
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f E
ng

in
ee

rin
g

Cy
be

rn
et

ic
s

Einar Marstrander Omang

OPC-UA Interface for Safety
Instrumented Systems

Master’s thesis in Cybernetics and Robotics
Supervisor: Mary Ann Lundteigen
Co-supervisor: Arvid Bjarne Nilsen

May 2021

M
as

te
r’s

 th
es

is

Einar Marstrander Omang

OPC-UA Interface for Safety
Instrumented Systems

Master’s thesis in Cybernetics and Robotics
Supervisor: Mary Ann Lundteigen
Co-supervisor: Arvid Bjarne Nilsen
May 2021

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Engineering Cybernetics

i

Preface

This is a master thesis concluding a master’s degree in cybernetics and robotics at NTNU. It can
be considered a continuation of the autumn 2020 specialization project[34] “APOS OPC-UA”
written for SINTEF autumn 2020. At NTNU, a half-semester specialization project is completed
before starting the single semester master thesis, and the two are frequently related.

The specialization project, and by extension this thesis, build on the APOS (Automatisert
prosess for oppfølging av instrumenterte sikkerhetssystemer, English: Automated process for
follow-up of safety instrumented systems) project at SINTEF. APOS, among other things, sug-
gests an information model for equipment and failure classification in safety instrumented sys-
tems. OPC-UA is a standard for industrial communication which includes both a platform for
communication, and a generic information model. The specialization project designed an OPC-
UA implementation of the APOS information model, and the goal of this project is to explore the
challenges and limitations of applying such a model to a practical case at Aker BP. This thesis de-
tails the development of such an OPC-UA server.

In practice, this requires obtaining access to Aker BP information management systems, re-
lating the contents to the APOS information model, and creating an OPC-UA server that exposes
this information automatically. Aker BP source systems are for the most part not designed to be
accessed from external applications, and so in order to find ways to access the information, a
large part of this project involves reverse engineering the source systems.

Because of this, the thesis touches on a wide variety of technical areas. The theoretical foun-
dation is presented as part of this thesis, but the specialization project goes into further detail. In
general, the project assumes a general technical background. The basis for this project is safety
instrumented systems and OPC-UA like the specialization project, but also the world wide web,
modern web development, database management, and web APIs.

Using the data specific to Aker BP systems in described in this text in a commercial setting
requires permission from Aker BP. The OPC-UA server and information model described in this
project is not in use in any Aker BP systems.

This project was completed with support from Mary Ann Lundteigen (NTNU) as primary
supervisor, and Arvid Bjarne Nilsen (Aker BP) as secondary supervisor. Thanks to everyone in
Aker BP who has provided support: Erik Stangborli for help with the LCI database, Kristoffer
Lanne, Anders Nystøl, Kristian Førland Steinsland and Bjørn Hauge Hansen for help with SAP,
Lars Søraas (Sharecat) for help with getting access to the EqHub API, and Knut Omang for re-
viewing the thesis. Thanks in general to Sharecat who put in time and effort setting up suitable
access to their API. A big thanks also to Aker BP IT-support for help with getting access to the
various systems, as well as with getting in contact with the relevant people in Aker BP and else-
where.

Oslo, 28/05/2021

Einar Marstrander Omang

ii

Executive Summary

This thesis explores the challenges and limitations of creating an OPC-UA (Open Platform Com-
munications - Unified Architecture) server based on the OPC-UA information model for APOS
developed in the autumn 2020 specialization project APOS OPC-UA[34]. The APOS[39] project
at SINTEF defines a standard information model for safety instrumented systems, and the spe-
cialization project suggests how this can be realized in OPC-UA. Safety instrumented systems
refer to instrumented systems in industrial settings that are exclusively used to prevent and de-
tect dangerous events. OPC-UA is a modern standard for industrial communication and infor-
mation modeling.

In the field of safety instrumented systems it is important to contextualize and organize fail-
ure events in order to measure the failure rates of various field equipment types. The APOS
model is developed with this in mind. Today, collecting this information involves a great deal of
manual work, and so a part of APOS is also designing algorithms and standard procedures using
the developed information model to make this process more automatic.

The specialization project suggests an OPC-UA implementation of the APOS model. This
thesis is an extension of that project, and details the development of an OPC-UA server using
the information model exposing industrial information from three information management
systems at Aker BP: an LCI (Life Cycle Information) database running MS SQL Server, a SAP[17]
(Systems, Applications, and Products in Data Processing) system, and a central repository for
equipment named EqHub[12], managed by Sharecat[18].

Through this process, limitations and challenges in both the APOS project and the Aker BP
source systems are identified. First, gaining automated access to the source systems is diffi-
cult, as they are in some cases not designed to be accessed in such a way. Secondly, fitting the
data in the source systems to the APOS information model was generally difficult, and in some
cases impossible due to inconsistent or missing data in the source systems. Finally, once access
was obtained, accessing the data was slow enough that some applications of the server became
impractical.

Based on these challenges, concrete recommendations for the APOS project and Aker BP
are suggested. The APOS project only applies to safety instrumented systems, which may make
it more difficult to adapt in systems that structurally do not differentiate between safety func-
tions and normal equipment; Both SAP and LCI are slow and difficult to access automatically;
All three source systems have trouble with consistency, which makes automatic mapping to the
OPC-UA model difficult; Finally, the information model is in some edge-cases potentially in-
compatible with the ISA-95 standard.

Contents

Preface . i
Executive Summary . ii

1 Introduction 2
1.1 Background . 2
1.2 Objective . 4
1.3 Approach . 4
1.4 Outline . 5

2 Background 7
2.1 Safety Instrumented Systems . 7
2.2 APOS . 8
2.3 Model . 8
2.4 OPC-UA Mapping . 10

3 OPC-UA Services 13
3.1 NodeIds . 14
3.2 Browse . 15
3.3 Read . 17
3.4 Timeseries and Event Data . 18
3.5 Development of an OPC-UA server . 20

4 Source Systems 23
4.1 Process . 23
4.2 LCI . 26
4.3 EqHub . 28
4.4 SAP . 30

5 Information Mapping 34
5.1 EqHub . 34
5.2 LCI . 37
5.3 SAP . 38

6 Implementation 41
6.1 Processing data from Source Systems . 41
6.2 Server . 47
6.3 Structural Overview . 51

iii

CONTENTS 1

7 Testing the Model 53
7.1 Populating Gas Detectors . 53
7.2 Populating PSVs . 55
7.3 Results . 55

8 Usage 56
8.1 General Uses . 56
8.2 Calculating Failure Rates . 58
8.3 Mass Data Extraction . 59
8.4 CDF . 59

9 Limitations and Extensions 62
9.1 LCI . 62
9.2 SAP . 64
9.3 EqHub . 65
9.4 Restructuring . 66
9.5 Information Model . 68
9.6 Further work on the server . 69

10 Conclusions and Discussion 73
10.1 Summary and Conclusions . 73
10.2 Discussion . 74
10.3 Future Work . 75

A The Code 77
A.1 Technical Documentation . 77
A.2 Running the code . 80

B External Figures 82

C Acronyms 91

Bibliography 93

Chapter 1

Introduction

1.1 Background

An interface is defined as the environment by which two processes interact. In information
technology (IT), this is an essential term. A modern computer consists of an enormous num-
ber of separate systems, developed by numerous organizations and people, and often involve
decades of work. Understanding every piece of a system like this is not feasible, and so in order
to work with it, it must be simplified. Interfaces are at the core of this simplification. By defin-
ing limited, well-defined interfaces between components, new processes can be attached to the
existing system without requiring a full understanding of the underlying processes behind the
interface.

The OPC-UA standard is such an interface. It defines a platform for industrial communi-
cation, which includes a flexible information model. It does not define the implementation of
any server or client using the OPC-UA standard, but it does provide sufficient details to facilitate
the creation of consistent OPC-UA interfaces for different systems. By applying an OPC-UA in-
formation model to an existing system, the complexities of the underlying system is abstracted
away, and the data can be accessed with only an understanding of OPC-UA.

While the OPC-UA information model is rich and flexible, it is by design not specific to a spe-
cific industry, and it is intended to be expanded for use in particular settings, using the compan-
ion standards, or other OPC-UA based information models. The specialization project that this
thesis is based on, “APOS OPC-UA”[34], describes an OPC-UA information model for the APOS
project[39] (Automatisert prosess for oppfølging av instrumenterte sikkerhetssystemer, English:
Automated process for follow-up of safety instrumented systems). Safety instrumented systems
refer to systems that are exclusively used to prevent and detect dangerous events, and as such
have strict requirements for follow-up, to guarantee that the systems provide adequate protec-
tion. APOS defines an information model, and procedures based on this model, for partially or
fully automating this follow-up process.

OPC-UA was chosen because it is flexible enough to contain the APOS information model,
and because it is widely used in industry, especially in Europe. An OPC-UA based information
model has the advantage of being readable by users not familiar with the specifics of APOS,
while being flexible enough to contain the desired level of detail.

The specialization project is able to create a generic mapping, and explore how the different
requirements of APOS are achievable in OPC-UA. While the model should in theory be able to

2

CHAPTER 1. INTRODUCTION 3

completely encapsulate the APOS model, it is not complete, as in order to limit the scope of the
specialization project, it only implements a small part of the APOS information model. Instead
of attempting to expand the model to cover the entire APOS hierarchy, which would likely be a
long and difficult, manual process, this project aims to further develop and verify the model by
applying it to an existing industrial information management system at Aker BP.

Aker BP is an APOS partner, and has agreed to give access to their information management
systems. Aker BP is a major oil company in Europe, focused on discovery and extraction of oil
in the north sea. It is also notably a result of a 2016 merger of BP Norway, Det norske oljeselskap
(DETNOR, The Norwegian oil company), driven by BP and Aker. This also has the consequence
that one of Aker BPs platforms was operated by the American oil company Marathon Oil until
2014, and another was operated by Amoco until it was acquired by BP in 1999, so they manage
platforms that were originally developed in at least four different companies, which ages range
from 4 to 40 years.

This has some consequences for the technical systems in use, as Aker BP is in a process
of merging the various systems used by the companies that originally operated each platform.
Most relevant to this project, they are in the process of creating a unified OPC-UA hub, and are
looking to APOS for a possible information model.

Much of the IT work in Aker BP has been performed by third parties, which means that ob-
taining information about the technical systems in use can be challenging. The consequence
of this is that due to time limitation and lacking or unavailable documentation, it is necessary
to obtain information about the source systems without external help. Fully understanding this
work requires a fundamental understanding of the underlying protocols of the world wide web,
and how modern websites are built. The various terms will be explained as they come up, but
understanding the background for the steps taken to explore the data may take some further
reading.

There exists a number of relatively simple sources for understanding the core concepts. “Un-
derstanding the World Wide Web: A Brief Primer” by Courtney Hunt[31] provides a very brief in-
troduction to the key concepts, but importantly also points to other sources for further reading.

The source information for any literature about the world wide web is going to be the original
standards and documents. There are numerous publications that lay the foundation for the
modern world wide web, but the key ones are the standards published by the “World Wide Web
Consortium” (W3C)[22]. W3C publishes a number of standards for the modern web. The pages
on JavaScript[15] and HTML[14] are particularly relevant for this project.

The primary sources for the core of the internet are the RFCs (Request For Comment) pub-
lished by ISOC (Internet Society), primarily IETF (Internet Engineering Task Force). Of particular
note here is RFC 2616[27] on HTTP 1.1 and RFC 6749[30] on OAUTH 2.0.

The background for the APOS project is mostly covered by the specialization project, and
only briefly here. The book “Reliability of Safety-Critical Systems. Theory and Applications”[36]
by Marvind Rausand is used as theoretical basis for safety instrumented systems. The source
material about APOS is primarily the H1 report[37], which contains the foundation for the in-
formation model, and the H5 report[38], which was used to create the information model in the
specialization project. The APOS project is itself based on a variety of IEC standards, in particu-
lar IEC-61508[4] and 61511[25], as well as ISO-14224[29].

Beyond that the work is based on the official OPC-UA standard, which can be found online[35],
and the sample applications[19] for the OPC-UA SDK[20] created by OPC Foundation. Some in-

CHAPTER 1. INTRODUCTION 4

formation on the internal systems have been obtained from internal sources in Aker BP, and the
rest has been obtained from publicly available documentation, or by reverse engineering the
source systems.

1.2 Objective

The goal of this project is to identify limitations in the APOS model, in the OPC-UA model for
APOS, and in a few of the information management systems at Aker BP, and through this make
concrete recommendations to APOS and Aker BP.

In order to achieve this, the master project implements a functional OPC-UA server that
exposes real industrial data from Aker BP through the APOS OPC-UA model developed in the
specialization project. The thesis explores the problem, and through this attempts to identify
what needs to change in both the source systems and the information model in order to create a
solution using the APOS information model, that could be included as a part of a live, industrial
information management system.

The following three key questions are central to the thesis:

1) What requirements should be posed to APOS to make it possible to develop practical OPC-
UA servers using the APOS information model?

2) Is the model developed in the specialization project sufficient to model the data found in
Aker BPs systems?

3) What requirements should be posed to the contents and technical implementations of in-
formation management systems in order to make them compatible with the type of OPC-
UA server described in this project?

Some of these questions are explored in the specialization project, but without any testing,
any conclusions end up being speculation. Similarly, this project is also limited in scope, since
it only explores data in Aker BP. In order to make conclusions about the state of the industry
in general, other companies would need to be studied in further detail. Still, other companies,
especially in the same field, may have similar challenges, and the general requirements for the
OPC-UA server would also apply to a different set of information management systems.

1.3 Approach

The majority of the theoretical basis for this task has already been explored in the specialization
project, so most of this project is work related to the practical implementation and the issues this
exposes. The text lays the foundation for the server implementation, then proceeds to describe
the creation of a working OPC-UA server.

The development of the server can be divided into four general stages, this is the first half of
the master project:

1) Understand how such an OPC-UA server should be written.

CHAPTER 1. INTRODUCTION 5

2) Identify the source systems in use at Aker BP.

3) Create a procedure to map source system data to the APOS model.

4) Implement an OPC-UA server presenting the source system data in the APOS information
model.

Item 1) requires a fundamental understanding of the OPC-UA standard and the APOS infor-
mation model developed in the specialization project. Most of this is covered in detail in the
attached project report, and so this thesis only briefly summarizes the key points. In order to
properly understand the development of an OPC-UA server, a solid understanding of the inter-
face itself is also required, which in OPC-UA means discussing the services.

The actual server implementation uses the official OPC Foundation OPC-UA .NET SDK (Soft-
ware Development Kit)[20]. The server created as part of the specialization project was simple,
with almost no code that could not be found in the sample repository. For this project, how-
ever, OPC-UA services must be implemented to read from underlying systems, which requires
considerably more work and a deeper understanding of the OPC-UA standard.

Item 2) means making an effort to understand the source systems. How are they used, how
do they work, and how can they can be accessed by an external computer program. In order to
ensure the completion of the server, it was decided to reverse engineer the source systems, in
order to discover a way to access the information without relying on APIs (Application Program-
ming Interface) provided by Aker BP.

Using the understanding of OPC-UA from 1) and the source system data from 2), 3) can be
completed by creating a procedure to map data from the source systems into the information
model developed by the specialization project. Finally, using this, 4) combines the methods to
access the source systems, the relevant OPC-UA services, and the procedures for information
mapping to create a functional OPC-UA server providing access to the source systems.

The second half of the thesis uses the server to answer the questions posed in section 1.2 by
first testing that the server is capable of handling the APOS model and the source system data,
by expanding the server to cover more types of equipment, then attempting to connect to the
server and use the data. Using the results from these experiments, it is possible to answer all
three questions.

1.4 Outline

The thesis is effectively divided into two parts. Chapters 2 to 6 implement the server, and explore
the concrete challenges related to this. The second half, chapters 7 to 9 evaluate the server and
explores the potential limitations of the source systems and the APOS project itself.

Chapter 2 discusses the information model laid out in the specialization project. Using this
as a basis, chapter 3 describes the various OPC-UA services needed for an implementation of
this model, and what it means to build an OPC-UA server on top of an underlying system. This
chapter also describes what kind of information the various services will need from the source
systems. How to extract this data is explored in chapter 4, which identifies the APIs available in
the three information management systems needed for the implementation of the APOS model.

CHAPTER 1. INTRODUCTION 6

In chapter 5, the source system information models are translated to the APOS model, and in
chapter 6 this is used to create a functional server implementation.

In the second half of the thesis, chapter 7 populates the model with data for two equipment
groups, and uses this to discuss how difficult it might be to expand the server to cover the full
APOS information model. Chapter 8 studies different practical uses of the server, by connecting
to it with three external applications. Finally, chapter 9 attempts to answer the three questions
above using the results from the rest of the thesis.

