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Abstract

This project aims to accurately reconstruct 3D faces from a single image for the pur-

pose of generating a pose and illumination invariant model. This is a topic of pivotal

importance in a variety of computer vision subfields —such as face recognition—owing

to the fact that regular 2D images are heavily affected by lighting conditions and pose.

In recent years there has been an increased interest in these types of tasks, thanks to

practical applications such as biometric authentication and missing person identifica-

tion. This interest has led to further research, one of the more recent being methods

that use a front- and side-facing input pair to reconstruct 3D faces. While this approach

has led to greater accuracy than previously possible, it lacks in ease of use and the abil-

ity to be applied for images in-the-wild. To address this a hybrid approach using two

existing methods was proposed. This method requires only a single image as input but

employs a two-image input network for reconstruction. This is achieved by introdu-

cing an additional network whose task is to generate a rotated version of the original

input, which in conjunction with said input make up the image-pair used for recon-

struction. Although this method is expected to produce significantly more accurate

results, the per-image inference time will suffer as a result of the overhead introduced

by an additional network. This will not only affect the user experience but also make

the system nonviable for certain real-time tasks. For that reason, it is believed that

future research should focus on speed rather than accuracy.

i



Sammendrag

Dette prosjektet har som mål å rekonstruere et 3D ansikt fra et bilde, noe som res-

ulterer i en modell som ikke er påvirket av ansiktsvinkel eller lys. Dette er et viktig

tema for forskjellige fagfelt innenfor datasyn—slik som ansiktsgjenkjenning—grunnet

at vanlige 2D bilder er høyst påvirket lys og hvor ansiktet ser i horhold til kamera. I

det siste har det vært en oppsving i interesse for slike oppgaver, takket være praktiske

bruksområder slik som biometrisk autentisering og identifisering av savnede personer.

Denne interessen har ledet til mer forskning, hvor en av de nyligere gjennombruddene

er rekonstruksjon basert på to bilder, tatt fra siden og foran. Selv om denne metoden

har ført til høyere nøyaktighet enn tidligere, har den lavere brukervennlighet samt

at den ikke er brukbar på oppgaver hvor man ikke har to bilder å rekonstruere med

slik som video eller tilfeldige bilder funnet på nett. For å kunne rette på dette ble

en sammenslåing av to allerede eksisterende metoder foreslått. Denne nye metoden

krever kun ett bilde som input men bruker et to-bilders nevralt nettverk for rekonstruk-

sjon. Dette gjøres ved å bruke et ekstra nettverk som genererer en rotert versjon av

input-bildet, som sammen med det originale bildet danner input-paret brukt for rekon-

struksjon. Selv om denne metoden forventes å være mer nøyaktig enn andre ett-input

nettverk, forventes også kjøretiden å bli negativt påvirket, grunnet ekstra overhead

som kommer av et ytterligere nettverk. Dette vil ikke bare påvirke brukeropplevelse

men også gjøre systemet i ustand til å kjøre på sanntids-oppgaver. På bakgrunn av

dette er det anbefalt at ytteligere forskning burde fokusere på hastighet heller enn

nøyaktighet.
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Chapter 1

Introduction

One of the most researched aspects in the field of computer vision are problems that

relate to the human face. This is due to it being the key visual identifier that separates

one person from another; a characteristic that has been taken quite literally as systems

like Face ID1 allows a great number of regular consumers to authenticate themselves

using only their face.

When developing systems that attempt to solve these sort of analysis and recognition

problems 3D models are to be preferred over their 2D-image counterpart, as they do

not suffer from pose and illumination variations. However, this requires expensive and

awkward 3D imaging devices which for most tasks are impractical and in some cases

infeasible. The extreme trade-off between performance and usability makes it hard to

settle for either of the options.

3D face reconstruction attempts to bridge this gap between 2D and 3D by accurately

reconstructing a three-dimensional mesh from a regular image. Thus eliminating the

need for expensive and slow 3D imaging systems while still producing a detailed model

to be used for various computer vision tasks.

Much like the problem it attempts to solve the current state-of-the-art in 3D face recon-

struction is also plagued by a trade-off between performance and practicality. The gold

standard for a few years running utilizes a convolutional neural network to regress a

3D model from a single 2D image [1], and produces great results both in accuracy and

runtime. Recently there was an attempt at improving the performance of the state-of-

the-art by employing a network that takes as input an image pair consisting of a front

and side-facing image [2]. This method did indeed manage to further increase accur-

1https://support.apple.com/en-us/HT208109
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Chapter 1: Introduction 2

acy by a noticeable amount, but the fact that it requires two input images introduces

extra constraints on the user while also being inadequate for important use-cases such

as video and unconstrained images.

The method outlined in this paper attempts to use the valuable insights gained from

[2], while attempting to reduce the constraints that come with a two image input net-

work. The key contribution from this paper is that multi-view face synthesis can be

used to generate an input image pair from a single 2D image. This in turn allows the

use of two image input reconstruction networks using only a front or side facing im-

age. The proposed method consists of two networks: The rotation and reconstruction

network. For the former a slightly modified version of the Rotate-and-Render GAN [3]

is used, whilst [2] is used for the latter. This pipeline is illustrated in Figure 1.1.

Figure 1.1: Overview of proposed method.

This Thesis has been organised in the following way: The next chapter will provide

the necessary background theory that this paper is built upon. A brief overview of the

related works will follow in chapter three. Chapter four will include a more detailed

look at the proposed method, and eventual concerns and discussion. The fifth chapter

looks at the results and a discusses of these findings. To conclude with, a look back

on the work that has been done and potential improvements will make up the final

chapter.



Chapter 2

Background

2.1 Convolutional Networks

2.1.1 Convolutional Neural Network

A convolutional neural network—often shortened to ConvNet or CNN—is a type of

neural network that consists of at least one convolutional layer. This type of layer is

composed of the same building blocks that constitute the basic fully connected layer,

such as neurons and learnable weights and biases. The key difference being that it

takes as input a 2D or 3D matrix of neurons as opposed to a vector. This type of matrix

representation is suitable for image-related tasks, as the spatial information is kept

intact by having each pixel correspond to an entry in the matrix.

Similarly, the weights and biases are also represented as matrices called kernels, or

filters. To calculate the activation of a neuron in the next layer a convolution operation

is performed between the kernel and the input entries it currently overlaps with–hence

the name convolutional layer. Convolution, at least in the context of neural networks,

is an operation that produces a weighted sum given a matrix of weights—the kernel—

and a subset of the input that equals the kernel in size. The sum is calculated using

the following formula where i,j is the row and column position of the output and m,n

iterates through the whole width and height of the kernel:

output(i, j) =
∑

m

∑

n

I(i −m, j − n)K(m, n) (2.1)

A more intuitive explanation of convolution is that it is the sum of element-wise mul-

tiplication between the flipped kernel and the subset of the image that it overlaps

3



Chapter 2: Background 4

with. In practice flipping the kernel does not do much in the way of changing the res-

ults as the kernel would just adjust itself to use the "flipped" weights in its un-flipped

state. For this reason, the more commonly used function for calculating activations is

cross-correlation as expressed in the following formula:

output(i, j) =
∑

m

∑

n

I(i +m, j + n)K(m, n) (2.2)

This simplifies the calculations without any loss in performance, as it is just convolu-

tion without flipping the kernel. The only downside is that naming becomes a little

confusing as the layer is still called convolutional even if the actual operation that is

performed is cross-correlation. For simplicity sake, this paper will also be referring to

the mathematical operation applied on a convolutional layer as convolution.

