the plane fitted to the
measured points makes up the XY-plane. Then, points are measured along the travel of the X-axis
and a line constructed and fitted to the measured points. Lastly, the Z-axis is constructed as a
line perpendicular to the XY-plane. All subsequent measurements regarding the linear axes are in
reference to this coordinate system.

Three points, P , Q and K, are then chosen on the spindle head of the machine, making sure these
points are not co-linear and that they do not make the value of the denominator, N , zero (figure 7).
The spatial coordinates of these three points are then measured with the Leica Absolute Tracker
AT960 at 11 displacements evenly distributed along the travel of the axes (figure 8).
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Figure 6: Setting up the coordinate system Figure 7: Choosing the three points on the spindle

Figure 8: Measuring points along the displacement of the axes
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4 Results

Figure 9, 10 and 11 show the calculated geometrical error parameters for the X-, Y- and Z-axis
respectively. As can be seen in figure 9, the largest linear error of the X-axis is in the direction of
travel, topping out at just over 23 µm at 500 mm traveled. The straightness errors EY X and EZX
are significantly lower. The largest angular error, EAX , is approximately −250 µrad at 300 mm
traveled. The remaining two angular errors are both within an absolute angle of 200 µrad for the
entire travel of the axis.

Similar error magnitudes can be seen for the Y- and Z-axes, differing slightly with larger magni-
tude of the linear error EY Y and larger angular errors in the Z-axis travel in general and EAZ in
particular.
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Figure 9: Plot of the linear (left) and angluar (right) error parameters of the x-axis
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5 Discussion

The obtained error parameters have not been validated by another measuring method, and are the
result of a single round of measurements. Although some of the error parameters are a bit higher
than expected, they do seem probable, and within the order of magnitude that errors of machine
tools may be in. The magnitude of the linear error parameter EY Y is certainly quite high at nearly
60 µm, but not completely improbable. The same goes for the peak values of the angular error
parameters of all three axes, and EAZ in particular with a peak of just over 700 µrad.

The coordinates of points P , Q and K are obtained by Laser Tracker measurements combining the
highly precise length measurement with the less precise angular measurements of the two angular
encoders in the tracker. A more comprehensive measuring method using the multilateration method
would yield higher measuring precision by obtaining the coordinates of the points without using
the less precise angular measurements of the laser tracker.

6 Future Work

Further validation of the measured error parameters through repeating the measurement process
with a different placement of points P , Q and K could be useful. Measuring a larger set of points
per length of axis travel might also be useful to better observe the evolution of the error parameters
throughout the axis travel. Validating the measurement results obtained with the laser tracker by
conventional measurement methods using a laser interferometer would be interesting.

In this work, the six geometrical error parameters associated with each linear axis was determined.
In order to complete the error model of the three linear axes, the three squareness errors need to be
determined. And to attain the full error model of the Deckel Maho DMU 50 eVolution, the error
parameters associated with the two rotational axes must be determined and validated.

When all error parameters of the machine tool are determined and validated, the next step in the
process of increasing the positioning accuracy of the machine is to apply a method of compensating
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for the error motions of all axes. The overall goal of the error compensation will be to reduce
both the spatial volumetric positioning error along with the spindle inclination error as much as
possible.

7 Conclusion

A method for determining the geometrical error parameters of the linear axes of the Deckel Maho
DMU 50 eVolution using the versatile and highly precise Leica Absolute Tracker AT960 laser tracker
is used in this paper as the first step in improving the positioning accuracy of the machine tool. The
method requires very little set up, and measurements can be made quickly and with a high degree
of precision. All six geometrical error parameters of a linear axis can be determined by measuring
three points on the spindle in a single set up. Although methods exist for determining the error
parameters with less measurement uncertainty, this method may be sufficiently precise for certain
machine tools and applications.
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Appendix

The solution of the geometrical error parameters related to the Z-axis on the extended form:

EXZ(z) = 1
(yzP−yzQ)((−xzK+xzQ)zzP+(xzK−xzP )zzQ+zzK(xzP−xzQ)) (zzP (y‘Kt− y‘Pt− yzK + yzP )y2zQ+

((−zzQ − zzP )y2zP − (y‘Kt − y‘Pt − yzK)(zzQ + zzP )yzP − z3zP + (zzQ + z‘Pt − z‘Qt + zzK)z2zP +
(−zzKzzQ + (−z‘Pt + z‘Qt)zzK −x2zP + (x‘Pt−x‘Qt + 2xzQ)xzP + (xo−x‘Pt−xzK)xzQ−xzK(xo−
x‘Qt))zzP +(xo−x‘Pt+xzP )((xzK−xzP )zzQ+zzK(xzP −xzQ)))yzQ−(−y2zP zzQ−zzQ(y‘Kt−y‘Pt−
yzK)yzP − z2zP zzQ + (z2zQ + (z‘Pt− z‘Qt + zzK)zzQ− (xzK − xzQ)(xo− x‘Qt + xzQ))zzP − zzKz2zQ +
((−z‘Pt + z‘Qt)zzK + (xzK − xzP )(xo − x‘Pt + xzP ))zzQ + zzK(xzP − xzQ)(xo − x‘Qt + xzQ))yzP )

EYZ(z) = 1
(yzp−yzQ)((−zzQ+zzK)xzp+(−xzK+xzQ)zzp+xzKzzQ−xzQzzK) (−x3zpzzK +(xzKzzp+zzK(x‘Pt−

x‘Qt+2xzQ))x2zp+(−z2zpzzK+((−x‘Pt+x‘Qt−2xzQ)xzK+2zzK(zzQ+z‘Pt/2−z‘Qt/2))zzp+(−y2zp+
(−yo + y‘Pt + yzQ)yzp − x2zQ + (−x‘Pt + x‘Qt)xzQ + (yo − y‘Pt)yzQ − zzQ(zzQ + z‘Pt − z‘Qt))zzK +

zzQ(yzp − yzQ)(yo − y‘Kt + yzK))xzp + xzKz
3
zp − 2xzK(zzQ + z‘Pt/2 − z‘Qt/2)z2zp + ((y2zp + (yo −

y‘Pt−yzQ)yzp+x2zQ+(x‘Pt−x‘Qt)xzQ+(−yo+y‘Pt)yzQ+zzQ(zzQ+z‘Pt−z‘Qt))xzK−xzQ(yzp−
yzQ)(yo − y‘Kt + yzK))zzp − (yzp − yzQ)(xzKzzQ − xzQzzK)(yo − y‘Pt + yzp))

EZZ(z) = 1
(yzP−yzQ)((zzQ−zzK)xzP+(−zzP+zzK)xzQ+xzK(zzP−zzQ)) (xzP (y‘Kt − y‘Pt − yzK + yzP )y2zQ +

((−xzP − xzQ)y2zP − (xzP + xzQ)(y‘Kt − y‘Pt − yzK)yzP − x3zP + (x‘Pt − x‘Qt + xzK + xzQ)x2zP +
(−xzKxzQ+(−x‘Pt+x‘Qt)xzK−z2zP+(2zzQ+z‘Pt−z‘Qt)zzP+(z−z‘Pt+zo−zzK)zzQ−zzK(z−z‘Qt+
zo))xzP +(z+zzP −z‘Pt+zo)((−zzP +zzK)xzQ+xzK(zzP −zzQ)))yzQ−(−xzQy2zP −(y‘Kt−y‘Pt−
yzK)xzQyzP−x2zPxzQ+(x2zQ+(x‘Pt−x‘Qt+xzK)xzQ+(zzQ−zzK)(zzQ+z−z‘Qt+zo))xzP−xzKx2zQ+
((−x‘Pt+x‘Qt)xzK−(zzP −zzK)(z+zzP −z‘Pt+zo))xzQ+xzK(zzP −zzQ)(zzQ+z−z‘Qt+zo))yzP )

EAZ(z) = 1
(yzP−yzQ)((zzQ−zzK)xzP+(−zzP+zzK)xzQ+xzK(zzP−zzQ)) (x

3
zP+(−xzK−x‘Pt+x‘Qt−2xzQ)x2zP+

(x2zQ+ (2xzK +x‘Pt−x‘Qt)xzQ+ (x‘Pt−x‘Qt)xzK +y2zP + (y‘Kt−y‘Pt−yzK −yzQ)yzP + (−y‘Kt+

y‘Pt + yzK)yzQ − (zzP − zzQ)(−zzP + z‘Pt − z‘Qt + zzQ))xzP − xzKx2zQ + ((−x‘Pt + x‘Qt)xzK −
(yzP − yzQ)(y‘Kt − y‘Pt − yzK + yzP ))xzQ + xzK(zzP − zzQ)(−zzP + z‘Pt − z‘Qt + zzQ))

EBZ(z) = 1
(zzQ−zzK)xzP+(xzK−xzQ)zzP−xzKzzQ+xzQzzK

(x2zP +(−xzK−x‘Pt+x‘Qt−xzQ)xzP +z2zP +

(−z‘Pt+z‘Qt−zzK−zzQ)zzP +(x‘Pt−x‘Qt+xzQ)xzK+(zzQ+z‘Pt−z‘Qt)zzK+(yzP −yzQ)(y‘Kt−
y‘Pt − yzK + yzP ))

ECZ(z) = 1
(yzP−yzQ)((xzK−xzQ)zzP+(−xzK+xzP )zzQ−zzK(xzP−xzQ)) (z

3
zP+(−z‘Pt+z‘Qt−zzK−2zzQ)z2zP+

(z2zQ + (z‘Pt− z‘Qt + 2zzK)zzQ + (z‘Pt− z‘Qt)zzK + y2zP + (y‘Kt− y‘Pt− yzK − yzQ)yzP + (−y‘Kt +

y‘Pt + yzK)yzQ − (xzP − xzQ)(−xzP + x‘Pt − x‘Qt + xzQ))zzP − zzKz2zQ + ((−z‘Pt + z‘Qt)zzK −
(yzP − yzQ)(y‘Kt − y‘Pt − yzK + yzP ))zzQ + zzK(xzP − xzQ)(−xzP + x‘Pt − x‘Qt + xzQ))

22



Appendix C

Python Scripts - Linear Axes

C.1 Python Script For Calculating Errors of the Linear Axes

The script for calculating the errors of the X-axis is included as an example. The scripts used for the Y-

and Z-axes are in essence the same. Note that ”\” is a line continuation character.

1 # =============================================================================

2 # Error Parameters Assoc iated with the X−ax i s

3 # =============================================================================

4

5 import numpy as np

6

7 # Def in ing the o r i g i n

8

9 Orig in = np . array ( [ 0 , 0 , 0 ] )

10 x o , y o , z o = Orig in [ 0 ] , Or ig in [ 1 ] , Or ig in [ 2 ]

11

12 # Importing the f i l e s conta in ing the coo rd ina t e s o f the measured points ,

13 # and arrang ing the data approp r i a t e l y

14

15 with open ( ’Round 1 . csv ’ ) as f i l e :

16 d0 = f i l e . read ( )

17 d1 = d0 . s p l i t ( ’ \n ’ )

18 d1 . pop (99)

19 d2 = [ i . s p l i t ( ’ , ’ ) f o r i in d1 ]

20

21 K x = np . array ( [ d2 [ 0 ] [ 1 ] , d2 [ 0 ] [ 2 ] , d2 [ 0 ] [ 3 ] , 1 ] )

22 K act t = np . z e r o s ( (11 , 4) )

23 f o r i in range (11) :

24 K act t [ i ] [ 0 : 3 ] = d2 [ i ] [ 1 : ]

25 K act t [ i ] [ 3 ] = 1

26

27 P x = np . array ( [ d2 [ 1 1 ] [ 1 ] , d2 [ 1 1 ] [ 2 ] , d2 [ 1 1 ] [ 3 ] , 1 ] )

28 P ac t t = np . z e r o s ( ( 11 , 4) )

29 f o r i in range (11 , 22) :

30 P ac t t [ i − 1 1 ] [ 0 : 3 ] = d2 [ i ] [ 1 : ]

31 P ac t t [ i −11 ] [ 3 ] = 1

32

33 Q x = np . array ( [ d2 [ 2 2 ] [ 1 ] , d2 [ 2 2 ] [ 2 ] , d2 [ 2 2 ] [ 3 ] , 1 ] )

34 Q act t = np . z e r o s ( (11 , 4) )

35 f o r i in range (22 , 33) :

36 Q act t [ i − 2 2 ] [ 0 : 3 ] = d2 [ i ] [ 1 : ]

37 Q act t [ i −22 ] [ 3 ] = 1

38

39 # Def in ing the coo rd ina t e s o f the po in t s P, Q and K in the r e f e r e n c e frame

40
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41 x xP , y xP , z xP = f l o a t ( P x [ 0 ] ) , f l o a t ( P x [ 1 ] ) , f l o a t ( P x [ 2 ] )

42 x xQ , y xQ , z xQ = f l o a t (Q x [ 0 ] ) , f l o a t (Q x [ 1 ] ) , f l o a t (Q x [ 2 ] )

43 x xK , y xK , z xK = f l o a t (K x [ 0 ] ) , f l o a t (K x [ 1 ] ) , f l o a t (K x [ 2 ] )