Chapter 2

Background

When organizing data it is useful to structure it in an information model, which typically con-
sists of a list of information types, constraints for each type, and rules for how the different types
interact. Here, the information model is developed as part of the specialization project[34]. This
chapter briefly summarizes the theoretical basis for the APOS project, the APOS project itself,
and the information model developed for the specialization project.

The specialization project goes into further detail on each topic discussed in this chapter,
and can be used as a source of further information. In particular, chapter 2 concerns safety
instrumented systems, chapter 3 discusses core concepts of OPC-UA, and the APOS project is
covered in chapter 4. Chapters 5, 6 and 7 establish the information model, and discuss how it
could be expanded.

2.1 Safety Instrumented Systems

A SIS (Safety Instrumented System) is a safety system that uses active instrumentation. This is
unlike passive safety systems, which have no active instrumentation. A SIS typically consists of
a number of SIFs (Safety Instrumented Function), that each alleviate a specific danger.

The APOS project uses some terminology specific to this field, which the reader should be
familiar with. These definitions are as described by the APOS H1 report[37], which is based on
general IEC terminology[26], and IEC 61508[4]:

Failure refers to the inability of a system to perform its intended task. A fault is an underlying
issue, which can remain undetected for long periods of time, but then cause a failure due
to demand or unusual conditions.

Failure Mode is the way a failure affects the system, describing the specific way a component
was unable to complete its intended task.

Failure Detection refers to the way the failure was first observed, either by an automatic sys-
tem, or by an operator.

Failure Cause is one of the causes of a failure. This is typically one or more faults, combined
with unusual conditions.

7

CHAPTER 2. BACKGROUND 8

Failure Class refers to a division into four classes, classifying events as Dangerous or Safe, and
Detected or Undetected. For safety analysis, only Dangerous Undetected (DU) failures
are relevant, as it is assumed that all others cause the system to shut down, or somehow
make further danger impossible.

The goal of most safety analysis is to determine the root cause of a failure, to make changes
that make the failure less likely in the future, or ensure that it does not cause a dangerous event
that could further harm people or property.

2.2 APOS

The APOS project is a project at SINTEF that aims to develop specifications for automating
and organizing work with safety instrumented systems primarily in the petroleum industry.
The focus of this project is on the information modeling part of APOS, which has two main
components[37]:

The equipment hierarchy defines a system for grouping of equipment, based on two main
criteria: The function and design of each piece of equipment. It has three levels, designated
L1-L3.

L1 groups equipment by its main purpose, i.e. gas detection, fire detection, shutdown valves,
etc. L2 groups group equipment by core operating principle or design. For example, the gas
detector hierarchy divides based on measuring principle (line, point, etc.) and measured gas
(Hydrocarbon, CO, H2S, etc.). The L3 level contains a collection of attributes for each specific
equipment design, with further details such as intended location, available self-diagnostics, ex-
act measuring principle, etc.

APOS also proposes hierarchies for failure modes, causes and detections, defining D1-D2
for detections, F1-F2 for modes, and C1-C2 for causes. The purpose is to help classify failures
using a hierarchical model with increasing specificity descending the tree. An automated system
might be able to select which F1/C1 level a failure belongs to, but need operator input to select
F2. There may be common responses to C1 failure causes that do not need to be specified for
each C2 cause.

2.3 Model

The specialization project[34] chapter 5 creates an abstract model independent of OPC-UA for
the APOS model, and chapter 6 adapts this model to OPC-UA. This is seen in figure 2.1, which is
a slightly modified version of figure 6.15 in the specialization project report. It contains four core
types of information, separated by color. Each of these represent different types of information
in the source systems.

Instance Information

The green objects refer to instance information, meaning that they represent physical or inferred
properties of real or logical objects. They always refer to something concrete, attached to a single

CHAPTER 2. BACKGROUND 9

Fire-
Detectors

Heat-
Detectors

302-aw

Sub-
System

SIF

Heat
Detector

Value
Instance

Infor-
mation

APOSBase
ClassType

L1 Static

L2 Static

L3 Static

APOSAsset
Type

Failure
Event Type

Mode

Detection
Method

Cause

Source
Node

BaseFailure
Mode

Mode F1

Mode F2

BaseFailure
Detection

Detection
D1

Detection
D2

BaseFailure
Cause

Cause C1

Cause C2

BaseEvent
Type

BaseData
Variable

Type

Events

Figure 2.1: Implemented information model.

instance. Figure 2.1 shows a single heat detector, which has properties like location and age, a
live measurement, and a collection of sporadic events that may represent past failures.

When reading from source systems, instance information is generally the easiest to identify.
Any information that refers to a specific instrument or physical asset is placed in this group.
Typically, this will mean that if information is not better represented as any of the three other
types, then it must be instance information, so if information does not refer to all equipment of
the same model, or does not describe sporadic events, then it must be instance information in
some way.

Equipment Type Information

The blue objects refer to the APOS equipment hierarchies. These are divided into three levels,
here exemplified by “Fire Detectors” as the L1 level, “Heat Detectors” as the L2 level, and “302-
aw”, a specific heat detector model, as the L3 level. Equipment instances are connected to L3
layers, as a way to identify the make and model of each physical equipment. Each level has
static type information, which gets increasingly specific deeper down in the hierarchy. L1 static
information only describes the possible attributes for each type, and perhaps some common

CHAPTER 2. BACKGROUND 10

properties, L2 is similar, but slightly more specific, and L3 reflects the specific properties of each
equipment model.

When retrieving this information from source systems, there are two issues. First, each in-
strument should belong to an L3 type. This type needs to be identified, and it must be assigned
to a L2 category. Optionally, it might have to be placed directly in an L1 group if there is no
suitable L2 group.

Ideally, multiple pieces of equipment will belong to the same L3 type, however there is no
guarantee that the source systems use such a classification. It might be possible to group equip-
ment using other information using something like model name, model number, etc. In that
case, the static type information would have to be extracted from each type, and the server
would have to find some consensus if there are conflicts between different types.

The model also suggests that there should be strict data types for each value, but this is
limited by the information model used by the source system. If there are no type limitations in
the source system, defining data types may not be practical. It might be possible to create a few
predefined types, then mapping the values in the source system to these, however that runs the
risk of a value in the source system being impossible to report.

Event Information

The gray objects describe failure events, and classify them using the three core concepts in safety
instrumented systems: failure mode; how the failure happened, failure detection; how it was
discovered, and failure cause; why it happened. The information mapped to events is typically
logs of failed tests or triggered failure notifications.

2.4 OPC-UA Mapping

Translating this abstract model to OPC-UA means deciding on how each type of information can
be represented in OPC-UA. OPC-UA is a node hierarchy, a collection of nodes with references
between them. The first step in creating the mapping is deciding on the NodeClasses for each
type of information, four NodeClasses are most relevant to this project. These and the remaining
four are discussed in depth in section 3.3 of the specialization project.

In general, the contents of this section is just a summary of the much more detailed dis-
cussion in the specialization project report chapter 3, which also contains information about
communication in OPC-UA, further details about the basic information model, and more infor-
mation about the ISA-95 companion standard, which is a commonly used extension to OPC-UA
for modeling in industrial systems.

An Object represents a physical or logical concept, objects are used to connect the other
node classes together. They are shown as circles in figure 2.2. They typically represent anything
that does not fit into any of the other classes, and they contextualize the data contained in other
nodes.

An ObjectType or VariableType is used for describing objects and variables in some way.
Variable types are almost exclusively used as templates for variables, while object types are
also used for nodes in the type hierarchy. Only one variable type is shown in figure 2.2, “Base-
DataVariableType”, which represents a variable that contains changing data values. The other

CHAPTER 2. BACKGROUND 11

important one is “PropertyType”, which indicates that a variable contains largely static values.
Both ObjectTypes and VariableTypes are shown as rectangles with thick edges.

Object types are used for three main purposes here. First, they define the “template” for a
node, this is the base OPC-UA interpretation of the object type: each type has a “TypeDefinition”,
which describes what the node represents, and may specify what kind of properties and values
it should have. Secondly, they are used for event types. Events have a finite set of properties,
which must be described in detail in the type hierarchy. Finally, they are used by ISA-95 to
describe class types for nodes.

The ISA-95 companion standard defines four different class types, two of which are relevant
for this project. They differ from type definitions in that they represent common properties for a
node, instead of a template. So multiple nodes can share a class type, and the properties of that
class type will effectively apply to all associated nodes, which avoid information duplication.

The first of the two relevant class types are “Physical Assets”, which represent concrete phys-
ical objects like a specific kind of detector, a specific brand of vehicle, or similar. Physical asset
classes describe common properties of multiple physical assets, and each physical asset can
only have one physical asset class. For example, the class could be a specific model of gas de-
tector, and each physical asset which uses that class would represent an instance of that model
in the field.

The second class type is Equipment, which refers to a more abstract idea of “role” for each
node. For example a gas detector might have both the “gas detector” role, and the “safety critical
equipment” role. An Equipment node will typically consist of a collection of other equipment
and physical assets. This distinction between Equipment and Physical Assets was misunder-
stood in the specialization project report.

The original model only uses physical assets, the L1, L2 and L3 equipment groups are phys-
ical asset class types, and the “APOSAssetType” is a sub type of the “PhysicalAssetType”, which
is a normal OPC-UA object type. This means that here the “302-aw” node is a specific model of
heat detector, which contains common information shared between all instances of that model.

A Variable is simply a node that contains a value. Variables are represented by both rectan-
gles with thin edges and diamonds in figure 2.2. The difference between the two is their Type
Definition. Rectangles with thin edges are data variables, these often reflect some measurement
or similar dynamic value. Diamonds are properties, meaning that they represent static informa-
tion.

Finally, note the “Events” node which does not have a type at all. This is because events in
OPC-UA are not represented as nodes. In fact, OPC-UA does not describe how events should be
represented internally at all, only how they should be displayed to the user. This is discussed
further in chapter 3.

CHAPTER 2. BACKGROUND 12

Fire-
Detectors

Heat-
Detectors

302-aw

Sub-
System

SIF

Heat
Detector

Value

Instance
Information

APOSBase
ClassType

L1 Static

L2 Static

L3 Static

APOSAsset
Type

Failure
Event Type

Mode

Detection
Method

Cause

Source
Node

BaseFailure
Mode

Mode F1

Mode F2

BaseFailure
Detection

Detection
D1

Detection
D2

BaseFailure
Cause

Cause C1

Cause C2

BaseEvent
Type

BaseData
Variable

Type

Events

Figure 2.2: Information model in OPC-UA.

Chapter 3

OPC-UA Services

Three parts of the core OPC-UA standard: information modeling, data encoding and security are
described in chapter 3 of the specialization project. The next part of OPC-UA is its API, discussed
in part 4 of the standard[35]. The API is the interface an OPC-UA server exposes to the world.
This comes as a collection of around 40 “Services”, which each provide some way of interacting
with the data exposed by the OPC-UA server. In order to develop a server that provides data
using the APOS information model, it is necessary to understand what some of these services
do.

When developing an OPC-UA server it will always, by necessity, expose some underlying sys-
tem. The OPC-UA standard does not define how information is to be stored, only how it should
be presented. This means that it is up to the developer to decide on a reasonable mapping not
just for the information model, but also for how requests to the interface should be translated.
Even the server in the specialization project was based on an underlying system, even if it was
just an in-memory node hierarchy on the same computer.

For example, an OPC-UA server running on some field PLC (Programmable Logic Controller)
might work like this: It will have a predefined and somewhat configurable structure which is
stored in its permanent memory, if a user wants to read this structure, the OPC-UA server will
translate the generic OPC-UA service calls into commands to access the relevant parts of its
memory. It may also have some sensor values that may be stored in some more volatile memory,
calls to read these values will be translated to the correct form of memory access, and so on.

This type of in-memory server is simple, but very common. The server developed for the
project thesis had its structure stored entirely in permanent memory (the NodeSet file) or in
code. A more complex system might have an OPC-UA server running on some more powerful
infrastructure server, providing without replicating the data from a number of field PLCs that
contain the actual information. This means that a service call to read information about some
device defined on the OPC-UA server may be translated into network requests to obtain infor-
mation from the PLCs.

This is one of the strengths of OPC-UA, it allows users to ignore the underlying structure,
and access information from several underlying systems using the same, limited collection of
services. In theory, you could write an OPC-UA server where the computer just prints service
calls on a screen, and an operator types in the correct response (although this would be a very
slow server).

There are several services related to underlying communication and session-management.

13

CHAPTER 3. OPC-UA SERVICES 14

While these are needed if one wanted to develop an OPC-UA server from scratch, this project
will use an SDK (Software Development Kit) that handles a number of services automatically.
An SDK is generally a collection of software used to simplify development by providing a higher
level interface to some system or concept. In this case it makes it possible for this project to
ignore the low-level concepts in OPC-UA, like session logic, data serialization, and TCP. Instead,
this chapter will cover only the services necessary for creating a server using the APOS model,
that gets its information from external systems.

3.1 NodeIds

In order to understand the services it is important to understand a core OPC-UA, the NodeId.
The idea of a globally unique identifier is not something unique to OPC-UA. In fact, it turns out
that defining a unique identifier for each piece of information greatly simplifies design and use
of information models and information storage systems. That in itself is not so strange, it is in
fact difficult to imagine some system without a unique identifier at all, since unique identifiers
can be made arbitrarily complex. A node in the basic information model developed in the spe-
cialization project report[34] could, for example, be defined uniquely by its position in the node
hierarchy.

A model without a unique identifier at all would potentially have different items that are im-
possible to distinguish, which is not very useful. If two items are completely indistinguishable,
then they are the same, and it would in fact be impossible to store them in any reasonable way,
since the act of, for example, assigning identical entries indices, would expand the model to
effectively give them a unique identifier.

That said, there are pure programmatic benefits of having strictly defined unique ids. It
can make lookup more efficient, and importantly it makes it possible to carry a reference to a
piece of information and pass it along to other systems. In the case of OPC-UA, this means that
the server can give the client a compact NodeId, instead of a more complex identifier, which
simplifies the interface.

Most systems decide on some simple system of either numeric or character sequence (string)
identifiers, but as OPC-UA is not an implementation but a generic interface, it would not be ideal
to make such a restriction. For example, if OPC-UA had decided that all identifiers were to be
integers, and it was then used to expose some underlying system which used string identifiers,
it would be difficult to create a consistent mapping, and it would almost certainly be necessary
to use some kind of internal state to manage the mapping, which makes the server less “flat”.

The “flatness” is an important design criteria when building interfaces. Ideally, a call to an
OPC-UA service should only require the server to do a minimal amount of work. This is achieved
by ensuring that the NodeId contains sufficient information to uniquely identify the piece of
data in the source systems that it references, using minimal external context.

Because of this ideal, the OPC-UA standard states that a NodeId should be able to be defined
using one of four NodeId Identifier types:

• Numeric, a 32 bit integer.

• String, a string of up to 4096 characters.

• Guid, (Globally Unique Identifier), formally defined by RFC 4122[32].

CHAPTER 3. OPC-UA SERVICES 15

• Opaque, a byte-string of up to 4096 bytes. Similar to string, but the format is even more
free. An opaque identifier could easily encode any piece of information of less than 4096
bytes, meaning a NodeId could even be something like an image or a short audio clip.

These are commonly described on the following forms: “i=123”, “s=somestringid”, “g=5ec1d795-
9b9c-4c1c-a6a6-515cc6ae53d0”, “o=QSB2ZXJ5IG5pY2UgSUQ=”, that is, the identifier type is sym-
bolized by a single letter: “i” for numeric, “s” for string, “g” for GUID and “o” for opaque, followed
by “=”, and a string representation of the identifier. For byte-string this is base-64 encoded. This
text will use this format to describe NodeIds when necessary.

This, however, may still cause some inconvenient issues. For instance if one wanted to cre-
ate an OPC-UA server that exposes several databases that use 32 bit numeric identifiers. Each
database can use the full range of the numeric NodeIds, so it is not possible to uniquely identify
a value that may come from either of these servers using just a number. One of the other iden-
tifier types could be used, but this is also not ideal, since it would be far more elegant to just use
the IDs from the source systems directly. It is better to perform a minimal amount of translation,
again to minimize the complexity of the interface.

This is where the idea of Namespaces is useful. In addition to the identifier, each NodeId is
associated with a namespace, typically a URI[21] (Uniform Resource Identifier). For example,
the base namespace for all OPC-UA servers is “http://opcfoundation.org/UA/”. In the NodeId
itself this is encoded as a NamspaceIndex, meaning the index in the namespace-table stored on
the server.

This solves the issue with duplicated IDs across databases. Now, each database is given its
own namespace, and use the 32 bit IDs directly. So there can be multiple NodeIds “i=1”, so long
as they each have a different namespace. This is usually written like “ns=1;i=1”, “ns=2;i=1”. If
the namespaceIndex is 0, meaning it belongs to the base OPC-UA namespace, “ns=0;” is usually
omitted. The other namespaces are decided by each server implementation, but namespace 0
is always the base namespace.