During a forward pass, convolution is applied multiple times as the kernel slides

through the current layer until it has covered the whole width and height of it. This

is illustrated in Figure 2.1. The application of convolution on local regions of the in-

put, fittingly called a local receptive field, is what truly makes CNN’s "spatial" in nature.

Figure 2.1: Figure from Goodfellow et al. [4] showing how a region of the input is

used to calculate a neuron in the output.
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2.1.2 Transposed Convolution

The name transposed convolution—or deconvolution as it is often called—correctly

suggests that this is an operation closely related to the previously mentioned convo-

lution. The biggest difference between convolution and its transposed counterpart is

that whereas convolutional layers reduce the spatial resolution of the input, a trans-

posed convolutional layer increases it. In fact, a transposed convolution will reverse

the spatial downsampling following a convolution, given that stride and kernel size is

the same between the two.

This characteristic in conjunction with its name might suggest that transposed con-

volution is an inverse of convolution. That is not the case as transposed convolution

does not undo the effects of convolution as a whole, just the spatial downsampling.

The output of this operation is reliant on learnable weights and biases, the same as

a regular convolutional layer. Intuitively the difference between these operations can

be understood as convolution taking an input and extracting generic features from it,

while a transposed convolution takes some generic features and generates an output

from it. The calculations done by a transposed convolutional layer is illustrated in Fig-

ure 2.2.

Figure 2.2: Example of transposed convolution with stride=1.

2.1.3 Generalization

The essence of neural networks is to approximate a function that maps a given input to

the desired output. What is important is that this function is generic, meaning it works
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well on all types of input, not just the ones it has seen during training. There are two

situations that are emphasized in the field of neural networks as bad generalization:

Overfitting and underfitting. An illustration of these cases are shown in Figure 2.3.

Figure 2.3: Three regressed functions of differing complexity.

Underfitting occurs when the approximated function lacks in complexity compared to

that of the dataset. This lack of complexity means it is unable to capture all of the

features of the input domain, and thus have to make simplifying assumptions about it.

This leads to poor performance on the training data, in which case it will not perform

well on never before seen data either. When underfitting do occur a more complex

model or longer training might be beneficial.

Underfitting is closely related to the concept of bias in statistics. The bias of an es-

timator, not to be confused with the bias value applied during a forward pass, is the

difference between expected and approximated value. A model is biased when its ap-

proximations, given some input, are ways apart from the true values mapped to that

input. This is an apt description of an underfitting model which on average outputs

undesirable values.

On the other side of the spectrum there is overfitting, where the model might be per-

forming too well in some sense. A characteristic of an overfitted model is that it has

great results on the training set but falls short when it is faced with unseen data. This

happens because the model is trying to approximate a function that perfectly fits the

training data. This leads to a function that is tailor-made for a specific sample of the

input domain, the training set, resulting in it becoming too complex and too fixated

on the details of each entry instead of focusing on the characteristics that define the

input domain as a whole. One understanding of this phenomenon is that instead of

learning the model is memorizing. When faced with overfitting it is often suggested to

either decrease the complexity of the model or stop the training process earlier.
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It is often said that an overfitted model has a high level of variance, which is a com-

mon concept in statistics to denote how spread out a data sample is. In this particular

instance variance refers to how spread out the outputs of an approximated function

are depending on the training data. An overfitted model is a prime example of high

variance, as its outputs will vary wildly between training sets as illustrated on Figure

2.4. A model of high variance might suggest that it is too sensitive to the noise of each

data point, and thus diluting the actual features that represent the input domain.

Figure 2.4: On the left the approximated functions of a well fit model and on the right

those of an overfitted one. The dots represent training data from two different datasets,

where the green function is trained on the red dots while the dotted black function is

trained on the blue ones. Both models are trained on the same datasets.

In an ideal world one would want a model that is both unbiased and has a low level

of variance. Unfortunately this is quite difficult to achieve due to the so-called bias-

variance trade-off. As the name suggests this is a characteristic of neural networks

that states that the variance of a model can be reduced by increasing its bias, and vice

versa. With this in mind the training process becomes a matter of approximating a

function that hits the sweet-spot that minimizes the sum of variance and bias. There

are a few parameters that can be tweaked to affect this, namely model complexity and

number of training iterations as was previously mentioned.

Regularization is another crucial tool when seeking to minimize error from bias and

variance. Regularization as a concept is a little difficult to pinpoint as there are multiple
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definitions of it. One common definition is that regularization is any technique that

reduces certain coefficients of the approximated function towards zero, drastically

minimizing the impact of the parameters associated with said coefficient. This in turn

reduces function complexity and decreases variance. A more top-level definition can

be found in Deep Learning Book written by Goodfellow et al.:

Regularization is any modification we make to a learning algorithm that

is intended to reduce its generalization error but not its training error [4,

p. 117].

The common thread among definitions is that regularization increases model gener-

alization.

2.2 Neural Network Architectures

2.2.1 ResNet

As the name might suggest deep learning is all about deep neural networks, i.e net-

works with many layers. Intuitively each layer can be seen as an abstraction of the

input image. Thus adding more layers allows the network to extract features at many

different levels. This will in turn give the network a deeper understanding of the input

space. In practice this means that the network has knowledge that allows it to per-

form well on data that it has never encountered during training. In contrast a shallow

network given enough parameters would be able to output the desired values during

training, but these results would be based on memorization as it would not have an

understanding of all the intermediate features of the input— an example of bad gen-

eralization.

These extra layers allow networks to deal with increasingly complex problems but do

not come without problems of their own. Normally when an additional layer is added

it either improves performance or ends up creating an overfitted model. But as the

network becomes deeper there comes a point in which performance decreases even

when no overfitting has occurred. Instinctively one might argue that this is due to

the so-called vanishing gradients problem, which occurs due to how backpropagation

calculates gradients as a product of multiple partial derivatives. If certain activation

functions with derivatives in the [-1, 1] range are chosen, the gradient will eventually

"vanish" as the layers stack on.
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This is a sentiment the authors of Deep Residual Learning for Image Recognition do not

agree with as they note:

This problem [vanishing gradients], however, has been largely addressed

by normalized initialization and intermediate normalization layers, which

enable networks with tens of layers to start converging for stochastic gradi-

ent descent (SGD) with backpropagation [5, p. 1].

and rather identifies these issues as a "degradation" problem.

The network outlined in [5] attempts to solve this issue by introducing the idea of a

residual block. This is a type of module consisting of multiple layers, where the output

of the module is the result of its input and the output of its final layer. The connec-

tions between input and output are called skip connections and are computationally

inexpensive. Figure 2.5 illustrates one such skip connection. These modules make up

the backbone of the network that is so fittingly called Residual Network—or ResNet

for short.

Figure 2.5: Figure from He et al. [5] of a skip connection and the resulting output.

2.2.2 MobileNetV2

MobileNet is a lightweight network architecture made with mobile and embedded

devices in mind. The key contribution from its second version [6] is the building
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blocks that make up the network, the inverted residual with linear bottleneck. This

block takes a low-dimensional representation, upsamples it and filters it with a light-

weight depthwise convolution. The output features are then projected back to a low

dimensional representation. This process is illustrated in Figure 2.6.

Figure 2.6: Figure from Sandler et al. [6] illustrating the workings of an inverted

residual layer.

