
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

Eivind Strøm

Evaluation of Multi-step Forecasting
Models

An Empirical Deep Learning Study

Master’s thesis in Computer Science
Supervisor: Odd Erik Gundersen
August 2021M

as
te

r’s
 th

es
is

Eivind Strøm

Evaluation of Multi-step Forecasting
Models

An Empirical Deep Learning Study

Master’s thesis in Computer Science
Supervisor: Odd Erik Gundersen
August 2021

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science

i

Preface

This thesis was produced as part of achieving the degree Master of Science at the Norwegian
University of Science and Technology, NTNU, in Trondheim, Norway. The field of specializa-
tion is Artificial Intelligence at Department of Computer Science. The thesis is independent
work by Eivind Strøm and is motivated by professional and academic interests in the fields
of deep learning and time series forecasting.

I want to sincerely thank my supervisor, Adjunct Associate Professor Odd Erik Gundersen for
deeply valuable discussions and guidance during the semester. Lastly, I would like to thank
my friends and family for their continuous support in this period.

Eivind Strøm

Trondheim, 02 August, 2021

ii

Sammendrag

Denne masteroppgaven omhandler evaluering av metoder for flerperiodeprediksjon av tids-
serier ved å gjennomføre en empirisk studie med dype læringsmodeller. I dag blir modeller
for flerperiodeprediksjon evaluert ved at en bruker en eller flere evalueringsmetrikker og ag-
gregerer resultatene for å få ett enkelt tall på hvor god en modell er. Denne metoden kan
føre til at informasjon som er viktig for modellutviklere og industri faller bort i aggregering-
sprosedyren. For å gi bedre informasjon til utviklere som skal evaluere modeller foreslår vi
fire nye evalueringsmetrikker: 1) en metrikk som rangerer modeller basert på antall serier
modellen er best og dårligst på i et datasett. 2) en variansvektet metrikk som hensyntar for-
skjeller i varians over sesongperioder. 3) en delta-horisont metrikk som måler hvor mye hver
modell endrer på sin prognose over prediksjonsperioden. 4) en dekomponert metrikk som
relaterer evalueringen av prediksjoner til tidsseriekonseptene trend, sesong, støy og tid. For
å vise hvordan de foreslåtte metrikkene kan anvendes implementerer vi fire dype lærings-
modeller og gjennomfører eksperimenter på fem datasett. Resultatene viser hvordan den
nåværende metoden for å evaluere prediksjoner via aggregering skjuler viktig informasjon,
og vi viser viktigheten av å hensynta sesongvariasjoner samt evaluering per tidsserie. Vi viser
også hvordan de foreslåtte metrikkene kan brukes i flere sammenhenger, og diskuterer an-
vendbarheten av metrikkene i lys av de empiriske resultatene.

iii

Abstract

This thesis addresses the evaluation of multi-step point forecasting models by conducting
an empirical deep learning study. Currently, deep learning models for multi-step forecast-
ing are evaluated on datasets by selecting one or several error metrics and aggregating errors
across the time series and the forecast horizon. This approach hides insights that would
otherwise be useful for practitioners and industry when evaluating and selecting the best
forecasting models. We propose four novel metrics to provide additional insights when eval-
uating models: 1) a win-loss ranking metric that shows how models perform across time
series in the dataset. 2) a variance weighted metric that accounts for differences in variance
across the seasonal period. 3) a delta horizon metric measuring how much models update
their estimates over the forecast horizon. 4) decomposed errors that relate the forecasting
error to trend, seasonality, and noise. To show the applicability of the proposed metrics, we
implement four recent deep learning architectures and conduct experiments on five bench-
mark datasets. Our results show how the current approach of aggregating metrics neglects
valuable information and we show the importance of considering seasonality and errors on
individual time series. Lastly, we highlight several use cases for the proposed metrics and
discuss the applicability in light of the empirical results.

Keywords: Multi-step forecasting, Performance metrics, Empirical study, Deep learning, AI,
DeepAR, TFT

Table of Contents

1 Introduction 1

2 Background 3
2.1 Fundamental Components of Time Series . 3
2.2 Time Series Forecasting . 4
2.3 Performance Metrics . 5
2.4 State Space Models . 7
2.5 Deep Learning Architectures for Forecasting . 8

3 Literature Review 10

4 Methodology 13
4.1 Metrics for Evaluating Multi-step Forecasts . 13
4.2 Forecasting Models . 19

5 Experiments 26
5.1 Datasets and Processing . 26
5.2 Training and Forecasting Procedure . 28
5.3 Implementation . 31

6 Results and Discussion 32
6.1 Baseline Evaluation . 32
6.2 Weighting Errors by Variance . 34
6.3 Evaluation Over the Forecast Horizon . 36
6.4 Error Decomposition . 39
6.5 Temporal Distortion . 40

7 Conclusion and Future Work 41

References 42

A Supplementary Material 50

iv

List of Tables

2.1 Overview of performance metrics based on forecast errors 6

5.1 Overview of datasets, dataset metadata and static parameters employed for ex-
periments . 27

5.2 Overview of the covariates added to the DeepAR and TFT model for each dataset 30
5.3 Overview of search ranges for Optuna hyperparameter optimization 31

6.1 Results in terms of MASE and RMSSE aggregated across the prediction horizon
and each time series . 32

6.2 Results in terms of the win-loss ranking metric calculated based on MASE and
RMSSE for each time series . 34

6.3 Results in terms of aggregated RMSSE and RMSSEVM for each model and dataset 36
6.4 Results for the ∆H metric for each model and dataset 38
6.5 Results in terms of decomposed errors for pT and p1 39
6.6 Results in terms of mean TDI and mean TDM computed for every model and

dataset . 40

A.1 Final hyperparameters for the DeepAR model . 50
A.2 Final hyperparameters for the Seq2Seq model . 50
A.3 Final hyperparameters for the TCN model . 50
A.4 Final hyperparameters for the TFT model . 51

v

List of Figures

2.1 An example showcasing the STL decomposition of an electricity consumption
time series . 4

4.1 An example of daily traffic occupancy plotted for 30 consecutive days 16
4.2 Overview of a generic sequence-to-sequence architecture 21
4.3 Overview of the TFT architecture . 25

6.1 Results in terms of RMSSE and variance weighted RMSSE computed per hour
of day for the electricity, traffic and solar datasets 35

6.2 Results in terms of RMSSE computed per forecast horizon for all datasets 37
6.3 Results in terms of the delta horizon metric computed per forecast horizon for

all datasets . 38

A.1 Results in terms of RMSSE and variance weighted RMSSE computed per day of
week for the volatility and wind datasets . 51

A.2 The distribution of the TDI and TDM metrics computed on the traffic dataset . 52

vi

Acronyms

AIC Akaike Information Criterion.

AR AutoRegressive.

ARIMA AutoRegressive Integrated Moving Average.

ASE Absolute Scaled Error.

GRN Gated Residual Network.

LSTM Long Short Term Memory.

MA Moving Average.

MAE Mean Absolute Error.

MASE Mean Absolute Scaled Error.

MLE Maximum Likelihood Estimation.

MSE Mean Squared Error.

RMSE Root Mean Squared Error.

RMSSE Root Mean Squared Scaled Error.

RNN Recurrent Neural Network.

SARIMA Seasonal AutoRegressive Integrated Moving Average.

Seq2Seq Sequence-to-Sequence.

sMAPE Symmetric Mean Absolute Percentage Error.

SSE Squared Scaled Error.

SSM State Space Model.

STL Seasonal-Trend decomposition based on Loess.

TCN Temporal Convolutional Network.

TDI Temporal Distortion Index.

TDM Temporal Distortion Mix.

TFT Temporal Fusion Transformer.

VW Variance Weighted.

vii

1 | Introduction

Time series forecasting has been a prominent research field since the early 1980s, when the
Journal of Forecasting and International Journal of Forecasting were founded. Between 1982
and 2005, over 940 papers were published, a summary of which is given by De Gooijer and
Hyndman [1]. The modeling and forecasting of time series have been a key part of academic
research due to its many important real-world applications, including: forecasting wind and
solar power generation [2, 3], traffic [4], demand forecasting[5], trend analysis of climate
change [6], data-driven medicine applications [7] and the forecasting of financial indices [8].
In most applications, it is important to produce forecasts for several time points in the future
to allow decision making based on predicted trends. This is known as multi-step forecasting
and has historically, despite its many applications, been less studied compared to one-step
forecasts [9]. Nonetheless, multi-step forecasting remains a critical part of several real-world
applications and has begun to see an increase in attention, especially in the deep learning
community [10].

A major contributor to advances in the field of time series forecasting has been large scale
empirical studies, designed to empirically evaluate methods and comparing newly proposed
models to the state-of-the-art [11]. However, despite having a long history, the problem of
objectively evaluating the results of such studies remains an issue in the field. For example,
the results of the M3 competition have been revisited and discussed on several occasions
[12, 13, 14, 15]. Fildes et al. [16] established early on that the ranking of the performance
of various methods will vary depending on the performance metric used in the evaluation.
Thus, research on developing robust and widely applicable metrics has been a prominent
subject in the field [17]. Yet, Makridakis et al. [15] most recently raised concerns for the
need of objective and unbiased ways to compare and test the performance of forecasting
methods. Hence, the evaluation and testing of model performance is still a problem that
poses the need for further research.

Despite academicians not agreeing on a single best performance metric (if such a metric
even exists, see e.g., [18]), several empirical studies have been conducted and evaluated by
different performance metrics [19]. We find that most empirical studies on multi-step fore-
casting proceed by evaluating models on several time series or datasets and aggregate the
errors across the time series and the forecast horizon using some performance metric. This
approach of aggregating the results allows researchers to draw general recommendations
and conclusions. However, general recommendations are of limited use during the actual
evaluation to be performed by a practitioner in an industry setting. Important questions
such as: "Does the model perform well on all datasets? Will a combination of models per-
form better than a single model?" and "How does the model perform in terms of the seasonal
period? Does the model frequently update its estimates across the forecast horizon or are the
forecasts relatively stable?" Such questions would be useful to answer in the evaluation and

1

CHAPTER 1. INTRODUCTION 2

selection of models for industry applications, and we hypothesize that the aggregation of
metrics through averaging hides these insights that would otherwise be useful to the practi-
tioner.

Our main research question, therefore, is: Does evaluating forecasting models by using ag-
gregated metrics neglect insights on model performance, and can new metrics provide novel
insights to the practitioner that develops and evaluates models for industry applications?

The purpose of this thesis is to improve the insights gained when evaluating multi-step
point forecasting models. First, we propose four novel performance metrics to provide in-
dustry practitioners with additional insights when evaluating models: 1) a win-loss rank-
ing metric that shows how models perform across time series in the dataset. 2) a variance
weighted metric that accounts for differences in variance across the seasonal period. 3) a
delta horizon metric that measures how much a model updates its forecasts during the fore-
cast horizon. 4) decomposed errors that relate the forecasting error to trend, seasonality, and
noise. Additionally, we employ a recently proposed metric for measuring error in terms of
temporal alignment.

Second, we conduct an empirical deep learning study to show the applicability of the
proposed metrics in different scenarios. For this purpose, we implement five forecasting
models that have been prominent in the recent literature on multi-step forecasting with
deep learning. We train the models on five well-researched benchmark datasets that exhibit
distinct characteristics and are representative for real-world industry applications. The em-
pirical study extends the current literature on evaluation of deep learning models. It is also,
to our knowledge, one of few works that implement, train, and evaluate each model within
the same framework.

Furthermore, we show why the use of aggregated metrics can hide aspects of the exper-
imental results that should be important for practitioners and industry. We do this through
an extensive evaluation of the experimental results, highlighting several use cases for the
proposed metrics. Our results indicate that no single model is best on any dataset, and a
combination of models is likely to perform better. We find significant differences in how
stable forecasts are over the forecast horizon as measured by the delta horizon metric. Lastly,
the results indicate that improved accuracy over the forecast horizon largely stems from im-
proved prediction of the time series trend component.

The remainder of the thesis is structured as follows: Preliminary background for under-
standing and developing the methodology is presented in chapter 2. Chapter 3 presents a
review of related work and our contributions to the literature. Chapter 4 presents the pro-
posed evaluation metrics and the models that are applied in our experiments. The experi-
mental setting is presented in chapter 5 and obtained results are evaluated and discussed in
chapter 6. Lastly, chapter 7 concludes the thesis and suggests directions for future research.

2 | Background

This chapter provides background and preliminary theory necessary for developing the meth-
odology of chapter 4. The first two sections introduce fundamental concepts of time series
and forecasting, in addition to notation that will be used throughout this thesis. Section
2.3 describes commonly employed performance metrics that we will build upon to propose
new metrics. Lastly, section 2.4 and section 2.5 introduce the underpinnings of state space
models and deep learning architectures for forecasting, which we use in our empirical ex-
periments.

2.1 Fundamental Components of Time Series

We begin by defining a univariate time series Y of length n as an ordered sequence of ob-
servations Y = (y1, y2, . . . , yn), where yt ∈ R is the observation at time t for t ∈ {0,1, . . .n}. A
useful way of interpreting a univariate time series is to decompose it into three components
by performing a time series decomposition. The additive decomposition model is written as

yt = Tt +St +Rt , (2.1)

and the multiplicative model as
yt = Tt ×St ×Rt , (2.2)

where yt is the time series data point, Tt is the trend-cycle component of the series, St is the
seasonal component and Rt is the remaining component, all observed at time t [20]. There
are several ways to decompose a time series, including classical decomposition, X-11, SEATS
and STL. We will focus on STL, which is short for Seasonal-Trend decomposition based on
Loess, and use it to relate error metrics to trend, season, and noise in chapter 4. Decompos-
ing a time series allows us to determine the characteristics of a time series and can be useful
when interpreting its underlying drivers. Furthermore, the concept of trend, season and re-
mainder components are fundamental to state space models, which we introduce later in
this chapter.

Figure 2.1 shows the STL decomposition of an electricity consumption time series. We
can see that the trend-cycle component, Tt , captures the general momentum and direc-
tion of the time series while ignoring seasonality and random fluctuations. In contrast, the
seasonal component captures any seasonality within a defined seasonal period m, and the
remainder captures leftover movement, commonly referred to as noise. STL is a robust and
versatile filtering procedure for time series decomposition that allows the seasonal compon-
ent to vary over time [21]. In general, when performing a decomposition, we have to specify
a seasonal periodicity m for which the decomposition is to be performed, e.g., m = 24 for
hourly measured traffic where each season is defined as a day. For further details on how the

3

CHAPTER 2. BACKGROUND 4

0 15 30 45 60 75 90 105 120
Index

30.00

40.00

50.00

60.00
Da

ta

0 15 30 45 60 75 90 105 120
Index

35.00

36.00

37.00

38.00

39.00

40.00

Tr
en

d

0 15 30 45 60 75 90 105 120
Index

-10.00

-5.00

0.00

5.00

10.00

15.00

Se
as

on

0 15 30 45 60 75 90 105 120
Index

-4.00

-2.00

0.00

2.00

4.00

6.00

Re
m

ai
nd

er

Figure 2.1: An example showcasing the STL decomposition of an electricity consumption time series

STL decomposition is computed, we refer to [20, 21]. In the next section, we define notation
and methods for multi-step time series forecasting.

2.2 Time Series Forecasting

The general goal of time series forecasting is to predict the target yi ,t at time t given an entity
i and prior observations yi ,t−k , where k is the lookback window. The entity i , which also
can be referred to as a group, represents a logical grouping of temporal information which
we refer to as a single time series. This could be a sensor producing data points at regular
intervals or tracking the electricity consumed by a client or household. When we collect
several entities of the same type, i.e., several sensors measuring traffic, we refer to the set
of entities as a time series dataset. Formalizing the above, we can express a one-step-ahead
forecast as

ŷi ,t+1 = f (yi ,t−k:t ,xi ,t−k:t ,si), (2.3)

where ŷi ,t+1 is the forecasted value, yi ,t−k:t = {yi ,t−k , . . . , yi ,t } are prior observations of the tar-
get, xi ,t−k:t = {xi ,t−k , . . . ,xi ,t } are any exogenous inputs, si is static metadata, e.g, sensor loca-
tion, and f (·) is the prediction function learned by the model [10]. Although one-step-ahead
forecasts are useful, several applications require predictions for multiple time steps into the
future. Notable examples are the future prediction of power consumption for power trading,
wind and solar power generation for grid balancing, and prediction of highway congestion
for traffic rerouting and optimization. We will refer to the process of forecasting several steps
into the future as multi-step forecasting,1 which can be written as

ŷt+τ = f (yt−k:t ,xt−k:t ,ut−k:t+τs,τ), (2.4)

1Note that some literature refer to multi-step forecasting as multi-horizon forecasting. We prefer to use
multi-step as the notion of horizon pertains to how far into the future one would like to forecast. Thus, multi-
horizon can easily be confused with predicting over several different time horizons.

CHAPTER 2. BACKGROUND 5

where τ ∈ {1, . . . ,T } is the discrete forecast horizon, ut−k:t = {xt−k , . . . ,xt , . . . ,xt+T } are known
covariates such as date-time information and xt are historically observed exogenous inputs
[10]. Note that we have omitted the entity notation i in Equation 2.4 for brevity.

There are two main approaches for obtaining multi-step forecasts: iterative methods and
direct methods. Iterative approaches typically involve the application of a one-step-ahead
model and recursively feeding the model its own predictions to generate τ-step-ahead pre-
dictions. Therefore, any one-step-ahead model can effectively be used for multi-step fore-
casts. However, the error produced for each time step accumulates and can potentially
lead to poor performance on longer prediction horizons [9]. Direct approaches attempt to
deal with this issue by directly forecasting all time steps, which is the approach taken by
sequence-to-sequence deep learning architectures [22].

A common way to benchmark time series forecasts is to compare them with the naive
method for forecasting [20]. The naive method assumes that all future forecasts are equal to
the previously observed value. When the time series is seasonal, we adjust the method by
using the value observed at the same period in the previous season. Lastly, the naive method
can also be applied for multi-step forecasting, in which case the previously observed value
is used as the forecast for the future T steps. The naive, seasonal naive, and multi-step naive
methods are given by

Naive : ŷt = yt−1,

Seasonal naive : ŷt = yt−m ,

Multi-step naive : ŷt+T = yt−1,

(2.5)

where m is the seasonal period and T is the maximum forecast horizon. Naive forecasts
are useful for benchmarking models, and is the baseline commonly employed for comput-
ing scaled errors as a performance metric. In the next section, we elaborate on scaled errors
and other performance metrics commonly applied in the literature, in addition to their in-
dividual merits and issues.

2.3 Performance Metrics

In this section, we provide an overview of the range of error metrics that have been proposed
to measure the performance of deterministic point forecasts. Furthermore, we discuss how
the same metrics are extended and applied to multi-step forecasts by aggregating over the
forecast horizon. Note that the literature interchangeably refers to performance metrics as
accuracy measures, performance measures and evaluation metrics, to name a few. We will
prefer the use of performance metric when referring to any metric that assesses the perform-
ance of point forecasts in any given way.