For a well-defined server exposing multiple underlying systems, this is how it is usually done:
Define a namespace for each underlying system, and use an as close approximation of the IDs
used by that system as possible. Ideally, a NodeId received from the client should be able to
be immediately used to look up information about that node in an underlying system, without
having to refer to some other underlying system like an in-memory table or similar.

The Namespace is chosen to represent the source system in some way. For a server that
exposes a list of PLCs, the namespace of each PLC might just be its IP address. If that is not
possible, then the only requirements to the namespace is that it is a URI, and that it uniquely
and unambiguously identifies the source system.

3.2 Browse

There are only two fundamental services needed to read the node hierarchy. The first of these
is Browse, which asks the server to respond with the references to and from a given node. The
structure of a browse request is fairly large, here the description is limited to the parts that are
most relevant for this project. A basic element of a request is the BrowseDescription seen in table
3.1.

CHAPTER 3. OPC-UA SERVICES 16

Name Type Description
nodeId NodeId The NodeId of the node to browse.
browseDirection Enum BrowseDirection One of “Forward”, “Inverse” or “Both”. The di-

rection of references to return, where “Inverse”
means references pointing to the node in ques-
tion.

referenceTypeId NodeId The NodeId of a reference type used to filter re-
sults further. This can be left out to return all
types.

includeSubtypes Boolean A boolean value indicating whether to return
references that are subtypes of the given refer-
enceTypeId.

nodeClassMask Integer A mask for filtering which NodeClasses to re-
turn. This can be left as 0 to return all classes.

resultMask Integer A mask for filtering result fields, six differ-
ent fields can be requested for each refer-
enced node: referenceType, isForward (true/-
false for whether the reference is forward or
inverse), NodeClass, BrowseName (a unique
name within the children of the given node),
DisplayName (the human-readable name of the
node) and TypeDefinition (The objectType/-
variableType of this node).

Table 3.1: The BrowseDescription structure in OPC-UA.

CHAPTER 3. OPC-UA SERVICES 17

A call to the Browse service is a list of BrowseDescriptions, as well as a limit for the max num-
ber of references to return for each. The result is a list of the returned references, and potentially
a list of ContinuationPoints. The idea of ContinuationPoints is important, as it allows the server
to return only part of the result. Say the server is asked for 100 children of a node with 1000,
the server will only return 100, but it will also return a ContinuationPoint, making it possible
to make another request including that ContinuationPoint to continue reading from where the
server stopped instead of just getting the first 100 again.

This helps keep message sizes small. If a user instead requested children of 100 such nodes,
that each had 10000 children, they might end up receiving a million nodes. If this was sent over
a slow or unstable connection, the chances that it would never arrive, or that it would arrive
incomplete rises. It is better for both client and server if the chunks are kept relatively small,
and instead sent over a larger number of requests.

The Browse service is often the service that accesses the largest number of different systems.
In the previous example of a server connecting to different PLCs, browsing a single node may re-
turn references that point to multiple PLCs, and information about each reference would need
to be retrieved from those PLCs. So browsing a single node could result in requests to multi-
ple source systems. For the client, this is very convenient, as they essentially only provided the
server with a single NodeId, but actually obtaining that information involves complex opera-
tions and knowledge of the underlying systems. If the OPC-UA server did not exist, it would be
much more difficult for the user to obtain this information efficiently.

Using the Browse service is often among the first things a user will do when accessing a
server. Before the user can ask for the specific information they want, they need to know what
nodes exist, and what their NodeIds are.

3.3 Read

The second essential service is Read, which is used to read attribute values from nodes. Each
node in OPC-UA has a number of Attributes. The exact attributes for each node will depend on
its NodeClass. These are typically things like DisplayName, NodeClass, NodeId, or Value for vari-
ables and Abstract (true if the type cannot be instantiated) for ObjectTypes. The exact attributes
per NodeClass is found in section 5 of part 3 of the reference[35].

This service will also often access multiple source systems, since a single request can ask for
a number of different attributes. The actual request itself is very simple, it consists of a list of
ReadValueIds, as described in table 3.2.

Name Type Description
nodeId NodeId The NodeId of the node the attribute belongs to.
attributeId Integer The numerical id of the attribute, these are constant and defined in

the OPC-UA standard.

Table 3.2: The ReadValueId structure in OPC-UA.

A few other options may be specified, in order to read part of an array structure, or return
the time the attribute was last modified, but the core of the service is just this: a list of node/at-
tribute pairs. Translating this to efficient requests can be complicated. Very frequently, a request

CHAPTER 3. OPC-UA SERVICES 18

like this will contain many attributes from the same node. In that case it is very inefficient to re-
quest these one at a time from the source system. Instead, the server should group attributes
belonging to the same node, and even group nodes belonging to the same source system, to
make the requests to the underlying systems as efficient as possible.

Beyond that, there is no guarantee that all the different values for a single node exists in the
same system. It is often the case that meta-data about some component is stored directly on the
server, while the value of the sensor is stored elsewhere.

3.4 Timeseries and Event Data

Using the two services, Browse and Read, a user can access information about nodes. Most of
the APOS information model would be accessible using just these two. There are, however, a
number of other services that also warrant discussion, relating to reading data such as measure-
ments and events from the source systems. The first of these is the Subscriptions system.

Subscriptions

Values in OPC-UA are often transient, as they reflect some state in an underlying system. A sim-
ple example is the value of some “Measurement” node, that reflects a live sensor value. Once
this sensor value changes, the old value is by default lost, unless some other system makes an
effort to store it. Even worse, events are often similarly transient. An event occurs, and is re-
ported, but if no-one is listening, the event may in some cases be lost. The server could store
values or events, but this is often not possible or desirable, as that would make it much less flat,
and effectively add another source system for historical values.

The user could just periodically ask for updates to values, but this is not ideal. There is no
guarantee that the connection between client and server is stable, or that the user is able to
make requests quickly enough to sample the values they want. For example, if the signal the
user wanted to measure had frequencies up to 1000 Hz, it would be difficult to reliably request
updates over the internet. Even if the server is located close to the client, random network traffic,
external disturbances, or load on the server would frequently cause requests to take too long.
High frequency requests also adds unnecessary load on the network and server.

Instead, the user asks the server to sample values periodically, and store them until asked
to Publish the stored values. For convenience, subscribed values are grouped together using
MonitoredItems. Each Subscription has a number of MonitoredItems, which each monitor a
single attribute on a single node. Each MonitoredItem either samples values at a specific rate,
or receives updates in some other way (the details are left up to the server), and also queues a
certain number of values. The client may request a specific QueueLength, for each Monitored-
Item, which is how many values should be queued. The client calls the Publish service with the
ID of the Subscription, and receives all stored values in response.

Using the 1000 Hz example, this is how it would typically work: The client first creates a
Subscription on the server, and decides to call the Publish service once a second. It then creates
a MonitoredItem attached to this Subscription, which samples at 2000 Hz, in order to capture
all the high-frequency behavior. It sets the QueueLength of the MonitoredItem to 4000, to make
sure that no data is lost, even if the client is not able to publish every second. Now, the server

CHAPTER 3. OPC-UA SERVICES 19

will sample at 2000 Hz, and once a second the client will call the “Publish” service, and receive
all 2000 measurements since the last publish from the server. This setup can be made to work
even on unstable network connections.

Alternatively, the server might not sample at all, and instead update the subscription when-
ever the value changes, resulting in fewer data points. This is up to the server, when the client
asks for a certain sample-rate, the server may not comply. Usually the server will indicate to the
client a range of supported sample-rates.

Events

The fundamental system for reading events is similar, except it often does not make sense to
“sample” events. Instead, they are reported to the MonitoredItem, and written to the queue
when they occur. The MonitoredItem monitors the EventNotifier attribute on the node that
generated the event, which is not necessarily its source. The structure of events is discussed in
further detail in the specialization project report, chapter 3.

Events are in general much more complex than attributes, in that each event may contain a
huge number of fields. Unlike subscriptions to attribute changes, subscribing to events requires
the user to state which fields they want to read.

For example, the user might request a few core fields EventType, SourceNode, Time, and a
property of a derived event type, FailureMode. It would then receive any events, even those that
do not define FailureMode. In those cases, that field in the result would not be set. Each event
received would consist of four values, in the same order as requested, regardless of whether the
event type in question has the FailureMode property.

OPC-UA also defines a complex system for filtering, but a detailed understanding of that will
not be covered here, and the server will not implement this beyond what is built into the SDK.

This general structure does make reading events more difficult. If the events were generated
in a source system the server might need its own system for sampling events. The filtering sys-
tem in OPC-UA is complex, and translating it to the filter system used by the source system, if
any, may not be practical, so a server might have to just read all events, then just report the ones
that are relevant to the client.

HistoryRead

The final group of services that may be worth considering for this project is reading historical
data and events. This mostly works as one might expect. Each node indicate whether it has
access to historical data (the Historizing attribute on variables), or historical events (The Histo-
ryEvents flag on its EventNotifier attribute). The client may request historical information from a
number of nodes at once, for specific periods of time, and using ContinuationPoints to continue
reading, as discussed previously.

It is uncommon for low-level source systems to have access to historical data, but there is
nothing preventing an OPC-UA server from using a more complex system like an external time-
series database as a source system. In that case, reading live values and reading historical values
might actually result in calls to different source systems.

CHAPTER 3. OPC-UA SERVICES 20

3.5 Development of an OPC-UA server

Understanding the available services is essential for developing both client and server OPC-UA
applications. This project aims to create a server that exposes multiple underlying systems, and
a proper development procedure is needed. One such procedure is to go through each of the
above services in the order presented here, and identify how to access that information in the
interfaces of the source systems. This is often not simple, and the actual steps will vary based
on the source system.

In order to illustrate how this might be done, this section goes through the process for a
source system consisting of a database of employees in an organization. It is organized as a
node tree, as that should be familiar to the reader, and most systems can be transformed into
something similar. The structure is seen in figure 3.1.

Boss

Team Leader 1 Team Leader 2

Employee 1 Employee 2 Employee 3 Employee 4

Figure 3.1: Sample structure from source system.

Browse

Starting with Browse. The first operation for a user might be to browse the “Objects” node, which
is always at the root of the OPC-UA hierarchy. Browsing the Objects node would mean finding all
nodes in the model without a parent, so the server queries the source system for any employees
without a boss. This returns just the “Boss” node. Next the user asks to browse the “Boss” node,
so the server responds by querying the source system for employees that work under “Boss”,
resulting in “Team Leader 1” and “Team Leader 2”.

This is not, in practice, everything that would have to be returned by the Browse service.
This database would be expected to also store information about each employee. For example,
each employee has a “Firstname”, “Lastname” and “Address”. The OPC-UA attribute Display-
Name can be used for Firstname and Lastname, but there is no obvious OPC-UA attribute that
corresponds to Address. Trying to include it in the Description would not make it easy for an
automated system to find the address, and would not make for a good information model.

Instead, in order to model this in OPC-UA one would use properties. Add a property to each
employee node that stores the value of each employee’s Address. This is a separate node, so it
should be returned when Browse is called.

So the Browse service call on the “Boss” node results in two operations: Query the database
for employees that work under “Boss”, and retrieve information about the structure of the table
containing “Boss” to know what properties to display. The second is going to be quite consistent,
however, so it can be done on startup, to avoid unnecessary load on the source system.

CHAPTER 3. OPC-UA SERVICES 21

The user might keep going, and Browse both “Team Leader 1” and “Team Leader 2”, where
the server would give 6 nodes as a result: Employee 1 through 4, as well as “Address” for each of
the two browsed nodes. Figure 3.2 shows the structure in OPC-UA.

Boss

Team
Leader 1

Team
Leader 2

Employee
1

Employee
2

Employee
3

Employee
4

Address

Address Address

Address Address Address Address

Figure 3.2: Structure in OPC-UA.

Read

Next the user invokes the Read service, to find out some more information about each node.
Most of the returned information is defined by the information model, as described above.
Employees do not have values, and represent instance information, so they have the “Object”
NodeClass. The DisplayName of each employee could just be their first and last names. Many
attributes are about permissions to edit, whether the node generates events, and so on. These
can usually be known beforehand, and are not stored in the underlying system.

When a client asks about the “Address” node, the server needs to know how to access the
value in the source system. Assuming the database uses numerical ids, each employee can be
uniquely determined by some employee number. If, for example, “Boss” is employee number
1, the NodeId of the Boss node might be “ns=1;i=1”. The boss has an “address” field, which also
needs a unique id. A solution is to let the NodeId of the address node on “Boss” be “ns=1;s=1-
Address”, as this communicates a lot of information using the NodeId.

First, the namespace indicates that the source system is the employee database. Next, the
identifier type indicates that this is a property of an employee. Finally, the identifier indicates
that this is the “Address” field, and that it belongs to employee number 1. Since it is safe to
assume that field names in the source system are unique in a given table, this means that all
nodes discussed thus far have unique IDs.

Remaining Services

Next the user may want to access some other values. Perhaps management wants to add GPS
trackers to the employees, and report that information in the database as a live value. The

CHAPTER 3. OPC-UA SERVICES 22

client may subscribe to updates to this value, and so the server would need a system to poll
the database for changes periodically.

Perhaps instead of simply making “GPS Position” a field on each “Employee” in the database,
it could be written to a separate table, with a timestamp of the measurement, so that the user
can access historical data as well. Now, although “Position” will still be a variable under each
Employee node, the values are actually stored elsewhere, so when Read or HistoryRead is in-
voked on the Value attribute of that node, the server must look in a different table.

Finally, for convenience the server could trigger events each time an employee enters or
leaves a dangerous area. This could be done using a similar system: when a client subscribes
to events, subscribe to changes in position in the source system, then detect that the employee
enters or leaves areas marked as dangerous, and report that as an event.

In practice, the actual implementation of the OPC-UA server should be fairly straight for-
ward, given a good information model, and access to the source systems. If the general con-
cepts and design philosophies described in this chapter are kept in mind, there should be few
problems in the development of the server itself. A solid understanding of OPC-UA is impor-
tant, however, as the standard is very flexible, and it is quite possible to create a poorly designed
server. An additional advantage of a “flat” server is that expanding it to new source systems is
usually fairly simple, so this should be a goal.

Chapter 4

Source Systems

As mentioned in chapter 1, the server will use OPC-UA to provide access to information in three
separate underlying systems. These are all systems used by Aker BP engineers to organize in-
formation about the various facilities operated by Aker BP. In order to create a mapping from
the source systems to the OPC-UA information model, it is necessary to understand how these
source systems are used, what their role is, and what information they each contain that is of
relevance to the APOS information model.

This project will focus on three different source systems in use at Aker BP. First, Aveva[8]
LCI (Life Cycle Inventory), a database that contains a collection of tags, which each represent
a single piece of physical equipment. The LCI database is the core of Aker BPs system, and
connects to the other two systems. Secondly, EqHub[12], a central repository for equipment
information managed by NOROG (Norsk Olje og Gass, eng: Norwegian Oil and Gas) and hosted
by Sharecat[18]. Finally, SAP[17] (Systems Application and Products in Data Processing), a large
CMMS (Computerized Maintenance Management System) used for, among a number of other
things, managing maintenance and testing of equipment.

This chapter explains how these systems are constructed, how the data is accessed by engi-
neers today, and how this project can access the data in question. Figure 4.1 shows the general
structure of the server, and the type of interface available for each source system. This chapter
explains in detail how each of the APIs below (REST, ODBC and ODATA) work, and how they can
be used in the server application.

4.1 Process

From the beginning of this project it was not clear whether it would be possible to find any
official APIs for any of the three source systems. In order to ensure the success of the project
despite this, it was decided to reverse engineer the accessible frontend applications for all three
systems, in order to find some way to access the information. The goal of reverse engineering
the systems is to identify the internal flow of information in each application, and find out where
it is “vulnerable”, meaning where it can be diverted to a different application.

Reverse engineering any system, in order to gain access to the data it displays, typically fol-
lows the following general procedure.

• Find the desired information in a human-readable format. Since these applications are

23

CHAPTER 4. SOURCE SYSTEMS 24

OPC-UA Server

EqHub

LCI

SAP

R
E
S
T

O
D
B
C

O
D
A
T
A

eqhub.net

LCI Aveva NET

PM Master

Figure 4.1: Source systems and their APIs.

designed to display information to users, this tends to be fairly easy.

• Identify where the information comes from, and where it can be intercepted while still in
a machine-readable format.

• Study the request to find out where it goes, and what additional information is required to
construct it.

• Repeat until a complete algorithm for obtaining the desired information from the server
can be designed.

The idea is that most applications, for efficiency, communicate information on a machine-
readable format, since this is often more compact and easy for the application to transform into
something human readable. This is illustrated in figure 4.2.

Application:
Human read-

able data

Server:
Searchable

data storage

Machine-readable standard format

Figure 4.2: How most server/client applications are constructed.