2.2.3 Encoder-Decoder Network

An encoder-decoder network is a neural network consisting of two components: The

encoder and the decoder. The encoder attempts to extract the core features of the

input. In the world of computer vision this often means to propagate an input image

through convolutional and pooling layers. The decoder uses these features to generate

the desired output. The resolution of the input is typically upscaled in a way that

mirrors how the encoder downscales the initial input. This is most commonly achieved

by the use of transposed convolutional layers. One such encoder-decoder network is

shown in Figure 2.7.

Figure 2.7: Figure from Noh et al. [7] illustrating an encoder-decoder network archi-

tecture used for semantic segmentation.
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Related Works

3.1 3DMM - 3D Morphable Model

3DMM is a technique for the synthesis of textured 3D faces, and was first introduced

as early as 1999 [8]. Instead of focusing on the individual vertices and their texture

values, 3DMMs draw their attention towards general characteristics that make up a

human face. To generate a model with certain characteristics—or principal compon-

ents as they are called—a database of captured 3D face models are utilized. Generation

is then simply a case of finding the correct linear combination of models that matches

the desired principal component values. Figure 3.1 illustrates different 3DMM gener-

ated models.

Figure 3.1: Figure from Blanz et al. [8] illustrating the effect of modifying different

principal components.

11
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The Basel Face Model 2009 (BFM) [9] is one such 3DMM and is among the ones that

have seen most use. BFM describes its models as indicated by Equation 3.1 and 3.2.

S = S̄ + Aα (3.1)

T = T̄ + Bβ (3.2)

Where S is the shape, S̄ the average shape, A the principle shape components and α

the standard deviations of each shape component. Similarly, T is the texture, T̄ the

average texture, B the principle texture components and β the standard deviations of

each texture component.

3.2 300W-LP: Training Dataset

300W-LP is a dataset that contains images across a large range of poses, in addition

to their 3D model counterparts [10]. The problem with other datasets is that they

for the most part only contain front-facing images, which is problematic for networks

that seeks to reconstruct on unconstrained images. 300W-LP looks to amend this by

introducing the so-called face-profiling method, which synthetically rotates a face to

generate large pose-variants of it. This results in a big dataset across a large range of

poses. The paper in question also introduces a way to regress BFM parameters from an

image, which is how the ground truth 3D models are represented in 300W-LP. Some

example images from this dataset are shown in Figure 3.2.

Figure 3.2: Different images from 300W-LP and their corresponding synthetically ro-

tated variants.
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3.3 PRNet

In 2018 Feng et al. published Joint 3D Face Reconstruction and Dense Alignment with

Position Map Regression Network [1] which introduced a new type of network made

with face alignment and 3D face reconstruction in mind. This network goes under

the name position map regression network—or PRNet for short. It was, and still is,

considered the state-of-the-art both in terms of accuracy and inference time, handily

beating the competition on both metrics at the time it was published.

One of the key issues these other networks faced was representing 3D faces in a way

that could be regressed. One such representation was to concatenate the positions of

every vertex into a one-dimensional vector. The issue with this kind of approach is

two-fold: For one the spatial adjacency information between vertices is lost, which is

something that could be utilized by CNNs and their local receptive fields. The second

issue is that predicting a 1D vector requires fully connected layers at the latter part of

the network which increases the number of parameters by quite a bit. PRNet is able to

avoid both of these issues by using a UV position map as a 3D model representation.

This is a 2D map where each integer coordinate represents one vertex on the 3D face

model, and the R, G and B value at said position in UV space corresponds to the x, y

and z coordinates. Figure 3.3 illustrates one such UV position map.

Figure 3.3: Figure from Feng et al. [1]. The image to the left illustrates an image in

UV space and its corresponding ground-truth point cloud. The first row of the image to

the right shows the initial image, extracted UV texture map and its UV position map.

The second row shows the values of the RGB channels on the UV position map.

When considering different ways of representing a face, it is important that the train-

ing set—in this case 300W-LP—is also represented in the same manner. The first thing

to consider is the size of the UV map, as it should be big enough to fit every vertex of

the face model. The UV map size chosen is 256x256 which is more than enough to fit
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the 53K vertices in a BFM model. The more important part is how to actually construct

a UV position map from a 3D model. This is done by "flattening" the 3D model onto the

UV-map using Tutte embedding, which was originally a way of projecting graphs onto

a plane. In this case, the graph vertices are the vertices of the 3D model and the plane

is the UV position map. An intuitive illustration of this process is shown in Figure 3.41.

Figure 3.4: On the left a 3D model with colors corresponding to vertex positions.

On the right from top to bottom: The flattened model, flattened model where each

vertex has an RGB value corresponding to the left picture, "smoothened" UV map by

interpolation.

The network itself has an encoder-decoder structure where the encoder and decoder

are made out of residual layers and transposed convolutional layers respectively. A
1https://medium.com/@hyprsense/bridging-the-academia-gap-an-implementation-of-

prnet-training-9fa035c27702

https://medium.com/@hyprsense/bridging-the-academia-gap-an-implementation-of-prnet-training-9fa035c27702
https://medium.com/@hyprsense/bridging-the-academia-gap-an-implementation-of-prnet-training-9fa035c27702
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simplified illustration of the network structure is illustrated in Figure 3.5. The reason

such a structure is used as opposed to a fully convolutional network without any spatial

downsampling is simply due to convolutions on large input sizes being computation-

ally expensive, doubly so at the deeper parts of the network where each layer has a

greater depth resolution.

Figure 3.5: figure from [1] illustrating PRNet network structure.

3.4 3D Face Reconstruction from Two Images

3D Facial Reconstruction from Front and Side Images is a Thesis written by Lium, Ola

[2], and was a successful attempt at increasing the accuracy of PRNet lowering NME

by 45%. Although several changes were made to the original network, the key contri-

bution from this Thesis is the use of an image pair consisting of a front- and side-facing

image to reconstruct a model from. Intuitively this gives the network a greater under-

standing of the depth of the face, thus resulting in a more accurate reconstruction.

The other change from the original PRNet is replacing the residual blocks with inver-

ted residual blocks. The network architecture is illustrated in Figure 3.6.

Figure 3.6: Figure from [2] illustrating the network structure.
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This method also made some changes to how training was performed. More specific-

ally the network is pre-trained on synthetic data generated from Facegen2, which is

then followed by training on 300W-LP. Synthetic data is a great way of expanding the

training set when the existing datasets are lacking, but does come with its own flaws.

One problem is that synthetic data will never be as accurate as real, and the error from

the synthetic data might propagate to the network itself which is quite undesirable.

The trade-off between increased data but decreased data quality needs to be taken

into account not only when deciding whether to include synthetic data at all, but also

when considering how large the synthetic dataset should be.

The upside of using Facegen is mainly its consistency factor. The program first gen-

erates a 3D model to then render into a 2D image. This ensures that there are no

discrepancies between the 2D image used as input during training and the ground

truth mesh, as no approximations have to be made or data synthesis performed when

projecting 3D onto a 2D plane. 300W-LP on the other hand regresses its 3D models

from 2D images, and because of this there are bound to be some inaccuracies as the

regression function is just an approximation. The same applies to large pose images,

where in the case of Facegen models it is just a matter of rotating the 3D model before

rendering, whereas for 300W-LP the face profiling function have some obvious imper-

fections as illustrated in Figure 3.7.

(a) Original. (b) Rotated.

Figure 3.7: Images of the same subjects from 300W-LP.

2https://facegen.com/

https://facegen.com/
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3.5 Rotate-and-Render

Rotate-and-Render is a GAN-based unsupervised method for synthetically rotating a

2D image of a face in the range [-90, 90] degrees [3]. The key feature of this network

is how it manages to train without any ground truth image to compare its output to.