Assessing the accuracy of forecasting models is a challenging task due to the diversity
of available time series, forecasting models, and different time series characteristics, as we
have previously seen. Several metrics for forecasting performance have been proposed in
the past. De Gooijer and Hyndman [1] provide a list of the most commonly used metrics
before 2006, with further elaboration and review provided by Hyndman and Koehler [17].
The most common metrics for evaluating forecast performance are based on measuring the
error between the predicted values, ŷt , and the ground truth values, yt . We will refer to such
metrics more specifically as error metrics.

CHAPTER 2. BACKGROUND 6

Given a time series with n observations, let yt denote the ground truth value at time t
and ŷt denote the forecasted value for yt . Then, the forecast error at time t , et , is defined
as et = yt − ŷt . Provided a distribution of errors, the goal of selecting a metric is to provide
an informative and clear summary of the error distribution while being aware that the se-
lection of an appropriate metric will be highly dependent on the context in which it is used
[23]. Table 2.1 provides an overview of the most commonly applied error metrics from five
main classes. In the table, we introduce relative errors where e∗

t denotes a benchmark fore-
cast error obtained by e∗

t = yt − ŷ∗
t , where ŷ∗

t is the forecast of some benchmark method for
comparison. Like Hyndman and Koehler [17], we will use the notation mean(et) to denote
the sample mean of errors {et } over the period of interest, where the period could comprise
of observations from the training, validation or test set depending on the context. Next, we
briefly present the advantages and disadvantages associated with each class of error metrics.

Table 2.1: Overview of performance metrics based on forecast errors

Metric Class Equation

MSE Mean Squared Error Scale-dependent mean
(
e2

t

)
RMSE Root Mean Squared Error Scale-dependent

p
MSE

MAE Mean Absolute Error Scale-dependent mean
(|et |

)
MAPE Mean Absolute Percentage Error Percentage based mean

(|et |
|yt |

)
sMAPE Symmetric Mean Absolute Percentage Error Percentage based mean

(2×|et |
|yt |+|ŷt |

)
MRAE Mean Relative Absolute Error Relative errors mean

(| et
e∗t
|)

RelMAE Relative Mean Absolute Error Relative measures M AE
M AE∗

MASE Mean Absolute Scaled Error Scaled errors mean
(|et |

mean(|yt−yt−1|)
)

Note: Variants using median and geometric mean instead of the mean exist for most of the measures.

Scale-dependent metrics are dependent on the scale of the data and should only be ap-
plied when comparing forecasts on the same dataset. While being easy to compute and un-
derstand, they tend to be sensitive to extreme outliers and consequently can produce biased
results [23, 24]. Common scale-dependent measures include mean squared error (MSE),
root mean squared error (RMSE) and mean absolute error (MAE). Note that RMSE is widely
preferred over MSE as a performance metric, because the root operation returns errors on
the same scale as the data. The use of RMSE in the first M-competition2 was widely criticized
due to the aforementioned problems [26, 27].

Percentage-based error metrics was proposed to be scale-independent, and thus can
be used to compare forecast methods across datasets of differing scales. Mean absolute per-
centage error (MAPE) was used in the first M-competition, however, has been criticized for
producing anomalies when observed values are close to or equal to zero, and has a bias favor-
ing forecasts that are below the observed values [28]. Symmetric mean absolute percentage
error (sMAPE) was proposed to combat the bias of MAPE, however, has also been criticized

2The M-competitions are a series of open forecasting competitions organized by Spyros Makridakis, the
latest of which was M5 held in 2020 [25].

CHAPTER 2. BACKGROUND 7

as an asymmetric metric and still has problems when yt and ŷt are close to zero [17]. Non-
etheless, sMAPE is more resilient to outliers compared to metrics without error bounds.

Relative errors metrics are based on relative errors and deal with scale-dependence by
dividing forecast errors by a benchmark error, e∗

t , often defined to be the result of the naive
method where ŷt = yt−1 and were first recommended by Armstrong and Collopy [23]. Al-
though intuitively appealing, relative error metrics have issues when e∗

t is small or equal to
0.

Relative metrics are similar to relative errors, and are produced by the ratio of an error
metric from the evaluated forecast method, e.g., MAE, and the error metric from a bench-
mark method, MAEb . Similar relative metrics can be defined using MSE, MAPE, etc.3 Al-
though relative metrics are appealing due to their interpretability, they suffer from the same
issues as the underlying base metric used in addition to requiring several forecasts on the
same series to compute [28].

Scaled error metrics were introduced to address all of the aforementioned issues. Hyndman
and Koehler [17] proposed the mean absolute scaled error (MASE) with the idea of scaling
errors based on in-sample MAE from a benchmark method such as the naive method. A
variant of MASE, root mean squared scaled error (RMSSE) was recently used to evaluate the
M5 competition for multi-step hierarchical forecasting [25].

The error metrics are extended to the multi-step forecasting case by simply pooling the
errors computed over the entire forecast horizon and computing the aggregate measure
across all time steps to obtain a single value. This method of pooling and aggregating is com-
monly applied when evaluating a large number of models in empirical studies and forecast-
ing competitions, see e.g., [30, 15, 31]. Although other performance metrics exist, they are
typically custom made for a specific context or situation in which more creative evaluations
of forecasts are possible. These are typically industry settings, where notable examples are
the evaluation of solar power forecasting [32], solar irradiance forecasting [33] and activity
recognition [34]. Although these possibilities are interesting, we aim to propose metrics that
are applicable across a wide range of applications and not only for very specific time series.
In the following two sections, we present background on state space models and deep learn-
ing architectures for multi-step forecasting.

2.4 State Space Models

State space models (SSMs) comprise a class of forecasting models that directly incorporate
structural assumptions into the model. The distinguishing characteristic of SSMs is that ob-
servations are considered a composition of components that are modeled separately, such
as trend, season, and noise. State space models are flexible and able to handle a wide range
of problems when the structure of the time series is well understood [35]. Prominent ex-
amples of SSMs include the autoregressive integrated moving average (ARIMA) model [36]
and exponential smoothing [37]. In this thesis, we apply seasonal ARIMA models (SARIMA)
as a baseline for comparison with deep learning models.

An important underpinning of the standard ARIMA model is the autoregressive compon-
ent, or AR model. In essence, an AR model forecasts future values by a linear combination
of its previous values. In other words, it is a multiple regression using lagged values of the

3Special cases include Theil’s U statistic, when the benchmark method is the naive forecast and the relative
metric is RMSE or RMSPE [29].

CHAPTER 2. BACKGROUND 8

target as regressors. Thus, the AR model can be written as

yt = c +φ1 yt−1 +φ2 yt−2 +·· ·+φp yt−p +εt , (2.6)

where εt is white noise andφ1, . . . ,φn are the parameters of the model [20]. We denote this as
an AR(p) model, where p is referred to as the order of the model and represents how many
lagged values of the target variable that is used to predict its future value.

Similar to the AR(p) model, we can define a moving average model, or MA(q) model
for short. In contrast to an autoregressive model, the moving average model resembles a
multiple regression using the current and previous forecast errors rather than the observed
data. The MA(q) model is written as

yt = c +εt +θ1εt−1 +θ2εt−2 +·· ·+θpεt−p , (2.7)

where εt is white noise and θ1, . . . ,θp are the parameters to be estimated [35]. Hyndman
and Athanasopoulos [20] notes that, applying the MA(q) model, "yt can be thought of as
a weighted moving average of the past few forecast errors." The AR and MA model will be
revisited when we formalize the ARIMA model in chapter 4.

An important precaution for applying AR and MA models is that we require the data to be
stationary. A stationary time series entails that statistical properties of the series, such as the
mean and variance, do not change over time [20]. In order to identify whether a series is sta-
tionary or not, one typically applies a KPSS test [38]. Furthermore, non-stationary time series
can be made stationary through the process of differencing. Differencing comprises several
transformations that can be applied to reduce variance and de-trend or de-seasonalize a
non-stationary time series. The KPSS test and combinations of these transformations are
typically incorporated in statistical software for estimating the ARIMA model, such as the
auto.arima function developed in the R language by Hyndman and Khandakar [39].

2.5 Deep Learning Architectures for Forecasting

An alternative approach to state space modeling is deep learning. Deep neural networks
have become increasingly popular for the task of multi-step forecasting during recent years,
due to their capability of extracting higher order features and identifying complex patterns
without the need for direct human intervention [40]. Furthermore, they can learn from sev-
eral time series without the need of fitting a separate model to every series, which is the case
for SSMs. This, however, comes with an increased need for training data and often reduced
interpretability.

Deep neural networks learn to predict by passing observations through a series of non-
linear transformations, i.e., layers, to learn more abstract and useful feature representations
[41]. In the context of time series, we can view the task of forecasting as encoding historical
information as a latent variable, zt , which is ultimately decoded to produce the forecast:

ŷt+τ = f (yt−k:t ,xt−k:t ,ut−k:t+τs,τ) = gdec (zt),

zt = genc (yt−k:t ,xt−k:t ,ut−k:t+τs,τ),
(2.8)

where ŷt+τ is the τ-step ahead forecast, and genc (·), gdec (·) are encoder and decoder func-
tions, respectively [10]. Encoders and decoders are the basic building blocks that make up
most of deep learning architectures, including architectures designed for temporal data.

CHAPTER 2. BACKGROUND 9

Recurrent neural networks [42] (RNNs) is a canonical network type for processing se-
quential data, which several more advanced architectures are built upon [43]. As time series
can be viewed as sequential data with a defined order, RNNs are also suitable for temporal
modeling. The basic component of an RNN is the RNN cells, which store temporal data in
the form of a hidden state:

zt = ν(zt−1, yt ,xt ,s), (2.9)

where zt is the hidden state (i.e., memory) of the RNN, and ν(·) is the learned memory update
function [10]. In the simplest case of Elman RNNs [44], the output sequence is computed by
iterating the following equations:

yt+1 =σ(Wy zt +by),

zt =σ(Wz1 zt−1 +Wz2 yt +Wz3 xt +Wz4 s+by),
(2.10)

where σ is the sigmoid activation function, xt are historically observed exogenous inputs
and s is static metadata [10]. RNNs are commonly implemented as the encoder and decoder
functions of Equation 2.8 in generic sequence-to-sequence networks [45, 22]. We will revisit
sequence-to-sequence networks and other architectures in chapter 4 when introducing the
models selected for experiments.

3 | Literature Review

The previous chapter presented preliminary theory on time series forecasting, performance
metrics and the general structure of forecasting models. In this chapter, we review the liter-
ature on time series forecasting and performance metrics that is relevant to our work.

Most relevant to this thesis is the literature focusing on the evaluation of forecasting
methods, i.e., research on performance metrics. Criteria for obtaining applicable and ro-
bust performance metrics have been defined and discussed in the literature: performance
metrics should be reliable, valid, robust to outliers, scale-independent, and provide an in-
formative summarization of the distribution of errors [23, 46]. Yet, performance metrics for
forecasting have been highly debated throughout the existence of the field of time series
forecasting. It has been well established that no single performance metric will be super-
ior for all situations, and the identification of the "best" point forecast is highly depend-
ent on the performance metric selected [47, 48, 16]. Nonetheless, several empirical studies
have been conducted in attempts to compare and identify the most accurate models despite
these observations [23, 19]. The most notable review on performance metrics was conducted
by Hyndman and Koehler [17], identifying the problems of current metrics and proposing
scaled errors and MASE as possible solutions.

Since Hyndman and Koehler [17], scaled errors have used in several studies and fore-
casting competitions [49, 15, 25] and have been identified as one of the better performance
metrics in terms of statistical properties [50]. Other metrics have also been proposed, such
as the unscaled mean bounded relative absolute error (UMBRAE) by Chen et al. [28], who
analyze the proposed metric and its favorable statistical properties. However, we note that
as the complexity of the metric increases (as is the case with UMBRAE), we find fewer stud-
ies applying the proposed metric.1 Moreover, as we previously mentioned, the best point
forecast will depend on the performance metric selected because different point forecasts
will minimize the expected errors for various metrics [18]. Therefore, in this thesis, instead
of focusing on proposing or selecting the single best error metric, we propose metrics that
provide additional insights to the forecast practitioner and industry.

The emphasis on conducting larger empirical studies to evaluate methods against es-
tablished baselines and state-of-the-art have been fundamental to the development of new
forecasting methods [11]. As such, the evaluation of forecasting models through empirical
studies and forecasting competitions have been a considerable feature of the Journal of Fore-
casting and the International Journal of Forecasting since their inception [19]. The first large
scale empirical studies were conducted in the form of forecasting competitions, the first
competition held by Makridakis et al. [51] in 1979 on a total of 1001 time series. The com-
petition was widely criticized for employing inappropriate error metrics [27]. Since then,
several empirical studies comparing forecasting models, different methods of preprocessing

1We have yet to find a paper employing UMBRAE as the selected performance metric.

10

CHAPTER 3. LITERATURE REVIEW 11

and analysis of direct versus indirect forecasting strategies have been conducted [14, 52, 9,
25]. However, we have yet to identify studies that propose new metrics that allow industry
and practitioners to further differentiate between models in the evaluation process, which is
what we do.

Ben Taieb et al. [30] reviewed and compared direct and indirect forecasting strategies
for multi-step time series based on data from the NN5 competition.2 An and Anh [52] con-
ducted a similar study, using neural networks exclusively. Both studies employed metrics
such as MSE, MAPE and sMAPE to evaluate forecasting strategies, using time series from a
single dataset. Although some results were presented with respect to the forecast horizon,
the evaluation was mainly based on the aggregated metrics to draw general conclusions and
recommendations when selecting a multi-step strategy. Parmezan et al. [31] performed a
large scale empirical study, evaluating 11 methods on 95 different datasets. The results were
evaluated in terms of a multi-criteria performance metric consisting of MSE and Theil’s U
coefficient, and prediction on change in direction (POCID) which, as claimed by the au-
thors, allowed them to compare the investigated algorithms objectively [31]. The authors
conclude with general recommendations and observations based on the aggregate of all res-
ults. Although general recommendations can be helpful when developing models for a new
problem, they will not aid in the process of evaluation in a real-world industry setting where
considerations other than average error are important. Our thesis provides suggestions for
such tools in the form of metrics that can be applied in a variety of use cases.

Historically, neural networks have performed poorly in empirical studies, and their use
for forecasting applications have been questioned on several occasions [53, 54, 14]. Fur-
thermore, forecasting competitions received few to no submissions with methods based on
neural networks. Most notably, the M3 competition featured only one neural network, which
nonetheless performed poorly [12]. As a follow up, the NN3 competition was arranged using
the same dataset to encourage additional submissions of neural network based methods.
None, however, outperformed the original M3 competitors [14]. Makridakis et al. [15] later
compared modern machine learning algorithms with statistical methods on the original M3
dataset, again finding statistical methods to be superior. It was concluded that, with the
longest time series being only 126 observations, neural networks and machine learning are
simply not fit for short univariate time series. Despite these findings, deep learning for fore-
casting applications has gained popularity during recent years [10].

The deep learning revolution has been driven by noteworthy achievements in the fields
of image processing [55], reinforcement learning [56], and natural language processing [57].
Despite having shown poor performance on short univariate time series, recent advance-
ments have proven deep learning to be applicable for time series forecasting where com-
plex data representations are necessary. Several architectures have been proposed for time
series forecasting depending on the type of application. Sequence-to-sequence RNNs and
long short term memory networks (LSTMs) have become popular due to their ability to learn
temporal patterns and long range memory [58, 59, 60, 61]. Temporal convolutional networks
have been proposed as an alternative to RNNs, implementing long range memory through
dilated convolutions and been shown to outperform the canonical Seq2Seq models on sev-
eral tasks [62, 63, 64]. Attention based approaches [65, 66, 67, 68] and tensor factorization
[69, 59, 70] have been proposed for tackling multivariate time series with a large numbers
of input series. Lastly, a recent trend is the incorporation of uncertainty estimates that have

2A paper describing the results from the NN5 competition arranged in 2008 was never published.

CHAPTER 3. LITERATURE REVIEW 12

been of particular interest for sales and demand forecasting, and implemented in the form
of quantile regression networks [60, 68] and hybrid models [71, 72, 40]. In this thesis, we
select four deep learning models based on different underlying architectures and extend the
current literature on evaluating deep learning models in the context of multi-step point fore-
casting.

To summarize, the contributions of this thesis are as follows. First, we extend the current
literature on performance metrics for multi-step time series forecasting, which is an area of
research where there have been few recent contributions. Research on performance metrics
has historically focused on proposing statistically robust metrics that can be aggregated to
one number, however, we have yet to find papers that propose metrics for deriving additional
insights in the evaluation process, which is what we do. Furthermore, we explicitly focus
on multi-step forecasting, an aspect which is often neglected when discussing performance
metrics.

Second, we propose four novel metrics and show their applicability through a large scale
empirical study. Most empirical studies focus on providing practitioners with general recom-
mendations for which models and techniques are suitable in different situations. In contrast,
we focus on the use of new performance metrics and how they can be applied in the evalu-
ation process. To the best of our knowledge, this is a novel contribution to the literature.

Lastly, we extend the current literature on evaluating deep learning models in the setting
of point forecasting. We are the first study to compare the Seq2Seq, DeepAR, TCN and TFT
models for multi-step point forecasting, and do so on five benchmark datasets. The results
provide interesting findings, indicating that as models get better they tend to do so across all
dimensions.

4 | Methodology

In this chapter, we present the methodology developed in order to answer the research ques-
tion. Section 4.1 presents the proposed performance metrics that will provide additional
insights during the evaluation of multi-step forecasting models. Section 4.2 presents the
five multi-step forecasting models that have been selected for experiments: one state space
model baseline and four deep learning architectures. These will provide a basis for obtaining
experimental results that can be analyzed with the newly proposed metrics.

4.1 Metrics for Evaluating Multi-step Forecasts

In order to establish a baseline for evaluation, we follow the general approach in the liter-
ature and compute the aggregate of an appropriate error metric to obtain a single score for
each model and dataset. As recommended by Hyndman and Koehler [17], we use scaled er-
rors that are independent of the scale of the data, have a well defined mean and variance, and
are symmetric by penalizing positive, negative, large and small forecasting errors equally. Al-
though Hyndman and Koehler [17] prefers the mean absolute scaled error (MASE) over root
mean squared scaled error (RMSSE), it is often unclear which metric will be most preferable
in different situations [18]. For example, absolute errors are optimized for the median which
results in lower error scores for methods that forecast closer to the median value [73]. If we
consider a dataset that contains sporadic ranges of yt = 0, which are common in solar power
generation data and sales data, then MASE will be favorable for methods that forecast smal-
ler values. In contrast, squared errors are optimized for the mean and will prefer forecasts
with larger values compared to MASE [74]. For this reason, a variant of RMSSE was selected
for use in the recent M5 competition [25]. In our case, we employ a variety of datasets where
the use of either metric could be warranted depending on the context. Therefore, we employ
both the MASE and RMSSE metrics in our evaluation and showcase the implications of the
different metrics when evaluating the results.