All three source systems have some kind of web-based frontend application, which is ad-
vantageous here, as it makes reverse engineering much more likely to succeed. Web applica-
tions follow the general structure illustrated in figure 4.2, and run inside a container, the web
browser. As such all requests from the web-application must be readable by the browser, so
that the browser can decide how to send them over the internet. This uses open standards, and

CHAPTER 4. SOURCE SYSTEMS 25

messages are usually readable by both machines and humans. In order to understand how this
works it is worthwhile to discuss some basics of the world wide web.

In general, communication on the world wide web[22] (WWW) is done over HTTP[27] (Hy-
per Text Transfer Protocol), which has a standard structure of a set of headers, and a body. HTTP
itself uses TCP (Transmission Control Protocol) as a transport layer. Navigating to a webpage
causes the browser to send a “GET” request to the server, where GET is a kind of classifier for
the type of request, a part of the header. The server responds with whatever resource is located
at the specified URL (Uniform Resource Locator). For most web-pages this will be an HTML[14]
(HyperText Markup Language) page containing a number of references to other resources the
server needs to fetch.

This data is used to build the page, trigger further requests, and in general display informa-
tion to the user. Scripting on modern websites usually uses JavaScript[15], which is a program-
ming language designed specifically for websites.

Requests are usually formatted as JSON (JavaScript Object Notation), which is convenient,
as it is very easy to work with, and many programming languages have some kind of library to
parse JSON. Requests can also be XML (Extensible Markup Language), which similarly can be
easily parsed by both humans and computers. A website that uses some other, unusual format
would be much harder to work with, but fortunately all three source systems use JSON, XML or
HTML.

Given this, there are a few different parts of the site to study, in order to find out what infor-
mation is available. The HTML that the page constructs and displays to the user can be studied
to find out what information exists. The JavaScript can be studied to figure out what the website
does, though this is often very difficult, since the JavaScript is usually “minified”, meaning that it
has been transformed to have a smaller size. This has the side effect of making it almost impos-
sible to read. Finally, and most relevant for this project, the requests the website makes can be
studied to find out what it communicates with the backend. Most modern browsers have tools
for looking at the requests, as well as for studying the data stored in the web application.

Many websites, however, contain next to no JavaScript, and instead construct the entire page
on the server, before sending it to the client. In this case, intercepting the data is much more
difficult, since the HTML is designed to be human readable, not necessarily machine-readable.
It is possible to do what is known as “Scraping”, essentially just digging through the page to
extract the data as it appears to the users. While HTML is designed to describe pretty websites it
can still be read and parsed by a computer.

With the procedures outlined in this section, it should always be possible to extract data from
a web application, in a more or less efficient manner. Even if there is no API, and requests cannot
be intercepted, it is more or less impossible to design a website that can be read by humans but
not by machines, so a computer program that impersonates a user would still be able to access
the information.

Table 4.1 provides an overview of the results of this chapter, differentiating between the pro-
tocols and formats used by the frontend user applications, and the formats the OPC-UA server
ended up using. These are each explained later in this chapter. For now, note that the user
interfaces use exclusively human-readable formats: XML, JSON and HTML.

CHAPTER 4. SOURCE SYSTEMS 26

User Interface Available API
System Format Protocol Format Protocol

SAP XML/JSON ODATA XML/JSON ODATA
LCI JSON REST TDS ODBC

EqHub HTML N/A JSON REST

Table 4.1: Overview of communication formats and protocols in the source systems

4.2 LCI

An LCI (Life Cycle Inventory) database is a system used to store information about equipment
over their lifetime. It will typically contain information about instrument classes, safety require-
ments, location, logical relationships etc. In general, such a database is used to manage infor-
mation related to equipment so that it is possible to look up related documents, measures and
other instance-specific information.

User Interface

The first step to exploring this system is to look at how the data in the LCI database is accessed by
users. In Aker BP this is done through an app called LCI AVEVA NET. The application itself does
nothing out of the ordinary. When the user looks at a tag, it makes a few requests to the backend,
that respond with JSON data. The requests are made with JSON payload to a .aspx endpoint. The
.aspx file extension implies that this is an ASP.NET[7] application, which is expected given the
name of the application.

This backend .NET application appears to combine a number of different systems, and present
a common, if not particularly simple, API. The request contents are fairly simple, and could be
reverse-engineered. The most unusual part of this system is that it seems like some requests,
those that fetch SAP-related data, are made as JSON encoded SOAP, which is very unusual, and
gives some important insights into the backend.

SOAP[3] (Service Oriented Architecture Protocol), is a Microsoft-developed standard for ob-
ject access. It defines a message structure with an “envelope” around a “body”. It is older, but
still widely used. Finding it in a system like this would not be surprising, however it is usually
encoded as XML. In fact, it is defined within the XML standard. The response here is an XML
structure encoded as JSON.

This further confirms that the backend here is an aggregator for several source systems.
Likely this backend makes its own requests over a SOAP API to SAP, receives an XML encoded
response, converts it internally to JSON, then sends that inside its own standard response body.

Finding something like this is not really a good sign for reverse-engineering this system. The
fact that there are several hidden layers of API might mean that knowledge of internal logic is
necessary to create something general. This logic may exist in the source code of the frontend,
however this is minified JavaScript. That is, it is code that could in theory be read by a human,
but it is essentially readable code that has been compressed by a computer to be almost com-
pletely unreadable. Finding even simple logic in something like that is a long and complicated
project.

CHAPTER 4. SOURCE SYSTEMS 27

Instead, it is better to ignore the API backend for now, and look for the actual database it-
self. In the IT world, a database is often a quite well-defined concept, which it is likely possible
to access remotely. This is indeed the case for the LCI system, which is a fairly standard SQL
database.

Data Access

The actual LCI database in use at Aker BP is an instance of Microsoft’s SQL Server, which means
that accessing it in this case will mean using SQL over ODBC[33] (Open Database Connectiv-
ity). SQL (“sequel”, Structured Query Language), is the standard language used for accessing
relational databases. It was developed at IBM in the early 1970s[24], and is usually, depending
on dialect, a fully capable programming language able to describe complex queries against a
database. Unlike most programming languages it is declarative, rather than imperative, the dif-
ference being that where an imperative language describes the process required to reach some
goal, a declarative language just describes the goal.

This text will not go into the details of SQL, the queries used will be explained when they
come up. The general idea, however, is to describe the result as a filtered section of some ta-
ble. A simple SQL query might be SELECT Weight FROM Cars WHERE Manufacturer=Ford,
retrieve values from the “Weight” column for all rows in the “Cars” table where the value of the
“Manufacturer” column is “Ford”. The queries necessary for this project will not be much more
complicated than this.

ODBC is a standard API for accessing databases. It is widely used, and Microsoft SQL Server
databases will generally support it, the LCI database is fortunately no exception. Understanding
the details of ODBC is not necessary for this project. The core is simply that it defines a standard
SQL grammar, and rules for how messages should be structured. In this case, it gives access
to the LCI database remotely. Communication over ODBC is done with the Microsoft format
Tabular Data Stream (TDS), which is open and can be parsed with a library.

Unfortunately, the database structure for this particular database is not very descriptive. The
database in question is called LCI_Reporting_Prod, and it contains a few Views, of which two
may be of interest. A view is essentially a kind of virtual table. Since any SQL query returns
a table, it is possible to perform queries against a stored query, a view, which can provide a
convenient way to access information without having to look the underlying tables.

These views are called

• “REP_AssociationDetails”, containing associations between tags, such as parent/child.

• “REP_TagAttributes”, containing rows of “AttributeName”, “AttributeValue”, “TagName” and
”TagId”, making it possible to read the attributes of a given tag.

There is also a “REP_Tags” table, which is not a view, but which provides easier access to basic
tag related data.

Some of what makes this database difficult is that the “AttributeName” for a tag is entirely
numerical. So a simple query

SELECT [AttributeName], [AttributeValue]

FROM [dbo].[REP_TagAttributes]

WHERE [TagFullName]='Some|Tag'

CHAPTER 4. SOURCE SYSTEMS 28

would produce a table of pairs like “AttributeName=3033, AttributeValue=TS”. The information
for mapping these numerical names to actually useful values needs to be supplied from else-
where.

A helpful engineer in Aker BP provided an SQL query with roughly 200 lines similar to:

,[22112] AS "22112 - EQUIPMENT IDENTIFIER"

which provides a mapping. A simple regular expression[6]

/\s*,\[([0-9]*)\][^-]*- ([^"]*)"/

is capable of parsing this to produce pairs of numerical attribute-name and a human readable
name. The code for this is included in LCIDBSource.cs, ParseRawNames.

With these names it is possible to extract the data from the database as a list of name/value
pairs, which can be assigned to the OPC-UA information model, as described in chapter 5. The
associations table can be used to construct a hierarchical tag structure, and the tag-attributes
table can be used to obtain properties for equipment instances.

A final point to note about the LCI database is that this particular database is just a copy
taken at midnight every day, while the main database used by the LCI NET Application is inac-
cessible. Presumably, a full implementation would read directly from the main database, which
is most likely identical to the copy.

Authorization

Gaining access to the SQL server is both easy and difficult in this case. It is easy in that any user
in the same Active Directory (AD)[5] that has been given access, can read from the server. AD is
a Microsoft Windows concept for user groups. This makes connecting to the server fairly simple,
however it does mean that connecting to the server from a machine that is not managed by Aker
BP is not really meant to be possible at all.

This would not be an issue, if it was not for the fact that the machine provided by Aker BP for
this project is configured in a way that makes it close to impossible to compile .NET programs
on it, meaning that development has to be done on a different machine and transferred there
before running. Fortunately, this is not an insurmountable challenge, the setup used for this
project is explained in some detail in appendix A.

4.3 EqHub

EqHub[12] is a service provided by Norsk Olje og Gass (Norwegian Oil and Gass)[1], which aims
to gather equipment data in a central location. The idea behind this is solid from an information
modeling perspective. Instead of each company like Aker BP having to get updated information
about equipment from providers directly, it can be stored in a central repository and accessed
using a common “TEK” number, which is found in the LCI database.

This is an initiative very much in the spirit of good information modeling. By gathering the
information in a central repository accessed both by producers and consumers of industrial
equipment, it is much more likely that everyone has access to up-to-date information about the
equipment, which benefits everyone involved.

CHAPTER 4. SOURCE SYSTEMS 29

User Interface

The end user interface here appears to be another ASP.NET web-server. The actual equipment
pages are linked from the LCI application, using numbers stored as tags in the LCI database,
which are then linked to equipment tags using associations. Unfortunately, this time the site is
mostly just a static page. That is, the actual information about each equipment type is written
to an HTML document before it is sent from the backend server. This exposes almost nothing
about how the data is stored. Most likely it is contained in some kind of database, but since the
frontend does not use any kind of API, it is likely entirely internal, and since EqHub does not
belong to Aker BP, accessing it was not possible for this project.

The upside is that the information appears to be organized in HTML tables, which means
that it is reasonably systematic, and could fairly easily be scraped. The solution here does not
have to be very complicated, but it is not ideal, and it would not be acceptable in a finished
product.

Fortunately, there does exist a REST API which can be used instead.

Data Access

Accessing the information in practice means connecting to a REST API[11] managed by Sharecat[18],
which is a Norwegian company that provides technical solutions for industry.

REST[28] (Representational State Transfer) is an architectural style of transferring data over
HTTP. The idea is that the state is stored on a server, and specific operations modify or retrieve
the data in specific ways. REST describes the behavior of four different HTTP methods:

GET Retrieve a representation of the state.

POST Let the target resource interpret the information sent in the request to execute some
function on the state.

PUT Set the target state to the representation sent in the request.

DELETE Remove the state of the target resource.

Many modern websites loosely follow these conventions, and understanding them can make
interpreting internet communication simpler, as they categorize the kind of effect each request
has on the target state. For example, a GET request should not modify the target state, a POST
request may, and a PUT or DELETE request should.

In this case, the REST API would make it possible to retrieve the data seen in the HTML ta-
bles directly, with relatively simple authentication. In general, since the TEK Number is already
known from the LCI database, it should be sufficient to make a single request to the endpoint
/Catalogues/{catalogueId}/Teknos/{tekNoId}, given the catalogueId, which is common
for all TEK numbers.

The result is an easily parse-able JSON structure, which is documented in the open online
reference for the API[11].

CHAPTER 4. SOURCE SYSTEMS 30

Authorization

Accessing the user interface can be done using Azure SSO (Single sign on), which is a solution
for cross-platform authentication created by Microsoft. This, however, is not really designed for
automation, and the REST API does not support it. Instead, in order to connect with the REST
API, a special key has to be issued, in order to communicate over OAUTH 2.0[30].

OAUTH is a standard for authentication, in this case the system is fairly simple. A request is
made using a client id and a secret key to an API endpoint, which returns a token that can be
used to authorize requests for a limited period.

4.4 SAP

SAP[17] (Systems, Applications and Products in Data Processing) is a German company special-
izing in management software. The system in use at Aker BP is, in part, a so-called “Computer-
ized Maintenance Management System” (CMMS), responsible for tracking testing and mainte-
nance of instrumentation and other equipment.

One of the tasks of such a system is to keep track of function tests for equipment. The idea
is simple enough: in order to ensure compliance with safety standards periodic tests are neces-
sary. With tens of thousands of pieces of equipment of various types, a computerized system is
needed to keep track of the enormous number of tests that will be performed over time. Perfor-
mance is often measured in failure rate over time, so for example, if the failure rate is at most 1%
per year, and 100 tests of an instrument type are conducted over a year, only one may be allowed
to be in a failure state.

This results in an enormous number of data points across the system. A CMMS is respon-
sible for organizing this data and contextualizing it with the correct tag numbers and other in-
strument information.

Of course, SAP does a great deal more than this. It is also used for requisitions, personnel,
asset management, and much more. For this project, only three resource types are relevant:
Measurements, as discussed above, Notifications, which are failure events with failure modes
and detections, and Functional Locations, which correspond to LCI tags, and are used to con-
nect tags in the LCI database with events stored in SAP.

User Interface

SAP is known in the industry to be quite complicated and it is essentially intended as an all-
in-one solution for all asset management in an industrial company. In Aker BP access to SAP
data goes through two primary systems. First is the SAP GUI, which is a standalone desktop
application. This is unlikely to be possible to reverse engineer. It seems like it may be possible
to access the data in SAP using the command line, but this is likely too large and complex to
attempt in the limited amount of time given to this project.

The other is a web-app like the one for LCI, which is easier to work with. There are a number
of different web apps accessible from Aker BPs “Fiori Launchpad”. SAP Fiori[13] is a product
developed by SAP which provides tools for developing a frontend application for accessing SAP.
The actual name of the application is “com.akerbp.EamMasterApp”, which points to this being

CHAPTER 4. SOURCE SYSTEMS 31

a product developed especially for Aker BP. The name used to refer to it in this text will be the
PM Master App, which is the name used internally by engineers in Aker BP.

The app is somewhat unusual, and it does not appear to follow common guidelines for web-
site design. Opening a single Functional Location produces over 250 requests, one of which
appears to be a batch request that contains over 130 other requests. The majority of these are
tiny JavaScript files that appear to define types, which has the consequence that the website
appears to be slower than necessary, at least in terms of initial load times.

The actual data appears to be fetched in the aforementioned batch request, which makes re-
quests to what seems to be an ODATA[16] API under the namespace “ZEAM_PM_MASTER_SRV”.
When the requests are made manually, the response is very slow, which indicates that the re-
quests may be buffered. Alternatively, it might be that it is possible to make many parallel re-
quests to the backend, even if each request is slow.

ODATA is a proper standard built on top of REST, it is formalized in ISO/IEC 20802. The idea
is to describe a language for accessing, modifying, and querying data using REST. Essentially,
ODATA defines a standard structure for requests making various operations, and legal responses
to each such request. ODATA makes it possible to filter the response, query data for specific
values, and transform the data in specific ways, by aggregating values.

Unfortunately, while it is possible to make requests directly to this ODATA API, it contains
only a bare minimum of ODATA features, and it is going to be difficult to authenticate against.
Using this would be a last resort, if no other API could be made available.

Data Access

As mentioned, ideally the data would be accessible through some official API. The best of these
would be the official SAP ODATA API, which is well documented, and appears to be very power-
ful. The advantage for this use case is that if SAP had used some custom REST API, accessing it
would require developing some custom application, like the one made for EqHub. For ODATA,
however, there exists an official library for .NET which makes this a lot easier, if still not trivial.

Unfortunately, this system is not accessible at Aker BP. In fact, while some ODATA endpoints
for limited subsets of SAP are in development and being gradually released in 2021, these will
not come in time, nor will they cover the necessary data needed for this project. It might in
theory be possible to read some data from official APIs, and some from reverse-engineering the
app as mentioned above, but this will likely just take even more work, and be too complex for
this project.