44

45 # Def in ing the nominal d i sp lacements along the ax i s o f movement

46

47 x = np . array (np . l i n s p a c e (0 , 500 , num = 11) )

48

49 # Deviding the coo rd ina t e s i n to s epara te ar rays

50

51 x actPt , y actPt , z actPt = P act t [ : , 0 ] , P ac t t [ : , 1 ] , P ac t t [ : , 2 ]

52 x actQt , y actQt , z actQt = Q act t [ : , 0 ] , Q act t [ : , 1 ] , Q act t [ : , 2 ]

53 x actKt , y actKt , z actKt = K act t [ : , 0 ] , K act t [ : , 1 ] , K act t [ : , 2 ]

54

55 # Def in ing the geomet r i ca l e r r o r parameter equat ions

56

57 de f d e l t a x ( x o , x actPt , x actQt , x xK , x xP , x xQ , y actKt , y actPt , y xK , \
58 y xP , y xQ , z actKt , z actQt , z xK , z xP , z xQ ) :

59 E XX = (−(x xK∗y xK∗z xQ − x xK∗y xQ∗z xK + x xK∗y xQ∗z xP − \
60 x xK∗y xQ∗z xQ − x xP∗y xK∗z xQ + x xP∗y xQ∗z xQ + x xQ∗y xQ∗z xK − \
61 x xQ∗y xQ∗z xP ) ∗( x actPt − x xP − x o − x ) /( x xK∗y xK∗z xP − x xK∗y xK∗z xQ − \
62 x xK∗y xP∗z xK + x xK∗y xP∗z xP + x xK∗y xQ∗z xK − 2∗x xK∗y xQ∗z xP + \
63 x xK∗y xQ∗z xQ − x xP∗y xK∗z xP + x xP∗y xK∗z xQ + x xP∗y xQ∗z xP − \
64 x xP∗y xQ∗z xQ + x xQ∗y xP∗z xK − x xQ∗y xP∗z xP − x xQ∗y xQ∗z xK + \
65 x xQ∗y xQ∗z xP ) + (y xK − y xQ) ∗( y xP∗z xQ − y xQ∗z xP ) ∗( y actPt − y xP − y o ) \
66 /( x xK∗y xK∗z xP − x xK∗y xK∗z xQ − x xK∗y xP∗z xK + x xK∗y xP∗z xP + \
67 x xK∗y xQ∗z xK − 2∗x xK∗y xQ∗z xP + x xK∗y xQ∗z xQ − x xP∗y xK∗z xP + \
68 x xP∗y xK∗z xQ + x xP∗y xQ∗z xP − x xP∗y xQ∗z xQ + x xQ∗y xP∗z xK − \
69 x xQ∗y xP∗z xP − x xQ∗y xQ∗z xK + x xQ∗y xQ∗z xP ) + (x xK∗y xK∗z xP − \
70 x xK∗y xP∗z xK + x xK∗y xP∗z xP − x xK∗y xQ∗z xP − x xP∗y xK∗z xP + \
71 x xP∗y xQ∗z xP + x xQ∗y xP∗z xK − x xQ∗y xP∗z xP ) ∗( x actQt − x xQ − x o − x ) \
72 /( x xK∗y xK∗z xP − x xK∗y xK∗z xQ − x xK∗y xP∗z xK + x xK∗y xP∗z xP + \
73 x xK∗y xQ∗z xK − 2∗x xK∗y xQ∗z xP + x xK∗y xQ∗z xQ − x xP∗y xK∗z xP + \
74 x xP∗y xK∗z xQ + x xP∗y xQ∗z xP − x xP∗y xQ∗z xQ + x xQ∗y xP∗z xK − \
75 x xQ∗y xP∗z xP − x xQ∗y xQ∗z xK + x xQ∗y xQ∗z xP ) + ( z xK − z xP ) ∗\
76 ( y xP∗z xQ − y xQ∗z xP ) ∗( z actQt − z xQ − z o ) /( x xK∗y xK∗z xP − \
77 x xK∗y xK∗z xQ − x xK∗y xP∗z xK + x xK∗y xP∗z xP + x xK∗y xQ∗z xK − \
78 2∗x xK∗y xQ∗z xP + x xK∗y xQ∗z xQ − x xP∗y xK∗z xP + x xP∗y xK∗z xQ + \
79 x xP∗y xQ∗z xP − x xP∗y xQ∗z xQ + x xQ∗y xP∗z xK − x xQ∗y xP∗z xP − \
80 x xQ∗y xQ∗z xK + x xQ∗y xQ∗z xP ) − ( y xK − y xQ) ∗( y xP∗z xQ − y xQ∗z xP ) ∗\
81 ( y actKt − y xK − y o ) /( x xK∗y xK∗z xP − x xK∗y xK∗z xQ − x xK∗y xP∗z xK + \
82 x xK∗y xP∗z xP + x xK∗y xQ∗z xK − 2∗x xK∗y xQ∗z xP + x xK∗y xQ∗z xQ − \
83 x xP∗y xK∗z xP + x xP∗y xK∗z xQ + x xP∗y xQ∗z xP − x xP∗y xQ∗z xQ + \
84 x xQ∗y xP∗z xK − x xQ∗y xP∗z xP − x xQ∗y xQ∗z xK + x xQ∗y xQ∗z xP ) − \
85 ( z xK − z xP ) ∗( y xP∗z xQ − y xQ∗z xP ) ∗( z actKt − z xK − z o ) /\
86 ( x xK∗y xK∗z xP − x xK∗y xK∗z xQ − x xK∗y xP∗z xK + x xK∗y xP∗z xP + \
87 x xK∗y xQ∗z xK − 2∗x xK∗y xQ∗z xP + x xK∗y xQ∗z xQ − x xP∗y xK∗z xP + \
88 x xP∗y xK∗z xQ + x xP∗y xQ∗z xP − x xP∗y xQ∗z xQ + x xQ∗y xP∗z xK − \
89 x xQ∗y xP∗z xP − x xQ∗y xQ∗z xK + x xQ∗y xQ∗z xP ) ) ∗ 1e3

90 re turn E XX

91

92 de f d e l t a y ( x actPt , x actQt , x xK , x xP , x xQ , y o , y actKt , y actPt , y xK , \
93 y xP , y xQ , z actKt , z actQt , z xK , z xP , z xQ ) :

94 E YX = (( x xK − x xQ) ∗( x xK∗z xP − x xP∗z xK ) ∗( x actPt − x xP − x o − x ) /\
95 ( x xK∗y xK∗z xP − x xK∗y xK∗z xQ − x xK∗y xP∗z xK + x xK∗y xP∗z xP + \
96 x xK∗y xQ∗z xK − 2∗x xK∗y xQ∗z xP + x xK∗y xQ∗z xQ − x xP∗y xK∗z xP + \
97 x xP∗y xK∗z xQ + x xP∗y xQ∗z xP − x xP∗y xQ∗z xQ + x xQ∗y xP∗z xK − \
98 x xQ∗y xP∗z xP − x xQ∗y xQ∗z xK + x xQ∗y xQ∗z xP ) + (x xK∗y xK∗z xP − \
99 x xK∗y xK∗z xQ − x xK∗y xP∗z xK + x xK∗y xQ∗z xK − x xK∗y xQ∗z xP + \

100 x xK∗y xQ∗z xQ + x xQ∗y xP∗z xK − x xQ∗y xQ∗z xK ) ∗( y actPt − y xP − y o ) /\
101 ( x xK∗y xK∗z xP − x xK∗y xK∗z xQ − x xK∗y xP∗z xK + x xK∗y xP∗z xP + \
102 x xK∗y xQ∗z xK − 2∗x xK∗y xQ∗z xP + x xK∗y xQ∗z xQ − x xP∗y xK∗z xP + \
103 x xP∗y xK∗z xQ + x xP∗y xQ∗z xP − x xP∗y xQ∗z xQ + x xQ∗y xP∗z xK − \
104 x xQ∗y xP∗z xP − x xQ∗y xQ∗z xK + x xQ∗y xQ∗z xP ) − ( x xK − x xQ) ∗\
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105 ( x xK∗z xP − x xP∗z xK ) ∗( x actQt − x xQ − x o − x ) /( x xK∗y xK∗z xP − \
106 x xK∗y xK∗z xQ − x xK∗y xP∗z xK + x xK∗y xP∗z xP + x xK∗y xQ∗z xK − \
107 2∗x xK∗y xQ∗z xP + x xK∗y xQ∗z xQ − x xP∗y xK∗z xP + x xP∗y xK∗z xQ + \
108 x xP∗y xQ∗z xP − x xP∗y xQ∗z xQ + x xQ∗y xP∗z xK − x xQ∗y xP∗z xP − \
109 x xQ∗y xQ∗z xK + x xQ∗y xQ∗z xP ) − (−z xQ + z xP ) ∗( x xK∗z xP − x xP∗z xK ) ∗\
110 ( z actQt − z xQ − z o ) /( x xK∗y xK∗z xP − x xK∗y xK∗z xQ − x xK∗y xP∗z xK + \
111 x xK∗y xP∗z xP + x xK∗y xQ∗z xK − 2∗x xK∗y xQ∗z xP + x xK∗y xQ∗z xQ − \
112 x xP∗y xK∗z xP + x xP∗y xK∗z xQ + x xP∗y xQ∗z xP − x xP∗y xQ∗z xQ + \
113 x xQ∗y xP∗z xK − x xQ∗y xP∗z xP − x xQ∗y xQ∗z xK + x xQ∗y xQ∗z xP ) + \
114 ( x xK∗y xP∗z xP − x xK∗y xQ∗z xP − x xP∗y xK∗z xP + x xP∗y xK∗z xQ + \
115 x xP∗y xQ∗z xP − x xP∗y xQ∗z xQ − x xQ∗y xP∗z xP + x xQ∗y xQ∗z xP ) ∗\
116 ( y actKt − y xK − y o ) /( x xK∗y xK∗z xP − x xK∗y xK∗z xQ − x xK∗y xP∗z xK + \
117 x xK∗y xP∗z xP + x xK∗y xQ∗z xK − 2∗x xK∗y xQ∗z xP + x xK∗y xQ∗z xQ − \
118 x xP∗y xK∗z xP + x xP∗y xK∗z xQ + x xP∗y xQ∗z xP − x xP∗y xQ∗z xQ + \
119 x xQ∗y xP∗z xK − x xQ∗y xP∗z xP − x xQ∗y xQ∗z xK + x xQ∗y xQ∗z xP ) + \
120 (−z xQ + z xP ) ∗( x xK∗z xP − x xP∗z xK ) ∗( z actKt − z xK − z o ) /( x xK∗y xK∗z xP \
121 − x xK∗y xK∗z xQ − x xK∗y xP∗z xK + x xK∗y xP∗z xP + x xK∗y xQ∗z xK − \
122 2∗x xK∗y xQ∗z xP + x xK∗y xQ∗z xQ − x xP∗y xK∗z xP + x xP∗y xK∗z xQ + \
123 x xP∗y xQ∗z xP − x xP∗y xQ∗z xQ + x xQ∗y xP∗z xK − x xQ∗y xP∗z xP − \
124 x xQ∗y xQ∗z xK + x xQ∗y xQ∗z xP ) ) ∗ 1e3

125 re turn E YX

126

127 de f d e l t a z ( x actPt , x actQt , x xK , x xP , x xQ , y actKt , y actPt , y xK , y xP , \
128 y xQ , z o , z actKt , z actQt , z xK , z xP , z xQ ) :