To obtain the MASE and RMSSE metric, we first define the scaled errors prior to aggreg-
ating, i.e., prior to performing the mean and root mean across all observations. This is done
to allow aggregation and grouping of the scaled errors across different dimensions. For ex-
ample, we can compute the MASE per time series or per step in the forecast horizon. Addi-
tionally, we use the definition of scaled errors when deriving new metrics.

We begin by defining the absolute scaled error, ASE i
t , of time series i at time t as

ASE i
t = |q i

t | where q i
t =

e i
t

MAE
(
N ai ve(i ,T,m)

) . (4.1)

In Equation 4.1, q i
t denotes the scaled error at time t for time series i , and N ai ve(i ,T,m)

denotes forecasts obtained on the training data of time series i using the seasonal naive

13

CHAPTER 4. METHODOLOGY 14

multi-step method with a T -step forecast horizon and seasonal periodicity m. Hence, the
denominator consists of the mean absolute error (MAE) computed from the seasonal multi-
step naive method on the training data. It is important to note that we scale the errors from
each time series i separately because they can be of different scales. This is easily overlooked
when pooling several hundreds of series as one single dataset, which is common practice
when applying deep learning models. Moreover, note that we use seasonal naive multi-step
forecasts as the baseline, in contrast to single-step forecasts. Naive single-step forecasts are
more commonly applied for this purpose, likely due to their simpler computation, see e.g.,
[25]. We elect to use multi-step forecasts as this keeps the interpretability of scaled errors
clearer. The naive multi-step forecasts accurately represents the benchmark that would be
possible to obtain using the naive method, in contrast to naive single-step.1 After obtaining
absolute scaled errors, we compute the aggregated MASE metric as

M ASE = mean
(
ASEi

t

)
, (4.2)

where the mean operation is computed over all time series i and time steps t .
Similarly, we define the squared scaled errors, SSE t

i , of time series i at time t as

SSE i
t = (q i

t)2 where q i
t =

e i
t

RMSE
(
N ai ve(i ,T,m)

) , (4.3)

q i
t denotes the scaled error at time t and N ai ve(i ,T,m) denotes seasonal naive multi-step

forecasts on the training set as above. Note that for squared scaled errors, the denominator
is computed using the corresponding RMSE measure, as recommended by [17]. Again, the
aggregated RMSSE metric is obtained by

RMSSE =
√

mean
(
SSEi

t

)
, (4.4)

where the root mean operation is computed over all time series i and time steps t .
MASE and RMSSE will be our baseline evaluation metrics and represent how empirical

studies typically summarize and evaluate multi-step forecasts. To provide further insights
that are neglected by only evaluating results in terms of aggregated metrics, we propose four
novel metrics and implement a fifth temporal alignment metric.

4.1.1 Win-loss Ranking

The aggregated MASE and RMSSE metrics tell us how well a model performs on an entire
dataset overall, disregarding the information about which time series they perform well on.
To identify how well models perform with respect to each time series, we propose a win-loss
ranking metric to rank models according to their win-loss counts.

Assume that we have a time series dataset D = {1, . . .d} where i ∈ D denotes a single series
in the dataset. Furthermore, assume that we evaluate a set of models H = {1, . . .h} on dataset
D , where g ∈ H denotes a single model in the set of models. Letting the aggregated error
obtained by model g on time series i be denoted by eg ,i , we define the set of time series in

1Using the naive single-step forecast would imply that, forecasting across T -time steps, the model would
iteratively have access to future information that a forecasting model would not.

CHAPTER 4. METHODOLOGY 15

which model g obtains the lowest error (best score) as Wg . The win-rank of model g is then
given by

RW = |Wg |, (4.5)

where RW represents the number of times model m obtains the best score, i.e., wins, on
dataset D . Similarly, we define the set of time series in which model g obtains the highest
error as Lg , whereby the loss-rank can be written as

RL = |Lg |, (4.6)

where RL is the number of times model g obtains the worst score on dataset D .
The win-loss ranks of models can provide further insights when evaluating models on

datasets with a large number of time series. For example, consider the case where the ag-
gregated error metric decisively indicates that one model is better than its peers. It is pos-
sible that it is better on average on all series, or conversely, it could be very good at some
series and very bad at others. It might turn out that it is optimal to use different models on
different parts of the dataset, a fact that is, not necessarily neglected, but hidden when just
using aggregated metrics. We will see concrete examples of this when we evaluate our results
in chapter 6.

4.1.2 Variance Weighted Errors

Seasonal time series that are driven by real-world phenomena, such as electricity consump-
tion and traffic congestion, tend to be highly variable over the seasonal period. For example,
traffic tends to be easy to predict during baseline hours and nighttime. The real uncertainty
arises during rush hour around 08:00 AM and 16:00 PM when traffic congestion spikes. Elec-
tricity consumption is highly variable during daytime depending on external factors such
as weather and consumer patterns. Furthermore, different parts of a time series might not
be that relevant to forecast. When considering the use of traffic forecasts for rerouting and
optimization traffic, rerouting might be irrelevant during nighttime, making the use of fore-
casting nighttime congestion less important. It is not unreasonable to assume that practi-
tioners are in most need of accurate forecasts when uncertainty is at its greatest, i.e., during
rush hour traffic and daytime electricity consumption. The standard error metrics do not ac-
count for these differences in uncertainty over the seasonal period when evaluating forecast
performance. Therefore, we propose to include a proxy for uncertainty directly in the error
metric.

For the purpose of including uncertainty in the error metric, we propose variance weighted
errors. By this approach, we weight the errors obtained at a particular time during the sea-
sonal period by the variance of the target values at that same particular time. To illustrate
this, Figure 4.1 shows a plot of 30 consecutive days of measured traffic occupancy from a
single time series. It should be evident that the variance around rush hour is significantly
higher than during the middle of the day and during nighttime. Thus, we want to scale the
errors of forecasts to closer match this distinct feature of the dataset. I.e., by increasing the
importance of errors made under high uncertainty and decreasing the importance of errors
when traffic is more stable.

To formalize this concept, assume we are given a dataset with a logical seasonal period-
icity m and date-time covariates c ∈ {1, . . . ,m}.2 The covariates represent a partitioning of the

2The Oxford Dictionary defines covariates as "independent variables that can influence the outcome of a
given statistical trial, but which is not of direct interest."

CHAPTER 4. METHODOLOGY 16

0 3 6 9 12 15 18 21 24
Hour

0.00

0.05

0.10

0.15

0.20

Oc
cu

pa
nc

y

Figure 4.1: An example of daily traffic occupancy plotted for 30 consecutive days

seasonal period. For example, given traffic measured at every hour, the seasonal period is
m = 24 and each seasonal period constitutes a day with hours c ∈ {1,2, . . . ,24}. The covariate
in this case is the hour of the day at which a forecast was made. A covariate could also be the
month of year, or day of the week. The important point is that the covariates c represent a
logical partitioning of the seasonal period where one expects different behavior at different
points during the seasonal period. We define the estimated variance, V̂c , of the target values
yc

t at covariate c as V̂c = Variance(yc
t), where t ∈ {c,c ·1,c ·2, . . . ,c · n

m }. That is, V̂c is the estim-
ated variance of the targets occurring during covariate c. To obtain the variance weight, wc ,
we normalize the estimated variance V̂c by the sum of variances and scale by the seasonal
periodicity:

wc = V̂c∑m
c=1 V̂c

×m. (4.7)

Therefore, by Equation 4.7,
∑m

c=1 wc = m and each weight will act as a scaling factor according
to how much the target varies during a particular covariate. In the special case where the
variance is equal for all covariates, we have wc = 1 for c ∈ {1, . . . ,m} and the errors will not be
changed by the weights. Note that we have omitted the superscript i notation representing
the time series to simplify the notation.

Continuing, we define the variance weighted MASE (MASEVW) which we derive from the
absolute scaled errors as defined in Equation 4.1. Given weight w i

c obtained on time series i
at covariate c, we define the MASEVW as

M ASEV W = mean
(

ASE i
c ·w i

c

)
, (4.8)

where ASE i
c is the absolute scaled error obtained on time series i grouped by covariate c, and

the mean operation is computed across all time series and covariates. Note that the reason
for scaling prior to averaging is that the MASEVW can be computed per time series or per
covariate depending upon which variables the mean is performed over.

Similarly, we define the variance weighted RMSSE (RMSSEVW) as

RMSSEV W =
√

mean
(
SSE i

c ·w i
c
)
, (4.9)

CHAPTER 4. METHODOLOGY 17

where SSE i
c and w i

c are the absolute scaled error and variance weight obtained on time series
i grouped by covariate c, respectively. The root mean operation is again computed across all
time series and covariates.

4.1.3 Delta Horizon Metric

The two previous metrics address how models perform on individual time series in a dataset,
and how forecasts across the seasonal period can mask the performance of models during
critical time points. To gain further insight into how models behave with respect to the multi-
step forecast horizon, we propose the delta horizon metric, or ∆H . The ∆H metric measures
how much a multi-step forecasting model updates the forecasted value for yt at time t as the
time point approaches. For example, given a 24-step forecast at time t , the 24th step is the
forecasted value ŷt+24 for yt+24. At t +1, the model produces a new forecast ŷt+24 for yt+24,
which is now a 23-step ahead forecast. In other words, the model updates its initial forecast
for yt+24 as t approaches t +24. We might find that model X adjusts its forecasted value for
yt significantly over the forecast horizon, while model Y produces stable forecasts over the
horizon, relative to X . This is what we aim to capture with the ∆H metric.

To formalize the above, let ŷτt denote the τ-step ahead forecast for the observed value yt

and τ ∈ {1, . . .T } where T is the forecast horizon. Then, we define the delta horizon metric as

∆H = mean
(|ŷτt − ŷτ−1

t |), for 2 ≤ τ≤ T, (4.10)

where the mean operation is performed over both τ and t . Hence, the delta horizon metric
measures the mean absolute difference between each update of ŷt over the forecast horizon
τ.

4.1.4 Decomposed Error Metrics

The last metrics we propose are decomposed errors, which relate errors to the time series
trend-cycle component, seasonality component and remainder component (noise). By this
approach, we can in more detail compare performance across models or datasets and ana-
lyze how the models perform with respect to the components of the time series. The purpose
of this is to provide further insights to industry and practitioners when interpreting their res-
ults and provide insights that can allow practitioners to build better models.

We begin by denoting the observed ground truth values yt and the τ-step ahead forecast
for the observed value yt as ŷτt for τ ∈ {1, . . .T }, where T denotes the maximum forecast ho-
rizon. Then, we define the forecasted path with forecast horizon τ as pτ = {ŷτt , ŷτt+1, . . . , ŷτt+n}
where t and n are the starting point and length of the test series, respectively. Similarly, we
define the path of the ground truth test series as pG = {yt , yt+1, . . . , yt+n}. Thus, p1, pT and pG

represents the path of all 1-step-ahead forecasts, T -step-ahead forecasts and ground truth
test series, respectively. Note that we have omitted denoting the time series by index i to
simplify notation.

With the above, we define decomposed errors as the error between each time series com-
ponent resulting from the STL-decomposition of pτ and pG . Thus, we let Tt ,pτ , St ,pτ , Rt ,pτ
denote the trend-cycle, seasonal and remainder components of pτ respectively, and Tt ,pG ,
St ,pG , Rt ,pG denote the components of pG . Then, we define the decomposed trend, season,

CHAPTER 4. METHODOLOGY 18

and remainder errors as

Trend error: et ,T =Tt ,pG −Tt ,pτ ,

Seasonal error: et ,S = St ,pG −St ,pτ ,

Remainder error: et ,R = Rt ,pG −Rt ,pτ .

(4.11)

In order to summarize the errors, we use the same approach as for scaled errors and calculate
the RMSSE version of each decomposed metric as follows:

RMSSET =
√

(qi ,t ,T)2 where qi ,t ,T = ei ,t ,T

RMSE
(
N ai ve(i ,T,m)

) ,

RMSSES =
√

(qi ,t ,S)2 where qi ,t ,S = ei ,t ,S

RMSE
(
N ai ve(i ,T,m)

) ,

RMSSER =
√

(qi ,t ,R)2 where qi ,t ,R = ei ,t ,R

RMSE
(
N ai ve(i ,T,m)

) ,

(4.12)

where RMSE
(
N ai ve(i ,T,m)

)
denotes the RMSE of the seasonal naive multi-step forecasts

on the training set of time series i with seasonal period m, as when computed for scaled
errors. Note that we include the i notation to show that each metric is scaled according to
each individual time series. Decomposed errors can also be computed and aggregated by
MASE instead of RMSSE, although we elect to compute only the RMSSE version to keep the
number of metrics for the evaluation tractable.

The decomposed metrics indicate how accurately the model captures the trend, season,
and remainder components by each τ-step-ahead path, allowing practitioners and industry
to see whether the error is mainly due to erroneous prediction of trend, season or remainder
(noise). We compute the decomposed errors of p1 and pT to compare how the models cap-
ture the time series components at the first and last prediction horizons. Henceforth, we will
refer to the three metrics RMSSET , RMSSES , RMSSER as simply the "decomposed errors"
for path p1 and pT .

4.1.5 Temporal Distortion Metrics

The metrics we have discussed so far are all derived from forecast errors, i.e., et = yt − ŷt .
The reason being that there are few alternatives. One alternative that has been recently pro-
posed in the context of evaluating solar irradiance forecasts is the temporal distortion index
(TDI) [33]. The TDI does not measure the error of a forecast by how much it deviates in value
from the target at each time point. Rather, it measures the degree to which the forecast is
aligned with the ground truth data in time. For example, by producing one-step-ahead na-
ive forecasts, one obtains the exact same pattern as the underlying time series, only shifted
one observation back in time. Thus, the naive method produces the correct shape, but the
incorrect alignment in time.3 The TDI could serve as an alternative to error metrics, or, at
the very least, provide additional insights in terms of how temporally aligned the produced
forecasts are.

3The TDI metric is closely related to dynamic time warping (DTW) and time series classification, although
we do not visit these concepts in this thesis.

CHAPTER 4. METHODOLOGY 19

Following Vallance et al. [33], the idea behind the TDI is to align a test time series T =
(T1,T2, ...Tn) with a reference time series R = (R1,R2, ...Rn) by warping the time axis of T . The
local distance that associates the temporal indices of the two series is defined as

∀(i , j)[1 : N]2, d(Ti ,R j) = ||Ti −R j ||, (4.13)

and a path between indices of the test series and reference series as

w = ((i1, j1), . . . , (il , jl), . . . , (ik , jk)) with k ∈N. (4.14)

Dynamic programming is used to find the optimal bath between indices in T and R by min-
imizing the total cost of possible paths. The total cost function is defined as the sum of local
distances (4.13) between the two series, calculated on the sequence of path points (il , jl) for
l ∈ [1,2, ...,k]. Then, the TDI is defined as the area between the optimal path and the identity
path, normalized by the area under the identity path corresponding to a percentage of the
maximum temporal distortion [75, 33]:

T D I = 1

N

k−1∑
l=1

|(il+1 − ii)(il+1 + ii − jl+1 − jl)|. (4.15)

In addition to the TDI, Vallance et al. [33] defines a temporal distortion mix (TDM), which
is a more interpretable version of the TDI. The TDM is expressed as a signed percentage,
where −100% and 100% represents a systematically in advance and late forecast respectively,
and provides an indication of how forecasts are aligned in time. For details on calculating the
TDM metric we refer to [33].

To employ the TDI and TDM in our evaluation, we compute the aggregate average to in-
dicate how models perform temporally. Because the TDI metric requires computation over
the entire forecast horizon, the temporal metrics cannot be grouped by date-time covari-
ates or forecast horizon. In the next section, we present the five forecasting models that we
evaluate in our experiments.

4.2 Forecasting Models

In order to test the applicability of the proposed metrics, we run experiments with five fore-
casting models: seasonal-ARIMA (SARIMA) [36], a generic sequence-to-sequence network
(Seq2Seq) [22], a generic temporal convolutional network (TCN) [64], the DeepAR model
[72], and the Temporal Fusion Transformer (TFT) [68]. The SARIMA model is used as the
baseline SSM in this study and is commonly applied in the literature to benchmark new fore-
casting models. The deep learning models have been selected for the sake of using models
based on different architectures. The differences in architecture should provide more diverse
forecasts that allow us to evaluate the proposed metrics for a range of different use cases.

Furthermore, to increase the difference between models, DeepAR and TFT will be imple-
mented with access to date-time covariates and static metadata (i.e., the time series ID of
entity i). In contrast, Seq2Seq and TCN will solely be trained on the time series data with no
additional features. The rationale being that we increase the probability of models learning
different feature representations. This, in turn, should provide more diversity in forecasted
values, and hence different use cases for the proposed metrics.

CHAPTER 4. METHODOLOGY 20

4.2.1 SARIMA

The SARIMA model is a generalization of the Box-Jenkins ARIMA model, which can accom-
modate data with both seasonal and non-seasonal features [36]. The standard ARIMA model
is a combination of the autoregressive (AR) and moving average (MA) models described in
section 2.4, in addition to an integration component that ensures the fitted data is station-
ary. We specify a model by writing ARIMA(p, i , q), where p, i and q represent the AR order,
degree of integration and MA order, respectively. The model can be written as

y ′
t = c +εt +φ1 y ′

t−1 +·· ·+φp y ′
t−p +θ1εt−1 +·· ·+θpεt−p , (4.16)

where εt is white noise, y ′
t is the first differenced series, φ1, . . . ,φn are the AR components,

and θ1, . . . ,θp are the MA components [20]. As with the AR and MA models, stationarity is re-
quired when estimating the model. Observe that the ARIMA model is just a combination of
the underlying AR(p) and MA(q) models, such that an ARIMA(p,0,0) model is the equivalent
of an AR(p) model, and ARIMA(0,0, q) the equivalent of MA(q). The ARIMA model is estim-
ated by maximum likelihood estimation (MLE), maximizing the probability of obtaining the
data that was observed. For further details on estimation, we refer to [20].

Three of the datasets we employ in our experiments are highly seasonal, therefore, an
SARIMA model is needed to account for seasonality. The SARIMA model extends ARIMA
by including differences at lags equal to the seasonal period, m, to remove seasonal effects
from the series. The seasonal component of SARIMA comprises of four additional terms,
and we write it as SARIMA(p, i , q)(P,D,Q)m , where P is the number of seasonal AR terms, D
is the number of seasonal differences, Q is the number of seasonal MA terms and m is the
seasonal period. The seasonal terms are similar to non-seasonal terms but differ by being
lagged m times to correspond to the seasonal period. The terms are added to the model
simply by multiplying them with the equivalent non-seasonal terms. By first defining the
backshift operator, B , as B yt = yt−1 [36], we can write an SARIMA(1,1,1)(1,1,1)4 model as

(1−φ1B)(1−Φ1B 4)(1−B)(1−B 4)yt = (1+θ1B)(1+Θ1B 4)εt , (4.17)

where (1−φ1B) and (1+θ1B) are the non-seasonal AR(1) and MA(1) components, (1−Φ1B 4)
and (1+Θ1B 4) are the seasonal AR(1) and MA(1) components, and (1−B), (1−B 4), are the
non-seasonal and seasonal differences, respectively.