Instead, the best recourse is to try reverse engineering the PM Master ODATA API. This, un-
fortunately, is not going to be trivial, for several reasons.

1) There is no built-in system for authentication. Instead, Azure SSO will have to be used,
which is not really intended to be possible.

2) There is no documentation.

3) It appears to be completely custom-built for this app, or at least for Fiori in general, and it
is not a complete ODATA API.

Item 1) can be solved as described below, under “Authorization”.

CHAPTER 4. SOURCE SYSTEMS 32

Item 2) is not a big issue. It makes developing a solution a bit more difficult, but ODATA
contains a built-in system for API documentation, which is accessed by simply navigating to
odata/$metadata, where the full list of types and endpoints will be listed. In addition, navigat-
ing to a page in the PM Master App means navigating to a URL with parameters matching the
parameters to the ODATA API.

Item 3) is the biggest problem. If this was a fully fledged ODATA API it could be used to
search, list and generally access data efficiently. However, this is not a fully fledged ODATA API,
since it lacks collections. A core concept of ODATA is the idea of “Collections”, which filters can
be applied to in order to return a subset of the data in each.

For example, an ODATA request might look up all Cars in a database, this would look some-
thing like odata/Cars. This request should list out all Cars in a database, which is impractical.
The theory, however, is that filters can be applied to this collection, so odata/Cars?$search=ford
would apply a filter to the request to only retrieve a subset of the available data that matches the
search term “ford”. Filters can be very complicated, and return highly specific subsets of data.
The alternative is to look up entries using their “Key Properties”, which is a set of properties that
uniquely define each entry, for example a car might be identified by its registration number, so
a car could be found by navigating to odata/Cars(`REG-0001').

Without collections the only way to navigate is to know the key properties of each data type,
and then using references. For example, a car might be associated with a list of repairs, and
those could be seen by navigating to odata/Cars(`REG-0001')/repairs. From there, each
individual repair might be identified by a number, and the car it was associated with, so a repair
could be found by navigating to odata/Repairs(`REG-0001', `1234').

While this is slightly more cumbersome than using collections, it would not be a very large
challenge. The SAP Fiori ODATA API, however, uses a very large number of key attributes for
each data type. Functional Locations have 9, and Notifications have 16. Some of these require a
specific value, some can be left empty. This complexity means that despite using a standard API,
it is still necessary to reverse engineer the application. In practice, the Fiori ODATA API does not
consist of resource collections, but of functions which take many parameters, some optional,
and return a list of results. This is a misuse of the ODATA standard, but it is not impossible to
work with.

Authorization

It is possible to access the ODATA API directly when logged in to SAP through Azure SSO. Au-
thentication on the internet, in most cases, will involve one or more values in the HTTP Header
of each request. In this case, looking at the requests made to the server reveals that the only
candidates are some SAP specific cookies, which are likely obtained through Azure authentica-
tion. Cookies are small, named, data packets that help persist information across requests on
the internet. The client stores cookies as requested by the server, and the server uses these for
authenticating and identifying the user.

In order to reverse engineer this, the first step is to make a request to the server without any
cookies. It first redirects to a local page in the PM Master App, which then uses JavaScript to
redirect to a Microsoft online login page. Here, the user may be prompted for username and
password, unless they are accessing the site from a computer on the same Active Domain as the
server, such as the PC provided by Aker BP. After credentials have been entered somehow, the

CHAPTER 4. SOURCE SYSTEMS 33

site will produce a Single-Sign On (SSO) request, then use JavaScript to poll for a response for
about a minute, after which it times out.

Once this is done, the client is redirected back to the PM Master App, and are given SAP
cookies that can be used for authenticating requests to the API for a few hours. In order to au-
tomate this process, it is necessary to run what is known as a “Web Driver”, a kind of stripped
down browser, which the OPC-UA server can communicate with. This is effectively a way to im-
personate a user. It requires manually accepting the SSO request when first starting the server,
but after the initial brief interaction, the results can be reused automatically for a few hours. By
saving the credentials to a file, this process can be performed only about once a day. The process
is illustrated in figure 4.3.

Fiori server

Microsoft
login page

Waiting for SSO

Receive data

Rejected Cookies

Rejected Cookies,
Authenticate with AD

Credentials entered

SSO Accepted

Accepted Cookies

Figure 4.3: Authentication flow in the Fiori App.

This solution, despite being complicated and unreliable, is sufficient to create a working
proof of concept for this project. A proper implementation would most likely have to find some
other way of accessing the information, using a proper system for authentication.

Essentially, this solution is like wanting to trigger an alarm which requires an electric signal,
without being able to access the wire at all. As a workaround, you create a robot that enters the
building and pushes a button on the operator panel. Much more difficult and unreliable, but it
can be made to work. Most of what humans do on a computer can be recreated by a machine,
but doing it the “human” way is usually the last resort.

Chapter 5

Information Mapping

In order to consistently and repeatably convert the data from the source systems into the APOS
information model, it is necessary to produce a machine- and human readable mapping. For
the purposes of this project, this is done by creating a simple configuration schema describing
mapping from source systems to the APOS model.

Not all mapping will require a configuration schema. All this logic could in principle be
written directly into the code, and for some data-types this makes sense. The advantage of a
configuration schema is that it is easier to read, easier to edit, and that it can be modified without
re-compiling the code.

The configuration format should be simple and readable, and so the language YAML[23]
(YAML Ain’t Markup Language) will be used for all the custom configuration for this project.
When creating a configuration schema the usual design philosophy is that it is more important
that it can be easily understood by humans than by machines, and the schema created here will
follow that principle. Beyond that, to reduce the amount of manual work, it will be made as
compact as possible without sacrificing readability.

5.1 EqHub

EqHub only provides one kind of information: general equipment data. This is explicit in the
information model, a single equipment type in EqHub is usually linked to many tags in the LCI
database. This maps well to APOS equipment types. The L3 types as described in the specializa-
tion project are intended to refer to specific equipment models, so the only mapping necessary
here is deciding what category each equipment model should belong to, and which attributes
should be transferred from EqHub.

The processed data from EqHub is a long list of key/value pairs for each TEK number, with
fields like “Class”, “Supply Voltage Range”, etc. “Class” is the closest to an APOS classification,
and some classes match APOS L2 groups, but for other classes the EqHub types are too unspe-
cific, so a configuration schema is needed.

Grouping

In order to solve the issue of grouping equipment types, a reasonable approach is to study how
a human would approach classification, and attempt to create a configuration schema that re-

34

CHAPTER 5. INFORMATION MAPPING 35

Name Value
Model PIR7000
Class Detector, Gas
Type of gas Hydrocarbon
Gas detector type Infrared
Number of gases Single gas
Description The Dräger PIR 7000 is an explosion proof point infrared gas detector for

continuous monitoring of flammable gases and vapours. With its stain-
less steel SS 316L enclosure and driftfree optics this detector is built for
the harshest industrial environments, e.g. offshore installations.

Table 5.1: Some fields in an EqHub gas detector.

flects that process.
For example, if a human wanted to classify a gas detector using the properties in table 5.1,

they could start with looking at the class, which immediately places it into the L1 group GasDe-
tectors. Next, they might use the description to classify it further, but the description is generally
not structured enough to analyze consistently using a computer program. Instead, the fields
“Type of gas” and “Gas detector type” contain enough information to place it into the “PointHC-
GasDetectorIR” group.

For other types the process is considerably simpler. EqHub has a “Transmitter, Pressure”
class, which maps directly to an L2 APOS group.

This approach can be seen as a form of Rule based modeling, meaning that it is just a list
of rules that are applied sequentially until one matches. The configuration will start with the
strictest rules, then apply less and less strict rules sequentially. The syntax used is a YAML list,
elements are indicated by dashes, where each entry contains the name of the group it is speci-
fying, and a number of fields with a list of requirements each.

- name: PressureTransmitter
fields:

Class: ["Pressure", "Transmitter"]
- name: PointHCGasDetectorIR

fields:
Class: ["Detector, Gas"]
Type of gas: ["Hydrocarbon"]
Gas detector type: ["Infrared"]

- name: GasDetectors
fields:

Class: ["Detector, Gas"]

This list can be translated into the following manual application of rules:

If the ``Class'' of the equipment contains ``Pressure'' and ``Transmitter'':

It belongs to the PressureTransmitter group.

Else, if the ``Class'' contains ``Detector, Gas''

and ``Type of gas'' contains ``Hydrocarbon'',

and ``Gas detector type'' contains ``Infrared'':

CHAPTER 5. INFORMATION MAPPING 36

It belongs to the PointHCGasDetectorIR group.

Else, if the ``Class'' contains ``Detector, Gas'':

It belongs to the GasDetectors group.

Equipment that fit none of these rules are rejected and reported, so that the configuration schema
can be manually extended to include them. Note that this way, all gas detectors are classified to
the GasDetectors L1 group, ensuring that none are lost.

Attributes

The simplest solution to mapping the attributes over is just taking all of them and adding them
directly. However, the model defines a list of attribute groups like “MeasuringPrinciple” or “De-
signMountingPrinciple”, and the configuration schema could support this.

There is no good way to do this automatically, so the easiest is to just assign each attribute
group a list of fields. This assumes that if attributes exist on multiple equipment classes they
still belong to the same group, which seems likely.

MeasuringPrinciple:
- Gas detector type
- Number of gases
- Concentration range

DesignMountingPrinciple:
- Supply Voltage Range

The question really is if these categories fit very well at all. The APOS model is focused only
on properties that are relevant for the automated safety follow-up. When designing a system like
this in practice, there is very little reason not to also include other relevant information. A good
solution might be to use standard names or groups for the few attributes that are most relevant
to APOS, and just add all the others outside of any category, so that no information is completely
lost.

Identifiers

In OPC-UA, an essential decision is how to make unique identifiers. Doing this intelligently is
important, since it is quite possible with OPC-UA to request attributes from just a single prop-
erty of an equipment type. I.e. a user might request the “Supply voltage range” of a specific
equipment type. This would be a single property-typed node in OPC-UA, and the request would
contain only the NodeId of the property itself, without the NodeId of the type.

The equipment type itself can just use the TEK number combined with the type in EqHub,
which is either “TEK” or “SPC”. A single namespace for EqHub should be sufficient, given the
index “3” here to illustrate. The NodeId of the equipment type with TEK 00670799 would then
be “ns=3;s=TEK-670799”. This ID supplied to the server would be sufficient to look up the TEK
number in the EqHub API.

Next, the ID of each property should encode both the TEK number of the equipment type it
belongs to, and the name of the field. For example, “ns=3;s=TEK-670799-SupplyVoltageRange”.
This value contains the necessary information to retrieve the equipment type from EqHub, and

CHAPTER 5. INFORMATION MAPPING 37

identify which attribute is requested. If the attribute does not exist, or is excluded, the server
can respond with an error.

5.2 LCI

The LCI database is in many ways the link between the different systems, and will form the
foundation of the instance hierarchy. The database contains the full list of tag instances with
their attributes, and an association table that connects different tags in child/parent ids.

The processed data for a tag comes in two forms: A list of key/value pairs that correspond to
the attributes and tag information, and a list of relationships with other tags/groups. This will be
used to construct instance specific information and its references to other nodes respectively.

Attributes

The LCI database define over 180 attributes for each tag, of which most are unused and empty.
In the LCI app, a lot of these are hidden or ignored. For this project an acceptable solution
is to simply ignore empty attributes. Next, it makes sense to exclude specific properties that
duplicate information stored in EqHub, or only make sense in the context of the LCI application.
The schema for this can be just a single list of attribute names.

ExcludedProperties:
- "CrossSectionalArea"
- "InsulationClass"

References

In general, there are few references for each node. Most seem to just have two: a parent/child
reference to another node, which translates to a hierarchical reference in OPC-UA, and a group-
ing reference to a TEK number, which translates to a reference to an equipment type.

There are few enough types here that creating a configuration schema is unnecessarily com-
plicated. This should just be hard-coded. If there were other, more complicated relationships
between tags in the database a mapping between LCI reference types and OPC-UA reference
types might be needed, but that is not the case.

TEK Numbers are also, in fact, tags in the LCI database. This means that the LCI database
can be used to read reverse references from EqHub nodes to equipment, which is valuable, as it
makes it possible to find information related to all equipment of a specific type.

Identifiers

NodeIds can be created using the same general strategy as for EqHub equipment. Tags in LCI
are defined by their FullName, which is on the form “TAG|LOCATION|NAME”. This is somewhat
less general than a number, so in order to name properties intelligently, it is necessary to use
a different separator. Using“-” again could cause issues when adding attributes to tags with
dashes in their names. For example, creating the NodeId of a property named “some-value” on
the tag “TAG|ULA|GD-0001”.

CHAPTER 5. INFORMATION MAPPING 38

Using the same strategy as for EqHub, connecting them with a dash, like “TAG|ULA|GD-
0001-some-value”, there would be no good way of knowing whether this was a property named
“value” belonging to “TAG|ULA|GD-0001-some”, or some other permutation. Instead, using “|”
as a separator should create consistent results. This produces the ID “Tag|ULA|GD-0001|some-
value”, which should be general enough. This does assume that tag names are not allowed to
contain “|”, which is not known for certain, but appears to be the case for all tags observed in
this project.

5.3 SAP

While there is some tag data in SAP, most of this exists in some form or another in LCI or EqHub.
For the purposes of this project, SAP will only be used to produce Events. There are two types of
event-like data which will be represented as OPC-UA events. Measurements and Notifications.

Measurements

Measurements come in the form of a list of short measurements linked by the FunctionalLoca-
tion, and a larger MeasurementDocument for each short measurement. A measurement is not a
live data reading, those are not stored in SAP, but instead a periodic, manual functional test to
ensure that the equipment is still working. This is not really mapped to APOS in any way, but it
does tie into Notifications, and failure rate analysis is in general relevant for APOS.

The way this is done is simply by picking the fields that seem valuable, then mapping those
to event properties in OPC-UA. Since events in OPC-UA must declare all the fields they are pro-
viding, the event must be created beforehand, and all relevant fields must be added there. Here
it is also possible to make a few inferred fields. In particular something like a boolean “Pass”,
which would be useful for filtering purposes.

Beyond that, when designing an event in OPC-UA, some fields may be mapped to the exist-
ing fields on the BaseEventType: “EventId”, “EventType”, “SourceNode”, “SourceName”, “Time”,
“ReceiveTime”, “LocalTime”, “Message”, “Severity”.

• EventId in this case needs to combine two pieces of information: The Measuring Docu-
ment number, and the Measuring Point number. Fortunately these are both numeric and
hence on a simple form. EventIds are byte-strings, so a solution is to treat the two num-
bers as 64 bit, 8 byte numbers, then chain them after each other to form an 128 bit, 16 byte
string.

• SourceNode and SourceName describe the node this event originated from, which trans-
lates to the tag connected to the Functional Location this measurement belongs to.

• Time is equal to LocalTime and ReceiveTime, and is given by the fields “MeasurementDate”
and “MeasurementTime”, which can be combined into a single date-time value.

• EventType is given by the NodeId of a “SAP Measurement” event type, which is a sub type
of the BaseEventType node.

CHAPTER 5. INFORMATION MAPPING 39

• Message can be constructed from the measurement description, type and result. These
can be added separately as properties on the custom event, but keeping them here makes
it easier to see at a glance what the event is about.

• Severity is not specified here, but for simplicity it can be set to “Low” for passes and
“Medium” for failures.

Finally, a decision must be made as to which node generates each event. Since the events are
read from the source system (SAP) through the tag itself, it is reasonable that the tag also gener-
ates the event. There is no good way to “subscribe” to events here, and they are very infrequent
(about once a year), so each node will only support reading historical events.

Notifications

Notifications are the closest equivalent to failure events in SAP. They have failure modes and
detections, which can be mapped to APOS. Notifications are generated either manually by op-
erators, for example if a measurement gives a negative result, or automatically by the device
itself, if it reports some issue.

Reading them is done in the same way as measurements. Each Functional Location is linked
to a list of basic notifications, that give the ID of a full notification.

A good solution for this is to create a sub-type of the APOSFailureEventType in the infor-
mation model. The mapping of the base properties is more or less the same as for measure-
ments, except for Severity, EventType and EventId. Notifications provide a “Priority”, which can
be mapped to Severity, and the EventType is obviously now the new type, which is a sub-type of
APOSFailureEventType. Notifications are given by just a single number, so it seems reasonable
to let the EventId just be the notification number converted to 8 bytes.

Actually mapping the failure modes and detections is slightly harder. Modes are given as
three-letter codes, and detections are given as numeric codes. SAP of course uses a different
system than APOS, so the mapping is defined in a configuration schema.

FailureModes:
SER: MinorInServiceProblems

FailureDetections:
MADM0001−0005: Diagnosed/ImmediatelyDetectedEvent

It seems like some failure detection descriptions match the ISO-14224 failure detections,
which are mapped to APOS in the H1 report. MADM0001-0005, for example, is described as
“Continuous condition monitoring”, which is detection method 06 in 14224, and corresponds
to “Diagnosed/Immediately Detected Event” in APOS.