129 E ZX = (−(x xK∗∗2∗y xQ − x xK∗x xP∗y xQ − x xK∗x xQ∗y xK + x xP∗x xQ∗y xK) \
130 ∗( x actPt − x xP − x o − x ) /( x xK∗y xK∗z xP − x xK∗y xK∗z xQ − x xK∗y xP∗z xK \
131 + x xK∗y xP∗z xP + x xK∗y xQ∗z xK − 2∗x xK∗y xQ∗z xP + x xK∗y xQ∗z xQ − \
132 x xP∗y xK∗z xP + x xP∗y xK∗z xQ + x xP∗y xQ∗z xP − x xP∗y xQ∗z xQ + \
133 x xQ∗y xP∗z xK − x xQ∗y xP∗z xP − x xQ∗y xQ∗z xK + x xQ∗y xQ∗z xP ) + \
134 ( x xK∗y xP∗y xQ − x xK∗y xQ∗∗2 − x xQ∗y xK∗y xP + x xQ∗y xK∗y xQ) ∗\
135 ( y actPt − y xP − y o ) /( x xK∗y xK∗z xP − x xK∗y xK∗z xQ − x xK∗y xP∗z xK + \
136 x xK∗y xP∗z xP + x xK∗y xQ∗z xK − 2∗x xK∗y xQ∗z xP + x xK∗y xQ∗z xQ − \
137 x xP∗y xK∗z xP + x xP∗y xK∗z xQ + x xP∗y xQ∗z xP − x xP∗y xQ∗z xQ + \
138 x xQ∗y xP∗z xK − x xQ∗y xP∗z xP − x xQ∗y xQ∗z xK + x xQ∗y xQ∗z xP ) + \
139 ( x xK∗∗2∗y xQ − x xK∗x xP∗y xQ − x xK∗x xQ∗y xK + x xP∗x xQ∗y xK) ∗\
140 ( x actQt − x xQ − x o − x ) /( x xK∗y xK∗z xP − x xK∗y xK∗z xQ − x xK∗y xP∗z xK +\
141 x xK∗y xP∗z xP + x xK∗y xQ∗z xK − 2∗x xK∗y xQ∗z xP + x xK∗y xQ∗z xQ − \
142 x xP∗y xK∗z xP + x xP∗y xK∗z xQ + x xP∗y xQ∗z xP − x xP∗y xQ∗z xQ + \
143 x xQ∗y xP∗z xK − x xQ∗y xP∗z xP − x xQ∗y xQ∗z xK + x xQ∗y xQ∗z xP ) + \
144 ( x xK∗y xK∗z xP − x xK∗y xK∗z xQ − x xK∗y xP∗z xK + x xK∗y xP∗z xP + \
145 x xK∗y xQ∗z xK − x xK∗y xQ∗z xP − x xP∗y xK∗z xP + x xP∗y xK∗z xQ ) ∗\
146 ( z actQt − z xQ − z o ) /( x xK∗y xK∗z xP − x xK∗y xK∗z xQ − x xK∗y xP∗z xK + \
147 x xK∗y xP∗z xP + x xK∗y xQ∗z xK − 2∗x xK∗y xQ∗z xP + x xK∗y xQ∗z xQ − \
148 x xP∗y xK∗z xP + x xP∗y xK∗z xQ + x xP∗y xQ∗z xP − x xP∗y xQ∗z xQ + \
149 x xQ∗y xP∗z xK − x xQ∗y xP∗z xP − x xQ∗y xQ∗z xK + x xQ∗y xQ∗z xP ) − \
150 ( x xK∗y xP∗y xQ − x xK∗y xQ∗∗2 − x xQ∗y xK∗y xP + x xQ∗y xK∗y xQ) ∗\
151 ( y actKt − y xK − y o ) /( x xK∗y xK∗z xP − x xK∗y xK∗z xQ − x xK∗y xP∗z xK + \
152 x xK∗y xP∗z xP + x xK∗y xQ∗z xK − 2∗x xK∗y xQ∗z xP + x xK∗y xQ∗z xQ − \
153 x xP∗y xK∗z xP + x xP∗y xK∗z xQ + x xP∗y xQ∗z xP − x xP∗y xQ∗z xQ + \
154 x xQ∗y xP∗z xK − x xQ∗y xP∗z xP − x xQ∗y xQ∗z xK + x xQ∗y xQ∗z xP ) − \
155 ( x xK∗y xQ∗z xP − x xK∗y xQ∗z xQ − x xP∗y xQ∗z xP + x xP∗y xQ∗z xQ − \
156 x xQ∗y xP∗z xK + x xQ∗y xP∗z xP + x xQ∗y xQ∗z xK − x xQ∗y xQ∗z xP ) ∗\
157 ( z actKt − z xK − z o ) /( x xK∗y xK∗z xP − x xK∗y xK∗z xQ − x xK∗y xP∗z xK + \
158 x xK∗y xP∗z xP + x xK∗y xQ∗z xK − 2∗x xK∗y xQ∗z xP + x xK∗y xQ∗z xQ − \
159 x xP∗y xK∗z xP + x xP∗y xK∗z xQ + x xP∗y xQ∗z xP − x xP∗y xQ∗z xQ + \
160 x xQ∗y xP∗z xK − x xQ∗y xP∗z xP − x xQ∗y xQ∗z xK + x xQ∗y xQ∗z xP ) ) ∗ 1e3

161 re turn E ZX

162

163 de f e p s i l o n x ( x actPt , x actQt , x xK , x xP , x xQ , y actKt , y actPt , y xK , \
164 y xP , y xQ , z actKt , z actQt , z xK , z xP , z xQ ) :

165 E AX = (( x xK − x xQ) ∗( x xK − x xP ) ∗( x actPt − x xP − x o − x ) /\
166 ( x xK∗y xK∗z xP − x xK∗y xK∗z xQ − x xK∗y xP∗z xK + x xK∗y xP∗z xP + \
167 x xK∗y xQ∗z xK − 2∗x xK∗y xQ∗z xP + x xK∗y xQ∗z xQ − x xP∗y xK∗z xP + \
168 x xP∗y xK∗z xQ + x xP∗y xQ∗z xP − x xP∗y xQ∗z xQ + x xQ∗y xP∗z xK − \
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169 x xQ∗y xP∗z xP − x xQ∗y xQ∗z xK + x xQ∗y xQ∗z xP ) − ( x xK∗y xP − x xK∗y xQ − \
170 x xQ∗y xP + x xQ∗y xQ) ∗( y actPt − y xP − y o ) /( x xK∗y xK∗z xP − x xK∗y xK∗z xQ\
171 − x xK∗y xP∗z xK + x xK∗y xP∗z xP + x xK∗y xQ∗z xK − 2∗x xK∗y xQ∗z xP + \
172 x xK∗y xQ∗z xQ − x xP∗y xK∗z xP + x xP∗y xK∗z xQ + x xP∗y xQ∗z xP − \
173 x xP∗y xQ∗z xQ + x xQ∗y xP∗z xK − x xQ∗y xP∗z xP − x xQ∗y xQ∗z xK + \
174 x xQ∗y xQ∗z xP ) − ( x xK − x xQ) ∗( x xK − x xP ) ∗( x actQt − x xQ − x o − x ) /\
175 ( x xK∗y xK∗z xP − x xK∗y xK∗z xQ − x xK∗y xP∗z xK + x xK∗y xP∗z xP + \
176 x xK∗y xQ∗z xK − 2∗x xK∗y xQ∗z xP + x xK∗y xQ∗z xQ − x xP∗y xK∗z xP + \
177 x xP∗y xK∗z xQ + x xP∗y xQ∗z xP − x xP∗y xQ∗z xQ + x xQ∗y xP∗z xK − \
178 x xQ∗y xP∗z xP − x xQ∗y xQ∗z xK + x xQ∗y xQ∗z xP ) − (−z xQ + z xP ) ∗\
179 ( x xK − x xP ) ∗( z actQt − z xQ − z o ) /( x xK∗y xK∗z xP − x xK∗y xK∗z xQ − \
180 x xK∗y xP∗z xK + x xK∗y xP∗z xP + x xK∗y xQ∗z xK − 2∗x xK∗y xQ∗z xP + \
181 x xK∗y xQ∗z xQ − x xP∗y xK∗z xP + x xP∗y xK∗z xQ + x xP∗y xQ∗z xP − \
182 x xP∗y xQ∗z xQ + x xQ∗y xP∗z xK − x xQ∗y xP∗z xP − x xQ∗y xQ∗z xK + \
183 x xQ∗y xQ∗z xP ) + (x xK∗y xP − x xK∗y xQ − x xQ∗y xP + x xQ∗y xQ) ∗\
184 ( y actKt − y xK − y o ) /( x xK∗y xK∗z xP − x xK∗y xK∗z xQ − x xK∗y xP∗z xK + \
185 x xK∗y xP∗z xP + x xK∗y xQ∗z xK − 2∗x xK∗y xQ∗z xP + x xK∗y xQ∗z xQ − \
186 x xP∗y xK∗z xP + x xP∗y xK∗z xQ + x xP∗y xQ∗z xP − x xP∗y xQ∗z xQ + \
187 x xQ∗y xP∗z xK − x xQ∗y xP∗z xP − x xQ∗y xQ∗z xK + x xQ∗y xQ∗z xP ) + \
188 (−z xQ + z xP ) ∗( x xK − x xP ) ∗( z actKt − z xK − z o ) /( x xK∗y xK∗z xP − \
189 x xK∗y xK∗z xQ − x xK∗y xP∗z xK + x xK∗y xP∗z xP + x xK∗y xQ∗z xK − \
190 2∗x xK∗y xQ∗z xP + x xK∗y xQ∗z xQ − x xP∗y xK∗z xP + x xP∗y xK∗z xQ + \
191 x xP∗y xQ∗z xP − x xP∗y xQ∗z xQ + x xQ∗y xP∗z xK − x xQ∗y xP∗z xP − \
192 x xQ∗y xQ∗z xK + x xQ∗y xQ∗z xP ) ) ∗ 1e6

193 re turn E AX

194

195 de f e p s i l o n y ( x actPt , x actQt , x xK , x xP , x xQ , y actKt , y actPt , y xK , \
196 y xP , y xQ , z actKt , z actQt , z xK , z xP , z xQ ) :

197 E BX = (( x xK∗y xK − x xK∗y xQ − x xP∗y xK + x xP∗y xQ) ∗( x actPt − x xP − \
198 x o − x ) /( x xK∗y xK∗z xP − x xK∗y xK∗z xQ − x xK∗y xP∗z xK + x xK∗y xP∗z xP + \
199 x xK∗y xQ∗z xK − 2∗x xK∗y xQ∗z xP + x xK∗y xQ∗z xQ − x xP∗y xK∗z xP + \
200 x xP∗y xK∗z xQ + x xP∗y xQ∗z xP − x xP∗y xQ∗z xQ + x xQ∗y xP∗z xK − \
201 x xQ∗y xP∗z xP − x xQ∗y xQ∗z xK + x xQ∗y xQ∗z xP ) − ( y xK − y xQ) ∗\
202 (−y xQ + y xP ) ∗( y actPt − y xP − y o ) /( x xK∗y xK∗z xP − x xK∗y xK∗z xQ − \
203 x xK∗y xP∗z xK + x xK∗y xP∗z xP + x xK∗y xQ∗z xK − 2∗x xK∗y xQ∗z xP + \
204 x xK∗y xQ∗z xQ − x xP∗y xK∗z xP + x xP∗y xK∗z xQ + x xP∗y xQ∗z xP − \
205 x xP∗y xQ∗z xQ + x xQ∗y xP∗z xK − x xQ∗y xP∗z xP − x xQ∗y xQ∗z xK + \
206 x xQ∗y xQ∗z xP ) − ( x xK∗y xK − x xK∗y xQ − x xP∗y xK + x xP∗y xQ) ∗\
207 ( x actQt − x xQ − x o − x ) /( x xK∗y xK∗z xP − x xK∗y xK∗z xQ − x xK∗y xP∗z xK +\
208 x xK∗y xP∗z xP + x xK∗y xQ∗z xK − 2∗x xK∗y xQ∗z xP + x xK∗y xQ∗z xQ − \
209 x xP∗y xK∗z xP + x xP∗y xK∗z xQ + x xP∗y xQ∗z xP − x xP∗y xQ∗z xQ + \
210 x xQ∗y xP∗z xK − x xQ∗y xP∗z xP − x xQ∗y xQ∗z xK + x xQ∗y xQ∗z xP ) − \
211 ( z xK − z xP )∗(−y xQ + y xP ) ∗( z actQt − z xQ − z o ) /( x xK∗y xK∗z xP − \
212 x xK∗y xK∗z xQ − x xK∗y xP∗z xK + x xK∗y xP∗z xP + x xK∗y xQ∗z xK − \
213 2∗x xK∗y xQ∗z xP + x xK∗y xQ∗z xQ − x xP∗y xK∗z xP + x xP∗y xK∗z xQ + \
214 x xP∗y xQ∗z xP − x xP∗y xQ∗z xQ + x xQ∗y xP∗z xK − x xQ∗y xP∗z xP − \
215 x xQ∗y xQ∗z xK + x xQ∗y xQ∗z xP ) + (y xK − y xQ)∗(−y xQ + y xP ) ∗\
216 ( y actKt − y xK − y o ) /( x xK∗y xK∗z xP − x xK∗y xK∗z xQ − x xK∗y xP∗z xK + \
217 x xK∗y xP∗z xP + x xK∗y xQ∗z xK − 2∗x xK∗y xQ∗z xP + x xK∗y xQ∗z xQ − \
218 x xP∗y xK∗z xP + x xP∗y xK∗z xQ + x xP∗y xQ∗z xP − x xP∗y xQ∗z xQ + \
219 x xQ∗y xP∗z xK − x xQ∗y xP∗z xP − x xQ∗y xQ∗z xK + x xQ∗y xQ∗z xP ) + \
220 ( z xK − z xP )∗(−y xQ + y xP ) ∗( z actKt − z xK − z o ) /( x xK∗y xK∗z xP − \
221 x xK∗y xK∗z xQ − x xK∗y xP∗z xK + x xK∗y xP∗z xP + x xK∗y xQ∗z xK − \
222 2∗x xK∗y xQ∗z xP + x xK∗y xQ∗z xQ − x xP∗y xK∗z xP + x xP∗y xK∗z xQ + \
223 x xP∗y xQ∗z xP − x xP∗y xQ∗z xQ + x xQ∗y xP∗z xK − x xQ∗y xP∗z xP − \
224 x xQ∗y xQ∗z xK + x xQ∗y xQ∗z xP ) ) ∗ 1e6

225 re turn E BX

226

227 de f e p s i l o n z ( x actPt , x actQt , x xK , x xP , x xQ , y actKt , y actPt , y xK , \
228 y xP , y xQ , z actKt , z actQt , z xK , z xP , z xQ ) :