To select appropriate model orders, we use the stepwise algorithm by Hyndman and
Khandakar [39], designed to automate model selection when forecasting a large number of
univariate time series. The selection of the optimal model order is based on minimizing
the Akaike information criterion (AIC) [76]. Further details on the application of the SAR-
IMA model in our experiments is provided in chapter 5 on the experimental setup. Next, we
present the deep learning models.

4.2.2 Sequence-to-Sequence Network

The first deep learning model we implement in our study is based on a general sequence-to-
sequence architecture, also referred to as an encoder-decoder architecture. It was popular-
ized by Sutskever et al. [22] and has historically produced strong results on natural language
processing tasks [77]. As time series can be viewed as sequences of inputs and targets, sev-
eral sequence-to-sequence architectures have been proposed for forecasting [72, 40, 70]. We

CHAPTER 4. METHODOLOGY 21

LSTM LSTM LSTM LSTM LSTM LSTM LSTM LSTM

La
te

nt
 s

ta
te

Encoder Decoder

yt-k yt-k+1 yt-1 yt

ŷt+1 ŷt+2 ŷt+T-1 ŷt+T

. . .

. . .

Figure 4.2: Overview of a generic sequence-to-sequence architecture with separate LSTM networks
in the encoder and decoder

implement a basic version of the sequence-to-sequence architecture as a baseline for our
deep learning models, which we will henceforth refer to as the Seq2Seq model.

In accordance with [22], we implement the Seq2Seq model by combining an encoder
and a decoder in the form of two long short term memory networks [78] (LSTMs), as shown
in Figure 4.2. LSTMs were proposed to mitigate the problems of exploding and vanishing
gradients in RNNs, as we discussed in section 2.5. Furthermore, LSTMs are better at exploit-
ing long range dependencies [45], making them suitable for time series modeling. This is
achieved by adding a cell state, ct , which acts as the long-term memory of the network and
is modulated by three gates:

Input gate : it =σ(Wi1 zt−1 +Wi2 yt +bi),

Output gate : ot =σ(Wo1 zt−1 +Wo2 yt +bo),

Forget gate : ft =σ(W f1 zt−1 +W f2 yt +b f),

Hidden state : zt = ot ¯ tanh(ct),

Cell state : ct = ft ¯ct−1 + it ¯ tanh(Wc1 zt−1 +Wc2 yt +bc),

(4.18)

where zt is the LSTM hidden state, σ(·) is the sigmoid activation function, tanh(·) is the tanh
activation function and ¯ is the Hadamard product [45]. Note that the Seq2Seq model will
be trained solely on the time series data, with no additional static metadata or date-time
covariates as features.

4.2.3 Temporal Convolutional Network

Temporal convolutional networks are based on convolutional layers and will provide a novel
architecture type for our experiments. Furthermore, TCNs have recently been shown to out-
perform canonical RNN and LSTM architectures on selected sequence-to-sequence tasks
[64] and will be interesting to compare with the Seq2Seq model. Several versions of the tem-
poral convolutional architecture have been proposed for different use cases [79, 62, 63]. We
follow the architecture proposed by Bai et al. [64], implementing a generic TCN that com-
bines simplicity, autoregressive prediction, and long memory.

The TCN is based on two principles: 1) an input sequence of any length can be mapped
to an output sequence of any length. 2) causal convolutions that ensure information from

CHAPTER 4. METHODOLOGY 22

the future cannot be accessed in the past. To accomplish the former point, the model is im-
plemented as a 1D fully-convolutional network [80]. For the latter, we enforce the restriction
that output at time t is solely convolved with items at time t and earlier. To increase the
memory of the causal convolutions, the TCN implements dilated convolutions [79]. Given a
sequence x ∈ Rn and a filter f : {0, . . . ,k −1} → R, the dilated convolution F on the item s in
the sequence is defined as

F (s) = (x∗d f)(s) =
k−1∑
i=0

f (i) · (x)s−d ·i , (4.19)

where ∗ is the convolution operator, d is the dilation factor, k is the filter size and s −d · i
defines the direction of the past [64]. The TCN is easily adapted to the task of forecast-
ing by interpreting the sequence x as a time series. The dilation factor d introduces fixed
steps between every two adjacent filters and is increased exponentially for each convolu-
tional layer in the network, increasing the receptive field back in time.

Bai et al. [64] implements residual blocks [81] in place of convolutional layers in order
to stabilize the training of very deep networks. Each block comprises two dilated convolu-
tional layers, weight normalization [82], the ReLU activation function [83] and dropout for
regularization [84]. For further details on TCNs, we refer to their original paper [64].

Similar to the Seq2Seq model, we do not add any static metadata or date-time covariates
to the TCN model. In the following two sections, we present the DeepAR and TFT models
which will incorporate static and date-time covariates as features.

4.2.4 DeepAR

DeepAR is a probabilistic model based on an autoregressive RNN architecture, developed by
Amazon Research for probabilistic sales and demand forecasts [72]. DeepAR outperformed
several models for demand forecasting, including Croston and ETS [37, 39], and outper-
formed the matrix factorization model [69] at point forecast accuracy on the electricity and
traffic datasets, highlighting its applicability for point forecasting. The model has since been
established as the baseline when proposing new architectures and is therefore selected for
our experiments.

Denoting the value of time series i at time t by yi ,t , the input lookback window as k
and the prediction horizon, i.e., number of steps to forecast into the future, as T . The goal of
DeepAR is to model the conditional distribution P (yi ,t :t+T |yi ,t−k:t ,xi ,t−k:t+T), where yi ,t :t+T =
{yi ,t , . . . , yi ,t+T } is the series of τ-step ahead predictions, yi ,t−k:t = {yi ,t−k , . . . , yi ,t } are prior
observations of the target, and xi ,t−k:t+T are known covariates. Note that t represents the
time at which a T -step ahead prediction is made given prior data and covariates. Following
[72], the DeepAR model assumes that the model distribution, QΘ, consists of a product of
likelihood factors as follows:

QΘ

(
yi ,t :t+T |yi ,t−k:t−1,xi ,t−k:t+T

)= t+T∏
t=t

QΘ(yi ,t |yi ,t−k:t+1,xi ,t−k:t+T) =
t+T∏
t=t

`
(
yi ,t |θ(hi ,t ,Θ)

)
,

(4.20)
and are parameterized by the output hi,t of an autoregressive RNN:

hi ,t = ν
(
hi ,t−1, yi ,t−1,xi ,t ,Θ

)
, (4.21)

CHAPTER 4. METHODOLOGY 23

where ν(·) is the learning function implemented as a multi-layer LSTM network, and the
likelihood factors `

(
zi ,t |θ(hi ,t

)
are fixed distributions with parameters given by the network

output hi ,t [72]. The model is autoregressive and recurrent, as both the previously observed
input, yi ,t−1, and the previous network output, hi ,t−1, is used as input when obtaining the
next output. The parameters Θ of the model, consisting of the RNN ν(·) function and the
parameters of θ (the likelihood model), are learned by maximizing log likelihood.

In accordance with [72], we use the presented architecture as both encoder and decoder,
i.e., in a sequence-to-sequence type architecture. Furthermore, we use Gaussian likelihood,
`(y |µ,σ), as the distribution model, where the Gaussian likelihood is parameterized by the
mean and standard deviation, i.e., µ,σ, respectively. When predicting, we feed the model the
input series yi ,t−k:t and sample ŷi ,t ∼ `(·|θi ,t), before refeeding ŷi ,t to the model for the next
prediction step and repeating the process to the end of the prediction horizon T , generat-
ing one sample path. Repeating the sampling process generates several paths representing a
joint predicted distribution for the τ ∈ {1, . . . ,T } predictions steps. The point forecast is then
simply the mean of the predicted distributions. Quantiles can also be computed from the
predicted joint distribution to obtain prediction intervals, although we solely evaluate point
forecasts in this thesis. For more in-depth details on the DeepAR model, including optimiz-
ation and scale handling, we refer to the original paper by Salinas et al. [72].

4.2.5 Temporal Fusion Transformer

The last model we implement is the TFT developed by Google Research [68], achieving state-
of-the-art performance on multi-step forecasting compared to several recently proposed
models [69, 60, 72, 40, 85]. The model is built on an attention based RNN architecture
and combines several components, including gating mechanisms, variable selection net-
works, covariate encoders, temporal attention and quantile forecasts, an overview of which
is shown in Figure 4.3. The TFT will represent the state-of-the-art model in our experiments
that combines elements from several archetypal network architectures, most notably the
transformer architecture [86]. Keep in mind that the TFT model description is quite com-
plex, hence, for a complete description of the architecture we refer to the original paper by
Lim et al. [68].

The TFT model, like the DeepAR model, produces prediction intervals, however, it does
so by quantile regression rather than sampling from estimated distributions. Quantile fore-
casts are given as

ŷi (q, t ,τ) = fq
(
yi ,t−k:t ,zi ,t−k,t ,xi ,t−k,t+τ,si ,τ

)
, (4.22)

where ŷi (q, t ,τ) is the predicted q th quantile of the τ-step ahead forecast at time t and fq is
the prediction model [68]. Note that the TFT model separates time dependent known and
unknown covariates, treating them differently in the architecture. Known covariates, i.e.,
time of day or day of week at time t , are denoted as xi ,t and unknown covariates such as
additional external regressors are denoted as zi ,t .

First, the network architecture implements a gating mechanism to apply non-linear pro-
cessing on targets and covariates only where this is beneficial. The rationale being that non-
linear processing for e.g., noisy datasets is unnecessary and can result in overfitting. The

CHAPTER 4. METHODOLOGY 24

gated residual network (GRN) constitutes one building block of the TFT [68]:

GRNω(a,c) = LayerNorm(a+GLUω(η1)
)
,

η1 = W1,ωη2 +b1,ω,

η2 = ELU
(
W2,ωa+W3,ωc+b2,ω

)
,

(4.23)

where ELU is the exponential linear function [87], η1,η2 are intermediate layers, LayerNorm
denotes layer normalization [88], GLU denotes gated linear units as in [62] and the ω index
denotes weight sharing in the network.

Second, TFT uses separate GRN encoders to process static covariates differently, pro-
ducing context vectors cs ,ce ,cc ,ch . Context vectors are inserted at specific locations in the
temporal fusion decoder in order to enhance the temporal features with static information
[68].

Third, TFT implements variable selection networks which are used to process static and
time dependent covariates. The variable selection networks improve the interpretability of
the model by providing weights to covariates, indicating which covariates are most influen-
tial for prediction. Furthermore, the variable selection network reduces the weight of fea-
tures identified to be noisy and that might negatively impact performance. In short, variable
weights are generated by feeding past inputs, Ξt , and a context vector cs through a GRN for
variable selection:

vχt = Softmax
(
GRNvχ(Ξt ,cs)

)
, (4.24)

where Softmax is the softmax activation function [43] and vχt is the vector of variable weights
[68]. Post variable selection, outputs are fed to a sequence-to-sequence encoder-decoder ar-
chitecture with LSTM layers, where observed features are fed to the encoder and known fu-
ture features are fed to the decoder. The output is passed to the temporal fusion decoder. The
core feature of the TFT is the temporal fusion decoder, which incorporates the static covari-
ates, a masked interpretable multi-head attention layer adapted from [86] and position-wise
feed forward networks before producing outputs, as seen in Figure 4.3.

CHAPTER 4. METHODOLOGY 25

Static
Covariate
Encoders LSTM

Encoder
LSTM

Encoder
LSTM

Decoder
LSTM

Decoder

Variable
Selection

Variable
Selection

Variable
Selection

Variable
Selection

Variable
Selection

Masked Multi-head Attention

GRN GRN GRN GRN

Add & Norm
Gate

Add & Norm
Gate

Add & Norm
Gate

Add & Norm
Gate

Add & Norm
Gate

Add & Norm
Gate

GRN GRN

Add & Norm
Gate

Add & Norm
Gate

Dense Dense

Known future covariatesPast inputsStatic covariates

Temporal Fusion Decoder

Quantile forecasts
t + 1

Quantile forecasts
t + T

Figure 4.3: Overview of the TFT architecture, recreated from [68]

5 | Experiments

In this chapter, we present details on the experiments we conduct in order to answer the
research question. Section 5.1 provides an overview of the datasets employed. Section 5.2
presents the training procedure and hyperparameter tuning for each implemented model.
To obtain realistic and accurate results, we closely follow the experimental setups defined in
each model’s respective papers. Lastly, section 5.3 provides implementation details regard-
ing software, tools used, and hardware setup.

5.1 Datasets and Processing

In order to show inherent differences between performance metrics and models, we select
five datasets for experimentation: electricity, traffic, volatility, solar and wind. Each dataset
has distinct characteristics and represents important real-world industry applications where
forecasting models are rigorously used. Limiting the selection to five datasets allows us to
evaluate our results more thoroughly without solely basing the evaluation on aggregated
metrics, which is what prior empirical studies tend to do. Furthermore, the datasets have
been routinely applied as benchmarks and standards for evaluation in previous research.
Therefore, all our results should be comparable to previous research and of relevance for
future research within the field. In the following, we describe each dataset and the dataset
processing in detail, an overview of which is provided in Table 5.1.

5.1.1 Datasets

Electricity: The Electricity Load Diagrams dataset is collected from the UCI Machine Learn-
ing Repository [89] and is commonly used as a benchmark for forecasting models [72, 40,
85, 70, 68]. The dataset consists of 370 time series describing the power consumption of dis-
tinct clients from 2011 to 2014. Furthermore, it exhibits high daily seasonality and each time
series varies significantly in magnitude, i.e., yt ∈ [0,1×105]. The data is originally provided
in 15-minute intervals and is aggregated to hourly frequency to be consistent with previous
research. The aggregated dataset consists of approx. 2.2 million data points.

Traffic: The PEMS-SF dataset is collected from the UCI Machine Learning Repository
[89] and is typically used as a benchmark alongside electricity, again see e.g., [72, 40, 85, 70,
68]. The dataset comprises 963 time series describing the occupancy rate along 440 SF Bay
Area highways. Each time series represents a sensor measuring lane occupancy yt ∈ [0,1].
The dataset features high daily seasonality in addition to peak hour traffic spikes. The data
is provided in 10-minute intervals and is, like electricity, aggregated to hourly frequency for
a total of approx. 4 million observations.

26

CHAPTER 5. EXPERIMENTS 27

Table 5.1: Overview of datasets, dataset metadata and static parameters employed for experiments

Electricity Traffic Volatility Solar Wind

Number of series 369 963 31 137 28
Total observations 2198k 3997k 151k 7200k 306k
Frequency Hourly Hourly Daily 10 min. Daily
Seasonal period 24 24 5 144 30
Target domain R0≥ [0, 1] R R0≥ [0, 1]
Training samples 500k 500k 100k 2000k 50k
Input length 168 168 252 240 210
Output length 24 24 5 24 30

Volatility: The volatility dataset is collected from the OMI realized library [90] compris-
ing of daily realized volatility computed from the intraday data of 31 stock indices where
each index is treated as a time series. In contrast to the other datasets, observations are only
provided for business days (i.e., Monday to Friday excluding holidays). Furthermore, each
series has different starting points, starting from between 2000-01-03 and 2012-10-15, and
ending at 2021-06-02, for a total of 151k observations. The volatility dataset is noisy with no
definite seasonality and contains fewer observations than the previous datasets. It was used
in the study by Lim et al. [68] to contrast with the strongly seasonal electricity and traffic
datasets and show the interpretability advantages of the TFT model. As there is some evid-
ence for a weekly seasonal effect in volatility indices [91], we use seasonal period m = 5.

Solar: The solar power dataset is provided by NREL1 and represents the solar power pro-
duction records of 137 photovoltaic power stations in Alabama State during the year of 2006.
The dataset has been previously used for state-of-the-art forecasting research by, e.g., Lai et
al. [67] and Li et al. [85]. The dataset exhibits daily seasonality and intermittent periods of
zero power production during nighttime, adding an interesting dynamic. The phenomenon
of sporadic periods of yt = 0 can also be found in sales forecasting which was the task se-
lected for the recent M5 competition [25]. The dataset is provided in 5-minute intervals and
data is resampled to 10-minute intervals in accordance with Lai et al. [67] for a total of 7.2
million data points.

Wind: The wind power dataset is collected from Kaggle.2 We use the dataset consisting
of the aggregated wind power output of 29 countries between 1986 and 2015, measured as
the percentage of the respective countries maximum output, i.e., yt ∈ [0,1]. We resample the
hourly frequency to daily averages to be consistent with Li et al. [85]. Note that we remove the
data from Cyprus (CY) as it only comprises yt = 0. This leaves a total of 28 time series, one per
country. The wind dataset is extremely noisy with very slight yearly and monthly seasonality.
Furthermore, in contrast to the other datasets, wind power is completely independent of
known time inputs and will serve as an interesting comparison to the other datasets. The
resulting dataset comprises a total of 306k data points. We use a monthly seasonal period,
m = 30, although a stronger yearly seasonal period can be observed. Yearly seasonality is
simply too long to fit an adequate number of periods for the SARIMA model, and we find
monthly seasonality to provide more reasonable results for this reason.

1https://www.nrel.gov/grid/solar-power-data.html
2https://www.kaggle.com/sohier/30-years-of-european-wind-generation

https://www.nrel.gov/grid/solar-power-data.html
https://www.kaggle.com/sohier/30-years-of-european-wind-generation

CHAPTER 5. EXPERIMENTS 28

5.1.2 Processing

All datasets are preprocessed by adding date-time information to each time series, i.e., date-
time covariates. The date-time covariates will serve several purposes: 1) they are used as
known inputs by the DeepAR and TFT model. 2) grouping by different date-time covariates
such as hour of day and day of week will be an important evaluation tool, especially for sea-
sonal datasets that are highly dependent on time.

To ensure replication of the results on electricity, traffic and volatility by Lim et al. [68], we
use their source code made available at the Googe Research GitHub repository3 to obtain and
process the aforementioned datasets. The solar dataset is obtained at the GitHub repository4

of Lai et al. [92]. Lastly, the wind dataset is obtained directly from the Kaggle source. All
datasets are processed by adding the following covariates:

1. Group id: Each time series in the dataset is represented by a group id.

2. Time index: Each series has a time index representing the order of observations. This
is either hours, days or 10-minute intervals from start depending on the dataset fre-
quency.

3. Known inputs: The electricity, traffic and solar datasets are additionally added hour
and day of week variables. To volatility and wind, we add day of week, day of month,
week of year and month.

Table 5.1 provides an overview of the datasets, including the number of series, observations
in total, frequency, seasonality and target domain. Additionally, it provides dataset specific
parameters which we present in the following section on training procedure.