This is quite important as virtually every dataset that has large-pose images are either

taken in heavily controlled environments [11], which affects generalization, or are

synthetic [10], which propagates the error from dataset to network. One such dataset

is illustrated in Figure 3.8.

Figure 3.8: Image samples from Multi-PIE [11], a dataset containing large-pose faces.

The training process of this network is as following: Reconstruct the image to a 3D

model, rotate it, render it in 2D. When this has been done it reverses the whole pro-

cess by again reconstructing the image to 3D, rotate it back and render it in 2D. By

doing this the model can compare the back-and-forth rotated face to the original im-

age as a form of self-supervision. This process is illustrated in Figure 3.9.

The model achieves very good results both based on metrics and eye-test compared to

the competition. The only downside is that it has a decently slow runtime and is very

much non-viable for real-time applications on consumer-grade GPUs.
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Figure 3.9: Figure taken from Zhou et al. [3] going through the two rotate-and-render

operations that make up the pipeline.
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Methodology

There are two main components that make up the proposed pipeline: The network

that rotates a given input image, and the network that reconstructs a 3D face from

the real-synthetic input image pair. The way this image pair is fed into the network is

by concatenating them depthwise, meaning the input will have dimensions WxHx6,

where depth 1-3 are the RGB channels for the real image and 4-6 are the RGB channels

for the synthetic image. The width and height can be any value, but it will be resized to

256x256 during pre-processing. As most of the inner workings of these modules have

been explained in the previous chapter this chapter will include more of a discussion

on what has been done and potential concerns or points of discussion. The proposed

pipeline is illustrated in Figure 4.1.

(a) Synthetic rotation pipeline.

(b) Reconstruction pipeline.

Figure 4.1: The proposed pipeline.

19
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4.1 Synthetic Rotation

The idea for this module was inspired by the large-pose synthesis method applied on

images in the 300W-LP dataset. But due to its slow inference time, Rotate-and-Render

was chosen instead for its good performance and reasonable runtime.

4.1.1 Modifications to Rotate-and-Render

Most of the work on Rotate-and-Render went into enhancing the interoperability between

it and the reconstruction system. The way Rotate-and-Render originally works is that

it first regresses BFM parameters for a batch of images. Those BFM parameters are

then made into a 3D model and rotated in 3D space. Finally this rotated model is

rendered back into 2D. These processes are performed separately, which is somewhat

of a usability concern as this means that the user would have to manually call multiple

processes to get a rotated image, and finally call the reconstruction network to get a

3D face. To amend this the rotation network is modified to do everything in one pass,

as well as taking a more object-oriented approach to coding as to make the rotation

system more modular and thus fit nicely into the reconstruction pipeline. This results

in reconstruction being done in just one call by the user, who only needs to point to

the image they want to reconstruct.

In addition to this, a system that automatically determines what direction and how

much the input is to be rotated has been implemented. Initially, the user had to manu-

ally input the desired yaw-angle of the rotated image. For the purposes of this system,

a simple function that automatically rotates from front to side-facing or vice versa is

utilized. As long as the pose of the subject is in the range [-90°, 90°] this will net a valid

rotation. The amount of rotation can be defined by the user but for this particular sys-

tem a rotation of 30° has been chosen. Figure 4.2 illustrates the "auto rotation" process.
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Figure 4.2: Look at a human face from bird’s-eye view. The blue arrows indicate what

direction the automatic rotation function will rotate the face to, given a yaw angle.

4.1.2 Concerns and Discussion

There are two main concerns regarding this part of the system: Runtime and general

redundancy of the system. The first concern is pretty straightforward. The per-image

inference time on an RTX 2080TI—a high-end consumer-grade GPU—is around 0.6s,

which completely dwarfs the run time of the reconstruction network.

The second concern is less of a real concern and more a feeling that the system is a

little "clunky" for lack of a better word. The synthetic rotation network already recon-

structs the image once—twice during training— which is then followed by the actual

reconstruction network. Which means that the system as a whole performs a perfectly

fine reconstruction, just to do an additional reconstruction that is a little more accur-

ate. Simply put, doing reconstruction twice seems a little redundant. Ideally a more

elegant solution that has a more cooperative relationship between the rotation net-

work and reconstruction network would be preferred. As of right now they are very

much two independent systems that are forcefully put together.
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4.2 Reconstruction

While at a first glance not much has changed about this part of the pipeline, there are

some fundamental differences from what is described in [2]. First of all instead of us-

ing two real images the network will use one real and one synthetic image. Secondly

this revised network will try to reconstruct facial hair in addition to the face. Both of

these changes are tied closely to the training process, which is made clearer by the fact

that no change has been made to the actual network architecture as seen on Table 4.1.

Input Layer Kernel Stride Output

256 x 256 x 6 Convolution 3 2 128 x 128 x 32

128 x 128 x 32 Inverted Residual 3 - 64 x 64 x 96

64 x 64 x 96 Inverted Residual 3 - 32 x 32 x 144

32 x 32 x 144 Inverted Residual 3 - 16 x 16 x 192

16 x 16 x 192 Inverted Residual 3 - 8 x 8 x 576

8 x 8 x 576 Convolution 3 2 8 x 8 x 512

8 x 8 x 512 Transposed Convolution 4 1 8 x 8 x 512

8 x 8 x 512 Transposed Convolution 4 2 16 x 16 x 256

16 x 16 x 256 Transposed Convolution 4 1 16 x 16 x 256

16 x 16 x 256 Transposed Convolution 4 1 16 x 16 x 256

16 x 16 x 256 Transposed Convolution 4 2 32 x 32 x 128

32 x 32 x 128 Transposed Convolution 4 1 32 x 32 x 128

32 x 32 x 128 Transposed Convolution 4 1 32 x 32 x 128

32 x 32 x 128 Transposed Convolution 4 2 64 x 64 x 64

64 x 64 x 64 Transposed Convolution 4 1 64 x 64 x 64

64 x 64 x 64 Transposed Convolution 4 1 64 x 64 x 64

64 x 64 x 64 Transposed Convolution 4 2 128 x 128 x 32

128 x 128 x 32 Transposed Convolution 4 1 128 x 128 x 32

128 x 128 x 32 Transposed Convolution 4 2 256 x 256 x 16

256 x 256 x 16 Transposed Convolution 4 1 256 x 256 x 16

256 x 256 x 16 Transposed Convolution 4 1 256 x 256 x 3

256 x 256 x 3 Transposed Convolution 4 1 256 x 256 x 3

256 x 256 x 3 Transposed Convolution 4 1 256 x 256 x 3

Table 4.1: Layers of reconstruction network.
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4.2.1 Dataset Generation

The dataset used for training is synthetic and generated by Facegen1. This is a software

for generating 3D face meshes. To achieve generation of varied faces Facegen utilizes

a custom 3DMM consisting of 273 3D scans2.

The specifics of Facegen data generation is as follows: First a random face is generated,

that is, a set of Facegen 3DMM parameters. These are then applied to the base BFM

mesh to generate a 3D model. This model will have the shape and texture as defined

in the face previously generated but will also have BFM mesh topology, i.e same vertex

count, same indices etc. Each Facegen model—or subject—in the dataset is rendered

at yaw angles [-90°, ±67.5°, ±45°, ±22.5°, 0°] plus a random noise factor sampled

uniformly from the range [0, 22.5]. This is illustrated in Figure 4.3. Each rendering

also has a random roll and pitch pose in the range [-25°, 25°].

Figure 4.3: Look at a human face from bird’s-eye view. Each number indicates the

yaw-angle range for each of the eight renderings.