229 E CX = (( x xK − x xQ) ∗( z xK − z xP ) ∗( x actPt − x xP − x o − x ) /\
230 ( x xK∗y xK∗z xP − x xK∗y xK∗z xQ − x xK∗y xP∗z xK + x xK∗y xP∗z xP + \
231 x xK∗y xQ∗z xK − 2∗x xK∗y xQ∗z xP + x xK∗y xQ∗z xQ − x xP∗y xK∗z xP + \
232 x xP∗y xK∗z xQ + x xP∗y xQ∗z xP − x xP∗y xQ∗z xQ + x xQ∗y xP∗z xK − \
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233 x xQ∗y xP∗z xP − x xQ∗y xQ∗z xK + x xQ∗y xQ∗z xP ) − ( y xK − y xQ) ∗\
234 (−z xQ + z xP ) ∗( y actPt − y xP − y o ) /( x xK∗y xK∗z xP − x xK∗y xK∗z xQ − \
235 x xK∗y xP∗z xK + x xK∗y xP∗z xP + x xK∗y xQ∗z xK − 2∗x xK∗y xQ∗z xP + \
236 x xK∗y xQ∗z xQ − x xP∗y xK∗z xP + x xP∗y xK∗z xQ + x xP∗y xQ∗z xP − \
237 x xP∗y xQ∗z xQ + x xQ∗y xP∗z xK − x xQ∗y xP∗z xP − x xQ∗y xQ∗z xK + \
238 x xQ∗y xQ∗z xP ) − ( x xK − x xQ) ∗( z xK − z xP ) ∗( x actQt − x xQ − x o − x ) /\
239 ( x xK∗y xK∗z xP − x xK∗y xK∗z xQ − x xK∗y xP∗z xK + x xK∗y xP∗z xP + \
240 x xK∗y xQ∗z xK − 2∗x xK∗y xQ∗z xP + x xK∗y xQ∗z xQ − x xP∗y xK∗z xP + \
241 x xP∗y xK∗z xQ + x xP∗y xQ∗z xP − x xP∗y xQ∗z xQ + x xQ∗y xP∗z xK − \
242 x xQ∗y xP∗z xP − x xQ∗y xQ∗z xK + x xQ∗y xQ∗z xP ) − ( z xK − z xP ) ∗\
243 (−z xQ + z xP ) ∗( z actQt − z xQ − z o ) /( x xK∗y xK∗z xP − x xK∗y xK∗z xQ − \
244 x xK∗y xP∗z xK + x xK∗y xP∗z xP + x xK∗y xQ∗z xK − 2∗x xK∗y xQ∗z xP + \
245 x xK∗y xQ∗z xQ − x xP∗y xK∗z xP + x xP∗y xK∗z xQ + x xP∗y xQ∗z xP − \
246 x xP∗y xQ∗z xQ + x xQ∗y xP∗z xK − x xQ∗y xP∗z xP − x xQ∗y xQ∗z xK + \
247 x xQ∗y xQ∗z xP ) + (y xK − y xQ)∗(−z xQ + z xP ) ∗( y actKt − y xK − y o ) /\
248 ( x xK∗y xK∗z xP − x xK∗y xK∗z xQ − x xK∗y xP∗z xK + x xK∗y xP∗z xP + \
249 x xK∗y xQ∗z xK − 2∗x xK∗y xQ∗z xP + x xK∗y xQ∗z xQ − x xP∗y xK∗z xP + \
250 x xP∗y xK∗z xQ + x xP∗y xQ∗z xP − x xP∗y xQ∗z xQ + x xQ∗y xP∗z xK − \
251 x xQ∗y xP∗z xP − x xQ∗y xQ∗z xK + x xQ∗y xQ∗z xP ) + ( z xK − z xP ) ∗\
252 (−z xQ + z xP ) ∗( z actKt − z xK − z o ) /( x xK∗y xK∗z xP − x xK∗y xK∗z xQ − \
253 x xK∗y xP∗z xK + x xK∗y xP∗z xP + x xK∗y xQ∗z xK − 2∗x xK∗y xQ∗z xP + \
254 x xK∗y xQ∗z xQ − x xP∗y xK∗z xP + x xP∗y xK∗z xQ + x xP∗y xQ∗z xP − \
255 x xP∗y xQ∗z xQ + x xQ∗y xP∗z xK − x xQ∗y xP∗z xP − x xQ∗y xQ∗z xK + \
256 x xQ∗y xQ∗z xP ) ) ∗ 1e6

257 re turn E CX

258

259 # Plo t t i ng the geomet r i ca l e r r o r parameters

260

261 import matp lo t l i b . pyplot as p l t

262

263 f i g , axs = p l t . subp lo t s (3 , 2)

264

265 axs [ 0 , 0 ] . p l o t (x , d e l t a x ( x o , x actPt , x actQt , x xK , x xP , x xQ , y actKt , \
266 y actPt , y xK , y xP , y xQ , z actKt , z actQt , z xK , z xP , z xQ ) )

267 axs [ 0 , 0 ] . s e t ( x l ab e l = r ’ $x$ , $ [mm] $ ’ , y l ab e l = r ’ $E {XX}$ , $ [\mu m] $ ’ )

268 axs [ 0 , 0 ] . s c a t t e r (x , d e l t a x ( x o , x actPt , x actQt , x xK , x xP , x xQ , y actKt ,\
269 y actPt , y xK , y xP , y xQ , z actKt , z actQt , z xK , z xP , z xQ ) )

270

271 axs [ 1 , 0 ] . p l o t (x , d e l t a y ( x actPt , x actQt , x xK , x xP , x xQ , y o , y actKt , \
272 y actPt , y xK , y xP , y xQ , z actKt , z actQt , z xK , z xP , z xQ ) )

273 axs [ 1 , 0 ] . s e t ( x l ab e l = r ’ $x$ , $ [mm] $ ’ , y l ab e l = r ’ $E {YX}$ , $ [\mu m] $ ’ )

274 axs [ 1 , 0 ] . s c a t t e r (x , d e l t a y ( x actPt , x actQt , x xK , x xP , x xQ , y o , y actKt ,\
275 y actPt , y xK , y xP , y xQ , z actKt , z actQt , z xK , z xP , z xQ ) )

276

277 axs [ 2 , 0 ] . p l o t (x , d e l t a z ( x actPt , x actQt , x xK , x xP , x xQ , y actKt , \
278 y actPt , y xK , y xP , y xQ , z o , z actKt , z actQt , z xK , z xP , z xQ ) )

279 axs [ 2 , 0 ] . s e t ( x l ab e l = r ’ $x$ , $ [mm] $ ’ , y l ab e l = r ’ $E {ZX}$ , $ [\mu m] $ ’ )

280 axs [ 2 , 0 ] . s c a t t e r (x , d e l t a z ( x actPt , x actQt , x xK , x xP , x xQ , y actKt , \
281 y actPt , y xK , y xP , y xQ , z o , z actKt , z actQt , z xK , z xP , z xQ ) )

282

283 axs [ 0 , 1 ] . p l o t (x , e p s i l o n x ( x actPt , x actQt , x xK , x xP , x xQ , y actKt , \
284 y actPt , y xK , y xP , y xQ , z actKt , z actQt , z xK , z xP , z xQ ) )

285 axs [ 0 , 1 ] . s e t ( x l ab e l = r ’ $x$ , $ [mm] $ ’ , y l ab e l = r ’ $E {AX}$ , $ [\mu rad ] $ ’ )

286 axs [ 0 , 1 ] . s c a t t e r (x , e p s i l o n x ( x actPt , x actQt , x xK , x xP , x xQ , y actKt , \
287 y actPt , y xK , y xP , y xQ , z actKt , z actQt , z xK , z xP , z xQ ) )

288

289 axs [ 1 , 1 ] . p l o t (x , e p s i l o n y ( x actPt , x actQt , x xK , x xP , x xQ , y actKt , \
290 y actPt , y xK , y xP , y xQ , z actKt , z actQt , z xK , z xP , z xQ ) )

291 axs [ 1 , 1 ] . s e t ( x l ab e l = r ’ $x$ , $ [mm] $ ’ , y l ab e l = r ’ $E {BX}$ , $ [\mu rad ] $ ’ )

292 axs [ 1 , 1 ] . s c a t t e r (x , e p s i l o n y ( x actPt , x actQt , x xK , x xP , x xQ , y actKt , \
293 y actPt , y xK , y xP , y xQ , z actKt , z actQt , z xK , z xP , z xQ ) )

294

295 axs [ 2 , 1 ] . p l o t (x , e p s i l o n z ( x actPt , x actQt , x xK , x xP , x xQ , y actKt , \
296 y actPt , y xK , y xP , y xQ , z actKt , z actQt , z xK , z xP , z xQ ) )
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297 axs [ 2 , 1 ] . s e t ( x l ab e l = r ’ $x$ , $ [mm] $ ’ , y l ab e l = r ’ $E {CX}$ , $ [\mu rad ] $ ’ )

298 axs [ 2 , 1 ] . s c a t t e r (x , e p s i l o n z ( x actPt , x actQt , x xK , x xP , x xQ , y actKt , \
299 y actPt , y xK , y xP , y xQ , z actKt , z actQt , z xK , z xP , z xQ ) )

300

301 # Saving the data to text f i l e s

302

303 np . savetxt ( ’E XX. txt ’ , ( np . vstack ( ( x , d e l t a x ( x o , x actPt , x actQt , x xK , \
304 x xP , x xQ , y actKt , y actPt , y xK , y xP , y xQ , z actKt , z actQt , z xK , z xP , \
305 z xQ ) ) ) .T) , d e l im i t e r = ’ , ’ , fmt = ’%1.1 f %1.1 f ’ )

306

307 np . savetxt ( ’E YX. txt ’ , ( np . vstack ( ( x , d e l t a y ( x actPt , x actQt , x xK , x xP , \
308 x xQ , y o , y actKt , y actPt , y xK , y xP , y xQ , z actKt , z actQt , z xK , z xP , \
309 z xQ ) ) ) .T) , d e l im i t e r = ’ , ’ , fmt = ’%1.1 f %1.1 f ’ )

310

311 np . savetxt ( ’E ZX . txt ’ , ( np . vstack ( ( x , d e l t a z ( x actPt , x actQt , x xK , x xP , \
312 x xQ , y actKt , y actPt , y xK , y xP , y xQ , z o , z actKt , z actQt , z xK , z xP , \
313 z xQ ) ) ) .T) , d e l im i t e r = ’ , ’ , fmt = ’%1.1 f %1.1 f ’ )

314

315 np . savetxt ( ’E AX. txt ’ , ( np . vstack ( ( x , e p s i l o n x ( x actPt , x actQt , x xK , x xP , \
316 x xQ , y actKt , y actPt , y xK , y xP , y xQ , z actKt , z actQt , z xK , z xP , \
317 z xQ ) ) ) .T) , d e l im i t e r = ’ , ’ , fmt = ’%1.1 f %1.3 f ’ )

318

319 np . savetxt ( ’E BX. txt ’ , ( np . vstack ( ( x , e p s i l o n y ( x actPt , x actQt , x xK , x xP , \
320 x xQ , y actKt , y actPt , y xK , y xP , y xQ , z actKt , z actQt , z xK , z xP , \
321 z xQ ) ) ) .T) , d e l im i t e r = ’ , ’ , fmt = ’%1.1 f %1.3 f ’ )

322

323 np . savetxt ( ’E CX. txt ’ , ( np . vstack ( ( x , e p s i l o n z ( x actPt , x actQt , x xK , x xP , \
324 x xQ , y actKt , y actPt , y xK , y xP , y xQ , z actKt , z actQt , z xK , z xP , \
325 z xQ ) ) ) .T) , d e l im i t e r = ’ , ’ , fmt = ’%1.1 f %1.3 f ’ )
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C.2 Python Script for Calculating the Average Error and Mea-

surement Variability of the Linear Axes

1 import numpy as np

2 import matp lo t l i b . pyplot as p l t

3

4

5 de f average ( parameter ) :

6 Er ro r va lu e s = [ ]

7 Average va lues = np . z e r o s (11)

8 Error = np . z e r o s ( ( 2 , 11) )

9 Std dev = np . z e r o s (11)

10 Std dev percent = np . z e r o s (11)

11 f o r i in range (4 ) :

12 with open ( f ’Round { i +2}\{parameter } . tx t ’ ) as f i l e :

13 d0 = f i l e . read ( )

14 d1 = d0 . s p l i t ( ’ \n ’ )

15 d1 . pop(−1)

16 d2 = [ i . s p l i t ( ’ ’ ) f o r i in d1 ]

17 d2 = np . array ( d2 )

18 d2 = d2 . astype (np . f l o a t 6 4 )

19

20 command pos = np . array ( [ d2 [ j ] [ 0 ] f o r j in range ( l en ( d2 ) ) ] )

21 Er ro r va lu e s . append ( d2 [ : , 1 ] )

22 Er ro r va lu e s = np . array ( Er ro r va lu e s )

23 Er ro r va lu e s = np . concatenate ( ( Er ro r va lu e s [ 0 ] , E r r o r va lu e s [ 1 ] , \
24 Er ro r va lu e s [ 2 ] , E r r o r va lu e s [ 3 ] ) )

25 Er ro r va lu e s = np . reshape ( Error va lue s , (4 , 11) )

26 f o r i in range (11) :

