
N
TN

U
N

or
w

eg
ia

n 
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n 

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

Håkon Wardeberg

Mesh-based 3D face recognition
using Geometric Deep learning

Master’s thesis in Computer Science
Supervisor: Theoharis Theoharis
Co-supervisor: Antonios Danelakis

June 2021

M
as

te
r’s

 th
es

is





Håkon Wardeberg

Mesh-based 3D face recognition using
Geometric Deep learning

Master’s thesis in Computer Science
Supervisor: Theoharis Theoharis
Co-supervisor: Antonios Danelakis
June 2021

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science





Abstract

Face recognition has been a very active and challenging task in the Computer Vis-
ion field. Performing face recognition based on facial images can be tricky since
images are illumination, scale, and pose variant. On the contrary, 3D scans are
invariant in regards to the aforementioned aspects. Primarily, 3D face recogni-
tion has been using data-driven approaches, and in later years, projection-based
deep learning techniques that project the 3D space to 2D. Such approaches allow
the use of traditional convolutional neural network structures to work with 3D
data. The problem with projection-based models is that they remove geometric
relationships important for distinguishing faces and that the projection is expens-
ive and slow. An alternative to this is using Geometric Deep Learning techniques
that directly utilize the 3D geometry and data. Currently, very few approaches
use any Geometric Deep Learning techniques. Such approaches will in theory
perform better as they have greater freedom than a model using the 2D space.
This Thesis proposes a fast mesh-based 3D face recognition approach that inputs
meshes directly. To do this, we propose a new feature extraction network based
on graph convolutions to extract face features. By using a siamese architecture to
compare extracted facial features generated from 3D meshes, the model is able to
do both face validation and identification. The proposed approach achieves close
to state-of-the-art performance on three public 3D face benchmarks, i.e., a rank-1
identification rate of 90.2%, 90.1%, and 90.1%, and a verification rate at 0.1%
false acceptance rate of 87.6%, 86.0%, and 99.55% on the BU-3DFE, Bosphorus,
and FRGCv2 datasets, respectively. Further, our proposed approach only requires
8 milliseconds to identify a face among a gallery with 466 faces.

iii



Sammendrag

Ansiktsgjenkjenning har vært en aktiv og utfordrende oppgave innen datasynfel-
tet. Å utføre ansiktsgjenkjenning basert på ansiktsbilder kan være vanskelig siden
bildene er belysnings-, skala- og positurvariant. 3D-bilder har ikke disse proble-
mene. Primært har 3D ansiktsgjenkjenning brukt datadrevne metoder, og i senere
år, projeksjonsbaserte dyplæringsteknikker som projiserer 3D-rommet til 2D. Disse
metodene tillater bruk av tradisjonelle kunstig nevrale nettverksstrukturer for å
jobbe med 3D-data. Problemet med projeksjonsbaserte metoder er at de fjerner
geometriske forhold som er viktige for å skille ansikter og at en projeksjon er kost-
bar og langsom prosess. Et alternativ til dette er å bruke Geometric Deep Learning
teknikker som direkte bruker 3D geometri og data. Foreløpig bruker svært få met-
oder geometriske dyplæringsteknikker. Slike metoder vil i teorien fungere bedre
ettersom de har større frihet enn en modell som bruker 2D-rommet. Denne mas-
teroppgaven foreslår en rask maskebasert 3D ansiktsgjenkjenningsmetode som tar
inn maskenett direkte. Ved å bruke en siamesisk arkitektur for å sammenligne an-
siktstrekk laget fra 3D-bilder kan modellen gjøre både ansiktsgjenkjenning og val-
idering. Den foreslåtte tilnærmingen oppnår god ytelse på tre offentlige 3D-ansikts
benchmarks, dvs. en rang-1 identifikasjonsrate på 90,2%, 90,1% og 90,1%, og en
verifiseringsrate med 0,1% feilakseptrate på 87,6%, 86,0% og 99,55% for hen-
holdsvis BU-3DFE, Bosporus og FRGCv2 datasettene. Videre krever vår foreslåtte
tilnærming bare 8 millisekunder for å identifisere et ansikt blant en gruppe med
466 ansikter.

iv



Preface

This project is a continuation of a specialization project by Wardeberg [1]. As the
specialization project is not publicly available and this Thesis is a continuation
of the same research, some chapters and relevant background material were re-
used with various degrees of modification. This is considered standard practice at
NTNU when the master’s thesis is a continuation of the specialization project. It
is worth mentioning that no code was reused from the specialization project. All
adapter chapters are listed below:

• Section 2.1 – 3D data representations This section was based on the spe-
cialization project but re-written and expanded.

• Section 2.2.1 – Signal Convolution operator This section was adapted
with minor modifications.

• Section 2.2.2 – Image Convolution operator This section was adapted
with minor modifications.

• Section 2.2.4 – Fully Connected Layers This section was based on the
specialization project but re-written and expanded.

• Section 2.2.6 – Geometric Deep Learning This section was adapted with
minor modifications.

• Section 2.2.6.2 – Graph Convolution Network (GCN) This section was
adapted with minor modifications.

• Section 2.2.7.1 to 2.2.7.2 The sections were adapted with minor modific-
ations.

• Section 2.2.8 – Training This section was adapted with major modifica-
tions.

• Section 3.1.2 to 3.1.4 The sections were adapted with major modifications.

v



Acknowledgements

I would like to express my gratitude to my supervisors Antonios Danelakis and
Theoharis Theoharis. They have both been there when I have had questions, and
have guided me throughout the project.

I would like to thank my family for always being there.
And lastly, I would also like to thank old and new friends. As a wise one once

said: "This is your university careers magnum opus. Take some pride."

Dum panem est, spes est.

Panem et panem

vi



Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
Sammendrag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv
Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii
Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x
Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Challenges with 2D face recognition . . . . . . . . . . . . . . . . . . . 1
1.2 Challenges with 3D face recognition . . . . . . . . . . . . . . . . . . . 1
1.3 3D face recognition vs. 2D face recognition . . . . . . . . . . . . . . . 2
1.4 Recognition & Verification . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.5 This Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1 3D data representations . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.1 Voxel grid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1.2 Point-based representations . . . . . . . . . . . . . . . . . . . . 5

2.2 Neural network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.1 Signal Convolution operator . . . . . . . . . . . . . . . . . . . . 6
2.2.2 Image Convolution operator . . . . . . . . . . . . . . . . . . . . 6
2.2.3 Pooling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.4 Fully Connected Layers . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.5 Activation functions . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.6 Geometric Deep Learning . . . . . . . . . . . . . . . . . . . . . 10

2.2.6.1 Graph convolution . . . . . . . . . . . . . . . . . . . . 10
2.2.6.2 Graph Convolution Network (GCN) . . . . . . . . . 11

2.2.7 Loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.7.1 Pairwise ranking loss . . . . . . . . . . . . . . . . . . 12
2.2.7.2 Triplet loss . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.7.3 Binary Cross Entropy loss . . . . . . . . . . . . . . . . 13
2.2.7.4 Siamese Network . . . . . . . . . . . . . . . . . . . . . 14

2.2.8 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.9 Generalization, Overfitting, and Underfitting . . . . . . . . . . 14
2.2.10 Optimizer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

vii



CONTENTS viii

2.2.11 Hyperparameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.11.1 Network Architecture . . . . . . . . . . . . . . . . . . 16
2.2.11.2 Regularization . . . . . . . . . . . . . . . . . . . . . . 16

3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.1 Academic publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.1.1 Traditional 3D Face Recognition . . . . . . . . . . . . . . . . . 19
3.1.2 Deep 3D Face Identification . . . . . . . . . . . . . . . . . . . . 19
3.1.3 Learning from Millions of 3D Scans for Large-scale 3D Face

Recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.1.4 A fast and robust 3D face recognition approach based on

deeply learned face representation . . . . . . . . . . . . . . . . 20
3.1.5 Point cloud-based deep convolutional neural network for

3D face recognition . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2 Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2.1 PyTorch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2.2 PyTorch Geometric . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2.3 OnlineMiningTripletLoss Pytorch . . . . . . . . . . . . . . . . . 21

4 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.2 Model Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.2.1 Pre-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.2.2 Hyperparameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.2.3 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.3 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.3.1 Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.3.2 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.3.2.1 Rank1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.3.2.2 True positive, True negative, False positive, False

negative . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.3.2.3 Accuracy, Precision, and Recall . . . . . . . . . . . . 29
4.3.2.4 False Acceptance Rate, False Reject Rate, and Re-

ceiver Operating Characteristic . . . . . . . . . . . . 29
4.3.2.5 Cumulative Match Curve . . . . . . . . . . . . . . . . 30

4.3.3 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.3.3.1 BU-3DFE . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.3.3.2 Bosphorus . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.3.3.3 FRGCv2 . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.1 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.2.1 Augmentation results . . . . . . . . . . . . . . . . . . . . . . . . 36
5.2.2 Cross-dataset testing . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.2.3 Siamese experiment . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.3 Final results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39



CONTENTS ix

5.3.1 Triplet loss results . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.3.1.1 Triplet loss results on BU-3DFE . . . . . . . . . . . . 40
5.3.1.2 Triplet loss results on Bosphorus . . . . . . . . . . . 41
5.3.1.3 Triplet loss results on FRGCv2 . . . . . . . . . . . . . 42

5.3.2 Siamese results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.3.2.1 Siamese results on BU-3DFE . . . . . . . . . . . . . . 43
5.3.2.2 Siamese results on Bosphorus . . . . . . . . . . . . . 44
5.3.2.3 Siamese results on FRGCv2 . . . . . . . . . . . . . . 45

5.3.3 Time analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.4 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
6.1 Augmentation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
6.2 Underperforming feature extraction . . . . . . . . . . . . . . . . . . . . 49
6.3 Graph convolution limitation . . . . . . . . . . . . . . . . . . . . . . . . 50
6.4 The problem with the verification rate and false acceptance rate . . 50
6.5 The gap between Rank-1 identification rate and AUC . . . . . . . . . 51
6.6 Siamese vs. triplet loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
6.7 Time Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
6.8 Need of a consistent mesh structure . . . . . . . . . . . . . . . . . . . . 53
6.9 Mesh-based vs. Point Cloud-based . . . . . . . . . . . . . . . . . . . . . 54
6.10 Plausibility of mesh-based Face Recognition . . . . . . . . . . . . . . . 54
6.11 Potential Sources of Error . . . . . . . . . . . . . . . . . . . . . . . . . . 55

6.11.1 Non-deterministic behavior . . . . . . . . . . . . . . . . . . . . 55
6.11.2 Race, gender, and age bias . . . . . . . . . . . . . . . . . . . . . 55

7 Conclusion and future work . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
7.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
7.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

7.2.1 Dataset-specific . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
7.2.2 Network-specific . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
A Explanation of VR-FPR graph bug . . . . . . . . . . . . . . . . . . . . . . . 64



Figures

2.1 Figure from Goodfellow et al. [17, p. 334] showing an example of
cross-correlation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Figures of the most common activation functions showing the out-
put (y-axis) based on the input (x-axis). . . . . . . . . . . . . . . . . . 9

2.3 Figure from Schroff et al. [8] showing Triplet Loss minimize the
distance between the anchor and the positive while maximizing the
distance between the anchor and the negative. . . . . . . . . . . . . . 13

4.1 Figure of the proposed feature extraction architecture. In the figure,
M denotes to number of vertices in the input, GCN refers to Graph
Convolution Network [27] (2.2.6.2), BN to Batch Normalization,
FC to fully connected (2.2.4), and ReLu to Rectified Linear Unit
[23] (2.2.5). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.2 Figure of the siamese network architecture. FC refers to fully con-
nected (2.2.4), and ReLu to Rectified Linear Unit [23] (2.2.5). . . . 24

4.3 Figure of the proposed pipeline. Two meshes are pre-processed be-
fore inputted into a feature extraction network. The feature extrac-
tion networks are the same network in both instances. . . . . . . . . 25

4.4 An artificially created almost ideal Receiver Operating Character-
istic curve with an AUC of 0.999 shown in a linear (4.4a) and log-
arithmic scale (4.4b). The orange line shows the ideal ROC, while
the blue line shows a model with no predictive power, and that is
randomly guessing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.5 An artificially created almost ideal Cumulative Match Curve (CMC)
with limited y-axis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.6 Example data from the datasets used. Figure 4.6a, 4.6b, and 4.6c
are cropped versions of the 2D images while 4.6d, 4.6e, and 4.6f
are the corresponding 3D models shown as triangulated 3D meshes
projected via a perspective projection. Figure 4.6a and 4.6d are
from BU-3DFE, 4.6b and 4.6e are from Bosphorus, and 4.6c and
4.6f are from FRGCv2. Both the 3D image from Bosphorus and
FRGCv2 (4.6e, 4.6f) are originally a point cloud, but for visual-
ization purposes, triangulation is applied. . . . . . . . . . . . . . . . . 32

x



FIGURES xi

5.1 Plot of training and training loss on the BU-3DFE dataset with the
siamese network. The y-axis is the loss from binary cross entropy
while the x-axis is epochs. . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.2 Plot of training and testing loss. The green line is the used siamese
network, and the orange is the improved (and not used in the res-
ults) network discussed in Section 6.6. . . . . . . . . . . . . . . . . . . 39

5.3 ROC, CMC, and FAR-VR curves on the BU-3DFE dataset. 5.6a shows
the linear ROC curve. 5.3b shows the logarithmic ROC curve. 5.3c
shows the CMC curve. 5.3d shows the Validation Rate plotted against
False Acceptance Rate. . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.4 ROC, CMC, and FAR-VR curves on the Bosphorus dataset. 5.4a
shows the linear ROC curve. 5.4b shows the logarithmic ROC curve.
5.4c shows the CMC curve. 5.4d shows the Validation Rate plotted
against False Acceptance Rate. . . . . . . . . . . . . . . . . . . . . . . . 41

5.5 ROC, CMC, and FAR-VR curves on the FRGCv2 dataset. 5.5a shows
the linear ROC curve. 5.5b shows the logarithmic ROC curve. 5.5c
shows the CMC curve. 5.5d shows the Validation Rate plotted against
False Acceptance Rate. . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.6 ROC, CMC, and FAR-VR curves on the bu-3dfe dataset. 5.6a shows
the linear ROC curve. 5.6b shows the logarithmic ROC curve. 5.6c
shows the CMC curve. 5.6d shows the Validation Rate plotted against
False Acceptance Rate. The blue striped line in 5.6a and 5.6b shows
the random-guessing line discussed in Section 4.3.2.4. . . . . . . . . 43

5.7 ROC, CMC, and FAR-VR curves on the Bosphorus dataset. 5.7a
shows the linear ROC curve. 5.7b shows the logarithmic ROC curve.
5.7c shows the CMC curve. 5.7d shows the Validation Rate plotted
against False Acceptance Rate. The blue striped line in 5.7a and
5.7b shows the random-guessing line discussed in Section 4.3.2.4. . 44

5.8 ROC, CMC, and FAR-VR curves on the FRGCv2 dataset. 5.8a shows
the linear ROC curve. 5.8b shows the logarithmic ROC curve. 5.8c
shows the CMC curve. 5.8d shows the Validation Rate plotted against
False Acceptance Rate. The blue striped line in 5.8a and 5.8b shows
the random-guessing line discussed in Section 4.3.2.4. . . . . . . . . 45



Tables

3.1 Summary of the previous academic deep-learning-based 3D facial
recognition models. 2.5D references to the use of a projection from
3D to 2D + inferred 3D information like depth. . . . . . . . . . . . . . 18

4.1 Possible outcomes based on actual label and predicted label. . . . . 28
4.2 Information of the contents, resolution, and scan-by-scan variance

of the most popular 3D datasets used in face recognition. . . . . . . 32
4.3 Distribution of the relevant face scans in the Bosphorus dataset. . . 33

5.1 Various augmentation experiments and the corresponding results.
Rank-1 IR, and AUC is the neutral vs. all experiment while VR were
from all vs. all experiment. . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.2 Results when training and testing on different datasets. Only the
best-resulting results are shown. . . . . . . . . . . . . . . . . . . . . . . 38

5.3 Comparison between the used siamese network, a slightly improved
siamese network, and the triplet net. The results are from training
and testing on FRGCv2. . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.4 Time analysis to match one probe in a gallery of 466 images. . . . . 46
5.5 Summary of the results in this Thesis on the neutral vs. all exper-

iment for BU-3DFE and Bosphorus, and first vs. rest for FRGCv2.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.6 Comparison of Rank1 Identification Rates between different deep-
learning-based methods in the neutral vs. all experiment on BU-
3DFE, Bosphorus, and FRGCv2. . . . . . . . . . . . . . . . . . . . . . . 47

5.7 Comparison of deep-learning-based methods on Verification Rate
at 0.1% False Acceptance Rate on the neutral vs. all experiments
on the datasets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.8 Comparison of processing time for one feature extraction and match-
ing a probe against a gallery of 466 faces. . . . . . . . . . . . . . . . . 47

xii



Chapter 1

Introduction

Face recognition is a prevalent and well-established technology widely used in
non-intrusive biometrics and for general identification [2]. Today, most face re-
cognition is done using 2D images and deep learning techniques [3], while the
3D field has predominantly been based on data-driven approaches [4]. Lately,
multiple papers have proposed methods for using deep learning techniques on
3D scans, steadily improving the speed and accuracy.

The problem with 3D face recognition is that the 3D field has had a lot less
research compared to the 2D face recognition field, making 2D generally preferred
[3]. This has been because of the incapability of typical deep learning networks
to process 3D data. However, recently more geometric deep learning techniques
have been proposed that generalize neural network methods to work on non-
euclidean structures such as graphs and manifolds [5]. This enables better and
more efficient networks.

Regarding face recognition, there are multiple unique challenges and proper-
ties for 2D and 3D face recognition.

1.1 Challenges with 2D face recognition

The largest challenge with 2D face recognition and corresponding techniques is
that images are illumination, scale- and rotation variant, are non-robust to poses,
and have issues with self-occlusion, meaning that parts of the face may occlude
itself. [3, 6, 7]. This means that a change in any of these factors, like lightning, will
change the look of the image, making it harder to do accurate facial recognition.