It unfortunately seems very common to have failure modes/detections that are simply OTH,
“Other”, which is so general that there is no way to really do a proper mapping. This project
will just map those to “MinorInServiceProblems” for failure modes, and “CasualObservation”
for detections, even though that implies some periodic check. It could also easily be “Other
PM Activity”. “Other” could be treated as undefined, and not mapped at all, but this too would
not be entirely accurate. For example, if a notification has detection method “Other” it almost

CHAPTER 5. INFORMATION MAPPING 40

certainly means that the failure was not detected automatically, which excludes a number of
detection methods.

Chapter 6

Implementation

The server implementation itself is written in C#, using the official OPC Foundation SDK[20] for
the OPC-UA part of the system. In addition, the open source library YamlDotNet[2] is used to
handle YAML configuration. The other libraries used (System.Text.Json, Linq, etc.) are part of
the core .NET libraries.

This chapter will go through the implementation and illustrate the choices made, without
going into great detail on the actual code. Although the code is provided along with this project,
it is not going to be possible for most people to actually replicate the results, even with detailed
instructions included in appendix A, since it requires access to internal Aker BP systems. Hence,
the various functionality will be shown in figures taken from UAExpert in appendix B.

6.1 Processing data from Source Systems

The program is divided in two functional systems, where the first is the code for fetching and
parsing raw data from the source systems. The general concepts are described superficially in
chapter 4, but this section will go into the actual decisions made and discuss each type of request
the server makes to the source systems.

LCI

LCI is, as mentioned in previous chapters, the core of Aker BPs system. It references EqHub
nodes through TEK Numbers, and it also provides the necessary information to identify SAP
tags. Requests here are made with SQL over ODBC, as discussed in section 4.2.

There are three primary forms of data obtained through the LCI database: Tag data is basic
information about each tag, like its name, ID and class in the LCI database. Tag attributes refer
to complex data related to each tag, like location, facility and function. Finally, tag relations refer
to relationships to other tags in the LCI database. Since TEK numbers are also tags, this includes
the equipment type of each tag.

Tag data

Fetching the tag first helps make more efficient requests later. The NodeId is built from the
“FullName” of the tag, on the form “TAG|SITE|Name”, but it is more efficient to use the internal

41

CHAPTER 6. IMPLEMENTATION 42

id of each tag when fetching attributes and relations later, this ID is obtained by fetching from
the table “REP_Tags”, using the FullName. The query is

USE [LCI_Reporting_Prod]

SELECT [TagDescription], [TagID]

FROM [dbo].[REP_Tags]

WHERE [TagFullName]='{tagName}';

This query is very simple, it fetches three values “TagDescription”, “TagClassName” and “TagID”
from the table named “REP_Tags”. TagDescription is used as the description of the OPC-UA
node, TagClassName is useful to know what the node describes, like whether it is a TEK number
or a physical device, and TagID is the internal ID used for queries later.

Tag Attributes

Tag attributes are fetched using the TagID. This ends up being by far the heaviest query made to
the LCI database. The attributes are just TagID/AttributeName/AttributeValue, where Attribute-
Name is numeric. The final result uses a configuration file created as described in section 4.2 to
map AttributeName to a human readable name.

For efficiency, the solution ended up not using the view “REP_TagAttributes” mentioned on
page 27. While views are convenient, the database in question is quite slow, and since the view
definitions could not be obtained, they may carry some unpredictable performance costs, even
if they really should not. Instead, the query used replicates the functionality of the view, but
removes a few fields that were not needed for this project.

USE [LCI_Reporting_Prod]

SELECT [AttributeName], [AttributeValue], [AttributeUom]

FROM [dbo].[REP_AttributesOfTags]

WHERE [TagID]={tagId} AND [AttributeValue] IS NOT NULL

This query simply fetches all attributes which have the given TagID, and which are not empty.
Most attributes are empty, and sending those over is, in this case, a waste of resources. The fact
that so many fields are empty is also probably part of the reason why this particular table is so
slow. Most of its rows are empty, so the database has to look through a very large number of rows
to find the actual information.

The “AttributeUom” field has not been mentioned before. Some fields have a “Unit Of Mea-
surement”. If they do, it can simply be combined with the value in the result displayed to the
user.

Tag Relations

The full relationships table in the database contain an enormous number of relationships, con-
necting tags to documents, documents to documents, tags to tags, and likely more. For this
project only tag to tag relations are needed, since documents are not mapped to OPC-UA.

Again, while the view “REP_AssociationDetails” is convenient for making a few queries, it is
very slow, and so it had to be reverse-engineered to use the TagID instead of the TagFullName.

CHAPTER 6. IMPLEMENTATION 43

This manual query is about 10 times faster on average, and is most likely functionally identical
to the view, since it returns the same total number of rows.

USE [LCI_Reporting_Prod]

SELECT [SourceID], [TargetID], [AssociationId],

source.[TagFullName] as [SourceName],

target.[TagFullName] as [TargetName]

FROM ([dbo].[REP_AssociationIds]

INNER JOIN [dbo].[REP_Tags] as source

ON source.[TagID] = [SourceID]

INNER JOIN [dbo].[REP_Tags] as target

ON target.[TagID] = [TargetID])

WHERE [SourceID]={tagId} OR [TargetID] = {tagId}

This query is a fair bit more complicated, but it should be possible to understand. It uses the
SQL “INNER JOIN” operation, which is shorthand for the combination of two operations: cross
product and filter. Essentially, first produce all possible combinations of rows in both tables,
then filter them using the “ON” part of the operation. In practice, the database is smart enough
to be far more efficient than this, but that is the basic theory.

This does two INNER JOINs to the same table. So essentially: find all associations in the
“REP_AssociationIds” table where the Source or Target matches the provided TagID. Next, match
both sides of the association to a row in the “REP_Tags” table, then remove all that do not have
a match.

The final result is a relation that includes the full name and IDs of both the target and the
source, as well as the “Id” of the association, which is a three-letter code that indicates what
the relation represents. There are four relation types in this table that may be relevant to this
project:

ASS “is part of” and ICO, “is logically connected to”, which connects components. These are
non-hierarchical, but they do not seem to appear for any of the components looked at in
this project yet. They can be mapped to non-hierarchical reference types in OPC-UA.

PAR “is standard part for”, which is the association between tags and TEK numbers. These
become the ISA95 reference HasPhysicalAssetClass and connect EqHub nodes and LCI
tags.

PNT “is parent of”, which is the normal parent/child hierarchical relationship. These are mapped
to “Organizes” in OPC-UA, which is a hierarchical reference type often used for this kind
of relation.

SAP Tag

Finally, it is also useful here to create a query to fetch the SAP tag name without reading all
attributes of an LCI node, to make that process a bit faster. The query for this is just the full
attribute query described on page 42, with AND [AttributeName]=35390 added to the end.
35390 is the AttributeName of the Platform Code attribute, which is used to construct the SAP
tag name.

CHAPTER 6. IMPLEMENTATION 44

Internal Structure

Each LCI node has a list of relationships, a list of attributes, and some core metadata. This
should be represented internally in the server in some way, and since C# is an object oriented
programming language the idiomatic way to do this is by creating an object graph seen in figure
6.1.

LCINode

TagData Variable

Variable

Relation

Relation

Figure 6.1: LCINode object structure. Each box is an object.

This may seem trivial for now, but as the internal state is expanded it is increasingly valuable
to organize the data in a logical and intuitive manner. The code for populating the contents
described here is included in “SourceSystems/LCIDBSource.cs”.

EqHub

Reading data from EqHub means serializing requests to the REST API, then deserializing the
result. There are two main API calls that are relevant for the core application:

First, fetching the authentication token is done using OAUTH, which is fairly simple, and
covered well by the official documentation[11]. It essentially just means making a single request
containing the secret key and client id to the OAUTH endpoint.

Next, fetching the data for a given TEK number is done with a call to the endpoint
Catalogues/[catId]/Teknos/[tekNo], where “catId” is the catalogue id, which can be ob-
tained from another endpoint, but is constant that can be stored in code. The result is a JSON
structure described in the documentation, which is deserialized using the System.Text.Json li-
brary.

This is done in two steps. The result is first deserialized to an object which mirrors the re-
sponse payload, often called a “Data Transfer Object” (DTO). This is converted to an Equipment
object which organizes the data on a format suitable for the server application. These can be
used to create OPC-UA nodes later.

SAP

SAP is considerably more complicated. As mentioned, the ODATA API is reverse engineered by
looking at the PM Master app as described in section 4.4. This section describes the three dif-
ferent types of data retrieved from SAP: FunctionalLocations, Measurements, and Notifications.
The functional location itself is not used, but it is needed in order to obtain the measurements
and notifications linked to by each tag.

From the LCI database the SAP tag name on the form “SITE-Name” is obtained. SITE refers to
the Platform Code attribute in the LCI database, and represent different parts of facilities oper-

CHAPTER 6. IMPLEMENTATION 45

ated by Aker BP. For example, the ULA platform has sites ULP, ULQ and ULD. So “TAG|ULA|GD-
0001” maps to SAP tag “ULQ-GD-0001”.

Functional Location

The functional location is retrieved using the FunctionalLocationSet ODATA endpoint, which
has 9 key attributes:

• Parent and FunctionalLocation are both set to the SAP tag name obtained from the LCI
database.

• ExpandToLevel is set to 0, and FLMultiple is left empty. It is not clear at all what these do,
and it is not really important.

• PlantFilter needs to be set. The value is given by the number given to the planning plant.
For ULA MPP this is 5000. A section of the configuration file maps the three-letter platform
codes to the numerical planning plant value, for convenience. All three ULA platform
codes, ULP, ULQ and ULD, use 5000, and the codes for other platforms can be found in
the PM Master app if needed. The number also needs to be followed by a %2C, which is
an encoded comma, for some unknown reason.

• MainPlantFilter, StatusExFilter, StatusFilter, WithStatus and WithChar can all be left empty.

Filling in the fields as described above produces the following query:

FunctionalLocationSet(

Parent='ULQ-TagName',

FunctionalLocation='ULQ-TagName',

ExpandToLevel=0,

FLMultiple='',

PlantFilter='5000%2C',

MainPlantFilter='',

StatusExFilter='',

StatusFilter='',

WithStatus='',

WithChar='')

Like the EqHub API, the response is deserialized to a DTO, which is then converted into a
class defined in “FunctionalLocation.cs”. This result is not used in the final server, but the code
to deserialize it was kept, in case it is needed in the future.

Measurements

Using the functional location URL the measurements can be retrieved by following a link, re-
sulting in the query

FunctionalLocationSet(...)/to_meas_doc

CHAPTER 6. IMPLEMENTATION 46

This produces a list of very basic measurements, which each include a MeasurementDocu-
ment and MeasuringPoint number, which can be used to query the MeasurementDocSet ODATA
endpoint, which only uses three key attributes.

MeasurementDocSet(

MeasDocument='...',

MeasuringPoint='...',

FunctionalLocation='ULQ-TagName')

Again, the result is deserialized to a DTO, and converted into a proper Measurement object.
This process converts the timestamp, which is in a SAP specific format, to a general C# DateTime
structure.

Notifications

Notifications are similar to measurements, in that the first query is simple:

FunctionalLocationSet(...)/to_notif_main

The result contains a Notification field, which is used in the next query. The NotificationSet
endpoint takes 16 different key attributes:

• Parent and FunctionalLocation are the same as before, the full tag name.

• Notification and NotificationNumber are equal, and should contain the Notification value
mentioned above.

• ExpandToLevel is set to 0 again.

• PlantFilter is the same as for FunctionalLocation.

• FlMultiple, StatusExFilter, StatusFilter, WithChar and UserStatusExFilter are all left empty.

• Phase1 is set to 9, for some unknown reason, it is not clear what this means, but 9 works
fine. Phase2 is left empty.

• WithStatus, WithRepair and WithDetection are set to ‘X’. Presumably the “With” fields are
used to filter out parts of the notification. Since knowing the detection method is valuable,
these are kept.

This is the more or less the same configuration used by the PM Master app. It is possible that
more information could be obtained by experimenting further, but the result contains sufficient
information to construct the notification events later. The full query is

NotificationSet(

Parent='ULQ-TagName',

Notification='...',

NotificationNumber='...',

FunctionalLocation='ULQ-TagName',

ExpandToLevel=0,

CHAPTER 6. IMPLEMENTATION 47

FLMultiple='',

PlantFilter='5000%2C',

Phase1='9',

Phase2='',

StatusExFilter='',

StatusFilter='',

WithStatus='X',

WithChar='',

UserStatusExFilter='',

WithRepair='X',

WithDetection='X')

which produces readable results. The result is mapped to a data transfer object, and combined
with the basic notification linked by the functional location to create Notification objects con-
taining the necessary data to create events later on.

Internal Structure

In the end, it is convenient to keep these together in a SapTagData class, shown in figure 6.2,
which makes it possible to cache the results. Ideally it would not be necessary to cache anything,
but fetching all this data for a node with a notification or two takes as much as 10 seconds, so for
the purposes of this project, caching may help speed up successive queries, and make it more
possible to find uses for this data later.

The advantage over the queries to the LCI database is that they can be made in parallel. Mak-
ing 10 requests in parallel results in a time of about 20 seconds per node, which is still 5 times
faster than querying them one at a time. Larger numbers of parallel queries have diminishing
returns.

SAPTagData

FLoc Notification

Notification

Measurement

Measurement

Figure 6.2: SapTagData object structure. Each box is an object.

6.2 Server

The second part of the program is the OPC-UA server itself, which calls methods on the SourceSys-
tem managers with simple arguments, and obtains the transformed data classes described above.
In the SDK, custom behaviour is primarily added by adding NodeManagers. This project imple-
ments two different node managers. One for internal nodes, and one for external nodes.

CHAPTER 6. IMPLEMENTATION 48

Internal nodes

The InternalNodeManager extends the CustomNodeManager2 type from the OPC-UA SDK.
This is used for creating very simple in-memory node managers, with little custom behavior.
It is not sufficient for the external nodes, but it is suitable for creating a static basis for the type
hierarchy.

The first step is to replicate the work done in the specialization project, the APOS informa-
tion model. This could in principle use the NodeSet2 file created there, but doing this creates
some issues. The NodeIds used there were numeric, and it is impractical to refer to numeric ids
for everything. Referring to the APOS types should be very simple, so they should have NodeIds
equal to their name. Rather than manually modifying the NodeSet2 file, it is edited to remove
everything except the core types, then describe the equipment and failure classifier hierarchies
using a configuration file.

The file is included, “aposstructure.yml”. The equipment hierarchy is a map of objects, so
that each type has the name of their parent and a list of allowed attribute groups, and the failure
classifier hierarchy is a map from child to parent.

This recreates the model, without having to manually create the NodeSet2 file. It makes the
model less shareable, but the code could be modified to generate a NodeSet2 file containing the
generated hierarchy.

In addition, the two new event types are added, SAPMeasurement and SAPNotification, as
well as two reference types corresponding to the two non-hierarchical tag relation types men-
tioned above, IsLogicallyConnectedTo and IsPartOf.

The event types have their own set of properties, but these are just taken directly from the
SAP response. The events are shown in figure B.1, note that the notification is a subtype of
the APOSEventType from the specialization project, meaning that it inherits the three failure
classifier fields defined there. This is not the case for measurements.

LCI Nodes

The remaining logic is implemented in the ExternalNodeManager, which does not get the same
benefit from the SDK. There is no good base class for creating this kind of custom behavior, so
the solution is to create a full node manager by just implementing the INodeManager interface.
An interface in C# just describes which public methods a class must implement. In this case
that is one method for each service supported by the SDK.

The Browse service consists of multiple separate parts, as both LCI nodes and EqHub nodes
can be meaningfully browsed. Each browse operation contains a filter, as discussed in chapter
3, and this filter can be used to determine which children of the node in question should be
retrieved.

For LCI nodes, the TagID is always required, but relations and attributes can sometimes be
skipped. The filter used is the following:
If HierarchicalReferences and the Variable NodeClass is requested then attributes are needed.
If Object or ObjectType is requested then relations are needed.
This simple solution does not consider every part of the filter, so the full filter needs to be applied
to the result before it is sent to the client.

This can help with efficiency. Since the source systems are quite slow, limiting the resources

CHAPTER 6. IMPLEMENTATION 49

fetched for each query can speed up external applications accessing the server. After each re-
quest the result is cached in the LCINode class, so that the next time this node is requested the
query is faster. This makes the server more responsive when doing complex operations. The full
operation can be described with pseudo code:

For each requested LCI Node:

If TagID has not been fetched:

Get basic tag data from the database

If this is an attribute

and reverse references are requested:

Add a reference to the parent node

If the filter allows relations

and relations have not been fetched:

Read relations from the database

If the filter allows attributes

and attributes have not been fetched:

Read attributes from the database

For each resulting reference:

If the item passes the full filter:

Send it to the client

Note that if the node in question is an attribute, then browsing should return a reference to
the parent node. This does not require reading from the source system, since the name of the
node is encoded in the NodeId of the attribute, as described in section 5.2.