5.2 Training and Forecasting Procedure

This section describes the experimental training and forecasting procedure in detail. Each
dataset is split along the time axis into three parts: A training set, validation set, and test set
used for model learning, hyperparameter tuning and forecast evaluation, respectively. To
keep consistent with previous work, we use the following splits for each dataset.

Following previous work on electricity, we use the period between 2014-01-01 to 2014-
08-07 for training, 2014-08-08 to 2014-08-31 for validation and the immediate following week
for testing [69, 72, 68]. Similarly, for traffic we use the data prior to 2008-06-15 for training
and validation, where the last 10% is used as validation. The week immediately following
validation is used for testing [69, 72, 68]. For volatility, data before 2016 is used for training,
between 2016 and 2017 for validation and 2017 to 2019-06-28 for testing [68]. Solar is split
with training data prior to November 2006, validation data during November and testing data
during December in the same year. Lastly, for wind we use data prior to 2014 as training,
between 2014 and 2015 as validation and the year of 2015 for testing in accordance with [85].

3https://github.com/google-research/google-research/tree/master/tft
4https://github.com/laiguokun/multivariate-time-series-data

https://github.com/google-research/google-research/tree/master/tft
https://github.com/laiguokun/multivariate-time-series-data

CHAPTER 5. EXPERIMENTS 29

5.2.1 Fitting the SARIMA Models

We are unable to find adequate details on how previous research has implemented and fitted
ARIMA or SARIMA models, despite the large base of papers that compare their models to an
ARIMA baseline [59, 40, 85, 68, 93]. Furthermore, we have yet to find a paper releasing their
code implementation of the ARIMA baseline (or any other models used as baselines for that
matter), as most papers only provide implementations for their proposed model. At most,
it is revealed that they use the auto.arima function from the R library[39]. Therefore, we
design a custom framework for fitting the SARIMA to the datasets.

We find the most reasonable approach to be fitting a single SARIMA model for each in-
dividual time series in each dataset. SARIMA is a univariate model. Although one can add
external regressors, we elect to only fit the model on the dependent variable for consistency
with the deep learning models as these are also univariate. The fact that we fit a single model
to each series means that the SARIMA models have no opportunity to learn from other time
series in the dataset, unlike the deep learning models.

For fitting the models, we use a rolling window approach, fitting the model to a moving
window consisting of the most recent data as described in Hyndman and Athanasopoulos
[20, Chapter 3]. This is done for three reasons: One, it means the models will only be fitted
on the most relevant data. Two, the model will react to any changes in the data distribution
as the rolling window moves in time. Three, it significantly reduces the required computa-
tional time for selecting and fitting the most appropriate model. Like previous research, we
use auto.arima, which combines unit root tests and minimization of the AIC and MLE to
obtain a parameterized SARIMA model. Note that auto.arima will fit a seasonal model
provided that we supply a time series data object with specified seasonal period, m. We limit
the search to a model of order ARIMA(5,2,5)(5,2,5) and use stepwise search with approx-
imation [39]. The search is performed on the most recent moving window prior to the test
period. When forecasting, the moving window is moved forward and the model is updated
and refit before forecasting T -steps ahead.5 When fitting the seasonal component of the
model, we use seasonal period m as defined in Table 5.1.

The rolling window approach requires specifying a constant lookback window, k. The
ideal solution would be to select the lookback window based on a time series cross-validation
approach [20], and therefore select k for each time series individually. However, this would
significantly increase the computational resources required considering the size of the data-
sets. To keep the problem tractable, we performed preliminary experiments and found the
following static lookback windows to produce the best results: k = 240 for electricity, k = 720
for traffic, k = 756 for volatility, k = 240 for solar, and k = 300 for wind. The search was per-
formed in terms of including multiples of the seasonal period m in the lookback window, to
ensure that the models are fitted on an adequate number of seasonal periods.

To summarize our approach, for each time series in the dataset, we use auto.arima
to find the optimal model order and update the model iteratively on the moving window as
we produce T -step ahead forecasts for each time step. This approach keeps the problem
tractable (considering we have a total of 1528 time series to fit), allowing us to fit a large
number of models without having to manually intervene on each fit.

5Note that refitting the model during the prediction period is what any practitioner would do in practice.
Although this looks like target leakage, it is just a version of time series cross validation performed on the test
set and is detrimental to the state-space modeling approach, see [20, Chapter 5.10].

CHAPTER 5. EXPERIMENTS 30

5.2.2 Training the Deep Learning Models

We follow the general approach of previous research when training the deep learning mod-
els. Training windows are created and sampled following Salinas et al. [72]. Denoting a data-
set by {yi ,1:N }M

i=1 where M is the number of different time series and N is number of available
observations per time series, training instances are sampled with a fixed lookback window of
length k and forecast horizon of length T . Sampled windows then consists of input observa-
tions yi ,t−k:t = {yi ,t−k , . . . , yi ,t } used to forecast the values ŷi ,t :t+T = {ŷi ,t , . . . , ŷi ,t+T } for differ-
ent starting times t . The total training data set consists of H sliding windows {yi ,t−k:t+T }t∈H ,i∈M .
We ensure that the same selection of samples is used and loaded when training each deep
learning model. Hence, each model will see the same training and validation data. In ac-
cordance with [72, 68], we use 500k samples for training on electricity and traffic and 100k
samples for volatility. In accordance with [85], we use 50k samples on wind. Lastly, there
is no predefined scheme for the solar dataset. Hence, we elect to use 2000k samples as the
dataset is considerably larger and find this to work well in preliminary experimentation.

Covariates for each model are selected for the DeepAR and TFT model as in previous re-
search [72, 68]. For solar and wind where previous configurations are unavailable, we select
similar covariates to that of electricity and traffic while omitting covariates that are logically
independent from the target. I.e., wind power output is clearly independent on the day of
the week but might be dependent on the month due to yearly seasonality. Hence, for solar
we use group id as static covariate and hour of day as known input. For wind we use group id
as static covariate and month as known input. The specification for which covariates are em-
ployed per dataset is presented in Table 5.2. Lastly, all models are trained with early stopping
on the validation loss, with a patience of 5 epochs in accordance with [68].

Table 5.2: Overview of the covariates added to the DeepAR and TFT model for each dataset

Covariates Electricity Traffic Volatility Solar Wind

Time series ID X X X X X
Time from start X X X - -
Hour of day X X - X -
Day of week X X X - -
Day of month - - X - -
Month of year - - X - X
Week of year - - X - -

5.2.3 Hyperparameter search

We use the same hyperparameters from previous research where this is available. Lim et al.
[68] provides hyperparameters for the TFT model on traffic, electricity and solar. For DeepAR
we use the hyperparameters for electricity and traffic as stated in the original paper [72]. For
the other datasets and models where previous research is not available, we use the Optuna
hyperparameter optimization framework [94], which is a state-of-the-art optimization lib-
rary specifically designed for machine learning and neural networks. Table 5.3 shows the se-
lected search space for each hyperparameter and model. Note that we use the same search
space for hyperparameters that are common across models for consistency. The search was
conducted running 250 trials for each search, using a batch size of 64, a maximum of 25

CHAPTER 5. EXPERIMENTS 31

epochs and pruning callbacks for poor trials [94]. To keep running time tractable, we subset
the training and validation sets according to the following fractions, respectively: Electricity,
0.15 and 0.33. Traffic, 0.15 and 0.33. Solar, 0.10 and 0.20. Volatility, 1.00 and 1.00. Wind 1.00
and 1.00. The final hyperparameters for each model and dataset are attached in appendix
A.1.

Table 5.3: Overview of search ranges for Optuna hyperparameter optimization

DeepAR Seq2Seq TCN TFT

Learning rate [1×10−6, 1×10−2] [1×10−6, 1×10−2] [1×10−6, 1×10−2] [1×10−6, 1×10−2]
Num. layers [2, 6] [1, 3] [2, 6] -
Hydden size [16, 256] [16, 256] [16, 256] [16, 256]
Dropout [0.1, 0.9] [0.1, 0.9] [0.1, 0.9] [0.1, 0.9]
Max gradient norm. [1×10−2, 1×102] [1×10−2, 1×102] [1×10−2, 1×102] [1×10−2, 1×102]
Kernel size - - [4, 16] -
Attention head size - - - {1, 4}

5.3 Implementation

This section provides details regarding the tools and libraries employed to implement the
models and run experiments. The source code for the implemented models, hyperpara-
meter tuning, proposed performance metrics, running each experiment, and the evaluation
framework is attached as a single code base for replication of all reported metrics, experi-
ments, and results.

PyTorch [95] was used to implement the Seq2Seq model and TCN model, the TCN model
based on the original implementation by [64]. The DeepAR model and TFT model have been
configured and implemented using the PyTorch Forecasting library for time series forecast-
ing with deep learning models, developed by Beitner [96]. For improving the transparency
when training models and making it possible to run several different models and experi-
ments within the same framework, we used the PyTorch Lightning library for training and
monitoring PyTorch models [97].

The SARIMA model was implemented in the R language [98], utilizing the auto.arima
function [39]. Although implementations of auto.arima exist in Python, we found the R
implementation to be significantly faster and is the implementation employed in the literat-
ure.

Lastly, all models have been trained on the NTNU IDUN computing cluster [99]. The
deep learning models have been tuned and trained utilizing a single Nvidia Tesla V100 GPU.
The hyperparameter tuning process required up to approximately 5 days of run time per
model, and the training of models up to approximately 12 hours per model. The SARIMA
models in R were fitted utilizing a single CPU, requiring run-times of up to 5 days.

6 | Results and Discussion

In this chapter we present and evaluate the experimental results obtained as described in
chapter 5. First, as the baseline, we evaluate our results in terms of aggregated error met-
rics which is the commonly employed approach in the literature. Furthermore, we show
how aggregated metrics hide valuable information by the proposed win-loss ranking met-
ric. Second, we analyze the results in terms of the proposed variance weighted error metric
and show how differences in the seasonal period can impact the choice of model during
evaluation. Third, we evaluate the results in relation to the forecast horizon and discuss the
applicability of the proposed delta horizon metric. Lastly, we use the decomposed error met-
rics and TDI to gain additional insights that relate the errors to the concepts of trend, season,
noise, and time.

6.1 Baseline Evaluation

We begin by evaluating results in terms of aggregated errors, in other words, averaging errors
across the prediction horizon and across the series in the dataset. This results in a single
value per metric for each model and dataset. This approach represents how the performance
of models are evaluated and compared in the literature. Table 6.1 presents aggregated errors
in terms of the MASE and RMSSE metrics.

Table 6.1: Results in terms of MASE and RMSSE aggregated across the prediction horizon and each
time series

Electricity Traffic Volatility Solar Wind

MASE RMSSE MASE RMSSE MASE RMSSE MASE RMSSE MASE RMSSE

SARIMA 0.289 0.358 0.329 0.463 0.682 0.660 0.361 0.459 0.93 0.878
DeepAR 0.322 0.380 0.227 0.362 0.704 0.678 0.274 0.332 0.817 0.773
Seq2Seq 0.274 0.330 0.177 0.303 0.669 0.647 0.259 0.327 0.826 0.767
TCN 0.252 0.312 0.167 0.298 0.678 0.652 0.318 0.354 0.827 0.769
TFT 0.260 0.330 0.130 0.293 0.689 0.664 0.251 0.345 0.796 0.761

Note: The best and worst scores are marked green and red respectively.

In general, we find that TFT, Seq2Seq, and TCN are the best performing models and con-
sistently perform well on all datasets, obtaining relatively similar scores (within 0.03 points
excluding traffic and solar MASE). In contrast, the worst performing model tends to be SAR-
IMA, although the model performs reasonably well on volatility. Furthermore, we find that
DeepAR is considerably worse on electricity and volatility but is the second best on solar

32

CHAPTER 6. RESULTS AND DISCUSSION 33

(RMSSE) and wind (MASE). The TFT model is considered state-of-the-art and is the best per-
forming model on three out of five datasets in terms of MASE. Surprisingly, we find that less
complex models such as Seq2Seq and TCN outperforms the TFT model on datasets where
it should have an inherent advantage. Recall from chapter 4 that both the TFT and DeepAR
models use known covariates such as hour of day, day of week and the ID of the time series
to improve forecasts. This should add considerable value in terms of performance on the
electricity dataset, where time of day is crucial to predicting power consumption spikes.1

Yet, Seq2Seq and TCN yields better scores without covariates or information about which
time series they are predicting on. Furthermore, we would expect the covariates to be of
little value on the wind dataset, as wind output should be relatively independent on day and
month (although a general yearly seasonality is present). Still, the TFT model obtains the
best score on wind.

Another interesting finding is the considerable difference between MASE and RMSSE,
most notably on the traffic and solar datasets. As was discussed in section 4.1, MASE favors
forecasts towards the median in contrast to RMSSE which favors forecasts towards the mean
[73, 74]. The solar dataset is skewed towards 0 as the sun shines only during daytime, leaving
the nightly periods (i.e., roughly half of the dataset), with 0 in power output. Thus, MASE
will assign lower values to models that produce forecasts closer to 0. On solar, we observe
that TFT performs best in terms of MASE and Seq2Seq in terms of RMSSE. This highlights
the importance of selecting an appropriate error metric. For solar it seems reasonable to
use RMSSE, as forecasting the mean (i.e., higher values and actual power production in this
case), should be favored rather than correctly forecasting that there will be little to no sun
during the night. We observe a similar effect on traffic, where TFT is 0.037 points better than
TCN by MASE, and only 0.005 points better by RMSSE.

As should be apparent, the evaluation using aggregated metrics provides an indication of
which models perform better on average. However, aggregated metrics yield little insight on
where the models are outperforming. Table 6.2 presents results using the win-loss ranking
metric, showing the number of times a model is the best (or worst) performing model per
time series in the dataset. In other words, errors are not averaged across all time series,
but rather evaluated per series while counting wins and losses for each model. First, we
observe that the TFT model is the most frequent winner on electricity, although the TCN
model scored best in terms of aggregated errors. This difference could stem from a difference
in losses, where TCN is worst on only 3 series, in contrast to TFT being worst on 17 (22) series
when measured by MASE (RMSSE). Another possibility is that the TCN model performs well
on average on the majority of series without tending towards the extreme predictions, as it
has fewer wins, but also fewer losses, compared to TFT. This could be a desirable property,
because typically it is preferable to avoid major forecasting errors and continually perform
reasonably, rather than providing both extremely accurate and inaccurate forecasts. Another
interesting finding is the win-loss ranks for the SARIMA model. On electricity, SARIMA is
frequently both the best and the worst model (80 wins and 97 losses in terms of MASE).
This fact is entirely neglected by the aggregated metrics, in which SARIMA seems to be a
bad model. However, as the win-loss metric reveals, it is in fact the best model on 22% of
the series in the dataset. The metric also reveals SARIMA to be the worst model on nearly
all traffic series. We suspect this to be due to SARIMA only picking up the general seasonal
pattern of the series, unable to properly fit rush hour traffic spikes.

1TFT was also fitted with an additional input variable on the volatility dataset to be consistent with the
experiments of Lim et al. [68].

CHAPTER 6. RESULTS AND DISCUSSION 34

Table 6.2: Results in terms of the win-loss ranking metric calculated based on MASE and RMSSE for
each time series

Electricity Traffic Volatility Solar Wind

Wins Losses Wins Losses Wins Losses Wins Losses Wins Losses

SARIMA
- MASE 80 97 2 853 1 1 0 94 0 28
- RMSSE 67 109 3 850 1 3 0 127 0 28

DeepAR
- MASE 21 209 27 101 4 19 49 1 1 0
- RMSSE 25 192 49 103 2 20 79 1 6 0

S2S
- MASE 13 43 5 3 17 0 12 0 1 0
- RMSSE 24 43 107 1 22 0 39 0 8 0

TCN
- MASE 109 3 22 5 3 5 0 42 3 0
- RMSSE 110 3 131 5 4 1 0 4 3 0

TFT
- MASE 146 17 907 1 6 6 76 0 23 0
- RMSSE 143 22 673 4 2 7 19 5 11 0

Note: The best and worst scores are marked green and red respectively.

Lastly, we see the same discrepancy between evaluations using MASE and RMSSE on
the solar dataset. Here, TFT is the best model on 76 series when measured by MASE and
only 19 when measured by RMSSE. This was also reflected in the aggregated metrics. We
elect to continue the evaluation in the following sections using RMSSE to not complicate the
evaluation and the number of metrics. Furthermore, it seems reasonable to prefer forecasts
towards the mean in cases such as the solar dataset, as was argued in [25].

6.2 Weighting Errors by Variance

We have hypothesized that aggregating metrics across the prediction horizon and time series
can potentially make models that are good at predicting what is already known appear to
be better than models that are good at predicting uncertain events. This is especially im-
portant for time series with characteristics rooted in real-world phenomena, such as power
consumption, traffic flows and solar power generation, which also are important industrial
applications. To account for such differences in variance over the seasonal period, we ana-
lyze the results in terms of the proposed variance weighted errors.

Firstly, we focus on the first row of Figure 6.1. It shows plots of the RMSSE metric ag-
gregated per hour for the electricity, traffic and solar datasets, respectively.2 Unsurprisingly,
we observe that there are significant differences in mean error depending on what time of
the day is forecasted. Power consumption is difficult to predict during the day and even-
ing, traffic is difficult to predict at 07:00 AM and 16:00PM during rush hour, and solar power
generation is zero during night. Interestingly, Figure 6.1 shows that, on average, models are
very consistent and follow the same error pattern. A model with lower error score tends to

2Plots for variance weighted RMSSE on volatility and wind are attached in appendix A.2.

CHAPTER 6. RESULTS AND DISCUSSION 35

be better at forecasting across all hours. In other words, we do not find that one model is
very good at predicting peak time traffic while another model is better for baseline traffic.
This, however, could be due to the law of large numbers and averaging across all series. As
we found in the previous section, although one model could be best in terms of aggregated
errors, another model can still have significantly higher win rank with lower average error.
Thus, we do not know whether there are significant differences on each time series prior
to aggregation. We do, however, find one significant difference on the solar dataset. That
is, DeepAR is the worst model at predicting nighttime power production which we already
know is 0, and thus irrelevant. At the same time, DeepAR is the best model when predicting
solar generation during peak hour. In other words, the model is punished for making bad
predictions for something we already know, outweighing the improvements it makes during
critical hours. A simple solution would be to just disregard the periods when the sun is down,
however, this would not be as easily applicable to datasets such as electricity or traffic.