27 Average va lues [ i ] = np . sum( Er ro r va lu e s [ : , i ] ) /4

28 Error [ 0 , i ] = abs ( Er ro r va lu e s .max( ax i s = 0) [ i ] − Average va lues [ i ] )

29 Error [ 1 , i ] = abs ( Er ro r va lu e s . min ( ax i s = 0) [ i ] − Average va lues [ i ] )

30 f o r i in range (4 ) :

31 f o r j in range (11) :

32 Er ro r va lue s minus ave rage = Er ro r va lu e s − Average va lues

33 Squared = Erro r va lue s minus ave rage ∗∗2
34 Std dev [ j ] = np . sq r t (np . sum( Squared , ax i s = 0) [ j ] / 3 )

35 Avg std dev = np . sum( Std dev ) / l en ( Std dev )

36 Max std dev = np .max( Std dev )

37 i f Average va lues [ j ] == 0 :

38 Std dev percent [ j ] = 0

39 e l s e :

40 Std dev percent [ j ] = abs ( Std dev [ j ] / Average va lues [ j ] ) ∗ 100

41 Avg std dev percent = np . sum( abs ( Std dev ) ) /np . sum( abs ( Average va lues ) ) ∗ 100

42 re turn command pos , Er ro r va lue s , Average values , Error , Std dev , \
43 Max std dev , Avg std dev , Std dev percent , Avg std dev percent

44

45 f i g , axs = p l t . subp lo t s (3 , 2)

46

47 axs [ 0 , 0 ] . e r r o rba r ( average ( ’E XX ’ ) [ 0 ] , average ( ’E XX ’ ) [ 2 ] , \
48 yer r = average ( ’E XX ’ ) [ 4 ] ∗ 2 , e c o l o r = ’k ’ , c ap s i z e = 3)

49 axs [ 0 , 0 ] . s e t ( x l ab e l = r ’ $x$ , $ [mm] $ ’ , y l ab e l = r ’ $E {XX}$ , $ [\mu m] $ ’ , \
50 ylim = (−25 , 35) )

51 axs [ 0 , 0 ] . s c a t t e r ( average ( ’E XX ’ ) [ 0 ] , average ( ’E XX ’ ) [ 2 ] )

52

53 axs [ 1 , 0 ] . e r r o rba r ( average ( ’E YX ’ ) [ 0 ] , average ( ’E YX ’ ) [ 2 ] , \
54 yer r = average ( ’E YX ’ ) [ 4 ] ∗ 2 , e c o l o r = ’k ’ , c ap s i z e = 3)

55 axs [ 1 , 0 ] . s e t ( x l ab e l = r ’ $x$ , $ [mm] $ ’ , y l ab e l = r ’ $E {YX}$ , $ [\mu m] $ ’ , \
56 ylim = (−25 , 35) )

57 axs [ 1 , 0 ] . s c a t t e r ( average ( ’E YX ’ ) [ 0 ] , average ( ’E YX ’ ) [ 2 ] )

58

59 axs [ 2 , 0 ] . e r r o rba r ( average ( ’E ZX ’ ) [ 0 ] , average ( ’E ZX ’ ) [ 2 ] , \
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60 yer r = average ( ’E ZX ’ ) [ 4 ] ∗ 2 , e c o l o r = ’k ’ , c ap s i z e = 3)

61 axs [ 2 , 0 ] . s e t ( x l ab e l = r ’ $x$ , $ [mm] $ ’ , y l ab e l = r ’ $E {ZX}$ , $ [\mu m] $ ’ , \
62 ylim = (−25 , 35) )

63 axs [ 2 , 0 ] . s c a t t e r ( average ( ’E ZX ’ ) [ 0 ] , average ( ’E ZX ’ ) [ 2 ] )

64

65 axs [ 0 , 1 ] . e r r o rba r ( average ( ’E AX ’ ) [ 0 ] , average ( ’E AX ’ ) [ 2 ] , \
66 yer r = average ( ’E AX ’ ) [ 4 ] ∗ 2 , e c o l o r = ’k ’ , c ap s i z e = 3)

67 axs [ 0 , 1 ] . s e t ( x l ab e l = r ’ $x$ , $ [mm] $ ’ , y l ab e l = r ’ $E {AX}$ , $ [\mu rad ] $ ’ )

68 axs [ 0 , 1 ] . s c a t t e r ( average ( ’E AX ’ ) [ 0 ] , average ( ’E AX ’ ) [ 2 ] )

69

70 axs [ 1 , 1 ] . e r r o rba r ( average ( ’E BX ’ ) [ 0 ] , average ( ’E BX ’ ) [ 2 ] , \
71 yer r = average ( ’E BX ’ ) [ 4 ] ∗ 2 , e c o l o r = ’k ’ , c ap s i z e = 3)

72 axs [ 1 , 1 ] . s e t ( x l ab e l = r ’ $x$ , $ [mm] $ ’ , y l ab e l = r ’ $E {BX}$ , $ [\mu rad ] $ ’ )

73 axs [ 1 , 1 ] . s c a t t e r ( average ( ’E BX ’ ) [ 0 ] , average ( ’E BX ’ ) [ 2 ] )

74

75 axs [ 2 , 1 ] . e r r o rba r ( average ( ’E CX ’ ) [ 0 ] , average ( ’E CX ’ ) [ 2 ] , \
76 yer r = average ( ’E CX ’ ) [ 4 ] ∗ 2 , e c o l o r = ’k ’ , c ap s i z e = 3)

77 axs [ 2 , 1 ] . s e t ( x l ab e l = r ’ $x$ , $ [mm] $ ’ , y l ab e l = r ’ $E {CX}$ , $ [\mu rad ] $ ’ )

78 axs [ 2 , 1 ] . s c a t t e r ( average ( ’E CX ’ ) [ 0 ] , average ( ’E CX ’ ) [ 2 ] )

79

80

81

82 np . savetxt ( ’E XX avg . . txt ’ , ( np . vstack ( ( average ( ’E XX ’ ) [ 0 ] , average ( ’E XX ’ ) [ 2 ] , \
83 average ( ’E XX ’ ) [ 4 ] ) ) .T) , d e l im i t e r = ’ , ’ , fmt = ’%1.1 f %1.3 f %1.3 f ’ )

84

85 np . savetxt ( ’E YX avg . . txt ’ , ( np . vstack ( ( average ( ’E YX ’ ) [ 0 ] , average ( ’E YX ’ ) [ 2 ] , \
86 average ( ’E YX ’ ) [ 4 ] ) ) .T) , d e l im i t e r = ’ , ’ , fmt = ’%1.1 f %1.3 f %1.3 f ’ )

87

88 np . savetxt ( ’ E ZX avg . . txt ’ , ( np . vstack ( ( average ( ’E ZX ’ ) [ 0 ] , average ( ’E ZX ’ ) [ 2 ] , \
89 average ( ’E ZX ’ ) [ 4 ] ) ) .T) , d e l im i t e r = ’ , ’ , fmt = ’%1.1 f %1.3 f %1.3 f ’ )

90 np . savetxt ( ’E AX avg . . txt ’ , ( np . vstack ( ( average ( ’E AX ’ ) [ 0 ] , average ( ’E AX ’ ) [ 2 ] , \
91 average ( ’E AX ’ ) [ 4 ] ) ) .T) , d e l im i t e r = ’ , ’ , fmt = ’%1.1 f %1.3 f %1.3 f ’ )

92

93 np . savetxt ( ’E BX avg . . txt ’ , ( np . vstack ( ( average ( ’E BX ’ ) [ 0 ] , average ( ’E BX ’ ) [ 2 ] , \
94 average ( ’E BX ’ ) [ 4 ] ) ) .T) , d e l im i t e r = ’ , ’ , fmt = ’%1.1 f %1.3 f %1.3 f ’ )

95

96 np . savetxt ( ’E CX avg . . txt ’ , ( np . vstack ( ( average ( ’E CX ’ ) [ 0 ] , average ( ’E CX ’ ) [ 2 ] , \
97 average ( ’E CX ’ ) [ 4 ] ) ) .T) , d e l im i t e r = ’ , ’ , fmt = ’%1.1 f %1.3 f %1.3 f ’ )

98 np . savetxt ( ’ E XX std . dev . . txt ’ , ( np . vstack ( ( average ( ’E XX ’ ) [ 5 ] , \
99 average ( ’E XX ’ ) [ 6 ] , average ( ’E XX ’ ) [ 8 ] ) ) .T) , d e l im i t e r = ’ , ’ , \

100 fmt = ’%1.1 f %1.1 f %1i ’ )
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Appendix D

Python Scripts - Rotational Axes

D.1 Python Script For Calculating Errors of the Rotational

Axes

1 # =============================================================================

2 # Error Parameters Assoc iated with the B−ax i s

3 # =============================================================================

4

5 import numpy as np

6

7 # Def in ing the o r i g i n

8

9 Orig in = np . array ( [ 0 , 0 , 0 ] )

10 x o , y o , z o = Orig in [ 0 ] , Or ig in [ 1 ] , Or ig in [ 2 ]

11

12 # Importing the f i l e s conta in ing the coo rd ina t e s o f the measured points ,

13 # and arrang ing the data approp r i a t e l y

14

15 with open ( ’B, Round 1 . csv ’ ) as f i l e :

16 d0 = f i l e . read ( )

17 d1 = d0 . s p l i t ( ’ \n ’ )

18 d1 . pop(−1)

19 d2 = [ i . s p l i t ( ’ , ’ ) f o r i in d1 ]

20

21 K b = np . array ( [ d2 [ 0 ] [ 1 ] , d2 [ 0 ] [ 2 ] , d2 [ 0 ] [ 3 ] , 1 ] )

22 K act t = np . z e r o s ( (19 , 4) )

23 f o r i in range (19) :

24 K act t [ i ] [ 0 : 3 ] = d2 [ i ] [ 1 : ]

25 K act t [ i ] [ 3 ] = 1

26

27 P b = np . array ( [ d2 [ 1 9 ] [ 1 ] , d2 [ 1 9 ] [ 2 ] , d2 [ 1 9 ] [ 3 ] , 1 ] )

28 P ac t t = np . z e r o s ( ( 19 , 4) )

29 f o r i in range (19 , 38) :

30 P ac t t [ i − 1 9 ] [ 0 : 3 ] = d2 [ i ] [ 1 : ]

31 P ac t t [ i −19 ] [ 3 ] = 1

32

33 Q b = np . array ( [ d2 [ 3 8 ] [ 1 ] , d2 [ 3 8 ] [ 2 ] , d2 [ 3 8 ] [ 3 ] , 1 ] )

34 Q act t = np . z e r o s ( (19 , 4) )

35 f o r i in range (38 , 57) :

36 Q act t [ i − 3 8 ] [ 0 : 3 ] = d2 [ i ] [ 1 : ]

37 Q act t [ i −38 ] [ 3 ] = 1

38

39 # Def in ing the coo rd ina t e s o f the po in t s P, Q and K in the r e f e r e n c e frame

40

41 x BP , y BP , z BP = f l o a t (P b [ 0 ] ) , f l o a t (P b [ 1 ] ) , f l o a t (P b [ 2 ] )
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42 x BQ , y BQ , z BQ = f l o a t (Q b [ 0 ] ) , f l o a t (Q b [ 1 ] ) , f l o a t (Q b [ 2 ] )

43 x BK , y BK , z BK = f l o a t (K b [ 0 ] ) , f l o a t (K b [ 1 ] ) , f l o a t (K b [ 2 ] )

44

45 # Def in ing the nominal d i sp lacements along the ax i s o f movement

46

47 theta = np . array (np . l i n s p a c e (0 , 180 ∗ np . p i /180 , num = 19) )

48 theta deg = np . array (np . l i n s p a c e (0 , 180 , num = 19) )

49

50 # Deviding the coo rd ina t e s i n to s epara te ar rays

51

52 x actPt , y actPt , z actPt = P act t [ : , 0 ] , P ac t t [ : , 1 ] , P ac t t [ : , 2 ]

53 x actQt , y actQt , z actQt = Q act t [ : , 0 ] , Q act t [ : , 1 ] , Q act t [ : , 2 ]

54 x actKt , y actKt , z actKt = K act t [ : , 0 ] , K act t [ : , 1 ] , K act t [ : , 2 ]

55

56 # Def in ing the geomet r i ca l e r r o r parameter equat ions

57

58 de f d e l t a x ( theta , x o , x BK , x BP , x BQ , x actPt , x actQt , y BK , y BP , y BQ , \
59 y actKt , y actPt , z BK , z BP , z BQ , z actKt , z actQt ) :