ObjectsFolder

LCINode

LCINode

LCINodeProperty

Property

Figure 6.3: LCINode in hierarchy.

The LCI node in the OPC-UA node hierarchy can be seen in figure 6.3 (B.2). LCI Nodes
are Objects, and the attributes are properties. Note the non-hierarchical reference shown as
a dashed line in figure 6.3.

CHAPTER 6. IMPLEMENTATION 50

EqHub Nodes

LCI Node relations produce references to TEK Numbers, and TEK Numbers are both LCI tags
and EqHub Equipment, so an EqHubNode contains references to both LCINode objects, and
Equipment objects, as seen in figure 6.4.

It is not necessary to fetch attributes of the LCI Node, since these will at most just be dupli-
cated from EqHub. The relations, however, are interesting, as they make it possible to reference
all nodes in the LCI database that connect to a TEK number.

EqHubNode

Equipment Attribute

Attribute

LCINodeRelation

Relation

Figure 6.4: EqHub Node object structure. Each box is an object.

The procedure for browsing EqHub nodes is very similar to LCI nodes, and because the
EqHubNode type incorporates an LCI Node, it can reuse much of the same functionality.

For each requested EqHub node:

Fetch LCI references as needed, but never attributes

If the filter allows attributes

and the equipment has not been fetched:

Read attributes from EqHub

For each resulting attribute or relationship:

If the item passes the full filter:

Send it to the client

Using the method described in section 5.1 each EqHubNode is assigned to the APOS type
hierarchy using attributes retrieved from EqHub. The structure final structure in context is seen
in figure 6.5 (B.3), using a gas detector PIR7000 as example.

GasDetectors

PIR7000

Property

LCINode

DefinedByPhysicalAssetClass

Figure 6.5: EqHub Node in hierarchy.

CHAPTER 6. IMPLEMENTATION 51

SAP Events

Since reading from SAP is so slow, and events are so rare, events are implemented as history
only, which, while supported by the OPC-UA standard, is uncommon. UAExpert, for example,
does not support just reading history without a subscription. Fortunately, this is simple enough
to solve, since most of the event subscriptions are handled by the SDK. The node manager just
needs to pretend to handle event subscriptions, and it will work fine for UAExpert.

The Notification and Measurement classes discussed above are used to construct OPC-UA
EventStates. Event filters are applied to the event state by the SDK, producing a collection of
attributes. The node manager only implements the code to produce a list of event states within
the correct time range, given an LCI NodeId.

The events are cached for convenience, since reading them is so slow, so the final procedure
is as follows:

For each LCI Node to read events for:

If TagID has not been fetched:

Get basic tag data from the database

If the SAP platform code has not been fetched:

Read SAP platform code from the LCI database

If measurements have not been read:

Read Measurements

If notifications have not been read:

Read Notifications

For each resulting event:

If the item passes the event filter:

Send the requested fields to the client.

If the server requests a different type of HistoryRead, or requests to read from a node that is
not an LCI Node, the server simply returns a bad status code. The resulting events can be seen
in figure B.4 and figure B.5.

6.3 Structural Overview

Figure 6.6 shows a visualization of the data flow in the server, including the main data transfer
objects. All the different resources require information from the LCI database, which is not a
bad thing. It is positive that the LCI database contains all the inter-system context, since that
means simplifies the system, and lets the LCINode object be the core of the node hierarchy.

This is also in line with the decisions made by Aker BP. The fact that so many systems are in
use, that seemingly cover the same kind of information, is a consequence of Aker BP managing
systems originally developed by multiple companies, with different policies and technology. LCI
is being set up as a master system, and so using it as master in the server implementation is also
the likely a good decision.

CHAPTER 6. IMPLEMENTATION 52

Server

EqHub

LCI

SAP

EquipmentNode

LCINode

SAPEvent

R
E
S
T

O
D
B
C

O
D
A
T
A

Figure 6.6: Data Flow in Server application.

Conflict resolution in a system like this would be very difficult. The way the server is de-
signed means that each type of information is fetched from only one source. Instance infor-
mation is fetched only from LCI, type information only from EqHub, and events only from SAP.
This is a simplification, as LCI contains some type information, and SAP contains some instance
information. The result, however, is that there is no room for conflicts, which helps ensure that
this project is possible to complete.

Chapter 7

Testing the Model

The second half of this thesis is focused on verifying the implementation, and answering the
three key questions from section 1.2. The first step is to ensure that the information model and
the mapping described in chapter 5 holds when applied to a larger selection of equipment types.
This will help verify that the modeling is sufficiently flexible, that EqHub and the LCI database
contain sufficient information to map to APOS, and that the APOS information model is solid
enough to allow for a consistent mapping, thus answering questions 1) and 3).

This chapter will discuss and implement two different methods of populating the contents
of the server. Since the LCI system is the core of the server, the most intuitive way to populate
the model is to simply search through the LCI database, and it is fairly trivial to extend the server
to cover more tags. For now, there is a list of root tags specified in the code, and simply adding a
few tags higher up in the hierarchy is sufficient to populate the hierarchy.

This, however, is not a good way to test the model, for several reasons. First, the LCI database
is slow, and populating the hierarchy this way will mean retrieving the relations of thousands of
nodes. At 0.5 seconds per node, 10 000 nodes takes an hour to populate, and the result does
not really provide that much information, except verifying that all nodes in the LCI database fit
with the model. Beyond that, there are enough nodes in the database that memory on the server
might become an issue, since it caches the full hierarchy.

Secondly, this would mean discovering equipment types through LCI nodes, but most dis-
covered equipment would not be gas detectors, meaning that most likely hundreds of new rules
would have to be created, which would take a lot of manual work. Instead, it is better to fetch
equipment types from EqHub, then find related equipment through the linked nodes.

So the test will involve retrieving all equipment of a given class from EqHub, fetching de-
tailed information about each instrument, then attempting to add them to the hierarchy. The
only manual work will be creating rules for mapping discovered types to the APOS equipment
hierarchy.

7.1 Populating Gas Detectors

In order to do this, a new method is added to the EqHubSource class, which fetches all equip-
ment with a given class. This is done using the /Catalogues/[catId]/Teknos endpoint, which
allows specifying a “class” query parameter, to only retrieve equipment of a given class. There is

53

CHAPTER 7. TESTING THE MODEL 54

a maximum number of results returned each time, but it is possible to specify a “page” parame-
ter to iterate through the contents of the database.

EqHub is external to Aker BP, and as such there is a number of equipment types defined in
EqHub that have no associated tags in the LCI database. These should not be included, so part
of the procedure must be querying the LCI database for relations matching the corresponding
LCI tag for each TEK number. The full procedure is as follows:

Fetch all equipment types with a given class

For each equipment type:

If there is no corresponding tag in the LCI database, skip

If there are no relations for the tag in the LCI database, skip

Fetch the full equipment type from EqHub

Try to classify the equipment type, log information on failure

Save all relevant tek numbers

The code for this can be found in Server/Program.cs/PopulateEqHub. It is takes a class
name as argument, which is first run with “Detector, Gas”, in order to fetch all gas detectors from
EqHub.

After running it once, the equipment types that were not classified are logged, and then used
to manually expand the list of rules described in section 5.1. The remaining gas detector types
defined in APOS, but not included in the specialization project also must be added. The new
types are “H2SDetectors”, “OilMistDetectors”, “AcousticLeakDetectors”, “O2DetectorsAndAnalyzers”,
“H2Detectors”, “CODetectors” and “NH3Detectors”.

This process can only be partially completed, as there are a number of issues:

• Some TEK numbers only have minimal information, or no information at all.

• Most equipment models are duplicated, and each version contains different information
about the actual equipment model.

• Some types do not fit into APOS at all, like CO2Detectors. Part of this may be that APOS is
focused on safety instrumented systems, while the LCI database and EqHub has no such
restriction.

• Parts of the data model in EqHub is inconsistent. For example, some gas detectors specify
“Gas type”, and others “Type of gas”.

The result can be seen in figure B.6.
Another issue discovered through this process is that a number of gas detectors lack the

“Model” field, which was originally used as DisplayName in OPC-UA. In order to avoid blank
DisplayNames, which is not ideal, the TEK number is used as a fallback.

CHAPTER 7. TESTING THE MODEL 55

7.2 Populating PSVs

This algorithm can easily be reused with another equipment type, to verify the ability of the
model to extend to different equipment types. The PopulateEqHub method is called with “Valve,
Relief”, in order to populate the APOS L2 group “PressureSafetyValves” (PSV).

This illustrates that while some types, like Gas detectors, require complex mapping from
EqHub to APOS, others correspond much more easily. In this case, the “Valve, Relief” class in
EqHub matches the relief valve L2 group, which is under the “PSVs and rupture discs” L1 group,
perfectly. A single rule is sufficient to map these:

- name: PressureReliefValves
fields:

Class: ["Valve, Relief"]

This works very well, however it does take a while, as there are close to 2000 different types
of PSVs in EqHub, 500 of which are related to something in the LCI database. In order to do this
on a larger scale, it might be reasonable to modify the queries to the LCI database to be able to
read relations of multiple nodes at the same time, which is possible with SQL. Some of the result
can be seen in figure B.7.

7.3 Results

This process highlights a few facts about the implementation and the concept as a whole:
First, the configuration schema is flexible enough and works very well. This is essential for

a project like this, which involves a great deal of mapping: a flexible configuration schema. Any
mapping process such as this will inevitably involve some amount of manual work. By using a
filter/pattern based mapping such as this one, rather than a manual one per equipment type,
one can define an increasingly accurate “pattern”. Most of the gas detector types that were cor-
rectly mapped in the end were never manually looked at, they were just similar enough to other
types to be affected by a rule made to match a different piece of equipment.

This is a form of model based learning, it could even be seen as a form of primitive artificial
intelligence. The program is taught a set of individually simple rules, that combined define a
complex model.

Second, while the EqHub API is fast and fairly flexible, the actual contents are often lacking.
This is unfortunately not unexpected in a system like this. The data is entered by a number of
different companies, and a larger number of different people, over extended periods of time.
The lack of a clear data model for most fields (Class is a notable exception), means that multiple
rules are needed to cover the same types, i.e. the “Gas type” and “Type of gas” issue described in
section 7.1, and the lack of data for many types mean that good classification is difficult.

Finally, the types are numerous enough that pre-fetching everything is too slow, and this
also creates the issue that the server does not reflect the hierarchy efficiently. Instead, the server
could be modified to save the category of each TEK number, then fetch the contents on demand,
instead of saving the TEK number itself and fetching attributes on startup. For now, the current
solution is sufficient for this project. Even fetching the 600 different equipment types currently
registered from EqHub does not take more than a few seconds, as expected of a modern API.

These results can be used to propose changes to the server and source systems later.

Chapter 8

Usage

The purpose of creating an OPC-UA server to collect data is to provide a common interface to
external programs. In order to explore the potential value of a proper server implementation,
this chapter investigates a few different ways to use the server, and how a common OPC-UA
platform can be used to provide value to a company like Aker BP.

This also serves the purpose of verifying that the server is capable of representing the data in
a way that is usable by Aker BP and the APOS project, which helps with answering question 2) in
section 1.2, as well as testing how well the source system APIs handle the larger load associated
with practical applications, answering question 3).

This thesis looks at three concrete ways to use the server. The first is the external tool UAEx-
pert, used to generate figures as seen in appendix B. This tool required no configuration beyond
entering the IP address of the server, and without any knowledge of the underlying systems, it
was able to explore and display the data in context.

Figure 8.1 shows the use of a general OPC-UA platform, to connect external tools to the OPC-
UA server. This chapter looks at two such tools. A custom application developed for using the
OPC-UA SDK to analyze data collected by the server, and an external application developed by
Aker BP partner Cognite.

8.1 General Uses

In general, there are three main benefits of a server like this:

1) It has contextualized data across systems.

2) It allows access to the data over a single unified protocol.

3) The OPC-UA protocol is standardized and widely adopted.

None of the existing applications discussed in chapter 4 have all these advantages. The Aveva
LCI app has some cross-system context: it links to the EqHub page, and incorporates some
limited data from SAP. The OPC-UA server expands on this by providing the EqHub data directly,
and retrieving Notifications and Measurements from SAP.

2) and 3) were not provided in any real extent by any of the three systems. ODATA can in
theory be used as a general API, but the ODATA API currently available in SAP is not sufficiently

56

CHAPTER 8. USAGE 57

OPC-UA Server

EqHub

LCI

SAP

R
E
S
T

O
D
B
C

O
D
A
T
A

O
P
C
U
A

Cloud

Data Analysis

User Interface

Figure 8.1: The server provides an interface to the underlying systems

developed to be used in such a way. Both the LCI database and EqHub have useable, exter-
nally accessible APIs, but using either one requires external context. The LCI database requires
AttributeName maps, and an understanding of the different tables, and EqHub requires API
documentation.

The OPC-UA server does not have this disadvantage, at least not to the same degree. Parts of
the logic, such as reading events and attributes of equipment instances only requires an under-
standing of the base OPC-UA information model, and understanding the equipment hierarchy
only requires an understanding of the ISA-95 companion standard.

An application capable of exploring OPC-UA servers in general is, using the server, able to ac-
cess parts of LCI, SAP and EqHub. This, in the end, is the primary reason for creating something
like this. If the goal was just performing a single operation, or making a single cross-platform
query, developing a full OPC-UA server would be excessive. Simply creating a single application
using the code for accessing the source systems would be much easier.

The advantage of creating the server is that multiple applications can now access it, includ-
ing applications without any native support for the source systems. It allows integrating with
the existing OPC-UA ecosystem, meaning that third party systems that support reading from
OPC-UA could use the server as a gateway to Aker BP data.

In order to construct such a gateway without an interface like this, the third party system
would need to support all three source systems. It may be possible that some of these support
SAP, but it is extremely unlikely that they support LCI in a good enough way to provide any useful
information without a lot of further processing, and EqHub is almost impossible, seeing as the
API is custom-built and fairly new.

CHAPTER 8. USAGE 58

8.2 Calculating Failure Rates

The first application covered here is a small OPC-UA client app that gathers statistics on failure
rates from equipment types, developed as part of this project. Companies such as Aker BP are
required by law to provide a yearly report of DU (Dangerous Undetected) failure rates for specific
groups of equipment. One of these is fire and gas. The procedure is simple enough:

• Once a year, perform a test-reading of each fire and gas detector. These are registered as
MeasurementDocuments in SAP.

• At the start of the next year, look up measurements of all tags with the specified object
types in SAP, created in the last year.

• Calculate the failure rate by dividing the number of failures by the total number of tests.

A similar process can be created for a client accessing the OPC-UA server:

• Browse the GasDetector and FireDetector hierarchies for all referenced LCI tags.

• Read event history for the last year for all referenced tags.

• Calculate the failure rate by dividing the number of failures by the total number of tests.

The code is included in the FRReader folder, which is the third and final C# project included
with this thesis. See appendix A for details.

Browsing the gas detector hierarchy returns 1800 tags. Despite reading measurements for
20 tags per request, retrieving all measurement documents took close to an hour, mostly due
to the slow speed of the SAP API. It produced 1234 measurements, of which 3 had a non-pass
status, resulting in a DU failure rate of 0.24% per year. Performing the procedure in SAP takes
a few seconds and produces around 2700 documents, highlighting the incompleteness of the
information model, and the inefficiency of the SAP API.

This highlights a few clear issues with this approach:

• Many tags lack TEK numbers, or the TEK numbers have wrong classes in EqHub.

• The SAP API is extremely slow, despite it being clear that the underlying SAP system is fast.

• This requires all three source systems to be correct, while the pure SAP approach requires
only SAP to have the correct tag types.

The advantage of doing it this way would be that it could produce failure rates per TEK num-
ber, which would be much more difficult to do in SAP. Using this one could compare the failure
rates of point gas detectors versus line gas detectors, or identify equipment models which per-
forms worse than expected. Of course, this still would not produce ideal results, since EqHub
contains so many duplicates of equipment models.

This is, in general, an example of how APOS would use this model. One of the focuses of the
APOS project is how the information model can be used to analyze equipment and compare it
to requirements for each object type, and hence identify whether tests need to be performed

CHAPTER 8. USAGE 59

more or less often, if equipment should be replaced, etc. The processes described by APOS
can be implemented using this OPC-UA server. In fact, it should be possible to create an OPC-
UA client for APOS based only on the information model designed in the specialization project
report, then apply it to implementations such as this one.

The failure rate calculator can be seen as an example of an APOS context application, an ap-
plication that is aware of the APOS information model, but not the particular implementation.