When rendering this way there were a few obvious improvement areas. First of all,

while BFM meshes are fairly detailed it also only models the identifiable parts of the

human face, that is, the front. This might not be a problem for front-facing images, but

for large poses this leads to rendered images looking fairly strange as part of the back

and side of the head is not modeled. Secondly, since the top of the head is missing

from these models it can cause a situation where hair looks like it is floating depend-

ing on the hairstyle, since it is meant to be sitting at the top. Both of these cases are

illustrated in Figure 4.4a.

1https://facegen.com/
2https://facegen.com/faq.htm

https://facegen.com/
https://facegen.com/faq.htm
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(a) BFM mesh topology. (b) Alternative mesh topology.

Figure 4.4: Large pose rendering of the same Facegen subjects with two different mesh

topologies.

To fix these issues an alternative rendering method was used. Instead of using a BFM

mesh for rendering, another mesh topology that models the whole face employed,

which can be found in Figure 4.4b. The BFM model will still need to be generated

though as it is still used to generate the ground truth UV position map. Because of

this, the new base mesh is aligned with the BFM base mesh, so that the position of the

vertices on the rendered image is the same as in the UV position map.

Initially the idea was also to include the 300W-LP dataset into the training process, but

was opted out of for two reasons: First of all the synthetic rotation network had issues

recognizing some of the larger-pose faces in 300W-LP due to their synthetic nature.

This is especially bad since a face needs to be detected as part of its model-fitting step

to generate landmarks and BFM parameters. This would have made the 300W-LP part

of the dataset biased towards front-facing images and negatively affected the recon-

struction network’s level of generalization.

It is worth mentioning that this issue is somewhat relieved by the synthetic rotation

system. This is due to it generating a rotated image, allowing the reconstruction net-

work to receive both a front and side facing image anyway. With that being said this

would still train the reconstruction network overwhelmingly in the direction of receiv-

ing a real front facing image and a synthetic side facing one as input, which certainly

is not the case for images-in-the-wild.
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The second reason 300W-LP is not included in training is simply that the synthetic

rotation network perform somewhat poorly on large-pose images in this dataset. This

is most likely due to these having been synthetically rotated once already.

In the end the extra data gained from adding 300W-LP was not considered worth

increasing the bias towards frontal images in addition to decreasing the quality of

large-pose images.

4.2.2 Pre-processing

In the broadest sense pre-processing means to do some sort of transformation to data

before it is used in the main process. In machine learning a pre-processing step most

commonly occurs before training, but there can also be a separate pre-processing step

when the network is used outside training., which is the case for this particular net-

work

The objective of the pre-processing step differs depending on whether it is ran during

training or testing. When running the network outside training the aim would be to

generate the input that corresponds to the best possible results. This is not necessarily

the case during training, where the pre-processing step would gladly generate a sub-

optimal input if it results in the best performing network when training is finished.

That being said the input during training should generally mirror the ones from real-

life application to provide consistency.

Cropping

One of the transformations that is shared between training and testing is that of crop-

ping, although it is especially important during the latter. When running the network

on images in-the-wild the size and position of the face on the image might vary wildly.

Cropping ensures that the network can always expect a centred face of a certain scale

as input. In contrast, if cropping is not performed the network would have to account

for variations in position and scale of the face, in addition to actually performing the

reconstruction. This is quite undesirable as it would add a lot of complexity to the

problem.

Another benefit of cropping is that it would make most of the input consist of the

actual face. It is essential that the input contains as much relevant information as pos-
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sible especially on such limited resolution. It could be argued that this is a moot point

as images are very much able to have faces that are contained in 256x256 pixels or

more. If the face is smaller than this upsampling would be performed, where the extra

pixels added from this would not be "real" data but rather interpolated. That being

said if cropping is not performed the network would have to take as input a higher

resolution image to have the same performance as a 256x256 network with cropping.

To perform the cropping a lightweight face recognition network included in the dlib3

library is used. One might argue that if the reconstruction network increases in com-

plexity it might be able to do the work of the recognition network as well as perform

reconstruction in one pass, but there are good reasons for not doing this.

First, creating datasets for two networks with well-defined tasks is far easier than that

of a single complex structure. This is especially the case for the recognition network,

as it would be limited to using only typical 3D-face datasets when there is an immense

amount of non-synthetic data for recognition out there such as CelebA [12], VGGFace2

[13], UMDFaces [14] and plenty of others.

Second, training with a single loss-function for what is essentially two different tasks

might make it unclear what is working and what is not. It would be hard to tell exactly

how well or poorly a network is able to recognize faces or reconstruct based on a single

loss and/or evaluation of the output. One could say that this does not matter as it is in-

credibly difficult to understand what a neural network is doing "under the hood", and

most likely would not be doing something as straightforward as face recognition into

reconstruction separately. The point still stands that allocating the tasks between two

networks gives a clearer idea of potential issues as an intermediate output is available.

For this particular network only the non-synthetic image is cropped. This is due to the

face detector having a difficult time recognizing faces on synthetically rotated images.

It is also worth mentioning that the output from the synthetic rotation network is fairly

constant in the sense that it is always centred and more or less the same scale. Because

of this there is no real performance loss from not cropping the synthetically rotated

image.

3http://dlib.net/
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Data augmentation

Data augmentation is a group of regularization techniques where some alteration,

such as rotation or noise injection, is applied to the training data. The intuition is that

applying one or more transformations to the original input image generates a brand

new input. This in turn expands the dataset which results in better generalization.

An alternative point of view is that data augmentation is detrimental to the training of

a network since it dilutes the dataset with synthetic data. As mentioned in Section 3.4

this might be one of the biggest points of concern when dealing with synthetic data

like this. Luckily, the most commonly used data augmentation techniques are gener-

ally very basic and mimic real life situations well.

For this particular network two data augmentation techniques are applied, the first of

which is colour channel scaling. In computer graphics the most widely used method

of representing colour is the RGB model. This is a model where each colour is denoted

as a linear combination of red, green and blue. Accordingly, an image in RGB repres-

entation will have three colour channels, each comprised of the weights for R, G and

B values for each individual pixel. Colour channel scaling simply means to multiply

each of these channels with a separate scalar. For this implementation the scalar is

random and uniformly sampled from the range [0.6, 1.4]. An illustration of what this

might look like can be found in Figure 4.5a. In practice what colour channel scaling

achieves is modifying the overall colour of the image without altering the shapes.

Ideally a 3D reconstruction network is able to regress a model based on the contour

and shapes of a human face. This is exactly why colour channel scaling is such a good

fit in this particular instance. Due to its shape-preserving nature it makes sure that no

discrepancies between input and ground truth are present. It also penalizes reliance

on colours, increasing generalization between different lighting conditions and cam-

era settings.

The other augmentation that is applied is called dropout and might not be as intuitive

as the former. What dropout essentially does is it ignores certain neurons during the

training process. The neurons that get ignored changes with each iteration of training.

Dropout is often applied inside a neural network at different layers during a forward

pass, although in this case it is only applied on the input layer. Figure 4.5b illustrates

the application of dropout on an image. Dropout leans heavily into the definition of

regularization that defines it as reducing the coefficients of certain input parameters
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of the model. Intuitively this means that the model will learn not to be too fixated on

specific pixels but rather the image as a whole.

(a) Colour channel scaling. (b) Dropout.

Figure 4.5: Images of the same subjects from 300W-LP with differing augmentations.