0 3 6 9 12 15 18 21 24
Hour

0.25

0.30

0.35

0.40

0.45

RM
SS

E

Electricity

0 3 6 9 12 15 18 21 24
Hour

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

RM
SS

E

Traffic

0 3 6 9 12 15 18 21 24
Hour

0.00

0.20

0.40

0.60

0.80

RM
SS

E

Solar

0 3 6 9 12 15 18 21 24
Hour

0.20

0.30

0.40

0.50

0.60

0.70

Va
ria

nc
e

we
ig

ht
ed

 R
M

SS
E

Electricity

0 3 6 9 12 15 18 21 24
Hour

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Va
ria

nc
e

we
ig

ht
ed

 R
M

SS
E

Traffic

0 3 6 9 12 15 18 21 24
Hour

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Va
ria

nc
e

we
ig

ht
ed

 R
M

SS
E

Solar

SARIMA DeepAR Seq2Seq TCN TFT

Figure 6.1: Results in terms of RMSSE (first row) and variance weighted RMSSE (second row) com-
puted per hour of day for the electricity, traffic and solar datasets

To account for the differences in uncertainty we proposed variance weighted erros, weight-
ing errors in relation to how much variance there is at the predicted hour. The second row of
Figure 6.1 plots RMSSEVM for each prediction hour. Most notably, we see that errors on the
solar dataset between 18:00 PM and 06:00 AM have been scaled to 0 as this period has no vari-
ance in power output. Furthermore, the error during peak output has increased significantly
in magnitude, as more weight is put on the period where power output is highly variable.
The same result is visible, although not as pronounced, for electricity and traffic. Differences
between models where the target is relatively predictable (i.e., low target variance) have been
reduced, whereas more weight is put on periods where the target is unpredictable, i.e., dur-
ing peak traffic and electricity hours.

Table 6.3 shows RMSSEVM measure for all datasets in addition to RMSSE as previously
presented in Table 6.1 for comparison. Note that electricity, traffic and solar is weighted by

CHAPTER 6. RESULTS AND DISCUSSION 36

the variance at each hour, while volatility and wind is weighted by the variance at each day
of week due to having daily frequency. As expected, we observe significant increases in er-
ror magnitude for electricity, traffic and solar (up to 28.8%, 119% and 77.4% respectively).
The datasets are highly seasonal and partly driven by known phenomena. In contrast wind
and volatility shows only a marginal increase in magnitude (up to 1.11% and 0.30% respect-
ively), as their variance is close to constant and independent of the seasonal period.3 As a
consequence, we find that the best models change from TFT to Seq2Seq on traffic and from
Seq2Seq to DeepAR on solar, which agrees with our discussion of DeepAR in Figure 6.1.

Table 6.3: Results in terms of aggregated RMSSE and RMSSEVM for each model and dataset

Electricity Traffic Volatility Solar Wind

RMSSE RMSSEVW RMSSE RMSSEVW RMSSE RMSSEVW RMSSE RMSSEVW RMSSE RMSSEVW

SARIMA 0.358 0.461 0.463 0.990 0.739 0.745 0.459 0.779 0.878 0.880
DeepAR 0.380 0.450 0.362 0.748 0.759 0.767 0.332 0.560 0.773 0.775
Seq2Seq 0.330 0.406 0.303 0.638 0.724 0.732 0.327 0.576 0.767 0.769
TCN 0.312 0.394 0.298 0.642 0.730 0.737 0.354 0.618 0.769 0.770
TFT 0.330 0.415 0.293 0.642 0.744 0.751 0.345 0.612 0.761 0.762

Note: The best and worst scores are marked green and red respectively.

In addition to providing a more realistic representation of the forecast error, we argue
that RMSSEVM more accurately represents performance in relation to the naive forecasting
method. Scaled errors have the benefit that they can be interpreted as being better than
the reference method when the error is less than one and worse when greater than one [17].
However, for multi-step forecasting, the naive multi-step forecast will likely produce very
bad forecasts for periods which are easy to forecast, e.g., baseline traffic or before sunrise
and after sunset. Thus, when critical periods are weighted higher, the metric more closely
represents the improvement over the reference method as models no longer have the benefit
of major metric improvements when forecasting uninteresting periods. In the next section,
we examine differences in how the models perform across the prediction horizon.

6.3 Evaluation Over the Forecast Horizon

When evaluating multi-step forecasts, an important aspect that is not considered explicitly
when looking at aggregated metrics is the forecast horizon. In this section, we evaluate our
results in terms of RMSSE over the forecast horizon and the delta horizon metric, ∆H , pro-
posed in chapter 4.

Figure 6.2 shows RMSSE values per prediction horizon τ ∈ {1, . . . ,T } for each dataset. Like
we observed in Figure 6.1, models trained on the same dataset tend to follow the same pat-
tern in error distribution. Models that perform better in terms of aggregated error also per-
form better across the prediction horizon compared to a model with higher errors. We find
little evidence of individual differences. Differences are most noticeable for electricity, where
TFT is the worst model at prediction time t = 0, but better relative to other models later in
the prediction horizon. Conversely, SARIMA is second best at time t = 0, but second worst

3One could argue that volatility is slightly seasonal in that the first and last day of the business week are more
volatile as they constitute the opening and closing of stock exchanges around the weekend. Thus, variance
weighting impacts the volatility dataset slightly more than wind.

CHAPTER 6. RESULTS AND DISCUSSION 37

0 3 6 9 12 15 18 21 24
Forecast horizon

0.25

0.30

0.35

0.40

RM
SS

E

Electricity

0 3 6 9 12 15 18 21 24
Forecast horizon

0.25

0.30

0.35

0.40

0.45

0.50

RM
SS

E

Traffic

0 1 2 3 4
Forecast horizon

0.68

0.70

0.72

0.74

0.76

0.78

0.80

RM
SS

E

Volatility

0 3 6 9 12 15 18 21 24
Forecast horizon

0.10

0.20

0.30

0.40

0.50

RM
SS

E

Solar

0 4 8 12 16 20 24 28
Forecast horizon

0.70

0.75

0.80

0.85

0.90

0.95

RM
SS

E

Wind

SARIMA DeepAR Seq2Seq TCN TFT

Figure 6.2: Results in terms of RMSSE computed per forecast horizon for all datasets

after a few time steps. In terms of datasets, models on electricity and solar exhibit a nearly
concave increase in error across the horizon. For volatility, the increase in error over the ho-
rizon appears to be close to linear, which is what we should expect for a highly noisy dataset.
Interestingly, on the wind dataset, models are no worse at predicting wind 4 days in advance
than 30 days in advance. This could indicate that, as long as the models derive a reasonable
prediction for the average wind level a few days in advance, the same prediction will yield
equally good results for the next 30 days as well. This, in combination with the law of large
numbers, is likely the source of this effect. What this shows is that, at the very least on an ag-
gregated level, models tend to keep their performance advantages across the entire forecast
horizon. The exception being during the first few time steps.4

Despite largely similar and indifferent behavior in terms of errors across the forecast ho-
rizon, we find large differences in the ∆H metric. Table 6.4 shows the mean ∆H metric for
each model and dataset. Recall that ∆H measures how much the model adjusts its estimate
of yt as t approaches over the forecast horizon. First, we find that although TCN and TFT
perform similarly in terms of aggregated RMSSE (0.312 and 0.330, respectively), they are sig-
nificantly different in terms of ∆H (12.8274 and 4.9080, respectively). In other words, TCN
is highly sensitive over the horizon and frequently updates its initial estimates. In contrast,
TFT is more stable and follows the initial forecasted value more closely over the horizon, ef-
fectively making less adjustments. It is difficult to decide which behavior is favorable. For
example, one could argue that having more stable forecasts is favorable, as it implies that
the model will make less abrupt changes to its initial forecast. However, it could also imply
that it is less reactive to new information. Reactivity to new information is likely favorable in
situations where arriving information drives the time series (e.g., volatility forecasting which

4If the first few time steps of a multi-step forecast are of paramount importance to a practitioner, that would
beg to question why a multi-step model was implemented in the first place.

CHAPTER 6. RESULTS AND DISCUSSION 38

is highly impacted by newsfeeds). Therefore, a lower ∆H value could be favorable for situ-
ations where a stable forecasted trajectory is of higher importance than the individual fore-
casts, e.g., visualizing trends. In contrast, higher ∆H and more reactivity could be useful in
applications such as stock market predictions.

Table 6.4: Results for the ∆H metric for each model and dataset

Electricity Traffic Volatility Solar Wind

SARIMA 5.9976 0.0009 0.1168 0.3890 0.0062
DeepAR 11.0895 0.0022 0.1036 0.3360 0.0058
Seq2Seq 10.4219 0.0009 0.1070 0.3104 0.0030
TCN 12.8274 0.0023 0.0863 0.3170 0.0044
TFT 4.9080 0.0003 0.1182 0.2434 0.0020

Note: The highest and lowest scores are marked green and
red, respectively.

Lastly, instead of reporting the aggregate ∆H metric, we can plot the ∆H metric across
the prediction horizon to show at which points each model makes the most adjustments (on
average). Figure 6.3 shows the∆H metric plotted across the forecast horizon. We observe that
there are significant differences as to how and where the models update their forecasts. We
note that ∆H of the SARIMA model produces a strictly increasing function over the horizon,
which makes sense as it is an iterative multi-step model. On the other hand, direct deep
learning models occasionally update forecasts more at the beginning and end of the horizon,
as seen on electricity and traffic.

0 3 6 9 12 15 18 21 24
Forecast horizon

5.00

10.00

15.00

20.00

25.00

30.00

H

Electricity

0 3 6 9 12 15 18 21 24
Forecast horizon

0.00

0.00

0.00

0.00

0.00

0.01

0.01

H

Traffic

1 2 3 4
Forecast horizon

0.08

0.09

0.10

0.11

0.12

0.13

0.14

0.15

H

Volatility

0 3 6 9 12 15 18 21 24
Forecast horizon

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

H

Solar

0 4 8 12 16 20 24 28
Forecast horizon

0.00

0.00

0.00

0.01

0.01

0.01

0.02

0.02

H

Wind

SARIMA DeepAR Seq2Seq TCN TFT

Figure 6.3: Results in terms of the delta horizon metric computed per forecast horizon for all datasets

CHAPTER 6. RESULTS AND DISCUSSION 39

6.4 Error Decomposition

Lastly, we present results in terms of the decomposed error metrics as proposed in chapter 4.
Table 6.5 shows decomposed errors in terms of trend, season and remainder for the path the
T -step-ahead forecasts), pT , and for the path the 1-step-ahead forecasts, p1. We will refer to
the remainder component as noise, although it can contain other elements than white noise
as it comprises everything that is not captured by the trend and seasonal components.

Table 6.5: Results in terms of decomposed errors for pT and p1

Electricity Traffic Volatility Solar Wind

pT p1 pT p1 pT p1 pT p1 pT p1

SARIMA
- Trend 0.241 0.049 0.210 0.079 0.511 0.254 0.168 0.027 0.589 0.112
- Season 0.179 0.141 0.276 0.192 0.249 0.333 0.312 0.062 0.355 0.363
- Noise 0.190 0.154 0.258 0.218 0.440 0.474 0.440 0.124 0.634 0.561

DeepAR
- Trend 0.321 0.059 0.156 0.059 0.554 0.331 0.153 0.010 0.281 0.119
- Season 0.211 0.185 0.225 0.171 0.257 0.310 0.318 0.059 0.400 0.358
- Noise 0.163 0.130 0.171 0.144 0.433 0.450 0.219 0.070 0.587 0.542

Seq2Seq
- Trend 0.214 0.062 0.111 0.046 0.482 0.263 0.129 0.013 0.277 0.103
- Season 0.183 0.181 0.155 0.144 0.253 0.330 0.314 0.074 0.391 0.360
- Noise 0.175 0.138 0.162 0.142 0.438 0.460 0.248 0.073 0.589 0.543

TCN
- Trend 0.205 0.049 0.105 0.042 0.490 0.291 0.132 0.012 0.263 0.113
- Season 0.157 0.141 0.145 0.135 0.262 0.320 0.369 0.074 0.385 0.369
- Noise 0.174 0.141 0.169 0.148 0.43 0.453 0.234 0.075 0.599 0.549

TFT
- Trend 0.208 0.126 0.101 0.062 0.519 0.276 0.127 0.020 0.239 0.185
- Season 0.175 0.165 0.146 0.138 0.252 0.327 0.326 0.085 0.404 0.36
- Noise 0.167 0.144 0.154 0.141 0.445 0.465 0.254 0.084 0.587 0.541

Note: Noise refers to the remainder error as presented in chapter 4.

First, we observe that in general the trend error decreases over the forecast horizon (from
pT to p1). Furthermore, we observe a decrease in the season error and noise error, however,
the decrease is substantially lower than what we observe in the trend error. In other words,
this indicates that the improvements in accuracy as the forecast horizon decreases stems
primarily from improvements when predicting the correct trend. The improvements when
predicting seasonality and noise tends to be minor in comparison. If we compare results on
electricity and traffic (seasonal data) to volatility and wind (noisy data), we observe that the
noise error is significantly higher relative to trend and season on the noisy data. Conversely,
on seasonal data, the error of trend and season is higher relative to noise (when observing
the pT values). Thus, the error metrics indicate which components of each dataset are diffi-
cult to predict far ahead in time. On seasonal data, this tends to be the long-term trend, while
season and noise tend to be as difficult to predict tomorrow as it is in the future. The same

CHAPTER 6. RESULTS AND DISCUSSION 40

is true for the noisy data, however, the trend component is smaller relative to the noise com-
ponent. We observe that the noise component in general rarely decreases over the horizon,
which is to be expected as true noise in theory is unpredictable.

One considerable disadvantage of the decomposed errors is interpretability between mod-
els. A prominent example of this is that TFT on electricity produces trend error 0.126, which
is worse relative to the other models between 0.062 and 0.049. Yet, TFT is the second best
model in terms of aggregated RMSSE. In other words, TFT likely performs better during the
other time steps between the first (step T) and last (step 1) forecasted value, which is not
captured by the metrics. A solution could be to include the average of all steps in addition to
the first and last steps, however, this also increases the number of metrics.

6.5 Temporal Distortion

In addition to error metrics, we evaluate the forecasts in terms of the TDI and TDM. Table 6.6
shows the mean TDI and TDM for each time series and dataset. A low (high) TDI indicates
that the forecast is aligned (unaligned) with the ground truth. A negative (positive) TDM
indicates an in advance (late) forecast compared to ground truth.

We observe that for electricity, traffic and volatility, the best (worst) performing model
in terms of TDI corresponds with the best (worst) model in terms of RMSSE and MASE (see
Table 6.1). This is, however, not the case for solar and wind. The TFT model seems to per-
form well on solar, electricity and traffic, and worse on volatility and wind. This makes sense,
as the TFT model has access to date time covariates that should be useful when accurately
predicting events and shifts. This is especially visible on the solar dataset, where the identi-
fication of sunrise and sunset when power production ramps up. This is also where we as-
sume date-time information to be particularly useful. The TFT temporal alignment is worse
on volatility and wind, which are noisy datasets where covariates likely are irrelevant.

Table 6.6: Results in terms of mean TDI and mean TDM computed for every model and dataset

Electricity Traffic Volatility Solar Wind

TDI TDM TDI TDM TDI TDM TDI TDM TDI TDM

SARIMA 0.100 -0.003 0.108 0.052 0.175 -0.077 0.119 0.045 0.401 -0.251
DeepAR 0.110 0.076 0.068 -0.005 0.195 -0.042 0.133 0.094 0.351 0.001
Seq2Seq 0.100 -0.030 0.055 -0.080 0.169 -0.034 0.129 0.127 0.37 -0.223
TCN 0.087 0.050 0.052 0.099 0.185 -0.054 0.156 0.129 0.384 -0.006
TFT 0.089 -0.054 0.038 0.179 0.187 -0.060 0.110 0.281 0.409 -0.094

Note: The best and worst scores are marked green and red respectively.

In general, we note that aggregating the TDI and TDM metric has inherent problems.
During evaluation, we find that the TDI and TDM applied to individual forecasts from the
same model can vary significantly, especially in the TDM. We see this in distributional plots,
an example of which is attached in appendix A.3, the distribution the TDI and TDM metrics
on the traffic dataset.5 Therefore, the aggregated metrics will only provide a measure of the
general tendency for the temporal alignment of the model forecasts. One could, of course,
also argue that this is the case when computing aggregated error metrics.

5Distributional plots from the other models and datasets show similar patterns.

7 | Conclusion and Future Work

In this thesis we investigate ways to provide additional insights when evaluating multi-step
point forecasting models. Having identified that the current literature on performance met-
rics mainly focus on evaluating models in terms of aggregated metrics, we hypothesize that
this neglects valuable information in the evaluation process. We test our hypothesis by con-
ducting empirical experiments and propose four novel metrics to provide insights in the
evaluation process that would be valuable to practitioners and industry.

First, we evaluate our results in terms of aggregated MASE and RMSSE. Our results show
that the best model depends on the chosen performance metric, supporting the findings of
the current literature [18]. Furthermore, we evaluate the results in terms of the proposed
win-loss ranking metric and show that important information is lost when errors are aggreg-
ated. For example, the TCN model is deemed best on electricity in terms of MASE (0.252) and
is the best model on 109 series. In contrast, TFT is second best in terms of MASE (0.260), yet it
is the best model on 146 of the series in the dataset. This information would be important in
industry applications, as it does not make sense to apply TCN on all the series even though it
is the best model in terms of MASE. Furthermore, one would probably not consider SARIMA
to be that good relative to TCN and TFT (MASE of 0.289). However, SARIMA is in fact the best
model on 80 of the series. Thus, the best model is highly dependent on the individual time
series.

Second, we find that variance weighted errors can be useful for datasets where there are
large variations over the seasonal period and where performance during uncertain periods
should be weighted higher. The applicability of the metric is especially visible on solar and
traffic, where Seq2Seq and DeepAR are the best models in terms of RMSSEVW due to bet-
ter performance where variance is high. However, we also find that the difference between
models over the seasonal period tends to be minor and that models in general follow the
same error pattern. In other words, we do not find that some models perform especially
well during uncertain periods. Thus, the metric might only be applicable for special cases,
limiting the usefulness of the metric.

Third, as with the seasonal period, we find that models in general follow the same error
pattern over the forecast horizon. If model X is better than model Y on average, the same
conclusion tends to hold for all forecast horizons. Thus, a metric that measures perform-
ance over the forecast horizon does not seem to be useful. We do, however, find significant
differences in how much each model updates its forecasted value for a point in time over the
horizon. The proposed delta horizon metric allows practitioners to differentiate between
models that produce stable forecasts over the forecast horizon and models that react more
aggressively to arriving information.

Lastly, we provide additional insights into how the errors relate to trend, season, noise,
and time alignment. The decomposed error metrics indicate that improved performance

41

CHAPTER 7. CONCLUSION AND FUTURE WORK 42

over the forecast horizon is largely due to improvements in forecasting the correct trend.
This is true for both seasonal and noisy datasets, however, we find the noise component to
account for a larger portion of the error on noisy datasets, which agrees with intuition. Re-
lating errors to time alignment by the aggregated TDI and TDM metrics, we find that the TDI
and RMSSE agree on the best model for three of the five datasets. However, as time alignment
is an elusive concept and more difficult to grasp than simple errors, we find the applicability
of this metric to be somewhat limited, especially on an aggregated level.