60 E XB = ( ( ( z BP∗(y BK − y BP) ∗y BQ∗∗2 + ( (y BK∗y BP + (x BP + x BQ) ∗x BK − \
61 2∗x BP∗x BQ − y BK∗∗2) ∗z BP + z BQ∗y BP∗∗2 − y BK∗y BP∗z BQ − ( ( x BK − x BP) ∗\
62 z BQ + z BK∗(x BK − x BQ) ) ∗x BP) ∗y BQ − x BQ∗ ( (x BK − x BQ) ∗y BP + y BK∗\
63 (x BK − x BP) ) ∗z BP − y BK∗y BP∗∗2∗z BQ + (z BQ∗y BK∗∗2 + x BQ∗z BK∗\
64 (x BK − x BQ) ) ∗y BP + z BQ∗x BP∗y BK∗(x BK − x BP) ) ∗np . cos ( theta ) − z BP∗\
65 ( y actKt − y actPt ) ∗y BQ∗∗2 + ((−z BQ − z actKt + z actQt + z BK) ∗z BP∗∗2 + \
66 (z BQ∗z BK + (2∗ x o − x actPt − x actQt ) ∗x BK + ( y actKt − y actPt ) ∗y BK − \
67 z BK∗∗2 + ( z actKt − z actQt ) ∗z BK + (−x o + x actQt ) ∗x BP − x BQ∗\
68 ( x o − x actPt ) ) ∗z BP + z BQ∗( y actKt − y actPt ) ∗y BP − ( ( x BK − x BP) ∗z BQ + \
69 z BK∗(x BK − x BQ) ) ∗( x o − x actPt ) ) ∗y BQ + (( z BQ∗∗2 + ( z actKt − z actQt − \
70 z BK) ∗z BQ − (x BK − x BQ) ∗( x o − x actQt ) ) ∗y BP − y BK∗(x BK − x BP) ∗\
71 ( x o − x actQt ) ) ∗z BP + (−z BK∗z BQ∗∗2 + ((−y actKt + y actPt ) ∗y BK − z BK∗\
72 ( z actKt − z actQt − z BK) ) ∗z BQ + z BK∗(x BK − x BQ) ∗( x o − x actQt ) ) ∗y BP + \
73 z BQ∗y BK∗(x BK − x BP) ∗( x o − x actPt ) ) /(((−2∗x BK + x BP + x BQ) ∗z BP + \
74 (x BK − x BP) ∗z BQ + z BK∗(x BK − x BQ) ) ∗y BQ + ((x BK − x BQ) ∗y BP + y BK∗\
75 (x BK − x BP) ) ∗z BP − z BK∗(x BK − x BQ) ∗y BP − z BQ∗y BK∗(x BK − x BP) ) ) ∗ 1e3

76 re turn E XB

77

78 de f d e l t a y ( theta , x BK , x BP , x BQ , x actPt , x actQt , y o , y BK , y BP , y BQ , \
79 y actKt , y actPt , z BK , z BP , z BQ , z actKt , z actQt ) :

80 E YB = (((−z BP∗(x BP − x BQ) ∗x BK∗∗2 + ( ( x BP∗x BQ + (y BK + y BP) ∗y BQ −\
81 x BQ∗∗2 − 2∗y BK∗y BP) ∗z BP + z BK∗x BP∗∗2 − x BP∗x BQ∗z BK + (( y BP − y BQ) ∗\
82 z BK + z BQ∗(y BK − y BQ) ) ∗y BP) ∗x BK + ((y BK − y BQ) ∗x BP + x BQ∗(y BP − \
83 y BQ) ) ∗y BK∗z BP − x BP∗∗2∗x BQ∗z BK + (x BQ∗∗2∗z BK − z BQ∗y BK∗(y BK − \
84 y BQ) ) ∗x BP − x BQ∗y BP∗z BK∗(y BP − y BQ) ) ∗np . cos ( theta ) + z BP∗( x actPt − \
85 x actQt ) ∗x BK∗∗2 + ( ( z BQ + z actKt − z actQt − z BK) ∗z BP∗∗2 + (z BQ∗z BK + \
86 (2∗ y o − y actKt − y actPt ) ∗y BQ + (−x actPt + x actQt ) ∗x BQ − z BQ∗∗2 + \
87 (−z actKt + z actQt ) ∗z BQ + (−y o + y actPt ) ∗y BK − y BP∗( y o − y actKt ) ) ∗\
88 z BP − z BK∗( x actPt − x actQt ) ∗x BP + ( y o − y actPt ) ∗ ( ( y BP − y BQ) ∗z BK + \
89 z BQ∗(y BK − y BQ) ) ) ∗x BK + (( z BK∗∗2 + (−z BQ − z actKt + z actQt ) ∗z BK + \
90 (y BK − y BQ) ∗( y o − y actKt ) ) ∗x BP + x BQ∗(y BP − y BQ) ∗( y o − y actKt ) ) ∗\
91 z BP + (−z BK∗∗2∗z BQ + (( x actPt − x actQt ) ∗x BQ + z BQ∗( z BQ + z actKt − \
92 z actQt ) ) ∗z BK − z BQ∗(y BK − y BQ) ∗( y o − y actKt ) ) ∗x BP − x BQ∗z BK∗(y BP − \
93 y BQ) ∗( y o − y actPt ) ) / ( ( ( y BK + y BP − 2∗y BQ) ∗z BP + (−y BP + y BQ) ∗z BK − \
94 z BQ∗(y BK − y BQ) ) ∗x BK + ((−y BK + y BQ) ∗x BP − x BQ∗(y BP − y BQ) ) ∗z BP + \
95 z BQ∗(y BK − y BQ) ∗x BP + x BQ∗z BK∗(y BP − y BQ) ) ) ∗ 1e3

96 re turn E YB

97

98 de f d e l t a z ( theta , x BK , x BP , x BQ , x actPt , x actQt , y BK , y BP , y BQ , \
99 y actKt , y actPt , z o , z BK , z BP , z BQ , z actKt , z actQt ) :

100 E ZB = ( ( ( ( x BP − x BQ) ∗x BK + (−y BK + y BP) ∗y BQ − x BP∗∗2 + x BP∗\
101 x BQ + y BK∗y BP − y BP∗∗2) ∗(x BK∗y BQ − x BQ∗y BK) ∗np . cos ( theta ) − y BQ∗\
102 ( x actPt − x actQt ) ∗x BK∗∗2 + ( ( y actKt − y actPt ) ∗y BQ∗∗2 + ((2∗ z o + z BQ − \
103 z actKt − z actQt + z BK) ∗z BP + ( x actPt − x actQt ) ∗x BP + (−y actKt + \
104 y actPt ) ∗y BP + (−z o − 2∗z BQ + z actQt ) ∗z BK − z BQ∗( z o − z actKt ) ) ∗y BQ + \
105 y BK∗( x actPt − x actQt ) ∗x BQ − ( ( z BP − z BQ) ∗y BK + y BP∗( z BP − z BK) ) ∗\
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106 ( z o + z BQ − z actQt ) ) ∗x BK + (((− y actKt + y actPt ) ∗y BK − ( z BP − z BK) ∗\
107 ( z o − z actKt + z BK) ) ∗x BQ − x BP∗( z BP − z BQ) ∗( z o − z actKt + z BK) ) ∗\
108 y BQ + (((− x actPt + x actQt ) ∗x BP + y BP∗( y actKt − y actPt ) ) ∗y BK + y BP∗\
109 ( z BP − z BK) ∗( z o − z actKt + z BK) ) ∗x BQ + x BP∗y BK∗( z BP − z BQ) ∗\
110 ( z o + z BQ − z actQt ) ) /(((−2∗z BP + z BQ + z BK) ∗y BQ + (z BP − z BQ) ∗y BK + \
111 y BP∗( z BP − z BK) ) ∗x BK + (( z BP − z BK) ∗x BQ + x BP∗( z BP − z BQ) ) ∗y BQ − \
112 y BP∗( z BP − z BK) ∗x BQ − x BP∗y BK∗( z BP − z BQ) ) ) ∗ 1e3

113 re turn E ZB

114

115 de f e p s i l o n x ( theta , x BK , x BP , x BQ , x actPt , x actQt , y BK , y BP , y BQ , \
116 y actKt , y actPt , z BK , z BP , z BQ , z actKt , z actQt ) :

117 E AB = ( ( ( ( x BP − x BQ) ∗x BK − x BP∗∗2 + x BP∗x BQ + (y BP − y BQ) ∗\
118 (y BK − y BP) ) ∗(x BK − x BQ) ∗np . cos ( theta ) + (−x actPt + x actQt ) ∗x BK∗∗2 + \
119 ( ( x actPt − x actQt ) ∗x BP + ( x actPt − x actQt ) ∗x BQ + ( y actKt − y actPt ) ∗\
120 y BQ + (−z BQ − z actKt + z actQt + z BK) ∗z BP + (−y actKt + y actPt ) ∗y BP + \
121 z BQ∗( z BQ + z actKt − z actQt − z BK) ) ∗x BK + ((− x actPt + x actQt ) ∗x BQ − \
122 (−z BP + z BQ) ∗( z BQ + z actKt − z actQt − z BK) ) ∗x BP + x BQ∗(y BP − y BQ) ∗\
123 ( y actKt − y actPt ) ) /(((−z BQ − z BK + 2∗z BP) ∗y BQ + (−y BK − y BP) ∗z BP + \
124 y BK∗z BQ + y BP∗z BK) ∗x BK − (y BK − y BQ)∗(−z BP + z BQ) ∗x BP − x BQ∗\
125 (z BK − z BP) ∗(y BP − y BQ) ) ) ∗ 1e6

126 re turn E AB

127

128 de f e p s i l o n y ( theta , x BK , x BP , x BQ , x actPt , x actQt , y BK , y BP , y BQ , \
129 y actKt , y actPt , z BK , z BP , z BQ , z actKt , z actQt ) :

130 E BB = (((−y BK + y BP) ∗y BQ + y BK∗y BP − y BP∗∗2 + (x BP − x BQ) ∗\
131 (x BK − x BP) ) ∗(y BK − y BQ) ∗np . cos ( theta ) + (−y actKt + y actPt ) ∗y BQ∗∗2 + \
132 ( ( y actKt − y actPt ) ∗y BK + ( y actKt − y actPt ) ∗y BP + ( x actPt − x actQt ) ∗\
133 x BK + (−z BQ − z actKt + z actQt + z BK) ∗z BP + (−x actPt + x actQt ) ∗x BP + \
134 z BK∗( z BQ + z actKt − z actQt − z BK) ) ∗y BQ + ((−y actKt + y actPt ) ∗y BP − \
135 (x BK − x BP) ∗( x actPt − x actQt ) ) ∗y BK − y BP∗( z BK − z BP) ∗( z BQ + z actKt \
136 − z actQt − z BK) ) /(((−z BQ − z BK + 2∗z BP) ∗x BK + (−x BP − x BQ) ∗z BP + \
137 z BQ∗x BP + x BQ∗z BK) ∗y BQ + (x BK − x BP)∗(−z BP + z BQ) ∗y BK + y BP∗\
138 (z BK − z BP) ∗(x BK − x BQ) ) ∗ 1e6

139 re turn E BB

140

141 de f e p s i l o n z ( theta , x BK , x BP , x BQ , x actPt , x actQt , y BK , y BP , y BQ , \
142 y actKt , y actPt , z BK , z BP , z BQ , z actKt , z actQt ) :

143 E CB = ((((( −x BP + x BQ) ∗x BK + (−y BK + y BP) ∗y BQ − x BQ∗∗2 + \
144 x BP∗x BQ + y BK∗(y BK − y BP) ) ∗z BP + (x BP − x BQ) ∗(x BK − x BQ) ∗z BK − \
145 z BQ∗(y BK − y BQ) ∗(y BK − y BP) ) ∗np . cos ( theta ) + ( ( ( y BK + y BP − 2∗y BQ) ∗\
146 x BK + (x BP + x BQ) ∗y BQ − x BP∗y BK − x BQ∗y BP) ∗z BP − (y BP − y BQ) ∗\
147 (x BK − x BQ) ∗z BK − z BQ∗(y BK − y BQ) ∗(x BK − x BP) ) ∗np . s i n ( theta ) + \
148 (z BQ + z actKt − z actQt − z BK) ∗z BP∗∗2 + (z BK∗∗2 + (−z actKt + z actQt ) ∗\
149 z BK − z BQ∗∗2 + (−z actKt + z actQt ) ∗z BQ + ( x actPt − x actQt ) ∗x BK + \
150 ( y actKt − y actPt ) ∗y BQ + (−x actPt + x actQt ) ∗x BQ − ( y actKt − y actPt ) ∗\
151 y BK) ∗z BP − z BK∗∗2∗z BQ + (z BQ∗∗2 + ( z actKt − z actQt ) ∗z BQ − \
152 (x BK − x BQ) ∗( x actPt − x actQt ) ) ∗z BK + z BQ∗(y BK − y BQ) ∗( y actKt − \
153 y actPt ) ) /(((−y BK − y BP + 2∗y BQ) ∗x BK + (−x BP − x BQ) ∗y BQ + x BP∗y BK + \
154 x BQ∗y BP) ∗z BP + (y BP − y BQ) ∗(x BK − x BQ) ∗z BK + z BQ∗(y BK − y BQ) ∗\
155 (x BK − x BP) ) ) ∗ 1e6

156 re turn E CB

157

158

159 # Plo t t i ng the geomet r i ca l e r r o r parameters

160

161 import matp lo t l i b . pyplot as p l t

162

163 f i g , axs = p l t . subp lo t s (3 , 2 , subplot kw=d i c t ( po la r=True ) )

164

165 axs [ 0 , 0 ] . p l o t ( theta , d e l t a x ( theta , x o , x BK , x BP , x BQ , x actPt , x actQt , \
166 y BK , y BP , y BQ , y actKt , y actPt , z BK , z BP , z BQ , z actKt , z actQt ) )