4.2.3 Training Pipeline

Training of the reconstruction network is pretty standard, and goes through the various

steps mentioned in this section. The network starts training with pre-trained weights

from [2], which is trained on Facegen models and 300W-LP. Then the image is cropped,

synthetically rotated and the ground truth UV-position map is calculated from the

ground truth BFM Facegen mesh. The resulting input image pair and ground truth UV

map is saved for training. Colour channel scaling and dropout is applied to the input

image pair right before loss and gradients are calculated during training. The actual

training process itself is fairly standard, using mean squared error as a loss function.

One of the biggest dilemmas surrounding this process was whether to synthetically

rotate after every augmentation had been applied or not. The former would definitely

be more realistic, but there is a big downside to this approach which is that the rotation

network is fairly slow, and since augmentations are applied on a per-epoch basis it

would mean that the rotation network would have to be ran at a rate proportional to

the number of epochs. Thus the decision was made to only run the rotation network

once for every image and save the results.
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4.2.4 Concerns and Discussion

One of the main points of improvement as noted in [2] is the addition of facial hair

onto the synthetic data generated by FaceGen. The issue with this approach is that

Facegen does not come with a great variety of facial hair options for their models,

only eight in total. With this few options it is hard for the network to properly learn

how to model facial hair, if at all. There definitely is potential as several real-life use

cases, especially in video games such as Football Manager4 and Skyrim5, are able to

model a great variety of facial hair using Facegen. But sadly those resources were not

available for this particular project.

In the same vein there is doubt of whether Facegen can be the sole dataset that the net-

work is trained on and still generate good results. In [2] the network is pre-trained on

a Facegen dataset before going over to 300W-LP. The performance of this pre-trained

model definitely left something to be desired as it was not able to out-perform PRNet.

There is also a worry that the Facegen 3DMM might not be able to model all types

of faces equally as well. Looking at the demographics of people that were captured to

create the Facegen 3DMM, it seems as if some have a far higher level of representation.

Histograms illustrating these demographics are listed in Figure 4.6.

Figure 4.6: Gender, age and race of Facegen 3D scans.

Usually when discussing data bias the concern is that certain demographics or charac-

teristics are overly favoured in the dataset. This is not actually the case for the Facegen

dataset, as the generated subjects have a completely random gender, age and race, all

sampled uniformly. The issue in this particular case is that it might not be able to model

every demographic adequately. When looking at the low amount of non-Europeans re-

4https://www.footballmanager.com/#desktop
5https://elderscrolls.bethesda.net/en/skyrim

https://www.footballmanager.com/#desktop
https://elderscrolls.bethesda.net/en/skyrim
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cruited for this 3DMM there is a real concern that the principal component analysis is

not able to capture the characteristics of those particular races properly. The same goes

for older people and to a lesser extent females. This can create a discrepancy in data

quality between subjects depending on demographics. Worst-case, it might lead to the

reconstruction network not being able to model certain people as well as others.
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Results

5.1 Synthetic Rotation

The modified Rotate-and-Render seems to be working as well as the original version.

The network performs best when the input image is a slightly rotated front-facing im-

age, as this is the angle that least occludes the parts of the face that are included in the

synthetic rotation. The network also seems to gain performance the closer pitch rota-

tion is to zero. This is most likely due to the fact that the network sets pitch rotation

to zero degrees for its output, and as a result the more rotation the original image has

in this direction the more the network has to rotate. A few example images are shown

in figure 5.1.

Figure 5.1: Synthetic rotation of images in 300W-LP.
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5.2 Reconstruction

5.2.1 Evaluation Dataset

The evaluation dataset chosen is the MICC Florence dataset [15], consisting of 2D

videos and high-resolution 3D scans of 53 subjects. This dataset is a good way of test-

ing face reconstruction from various angles to simulate usage in-the-wild. It is worth

mentioning that some subjects do have facial hair, and this is accurately portrayed in

the 3D models as well. This means that a network that is trained on data without facial

hair will have significantly higher error than is expected.

Each Florence subject is rendered in total 27 times, at yaw angles [±80°, ±60°, ±40°,

±20°, 0°] each for three different pitch angles [-15°, 0°, 15°].

5.2.2 Evaluation Metric

The goal of a metric is to measure performance in an accurate an robust manner,

and for the task of 3D face reconstruction such a metric will calculate the deviations

between ground truth and generated model. To this end the metric that was chosen

was the normalized mean error (NME) of the euclidean distance between vertices of

the reconstructed and ground truth meshes:

N M E =
1
N

N
∑

i=1

‖(pi − qi)‖2

d
(5.1)

Here d denotes the bounding box size of the generated mesh, and N the number of

vertices. The NME is calculated for every mesh, then averaged out as follows:

meanN M E =
1
K

K
∑

j=1

N M E j (5.2)

Where K is the number of meshes that has been evaluated.

5.2.3 Evaluation Performance

Two different models are evaluated, as well as PRNet for comparison. These models

are as follows: Model using weights from [2] and the model trained as described in

Section 4.2.

Evaluation is performed by reconstructing a face, then aligning it with the ground

truth model using ICP. The results are illustrated on Figure 5.2, while NME values can

be found on Figure 5.3 and Table 5.1.
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Figure 5.2: Reconstruction results from different models. Trained" is the proposed

method trained as described in 4.2, "PreWeights" is the proposed method using only

the weights from [2]. Image to the left is from MICC Florence while the one on the

right is from a proprietary Norwegian University of Science and Technology dataset.

Figure 5.3: Mean NME of different models at different angles.



Chapter 5: Results 34

Mean NME

PRNet 0.02043

PreWeights 0.01908

Trained 0.0.03179

Table 5.1: Mean NME for various models.

Surprisingly, the best performing model was not the one that was trained specifically

with synthetic rotation in mind, but rather the one trained for the purposes of [2].

There were a few issues with the synthetic dataset that led to such poor performance.

First of all it seems as if the synthetic data is simply not realistic enough to provide

top-of-the-line results. As mentioned in Section 4.2.4 this was a real concern with the

network as [2] had illustrated sub-par performance when only training on a Facegen

generated dataset.

The poor level of detail on Facegen subjects propagates to other parts of the system as

well. The synthetic rotation network seemingly had very inconsistent results, depend-

ing on the subject composition and pose. This is illustrated in Figure 5.4. Synthetic

rotation has a tendency to generates results such as the one on Figure 5.4b when the

pose gets large, but this is not nearly as frequent on real data than it is on the Facegen

dataset. This creates a discrepancy between the data it is trained on versus the data it

is tested on.

(a) Original. (b) Rotated. (c) Original. (d) Rotated.

Figure 5.4: The same subject from two different poses and its synthetic rotation. On

the left an unnatural result and on the right a "proper" result.

Lastly, the model was not able to reconstruct facial hair properly. A big reason for

training on the Facegen dataset in the first place was training the model to include

facial hair into its predictions, as existing datasets for 3D face reconstruction does not

include facial hair in their ground truth meshes. Because of a lack of variety and real-
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ism on the facial hair meshes provided by Facegen, it seems the model was not able

to learn to model these properly. In which case the inclusion of facial hair might have

been detrimental to the performance of the network, as a non-optimal network might

have been chosen after training had concluded due to it performing better on subjects

with facial hair, even though it did not possess the ability to actually model facial hair.