In what follows, we provide some interesting directions for future work. First is to further
develop the proposed metrics. For example, variations of the win-loss ranking metric could
be developed to show the average rank or average quantile a model places for each time
series. It is also possible to improve the interpretability of the decomposed errors and delta
horizon metric, as they currently are only meaningful in comparison to the metrics of other
models. Thus, providing upper and lower bounds for these metrics or incorporating relative
scaling could increase the interpretability and be promising directions for future research.

Second, as this empirical study was conducted with deep learning models, the size of the
selected training and testing sets are rather large due to the models requiring a lot of data
to be trained effectively. It would be interesting to perform the same experiments and test
the applicability of metrics on shorter time series and test series. With fewer observations,
the law of large numbers might not be as prevalent considering that we have observed very
smooth error patterns over the seasonal period and forecast horizon.

Similar to running the experiments on shorter datasets, it would be interesting to test
the impact of using other types of models. As we have observed, the deep learning mod-
els produce largely the same error patterns. Therefore, training the deep learning models
with other loss functions could provide interesting differences, e.g., the DILATE loss function
which explicitly differentiates between shape and time [100]. Furthermore, testing whether
our conclusions hold for other state space models and forecasting techniques would be a
possible extension of this work.

Lastly, it would be interesting to analytically investigate why the models tend to follow
the same general error patterns across both seasonality and forecast horizon. The results
show that models just get better overall rather than improving on specific seasonal periods
or forecast horizons. We have mentioned the law of large numbers but have not yet seen this
investigated in the literature. It would be an interesting subject for further research.

References

[1] J. G. De Gooijer and R. J. Hyndman, ‘25 years of time series forecasting,’ International
Journal of Forecasting, vol. 22, no. 3, pp. 443–473, 2006. DOI: 10.1016/j.ijforecast.2006.
01.001.

[2] M. Lei, L. Shiyan, J. Chuanwen et al., ‘A review on the forecasting of wind speed and
generated power,’ Renewable and Sustainable Energy Reviews, vol. 13, no. 4, pp. 915–
920, 2009. DOI: 10.1016/j.rser.2008.02.002.

[3] R. H. Inman, H. T. Pedro and C. F. Coimbra, ‘Solar forecasting methods for renewable
energy integration,’ Progress in Energy and Combustion Science, vol. 39, no. 6, pp. 535–
576, 2013. DOI: 10.1016/j.pecs.2013.06.002.

[4] E. I. Vlahogianni, M. G. Karlaftis and J. C. Golias, ‘Short-term traffic forecasting: Where
we are and where we’re going,’ Transportation Research Part C: Emerging Technolo-
gies, vol. 43, pp. 3–19, 2014. DOI: 10.1016/j.trc.2014.01.005.

[5] J.-H. Böse, V. Flunkert, J. Gasthaus et al., ‘Probabilistic demand forecasting at scale,’
Proceedings of the VLDB Endowment, vol. 10, no. 12, pp. 1694–1705, 2017. DOI: 10.
14778/3137765.3137775.

[6] M. Mudelsee, ‘Trend analysis of climate time series: A review of methods,’ Earth-
Science Reviews, vol. 190, no. December 2018, pp. 310–322, 2019. DOI: 10 . 1016 / j .
earscirev.2018.12.005.

[7] E. J. Topol, ‘High-performance medicine: the convergence of human and artificial
intelligence,’ Nature Medicine, vol. 25, no. 1, pp. 44–56, 2019. DOI: 10.1038/s41591-
018-0300-7.

[8] O. Bustos and A. Pomares-Quimbaya, ‘Stock market movement forecast: A Systematic
review,’ Expert Systems with Applications, vol. 156, 2020. DOI: 10.1016/j.eswa.2020.
113464.

[9] S. B. Taieb and A. F. Atiya, ‘A Bias and Variance Analysis for Multistep-Ahead Time
Series Forecasting,’ IEEE Transactions on Neural Networks and Learning Systems, vol. 27,
no. 1, pp. 62–76, 2016. DOI: 10.1109/TNNLS.2015.2411629.

[10] B. Lim and S. Zohren, ‘Time series forecasting with deep learning: A survey,’ arXiv,
2020.

[11] R. Fildes and K. Ord, ‘Forecasting Competitions: Their Role in Improving Forecasting
Practice and Research,’ in A Companion to Economic Forecasting, John Wiley & Sons,
Ltd, 2004, ch. 15, pp. 322–353. DOI: https://doi.org/10.1002/9780470996430.ch15.

43

https://doi.org/10.1016/j.ijforecast.2006.01.001
https://doi.org/10.1016/j.ijforecast.2006.01.001
https://doi.org/10.1016/j.rser.2008.02.002
https://doi.org/10.1016/j.pecs.2013.06.002
https://doi.org/10.1016/j.trc.2014.01.005
https://doi.org/10.14778/3137765.3137775
https://doi.org/10.14778/3137765.3137775
https://doi.org/10.1016/j.earscirev.2018.12.005
https://doi.org/10.1016/j.earscirev.2018.12.005
https://doi.org/10.1038/s41591-018-0300-7
https://doi.org/10.1038/s41591-018-0300-7
https://doi.org/10.1016/j.eswa.2020.113464
https://doi.org/10.1016/j.eswa.2020.113464
https://doi.org/10.1109/TNNLS.2015.2411629
https://doi.org/https://doi.org/10.1002/9780470996430.ch15

REFERENCES 44

[12] S. Makridakis and M. Hibon, ‘The M3-Competition: results, conclusions and implic-
ations,’ International Journal of Forecasting, vol. 16, no. 4, pp. 451–476, 2000. DOI:
10.1016/S0169-2070(00)00057-1.

[13] M. P. Clements and D. F. Hendry, ‘Explaining the Results of the M3 Forecasting Com-
petition,’ International Journal of Forecasting, vol. 17, no. January 2001, pp. 550–554,
2001.

[14] S. F. Crone, M. Hibon and K. Nikolopoulos, ‘Advances in forecasting with neural net-
works? Empirical evidence from the NN3 competition on time series prediction,’ In-
ternational Journal of Forecasting, vol. 27, no. 3, pp. 635–660, 2011. DOI: 10.1016/j.
ijforecast.2011.04.001.

[15] S. Makridakis, E. Spiliotis and V. Assimakopoulos, ‘Statistical and Machine Learning
forecasting methods: Concerns and ways forward,’ PLOS ONE, vol. 13, no. 3, 2018.
DOI: 10.1371/journal.pone.0194889.

[16] R. Fildes, M. Hibon, S. Makridakis et al., ‘Generalising about univariate forecasting
methods: further empirical evidence,’ International Journal of Forecasting, vol. 14,
no. 3, pp. 339–358, 1998. DOI: 10.1016/S0169-2070(98)00009-0.

[17] R. J. Hyndman and A. B. Koehler, ‘Another look at measures of forecast accuracy,’
International Journal of Forecasting, vol. 22, no. 4, pp. 679–688, 2006. DOI: 10.1016/j.
ijforecast.2006.03.001.

[18] S. Kolassa, ‘Why the “best” point forecast depends on the error or accuracy measure,’
International Journal of Forecasting, vol. 36, no. 1, pp. 208–211, 2020. DOI: 10.1016/j.
ijforecast.2019.02.017.

[19] R. J. Hyndman, ‘A brief history of forecasting competitions,’ International Journal of
Forecasting, vol. 36, no. 1, pp. 7–14, 2020. DOI: 10.1016/j.ijforecast.2019.03.015.

[20] R. Hyndman and G. Athanasopoulos, Forecasting: Principles and Practice, 3rd. Aus-
tralia: OTexts, 2021.

[21] R. B. Cleveland, W. S. Cleveland, J. E. McRae et al., ‘STL: A Seasonal-Trend Decompos-
ition Procedure Based on Loess,’ Journal of Official Statistics, vol. 6, pp. 3–73, 1990.

[22] I. Sutskever, O. Vinyals and Q. V. Le, ‘Sequence to Sequence Learning with Neural
Networks,’ Advances in Neural Information Processing Systems, vol. 4, no. January,
pp. 3104–3112, 2014.

[23] J. Armstrong and F. Collopy, ‘Error measures for generalizing about forecasting meth-
ods: Empirical comparisons,’ International Journal of Forecasting, vol. 8, no. 1, pp. 69–
80, 1992. DOI: 10.1016/0169-2070(92)90008-W.

[24] J. S. Armstrong, ‘Evaluating forecasting methods,’ in Principles of forecasting, Springer,
2001, pp. 443–472.

[25] S. Makridakis, E. Spiliotis and V. Assimakopoulos, ‘The M5 accuracy competition:
Results, findings and conclusions,’ International Journal of Forecasting, 2020.

[26] S. Makridakis, A. Andersen, R. Carbone et al., ‘The accuracy of extrapolation (time
series) methods: Results of a forecasting competition,’ Journal of Forecasting, vol. 1,
no. 2, pp. 111–153, 1982. DOI: 10.1002/for.3980010202.

https://doi.org/10.1016/S0169-2070(00)00057-1
https://doi.org/10.1016/j.ijforecast.2011.04.001
https://doi.org/10.1016/j.ijforecast.2011.04.001
https://doi.org/10.1371/journal.pone.0194889
https://doi.org/10.1016/S0169-2070(98)00009-0
https://doi.org/10.1016/j.ijforecast.2006.03.001
https://doi.org/10.1016/j.ijforecast.2006.03.001
https://doi.org/10.1016/j.ijforecast.2019.02.017
https://doi.org/10.1016/j.ijforecast.2019.02.017
https://doi.org/10.1016/j.ijforecast.2019.03.015
https://doi.org/10.1016/0169-2070(92)90008-W
https://doi.org/10.1002/for.3980010202

REFERENCES 45

[27] C. Chatfield, ‘Apples, oranges and mean square error,’ International Journal of Fore-
casting, vol. 4, no. 4, pp. 515–518, 1988. DOI: 10.1016/0169-2070(88)90127-6.

[28] C. Chen, J. Twycross and J. M. Garibaldi, ‘A new accuracy measure based on bounded
relative error for time series forecasting,’ PLOS ONE, vol. 12, no. 3, 2017. DOI: 10.1371/
journal.pone.0174202.

[29] H. Theil, Applied economic forecasting. North-Holland Pub. Co., 1971.

[30] S. Ben Taieb, G. Bontempi, A. F. Atiya et al., ‘A review and comparison of strategies for
multi-step ahead time series forecasting based on the NN5 forecasting competition,’
Expert Systems with Applications, vol. 39, no. 8, pp. 7067–7083, 2012. DOI: 10.1016/j.
eswa.2012.01.039.

[31] A. R. S. Parmezan, V. M. Souza and G. E. Batista, ‘Evaluation of statistical and machine
learning models for time series prediction: Identifying the state-of-the-art and the
best conditions for the use of each model,’ Information Sciences, vol. 484, pp. 302–
337, 2019. DOI: 10.1016/j.ins.2019.01.076.

[32] J. Zhang, A. Florita, B.-M. Hodge et al., ‘A suite of metrics for assessing the perform-
ance of solar power forecasting,’ Solar Energy, vol. 111, pp. 157–175, 2015. DOI: 10.
1016/j.solener.2014.10.016.

[33] L. Vallance, B. Charbonnier, N. Paul et al., ‘Towards a standardized procedure to as-
sess solar forecast accuracy: A new ramp and time alignment metric,’ Solar Energy,
vol. 150, pp. 408–422, 2017. DOI: 10.1016/j.solener.2017.04.064.

[34] J. A. Ward, P. Lukowicz and H. W. Gellersen, ‘Performance metrics for activity recogni-
tion,’ ACM Transactions on Intelligent Systems and Technology, vol. 2, no. 1, pp. 1–23,
2011. DOI: 10.1145/1889681.1889687.

[35] J. Durbin and S. J. Koopman, Time Series Analysis by State Space Methods: Second
Edition, ser. Oxford Statistical Science Series. OUP Oxford, 2012.

[36] G. E. P. Box and G. M. Jenkins, ‘Some Recent Advances in Forecasting and Control,’
Applied Statistics, vol. 17, no. 2, p. 91, 1968. DOI: 10.2307/2985674.

[37] R. Hyndman, A. B. Koehler, J. K. Ord et al., Forecasting with Exponential Smoothing:
The State Space Approach, ser. Springer Series in Statistics. Springer Berlin Heidel-
berg, 2008.

[38] D. Kwiatkowski, P. C. Phillips, P. Schmidt et al., ‘Testing the null hypothesis of station-
arity against the alternative of a unit root,’ Journal of Econometrics, vol. 54, no. 1-3,
pp. 159–178, 1992. DOI: 10.1016/0304-4076(92)90104-Y.

[39] R. J. Hyndman and Y. Khandakar, ‘Automatic Time Series Forecasting: The forecast
Package for R,’ Journal of Statistical Software, vol. 27, no. 3, p. 22, 2008. DOI: 10.18637/
jss.v027.i03.

[40] S. S. Rangapuram, M. Seeger, J. Gasthaus et al., ‘Deep state space models for time
series forecasting,’ Advances in Neural Information Processing Systems, no. NeurIPS,
pp. 7785–7794, 2018.

[41] Y. Bengio, A. Courville and P. Vincent, ‘Representation learning: A review and new
perspectives,’ IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 35,
no. 8, pp. 1798–1828, 2013. DOI: 10.1109/TPAMI.2013.50.

https://doi.org/10.1016/0169-2070(88)90127-6
https://doi.org/10.1371/journal.pone.0174202
https://doi.org/10.1371/journal.pone.0174202
https://doi.org/10.1016/j.eswa.2012.01.039
https://doi.org/10.1016/j.eswa.2012.01.039
https://doi.org/10.1016/j.ins.2019.01.076
https://doi.org/10.1016/j.solener.2014.10.016
https://doi.org/10.1016/j.solener.2014.10.016
https://doi.org/10.1016/j.solener.2017.04.064
https://doi.org/10.1145/1889681.1889687
https://doi.org/10.2307/2985674
https://doi.org/10.1016/0304-4076(92)90104-Y
https://doi.org/10.18637/jss.v027.i03
https://doi.org/10.18637/jss.v027.i03
https://doi.org/10.1109/TPAMI.2013.50

REFERENCES 46

[42] D. E. Rumelhart, G. E. Hinton and R. J. Williams, ‘Learning representations by back-
propagating errors,’ Nature, vol. 323, no. 6088, pp. 533–536, 1986. DOI: 10.1038/323533a0.

[43] I. Goodfellow, Y. Bengio and A. Courville, Deep Learning. MIT Press, 2016.

[44] J. L. Elman, ‘Finding structure in time,’ Cognitive Science, vol. 14, no. 2, pp. 179–211,
1990. DOI: https://doi.org/10.1016/0364-0213(90)90002-E.

[45] A. Graves, ‘Generating Sequences With Recurrent Neural Networks,’ pp. 1–43, 2013.

[46] M. P. Clements and D. F. Hendry, ‘On the limitations of comparing mean square fore-
cast errors,’ Journal of Forecasting, vol. 12, no. 8, pp. 617–637, 1993. DOI: 10.1002/for.
3980120802.

[47] S. Makridakis, ‘Accuracy measures: theoretical and practical concerns,’ International
Journal of Forecasting, vol. 9, no. 4, pp. 527–529, 1993. DOI: 10.1016/0169-2070(93)
90079-3.

[48] J. S. Armstrong and R. Fildes, ‘Correspondence on the selection of error measures
for comparisons among forecasting methods,’ Journal of Forecasting, vol. 14, no. 1,
pp. 67–71, 1995. DOI: 10.1002/for.3980140106.

[49] Y. Kang, R. J. Hyndman and K. Smith-Miles, ‘Visualising forecasting algorithm per-
formance using time series instance spaces,’ International Journal of Forecasting,
vol. 33, no. 2, pp. 345–358, 2017. DOI: 10.1016/j.ijforecast.2016.09.004.

[50] P. H. Franses, ‘A note on the Mean Absolute Scaled Error,’ International Journal of
Forecasting, vol. 32, no. 1, pp. 20–22, 2016. DOI: 10.1016/j.ijforecast.2015.03.008.

[51] S. Makridakis, A. Andersen, R. Carbone et al., ‘The accuracy of extrapolation (time
series) methods: Results of a forecasting competition,’ Journal of Forecasting, vol. 1,
no. 2, pp. 111–153, 1982. DOI: https://doi.org/10.1002/for.3980010202.

[52] N. H. An and D. T. Anh, ‘Comparison of Strategies for Multi-step-Ahead Prediction
of Time Series Using Neural Network,’ Proceedings - 2015 International Conference
on Advanced Computing and Applications, ACOMP 2015, pp. 142–149, 2016. DOI: 10.
1109/ACOMP.2015.24.

[53] C. Chatfield, ‘Neural networks: Forecasting breakthrough or passing fad?’ Interna-
tional Journal of Forecasting, vol. 9, no. 1, pp. 1–3, 1993. DOI: 10.1016/0169-2070(93)
90043-M.

[54] M. Adya and F. Collopy, ‘How effective are neural networks at forecasting and pre-
diction? A review and evaluation,’ Journal of Forecasting, vol. 17, no. 5-6, pp. 481–495,
1998. DOI: 10.1002/(SICI)1099-131X(1998090)17:5/6<481::AID-FOR709>3.0.CO;2-Q.

[55] A. Krizhevsky, I. Sutskever and G. E. Hinton, ‘ImageNet Classification with Deep Con-
volutional Neural Networks,’ in Advances in Neural Information Processing Systems,
vol. 25, Curran Associates, Inc., 2012.

[56] D. Silver, A. Huang, C. J. Maddison et al., ‘Mastering the game of Go with deep neural
networks and tree search,’ Nature, vol. 529, no. 7587, pp. 484–489, 2016. DOI: 10.1038/
nature16961.

[57] J. Devlin, M.-W. Chang, K. Lee et al., ‘BERT: Pre-training of Deep Bidirectional Trans-
formers for Language Understanding,’ NAACL HLT 2019 - 2019 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Language
Technologies - Proceedings of the Conference, vol. 1, pp. 4171–4186, 2018.

https://doi.org/10.1038/323533a0
https://doi.org/https://doi.org/10.1016/0364-0213(90)90002-E
https://doi.org/10.1002/for.3980120802
https://doi.org/10.1002/for.3980120802
https://doi.org/10.1016/0169-2070(93)90079-3
https://doi.org/10.1016/0169-2070(93)90079-3
https://doi.org/10.1002/for.3980140106
https://doi.org/10.1016/j.ijforecast.2016.09.004
https://doi.org/10.1016/j.ijforecast.2015.03.008
https://doi.org/https://doi.org/10.1002/for.3980010202
https://doi.org/10.1109/ACOMP.2015.24
https://doi.org/10.1109/ACOMP.2015.24
https://doi.org/10.1016/0169-2070(93)90043-M
https://doi.org/10.1016/0169-2070(93)90043-M
https://doi.org/10.1002/(SICI)1099-131X(1998090)17:5/6<481::AID-FOR709>3.0.CO;2-Q
https://doi.org/10.1038/nature16961
https://doi.org/10.1038/nature16961

REFERENCES 47

[58] N. Laptev, J. Yosinski, L. Erran Li et al., ‘Time-series Extreme Event Forecasting with
Neural Networks at Uber,’ in International Conference on Machine Learning (ICML),
2017, pp. 1–5.