1.2 Challenges with 3D face recognition

3D facial recognition has another set of challenges. Firstly, the biggest problem
with 3D tasks is that available datasets used for training are relatively small and
limited [3]. There exist datasets used in 2D facial recognition which contains over

1



Chapter 1: Introduction 2

200 million images [8], while the largest 3D face dataset contains only 13,450
scans [9].

The 3D machine learning field is also a lot less matured compared to the 2D
field [3]. 3D data techniques are still being developed and are often much more
computationally expensive compared to their analogous 2D counterpart [10]. The
3D format also poses problems for neural networks [5]. Most scans have differ-
ent resolutions meaning that networks must be robust to variable-sized inputs.
For point clouds, the number of points may vary, and for graphs, they are often
irregular with a variable amount of vertices and edges.

1.3 3D face recognition vs. 2D face recognition

There are multiple reasons why 3D face recognition may, in some cases, be better
than 2D face recognition. 3D scans are relatively invariant to illumination, scal-
ing, and rotation and are more robust to poses and expressions [3, 6]. In theory,
3D scans also provide more information, like geometric depth and relationships,
enabling better and more secure face recognition compared to using images [3,
6].

On the other side, there are multiple advantages to using 2D images. Firstly,
there exist several larger datasets usable for 2D face recognition. This is needed
for networks to generalize well and helps to prove the face recognition efficiency
as testing sets can be larger. 2D neural networks also do not have the same variant
data issue 3D networks has, as image scaling and cropping can be used to re-scale
images with minimal information loss.

1.4 Recognition & Verification

There are two main types of face recognition systems: face recognition, often
called identification, and face verification [3].

Face verification is the process of verifying if a reference identity is equal to a
single unknown identity. The process returns a similarity score, a single number
that represents the likeness of the pair. An example of a use case is to run veri-
fication on a person and their passport to see if they are the same identity. This
process is a one-to-one process.

Face identification is the process of matching an unknown face to a set of
known faces. An example would be for an office security system to validate if a
person is among the allowed users. This process is a one-to-many process. Face
identification can be done via verification by using the verification process against
all known identities. The problem with this approach is that a single verification
can be expensive and that the amount of verifications needed is increased linearly
with the size of the known identities set.



Chapter 1: Introduction 3

1.5 This Thesis

The goal of this Thesis is to investigate if a mesh-based approach is a feasible
method for making an efficient and robust 3D face recognition algorithm. To the
best of our knowledge, this is the first work that uses mesh convolutions for ob-
taining features on 3D face scans.

By directly using the 3D data, the network should be able to perform quick and
robust face recognition as no pre-processing is needed, and the original spatial and
geometrical structures will be preserved in the data. Furthermore, there already
exist multiple graph convolutions, which can be used on the mesh. The edges in
a mesh may also allow for efficient traversal of features through the structure,
enabling the model to train on very little data.

Our implementation of the proposed method is available over at
https://github.com/hakonw/3D-Facial-mesh-recognition hash:406e5ae.

https://github.com/hakonw/3D-Facial-mesh-recognition


Chapter 2

Theory

This chapter contains relevant theory and related works important for the project
and methodology later in this Thesis.

2.1 3D data representations

There are multiple ways of representing three-dimensional data. The most com-
mon are the discrete extrinsic representations like voxels, point clouds, and meshes.
These representations, also called euclidean representations, use parametrizations
or coordinates external to the shape [11]. There exist other approaches like in-
trinsic representations and parametric objects, but they are less relevant for this
Thesis.

2.1.1 Voxel grid

One way to represent 3D models is via a voxel grid. Here, a signal like a 3D ob-
ject is voxelized into a defined grid, similar to how a 2D shape is restricted and
rasterized into the image dimensions. On a voxel grid, standard convolutional
neural network mechanisms can be applied and utilized [12]. Instead of a 2D
filter, a 3D filter will be moved over the x, y, and z dimensions activation on volu-
metrically similar structures to the filter. Similarly, as a pixel pi of a rasterized
two-dimensional image (RGB) can be expressed in pi ∈ N2×3 where 3 is the dept
of the image, the voxel grid data structure can is represented in V ∈ N3×F , where F
is the amount of features per voxel. The data can then simply be stored in a matrix
of shape W×H×D×F . An example is a cubic space with a height, depth, width of
30, and 3 values in each voxel can be stored in a matrix of shape 30×30×30×3.

Voxel grids also separate between hollow and filled models. Scans taken with
a regular 3D camera will be hollow as the camera cannot see the inside of the
object while results from simulations often are filled.

There are multiple problems with voxel grids. If the model is hollow, most
of the grid will be empty or in the same state as its neighbor. This makes the
representation more inefficient and wasteful.

4



Chapter 2: Theory 5

Another problem is spatial resolution. Volumetric representations often use
small dimensions because of the inefficiency of the representation. Wu et al. [13]
proposed a method for classifying 3D objects using a voxel grid of 30× 30× 30.
Small face details are important for separating faces making small resolution voxel
grids not suitable. This issue can be avoided by using a larger resolution grid that
captures these details.

With a defined grid, rigid transformations create significant changes and ar-
tifacts. This is true for both low-resolution 2D images and voxel grids. A good
example of the artifacts can be seen with the rotation of a box or square. The
edges will become jagged, and it will be harder to see the outline of the box. The
significant changes from transformations are a highly undesirable effect. To mit-
igate the effect, higher resolution grids can be utilized, which might not always
be optimal.

2.1.2 Point-based representations

Point-based representations rely on points to create discreet approximations of the
surface of an object [14]. The most rudimentary technique is the point cloud. A
point cloud is an unordered point set {x1, x2, ..., xn} with x i ∈ R3 that is sampled
from original signal [15]. If each point holds more information than its position,
the feature matrix becomes X ∈ R3×F . These sets are the raw data generated
from 3D scanners. The resolution can also be locally variant, where more detailed
sections of a model have more data.

A mesh is another form, where instead of only storing a list of points, the
relationships between the points are described in terms of edges and faces. When
talking about meshes, a vertex is used to describe the reference to a point, as each
point is used in multiple edges and faces. A mesh can be seen as a graph that
includes face information, as they are represented in the same way in memory.
Even though a mesh is parameterized to a euclidean space, the edges and faces
make the shape a non-euclidean manifold. This means that regular convolutions
can not easily be applied on the structure.

Point-based representations have the property of being robust to transform-
ations. As the points are defined in R the limiting factor is the precision of the
storage medium format.

The spatial resolution of edges and vertices in meshes is dependent on the sub-
dividing or discretization of the original signal. Large flat areas can be expressed
with few vertices and edges, allowing for more efficient storage than a volumetric
representation.

The largest problem with point-based representations regarding machine learn-
ing is that convolution-like operators are harder to define. Another issue with
point-based representations is that the number of vertices, edges, and faces can
vary. Unless the model is limited, the neural networks must work on an unknown
amount of data, often irregular and unsorted. The unknown size makes combin-
ing a neural network that works on point clouds and meshes with a layer that



Chapter 2: Theory 6

requires pre-defined parameters harder.
The internal construction of a mesh may also vary. How the edges are built

up is an important property as the same structure can be represented in multiple
ways. It varies based on the triangulation algorithm used and if quads is used
instead of triangles. Bouritsas et al. [16], used a spiral convolution and emphas-
ized that consistent orderings across meshes were important when using ordering-
sensitive operators.

2.2 Neural network

This section details theory and methods specifically important for the neural net-
work techniques used in this Thesis.

2.2.1 Signal Convolution operator

A convolution is a mathematical operation that expresses how two functions modify
each other [17]. The mathematical definition is shown in Equation 2.1.

( f ∗ g)(t) =

∫ ∞

−∞
f (τ)g(t −τ)dτ (2.1)

The spatial domain convolution can be expressed discretely, which gives Equa-
tion 2.2.

( f ∗ g)(t) =
∞
∑

τ=−∞
f (τ)g(t −τ) (2.2)

For the convolutions relevant to this project, the range of the input functions
are limited over a finite range, and the equation becomes Equation 2.3. When
using the convolutional operator on 2D domains like images, the function f be-
comes the image, g becomes a two-dimensional input called the kernel, and k
becomes the set of all pixels.

The equation can be expanded and expressed as Equation 2.4 to take multiple
arguments and iterate over both axes of an image.

( f ∗ g)(t) =
∑

k

f (k)g(t − k) (2.3)

( f ∗ g)(i, j) =
∑

m

∑

n

f (m, n)g(i −m, j − n) (2.4)

2.2.2 Image Convolution operator

The convolution operator applied to images can be explained more intuitively
than Equation 2.4. The operation can be seen as a frame sliding over an image,
creating a new value based on the sum of the element-wise multiplication between



Chapter 2: Theory 7

Figure 2.1: Figure from Goodfellow et al. [17, p. 334] showing an example of
cross-correlation.

the image and kernel. In neural layers, instead of convolution, cross-correlation
is used, where the only difference is that the filter is flipped as it saves a few
operations [17]. The use of convolution or cross-correlation does not impact the
statistical power of the layer. An example showing cross-correlation is presented
in Figure 2.1.

There are multiple reasons why convolutional layers are a powerful tool in
machine learning when dealing with spatial-structured data. According to Good-
fellow et al. [17], three important properties are sparse connectivity, parameter
sharing, and translation equivalence.

Sparse connectivity means that each output is dependent on a small number
of inputs. Compared to a dense network where each output is a function of each
input, a sparse network will have fewer connections and therefore need fewer
mathematical operations. The sparse connectivity is created when the kernel is
multiple times smaller than the input.

Another property described by Goodfellow et al. [17] is that of translation
equivalence1. Translation equivalence means that any changes in the input will
cause the same translation in the output. An example of where this is important is
with an edge-detection kernel. Here, a simple kernel maps the same feature from
the input and translates the output features corresponding to the input.

As the same kernel is used over the entire image, convolutional layers also

1Not to be confused with translation invariant, where the property of the output being invariant
to translation.



Chapter 2: Theory 8

have the property of parameter sharing. This significantly reduces the number of
weights and features required by the network. Also, as the kernel only samples
pixels close to each other, the network has the property of local connectivity [5].
This is useful as closely located features are often related.

Bronstein et al. [5] and Wu et al. [18] describes another important property of
convolutional layers when used on images, the property of compositionality. This
property is a product of the structure of the data and is helped by the property of
translation equivalence. Compositionality means that low-level features have the
ability to be combined to create higher-level features. This stacking property is an
important aspect of convolutional neural networks as more and more data can be
aggregated into a high-abstraction feature.

These properties allow convolution layers to be efficient in deep neural net-
works, with low computational complexity, low memory usage, and high usability.

2.2.3 Pooling

A convolutional layer consists of three stages [17, p. 335-341]. These are the con-
volution, nonlinear activation, and pooling stage. Pooling is the act of reducing
the size of the domain. For 2D networks, the image resolution is sampled down,
summarizing the information of neighbors. The pooling stage is strictly not neces-
sary but helps the network by summarizing information from the previous layer,
reducing parameters, the statistical burden, and the computational complexity of
the next layer [17].

The usage of stride helps the network become translation-invariant. Stride is
the amount the kernel in a convolutional or pooling layer moves. If the stride
is more than 1 pixel, small variations in the translation will produce the same
output, making the absolute position of pixels and features less relevant, helping
the statistical efficiency of the network.

For 3D, there exist multiple pooling techniques. They all work by reducing the
size or complexity of the 3D space. The most common way to do it is to combine
vertices and or reduce edges [19]. Another way of doing 3D pooling is by reducing
the amount of channels per vertex via some operator.

Global pooling is often used in models that deal with 3D data to get a pre-
dictable output [20]. Global pooling works on the graph-level-outputs by using a
symmetric function on the channel-wise data across all nodes.

Two examples of global pooling, using the symmetric function average and
max, are global-max-pooling and global-mean-pooling. They are defined in Equa-
tion 2.5 and 2.6, where r is the output matrix, M is the total amount of ver-
tices, and Xn is the matrix containing the feature for node n (in other words,
X ∈ R(N1+...+NM )×F , where F is the amount of features). Global pooling reduces
the 3D space from R(N1+...+NM )×F to RF , where the output size F will be constant
for any input size M . This allows the network to be connected to other machine
learning layers that require defined input sizes like fully connected layers.



Chapter 2: Theory 9

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

0.0

0.2

0.4

0.6

0.8

1.0
Si

gm
oi

d(
x)

(a) Sigmoid activation function.

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

0

2

4

6

8

10

Re
LU

(x
)

(b) ReLU activation function.

Figure 2.2: Figures of the most common activation functions showing the output
(y-axis) based on the input (x-axis).

r=MaxM
n=1Xn (2.5)

r=
1
M

M
∑

n=1

Xn (2.6)

The use of a symmetric function is important as it makes the permutation of
vertices irrelevant and hinders a reliance on the order of the vertices [15, 21].

2.2.4 Fully Connected Layers

Fully connected layers are one of the simpler machine learning mechanisms. In a
fully connected layer, all the input nodes are linked to every output node, changing
the domain from Rin to Rout . Each layer consist of nin · nout + nout parameters
including biases [17]. This method is generally computationally expensive as it
needs O(n2) weights and operations.

Fully connected layers enable complex mappings between the input and out-
put [17]. This property is often used in the last layers of classification networks
to map features to an output.

2.2.5 Activation functions

Activation functions are an important part of neural networks. To allow complex
mappings between features, non-linear functionality is needed.

One possible activation function is the Sigmoid activation function, defined in
Equation 2.7 [17, p. 65-67] and shown in Figure 2.2a. The Sigmoid function maps
input to the range (0,1). The problem with Sigmoid is that the function saturates
when the input is either very positive or very negative. In other words the gradient
approaches 0, which is unideal for machine-learning as it becomes insensitive to
small changes in the input [17, p. 66].



Chapter 2: Theory 10

σ(x) =
1

1+ e−x
(2.7)

A more commonly used activation function is the Rectified Linear Unit (ReLU)
[22]. It is defined as f (x) = max(0, x) [23] and is shown in Figure 2.2b. As the
ReLU function is only a max operation, it is computationally inexpensive, making it
ideal for larger networks. It has also been shown that ReLU generally outperforms
the sigmoid activation function in neural networks [22]. A problem with ReLU is
that the derivative is 0 for negative numbers, creating what’s called dead units,
which may never be able to be updated again.

There exist multiple versions of ReLU which solve the dead unit problem, but
they may, at best, only provide a small improvement [22].

2.2.6 Geometric Deep Learning

Bronstein et al. [5] defines Geometric Deep Learning as a term for methods that
generalize neural network techniques to work on non-euclidean structures such
as graphs and manifolds.

The main challenge of Geometric Deep Learning is defining and creating ana-
logous methods to the convolution and pooling used on euclidean data. The main
goal is to be able to work directly with data and structures like meshes, graphs,
and point clouds to both create models which accurately predicts when presented
new problems, but also to get a better formal understanding of what the models
are doing, which opens for simpler and more effective methods.

Geometric Deep Learning works on the assumption that non-euclidean data
manifest hierarchical structures similar to that of euclidean data [5]. An example
of this on euclidean data is images, where high-level features are created from
combining low-abstraction shapes like lines and dots, which convolutions exploit
via the property of compositionality.

2.2.6.1 Graph convolution

There exist multiple different approaches to Graph Convolutions. The two main
categories are spectral graph convolutions and spatial graph convolutions [5, 18].

In signal processing, the convolution theorem states that a convolution in the
spatial domain is the same as a multiplication in the spectral domain [24, p. 527].
This theorem is described in Equation 2.8 where F is the Fourier transform oper-
ator. While not used much by 2D convolutional layers, the theorem is important
for graph convolutions, as it means that the convolution can be done in both the
spatial and spectral domain.

F{ f ∗ g}= F{ f } ·F{g} (2.8)

The spatial convolution is based on information propagation via the spatial
relationships of a node. These are usually the neighbors of a node. A simple spatial
graph convolution is further discussed in Section 2.2.6.2.



Chapter 2: Theory 11

Spectral convolutions are based on the Laplacian of the graph. The normalized
Laplacian matrix is used, which is defined as L = I − D−

1
2 AD−

1
2 , where A is the

adjacent matrix, D is the degree matrix of A, and I is the identity matrix [25].
The Laplacian matrix has the property of being expressible as the eigendecom-

position L = UΛUT, where U is the eigenvector matrix, and Λ is the diagonal
matrix of eigenvalues.

The graph Fourier transform is defined as F(x) = UTx, and the inverse graph
Fourier transform is defined as F −1(x̂) = Ux̂, where x̂ is the result from the graph
Fourier transform.

This is used in the graph convolution, where x is the input signal, and g is the
filter. The convolution is then defined as

x ∗ g=F −1(F(x)�F(g))

=U(UTx�UTg)
(2.9)

where� is the element wise product. By denoting gθ = diag(UT g), the expression
becomes x ∗ gθ = UgθUTx.

Spectral convolutions without any approximations or simplifications have some
limitations [5]. They assume graphs to be undirected, which is not problematic
for meshes but is for many graphs. They also rely on eigendecomposition, which is
an O(n3) operation, making them expensive to use. There exist multiple methods
like ChebNet [26] and GCN [27] that reduce the computation complexity to O(m)
[5].

2.2.6.2 Graph Convolution Network (GCN)

The Graph Convolution Network or GCN is the currently most cited graph convolu-
tions. The convolution is proposed by Kipf and Welling [27] as a fast approximate
approach to the spectral graph convolutions.

From a spatial-based perspective, the graph convolution propagates inform-
ation along the mesh edges. Given vertex features fi , the updated features are
calculated as shown in Equation 2.10 [28].

f̂i = σ(W0 fi +Σ j∈N (i)W1 f j) (2.10)

Here, f̂i is the updated features for the i-th vertex, σ is a non-linear activa-
tion function, N (i) are all vertex neighbors to node i in the graph, and W0 and
W1 are the learned weight matrices. This convolution only utilizes the first-order
neighbors of the node. Multiple applications of the filter allow convolution of the
kth-order neighbors.

The method proposed approximates the spectral graph convolution and can
be both done in the spectral and spatial domain. This makes it so that no expensive
eigendecomposition or eigenvalue-multiplication operations are needed [27].

This graph convolution has been successfully used in recent general mesh-
based approaches [29, 30] and is one of the graph convolution operators imple-
mented in the Pytorch Geometric framework [20] written about in Section 3.2.2.