167 axs [ 0 , 0 ] . s e t ( x l ab e l = r ’ $\mathrm{B}$ , $ [ ˆ{\ c i r c } ] $ ’ , \
168 y l ab e l = r ’ $\mathrm{E {XB}}$ , $ [\mathrm{\mu m} ] $ ’ )

169 axs [ 0 , 0 ] . s c a t t e r ( theta , d e l t a x ( theta , x o , x BK , x BP , x BQ , x actPt , \
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170 x actQt , y BK , y BP , y BQ , y actKt , y actPt , z BK , z BP , z BQ , z actKt , \
171 z actQt ) )

172

173 axs [ 1 , 0 ] . p l o t ( theta , d e l t a y ( theta , x BK , x BP , x BQ , x actPt , x actQt , y o , \
174 y BK , y BP , y BQ , y actKt , y actPt , z BK , z BP , z BQ , z actKt , z actQt ) )

175 axs [ 1 , 0 ] . s e t ( x l ab e l = r ’ $\mathrm{B}$ , $ [ ˆ{\ c i r c } ] $ ’ , \
176 y l ab e l = r ’ $\mathrm{E {YB}}$ , $ [\mathrm{\mu m} ] $ ’ )

177 axs [ 1 , 0 ] . s c a t t e r ( theta , d e l t a y ( theta , x BK , x BP , x BQ , x actPt , x actQt , \
178 y o , y BK , y BP , y BQ , y actKt , y actPt , z BK , z BP , z BQ , z actKt , z actQt ) )

179

180 axs [ 2 , 0 ] . p l o t ( theta , d e l t a z ( theta , x BK , x BP , x BQ , x actPt , x actQt , \
181 y BK , y BP , y BQ , y actKt , y actPt , z o , z BK , z BP , z BQ , z actKt , z actQt ) )

182 axs [ 2 , 0 ] . s e t ( x l ab e l = r ’ $\mathrm{B}$ , $ [ ˆ{\ c i r c } ] $ ’ , \
183 y l ab e l = r ’ $\mathrm{E {ZB}}$ , $ [\mathrm{\mu m} ] $ ’ )

184 axs [ 2 , 0 ] . s c a t t e r ( theta , d e l t a z ( theta , x BK , x BP , x BQ , x actPt , x actQt , \
185 y BK , y BP , y BQ , y actKt , y actPt , z o , z BK , z BP , z BQ , z actKt , z actQt ) )

186

187 axs [ 0 , 1 ] . p l o t ( theta , e p s i l o n x ( theta , x BK , x BP , x BQ , x actPt , x actQt , \
188 y BK , y BP , y BQ , y actKt , y actPt , z BK , z BP , z BQ , z actKt , z actQt ) )

189 axs [ 0 , 1 ] . s e t ( x l ab e l = r ’ $\mathrm{B}$ , $ [ ˆ{\ c i r c } ] $ ’ , \
190 y l ab e l = r ’ $\mathrm{E {AB}}}$ , $ [\mathrm{\mu rad } ] $ ’ )

191 axs [ 0 , 1 ] . s c a t t e r ( theta , e p s i l o n x ( theta , x BK , x BP , x BQ , x actPt , x actQt , \
192 y BK , y BP , y BQ , y actKt , y actPt , z BK , z BP , z BQ , z actKt , z actQt ) )

193

194 axs [ 1 , 1 ] . p l o t ( theta , e p s i l o n y ( theta , x BK , x BP , x BQ , x actPt , x actQt , \
195 y BK , y BP , y BQ , y actKt , y actPt , z BK , z BP , z BQ , z actKt , z actQt ) )

196 axs [ 1 , 1 ] . s e t ( x l ab e l = r ’ $\mathrm{B}$ , $ [ ˆ{\ c i r c } ] $ ’ , \
197 y l ab e l = r ’ $\mathrm{E {BB}}}$ , $ [\mathrm{\mu rad } ] $ ’ )

198 axs [ 1 , 1 ] . s c a t t e r ( theta , e p s i l o n y ( theta , x BK , x BP , x BQ , x actPt , x actQt , \
199 y BK , y BP , y BQ , y actKt , y actPt , z BK , z BP , z BQ , z actKt , z actQt ) )

200

201 axs [ 2 , 1 ] . p l o t ( theta , e p s i l o n z ( theta , x BK , x BP , x BQ , x actPt , x actQt , \
202 y BK , y BP , y BQ , y actKt , y actPt , z BK , z BP , z BQ , z actKt , z actQt ) )

203 axs [ 2 , 1 ] . s e t ( x l ab e l = r ’ $\mathrm{B}$ , $ [ ˆ{\ c i r c } ] $ ’ , \
204 y l ab e l = r ’ $\mathrm{E {CB}}}$ , $ [\mathrm{\mu rad } ] $ ’ )

205 axs [ 2 , 1 ] . s c a t t e r ( theta , e p s i l o n z ( theta , x BK , x BP , x BQ , x actPt , x actQt , \
206 y BK , y BP , y BQ , y actKt , y actPt , z BK , z BP , z BQ , z actKt , z actQt ) )

207

208 f i g , axs = p l t . subp lo t s (3 , 2)

209

210 axs [ 0 , 0 ] . p l o t ( theta deg , d e l t a x ( theta , x o , x BK , x BP , x BQ , x actPt , \
211 x actQt , y BK , y BP , y BQ , y actKt , y actPt , z BK , z BP , z BQ , z actKt , z actQt ) )

212 axs [ 0 , 0 ] . s e t ( x l ab e l = r ’ $\mathrm{B}$ , $ [ ˆ{\ c i r c } ] $ ’ , \
213 y l ab e l = r ’ $\mathrm{E {XB}}$ , $ [\mathrm{\mu m} ] $ ’ )

214 axs [ 0 , 0 ] . s c a t t e r ( theta deg , d e l t a x ( theta , x o , x BK , x BP , x BQ , x actPt , \
215 x actQt , y BK , y BP , y BQ , y actKt , y actPt , z BK , z BP , z BQ , z actKt , \
216 z actQt ) )

217

218 axs [ 1 , 0 ] . p l o t ( theta deg , d e l t a y ( theta , x BK , x BP , x BQ , x actPt , x actQt , \
219 y o , y BK , y BP , y BQ , y actKt , y actPt , z BK , z BP , z BQ , z actKt , z actQt ) )

220 axs [ 1 , 0 ] . s e t ( x l ab e l = r ’ $\mathrm{B}$ , $ [ ˆ{\ c i r c } ] $ ’ , \
221 y l ab e l = r ’ $\mathrm{E {YB}}$ , $ [\mathrm{\mu m} ] $ ’ )

222 axs [ 1 , 0 ] . s c a t t e r ( theta deg , d e l t a y ( theta , x BK , x BP , x BQ , x actPt , \
223 x actQt , y o , y BK , y BP , y BQ , y actKt , y actPt , z BK , z BP , z BQ , z actKt , \
224 z actQt ) )

225

226 axs [ 2 , 0 ] . p l o t ( theta deg , d e l t a z ( theta , x BK , x BP , x BQ , x actPt , x actQt , \
227 y BK , y BP , y BQ , y actKt , y actPt , z o , z BK , z BP , z BQ , z actKt , z actQt ) )

228 axs [ 2 , 0 ] . s e t ( x l ab e l = r ’ $\mathrm{B}$ , $ [ ˆ{\ c i r c } ] $ ’ , \
229 y l ab e l = r ’ $\mathrm{E {ZB}}$ , $ [\mathrm{\mu m} ] $ ’ )

230 axs [ 2 , 0 ] . s c a t t e r ( theta deg , d e l t a z ( theta , x BK , x BP , x BQ , x actPt , \
231 x actQt , y BK , y BP , y BQ , y actKt , y actPt , z o , z BK , z BP , z BQ , z actKt , z actQt ) )

232

233 axs [ 0 , 1 ] . p l o t ( theta deg , e p s i l o n x ( theta , x BK , x BP , x BQ , x actPt , \
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234 x actQt , y BK , y BP , y BQ , y actKt , y actPt , z BK , z BP , z BQ , z actKt , \
235 z actQt ) )

236 axs [ 0 , 1 ] . s e t ( x l ab e l = r ’ $\mathrm{B}$ , $ [ ˆ{\ c i r c } ] $ ’ , \
237 y l ab e l = r ’ $\mathrm{E {AB}}}$ , $ [\mathrm{\mu rad } ] $ ’ )

238 axs [ 0 , 1 ] . s c a t t e r ( theta deg , e p s i l o n x ( theta , x BK , x BP , x BQ , x actPt , \
239 x actQt , y BK , y BP , y BQ , y actKt , y actPt , z BK , z BP , z BQ , z actKt , \
240 z actQt ) )

241

242 axs [ 1 , 1 ] . p l o t ( theta deg , e p s i l o n y ( theta , x BK , x BP , x BQ , x actPt , \
243 x actQt , y BK , y BP , y BQ , y actKt , y actPt , z BK , z BP , z BQ , z actKt , \
244 z actQt ) )

245 axs [ 1 , 1 ] . s e t ( x l ab e l = r ’ $\mathrm{B}$ , $ [ ˆ{\ c i r c } ] $ ’ , \
246 y l ab e l = r ’ $\mathrm{E {BB}}}$ , $ [\mathrm{\mu rad } ] $ ’ )

247 axs [ 1 , 1 ] . s c a t t e r ( theta deg , e p s i l o n y ( theta , x BK , x BP , x BQ , x actPt , \
248 x actQt , y BK , y BP , y BQ , y actKt , y actPt , z BK , z BP , z BQ , z actKt , \
249 z actQt ) )

250

251 axs [ 2 , 1 ] . p l o t ( theta deg , e p s i l o n z ( theta , x BK , x BP , x BQ , x actPt , \
252 x actQt , y BK , y BP , y BQ , y actKt , y actPt , z BK , z BP , z BQ , z actKt , \
253 z actQt ) )

254 axs [ 2 , 1 ] . s e t ( x l ab e l = r ’ $\mathrm{B}$ , $ [ ˆ{\ c i r c } ] $ ’ , \
255 y l ab e l = r ’ $\mathrm{E {CB}}}$ , $ [\mathrm{\mu rad } ] $ ’ )

256 axs [ 2 , 1 ] . s c a t t e r ( theta deg , e p s i l o n z ( theta , x BK , x BP , x BQ , x actPt , \
257 x actQt , y BK , y BP , y BQ , y actKt , y actPt , z BK , z BP , z BQ , z actKt , \
258 z actQt ) )

259

260 # Saving the data to text f i l e s

261

262 np . savetxt ( ’E XB . txt ’ , ( np . vstack ( ( theta deg , d e l t a x ( theta , x o , x BK , x BP , x BQ ,

x actPt , x actQt , y BK , y BP , y BQ , y actKt , y actPt , z BK , z BP , z BQ , z actKt ,

z actQt ) ) ) .T) , d e l im i t e r = ’ , ’ , fmt = ’%1.1 f %1.3 f ’ )

263 np . savetxt ( ’E YB . txt ’ , ( np . vstack ( ( theta deg , d e l t a y ( theta , x BK , x BP , x BQ , x actPt ,

x actQt , y o , y BK , y BP , y BQ , y actKt , y actPt , z BK , z BP , z BQ , z actKt , z actQt

) ) ) .T) , d e l im i t e r = ’ , ’ , fmt = ’%1.1 f %1.3 f ’ )

264 np . savetxt ( ’E ZB . txt ’ , ( np . vstack ( ( theta deg , d e l t a z ( theta , x BK , x BP , x BQ , x actPt ,

x actQt , y BK , y BP , y BQ , y actKt , y actPt , z o , z BK , z BP , z BQ , z actKt , z actQt

) ) ) .T) , d e l im i t e r = ’ , ’ , fmt = ’%1.1 f %1.3 f ’ )

265 np . savetxt ( ’E AB . txt ’ , ( np . vstack ( ( theta deg , e p s i l o n x ( theta , x BK , x BP , x BQ , x actPt ,

x actQt , y BK , y BP , y BQ , y actKt , y actPt , z BK , z BP , z BQ , z actKt , z actQt ) ) ) .

T) , d e l im i t e r = ’ , ’ , fmt = ’%1.1 f %1.3 f ’ )

266 np . savetxt ( ’E BB . txt ’ , ( np . vstack ( ( theta deg , e p s i l o n y ( theta , x BK , x BP , x BQ , x actPt ,

x actQt , y BK , y BP , y BQ , y actKt , y actPt , z BK , z BP , z BQ , z actKt , z actQt ) ) ) .

T) , d e l im i t e r = ’ , ’ , fmt = ’%1.1 f %1.3 f ’ )

267 np . savetxt ( ’E CB . txt ’ , ( np . vstack ( ( theta deg , e p s i l o n z ( theta , x BK , x BP , x BQ , x actPt ,

x actQt , y BK , y BP , y BQ , y actKt , y actPt , z BK , z BP , z BQ , z actKt , z actQt ) ) ) .