The fact that the "PreWeights" model was able to perform better than PRNet, even if

only slightly, demonstrates the capability of the system if trained on "real" datasets such

as 300W-LP. Especially since it is prone to some high-error outliers as is illustrated on

Figure 5.2 on the bottom row, third column. It is believed that going forward this would

be be the preferred training dataset for this system. To circumvent the issues detailed

in Section 4.2.1 it is thought to be better to not perform synthetic rotation during

training and instead use one front -and side-facing image from 300W-LP as an input

pair to the system. The image that is supposed to be the synthetically rotated image in

the image pair would need to be modified to better mimic the output of the synthetic

rotation network. A few examples would be: Using the same background colouring

method as Rotate-and-Render, setting pitch pose to zero, cropping/scaling the image

in the same way Rotate-and-Render would. The synthetic rotation network could also

be modified to better mimic the data from 300W-LP. The most notable changes would

be to retain the pitch pose when rotating instead of setting it to zero and cropping the

output image in the same way data from 300W-LP would be cropped.

5.3 Concerns and Discussion

5.3.1 MICC Florence

During evaluation it is important that the dataset is as detailed and realistic as pos-

sible, but also that it represents the general populace in a proper manner. The concern

with MICC Florence is that certain demographics are over-represented while some are

non-existent. Histograms illustrating the demographics of the evaluation dataset are

found on Figure 5.5.

The issue with data bias on an evaluation set is that it will not be able to capture the

proper level of generalization for the models that it evaluates. A model that only per-

forms well on Caucasian’s would seemingly get great results when evaluated on this

particular dataset, even though it would have bad generalization across races. This in

turn might create an inaccurate picture of the performance of a model.
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Figure 5.5: Demographic of subjects captured in the MICC Florence dataset.

Another issue with this dataset is that there is no set standard for rendering the models.

This means that there might be deviations between the evaluation found between

different experiments. As an example; the NME of PRNet in this particular Thesis is

quite a bit lower than what was found in [1]. The differences in rendering that may

cause these discrepancies might be related to lighting, position of the face on the

image, scale etc. And since the models are not aligned to look straight forward the

rendering of meshes at certain poses requires some approximations, which introduces

another potential error. Since every model is evaluated on the same renderings per

experiment this is not necessarily a problem. But could cause some confusion when

comparing with other experiments.

5.3.2 NME

There is some uncertainty regarding the metric for evaluating the different models. As

seen in [2] the network gets a mean NME that is close to half that of PRNet, but when

looking at the 3D model produced by PRNet and [2] the results are not that different.

Although the "eye-test" is not the most accurate of metrics there is still some value

to be gained from such evaluation. One alternative metric that could be considered

is to test different networks on face recognition models that utilize 3D models, and

compare the resulting accuracy.
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5.3.3 ICP Alignment

As previously mentioned, ICP is used to align the ground truth 3D mesh to the re-

constructed face so the NME can be properly calculated. The issue with ICP is that

it is just an approximation, as there is no "correct" alignment between two different

meshes. This might cause some strange alignments, doubly so if there are significant

deviations between the meshes. If ICP is not able to align the meshes properly it might

lead to some egregious outliers when calculating NME, which might negatively affect

the perceived performance of the network.

5.3.4 Runtime

The runtime of the network is on average 0.6 seconds per image on an RTX 2080TI.

This makes it completely unviable for applications such as videos where a stream of

images need to be reconstructed in real time. Even with the release of a new generation

of consumer-grade GPUs it seems unlikely that this system will ever manage true real-

time use.
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Conclusion

6.1 Conclusion

The method proposed in this Thesis showed that synthetic data generation is not yet

at the level where it can match real datasets. While the results were not spectacular

it managed to measure a slightly lower NME than PRNet using weights from another

network. This illustrates the true potential of multi-view synthesis in 3D face recon-

struction, and with further work a more impressive showing might be expected.

6.2 Further Work

Further work should first and foremost focus on the improvements outlined in Section

5.2.3. In addition to this the outliers found during testing should be looked at closer.

The hypothesis is that this is due to inadequate synthetic rotations as was illustrated

in Figure 5.4b.

Outside of this the most obvious improvement area would be reducing the runtime.

Since the majority of the processing time is used by the synthetic rotation network it

would make sense to look for ways to improve this part of the system. A simple modi-

fication would be to change the model-fitting network from 3DDFA [10] to something

that has a lower inference time. 3DDFA_V2 [16] or even PRNet would net some im-

provement on this end. But given how much improvement would be required to make

the system real-time viable, some drastic changes would have to be made. Whether

that be to switch to a more lightweight synthetic rotation network, or try to create a

system from the ground up that aims to rotate and reconstruct in one seamless pass.
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Facegen Dataset Generation

def generate_facegen_dataset(dataset_root_folder, save_root_folder, file_list, last_end):
bfm = MorphabelModel(’Data/BFM/BFM.mat’)
uv_coords = face3d.morphable_model.load.load_uv_coords(’Data/BFM/BFM_UV.mat’)
uv_coords = process_uv(uv_coords)

synthesizer = Synthesize()
image_h, image_w = 256, 256

num_subjects = len(os.listdir(dataset_root_folder))
with open(file_list, ’a’) as f:

for i in range(1+last_end, num_subjects+1):
subject_number = str(i)
print(f"subject␣{subject_number}")
obj_fp = os.path.join(

dataset_root_folder,
subject_number,
f"subject_{subject_number}.obj"

)
save_folder = os.path.join(save_root_folder, subject_number)
for i in range(-4, 4):

if not os.path.exists(save_folder):
os.makedirs(save_folder)

current_img_fp = os.path.join(
dataset_root_folder,
subject_number,
f"render_{i}.png"

)
img_save_fp = os.path.join(save_folder, f"orig_{i}.png")
rotated_img_fp = os.path.join(save_folder, f"rotated_{i}.png")
posmap_fp = os.path.join(save_folder, f"posmap_{i}.npy")
cropping_tform = generate_posmap_facegen_bfm(

bfm,
uv_coords,
current_img_fp,
obj_fp, posmap_fp,
save_image=True

)
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current_img = io.imread(current_img_fp)
current_img_cropped = skimage.transform.warp(

current_img,
cropping_tform.inverse,output_shape=(image_h, image_w),
preserve_range=True)

img = apply_random_background(current_img_cropped.astype(np.uint8))
io.imsave(img_save_fp, img, check_contrast=False)

try:
synthesizer.synthesize_image(img_save_fp, rotated_img_fp)

except TypeError:
print("bricked"+img_save_fp)
continue

f.write(img_save_fp + ’␣’ + rotated_img_fp + ’␣’ + posmap_fp + ’\n’)
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MICC Florence Rendering

from operator import pos
import os
import shutil
# switch to "osmesa" or "egl" before loading pyrender
os.environ["PYOPENGL_PLATFORM"] = "egl"

import numpy as np
import math
import sys
np.set_printoptions(threshold=sys.maxsize)
import pyrender
import trimesh
import glob
from image_synthesis.model_fitting.model_fitting import load_3ddfa, get_param
from image_synthesis.model_fitting.utils.estimate_pose import angle2matrix
from skimage.io import imsave
import argparse
from math import sqrt

def get_rotation_matrix(rotation_directions):
rotation_matrix = angle2matrix(rotation_directions)
col4 = np.array([

[0.0],
[0.0],
[0.0]