Chapter 2: Theory 12

2.2.7 Loss

In facial recognition, the goal is to identify the same identities while distinguishing
between separate identities correctly. Multiple loss functions have been proposed
and are actively used in the 2D face recognition field [2]. As there exist over 27
different high-performing loss functions used for face recognition [2], it is hard
to choose a single one. Generally, they all work by separating dissimilar samples
while clustering the similar samples.

This Thesis focuses on two different methods for training a face recognition
network: the distance based triplet loss [31] and the binary cross-entropy trained
siamese network [32].

2.2.7.1 Pairwise ranking loss

One of the simpler loss groups used in face identification and validation is based
on the ranked loss principle [33]. These loss functions work with the distance
between embeddings generated from a single neural network.

The simplest ranked loss function is the pairwise ranking loss [32]. The loss
function takes two different embeddings and compare the euclidean distance
|| f (x i)− f (x j)||2 between the inputs.

The distance is minimized if the two inputs are in the same group, like the
same identity. In comparison, if the two inputs are dissimilar, like two different
identities, the distance is maximized. This means that the loss function clusters
the inputs of the same group and separates inputs of different groups.

The loss function can be modified to use a margin, restricting the function
when negative pairs are distant enough [34], restricting training to more difficult
pairs. The formula is described in Equation 2.11, where δ is the loss, d(·, ·) is the
distance, xa is the anchor sample, xp is a positive sample, xn is a negative sample,
and m is a pre-defined margin.

δ =

¨

d(xa, xp), if positive pair.

max(0, m− d(xa, xn)), if negative pair.
(2.11)

As shown in Equation 2.11, the loss will be 0 if the input pair is negative and
the pair distance is over the margin. On the other hand, positive pairs will always
have their distance be minimized.

2.2.7.2 Triplet loss

Another popular ranked loss function is the triplet loss proposed by Weinber-
ger and Saul [35]. The idea is to compare three samples, an anchor xa, a pos-
itive sample xp, and a negative sample xn. The goal is to reduce the distance
between the anchor and positive sample while simultaneously increasing the dis-
tance between the anchor and negative sample. Compared to the Pairwise rank-
ing loss, triplet loss is less restrictive and learns faster [2]. The loss function is
described in Equation 2.12 and illustrated in Figure 2.3.



Chapter 2: Theory 13

Figure 2.3: Figure from Schroff et al. [8] showing Triplet Loss minimize the dis-
tance between the anchor and the positive while maximizing the distance between
the anchor and the negative.

δ(xa, xp, xn) = max(0, m+ d(xa, xp)− d(xa, xn) (2.12)

There are three different situations possible when using the loss function. They
are different combinations of samples, called triplets, which give the loss function
different properties.

The first triplets are called the easy triplets, where d(xa, xn)> d(xa, xp) +m.
Here, the negative sample is distant enough, and the loss is 0, so the network
parameters are not updated.

Another type of triplets are the hard triplets, where d(xa, xn)< d(xa, xp). This
means that the negative sample is closer to the anchor than the positive, and the
loss will greater than m. These are the optimal triplets to train on. A technique
called hard mining is used either offline before each epoch or online during each
batch to find these triplets.

The last triplets are the semi-hard triplets. They happen when d(xa, xp) <
d(xa, xn) < d(xa, xp) +m, meaning that the positive is closer to the anchor than
the negative, but the distance is not greater than the margin. The loss will still be
positive, but less than m.

A problem with triplet loss is that the model may collapse [8]. This is a scenario
where the model finds a bad local minima where every model is mapped to the
same point. Here, the distance between any two faces will be 0, and the loss will
be equal to the margin. This is especially an issue if hard mining is used early
on. One possibility to reduce the issue is by using L2 norm on the descriptors,
limiting the descriptor distance to be 1, placing every identity on a D-dimensional
hypersphere [8].

2.2.7.3 Binary Cross Entropy loss

Cross entry loss is one of the most commonly used loss functions for training
deep neural network models, most notably classification problems [36]. When
training with cross entropy loss, the optimizer will update the weights so that the
predictions get closer to the correct label. The binary cross-entropy loss is a special
case that only has two classes.

The input to binary cross entropy is a label and a prediction. The label rep-
resents the two classes and uses either the value 0 or 1. Binary cross entropy is
described in Equation 2.13, where `(x , y) is the loss function, x is the prediction



Chapter 2: Theory 14

score between 0 and 1, and y is either the label 0 or 1. For face validation, the
two different classes are genuine-pair and imposter-pair. The label will be 1 if the
pair of data is of the same identity and 0 if they are not.

`(x , y) = −y · log x − (1− y) · log(1− x) (2.13)

2.2.7.4 Siamese Network

A siamese network architecture is a network style that contains two identical sub-
networks that is joined at their output [37]. The sub-network use the same weight
in both pass-throughs to extract features called the descriptors. The features are
then passed to another part that is used to determine the similarity score between
the pairs.

There are multiple ways to construct a siamese network. One possibility is to
determine the similarity by purely relying on the distance between the descriptors
without any neural network. Here, pairwise ranking loss or triplet loss can be used
to learn the network to discriminate between faces.

An alternative is to use a neural-based siamese network. Here, a Sigmoid can
be used to limit the output between 0 and 1, allowing the usage of binary cross
entropy (2.2.7.3) as the loss function. Such a neural siamese network will be able
to figure out the complex mappings itself. This will help the network as different
parts of the embeddings-space might be more important than others.

2.2.8 Training

Training a neural network can be generalized into a few steps. The training data is
passed through the network leading to an output. A loss function is then applied
to the output, which generates an error. This error is used to optimize the model
parameters via a backward-propagation algorithm to accelerate the process [17,
p. 200].

The learning and back-propagation process can be performed automatically
and hardware-accelerated by frameworks like PyTorch [38] and TensorFlow [39].

During training, the network is validated on a validation set to see how the
model performs unseen data. Lastly, the model is used on a separate set called the
test-set to get the final metric. Information like the error on the validation-set and
test-set can indicate how the model is performing.

2.2.9 Generalization, Overfitting, and Underfitting

As stated by Goodfellow et al. [17, p. 110-116], the goal of a machine learning
model is to perform well on new previously unused data. This ability is called
generalization. Two factors determine the performance of the machine learning
algorithm. First, the algorithm should make the training error small while keeping
the gap between the training and test error small.



Chapter 2: Theory 15

Two challenges in machine learning are underfitting and overfitting. Good-
fellow et al. [17] defined underfitting as when the model is not able to gain a
sufficiently low error on the training set and overfitting as when the gap between
training and the test error is too large. Both underfitting and overfitting are a
product of the model’s complexity, or in other words, the model’s capacity.

Generally, overfitting means that the model has a low error on the training
data while it cannot predict well on unseen data. This means that the model has
memorized the training data. Overfitting is often monitored by seeing the accuracy
and error on the validation data. When the model starts overfitting, the validation
error will go up. Overfitting may be caused by too much training or a model with
too high capacity.

On the other side, underfitting means that the model is not able to generalize.
For example, if a model is too simple, the model’s capacity will not be able to
represent the problem and will perform poorly. Underfitting can be seen as the
training loss flattening at a high error rate.

2.2.10 Optimizer

An optimizer is an algorithm that minimizes the loss [17, p. 151-153]. The simplest
optimizer is the gradient descent [17, p. 294] which finds the best gradient for
the entire dataset. There exist multiple optimizations of this algorithm. One way
is the inclusion of mini-batching. Mini-batching helps by calculating the average
gradient on a sub-set of the dataset instead of the entire dataset to approximate
the gradient. By using fewer samples, the weights are updated more frequently,
which speeds up the learning process compared to having to go through the entire
dataset each time.

Another technique to speed up training is the usage of momentum [17, p. 296-
300]. Momentum uses previous gradients in an exponentially decaying average
in addition to the regular gradient. This means that previous gradients can help
in the optimizing process.

A popular implementation of these principles is the Adaptive Momentum Es-
timation (Adam) optimizer [40]. Adam uses both the first and second-order mo-
mentum in conjunction with individual adaptive learning rates. The adaptive learn-
ing rates set a parameter-individual upper learning rate limit and allow parts of
the network that are already almost optimized not to change too much.

For all optimizers, the most important parameter is the learning rate. The
learning rate dictates how much the weights are updated based on the gradient.
Larger values allow faster learning but can be unstable as the weights change too
much [17, p. 238]. On the other hand, smaller values will make the network take
excess time to learn and may overfit the network [41].

2.2.11 Hyperparameters

Hyperparameters are the variables that defined a neural network before training
begins. They contain information on the model structure and parameters such as



Chapter 2: Theory 16

learning rate and batch size [17, p. 422-431]. Hyperparameters-optimization of
the network architecture and structure is one of the most important to tweak. A
non-trivial problem regarding machine learning is the selection of optimal hyper-
parameters. There are multiple approaches for optimizing the hyperparameters.
One way is manual search, where manual experimentation and reasoning is used
to optimize the variables. Another alternative is to use automatic searching al-
gorithms like grid search to try out multiple configurations and select the best
one.

2.2.11.1 Network Architecture

The network architecture and structure decide if the model will be able to gener-
alize. Before training, specifications like input and output size, number of hidden
layers, and filter need to be specified.

Generally, a bigger network has the ability to perform better but will also be
harder to optimize and train and increases the chance that the model memorizes
the dataset resulting in overfitting. On the opposite side, a smaller network will
be easier to train but may not generalize for a given problem [17, p. 110-115].

Regarding 2D convolutional networks, new networks are often based on ex-
isting architectures that have been tested. This helps the new models by having
a baseline on which to build and improve upon. On the other hand, for 3D con-
volutional algorithms, not many models exist, which makes finding the correct
balance more time-consuming.

In combination with selecting all these parameters. Larger networks often
need more data to be able to generalize, which makes it harder to determine
if the problem is with the network or data [17, p. 426]. Generally, implementing
some sort of data augmentation is recommended whenever creating a shallow or
deep model, as it will help the model for unseen data.

To optimize the network, one way is to monitor metrics like loss, validation
loss, and accuracy. A model which is not able to generalize properly will have an
unstable loss or low accuracy.

2.2.11.2 Regularization

Regularization is any modification to a learning algorithm intended to reduce its
generalization error but not its training error [17, p 120]. Regularization aims to
reduce the test error and increase generalization, possibly at the expense of the
training error.

The best way to make a model generalize better is to acquire more training
data [17]. A simple way to do this is via dataset augmentation. Dataset augmenta-
tion is the act of modifying or creating new synthetic data based on existing data.
The new data will allow the network to train on more cases, increasing general-
ization.

For 3D data, there exist multiple data augmentations. The simplest is the affine
transformations, namely translation, rotation, scale, and share. These techniques



Chapter 2: Theory 17

slightly change the 3D structure while keeping the data similar to the original. For
meshes, it is also possible to rebuild all edges on the same vertices as a regulariz-
ation technique.

A technique called batch normalization can also be implemented to make
training more stable and faster [42]. Batch normalization works by normalizing
the data, followed by re-centering and re-scaling. The normalization help train-
ing while the re-centering and re-scaling allow the network to represent the same
functions, making sure the expressive power of the network is maintained [17,
p. 320]. While improving network optimization, batch normalization has also
been shown to have a regularization effect on networks [17, p. 268].



Chapter 3

Related Work

This chapter discusses academic publications related to 3D facial recognition and
the tools used in the Thesis.

3.1 Academic publications

Most state-of-the-art 3D face recognition consists of traditional data-driven ap-
proaches. Moreover, most related deep-learning-based state-of-the-art actually per-
forms a projection from 3D space to 2D space to address working with 3D data
in a deep-learning model. Thus, they are not using the actual properties of the
3D manifold. This is the main difference between the proposed approach in this
Thesis and some of the publicized work discussed in this section.

A summary of the academic publications gone through in this section is avail-
able in Table 3.1.

Table 3.1: Summary of the previous academic deep-learning-based 3D facial re-
cognition models. 2.5D references to the use of a projection from 3D to 2D +
inferred 3D information like depth.

Publication Type Processing time

Kim et al. [43] 3.1.2 2.5D 3.25s1

Zulqarnain Gilani and Mian [44] 3.1.3 2.5D - 2

Cai et al. [10] 3.1.4 2.5D 0.84s1

Bhople et al. [45] 3.1.5 Point Cloud 0.020s3

1 Time to identify a probe from a gallery of 466 faces.
2 No interference time given in the publication.
3 Interference time per sample.

18



Chapter 3: Related Work 19

3.1.1 Traditional 3D Face Recognition

3D facial recognition can be performed by either using traditional methods or
deep learning-based methods. The traditional methods can be divided into three
main categories: holistic, local, and hybrid [46, 47].

The holistic approaches describe the face via global features and use the global
similarity between faces for recognition. The most used techniques are principal
component analysis (PCA) and deformation models [48]. The local methods, also
called feature-based algorithms, use geometric features of the face to extract in-
formation about the identity [4]. These often use key point detection to find and
create features from smaller known regions like the eyes and nose.

The hybrid methods utilize both holistic and local methods to do face recogni-
tion. However, after Soltanpour et al. [48], local methods generally better identify
3D faces than holistic methods, especially in noisy environments.

3.1.2 Deep 3D Face Identification

The first 3D facial recognition based on deep learning was proposed by Kim et al.
[43]. They created their model from the pre-trained model Deep Face Recognition
[49], a network created for 2D facial recognition, and fine-tuned the model with
3D scans.

To use the 3D data in a 2D-trained CNN, the 3D point clouds were projected
with an orthographic projection onto a 2D plane. This method creates a depth
map of the face which is further resized to match the pre-trained model input
resolution of 224×244×3 where the last dimensions are 3 duplicates of the same
depth map.

To combat performance drop due to variations in expressions, they proposed
a method for augmenting 3D face datasets by synthesizing new expressions with
multi-linear 3D morphable models.

The model was later criticized by Cai et al. [10] as the architecture and struc-
ture were intrinsically designed for 2D facial recognition and that no specific op-
timization for 3D facial recognition was added. Zulqarnain Gilani and Mian [44]
concluded that approaches similar to this are sub-optimal as "3D data has its own
peculiarities defined by the underlying shape and geometry", which networks de-
signed for 2D facial recognition would not have seen before.

Their proposed model uses 3.25 seconds, including time spent on pre-processing,
to identify one identity in a gallery of 466 images. The majority of the time is used
for the pre-processing step, which takes 3.16 seconds. This model achieved com-
parable performances to the state-of-the-art traditional methods.

3.1.3 Learning from Millions of 3D Scans for Large-scale 3D Face Re-
cognition

The second attempt on a 3D facial recognition network based on deep learning
was made by Zulqarnain Gilani and Mian [44]. They created and trained a model



Chapter 3: Related Work 20

on a large-scale synthetic 3D facial dataset consisting of 3.1 million 3D scans and
100 000 unique identities. Originally, they started with 1785 3D scans and com-
bined them to create the dataset. The synthetic dataset was created in response
to the lack of any large-scale 3D facial datasets.

For the model, they projected the 3D model into 2D space. The resolution of
the projected image is 160 × 160 × 3, containing depth, azimuth, and elevation
angles of the normal vector. During training, they discovered that larger kernel
sizes in the 2D convolution layers gave better results because 3D facial surfaces
are generally smooth, making the larger kernel size generated better abstractions
than smaller filters.

The result of training on the large generated dataset in combination with a
new proposed network designed for 3D facial recognition made the model out-
perform both the traditional deep learning-based state-of-the-art 3D facial recog-
nition algorithms.

Their proposed model outperforms the model created by Kim et al. [43] dis-
cussed in Section 3.1.2. This shows that training a network designed for 3D facial
recognition and with a large-scale dataset yields better results than trying to fine-
tune a network designed for 2D facial recognition.

3.1.4 A fast and robust 3D face recognition approach based on deeply
learned face representation

Cai et al. [10] proposed another method for 3D facial recognition. Their approach
is another projection-based model, where a depth map is projected from raw 3D
data.

Their technique creates four depth images with varying zoom. The first image
contains the entire face, while the last image contains only the nose. Each image
is fed into a separate network followed by combining the descriptors. The model
uses both triplet loss and softmax as the loss function under training, followed by
using both joint Bayesian and Euclidean distance for matching.

The proposed architecture performs as well as the state-of-the-art methods. It
is the fastest model compared to all previously reported results, using 0.84s for
matching a probe scan against a gallery of 466 faces. They do not directly compare
themself to the model proposed by Zulqarnain Gilani and Mian [44], discussed in
Section 3.1.3, as their publication does not provide any time analysis.

3.1.5 Point cloud-based deep convolutional neural network for 3D
face recognition

Bhople et al. [45] proposed PointNet-CNN, a PointNet [21] based architecture
that directly extracts features from point cloud data for face recognition. Their
model then takes the features of two scans into a siamese network to predict their
similarity.

They train and test the model on two datasets, the Bosphorus [50] dataset and
an in-house dataset called IIT Indore. Compared to the other approaches tested



Chapter 3: Related Work 21

and trained on different datasets, Bhople et al. trained and tested on the same
dataset. They also limited the number of scans per identity in Bosphorus to 31
samples, where originally it has between 31 and 54 scans.

They created an equal amount of genuine and imposter pairs to have both
balanced training and evaluation results. As input, the data were normalized, re-
stricted to 2048 points, followed by augmentation by random rotation, transla-
tion, and permutation.

The proposed model ended up with an AUC of 99.4% and a recognition rate
of 98.91% on Bosphorus. However, they do not specify the split exact used in the
metric, the selected samples, nor the false acceptance rate used in the recognition
rate. This makes it harder to compare the results compared to other methods.

In their publication, they do not compare the performance against any of the
deep-learning-based methods. However, based on the reported result, the model
performed better than the proposed method by Cai et al. [10], and worse than
Zulqarnain Gilani and Mian [44]2.

3.2 Tools

For this project, multiple tools and frameworks were used. These are briefly de-
scribed in the following subsections.

3.2.1 PyTorch

PyTorch [38] is Facebook’s open-source framework for machine learning. The
framework allows custom models and networks to run on accelerated hardware
(CUDA).

3.2.2 PyTorch Geometric

PyTorch Geometric is a framework created by Fey and Lenssen [20]. This frame-
work is an extension to Pytorch that enables deep learning on graphs, point clouds,
and manifolds and implements multiple recent publicized Geometric Deep Learn-
ing methods and functions.