[59] R. Yu, S. Zheng, A. Anandkumar et al., ‘Long-term Forecasting using Higher Order
Tensor RNNs,’ arXiv, vol. 1, pp. 1–24, 2017. URL: http://arxiv.org/abs/1711.00073.

[60] R. Wen, K. Torkkola, B. Narayanaswamy et al., ‘A Multi-Horizon Quantile Recurrent
Forecaster,’ arXiv, no. Nips 2017, 2017. URL: http://arxiv.org/abs/1711.11053.

[61] I. Fox, L. Ang, M. Jaiswal et al., ‘Deep Multi-Output Forecasting,’ in Proceedings of the
24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining,
New York, NY, USA: ACM, 2018, pp. 1387–1395. DOI: 10.1145/3219819.3220102.

[62] Y. N. Dauphin, A. Fan, M. Auli et al., ‘Language Modeling with Gated Convolutional
Networks,’ 34th International Conference on Machine Learning, ICML 2017, vol. 2,
pp. 1551–1559, 2016.

[63] J. Gehring, M. Auli, D. Grangier et al., ‘Convolutional Sequence to Sequence Learn-
ing,’ 34th International Conference on Machine Learning, ICML 2017, vol. 3, pp. 2029–
2042, 2017.

[64] S. Bai, J. Z. Kolter and V. Koltun, ‘An Empirical Evaluation of Generic Convolutional
and Recurrent Networks for Sequence Modeling,’ arXiv, 2018. URL: http://arxiv.org/
abs/1803.01271.

[65] E. Choi, M. T. Bahadori, J. A. Kulas et al., ‘RETAIN: An Interpretable Predictive Model
for Healthcare using Reverse Time Attention Mechanism,’ Advances in Neural In-
formation Processing Systems, no. Nips, pp. 3512–3520, 2016. URL: http : / /arxiv.org /
abs/1608.05745.

[66] Y. Qin, D. Song, H. Chen et al., ‘A Dual-Stage Attention-Based Recurrent Neural Net-
work for Time Series Prediction,’ arXiv, pp. 2627–2633, 2017. URL: http://arxiv.org/abs/
1704.02971.

[67] G. Lai, W.-C. Chang, Y. Yang et al., ‘Modeling Long- and Short-Term Temporal Pat-
terns with Deep Neural Networks,’ in The 41st International ACM SIGIR Conference
on Research & Development in Information Retrieval, New York, NY, USA: ACM, 2018,
pp. 95–104. DOI: 10.1145/3209978.3210006.

[68] B. Lim, S. O. Arik, N. Loeff et al., ‘Temporal Fusion Transformers for Interpretable
Multi-horizon Time Series Forecasting,’ arXiv, no. Bryan Lim, pp. 1–27, 2019. URL:
http://arxiv.org/abs/1912.09363.

[69] H. F. Yu, N. Rao and I. S. Dhillon, ‘Temporal regularized matrix factorization for high-
dimensional time series prediction,’ in Advances in Neural Information Processing
Systems, 2016, pp. 847–855.

[70] Y. Wang, A. Smola, D. C. Maddix et al., ‘Deep Factors for Forecasting,’ 36th Interna-
tional Conference on Machine Learning, ICML 2019, pp. 11 460–11 475, 2019. URL:
http://arxiv.org/abs/1905.12417.

[71] M. Seeger, D. Salinas and V. Flunkert, ‘Bayesian intermittent demand forecasting for
large inventories,’ Advances in Neural Information Processing Systems, no. Nips, pp. 4653–
4661, 2016.

http://arxiv.org/abs/1711.00073
http://arxiv.org/abs/1711.11053
https://doi.org/10.1145/3219819.3220102
http://arxiv.org/abs/1803.01271
http://arxiv.org/abs/1803.01271
http://arxiv.org/abs/1608.05745
http://arxiv.org/abs/1608.05745
http://arxiv.org/abs/1704.02971
http://arxiv.org/abs/1704.02971
https://doi.org/10.1145/3209978.3210006
http://arxiv.org/abs/1912.09363
http://arxiv.org/abs/1905.12417

REFERENCES 48

[72] D. Salinas, V. Flunkert and J. Gasthaus, ‘DeepAR: Probabilistic Forecasting with Autore-
gressive Recurrent Networks,’ International Journal of Forecasting, vol. 36, no. 3, pp. 1181–
1191, 2017. DOI: 10.1016/j.ijforecast.2019.07.001.

[73] N. C. Schwertman, A. J. Gilks and J. Cameron, ‘A Simple Noncalculus Proof That the
Median Minimizes the Sum of the Absolute Deviations,’ The American Statistician,
vol. 44, no. 1, pp. 38–39, 1990. DOI: 10.1080/00031305.1990.10475690.

[74] S. Kolassa, ‘Evaluating predictive count data distributions in retail sales forecasting,’
International Journal of Forecasting, vol. 32, no. 3, pp. 788–803, 2016. DOI: 10.1016/j.
ijforecast.2015.12.004.

[75] L. Frías-Paredes, F. Mallor, T. León et al., ‘Introducing the Temporal Distortion Index
to perform a bidimensional analysis of renewable energy forecast,’ Energy, vol. 94,
pp. 180–194, 2016. DOI: 10.1016/j.energy.2015.10.093.

[76] H. Akaike, ‘Information Theory and an Extension of the Maximum Likelihood Prin-
ciple,’ in Selected Papers of Hirotugu Akaike, New York, NY: Springer New York, 1998,
pp. 199–213. DOI: 10.1007/978-1-4612-1694-0{_}15.

[77] T. Young, D. Hazarika, S. Poria et al., ‘Recent Trends in Deep Learning Based Nat-
ural Language Processing,’ IEEE Computational Intelligence Magazine, vol. 13, no. 3,
pp. 55–75, 2017. DOI: 10.1109/MCI.2018.2840738.

[78] S. Hochreiter and J. Schmidhuber, ‘Long Short-Term Memory,’ Neural Computation,
vol. 9, no. 8, pp. 1735–1780, 1997. DOI: 10.1162/neco.1997.9.8.1735.

[79] A. v. d. Oord, S. Dieleman, H. Zen et al., ‘WaveNet: A Generative Model for Raw Audio,’
pp. 1–15, 2016. URL: http://arxiv.org/abs/1609.03499.

[80] J. Long, E. Shelhamer and T. Darrell, ‘Fully Convolutional Networks for Semantic Seg-
mentation,’ IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 39,
no. 4, pp. 640–651, 2014. DOI: 10.1109/TPAMI.2016.2572683.

[81] K. He, X. Zhang, S. Ren et al., ‘Deep Residual Learning for Image Recognition,’ 2016
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), vol. 2016-Decem,
pp. 770–778, 2015. DOI: 10.1109/CVPR.2016.90.

[82] T. Salimans and D. P. Kingma, ‘Weight Normalization: A Simple Reparameterization to
Accelerate Training of Deep Neural Networks,’ Advances in Neural Information Pro-
cessing Systems, pp. 901–909, 2016. URL: http://arxiv.org/abs/1602.07868.

[83] V. Nair and G. Hinton, ‘Rectified Linear Units Improve Restricted Boltzmann Ma-
chines,’ in Proceedings of ICML, vol. 27, 2010, pp. 807–814.

[84] N. Srivastava, G. Hinton, A. Krizhevsky et al., ‘Dropout: A Simple Way to Prevent
Neural Networks from Overfitting,’ Journal of Machine Learning Research, vol. 15,
no. 56, pp. 1929–1958, 2014. URL: http://jmlr.org/papers/v15/srivastava14a.html.

[85] S. Li, X. Jin, Y. Xuan et al., ‘Enhancing the locality and breaking the memory bottle-
neck of transformer on time series forecasting,’ Advances in Neural Information Pro-
cessing Systems, vol. 32, no. NeurIPS, 2019.

[86] A. Vaswani, N. Shazeer, N. Parmar et al., ‘Attention Is All You Need,’ Advances in
Neural Information Processing Systems, vol. 2017-Decem, no. Nips, pp. 5999–6009,
2017. URL: http://arxiv.org/abs/1706.03762.

https://doi.org/10.1016/j.ijforecast.2019.07.001
https://doi.org/10.1080/00031305.1990.10475690
https://doi.org/10.1016/j.ijforecast.2015.12.004
https://doi.org/10.1016/j.ijforecast.2015.12.004
https://doi.org/10.1016/j.energy.2015.10.093
https://doi.org/10.1007/978-1-4612-1694-0{_}15
https://doi.org/10.1109/MCI.2018.2840738
https://doi.org/10.1162/neco.1997.9.8.1735
http://arxiv.org/abs/1609.03499
https://doi.org/10.1109/TPAMI.2016.2572683
https://doi.org/10.1109/CVPR.2016.90
http://arxiv.org/abs/1602.07868
http://jmlr.org/papers/v15/srivastava14a.html
http://arxiv.org/abs/1706.03762

REFERENCES 49

[87] D.-A. Clevert, T. Unterthiner and S. Hochreiter, ‘Fast and Accurate Deep Network
Learning by Exponential Linear Units (ELUs),’ 4th International Conference on Learn-
ing Representations, ICLR 2016 - Conference Track Proceedings, pp. 1–14, 2015. URL:
http://arxiv.org/abs/1511.07289.

[88] J. L. Ba, J. R. Kiros and G. E. Hinton, ‘Layer Normalization,’ 2016. URL: http://arxiv.org/
abs/1607.06450.

[89] D. Dua and C. Graff, UCI Machine Learning Repository, 2017. URL: http://archive.ics.
uci.edu/ml.

[90] G. Heber, A. Lunde, N. Shephard et al., Oxford-Man Institute’s realized library, 2009.
URL: https://realized.oxford-man.ox.ac.uk/.

[91] M. M. Dacorogna, U. A. Müller, R. J. Nagler et al., ‘A geographical model for the daily
and weekly seasonal volatility in the foreign exchange market,’ Journal of Interna-
tional Money and Finance, vol. 12, no. 4, pp. 413–438, 1993. DOI: 10 . 1016 / 0261 -
5606(93)90004-U.

[92] Z. R. Lai, D. Q. Dai, C. X. Ren et al., ‘A peak price tracking-based learning system
for portfolio selection,’ IEEE Transactions on Neural Networks and Learning Systems,
vol. 29, no. 7, pp. 2823–2832, 2018. DOI: 10.1109/TNNLS.2017.2705658.

[93] H. Zhou, S. Zhang, J. Peng et al., ‘Informer: Beyond Efficient Transformer for Long
Sequence Time-Series Forecasting,’ 2020. URL: http://arxiv.org/abs/2012.07436.

[94] T. Akiba, S. Sano, T. Yanase et al., ‘Optuna: A Next-generation Hyperparameter Optim-
ization Framework,’ in Proceedings of the 25th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining, New York, NY, USA: ACM, 2019, pp. 2623–
2631. DOI: 10.1145/3292500.3330701.

[95] A. Paszke, S. Gross, F. Massa et al., ‘PyTorch: An Imperative Style, High-Performance
Deep Learning Library,’ in Advances in Neural Information Processing Systems 32,
Curran Associates, Inc., 2019, pp. 8024–8035. URL: http : / /papers.neurips.cc /paper /
9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf.

[96] J. Beitner, PyTorch Forecasting: Time series forecasting with PyTorch, 2020. URL: https:
//github.com/jdb78/pytorch-forecasting.

[97] W. Falcon, J. Borovec, A. Wälchli et al., ‘PyTorch Lightning,’ vol. 3, 2019. URL: https:
//github.com/PyTorchLightning/pytorch-lightning.

[98] R Core Team, R: A Language and Environment for Statistical Computing, Vienna, Aus-
tria, 2017. URL: https://www.r-project.org/.

[99] M. Själander, M. Jahre, G. Tufte et al., EPIC: An Energy-Efficient, High-Performance
GPGPU Computing Research Infrastructure, 2019.

[100] V. Le Guen and N. Thome, ‘Shape and Time Distortion Loss for Training Deep Time
Series Forecasting Models,’ arXiv, no. NeurIPS, pp. 1–13, 2019.

http://arxiv.org/abs/1511.07289
http://arxiv.org/abs/1607.06450
http://arxiv.org/abs/1607.06450
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
https://realized.oxford-man.ox.ac.uk/
https://doi.org/10.1016/0261-5606(93)90004-U
https://doi.org/10.1016/0261-5606(93)90004-U
https://doi.org/10.1109/TNNLS.2017.2705658
http://arxiv.org/abs/2012.07436
https://doi.org/10.1145/3292500.3330701
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://github.com/jdb78/pytorch-forecasting
https://github.com/jdb78/pytorch-forecasting
https://github.com/PyTorchLightning/pytorch-lightning
https://github.com/PyTorchLightning/pytorch-lightning
https://www.r-project.org/

A | Supplementary Material

A.1 Final Hyperparameters for Deep Learning Models

Table A.1-A.4 shows the optimized hyperparameters for every deep learning model on every
dataset. The hyperparameter tuning process is described in section 5.2.

Table A.1: Final hyperparameters for the DeepAR model

Electricity Traffic Volatility Solar Wind

Learning rate 1×10−3 1×10−3 1×10−5 3×10−4 4×10−4

Num. layers 3 3 3 2 2
Hidden size 40 40 208 48 256
Dropout 0.1 0.1 0.3 0.3 0.9
Max gradient norm. 1×10−2 1×10−2 10 11 0.2
Batch size 64 64 64 128 64

Table A.2: Final hyperparameters for the Seq2Seq model

Electricity Traffic Volatility Solar Wind

Learning rate 3×10−3 1×10−4 3×10−5 1×10−3 7×10−3

Num. layers 3 2 1 3 2
Hidden size 96 240 224 64 144
Dropout 0.1 0.8 0.3 0.5 0.4
Max gradient norm. 0.1 0.3 3×10−2 2 20
Batch size 64 64 64 128 64

Table A.3: Final hyperparameters for the TCN model

Electricity Traffic Volatility Solar Wind

Learning rate 1×10−4 8×10−5 2×10−6 5×10−4 9×10−6

Num. layers 5 4 5 4 6
Hidden size 256 224 224 176 64
Dropout 0.1 0.6 0.9 0.7 0.2
Max gradient norm. 3×10−2 0.9 0.6 48 3×10−2

Batch size 64 64 64 128 64
Kernel Size 4 10 10 6 12

50

APPENDIX A. SUPPLEMENTARY MATERIAL 51

Table A.4: Final hyperparameters for the TFT model

Electricity Traffic Volatility Solar Wind

Learning rate 1×10−3 1×10−3 1×10−2 4×10−6 6×10−3

Hidden size 160 320 160 224 48
Dropout 0.1 0.3 0.3 0.2 0.7
Max gradient norm. 1×10−2 1×102 1×10−2 13 0.7
Batch size 64 128 64 128 64
Attention head size 4 4 1 1 1

A.2 Variance Weighted Errors on Wind and Solar

Figure A.1 shows RMSSE and RMSSEVW computed for the volatility and wind datasets, grouped
by day of week. As we discussed in section 6.2, errors are not significantly impacted by the
variance weighting procedure because there is close to constant variance over the weekly
period.

0 1 2 3 4
Day of week

0.65

0.70

0.75

0.80

0.85

0.90

RM
SS

E

Volatility

0 1 2 3 4 5 6
Day of week

0.75

0.78

0.80

0.83

0.85

0.88

0.90

RM
SS

E

Wind

0 1 2 3 4
Day of week

0.65

0.70

0.75

0.80

0.85

0.90

0.95

Va
ria

nc
e

we
ig

ht
ed

 R
M

SS
E

Volatility

0 1 2 3 4 5 6
Day of week

0.75

0.80

0.85

0.90

Va
ria

nc
e

we
ig

ht
ed

 R
M

SS
E

Wind

SARIMA DeepAR Seq2Seq TCN TFT

Figure A.1: Results in terms of RMSSE (first row) and variance weighted RMSSE (second row) com-
puted per day of week for the volatility and wind datasets

A.3 Distribution of TDI and TDM Metrics on Traffic

Figure A.2 shows distributional plots for the TDI and TDM metric computed on the traffic
dataset. As discussed in section 6.5, the interpretation of the TDM metric is difficult as most
forecasts end up at the extremes of ±1.

APPENDIX A. SUPPLEMENTARY MATERIAL 52

0.0 0.2 0.4 0.6 0.8
TDI

0

5000

10000

15000

Fr
eq

ue
nc

y

SARIMA

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
TDM

0

5000

10000

15000

Fr
eq

ue
nc

y

SARIMA

0.0 0.2 0.4 0.6 0.8
TDI

0

10000

20000

30000

Fr
eq

ue
nc

y

DeepAR

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
TDM

0

5000

10000

15000

Fr
eq

ue
nc

y
DeepAR

0.0 0.2 0.4 0.6 0.8
TDI

0

10000

20000

30000

40000

Fr
eq

ue
nc

y

Seq2Seq

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
TDM

0

5000

10000

15000

20000

Fr
eq

ue
nc

y

Seq2Seq

0.0 0.2 0.4 0.6 0.8
TDI

0

10000

20000

30000

40000

Fr
eq

ue
nc

y

TCN

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
TDM

0

10000

20000

Fr
eq

ue
nc

y

TCN

0.0 0.2 0.4 0.6 0.8
TDI

0

20000

40000

Fr
eq

ue
nc

y

TFT

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
TDM

0

10000

20000

30000

40000

Fr
eq

ue
nc

y

TFT

Figure A.2: The distribution of the TDI and TDM metrics computed on the traffic dataset

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

Eivind Strøm

Evaluation of Multi-step Forecasting
Models

An Empirical Deep Learning Study

Master’s thesis in Computer Science
Supervisor: Odd Erik Gundersen
August 2021M

as
te

r’s
 th

es
is

	Introduction
	Background
	Fundamental Components of Time Series
	Time Series Forecasting
	Performance Metrics
	State Space Models
	Deep Learning Architectures for Forecasting

	Literature Review
	Methodology
	Metrics for Evaluating Multi-step Forecasts
	Win-loss Ranking
	Variance Weighted Errors
	Delta Horizon Metric
	Decomposed Error Metrics
	Temporal Distortion Metrics

	Forecasting Models
	SARIMA
	Sequence-to-Sequence Network
	Temporal Convolutional Network
	DeepAR
	Temporal Fusion Transformer

	Experiments
	Datasets and Processing
	Datasets
	Processing

	Training and Forecasting Procedure
	Fitting the SARIMA Models
	Training the Deep Learning Models
	Hyperparameter search

	Implementation

	Results and Discussion
	Baseline Evaluation
	Weighting Errors by Variance
	Evaluation Over the Forecast Horizon
	Error Decomposition
	Temporal Distortion

	Conclusion and Future Work
	References
	Supplementary Material
	Final Hyperparameters for Deep Learning Models
	Variance Weighted Errors on Wind and Solar
	Distribution of TDI and TDM Metrics on Traffic