], dtype=np.float32)
rotation_matrix = np.hstack((rotation_matrix, col4))
row4 = np.array([0.0, 0.0, 0.0, 1.0], dtype=np.float32)
rotation_matrix = np.vstack((rotation_matrix, row4))
return rotation_matrix

def scale_triplet(triplet, scalar):
return (triplet[0]*scalar[0], triplet[1]*scalar[1], triplet[2]*scalar[2])

def negate_pose_list(pose_list):
return (-pose_list[0], -pose_list[1], -pose_list[2])
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def calculate_score(triplet):
score = [abs(triplet[0]), abs(triplet[1]), abs(triplet[2])]
scale = [10.0 if abs(pose)>0.2 else math.ceil(50.0*abs(pose)) for pose in triplet]
scale = list(map(lambda x: (x+(x%2))/10.0, scale))
return score, scale

def rotate_mesh(mesh_fp, save_fp, rotation_direction, yfov):
with open(mesh_fp) as f:

mesh_lines = f.readlines()
aligned_mesh_file = open(save_fp, "w")
xmax = 0
xmin = 0
ymax = 0
ymin = 0
z_list = np.array([])
y_acc = 0
n_vertex = 0
rotation_matrix = angle2matrix(rotation_direction)
for line in mesh_lines:

if line.startswith("v␣"):
n_vertex += 1
vertex = list(map(float, line.split("␣")[1:]))
rotated_vertex = rotation_matrix.dot(np.array(vertex))
y_acc += rotated_vertex[1]
xmax = rotated_vertex[0] if rotated_vertex[0] > xmax else xmax
xmin = rotated_vertex[0] if rotated_vertex[0] < xmin else xmin
ymax = rotated_vertex[1] if rotated_vertex[1] > ymax else ymax
ymin = rotated_vertex[1] if rotated_vertex[1] < ymin else ymin
z_list = np.insert(

z_list,
z_list.searchsorted(rotated_vertex[2]),
rotated_vertex[2]

)
aligned_mesh_file.write(f"v␣{’␣’.join(map(str,␣rotated_vertex))}\n")

else:
aligned_mesh_file.write(line)

aligned_mesh_file.close()
height = (ymax-ymin)
z_offset = z_list[round(n_vertex*0.85)]
distance = (height/(2*np.tan(yfov)))
xmid_point = xmin+((xmax-xmin)/2.0)

return (distance, z_offset), xmid_point, ymin+(height/2.0)

parser = argparse.ArgumentParser(description=’Generate␣png␣from␣micc␣mesh.’)
parser.add_argument(’-m’, ’--mode’, default=’gpu’, type=str, help=’gpu␣or␣cpu␣mode’)
parser.add_argument(’--bbox_init’, default=’two’, type=str,

help=’one|two:␣one-step␣bbox␣initialization␣or␣two-step’)
parser.add_argument(

’--path_prefix’,
default=’/lhome/yongbk/eval_florence/Original’,
type=str,
help=’location␣of␣folder␣containing␣the␣meshes’
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)

args = parser.parse_args()
model, alignment_model = load_3ddfa(args)

class Subject:
def __init__(self, render, yfov, subject_number):

subject_number_str = \
f"0{str(subject_number)}" if subject_number<10 else str(subject_number)

self.mesh_directory_path = \
f"{args.path_prefix}/subject_{subject_number_str}/Model/frontal1/obj"

mesh_fp = [fn for fn in glob.glob(f"{self.mesh_directory_path}/*.obj")
if not os.path.basename(fn).startswith(’aligned’) and
not os.path.basename(fn).startswith(’rotated’)]

print(mesh_fp)
self.render = render
eval_img_dir = f"{self.mesh_directory_path}/eval_img"
if os.path.exists(eval_img_dir):

shutil.rmtree(eval_img_dir)
os.mkdir(eval_img_dir)
self.yaw_step_size = np.radians(20)
self.pitch_step_size = np.radians(15)
self.yfov = yfov
self.save_fp_prefix = f"{eval_img_dir}/subject_{subject_number_str}"

score = [1.0, 1.0, 1.0]
scale = [1.0, 1.0, 1.0]
first_iteration = True
self.aligned_mesh_fp = f"{self.mesh_directory_path}/aligned.obj"
current_pose = (0.0, 0.0, 0.0)
while not all(x <= 0.01 for x in score):

if first_iteration:
distance, xmid_point, self.cam_height = \

rotate_mesh(mesh_fp[0],
self.aligned_mesh_fp,
negate_pose_list(current_pose),
yfov

)
first_iteration = False

else:
distance, xmid_point, self.cam_height = \

rotate_mesh(
self.aligned_mesh_fp,
self.aligned_mesh_fp,
negate_pose_list(scale_triplet(current_pose, scale)),
yfov

)
self.render.change_mesh(self.aligned_mesh_fp)
self.render.change_camera_pose(xmid_point, self.cam_height, distance)
current_pose = self.render(f"{self.save_fp_prefix}_0_0.jpg", False)
score, scale = calculate_score(current_pose)
print(current_pose)
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print(scale)
self.render(f"{self.save_fp_prefix}_0_0.jpg")
print("align␣done")

def render_subject(self, pitch_step, yaw_step):
yaw_target = yaw_step*self.yaw_step_size
pitch_target = pitch_step*self.pitch_step_size
rotated_mesh_fp = f"{self.mesh_directory_path}/rotated.obj"
save_fp = f"{self.save_fp_prefix}_{pitch_step}_{yaw_step}.jpg"
current_rotation_direction = (

yaw_target,
pitch_target,
0.0

)
distance, xmid_point, self.cam_height = rotate_mesh(

self.aligned_mesh_fp,
rotated_mesh_fp,
current_rotation_direction,
self.yfov

)
self.render.change_mesh(rotated_mesh_fp)
self.render.change_camera_pose(xmid_point, self.cam_height, distance)
self.render(save_fp)

return save_fp, current_rotation_direction

class Render:
def __init__(self, yfov):

self.r = pyrender.OffscreenRenderer(256, 256)
self.camera_node = \

pyrender.Node(camera=pyrender.PerspectiveCamera(yfov=yfov, aspectRatio=1.0))
light = pyrender.DirectionalLight(color=[1,1,1], intensity=12e3)
self.mesh_node = None
self.scene = pyrender.Scene(bg_color=(0.0, 0.0, 0.0))

self.scene.add_node(self.camera_node)
self.scene.add(light, pose=np.eye(4))

def change_mesh(self, mesh_fp):
if self.mesh_node != None:

self.scene.remove_node(self.mesh_node)
self.mesh_node = pyrender.Node(mesh=pyrender.Mesh.from_trimesh(trimesh.load(mesh_fp)))
self.scene.add_node(self.mesh_node)

def change_camera_pose(self, x, y, z):
camera_pose = np.array([

[1.0, 0.0, 0.0, x],
[0.0, 1.0, 0.0, y],
[0.0, 0.0, 1.0, 3.0*z[0]+z[1]],
[0.0, 0.0, 0.0, 1.0],

])
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self.scene.set_pose(self.camera_node, camera_pose)

def __call__(self, save_fp, check=True):
#self.scene.set_pose(self.mesh_node, get_rotation_matrix(rotation_directions))
color, _ = self.r.render(self.scene)
imsave(save_fp, color)
_, _, _, current_pose = get_param(model, alignment_model, save_fp, args)
return current_pose

if __name__ == ’__main__’:
render = Render(np.pi / 3.0)
faultyOBJs = [3, 30]
for i in range(1, 54):

if i in faultyOBJs:
continue

else:
print(i)
subject = Subject(render, np.pi / 3.0, i)
transformation_file = open(f"{subject.mesh_directory_path}/transformations.txt", "w")
for pitch_step in range(-1, 2):

for yaw_step in range(-4, 5):
save_fp, rotation_from_init = subject.render_subject(pitch_step, yaw_step)
transformation_file.write(

f"{save_fp}␣{’␣’.join(map(str,␣rotation_from_init))}\n"
)

transformation_file.close()
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