Some alternatives to this framework are Nvidia’s kaolin for PyTorch, Google’s
TensorFlow, and Facebook’s Pytorch3D. PyTorch Geometric was chosen as it was
the most mature framework.

3.2.3 OnlineMiningTripletLoss Pytorch

OnlineMiningTripletLoss is an open-source implementation for PyTorch of batch-
wise triplet mining created by Rishaug [33]. The project is available under the

2We could not find Zulqarnain Gilani and Mian [44] identification rate on Bosphorus, but it is
stated by Bhople et al. [45] that "There is one technique proposed in [44], which has shown perfect
performance on Bosphorus 3D face data ...".

https://github.com/NVIDIAGameWorks/kaolin
https://www.tensorflow.org/graphics/api_docs/python/tfg/geometry/convolution/graph_convolution
https://www.tensorflow.org/graphics/api_docs/python/tfg/geometry/convolution/graph_convolution
https://github.com/facebookresearch/pytorch3d


Chapter 3: Related Work 22

MIT License.



Chapter 4

Methodology

This section describes the implementation of the proposed 3D facial recognition
model.

4.1 Overview

The model outlined in this Thesis was created due to the limited amount of models
that use Geometric Deep Learning techniques for 3D facial recognition. To the best
of our knowledge, there is only one promising model that that does that, proposed
by Bhople et al. [45], which is based on the PointNet [21] architecture.

The proposed architecture of this Thesis implements 3D facial recognition by
directly working on meshes combined with Geometric Deep Learning techniques
for generating features. By directly using a mesh, expensive pre-processing opera-
tions as 3D to 2D projection used by other deep learning approaches [10, 43, 44]
would be reduced or entirely removed.

The goal of this Thesis was to propose a new mesh-based network that would
perform 3D facial recognition comparable to that of the state-of-the-art methods
in terms of accuracy and time.

4.2 Model Architecture

The proposed network has two parts: the convolutional feature extraction network
and the siamese network. Similar FaceNet [8], a convolution network is used to
extract features from faces in the form of descriptors for face identification and
validation. A new network had to be designed as the input, output, and filter size
works differently between 2D convolutions and mesh convolutions so the network
could not be based on an existing model.

To get the input from a variable amount of vertices down to a predictable set
of features, the network uses the global max pooling used by Pointnet [21] and
Pointnet++ [15], further explained in Section 2.2.3.

23



Chapter 4: Methodology 24

GCN-BN-
ReLU

M
 x

 1
6

GCN-BN-
ReLU

M
 x

 3
2

GCN-BN-
ReLU

M
 x

 6
4

GCN-BN-
ReLU

M
 x

 9
4

FC-ReLU

M
 x

 2
56

FC-ReLU

12
8

Global Max
Pooling

M
 x

 1
28

FC

12
8

GCN-BN-
ReLU

M
 x

 3

12
8

Figure 4.1: Figure of the proposed feature extraction architecture. In the figure,
M denotes to number of vertices in the input, GCN refers to Graph Convolution
Network [27] (2.2.6.2), BN to Batch Normalization, FC to fully connected (2.2.4),
and ReLu to Rectified Linear Unit [23] (2.2.5).

Combine

12
8

FC - ReLU
25

6
FC - Sigmoid

64

12
8

1
Figure 4.2: Figure of the siamese network architecture. FC refers to fully connec-
ted (2.2.4), and ReLu to Rectified Linear Unit [23] (2.2.5).

The proposed feature extraction structure can be summed up in Figure 4.1.
The figure shows that the network begins with 5 blocks containing graph convo-
lution, batch normalization, and ReLU that increase the per vertex filter size from
3 (the x,y,z coordinates) up to 256 features. This is followed by a fully connected
layer that reduces the features down to 128 features per-vertex before the net-
work is pooled down to 128 features. A fully connected layer with ReLU maps the
features to descriptors before it is returned. The input for the model is a variable
size mesh, and the output is either a descriptor vector of size 128.

Lastly, the descriptors were compared to do facial validation between pairs.
Initially, the siamese network seen in Figure 4.2 was used. Pairs of extracted
descriptors are inputted, combined, and passed through two fully connected lay-
ers. The last fully-connected layer uses Sigmoid instead of ReLU to return a num-
ber between 0 and 1. This number indicates the similarity of the input pair. Later,
a triplet loss variation was also created that performed face validation via the
euclidean distance between the descriptors.

The entire pipeline can be seen in Figure 4.3. Firstly, the two meshes are
pre-processed before they are each passed through the feature extraction. The
descriptors are then compared with the siamese network. The descriptors of a
gallery-set can be run through the feature extraction network once and saved for
later use. This allows the gallery-descriptors to be directly inserted into the sia-
mese network together with the descriptors from a probe speeding up face identi-
fication. For ranking, a probe is matched against all descriptors in the gallery and
the scan with the highest score is selected as the most likely identity.



Chapter 4: Methodology 25

Mesh-based Feature Extraction Network 12
8

M
1 

x 
3

Siamese
Network

Mesh-based Feature Extraction Network 12
8

M
2 

x 
3

Similarity
score

Downsampling
Triangulation

Pre-processing
Augmentation

Feature extraction Pair matching via a
siamese network

Figure 4.3: Figure of the proposed pipeline. Two meshes are pre-processed before
inputted into a feature extraction network. The feature extraction networks are
the same network in both instances.

4.2.1 Pre-processing

Currently, the proposed network requires pre-processing in order to get the data
in a form suited for the model.

Firstly, if the data is in a point-cloud form, some sort of triangulation is re-
quired. Based on the method used by the datasets Bosphorus [50] and FRGCv2
[51], Delaunay triangulation is applied3 to get a mesh input for the model.

If the input data has too many vertices, mesh sampling is applied to reduce
the complexity of the 3D model. This step was either done using the quadratic-
error-based polygon simplification method Theoharis et al. [53, p. 187-189] or
via uniformly sampled vertices. By reducing the mesh quality, more scans fit into
memory, allowing a larger batch size. This creates a trade-off between batch size
and sampling. More sampling reduces the mesh quality, but a larger batch size is
important for the model to learn features common for multiple faces.

Centering and scale normalization was used to standardize the input. Every
model had its data normalized between −1 and 1. This generally helps the net-
work learn quicker as no value dominates the gradient [17]. Every dataset had
the 3D object located in a different place in the 3D space. For example, BU-3DFE
has the models placed around the origin while the models in FRGCv2 are located
-2500 in the Z-axis.

4.2.2 Hyperparameters

For the proposed model, multiple hyperparameters had to be chosen or exper-
imented with. In general, all hyperparameters were chosen and optimized via
manual experimentation.

Some parameters were chosen based on the work of others. The number of
descriptors used is 128, as proposed by Schroff et al. [8], which showed that this

3This step is done via SciPy’s [52] implementation of Delaunay triangulations. (doc)

https://docs.scipy.org/doc/scipy/reference/tutorial/spatial.html


Chapter 4: Methodology 26

allowed separating over 200 million facial images. The inspiration for experiment-
ing with triplet-loss also came from the same source. The usage of Adam as the
optimizer with a learning rate of 1 · 10−3 was chosen from experimentation done
by Wardeberg [1] in combination with manual tweaking. The Adam coefficients
were the default recommendation from the original paper [40].

As described in Section 2.2.11.1, the number of convolutions and filter sizes is
important for a model to perform optimally. The proposed models’ convolutional
hyperparameters, like the number of convolutions and convolution filter, were
firstly based on Wardeberg [1], followed by manual experimentation. The usage
of GCN, described in Section 2.2.6.2, was inspired from Wardeberg [1].

When trained with triplet loss, the network had L2 normalization used on the
last layer. The training was performed via online triplet loss, with a margin of 0.2.

4.2.3 Training

During training, pairs of scans are created and labeled either as a genuine pair
or an imposter pair. The problem is that there will be more imposter pairs than
genuine pairs, making the training unbalanced.

Take a dataset where each identity has 25 scans, and the maximum number of
identities that fit in the memory is 10. This will create (25·24

2 +25)·10= 3250 total

unique pairs including pairs of the same identity, and (25·10)·(25·9)
2 = 28125 unique

imposter pairs. In big O notation, where n is the number of scans per person, and
m is the number of identities, the number of imposter pairs grows with O(n2m2)
and the genuine pairs with O(n2m).

A limitation was added to the imposter pairs to combat the unbalance. For
both training, validation, and testing accuracy, the amount of negative pairs is
sampled to be equal to the number of positive pairs. For training, pairs were se-
lected randomly, while for the validation and testing accuracy, the same random
seed was used to have reproducibility. This reduced the efficiency of training on
each epoch as many possible pairs were thrown away, making the network need
more epochs to see all possible pairs.

For all experiments, training was run at enough epochs for the validation loss
to become minimal. As specified in Section 4.2.2, the optimizer Adam [40] was
used with a learning rate of 1·10−3. We trained on an Nvidia Titan X (pascal) with
12 GB of memory. The batch size was tweaked to fill 90% of the available memory,
giving room for some minor mesh variance. Experimentation on the sampling
amount was done to find a balance between the maximum amount of meshes that
would fit into the memory while not reducing the quality too much. Bhople et al.
[45] sampled their data to 2048 points while achieving good results, showing that
input sizes of that resolution still allow for high accuracy. In the end, the original
meshes were downsampled to around 2048 vertices +- 64 after experimentation.
This allowed around 250 meshes to be loaded into the memory, using around
11GB.

Before the final evaluation, multiple augmentation techniques were tested on



Chapter 4: Methodology 27

the BU-3DFE dataset [54] to see how different 3D augmentations affected the
results. The feature extraction network and siamese network used for the aug-
mentation test were the structures shown in Figure 4.1 and Figure 4.2.

For evaluation, the model was trained in multiple ways. The model was first
trained and tested on the same dataset for each dataset, similar to that of Bhople
et al. [45]. This style of evaluation tests how the model predicts on new identities
taken with the same 3D scanner and environment. A split of 80% training data and
20% testing data was used4. The problem with this approach is that the datasets
used in this Thesis are relatively small, and with experiments (4.3.3) that divided
up the data into smaller sets, the testing data would contain very few scans and
identities. To help against the small probe-sets, every evaluation had an All vs. All
type experiment added to get more accurate curves in combination with the other
dataset-specific experiments. This type of experiment includes some never seen
harder pairs compared to the other experiments.

The second way of training was inspired by Kim et al. [43], Zulqarnain Gilani
and Mian [44], and Cai et al. [10], where they would train and test on differ-
ent datasets. This helps the network by having more data to train and test on. The
style of training and testing also indicates how the model predicts on new datasets
taken with different scanners and environments. Unfortunately, every publication
trains on different combinations of datasets and augmentations, so the compar-
ison is not standardized and may differ based on the datasets trained on.

4.3 Performance Evaluation

We performed multiple experiments on the three 3D face datasets, that is, BU-
3DFE [54], Bosphorus [50], and FRGCv2 [51]. This section describes the back-
ground information for the evaluations and analyses, which evaluation metrics
were recruited, and how the different experiments were conducted. For evalu-
ation, the experiments generally follow the same procedure implemented in Cai
et al. [10] and Kim et al. [43] but with exceptions.

4.3.1 Sets

For face recognition evaluations, experiments are carried out and distinguished
between the gallery-set and the probe-set.

The gallery-set contains all known scans and identities. These are the faces we
want to recognize and match against. An example of an image in the gallery-set
is a passport photo. This photo is later used for identification or verification of a
person’s identity. The other set is the probe-set, containing all unknown scans we
want to identify among the gallery set. Each scan can either be identified among
the gallery-set or as an unknown identity. A threshold is used to limit the descriptor
distance or matching score when identifying someone as unknown.

4This split was not similar to Bhople et al. [45], as they used a different ratio and also minimized
the maximum scans per individual.



Chapter 4: Methodology 28

Sets can either be a closed set or an open set [3]. If a probe-set is closed,
it means that every identity is known in the gallery-set. If the set is open, the
probe-set may contain unknown faces which do not have a correct sample in the
gallery-set. For all experiments done in the Thesis, closed sets were used.

4.3.2 Metrics

For each experiment, multiple metrics were taken. The following sections contain
the concepts, intermediate metrics, and final metrics used.

4.3.2.1 Rank1

Rank-1 in the context of facial identification means selecting the sample closest to
the probe. An example would be to compare the distance between descriptors or a
matching score. Rank-1 means that if multiple identities match, only the best one
is used, even if multiple or no identities would be classified as positive. Rank-1
can also be extended to Rank-N, where the N closest matches are used to see if
any of them are correct.

Rank is an important metric in closed-set experiments to validate identification
results [3]. When testing, a higher Rank-N metric means a better model.

4.3.2.2 True positive, True negative, False positive, False negative

In face verification, four outcomes are possible. These are based on the actual
label of a pair, either genuine or imposter, and the predicted label output from the
model. The model uses a threshold when predicting to determine the result. This
will be a max-length for descriptors, and for a siamese neural network, it will be
a score threshold. This threshold will be determined by what characteristics the
network will have.

Pairs can either be genuine, also called positive, or an imposter pair, also called
a negative pair. The four outcomes based on the actual label and the predicted
label can be seen in Table 4.1.

A higher threshold means that the model only accepts high confidence posit-
ives, and more of the samples will be false negatives. A lower threshold will have
more false positives. This threshold value is important to achieve a specific false
acceptance rate, further elaborated on in Section 4.3.2.4.

Table 4.1: Possible outcomes based on actual label and predicted label.

Actual
Positive Negative

Predicted
Positive True Positive False Positive
Negative False Negative True Negative

A true positive or true negative means that the model correctly predicted the



Chapter 4: Methodology 29

actual label, while a false positive or false negative means that the model misclas-
sified the pair.

4.3.2.3 Accuracy, Precision, and Recall

Multiple metrics are defined by comparing the four base classes. The simplest one
is the unbalanced accuracy, as shown in Equation 4.1. This predicts the percentage
of the correct predictions. There will both be an accuracy for the identification and
the verification as they test different things. The downside is that it may incorrectly
show good results if the input is unbalanced. In a scenario where the ground truth
is negative in most cases, a model that always predicts false will gain an artificially
high accuracy score.

One way to solve the unbalanced accuracy is to measure precision and recall
[17]. Precision is defined as the fraction of positive predictions by the model that
was correct. On the other side, recall, also called true positive rate, is the frac-
tion of the positive pairs that were correctly predicted [17, p 423-424]. They are
both described mathematically in Equation 4.2 and Equation 4.3. Optimally they
should be as high as possible, but there is often a trade-off between them.

When a model has no predictive, the verification and identification rate will
be around two different values. The verification rate will be equal to 50% if the
input is balanced. The identification rate will be around the expected value of the
binomial distribution X ∼ Bin(n, p), where n is the amount of scans in the probe-
set and p is the probability that a random gallery-scan will have the same identity
as a randomly selected probe-scan.

Accurac y5 =
t p+ tn

tp+ tn+ f p+ f n
(4.1)

Precision=
t p

tp+ f p
(4.2)

Recal l =
t p

tp+ f n
(4.3)

4.3.2.4 False Acceptance Rate, False Reject Rate, and Receiver Operating
Characteristic

In facial verification, an important characteristic is the False Acceptance Rate
(FAR) (Equation 4.4), also called False Positive Rate. This metric is balanced
against the False Reject Rate (Equation 4.5), also called False Negative Rate. As
the name implies, they give the probability that a face is falsely accepted or re-
jected. The metric is used when presenting the verification rate (VR) of a system.
Here, the threshold value is selected such that the specified false acceptance rate
is reached. This threshold is then used when calculating the verification rate.

5unbalanced



Chapter 4: Methodology 30

0.0 0.2 0.4 0.6 0.8 1.0
False Acceptance Rate (FAR)

0.0

0.2

0.4

0.6

0.8

1.0
Tr

ue
 P

os
iti

ve
 R

at
e 

(R
ec

al
l)

Receiver Operating Characteristic (ROC)

AUC = 0.999

(a) Linear ROC curve.

10 3 10 2 10 1 100

False Acceptance Rate (Log scale)

0.90

0.92

0.94

0.96

0.98

1.00

Tr
ue

 P
os

iti
ve

 R
at

e 
(R

ec
al

l)

Receiver Operating Characteristic (ROC)

AUC = 0.999

(b) logarithmic ROC curve.

Figure 4.4: An artificially created almost ideal Receiver Operating Characteristic
curve with an AUC of 0.999 shown in a linear (4.4a) and logarithmic scale (4.4b).
The orange line shows the ideal ROC, while the blue line shows a model with no
predictive power, and that is randomly guessing.

In terms of security, the false acceptance rate is often set to be at most 0.1% or
0.01% depending on the application. Both metrics are both important as wrong-
fully identifying a person means that the system is not secure while failing to verify
a person means that the system is unusable.

False Acceptance Rate =
f p

f p+ tn
(4.4)

False Re jec t Rate =
f n

f n+ tn
(4.5)

Another important way of validating verification results is via a Receiver Op-
erating Characteristic (ROC) curve and the Area Under Curve (AUC) score. The
ROC curve shows the relationship between recall and the false acceptance rate
at different thresholds. In other terms, it shows the relationship between genuine
and imposter pairs and how well the system distinguishes between faces [55]. In
an ideal system, the true positive rate (recall) will be 1.0 for all false acceptance
rates. An artificially created almost ideal ROC curve is presented in Figure 4.4.

The Area Under Curve (AUC) shows a summarized performance of the ROC
curve at all different thresholds. The score is equal to the probability that the
classifier will rank a randomly drawn positive sample higher than a randomly
drawn negative sample, i.e., P(score(xp) > score(xn)) [56]. The ideal system
will have an AUC of 1.

4.3.2.5 Cumulative Match Curve

For close-set face identification, the Cumulative Match Curve (CMC) is an im-
portant rank-based metric. In contrast to the ROC curve, which measures verifica-



Chapter 4: Methodology 31

1 2 3 4 5 6 7 8 9
Rank

0.9800

0.9825

0.9850

0.9875

0.9900

0.9925

0.9950

0.9975

1.0000

Id
en

tif
ica

tio
n 

Ra
te

CMC Curve

Figure 4.5: An artificially created almost ideal Cumulative Match Curve (CMC)
with limited y-axis.

tion performance, the CMC curve measures identification performance at different
rank-N’s [55].