T) , d e l im i t e r = ’ , ’ , fmt = ’%1.1 f %1.3 f ’ )
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D.2 Python Script for Calculating the Average Error and Mea-

surement Variability of the Rotational Axes

1 import numpy as np

2 import matp lo t l i b . pyplot as p l t

3

4

5 de f average ( parameter ) :

6 Er ro r va lu e s = [ ]

7 Average va lues = np . z e r o s (19)

8 Error = np . z e r o s ( ( 2 , 19) )

9 Std dev = np . z e r o s (19)

10 Std dev percent = np . z e r o s (19)

11 f o r i in range (4 ) :

12 with open ( f ’Round { i +1}\{parameter } . tx t ’ ) as f i l e :

13 d0 = f i l e . read ( )

14 d1 = d0 . s p l i t ( ’ \n ’ )

15 d1 . pop(−1)

16 d2 = [ i . s p l i t ( ’ ’ ) f o r i in d1 ]

17 d2 = np . array ( d2 )

18 d2 = d2 . astype (np . f l o a t 6 4 )

19

20 command pos = np . array ( [ d2 [ j ] [ 0 ] f o r j in range ( l en ( d2 ) ) ] )

21 Er ro r va lu e s . append ( d2 [ : , 1 ] )

22 Er ro r va lu e s = np . array ( Er ro r va lu e s )

23 Er ro r va lu e s = np . concatenate ( ( Er ro r va lu e s [ 0 ] , E r r o r va lu e s [ 1 ] , \
24 Er ro r va lu e s [ 2 ] , E r r o r va lu e s [ 3 ] ) )

25 Er ro r va lu e s = np . reshape ( Error va lue s , (4 , 19) )

26 f o r i in range (19) :

27 Average va lues [ i ] = np . sum( Er ro r va lu e s [ : , i ] ) /4

28 Error [ 0 , i ] = abs ( Er ro r va lu e s .max( ax i s = 0) [ i ] − Average va lues [ i ] )

29 Error [ 1 , i ] = abs ( Er ro r va lu e s . min ( ax i s = 0) [ i ] − Average va lues [ i ] )

30 f o r i in range (4 ) :

31 f o r j in range (19) :

32 Er ro r va lue s minus ave rage = Er ro r va lu e s − Average va lues

33 Squared = Erro r va lue s minus ave rage ∗∗2
34 Std dev [ j ] = np . sq r t (np . sum( Squared , ax i s = 0) [ j ] / 3 )

35 Avg std dev = np . sum( Std dev ) / l en ( Std dev )

36 Max std dev = np .max( Std dev )

37 i f Average va lues [ j ] == 0 :

38 Std dev percent [ j ] = 0

39 e l s e :

40 Std dev percent [ j ] = abs ( Std dev [ j ] / Average va lues [ j ] ) ∗ 100

41 Avg std dev percent = np . sum( abs ( Std dev ) ) /np . sum( abs ( Average va lues ) ) ∗ 100

42 re turn command pos , Er ro r va lue s , Average values , Error , Std dev , \
43 Max std dev , Avg std dev , Std dev percent , Avg std dev percent

44

45 f i g , axs = p l t . subp lo t s (3 , 2)

46

47 axs [ 0 , 0 ] . e r r o rba r ( average ( ’E XB ’ ) [ 0 ] , average ( ’E XB ’ ) [ 2 ] , \
48 yer r = average ( ’E XB ’ ) [ 4 ] ∗ 2 , e c o l o r = ’k ’ , c ap s i z e = 3)

49 axs [ 0 , 0 ] . s e t ( x l ab e l = r ’ $y$ , $ [mm] $ ’ , y l ab e l = r ’ $E {XB}$ , $ [\mu m] $ ’ )

50 axs [ 0 , 0 ] . s c a t t e r ( average ( ’E XB ’ ) [ 0 ] , average ( ’E XB ’ ) [ 2 ] )

51

52 axs [ 1 , 0 ] . e r r o rba r ( average ( ’E YB ’ ) [ 0 ] , average ( ’E YB ’ ) [ 2 ] , \
53 yer r = average ( ’E YB ’ ) [ 4 ] ∗ 2 , e c o l o r = ’k ’ , c ap s i z e = 3)

54 axs [ 1 , 0 ] . s e t ( x l ab e l = r ’ $y$ , $ [mm] $ ’ , y l ab e l = r ’ $E {YB}$ , $ [\mu m] $ ’ )

55 axs [ 1 , 0 ] . s c a t t e r ( average ( ’E YB ’ ) [ 0 ] , average ( ’E YB ’ ) [ 2 ] )

56

57 axs [ 2 , 0 ] . e r r o rba r ( average ( ’E ZB ’ ) [ 0 ] , average ( ’E ZB ’ ) [ 2 ] , \
58 yer r = average ( ’E ZB ’ ) [ 4 ] ∗ 2 , e c o l o r = ’k ’ , c ap s i z e = 3)

59 axs [ 2 , 0 ] . s e t ( x l ab e l = r ’ $y$ , $ [mm] $ ’ , y l ab e l = r ’ $E {ZB}$ , $ [\mu m] $ ’ )
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60 axs [ 2 , 0 ] . s c a t t e r ( average ( ’E ZB ’ ) [ 0 ] , average ( ’E ZB ’ ) [ 2 ] )

61

62 axs [ 0 , 1 ] . e r r o rba r ( average ( ’E AB ’ ) [ 0 ] , average ( ’E AB ’ ) [ 2 ] , \
63 yer r = average ( ’E AB ’ ) [ 4 ] ∗ 2 , e c o l o r = ’k ’ , c ap s i z e = 3)

64 axs [ 0 , 1 ] . s e t ( x l ab e l = r ’ $y$ , $ [mm] $ ’ , y l ab e l = r ’ $E {AB}$ , $ [\mu rad ] $ ’ )

65 axs [ 0 , 1 ] . s c a t t e r ( average ( ’E AB ’ ) [ 0 ] , average ( ’E AB ’ ) [ 2 ] )

66

67 axs [ 1 , 1 ] . e r r o rba r ( average ( ’E BB ’ ) [ 0 ] , average ( ’E BB ’ ) [ 2 ] , \
68 yer r = average ( ’E BB ’ ) [ 4 ] ∗ 2 , e c o l o r = ’k ’ , c ap s i z e = 3)

69 axs [ 1 , 1 ] . s e t ( x l ab e l = r ’ $y$ , $ [mm] $ ’ , y l ab e l = r ’ $E {BB}$ , $ [\mu rad ] $ ’ )

70 axs [ 1 , 1 ] . s c a t t e r ( average ( ’E BB ’ ) [ 0 ] , average ( ’E BB ’ ) [ 2 ] )

71

72 axs [ 2 , 1 ] . e r r o rba r ( average ( ’E CB ’ ) [ 0 ] , average ( ’E CB ’ ) [ 2 ] , \
73 yer r = average ( ’E CB ’ ) [ 4 ] ∗ 2 , e c o l o r = ’k ’ , c ap s i z e = 3)

74 axs [ 2 , 1 ] . s e t ( x l ab e l = r ’ $y$ , $ [mm] $ ’ , y l ab e l = r ’ $E {CB}$ , $ [\mu rad ] $ ’ )

75 axs [ 2 , 1 ] . s c a t t e r ( average ( ’E CB ’ ) [ 0 ] , average ( ’E CB ’ ) [ 2 ] )

76

77 np . savetxt ( ’E XB avg . . txt ’ , ( np . vstack ( ( average ( ’E XB ’ ) [ 0 ] , average ( ’E XB ’ ) [ 2 ] , \
78 average ( ’E XB ’ ) [ 4 ] ) ) .T) , d e l im i t e r = ’ , ’ , fmt = ’%1.1 f %1.3 f %1.3 f ’ )

79

80 np . savetxt ( ’E YB avg . . txt ’ , ( np . vstack ( ( average ( ’E YB ’ ) [ 0 ] , average ( ’E YB ’ ) [ 2 ] , \
81 average ( ’E YB ’ ) [ 4 ] ) ) .T) , d e l im i t e r = ’ , ’ , fmt = ’%1.1 f %1.3 f %1.3 f ’ )

82

83 np . savetxt ( ’ E ZB avg . . txt ’ , ( np . vstack ( ( average ( ’E ZB ’ ) [ 0 ] , average ( ’E ZB ’ ) [ 2 ] , \
84 average ( ’E ZB ’ ) [ 4 ] ) ) .T) , d e l im i t e r = ’ , ’ , fmt = ’%1.1 f %1.3 f %1.3 f ’ )

85

86 np . savetxt ( ’E AB avg . . txt ’ , ( np . vstack ( ( average ( ’E AB ’ ) [ 0 ] , average ( ’E AB ’ ) [ 2 ] , \
87 average ( ’E AB ’ ) [ 4 ] ) ) .T) , d e l im i t e r = ’ , ’ , fmt = ’%1.1 f %1.3 f %1.3 f ’ )

88

89 np . savetxt ( ’ E BB avg . . txt ’ , ( np . vstack ( ( average ( ’E BB ’ ) [ 0 ] , average ( ’E BB ’ ) [ 2 ] , \
90 average ( ’E BB ’ ) [ 4 ] ) ) .T) , d e l im i t e r = ’ , ’ , fmt = ’%1.1 f %1.3 f %1.3 f ’ )

91

92 np . savetxt ( ’ E CB avg . . txt ’ , ( np . vstack ( ( average ( ’E CB ’ ) [ 0 ] , average ( ’E CB ’ ) [ 2 ] , \
93 average ( ’E CB ’ ) [ 4 ] ) ) .T) , d e l im i t e r = ’ , ’ , fmt = ’%1.1 f %1.3 f %1.3 f ’ )
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Appendix E

Curve Fit Function for the

Rotational Axes

1 import numpy as np

2 import matp lo t l i b . pyplot as p l t

3

4 # =============================================================================

5 # ” c u r v e f i t ” takes the name o f the e r r o r parameter and the degree o f the poly−
6 # nomial you want to f i t to the measured data as inputs . I t then uses numpy . po−
7 # l y f i t to f i t a polynomial o f the de s i r ed degree to the measured data . The fu−
8 # nct ion a l s o f i t s a r e f e r e n c e s t r a i g h t l i n e to the measured data and ca l cu l a−
9 # te s the ang le between i t and the nominal ax i s . The func t i on r e tu rn s an array

10 # conta in ing the d i sp lacements along the ax i s where the measurements were made

11 # ( Axis ) , the va lue s o f the e r r o r parameter ( e r ro r paramete r ) , an array o f axi−
12 # s−di sp lacements in whole m i l l ime t e r s ( ax i s ) , an array conta in ing the va lue s

13 # of the a n a l y t i c a l e r r o r model f o r every value in ” ax i s ” , the mean squared er−
14 # ror o f the curve f i t . I f app l i c ab l e , the func t i on a l s o r e tu rn s an array con−
15 # a in ing the va lue s o f the r e f e r e n c e s t r a i g h t l i n e f o r every value in ”Axis ”

16 # and the ang le between i t and the nominal ax i s .

17 # =============================================================================

18

19 de f c u r v e f i t ( e r ro r , degree ) :

20

21 # Treat ing the text f i l e conta in ing the e r r o r parameters

22

23 with open ( f ’ { e r r o r } . tx t ’ ) as f i l e :

24 d0 = f i l e . read ( )

25 d1 = d0 . s p l i t ( ’ \n ’ )

26 d2 = [ i . s p l i t ( ’ , ’ ) f o r i in d1 ]

27 d3 = [ d2 [ i ] [ 0 ] . s p l i t ( ’ ’ ) f o r i in range ( l en ( d2 ) ) ]

28

29 Axis = np . z e r o s ( l en ( d3 )−1)

30 e r ro r paramete r = np . z e r o s ( l en ( d3 )−1)

31

32 f o r i in range ( l en ( d3 )−1) :

33 Axis [ i ] = f l o a t ( d3 [ i ] [ 0 ] )

34 e r ro r paramete r [ i ] = f l o a t ( d3 [ i ] [ 1 ] )

35

36 # F i t t i n g the polynomial to the measured data

37

38 cu rv e e r r o r = np . p o l y f i t ( Axis , e r ror parameter , degree , f u l l = True , \
39 cov = False )

40 i f c u r v e e r r o r [ 1 ] . s i z e > 0 :

41 r e s i d u a l e r r o r = cu rv e e r r o r [ 1 ] [ 0 ]

42 MSE error = r e s i d u a l e r r o r / l en ( e r ro r paramete r )

43
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44 # Construct ing the array o f ax i s−di sp lacements

45

46 i f Axis [−1] < 0 :

47 ax i s = np . arange (0 , Axis [−1] − 1 , −1.)

48 e l s e :

49 ax i s = np . arange (0 , Axis [−1] + 1 , 1 . )

50

51 er ror mode l = np . array ( cu r v e e r r o r [ 0 ] [ 0 ] ∗ ax i s ∗∗ degree )

52 i f degree == 1 :

53 er ror mode l = er ror mode l + cu rv e e r r o r [ 0 ] [ 1 ]

54 e l s e :

55 f o r i in range (1 , degree ) :

56 er ror mode l = er ror mode l + cu rv e e r r o r [ 0 ] [ i ] ∗ ax i s ∗∗( degree − i )

57

58 re turn Axis , e r ror parameter , ax i s , e rror model , MSE error
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