The CMC curve is generated by matching each probe against the gallery and
evaluating whether a true positive is within the N ranks. This creates a graph with
rank-N on the x-axis and true positive identification rate (IR) within N ranks on the
y-axis. Ideally, the true positive identification rate should be as high as possible.
Figure 4.5 illustrates an artificially created, almost ideal, CMC, where the Rank-1
equals 98%. In an ideal curve, this would be 100%.

4.3.3 Datasets

The datasets used for training 3D facial recognition are rather limited compared
to the 2D counterpart. For example, most datasets consist of only a few hundred
identities and a small number of poses for each identity [7]. A summary of the
most popular datasets is listed in Table 4.2, showing the number of unique iden-
tities and total scans available in each dataset.

A combination dataset called LS3DFace, created by Zulqarnain Gilani and Mian
[44] from multiple 3D datasets, including those shown in Table 4.2, contains only
1853 IDs and 31860 scans, which shows the sparsity of 3D face datasets.

For this Thesis, three datasets were selected and used for experiments similar
to [10, 43–45]. These are BU-3DFE [54], Bosphorus [50], and FRGCv2 [51]. A
more detailed summary of the datasets is presented in Table 4.2. In addition,
example images and 3D scans are presented in Figure 4.6.



Chapter 4: Methodology 32

(a) (b) (c)

(d) (e) (f)

Figure 4.6: Example data from the datasets used. Figure 4.6a, 4.6b, and 4.6c
are cropped versions of the 2D images while 4.6d, 4.6e, and 4.6f are the corres-
ponding 3D models shown as triangulated 3D meshes projected via a perspective
projection. Figure 4.6a and 4.6d are from BU-3DFE, 4.6b and 4.6e are from Bos-
phorus, and 4.6c and 4.6f are from FRGCv2. Both the 3D image from Bosphorus
and FRGCv2 (4.6e, 4.6f) are originally a point cloud, but for visualization pur-
poses, triangulation is applied.

Table 4.2: Information of the contents, resolution, and scan-by-scan variance of the most popular 3D datasets used in face recognition.

Dataset Identities Scans Resolution Cropping Variance

BU-3DFE [54] 100 2500
≈ 8k Vertices,
23k Edges, 15k Faces

Face Only Neutral + 6 Expressions

Bosphorus [50] 105 4666 ≈ 135k Vertices Face Only
Neutral + 6 Expressions +
Rotation, Occlusion, & Various face actions

FRGCv2 [51] 466 4007 ≈ 2.5M Vertices Face & Shoulder
Between 1 and 22 scans
Neutral + 3 Expressions
Controlled & Uncontrolled environment

3D-TEC [57] 214 428 70k to 195k Vertices (avg 135k) Face Only Neutral + Smiling

ND-20061 [9] 888 13450 ≈ 112k Vertices (frontal)
Face & Shoulder
Face crop

Neutral + 5 Expressions

1 ND-2006 is a superset of FRGCv2



Chapter 4: Methodology 33

Table 4.3: Distribution of the relevant face scans in the Bosphorus dataset.

Scan type Number

Neutral 299
Expression 453
Lower Face Action Unit (LFAU) 1549
Upper Face Action Unit (UFAU) 432
Combined Action Unit (CAU) 169

Total 2902

4.3.3.1 BU-3DFE

The BU-3DFE dataset [54] contains 2500 scans of 100 individuals. Each individual
has six different expressions recorded at different intensities and one neutral scan.
These are angry, disgust, fear, happiness, sadness, and surprise, where each of
these has four different intensities ranging from 1 to 4. An intensity of 1 or 2 is
considered low intensity, while 3 and 4 are considered high intensity [10].

The BU-3DFE dataset has a wide range of diversity in terms of age, gender,
and ethnicity while also having a lower resolution than the other datasets, as
shown in Table 4.2. Both the diversity and lower resolution make the dataset
more challenging than other datasets [10].

The experiment on BU-3DFE follows the procedure done by Cai et al. [10].
The neutral scans are used as the gallery-set, while compared against low-intensity
expressions, high-intensity expressions, and lastly, both the low and high-intensity
expressions combined.

4.3.3.2 Bosphorus

The Bosphorus dataset [50] contains 4666 scans of 105 individuals ranging from
age 25 to 35. For each individual, multiple scans were taken with different types
of variations. The dataset contains at least one neutral face and six expressions,
together with various rotations, occlusions, upper- and lower-face actions.

This Thesis follows the same procedure as Kim et al. [43] and Cai et al. [10],
where scans marked as occlusion, ignored, and rotation is not used. The total
number of scans used in the experiment then becomes 2902, as shown in Table 4.3.

For the experiments, the first neutral scan from each 105 identities is selected
to be in the gallery-set. The rest of the data is used in three different experiments.
The first experiment is neutral vs. neutral, where the probe-set is the remaining
194 neutral scans. The second experiment is neutral vs. non-neutral. Here, the
probe-set contains 2603 scans from the expression, lower face action unit, up-
per face action unit, and combined action unit sub-sets. The third experiment is
neutral vs. all, making the probe-set contain 2797 scans.



Chapter 4: Methodology 34

4.3.3.3 FRGCv2

The third dataset is the FRGCv2 dataset [51]. The experiment setup followed a
modified procedure to that of Kim et al. [43], Zulqarnain Gilani and Mian [44],
and Cai et al. [10]. Due to the modified procedure, the results are not directly
comparable but will help the reader get an idea of the proposed methodology.

As proposed by the creators of the dataset [51], the dataset is divided into
three partitions based on the acquisition of the data. Namely, the Spring2003-set,
consisting of 275 individuals and 943 scans, the Fall2003-set with 370 individuals
and 1893 scans, and the Spring 2004-set with 345 individuals and 2114 scans.
Combined, the total for all three sets is 557 unique identities with a total of 4950
scans.

As done by Cai et al. [10], the Spring2003 dataset is used for training while
the two other sets are used for validation. The total size of the validation set is
4007 scans of 466 unique individuals.

Normally the dataset is split into three experiments. Namely, neutral vs. neut-
ral, neutral vs. non-neutral, and neutral vs. all. These experiments could not be
done as the FRGCv2 dataset used in this Thesis does not contain the expression
data. An additional experiment done by Cai et al. [10] could also not be implemen-
ted as the web page containing the probe list no longer exists. As a replacement
for the experiments, this Thesis uses a new split. The first scan of each subject is
used as the gallery, while the rest of the scans are used as probes.



Chapter 5

Results

This chapter contains the results from the training and experimentation for this
Thesis. Firstly, it describes the loss during training in Section 5.1. This chapter then
contains various experiments. These include augmentation experiments (5.2.1),
cross-data testing (5.2.2), and a siamese network test (5.2.3). This is followed by
the final results for the triplet net (Section 5.3.1) on BU-3DFE, Bosphorus, and
FRGCv2, and the final results for the siamese network (Section 5.3.2). A time
analysis of the model is presented in Section 5.3.3, and lastly, an overview of the
final results and comparisons against other approaches is presented in Section 5.4.
Every table and figure is further explained in the appropriate section.

5.1 Training

The training and testing loss on the BU-3DFE dataset when using the siamese net-
work can be seen in Figure 5.1. Near the end of the training, the training loss was
in the range [0.005,0.003], while the testing loss was in the range [0.14,0.15].
The lowest point for the test data was at epoch 5750 with a loss of 0.09.

As laid out in Section 2.2.9, underfitting and overfitting can be determined by
the training and test loss. As the training loss is smaller than the testing loss, a
gap of around 0.14 is created. This shows overfitting indicating an issue with the
model’s capacity or a problem with the data.

These results were similar but less extreme on the Bosphorus dataset, where
there was a gap of around 0.09. For FRGCv2, the gap was 0.01, meaning that little
overfitting was seen.

35



Chapter 5: Results 36

0

0.2

0.4

0.6

0 1k 2k 3k 4k 5k 6k

(a) Training loss

0

0.2

0.4

0.6

0 1k 2k 3k 4k 5k 6k

(b) Training loss loss

Figure 5.1: Plot of training and training loss on the BU-3DFE dataset with the
siamese network. The y-axis is the loss from binary cross entropy while the x-axis
is epochs.

5.2 Experiments

5.2.1 Augmentation results

The augmentation experiments were performed by gradually changing the amount
of augmentation. Every experiment used some sort of pre-sampling for the scans
to fit into CPU and GPU memory, specified in the mesh resolution column. The
results, shown in Table 5.1, are divided up into two parts: one trained where the
input mesh topology stayed consistent, and one where the data was resampled
before each time they were used.

Table 5.1 show that the accuracy went down when applying normalization
but slowly increased as more augmentation was applied. When re-sampling, more
points did not necessarily mean higher accuracy.

The best results, outlined in bold, show that Center + Normalize Scale + Trans-
lation 0.01 + Rotate 5 degrees 3 axis generally performed the best except in rank-
1. The model Center+Normalize Scale+Resample 1024 points managed to beat the
augmentation combination by 0.83 percentage points.

The augmentation results are discussed in Section 6.1



Chapter 5: Results 37

Table 5.1: Various augmentation experiments and the corresponding results.
Rank-1 IR, and AUC is the neutral vs. all experiment while VR were from all vs.
all experiment.

Augmentation style
Mesh resolution

(vertices)
Rank-1 IR AUC

VR at
1% FAR

VR at
0.1% FAR

Epoch

Center 2048 80.00% 99.00% 87.79% 67.46% 4800

Center +
Translation 0.01 ·max(scan) +
Rotate 5 degrees 3 axis

2048 86.04% 99.32% 90.42% 71.56% 2400

Center +
Normalize Scale

2048 76.25% 97.75% 82.35% 62.68% 4050

Center +
Normalize scale +
translation 0.01 +
Rotate 5 degrees 1 axis

2048 83.96% 98.24% 84.52% 62.79% 5100

Center +
Normalize Scale +
Translation 0.01 +
Rotate 5 degrees 3 axis

2048 90.21% 99.40% 91.34% 75.92% 5950

Center +
Normalize Scale +
Resample 512 points

4096 70.42% 97.40% 79.05% 68.29% 4450

Center +
Normalize Scale +
Resample 1024 points

4096 91.04% 99.27% 88.55% 73.42% 3900

Center +
Normalize Scale +
Translation 0.01 +
Rotate 5 degrees 3 axis
Resample 1024 points

4096 90.63% 98.94% 87.77% 73.35% 4750

Center +
Normalize Scale +
Resample 2048 points

4096 88.53% 99.32% 87.64% 70.03% 3500

5.2.2 Cross-dataset testing

For the cross-dataset testing, the model was trained with a single or multiple data-
sets, followed by using the last to test. The best results, and results relevant for
the discussion are then presented in Table 5.2.

When trained on multiple datasets, it always performed worse than when
training on a single one. Also, the model only managed to get good performance
when it was trained and tested on the BU-3DFE and Bosphorus dataset. Little
accuracy improvements were achieved when training or testing on the FRGCv2
dataset.

When the model was trained on BU-3DFE, it managed to get a 72.7% rank-1
identification rate and a 77.2% verification rate at 0.1% false acceptance rate at
Bosphorus. The results on FRGCv2 were 3.5 rank-1 IR and 51.3% VR, close to a



Chapter 5: Results 38

model that would have no predictive power.
When the model was trained on Bosphorus, it managed to get a 63.3% rank-1

IR and 69.2% VR at BU-3DFE,

Table 5.2: Results when training and testing on different datasets. Only the best-
resulting results are shown.

BU-3DFE Bosphorus FRGCv2

Augmentation technique Trained on Rank-1 IR VR at 0.1% FAR Rank-1 IR VR at 0.1% FAR Rank-1 IR VR at 0.1% FAR

Center + Norm +
Resample 1024
Siamese

BU-3DFE – – 39.8% 56.9% 1.3% 50.0%

Center + Scale norm +
Translate 0.01 +
Rotate 5 degrees, 3 axis
Triplet loss

BU-3DFE – – 72.7% 77.2% 3.5% 51.3%

Center + Scale norm +
Translate 0.01 +
Rotate 5 degress, 3 axis
Triplett loss

Bosphorus 63.3% 69.2% – – 4.0% 51.4%

Center + Scale Norm +
Translate 0.01 +
Rotate 5 degrees, 3 axis
Triplet loss

FRGCv2 21.2% 55.1% 27.8% 53.4% – –

5.2.3 Siamese experiment

As outlined in Section 5.1 and will be discussed in Section 6.2, there is a problem
with the siamese network. This section contains the result of using a different
neural siamese network. This new network does not impact the triplet network
and has not been used in any other results than Table 5.3 and Figure 5.2.

Table 5.3 shows the result from the siamese network used in this Thesis, the
improved one, and the triplet net on the FRGCv2 dataset. The result shows that
the improved siamese network outperforms the one in this Thesis. The table also
shows that there is a similar performance between the triplet net and the more
improved siamese network. Due to time limitations and that the improved siamese
net performed similarly to the triplet net, the improved siamese net was not used.

Section 5.3 shows the training and testing loss on the FRGCv2. Here, the
orange line is the improved and green the original. The orange line converges
quicker, and there is a smaller gap between the training and testing loss, meaning
that it does not experience the same overfitting.

Table 5.3: Comparison between the used siamese network, a slightly improved
siamese network, and the triplet net. The results are from training and testing on
FRGCv2.

Experiment Rank-1 IR AUC VR at 1% FAR VR at 0.1% FAR

Original Siamese network 90.12% 99.95% 99.40% 96.26%
Improved Siamese network 98.90% 99.99% 99.85% 98.28%
Triplet net 98.65% 99.99% 99.55% 99.55%



Chapter 5: Results 39

0

0.1

0.2

0.3

0.4

0.5

0.6

0 1k 2k 3k 4k 5k

(a) Training loss

0.1

0.2

0.3

0.4

0.5

0.6

0 1k 2k 3k 4k 5k

(b) Testing loss

Figure 5.2: Plot of training and testing loss. The green line is the used siamese
network, and the orange is the improved (and not used in the results) network
discussed in Section 6.6.

5.3 Final results

This section contains the final results for the dataset.

Triplet loss results

When trained with triplet loss, the results look promising. On BU-3DFE [54] (Fig-
ure 5.3), the results look promising. It reached a 99.6%, 95.0%, and 92.5% rank-1
identification rate in the neutral vs. low-intensity, neutral vs. high intensity, and
neutral vs. all experiments, respectively. In addition, the model achieved a 92%,
88%, and 77% verification rate at 0.1% false acceptance rate on the same experi-
ments. The AUC was between 99.2% and 99.7% for all experiments. Based on the
results, the model struggled the most with neutral vs. high-intensity.

The results on Bosphorus [50] (Figure 5.4d) are a bit better than the res-
ults on BU-3DFE. The model achieved a 98.2%, 95.1%, 94.0% rank-1 IR, and a
100%, 86.0%, and 86.0% VR at 0.1% FAR on the neutral vs. neutral, neutral vs
non-neutral, and neutral vs. all experiments, respectively. The model managed to
get a 100% AUC on the neutral vs. neutral, meaning that it verified all pairs cor-
rectly on the reduced balanced set. However, due to a rounding error, explained
in Appendix A, the graph shows only a VR of 50%. This should be 100% for every
FPR less than 100%.

The results on FRGCv2 [51] (Figure 5.4d) are almost perfect. The first vs. rest
experiment reached a 98.65% rank-1 identification rate and a 99.55% verification
rate at 0.1% false acceptance rate. The model managed to get a 100% identifica-
tion rate at rank-2.

Siamese loss results

The proposed approach performs worse when using the siamese network outlined
in Figure 4.2 than when using triplet loss.



Chapter 5: Results 40

On the BU-3DFE dataset [54], as seen in Figure 5.6, it obtained a 90.21%
rank-1 IR, an 86.35% VR at 0.1% FAR at the neutral vs. all experiment. The AUC
for the experiments was between 99.0% and 99.5%.

On Bosphorus [50], seen in Figure 5.7, the proposed approach achieved a
90.08% rank-1 IR, an AUC of 99.60%, 91.07% VR at 0.1% FAR on the neutral
vs. all experiment. Like the triplet network trained Bosphorus result, the neutral
vs. neutral AUC was 100%, inducing a rounding error and incorrectly creating the
graph. This is further explained in Appendix A, and the correct graph should show
100% for every FPR less than 100%.

The siamese performed better on the FRGCv2 [51] dataset than the BU-3DFE
and Bosphorus datasets. On FRGCv2 it reached a 90.12% rank-1 IR, an 99.95%
AUC, and a 96.26% VR at 0.1% FAR.

5.3.1 Triplet loss results

5.3.1.1 Triplet loss results on BU-3DFE

0.0 0.2 0.4 0.6 0.8 1.0
False Acceptance Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e 
(R

ec
al

l)

Receiver Operating Characteristic (ROC)

Neutral vs. Low-Intensity, AUC = 0.997
Neutral vs. High-Intensity, AUC = 0.992
Neutral vs. All, AUC = 0.996
All vs. All, AUC = 0.994

(a)

10 3 10 2 10 1 100

False Acceptance Rate (Log scale)

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e 
(R

ec
al

l)

Receiver Operating Characteristic (ROC)

Neutral vs. Low-Intensity, AUC = 0.997
Neutral vs. High-Intensity, AUC = 0.992
Neutral vs. All, AUC = 0.996
All vs. All, AUC = 0.994

(b)

1 2 3 4 5
Rank

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1.00

Id
en

tif
ica

tio
n 

Ra
te

Cumulative Match Curve

Neutral vs. Low-Intensity
Neutral vs. High-Intensity
Neutral vs. All

(c)

10 4 10 3 10 2 10 1 100

False Acceptance Rate (Log scale)

0.5

0.6

0.7

0.8

0.9

1.0

Va
lid

at
io

n 
Ra

te

Validation Rate at different thresholds

Neutral vs. Low-Intensity
Neutral vs. High-Intensity
Neutral vs. All
All vs. All

(d)

Figure 5.3: ROC, CMC, and FAR-VR curves on the BU-3DFE dataset. 5.6a shows
the linear ROC curve. 5.3b shows the logarithmic ROC curve. 5.3c shows the CMC
curve. 5.3d shows the Validation Rate plotted against False Acceptance Rate.



Chapter 5: Results 41

5.3.1.2 Triplet loss results on Bosphorus

0.0 0.2 0.4 0.6 0.8 1.0
False Acceptance Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e 
(R

ec
al

l)

Receiver Operating Characteristic (ROC)

Neutral vs. Neutral, AUC = 1.000
Neutral vs. Non-neutral, AUC = 0.996
Neutral vs. All, AUC = 0.997
All vs. All, AUC = 0.993

(a)

10 3 10 2 10 1 100

False Acceptance Rate (Log scale)

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e 
(R

ec
al

l)

Receiver Operating Characteristic (ROC)

Neutral vs. Neutral, AUC = 1.000
Neutral vs. Non-neutral, AUC = 0.996
Neutral vs. All, AUC = 0.997
All vs. All, AUC = 0.993

(b)

1 2 3 4 5 6
Rank

0.95

0.96

0.97

0.98

0.99

1.00

Id
en

tif
ica

tio
n 

Ra
te

Cumulative Match Curve

Neutral vs. Neutral
Neutral vs. Non-neutral
Neutral vs. All

(c)

10 4 10 3 10 2 10 1 100

False Acceptance Rate (Log scale)

0.5

0.6

0.7

0.8

0.9

1.0

Va
lid

at
io

n 
Ra

te
Validation Rate at different thresholds

Neutral vs. Neutral
Neutral vs. Non-neutral
Neutral vs. All
All vs. All

(d)

Figure 5.4: ROC, CMC, and FAR-VR curves on the Bosphorus dataset. 5.4a shows
the linear ROC curve. 5.4b shows the logarithmic ROC curve. 5.4c shows the CMC
curve. 5.4d shows the Validation Rate plotted against False Acceptance Rate.



Chapter 5: Results 42

5.3.1.3 Triplet loss results on FRGCv2

0.0 0.2 0.4 0.6 0.8 1.0
False Acceptance Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e 
(R

ec
al

l)

Receiver Operating Characteristic (ROC)

First vs. Rest, AUC = 1.000
All vs. All, AUC = 1.000

(a)

10 3 10 2 10 1 100

False Acceptance Rate (Log scale)

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e 
(R

ec
al

l)

Receiver Operating Characteristic (ROC)

First vs. Rest, AUC = 1.000
All vs. All, AUC = 1.000

(b)

1 2
Rank

0.986

0.988

0.990

0.992

0.994

0.996

0.998

1.000

Id
en

tif
ica

tio
n 

Ra
te

Cumulative Match Curve

First vs. Rest

(c)

10 4 10 3 10 2 10 1 100

False Acceptance Rate (Log scale)

0.5

0.6

0.7

0.8

0.9

1.0

Va
lid

at
io

n 
Ra

te
Validation Rate at different thresholds

First vs. Rest
All vs. All

(d)

Figure 5.5: ROC, CMC, and FAR-VR curves on the FRGCv2 dataset. 5.5a shows
the linear ROC curve. 5.5b shows the logarithmic ROC curve. 5.5c shows the CMC
curve. 5.5d shows the Validation Rate plotted against False Acceptance Rate.



Chapter 5: Results 43

5.3.2 Siamese results

5.3.2.1 Siamese results on BU-3DFE

0.0 0.2 0.4 0.6 0.8 1.0
False Acceptance Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e 
(R

ec
al

l)

Receiver Operating Characteristic (ROC)

Neutral vs. Low-Intensity, AUC = 0.995
Neutral vs. High-Intensity, AUC = 0.990
Neutral vs. All, AUC = 0.994
All vs. All, AUC = 0.992

(a)

10 3 10 2 10 1 100

False Acceptance Rate (Log scale)

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e 
(R

ec
al

l)

Receiver Operating Characteristic (ROC)

Neutral vs. Low-Intensity, AUC = 0.995
Neutral vs. High-Intensity, AUC = 0.990
Neutral vs. All, AUC = 0.994
All vs. All, AUC = 0.992

(b)

1 2 3 4 5
Rank

0.90

0.92

0.94

0.96

0.98

1.00

Id
en

tif
ica

tio
n 

Ra
te

Cumulative Match Curve

Neutral vs. Low-Intensity
Neutral vs. High-Intensity
Neutral vs. All

(c)

10 4 10 3 10 2 10 1 100

False Acceptance Rate (Log scale)

0.5

0.6

0.7

0.8

0.9

1.0

Va
lid

at
io

n 
Ra

te

Validation Rate at different thresholds

Neutral vs. Low-Intensity
Neutral vs. High-Intensity
Neutral vs. All
All vs. All

(d)

Figure 5.6: ROC, CMC, and FAR-VR curves on the bu-3dfe dataset. 5.6a shows
the linear ROC curve. 5.6b shows the logarithmic ROC curve. 5.6c shows the CMC
curve. 5.6d shows the Validation Rate plotted against False Acceptance Rate. The
blue striped line in 5.6a and 5.6b shows the random-guessing line discussed in
Section 4.3.2.4.



Chapter 5: Results 44

5.3.2.2 Siamese results on Bosphorus

0.0 0.2 0.4 0.6 0.8 1.0
False Acceptance Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e 
(R

ec
al

l)

Receiver Operating Characteristic (ROC)

Neutral vs. Neutral, AUC = 1.000
Neutral vs. Non-neutral, AUC = 0.995
Neutral vs. All, AUC = 0.997
All vs. All, AUC = 0.990

(a)

10 3 10 2 10 1 100

False Acceptance Rate (Log scale)

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e 
(R

ec
al

l)

Receiver Operating Characteristic (ROC)

Neutral vs. Neutral, AUC = 1.000
Neutral vs. Non-neutral, AUC = 0.995
Neutral vs. All, AUC = 0.997
All vs. All, AUC = 0.990

(b)

1 2 3 4
Rank

0.90

0.92

0.94

0.96

0.98

1.00

Id
en

tif
ica

tio
n 

Ra
te

Cumulative Match Curve

Neutral vs. Neutral
Neutral vs. Non-neutral
Neutral vs. All

(c)

10 4 10 3 10 2 10 1 100

False Acceptance Rate (Log scale)

0.5

0.6

0.7

0.8

0.9

1.0

Va
lid

at
io

n 
Ra

te
Validation Rate at different thresholds

Neutral vs. Neutral
Neutral vs. Non-neutral
Neutral vs. All
All vs. All

(d)

Figure 5.7: ROC, CMC, and FAR-VR curves on the Bosphorus dataset. 5.7a shows
the linear ROC curve. 5.7b shows the logarithmic ROC curve. 5.7c shows the CMC
curve. 5.7d shows the Validation Rate plotted against False Acceptance Rate. The
blue striped line in 5.7a and 5.7b shows the random-guessing line discussed in
Section 4.3.2.4.



Chapter 5: Results 45

5.3.2.3 Siamese results on FRGCv2

0.0 0.2 0.4 0.6 0.8 1.0
False Acceptance Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e 
(R

ec
al

l)

Receiver Operating Characteristic (ROC)

First vs. Rest, AUC = 0.999

(a)

10 3 10 2 10 1 100

False Acceptance Rate (Log scale)

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e 
(R

ec
al

l)

Receiver Operating Characteristic (ROC)

First vs. Rest, AUC = 0.999

(b)

2 4 6 8 10
Rank

0.90

0.92

0.94

0.96

0.98

1.00

Id
en

tif
ica

tio
n 

Ra
te

Cumulative Match Curve

First vs. Rest

(c)

10 4 10 3 10 2 10 1 100

False Acceptance Rate (Log scale)

0.5

0.6

0.7

0.8

0.9

1.0
Va

lid
at

io
n 

Ra
te

Validation Rate at False Acceptance Rate

First vs. All

(d)

Figure 5.8: ROC, CMC, and FAR-VR curves on the FRGCv2 dataset. 5.8a shows
the linear ROC curve. 5.8b shows the logarithmic ROC curve. 5.8c shows the CMC
curve. 5.8d shows the Validation Rate plotted against False Acceptance Rate. The
blue striped line in 5.8a and 5.8b shows the random-guessing line discussed in
Section 4.3.2.4.

5.3.3 Time analysis

The time analysis, shown in Table 5.4, was take on an Intel Core i7-8700K CPU
and an NVIDIA TITAN X (pascal) GPU. The table is divided up into three parts,
not necessarily required, required, and total. The total time used by the network
to match one probe against a gallery of size 466 is 8.042 milliseconds with sub-
sampling and triangulation and 5.353 milliseconds without subsampling and tri-
angulation. The sampling, triangulation, preprocessing, and ranking depend on
the CPU, while feature extraction and ranking depend on the GPU.

The preprocessing and feature extraction time assumes a mesh of 2048 ver-
tices. The feature extraction time is increased to 45.586ms when simultaneously
extracting features for 100 identities, showing that simultaneous feature extrac-
tion grows less in time complexity than n for small numbers.



Chapter 5: Results 46

Table 5.4: Time analysis to match one probe in a gallery of 466 images.

Type Time

Sampling (per sample, not required) 496µs
Triangulating (per sample, may be required) 2.193ms

Preprocessing (per sample) 46µs
Feature extraction (single) 5.225ms
Mid-processing 1µs
Siamese Network 74µs
Ranking 7µs

Total with subsampling and triangulation 8.042ms
Total without subsampling and triangulation 5.353ms

5.4 Overview

A summary of the main results presented in this Thesis is shown in Table 5.5.
Our proposed methods’ identification and verification rate are compared against
other deep-learning methods in Table 5.6 and Table 5.7. Lastly, an interference
time comparison is presented in Table 5.8.

The comparisons show that our proposed model performs a bit under the
other state-of-the-art methods in respect to identification rate and verification
rate. Based on Table 5.8, our method is the fastest when compared against the
state-of-the-art methods, using around 8 milliseconds to identify a singly identity
in a gallery of 466 faces.

Table 5.5: Summary of the results in this Thesis on the neutral vs. all experiment
for BU-3DFE and Bosphorus, and first vs. rest for FRGCv2.

Siamese neural network
Dataset Rank-1 IR AUC VR at 1% FAR VR at 0.1% FAR

BU-3DFE [54] 90.21% 99.40% 92.92% 86.35%
Bosphorus [50] 90.08% 99.69% 95.27% 91.07%
FRGCv2 [51] 90.12% 99.95% 99.40% 96.26%

Distance based Siamese network trained with tripplet loss
Dataset Rank-1 IR AUC VR at 1% FAR VR at 0.1% FAR

BU-3DFE [54] 95.00% 99.60% 95.63% 87.60%
Bosphorus [50] 95.11% 99.79% 97.40% 86.03%
FRGCv2 [51] 98.65% 99.99% 99.55% 99.55%



Chapter 5: Results 47

Table 5.6: Comparison of Rank1 Identification Rates between different
deep-learning-based methods in the neutral vs. all experiment on BU-3DFE,
Bosphorus, and FRGCv2.

Method BU-3DFE Bosphorus FRGCv2

Kim et al. [43] 95.0% 99.2% –
Zulqarnain Gilani and Mian [44] 99.9% 100.0% 99.9%
Cai et al. [10] 99.88% 99.75 100.0%
Ours (Same-set-test) 95.00% 95.11% 98.65%1

1 Used a non-standard experiment as discussed in Section 4.3.3.3.
– Not reported

Table 5.7: Comparison of deep-learning-based methods
on Verification Rate at 0.1% False Acceptance Rate on the
neutral vs. all experiments on the datasets.

Method BU-3DFE Bosphorus FRGCv2

Cai et al. [10] 98.92% 98.39% 100.0%
Bhople et al. [45] – 98.91%1,2,3 –
Ours1 87.60% 86.03% 99.55%2

1 Used a non-standard split.
2 Used a non-standard experiment.
3 Does not specify FAR threshold.
– Not reported

Table 5.8: Comparison of processing time for one feature extraction and matching a probe
against a gallery of 466 faces.

Approaches Processing Matching Total Relative factor

Kim et al. [43] 3160ms 90ms 3250ms 401.1x
Zulqarnain Gilani and Mian [44] 1 – – – –
Cai et al. [10] 760ms 80ms 840ms 104.5x
Bhople et al. [45] 2 20ms – – 2.5x(3)

Ourswith-sub 7.960ms 0.082ms 8.042ms 1x
Oursno-sub 5.271ms 0.082ms 5.353ms 0.67x

1 No interference time given in the publication.
2 Interference time per sample.
3 Estimated.
with-sub Processing time with subsampling and triangulation.
no-sub Processing time without subsampling and triangulation.



Chapter 6

Discussion

This chapter contains the discussion and findings of this Thesis.

6.1 Augmentation results

In this Thesis, we compared the performance of different augmentation methods
on the BU-3DFE dataset. The summary of the metrics is displayed in Table 5.1.

The augmentation results show some observations. Firstly, there is a loss of
accuracy when applying scale normalization. This is logical as size information
is lost during this transformation, and the network has to rely on ratios instead
of absolute distances. The problem is that this transformation may be a neces-
sary evil. For example, if the network relies too much on absolute distances, vari-
ations like distance from the scanner may impact the performance. Interestingly, it
does not perform much differently when applying augmentation to the non-scale-
normalized data than the scale-normalized data. This means that scale must be
important, but the network uses some other feature of the scan to separate scans.

Secondly, small changes in rotation and translation help the network learn
better. The simple augmentation methods make the network more robust to small
variations in the rotation that can naturally occur from scanning. Zulqarnain Gil-
ani and Mian [44] stated that larger kernels worked better on 2D depth images
compared to smaller kernels as 3D faces are generally smooth. Therefore, indi-
vidual point translations have little effect on the overall geometric structure while
still helping the network become less sensitive to absolute positions. This helps the
network learn multiple possible variations of the same identity.

Based on the results, two augmentation styles distinguish themselves. Namely,
resampling with no augmentation and using the original mesh with maximum
augmentation. Generally, the model trained on the original mesh performed just
a bit better. Based on the experiments, when re-sampling the mesh, the optimal
number of vertices is around 1024 points. Augmentation by resampling gained no
extra performance when adding more augmentations techniques. This means that
a uniform sampling of the mesh worked efficiently as a regularization technique

48



Chapter 6: Discussion 49

and that changing the underlying mesh before sampling had little effect. Minor
point translation will be of little significance when the entire mesh is resampled
from a larger mesh each time.

For the experiment that did not resample the mesh at each epoch, there was
a slight benefit when using 2048 vertices instead of 1024. This is in contrast to
when using re-sampling, where 1024 points seemed to work better. One possibil-
ity is that the network is overfitting, and therefore more restrictive data helps the
model create more optimal features at the expense of a lower theoretical max-
imum accuracy. While the model is overfitting, it is not able to hit the theoretical
accuracy, and therefore performs better as the data is simpler.

6.2 Underperforming feature extraction

The proposed network displays a lower than expected identification rate and veri-
fication rate when compared to other approaches. The network must therefore be
performing suboptimally. As seen in the earlier 3D face recognition methods [10,
43, 44], it is possible to achieve perfect performance on most datasets when using
a projection-based approach. Bhople et al. [45] had similar results when using
their geometric deep learning approach. This means that it is possible to perform
well on the datasets.

Based on the training and testing loss, the model is able to learn the training
data but not generalize enough to perform as well on the test data. This means
that the feature extraction network or the siamese network is overfitting and is an
indication that the capacity of the network is too high.

The performance became better when using the triplet network, indicating
a problem with the siamese network. This problem is further discussed in Sec-
tion 6.6.

Even with the triplet network, the model is performing slightly under that
of the other proposed methods. A possible explanation for this is that the model
cannot extract optimal features and that the training finds a set of suboptimal
features that can separate the training data, but that is not prevalent in the test
data.

There is a possibility that the network is too shallow for the geometric inform-
ation to traverse throughout the network. If this is the case, repeated application
of the graph convolutions or implementation of vertex-pooling may help the issue.
This issue is further discussion discussed in Section 6.3.

Another possibility with the feature extraction network is that it requires more
data for finding optimal features. As the datasets are relatively small, the model
might not see enough different samples to learn the optimal features. As shown
in the augmentation results in Table 5.1, the models that had more augmentation
generally performed better than those without. The experiments that used the
combined datasets did not improve the accuracy. This issue is further discussed in
Section 6.8.



Chapter 6: Discussion 50

The pre-subsampling may also cause some issues. It is possible that the pre-
subsampling step removes some of the important geometrical information in the
structures, making it harder for the network to perform on the test data. This is
less likely as Bhople et al. [45] managed to get close to state-of-the-art results
with 2048 points, equal to that of the pre-subsampling used in this Thesis. This
assumes that a mesh of size 2048 will perform around equal to that of a point
cloud of size 2048, which may be incorrect as the convolution techniques used on
point clouds and meshes operate differently.

The last possibility is that mesh convolutions may have a harder time with
inter-class separability. This Thesis provides no results that definitively prove or
disprove this statement. Further investigation into this topic is presented in Sec-
tion 6.3.

6.3 Graph convolution limitation

A possibility is that the graph convolution struggles on interclass separation prob-
lems. Using a graph convolution on a mesh has been done before [29, 30, 58],
which shows that a graph convolution can be used on mesh structures. The fact
that graph convolution works on meshes suggests that GCNs should work on in-
terclass separation problems, but it does not prove it.

There is also a problem with multiple applications of graph convolutions. Chen
et al. [59] states that most graph convolution networks such as GCN (Kipf and
Welling [27]) and GAT (Chen et al. [60]) achieved their best performance with
2-layer modes. Shallow architectures limit a model’s ability to extract information
from higher-order neighbors. This is an issue because graph convolutions perform
Laplacian smoothing that mixes features of its neighbors [61]. Repeated applica-
tions of the graph convolutions will create a phenomenon called over-smoothing,
meaning that the vertices from different clusters become indistinguishable and
hurts classification accuracy [61]. This mixing happens even faster when graph
convolutions are used on small datasets [61]. These findings may explain why
the model is underperforming, especially on the smallest dataset BU-3DFE.

6.4 The problem with the verification rate and false ac-
ceptance rate

Generally, the verification rate is lower than expected when compared to the other
deep-learning-based methods. The way that the verification rate is calculated
severely punishes models that are not performing close to perfect. This problem
occurs due to the dataset size and the experiment style. Cai et al. [10] calculated
the verification and identification rate on the same set. Similarly, this Thesis uses
the same approach to have comparable results.

Take FRGCv2, where the dataset contains 466 identities. For the first vs. all ex-
periment, the gallery-set contained 466 unique identities and one scan per iden-



Chapter 6: Discussion 51

tity. The verification rate is calculated on a balanced set of negative and positive
pairs as described in Section 4.2.3. This means that the maximum amount allowed
false positives becomes very low, as seen in Equation 6.1.

For a 0.1% FAR, the maximum allowed number of false positives is 0.93, less
than a single fault. This is in the best-case scenario where every single positive pair
must be correctly labeled. This means that the reported 0.1% FAR is equivalent to
0.0% FAR. The result of this can be seen in Figure 5.8d, where the graph plateaus
around the 3 · 10−3 FAR threshold. This means that the metric is rather strict and
punishes models that cannot perform perfectly.

FAR=
F P

T P + T N
i f FAR≤ 0.1% ∧ T = T P = 466 ∧ T + N = 466 · 2

=⇒ F P ≤ 0.93

(6.1)

For BU-3DFE with 100 identities, the maximum allowed false positives at best
becomes 0.199 for a FAR of 0.1% and 1.98 for a FAR of 1%. This number becomes
even less if the dataset is divided up or there are any false negatives. The triplet
network BU-3DFE results, as presented in Table 5.5, goes from 87.60% to 95.63%
when increasing the FAR from 0.1% to 1%.

The problem can be reduced by increasing the probe-set size, not balancing
the pairs, or making the experiment less restrictive. By adding the all vs. all ex-
periment, every scan is matched against every other scan. This increases the total
amount of pairs available and creates a higher fidelity graph, as shown in Fig-
ure 5.6, Figure 5.7, and Figure 5.8.

Interestingly, the result from the all vs. all experiment is not much different
from the neutral vs. non-neutral result on Bosphorus and the neutral vs. high-
intensity result on BU-3DFE. This is logical as the all vs. all split contains the most
difficult pairs, including pairs like high-intensity vs. high-intensity, which no other
experiment contains, while also containing the easiest pairs of neutral vs. neutral.

The limitation outlined in this section is a problem every 3D face recogni-
tion algorithm has. To better characterize 3D face recognition algorithms, a larger
dataset is required, as results on small datasets are more influenced by random
noise.

6.5 The gap between Rank-1 identification rate and AUC

There are often large gaps between the rank-1 identification rate and AUC in
the results. This can especially be seen in the augmentation table 5.1. Logically,
these should be strongly connected. There are two reasons why they are slightly
deviating.

The first reason is that the ROC is based on a balanced set. Because of the
balancing, a lot of imposter pairs are thrown away. The CMC curve will contain
these pairs, meaning that there will more likely be a reduction in the rank-N.



Chapter 6: Discussion 52

One reason why the rank-1 identification rate can be low while the AUC is
high comes from the definition of the metrics. As described in Section 4.3.2.4,
AUC represents the probability that a randomly selected positive pair has a higher
score than a randomly selected negative pair. On the other side, as described in
Section 4.3.2.1, rank-n measures that the correct identity is within the n highest-
ranked gallery scans. For rank-1, it means that the highest-ranked gallery scan
must be the correct identity. The reason why the scores are different is that they
test different things. AUC is used for pairs of data and therefore face validation,
while rank-1 uses a ranking score useful for face identification. Even though face
identification can be built using face validation, the metric still does not translate
over as AUC determines the probability of a binary output while rank-n relies on
a discrete set of scores. DeCann and Ross [55] concludes that there exist multiple
CMC curves that can be associated with a single ROC curve, meaning it is hard to
create a direct translation between ROC and CMC.

6.6 Siamese vs. triplet loss

There are large differences between the neural siamese network and the triplet
network. This means that the used siamese network is not able to help distinguish
between the identities.

As the current siamese network is rather elementary, a changed version is
more likely to perform better. Instead of only combining the vectors, functions
like f1 − f2 and f 1 · f 2 are more likely to help the network distinguish between
identities. This is similar to DeepFace [62], where the siamese network does the
operation fout =

∑

i αi| f1[i]− f2[i]|, where αi is the learnable parameter.
By changing the siamese network to use f1− f2 and ( f1− f2)2, the performance

increases. This result is shown in Table 5.3. Here, the result becomes around equal
in performance to the triplet net.

The original underperforming siamese network does not invalidate the relat-
ive difference when testing different augmentations (Table 5.1). As each test used
the same network, the relative differences still show that the network learns bet-
ter with more augmentations. This means that the results might not be directly
translatable over to a high-performing mesh-based network but still indicate that
more augmentation is important.

Due to time limitations, the augmentation results were not rerun with the
improved siamese network. The final siamese results were also not rerun as the
triplet net results show similar results to the improved siamese network.

6.7 Time Analysis

Table 5.8 displays the time analysis comparison against other deep-learning-based
methods. Because our method requires little pre-processing and is lightweight, it



Chapter 6: Discussion 53

performs a lot faster compared to other approaches. A direct comparison against
Bhople et al. shows that our proposed method is around 2.5 times faster.

The processing time experiments were conducted on the Intel Core i7-8700K
processor with a 3.70GHz core clock and an NVIDIA TITAN X (pascal). Compared
to the other publications, Kim et al. [43] used a 2.6 GHz dual-processors and an
NVIDIA K40 GPU, Cai et al. [10] used a 3.2GHZ Intel processor and an NVIDIA
GTX750 GPU, and Bhople et al. [45] did not specify any processor but used an
NVIDIA Tesla V100 GPU. Our CPU may is most likely the best used, and the GPU
performs better than Kim et al. and Cai et al., and similar, except with less memory
than the GPU used by Bhople et al.

This means that the time performance of our proposed method is more ad-
vantageous when compared against Kim et al. and Cai et al. and similar when
compared against Bhople et al.

6.8 Need of a consistent mesh structure

The cross-dataset testing results, presented in Table 5.2, show that the proposed
model performs worse when trained and tested on different datasets than when
it is trained and tested on the same dataset. This evaluation style, where multiple
datasets are used for training and one unseen dataset is used for testing, is done
in the publications that use 3D to 2D projection [10, 43, 44]. Their projection-
based architecture has the advantage that different mesh topology structures look
similar when projected.

Table 5.2 show the model is able to learn some features that translate between
Bosphorus and BU-3DFE. When trained on BU-3DFE, the model manages to get
a 72.7% rank-1 and a 77.2% VR at 0.1% FAR on Bosphorus. The results are not
as good when trained on Bosphorus and tested on BU-3DFE. This means that the
features the model found on BU-3DFE translates better over to Bosphorus than
the other way. Interestingly, when trained or tested on FRGCv2, the results are
close to random, seen as the verification rate is close to 50%.

These results are most likely from the different mesh structures and croppings
used by the different datasets. As seen in Figure 4.6, the different datasets have dif-
ferent mesh topologies and structures. For example, the BU-3DFE 3D scan (4.6d)
is smooth, the scans from Bosphorus (4.6e) have vertical stripes as an artifact
from the scanner, and the scans from FRGCv2 (4.6f) are more rough and uneven
compared to the other models and also contain parts of the neck, side of the head
and shoulder.

The different mesh cropping is most likely the reason why the model struggles
on the cross-dataset performance on the FRGCv2 dataset. The scans in FRGCv2
contain part of the neck and shoulders, something it has never seen when trained
on BU-3DFE and Bosphorus. This means that noise in the mesh, like a new struc-
ture, will confuse the current feature extraction. More augmentation, like adding
objects to the scanning environment, either real or synthetic, might reduce this
problem.



Chapter 6: Discussion 54

But as cross-dataset performance between Bosphorus and BU-3DFE are not
that good indicates that mesh structure is also important. FRGCv2 and Bosphorus
use the same triangulation algorithm, while BU-3DFE used something different.

The cross-dataset performance is unexpectedly worsened when resampling is
used. Logically, re-sampling resampling of the points would create a similar mesh
structure for all datasets. This indicates that resampling is not usable when differ-
ent datasets are used. As this experiment used the sub-optimal siamese network,
this statement needs further research.

6.9 Mesh-based vs. Point Cloud-based

Due to the limited amount of available models, it’s unsure if a mesh-based or
point-cloud-based approach is optimal for 3D face recognition. A mesh is a pro-
cessed form of the raw point-cloud data and may add unwanted information or
restrictions to the features. Intuitively, a network that is free to extract features
directly from raw data has greater freedom and fewer restrictions than a model
that relies on pre-processing. A point cloud-based network may, in theory, perform
better as it can extract the optimal features directly from the point cloud where
projected data may lose important 3D information, and a mesh may ignore some
larger abstract feature of the data. As stated by Zulqarnain Gilani and Mian [44],
3D data has its own peculiarities defined by the underlying shape and geometry.
These peculiarities may be lost during triangulation.

On the other side, a mesh may help when the training data is limited. When
there is less data available, the network will have a harder time learning the op-
timal features for generalization. By forcing some structure to the data via either
projection to the 2D plane or via connections between the vertices, the statistical
burden may be reduced in exchange for lower theoretical maximum accuracy.

6.10 Plausibility of mesh-based Face Recognition

As seen in the comparisons, Table 5.6 and 5.7, our model performs slightly un-
der the other deep-learning-based methods. In the example of FRGCv2 [51], the
model almost achieves a perfect verification and identification rate result, where
the state-of-the-art method achieved 100%.

Based on the time analysis, a mesh-based or geometric-deep-learning-based
architecture will be faster than the projection-based face recognition approaches.
Working directly with the 3D data has the advantage that the model gains effi-
ciency in terms of speed.

To the best of our knowledge, this Thesis was the first mesh-based geometric
deep learning face recognition. With further research, better models, and larger
datasets, mesh-based face recognition may become a reliable and efficient method
performing equal to the state-of-the-art methods.



Chapter 6: Discussion 55

6.11 Potential Sources of Error

6.11.1 Non-deterministic behavior

Unfortunately, our implementation of the proposed model has a limitation where
non-deterministic behavior cannot be eliminated which hinders exact reproducib-
ility across multiple executions. This is the cause for both concurrent and single-
threaded executions. Non-deterministic behavior creates uncertainty and adds
randomness to experiments which may have impacted the final results.

6.11.2 Race, gender, and age bias

The datasets used has various distributions of ethnicities, gender, and ages. The
most diverse is dataset is BU-3DFE [54], containing scans of 44 men and 56 wo-
men ranging from age 18 to 70, where 51 of them are white, 24 east Asian, 9 black,
8 Latino Hispanic, 6 Indian, and 2 middle-east Asian. The Bosphorus dataset [50]
contains 60 men and 45 women aged between 25 and 35, where the majority of
the subjects are Caucasian. FRGCv2 [51] contains 466 individuals where 57% of
them are male and 43% female, 68% are white, 22% Asian, and 10% other. In
addition, 65% of the participants are between the age of 18 and 22, 18% are age
23 to 27, and 17% are age 28 and over.

This means that the datasets are biased towards young white people, which
may impact real-life performance and scenarios that use separate testing and
training datasets. Every deep-learning-based 3D face recognition uses at least one
of the datasets and will have some bias.



Chapter 7

Conclusion and future work

7.1 Conclusion

In this Thesis, we have proposed and evaluated a new geometric-deep-learning-
based method for 3D face recognition. The method uses graph convolution to
extract features directly from meshes, improving the speed compared to other
models. The spatial and geometric information in the 3D data should allow geo-
metric deep learning approaches to become more robust and outperform methods
that rely on mappings that induce information loss. This was not seen in practice,
and currently, geometric deep learning models perform slightly below or equal to
the mapping method. To the best of our knowledge, our proposed method is the
second face recognition algorithm that directly uses 3D data with deep learning
and the first graph-convolution-based network used in face recognition, meaning
that the field is open for more research and improvements.

One possible explanation for why the model performed worse than the state-
of-the-art approaches may be that mesh-based models require more training data
than other approaches for interclass separation problems. Experiments show that
small augmentations of the data provide large improvements in the performance.
The problem is that there exist very few datasets suitable for 3D face recognition.

Our proposed method achieves a 90% rank-1 identification rate on the BU-
3DFE, Bosphorus, and FRGCv2 datasets, and a verification rate at 0.1% false ac-
ceptance rate of 87.6%, 86%, and 99.55%, respectively.

As seen in the results, even if the model performs slightly under the state-of-
the-art deep-learning-based models, it still shows the potential of mesh-based face
recognition. It is unsure if the underperforming is a product of the model structure,
its capacity, or because of the graph convolution. With more experimentation, bet-
ter models, larger datasets, and more advanced data augmentation, mesh-based
face recognition may be an alternative to other geometric deep learning-based
methods.

56



Chapter 7: Conclusion and future work 57

7.2 Future work

To improve the performance of our proposed method, we recommend several pos-
sible improvements, described below.

7.2.1 Dataset-specific

One general issue with 3D face recognition is the amount and size of datasets.
Larger and more datasets would be beneficial for all future research. More aug-
mentation and morphable models should be added to our proposed approach as
the limited amount of data is a problem.

As discussed in Section 6.8, the current model struggles with different mesh
typologies and mesh noise. By adding in synthetic objects, the network may be
able to ignore more irrelevant parts of the mesh, allowing different face sections
to be recognized.

7.2.2 Network-specific

As stated in the discussion, our feature extraction network is performing subop-
timally. There are multiple possible routes to fix this issue. One way is to optimize
the current network. Changes in the number of filters and depth may drastically
improve performance. Fine-tuning was not utilized in the current approach and
may also be beneficial for the model to improve the performance when the learn-
ing plateaus.

The implementation of more pooling algorithms may also improve the archi-
tecture. Vertex pooling help reduce the statistical burden as it will summarize
spatial and geometric information of multiple vertices. This will help the network
combine more spatial and geometrical features, which may be a limitation of the
current model.

Multiple new graph convolutions and operators have also lately been pro-
posed. These may help if the problem stems from the use of GCN [27]. A graph
normalization operator [63] has also been proposed, which should help the graph-
based networks converge quicker.

The use of different loss functions may also help. By using a softmax-like loss
like arcface [64], or more experimentation with triplet loss [31] could improve
the performance.

Adding more regularization techniques like dropout [17, p. 258] and L2 norm
[17, p. 39] may also improve the network’s performance.



Bibliography

[1] H. Wardeberg, ‘3d face recognition based on geometric deep learning,’ De-
partment of Computer, Information Science, NTNU – Norwegian University
of Science and Technology, Project report in TDT4501, Dec. 2019 (pages v,
26).

[2] G. Guo and N. Zhang, ‘A survey on deep learning based face recognition,’
Computer Vision and Image Understanding, vol. 189, p. 102 805, 2019
(pages 1, 12).

[3] I. Adjabi, A. Ouahabi, A. Benzaoui and A. Taleb-Ahmed, ‘Past, present, and
future of face recognition: A review,’ Electronics, vol. 9, no. 8, p. 1188, 2020
(pages 1, 2, 28).

[4] A. S. Mian, M. Bennamoun and R. Owens, ‘Keypoint detection and local
feature matching for textured 3d face recognition,’ International Journal of
Computer Vision, vol. 79, no. 1, pp. 1–12, 2008 (pages 1, 19).

[5] M. M. Bronstein, J. Bruna, Y. LeCun, A. Szlam and P. Vandergheynst, ‘Geo-
metric deep learning: Going beyond euclidean data,’ IEEE Signal Processing
Magazine, vol. 34, no. 4, pp. 18–42, 2017 (pages 1, 2, 8, 10, 11).

[6] A. Savran, B. Sankur and M. T. Bilge, ‘Comparative evaluation of 3d vs. 2d
modality for automatic detection of facial action units,’ Pattern recognition,
vol. 45, no. 2, pp. 767–782, 2012 (pages 1, 2).

[7] H. Patil, A. Kothari and K. Bhurchandi, ‘3-d face recognition: Features,
databases, algorithms and challenges,’ Artificial Intelligence Review, vol. 44,
no. 3, pp. 393–441, 2015 (pages 1, 31).

[8] F. Schroff, D. Kalenichenko and J. Philbin, ‘Facenet: A unified embedding
for face recognition and clustering,’ in Proceedings of the IEEE conference on
computer vision and pattern recognition, 2015, pp. 815–823 (pages 2, 13,
23, 25).

[9] T. C. Faltemier, K. W. Bowyer and P. J. Flynn, ‘Using a multi-instance en-
rollment representation to improve 3d face recognition,’ in 2007 First IEEE
International Conference on Biometrics: Theory, Applications, and Systems,
IEEE, 2007, pp. 1–6 (pages 2, 32).

58



Chapter 7: Conclusion and future work 59

[10] Y. Cai, Y. Lei, M. Yang, Z. You and S. Shan, ‘A fast and robust 3d face recog-
nition approach based on deeply learned face representation,’ Neurocom-
puting, vol. 363, pp. 375–397, 2019 (pages 2, 18–21, 23, 27, 31, 33, 34,
47, 49, 50, 53).

[11] N. Verma, E. Boyer and J. Verbeek, ‘Feastnet: Feature-steered graph con-
volutions for 3d shape analysis,’ in Proceedings of the IEEE conference on
computer vision and pattern recognition, 2018, pp. 2598–2606 (page 4).

[12] M. S. Dizaji and D. K. Harris, ‘3d inspectionnet: A deep 3d convolu-
tional neural networks based approach for 3d defect detection on concrete
columns,’ in Nondestructive Characterization and Monitoring of Advanced
Materials, Aerospace, Civil Infrastructure, and Transportation XIII, Inter-
national Society for Optics and Photonics, vol. 10971, 2019, 109710E
(page 4).

[13] Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang and J. Xiao, ‘3d shapen-
ets: A deep representation for volumetric shapes,’ in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2015, pp. 1912–1920
(page 5).

[14] A. L. Apolinário Jr, C. Esperança and L. Velho, ‘A representation of implicit
objects based on multiscale euclidean distance fields,’ Proceedings of SIACG,
pp. 119–129, 2002 (page 5).

[15] C. R. Qi, L. Yi, H. Su and L. J. Guibas, ‘Pointnet++: Deep hierarchical fea-
ture learning on point sets in a metric space,’ arXiv preprint arXiv:1706.02413,
2017 (pages 5, 9, 23).

[16] G. Bouritsas, S. Bokhnyak, S. Ploumpis, M. Bronstein and S. Zafeiriou,
‘Neural 3d morphable models: Spiral convolutional networks for 3d shape
representation learning and generation,’ in Proceedings of the IEEE Interna-
tional Conference on Computer Vision, 2019, pp. 7213–7222 (page 6).

[17] I. Goodfellow, Y. Bengio and A. Courville, Deep Learning. MIT Press, 2016,
http://www.deeplearningbook.org, Accessed: 10.05.2020 (pages 6–9,
14–17, 25, 29, 57).

[18] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang and S. Y. Philip, ‘A comprehensive
survey on graph neural networks,’ IEEE Transactions on Neural Networks
and Learning Systems, 2020 (pages 8, 10).

[19] C. Cangea, P. Veličković, N. Jovanović, T. Kipf and P. Liò, ‘Towards sparse
hierarchical graph classifiers,’ arXiv preprint arXiv:1811.01287, 2018
(page 8).

[20] M. Fey and J. E. Lenssen, ‘Fast graph representation learning with PyTorch
Geometric,’ in ICLR Workshop on Representation Learning on Graphs and
Manifolds, 2019 (pages 8, 11, 21).

http://www.deeplearningbook.org


Chapter 7: Conclusion and future work 60

[21] C. R. Qi, H. Su, K. Mo and L. J. Guibas, ‘Pointnet: Deep learning on point
sets for 3d classification and segmentation,’ in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2017, pp. 652–660
(pages 9, 20, 23).

[22] B. Xu, N. Wang, T. Chen and M. Li, ‘Empirical evaluation of rectified activ-
ations in convolutional network,’ arXiv preprint arXiv:1505.00853, 2015
(page 10).

[23] V. Nair and G. E. Hinton, ‘Rectified linear units improve restricted boltzmann
machines,’ in Icml, 2010 (pages 10, 24).

[24] E. Kreyszig, H. Kreyszig and E. J. Norminton, Advanced engineering math-
ematics, 10th ed. Hoboken, NJ: John Wiley, 2011, ISBN: 9780470458365
(page 10).

[25] E. W. Weisstein, Laplacian matrix. From MathWorld—A Wolfram Web
Resource, Last visited on 10/12/2020. [Online]. Available: https : / /
mathworld.wolfram.com/LaplacianMatrix.html (page 11).

[26] M. Defferrard, X. Bresson and P. Vandergheynst, ‘Convolutional neural
networks on graphs with fast localized spectral filtering,’ arXiv preprint
arXiv:1606.09375, 2016 (page 11).

[27] T. N. Kipf and M. Welling, ‘Semi-supervised classification with graph convo-
lutional networks,’ arXiv preprint arXiv:1609.02907, 2016 (pages 11, 24,
50, 57).

[28] N. Ravi, J. Reizenstein, D. Novotny, T. Gordon, W.-Y. Lo, J. Johnson and G.
Gkioxari, ‘Accelerating 3d deep learning with pytorch3d,’ arXiv:2007.08501,
2020 (page 11).

[29] N. Wang, Y. Zhang, Z. Li, Y. Fu, W. Liu and Y.-G. Jiang, ‘Pixel2mesh: Generat-
ing 3d mesh models from single rgb images,’ in Proceedings of the European
Conference on Computer Vision (ECCV), 2018, pp. 52–67 (pages 11, 50).

[30] G. Gkioxari, J. Malik and J. Johnson, ‘Mesh r-cnn,’ in Proceedings of the
IEEE International Conference on Computer Vision, 2019, pp. 9785–9795
(pages 11, 50).

[31] E. Hoffer and N. Ailon, ‘Deep metric learning using triplet network,’ in Inter-
national Workshop on Similarity-Based Pattern Recognition, Springer, 2015,
pp. 84–92 (pages 12, 57).

[32] R. Hadsell, S. Chopra and Y. LeCun, ‘Dimensionality reduction by learn-
ing an invariant mapping,’ in 2006 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition (CVPR’06), IEEE, vol. 2, 2006,
pp. 1735–1742 (page 12).

[33] J. Rishaug, Onlineminingtripletloss, https : / / github . com / NegatioN /
OnlineMiningTripletLoss, 2019 (pages 12, 21).

https://mathworld.wolfram.com/LaplacianMatrix.html
https://mathworld.wolfram.com/LaplacianMatrix.html
https://github.com/NegatioN/OnlineMiningTripletLoss
https://github.com/NegatioN/OnlineMiningTripletLoss


Chapter 7: Conclusion and future work 61

[34] R. Gómez, ‘Understanding ranking loss, contrastive loss, margin loss, triplet
loss, hinge loss and all those confusing names,’ Raúl Gómez blog, 2019.
[Online]. Available: https://gombru.github.io/2019/04/03/ranking_
loss (page 12).

[35] K. Q. Weinberger and L. K. Saul, ‘Distance metric learning for large mar-
gin nearest neighbor classification.,’ Journal of machine learning research,
vol. 10, no. 2, 2009 (page 12).

[36] A. Buja, W. Stuetzle and Y. Shen, ‘Loss functions for binary class probability
estimation and classification: Structure and applications,’ Working draft,
November, vol. 3, 2005 (page 13).

[37] J. Bromley, I. Guyon, Y. LeCun, E. Säckinger and R. Shah, ‘Signature veri-
fication using a" siamese" time delay neural network,’ Advances in neural
information processing systems, vol. 6, pp. 737–744, 1993 (page 14).

[38] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen,
Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. De-
Vito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai and
S. Chintala, ‘Pytorch: An imperative style, high-performance deep learning
library,’ in Advances in Neural Information Processing Systems 32, H. Wal-
lach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. Fox and R. Garnett,
Eds., Curran Associates, Inc., 2019, pp. 8024–8035. [Online]. Available:
http://papers.neurips.cc/paper/9015- pytorch- an- imperative-
style-high-performance-deep-learning-library.pdf (pages 14, 21).

[39] Martin Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng
Chen, Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu
Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving,
Michael Isard, Y. Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kud-
lur, Josh Levenberg, Dandelion Mané, Rajat Monga, Sherry Moore, Derek
Murray, Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya
Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan,
Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg, Mar-
tin Wicke, Yuan Yu and Xiaoqiang Zheng, TensorFlow: Large-scale machine
learning on heterogeneous systems, Software available from tensorflow.org,
2015. [Online]. Available: https://www.tensorflow.org/ (page 14).

[40] D. P. Kingma and J. Ba, ‘Adam: A method for stochastic optimization,’ arXiv
preprint arXiv:1412.6980, 2014 (pages 15, 26).

[41] L. N. Smith, ‘A disciplined approach to neural network hyper-parameters:
Part 1–learning rate, batch size, momentum, and weight decay,’ arXiv pre-
print arXiv:1803.09820, 2018 (page 15).

[42] S. Ioffe and C. Szegedy, ‘Batch normalization: Accelerating deep network
training by reducing internal covariate shift,’ in International conference on
machine learning, PMLR, 2015, pp. 448–456 (page 17).

https://gombru.github.io/2019/04/03/ranking_loss
https://gombru.github.io/2019/04/03/ranking_loss
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://www.tensorflow.org/


Chapter 7: Conclusion and future work 62

[43] D. Kim, M. Hernandez, J. Choi and G. Medioni, ‘Deep 3d face identification,’
in 2017 IEEE international joint conference on biometrics (IJCB), IEEE, 2017,
pp. 133–142 (pages 18–20, 23, 27, 31, 33, 34, 47, 49, 53).

[44] S. Zulqarnain Gilani and A. Mian, ‘Learning from millions of 3d scans for
large-scale 3d face recognition,’ in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2018, pp. 1896–1905 (pages 18–
21, 23, 27, 31, 34, 47–49, 53, 54).

[45] A. R. Bhople, A. M. Shrivastava and S. Prakash, ‘Point cloud based deep
convolutional neural network for 3d face recognition,’ Multimedia Tools
and Applications, pp. 1–23, 2020 (pages 18, 20, 21, 23, 26, 27, 31, 47,
49, 50, 53).

[46] W. Zhao, R. Chellappa, P. J. Phillips and A. Rosenfeld, ‘Face recognition: A
literature survey,’ ACM computing surveys (CSUR), vol. 35, no. 4, pp. 399–
458, 2003 (page 19).

[47] P. J. Phillips, P. J. Flynn, T. Scruggs, K. W. Bowyer, J. Chang, K. Hoffman,
J. Marques, J. Min and W. Worek, ‘Overview of the face recognition grand
challenge,’ in 2005 IEEE computer society conference on computer vision and
pattern recognition (CVPR’05), IEEE, vol. 1, 2005, pp. 947–954 (page 19).

[48] S. Soltanpour, B. Boufama and Q. J. Wu, ‘A survey of local feature methods
for 3d face recognition,’ Pattern Recognition, vol. 72, pp. 391–406, 2017
(page 19).

[49] O. M. Parkhi, A. Vedaldi and A. Zisserman, ‘Deep face recognition,’ 2015
(page 19).

[50] A. Savran, N. Alyüz, H. Dibeklioğlu, O. Çeliktutan, B. Gökberk, B. Sankur
and L. Akarun, ‘Bosphorus database for 3d face analysis,’ in European work-
shop on biometrics and identity management, Springer, 2008, pp. 47–56
(pages 20, 25, 27, 31–33, 39, 40, 46, 55).

[51] P. J. Phillips, P. J. Flynn, T. Scruggs, K. W. Bowyer, J. Chang, K. Hoffman,
J. Marques, J. Min and W. Worek, ‘Overview of the face recognition grand
challenge,’ in 2005 IEEE computer society conference on computer vision and
pattern recognition (CVPR’05), IEEE, vol. 1, 2005, pp. 947–954 (pages 25,
27, 31, 32, 34, 39, 40, 46, 54, 55).

[52] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D.
Cournapeau, E. Burovski, P. Peterson, W. Weckesser, J. Bright, S. J. van
der Walt, M. Brett, J. Wilson, K. J. Millman, N. Mayorov, A. R. J. Nelson,
E. Jones, R. Kern, E. Larson, C. J. Carey, İ. Polat, Y. Feng, E. W. Moore,
J. VanderPlas, D. Laxalde, J. Perktold, R. Cimrman, I. Henriksen, E. A.
Quintero, C. R. Harris, A. M. Archibald, A. H. Ribeiro, F. Pedregosa, P. van
Mulbregt and SciPy 1.0 Contributors, ‘SciPy 1.0: Fundamental Algorithms
for Scientific Computing in Python,’ Nature Methods, vol. 17, pp. 261–272,
2020. DOI: 10.1038/s41592-019-0686-2 (page 25).

https://doi.org/10.1038/s41592-019-0686-2


Chapter 7: Conclusion and future work 63

[53] T. Theoharis, G. Papaioannou, N. Platis and N. M. Patrikalakis, Graphics
and visualization: principles & algorithms. CrC Press, 2008 (page 25).

[54] L. Yin, X. Wei, Y. Sun, J. Wang and M. J. Rosato, ‘A 3d facial expression
database for facial behavior research,’ in 7th international conference on
automatic face and gesture recognition (FGR06), IEEE, 2006, pp. 211–216
(pages 27, 31–33, 39, 40, 46, 55).

[55] B. DeCann and A. Ross, ‘Relating roc and cmc curves via the biometric me-
nagerie,’ in 2013 IEEE Sixth International Conference on Biometrics: Theory,
Applications and Systems (BTAS), IEEE, 2013, pp. 1–8 (pages 30, 31, 52).

[56] A. G. (https : / / stats . stackexchange . com / users / 49130 / alexey -
grigorev), What does auc stand for and what is it? Cross Validated, ver-
sion: 2015-12-30. eprint: https://stats.stackexchange.com/q/133435.
[Online]. Available: https : / / stats . stackexchange . com / q / 133435
(page 30).

[57] V. Vijayan, K. W. Bowyer, P. J. Flynn, D. Huang, L. Chen, M. Hansen, O.
Ocegueda, S. K. Shah and I. A. Kakadiaris, ‘Twins 3d face recognition chal-
lenge,’ in 2011 International Joint Conference on Biometrics (IJCB), IEEE,
2011, pp. 1–7 (page 32).

[58] C. Wen, Y. Zhang, Z. Li and Y. Fu, ‘Pixel2mesh++: Multi-view 3d mesh
generation via deformation,’ in Proceedings of the IEEE/CVF International
Conference on Computer Vision, 2019, pp. 1042–1051 (page 50).

[59] M. Chen, Z. Wei, Z. Huang, B. Ding and Y. Li, ‘Simple and deep graph
convolutional networks,’ in International Conference on Machine Learning,
PMLR, 2020, pp. 1725–1735 (page 50).

[60] M. Chen, Z. Wei, Z. Huang, B. Ding and Y. Li, ‘Simple and deep graph
convolutional networks,’ in International Conference on Machine Learning,
PMLR, 2020, pp. 1725–1735 (page 50).

[61] Q. Li, Z. Han and X.-M. Wu, ‘Deeper insights into graph convolutional net-
works for semi-supervised learning,’ in Proceedings of the AAAI Conference
on Artificial Intelligence, vol. 32, 2018 (page 50).

[62] Y. Taigman, M. Yang, M. Ranzato and L. Wolf, ‘Deepface: Closing the gap
to human-level performance in face verification,’ in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2014, pp. 1701–1708
(page 52).

[63] T. Cai, S. Luo, K. Xu, D. He, T.-y. Liu and L. Wang, ‘Graphnorm: A prin-
cipled approach to accelerating graph neural network training,’ arXiv pre-
print arXiv:2009.03294, 2020 (page 57).

[64] J. Deng, J. Guo, N. Xue and S. Zafeiriou, ‘Arcface: Additive angular margin
loss for deep face recognition,’ in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2019, pp. 4690–4699 (page 57).

https://stats.stackexchange.com/users/49130/alexey-grigorev
https://stats.stackexchange.com/users/49130/alexey-grigorev
https://stats.stackexchange.com/q/133435
https://stats.stackexchange.com/q/133435


Appendix A

Explanation of VR-FPR graph bug

As seen in Figure 5.4d, the neutral vs. neutral experiment is laying at a VR of
50%. This would normally be indicating that the model has no predictive power.
In reality, when the AUC is 100% the VR-FPR graph should be at 100% for every
FPR less than 100%. When the FPR is 100%, there must exist no true negatives,
and a VR of 50% is achieved. This bug is due to a rounding error in the code that
calculates the graphs.

Take the example of a siamese network with Sigmoid. Due to the Sigmoid, the
output of the network will be between, not including, 0 and 1. When the AUC is
100%, the code samples three points. These are at the threshold at the maximum
seen value for a negative sample, the minimum seen value for a positive sample,
and 2x the max value. For the siamese, this will be around 0.00001, 0.999..., and
2. Due to a rounding error, the values are rounded to 0, 1, and 2. This results in
that every threshold value creates a VR of 50%.

At threshold 0, every pair is labeled as a positive, creating a VR of 50%. At
threshold 1, due to the rounding, every pair will be labeled as negative creating a
VR of 50%. At threshold 2, every pair will be labeled as negative, as it is impossible
to get this score, and a VR of 50% is achieved.

When the AUC is less than 100%, more samples are generated, making this a
non-issue.

64



N
TN

U
N

or
w

eg
ia

n 
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n 

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

Håkon Wardeberg

Mesh-based 3D face recognition
using Geometric Deep learning

Master’s thesis in Computer Science
Supervisor: Theoharis Theoharis
Co-supervisor: Antonios Danelakis

June 2021

M
as

te
r’s

 th
es

is


	Abstract
	Sammendrag
	Preface
	Acknowledgements
	Contents
	Figures
	Tables
	Introduction
	Challenges with 2D face recognition
	Challenges with 3D face recognition
	3D face recognition vs. 2D face recognition
	Recognition & Verification
	This Thesis

	Theory
	3D data representations
	Voxel grid
	Point-based representations

	Neural network
	Signal Convolution operator
	Image Convolution operator
	Pooling
	Fully Connected Layers
	Activation functions
	Geometric Deep Learning
	Graph convolution
	Graph Convolution Network (GCN)

	Loss
	Pairwise ranking loss
	Triplet loss
	Binary Cross Entropy loss
	Siamese Network

	Training
	Generalization, Overfitting, and Underfitting
	Optimizer
	Hyperparameters
	Network Architecture
	Regularization



	Related Work
	Academic publications
	Traditional 3D Face Recognition
	Deep 3D Face Identification
	Learning from Millions of 3D Scans for Large-scale 3D Face Recognition
	A fast and robust 3D face recognition approach based on deeply learned face representation
	Point cloud-based deep convolutional neural network for 3D face recognition

	Tools
	PyTorch
	PyTorch Geometric
	OnlineMiningTripletLoss Pytorch


	Methodology
	Overview
	Model Architecture
	Pre-processing
	Hyperparameters
	Training

	Performance Evaluation
	Sets
	Metrics
	Rank1
	True positive, True negative, False positive, False negative
	Accuracy, Precision, and Recall
	False Acceptance Rate, False Reject Rate, and Receiver Operating Characteristic
	Cumulative Match Curve

	Datasets
	BU-3DFE
	Bosphorus
	FRGCv2



	Results
	Training
	Experiments
	Augmentation results
	Cross-dataset testing
	Siamese experiment

	Final results
	Triplet loss results
	Triplet loss results on BU-3DFE
	Triplet loss results on Bosphorus
	Triplet loss results on FRGCv2

	Siamese results
	Siamese results on BU-3DFE
	Siamese results on Bosphorus
	Siamese results on FRGCv2

	Time analysis

	Overview

	Discussion
	Augmentation results
	Underperforming feature extraction
	Graph convolution limitation
	The problem with the verification rate and false acceptance rate
	The gap between Rank-1 identification rate and AUC
	Siamese vs. triplet loss
	Time Analysis
	Need of a consistent mesh structure
	Mesh-based vs. Point Cloud-based
	Plausibility of mesh-based Face Recognition
	Potential Sources of Error
	Non-deterministic behavior
	Race, gender, and age bias


	Conclusion and future work
	Conclusion
	Future work
	Dataset-specific
	Network-specific


	Bibliography
	Explanation of VR-FPR graph bug