Based on the results seen here, it is safe to conclude that the current approach is insufficient
to handle this task. Not only is it several thousand times slower than doing the same through
SAP, but it produces less than half the number of results. In part, this is due to the approach,
which relies on consistent data across three different systems, where the SAP approach only
requires SAP to be consistent. It also potentially provides some numbers indicating the degree
of consistency between the three systems. Ideally, both for this project and Aker BP in general,
the two processes should always produce the same results.

8.3 Mass Data Extraction

The second main use of the server is to access it with context agnostic applications, meaning
applications that have no understanding of the contents beyond that they are OPC-UA. UAEx-
pert is such a tool. Extracting data to Cognite Data Fusion (CDF), a data platform developed by
Cognite[9], is relevant to Aker BP. Cognite is backed by Aker BP, and performs the role of storing
data in the cloud, in order to make it accessible, as well as transforming and analyzing the data
to give it value.

In a way CDF might be considered an alternative to this project. Instead of trying to dynam-
ically contextualize data from the source systems in real time, Cognite creates transformations
and rules that contextualize data later, which in the end is more flexible. CDF also duplicates
the data, so that even if the source systems are slow, the data can be fetched later. That said,
CDF inevitably involves some delay, since it is reliant on extraction, rather than simply provid-
ing an interface to the original copy of the data. OPC-UA, by contrast, can in principle be a
pure software layer that does not duplicate any information, allowing it to be used for real-time
applications.

On the other hand, the two systems are not necessarily competing, since due to the existence
of the Cognite OPC-UA Extractor, development of an OPC-UA server also opens the possibility
of inserting the data into CDF with minimal further work, as this section demonstrates.

8.4 CDF

The CDF data model is fairly simple. While there are a number of resource types[10], the follow-
ing are the relevant ones for this project:

• Assets are Object equivalents. Like OPC-UA objects they usually represent physical or log-
ical units, and are used to connect and contextualize data.

• Time series are Variable equivalents. Unlike variables, they effectively only store historical
data, without a concept of “current value”, other than just the last point in the series.

CHAPTER 8. USAGE 60

• Events are, of course, OPC-UA Event equivalents.

• Relationships are Reference equivalents. CDF also defines a separate system for paren-
t/child relationships between assets and time series, so relationships can perhaps be seen
as more of an equivalent of non-hierarchical relationships in OPC-UA.

In order to fully use the tools Cognite provide, the data has to be inserted into CDF, and it has
to be contextualized. Of course, the more context the source system can provide, the easier it is
to contextualize after the fact. Among the tools Cognite has created are “Extractors”; tools that
read data from an external system and write it to CDF using a REST API. One of these extract
from general OPC-UA servers.

OPC-UA Extraction

Running the extractor against the server requires a little configuration. Most servers are much
faster than this one, and so the extractor will be modified to read a limited number of nodes at a
time. It must also be made to extract the full server hierarchy, so that it extracts both types and
instances.

Using this configuration, which is included in cdf-config.yml, the extractor is run on 21
LCI tags, and they are replicated to CDF. Giving the following results:

• Figure B.8 shows part of the LCI node hierarchy. This is through the Cognite app “Fu-
sion”, which can be used to explore the various resources. These are all assets, as OPC-UA
objects are mapped to assets in CDF.

• Figure B.9 shows the metadata of one of the LCI nodes. Properties in OPC-UA are mapped
to metadata, a collection of key/value pairs on each asset, time series or event in CDF.

• Figure B.10 shows metadata and hierarchy for the gas detector type all the LCI tags belong
to, PIR7000. Since the properties of ISA-95 types are not of the standard OPC-UA property
type, but ISA95ClassPropertyType instead, this required manually configuring the extrac-
tor so that nodes with TypeDefinition of “i=4885” were treated as metadata instead of as
time series.

• Finally, figure B.11 shows a single measurement event. The extractor has automatically
detected that some nodes expose event history, and has extracted events from all of these.

The ability to extract data like this is another reason why a unified OPC-UA platform is valu-
able. It not only provides a tool for internal use, but it also allows integration with external
systems that support OPC-UA, and by extension, it allows all this data to be used through the
various applications provided by Cognite.

This kind of “Eco-System” based thinking is very valid when thinking about modern indus-
trial data. Providing a sufficiently general interface can essentially integrate Aker BPs internal
systems with a much larger eco-system, and all tools that are developed for that eco-system can
then be used to access Aker BP data. This effect is also self-reinforcing. The larger an eco-system
becomes, the more companies invest in connecting to it, and the more valuable it becomes.

CHAPTER 8. USAGE 61

OPC-UA has an important role in this development, as its self-describing nature means that
integrating it into an eco-system can often be done automatically, using tools similar to the
Cognite OPC-UA Extractor. In a perfect world, every system would be accessible using generic
interfaces in such a way that all tools would be able to access data from any system.

The Cognite OPC-UA Extractor is invasive and extensive. The fact that it is capable of fin-
ishing its run on the server developed here indicates that the server is stable, and that there are
no unforeseen issues associated with rapid extraction from the source systems. Answering in
part question 3) from section 1.2, in that while the source systems are quite slow, it is possible to
intelligently throttle the load in order to read large amounts of information.

Chapter 9

Limitations and Extensions

Chapters 7 and 8 investigate the three key questions from section 1.2. Using these results, this
chapter will discuss the issues in the source systems, the server and the information model, and
what could be done to solve or mitigate them, as well as possible extensions to the server.

Sections 9.1, 9.2 and 9.3 discuss each of the source systems in turn, to answer question 3)
in detail, and suggest how the source systems or the approach could be modified to solve these
issues, and section 9.4 explores how an ideal solution might look. Section 9.5 summarizes the
limitations of the information model encountered in chapters 7 and 8, and attempts to answer
questions 1) and 2). Finally, section 9.6 lists the known limitations of the current server imple-
mentation, and how it could potentially be expanded in the future.

9.1 LCI

The core of the Aker BP solution is the LCI database, and similarly it is also the core of the OPC-
UA interface. The reason for this is most likely just that it has been designed especially for Aker
BP, and it is flexible enough to do the job. However, it seems that the reporting database is not
intended as a way to access the data automatically, but as indicated by the name, for “Reporting”,
i.e. a systematic way to dump and query data.

Instead of creating a front end application, they have chosen to create a few convenient
views. There is nothing inherently wrong in this approach, SQL is far more flexible than any
frontend dumping tool is likely to be, however the exposed database is not very fast, and not
easy to work with due to its difficult structure.

Most of the database schema has not been made available here, and according to sources in
Aker BP this is considered proprietary code by Aveva. Fortunately, even if details are unavailable,
the database tables are exposed, and so it is possible to at least see which rows exist and what
their data types are, which can be used to guess how the database is built.

The information model is quite primitive, meaning that the actual information model is not
built as part of the database, which is how this is usually done, but most likely exists only in
external documents or code. This is illustrated by the issue discussed in section 4.2, that at-
tributes are classified by numeric “names”. Without the external context it would be impossible
to understand the contents of the database.

There are several examples of this. First, the associations table contains associations from a

62

CHAPTER 9. LIMITATIONS AND EXTENSIONS 63

“source” to a “target”, where both can belong to a variety of different tables. This is problematic
in database design, since it means that there is no singular definition of each column. Take the
“SourceId” column. It may refer to a tag, a document, or something else entirely. A more nor-
malized database schema would split this up, so that there was one table for tag to tag relations,
one for tag to document, and so on.

Another important concept that appears to be lacking is the idea of “Foreign Keys”, which are
essentially ties between tables in the database. This is just not possible for the associations table,
since each column reflects data in multiple foreign tables. The “TagId” in the AttributesOfTags
table should also be a foreign key. This does not appear to be the case, unless it is part of some
hidden schema.

Combined these issues result in slow load times. Most likely, at least some of this perfor-
mance hit is caused by the poor structure. Whether this really is a copy of the production
database, or some transformation, is not clear. It is also possible that the reporting database
is lacking computational resources that are available to the live database.

Due to the lack of documentation, coming to any solid conclusions about the database is
difficult. The schema is simple, and flexible, but understanding the contents requires external
context, which is not easily accessible. With increased automation, the lack of a way to access
this information automatically and on-demand is almost certainly going to become a problem.
Speed and ease of access is necessary for centralizing and consolidating data from different sys-
tems.

If the LCI database is going to be used as the basis of an OPC-UA server like the one described
in this project, it will need to be improved in some way, if only to make the current solution
faster. Fortunately, there are a few steps that could in theory be taken:

• Ensure that the table is designed optimally. Indices and foreign keys can help perfor-
mance, and should be added wherever it would help. An effort should be made to make
the database efficient to access for external systems.

• Add the necessary contextual information to the database. In particular, the names of at-
tributes, the valid attributes for each tag class, and the valid associations between classes.
This information needs to be encoded in the database. Either in the model itself, or in a
separate table.

• Upgrade the server the database is running on. Databases are usually very good at using
extra resources, upgrading the server itself would allow the data to be read in reasonable
time.

• Obtain the database schema from Aveva, if Aker BP does not already have access to it. Aker
BP should in general require external software companies to provide documentation not
just about the frontend applications, but about backend APIs.

In practice, however, the database itself is not very complicated, and the best solution might
be to replace it with something more in the line with the needs of Aker BP. Based on the limita-
tions outlined above, a few key requirements can be posed to a theoretical replacement:

• It should use modern technology. The amount of information provided from each instru-
ment, as well as the number of devices, is growing quickly. A solution should be built to

CHAPTER 9. LIMITATIONS AND EXTENSIONS 64

handle many times the current load, and it should use scalable software that will not have
the same issues in another ten years.

• It must have a solid API. An SQL based interface is perfectly fine for something like this,
but it must be built with external access in mind.

• It should use a stricter information model. There is a large field of theory regarding the
normalization of databases that should be considered when developing a relational database,
if that is the chosen data model. At a minimum, the database should not rely on large
amounts of external context, and should not contain huge numbers of empty fields.

Rather than making the database capable of modeling any future content with a minimum
of tables, like the current solution, the replacement should seek to model only what Aker BP
needs now, and instead leave room for modifying the information model itself in the future, if
necessary. While flexibility is usually a good thing, it is more important that a model is intuitive
and efficient.

In fact, Aker BP is already in an early stage of designing a potential replacement for the LCI
database. Hopefully the findings in this thesis can be helpful in this process. A redesign is a
good time to ensure that the system is future proof, and a future proof LCI system will almost
certainly include a solid, efficient external API.

9.2 SAP

SAP is designed to be an all-in-one solution for industrial management, which is not quite in
line with the core concepts of this project, using flexible interfaces to connect different systems.
The general idea is that a company will use SAP for all asset management. The ODATA solutions
developed by SAP are most likely not really meant to let other systems include SAP data, but
to provide it to user applications such as Microsoft PowerBI. This does potentially make this
project more complicated, but the official ODATA API described in section 4.4, or the current
ODATA APIs in development at Aker BP would likely have been sufficient.

Previous projects to extract data from SAP in Aker BP have apparently used direct access to
underlying databases, which has the disadvantage of lacking the processing that is usually done
by SAP. It is possible that this project could have used a similar approach, but that would have
required further access and information about SAP, and this possibility was not explored further
due to limited time.

It is difficult to make any other conclusions about the SAP system. Control- and diagnostic
systems only actually produce a limited subset of the failure events generated by equipment,
those that were detected automatically. As mentioned, the relevant events for safety analysis
are those that are DU (Dangerous Undetected), which are typically only generated by operators
performing function tests. As a consequence, much of the data relevant to APOS is in SAP, and
reading from there is essential for this project, yet the chosen solution is not acceptable for a
final iteration of the server. The alternatives discussed here are:

• The official SAP ODATA API could be added to the SAP instance running at Aker BP.

• The Aker BP ODATA API could be expanded to cover the necessary data for this project.

CHAPTER 9. LIMITATIONS AND EXTENSIONS 65

• The server could directly access underlying databases.

There might also be other alternatives that this project has not explored, like a different API
for SAP. It seems like it may be possible to invoke SAP transactions directly from the command
line, which could be an alternative. What this project has shown is that connect to SAP with
external applications is not a simple task, and that SAP integration is likely to be a challenge in
the future of Aker BP.

9.3 EqHub

EqHub has the advantage over the other two source systems in that the API is fast, efficient,
flexible and feature rich enough to be sufficient for a project like this. Even reading several
hundred pieces of equipment from the API takes less than a minute.

The idea of EqHub is a good one. Gathering this kind of data in a central location and making
it accessible greatly improves the possibility of modeling. As discussed at length in the special-
ization project, avoiding duplicated data is an essential part of a good information mode, and
EqHub effectively applies this to data shared between companies. Ideally there would exist a
single, universal system, using a single unified information model, which contained all type
information.

EqHub can be seen as a sort of prototype of something like that. What it does have is infor-
mation that is centrally stored, supplied by a number of equipment manufacturers, and easily
accessible through a solid API. The API works well enough for this project, but it too could be
improved. In particular, the fact that the equipment retrieved by filtering based on class only
contains minimal information about each TEK number means that each individual TEK num-
ber must be fetched with a request each in order to further classify large numbers of equipment.

This has to be done with individual requests for each TEK number, it would be even faster
if the Sharecat API had bulk request endpoints, to fetch many items using a single request. The
backend is likely fast enough that bulk requests would be orders of magnitude faster, in theory
making the storing of TEK numbers completely unnecessary. If bulk fetching was possible, a
search filter could be assigned to each L1 or L2 equipment group. When browsing a group, these
filters would be used to fetch an initial collection of equipment, then enough data to classify
them could be fetched with a bulk request, removing the need for buffering in the server.

This is a minor issue, however. What EqHub really lacks is a consistent information model.
The value of the data to automated systems is greatly reduced if it is inconsistent, and while
there seems to be some system to data in EqHub, it is not strictly enforced, and it appears to be
largely up to the users how the data should be organized.

Of the three source systems discussed in this thesis, EqHub is the one that would have the
greatest benefit from an equipment model like the one presented by APOS. The APOS equip-
ment hierarchy is detailed, extensive, and backed by industrial standards. Ideally, EqHub would
not just use, but enforce use of a model like APOS to ensure that the data is consistent.

As it is now, EqHub can provide useful information to users, and some useful information for
automation. The API is sufficient for production use, although it could use some better bulk-
ing, but the actual contents could use some work. The following measures could be taken, in
increasing order of complexity:

CHAPTER 9. LIMITATIONS AND EXTENSIONS 66

• Enforce the presence of some fields, like “Model”. All equipment has a model, or some-
thing that can reasonably be used as a model name, some fields will always be defined,
and there is no reason to allow them to remain empty. The amount of manual work this
creates per equipment type is minimal, and it greatly enhances the model.

• Enforce unique model/manufacturer pairs as far as that is possible. A single instrument
model should not be represented by a dozen different TEK numbers.

• Plan the possible attributes per equipment class in greater detail, so that there is a limited
list of legal attributes for each class. Require these to be specified.

• Enforce a limited set of legal values per attribute. This would have to be based on an
extensive model, ideally there would be no “other” option. Users creating new equipment
would be presented with a form for filling out the properties of the new model, where the
values of each field is selected from a limited list of legal values.

The last two items could in theory be based on APOS. The requirement this poses for the
APOS project is producing a versioned, machine-readable, complete document detailing the le-
gal values and attributes of each class. Ideally such a document would be provided online, so
that sources like EqHub could retrieve an updated version automatically. It would also mean
that APOS, or a similar project, would need to be expanded to cover non safety-critical equip-
ment groups, or it would not be feasible to apply it to EqHub.

This solution would pose a higher requirement on equipment providers, but considering
the already considerable requirement posed for equipment documentation, and the value this
provides, it is a minimal burden. The number of new equipment models produced per year, and
the amount of time it takes to create formal documents, test and verify the contents, and so on,
is orders of magnitude larger than the time it would take for a manufacturer to fill this data into
EqHub.

It is much easier to push a system like EqHub to provide the translation from manufacturer
specific information models to something like APOS, rather than relying on every manufacturer
to use the same model.

In conclusion, EqHub is a great concept, and the API is a very solid start, but the current con-
tents are not consistent enough to fully rely on for automation, at least for the data referenced
from Aker BP.

9.4 Restructuring

An interesting exercise to better understand the current state of the system is to explore what it
would take to replace the current system with something completely different.

As discussed above, the LCI system appears to be overtaxed, meaning that it represents a
much more complex information model than it was originally intended to. The TEK numbers
being tags is an irregularity, in that it means that the “Tags” table now contains mainly tags rep-
resenting assets, and a small list of TEK Numbers which do not. The current information model
used by the LCI database could be used to represent any other information model. Instead, the
model should be designed for the specific purposes needed by Aker BP.

CHAPTER 9. LIMITATIONS AND EXTENSIONS 67

As stated, the idea of EqHub is good, and an ideal solution would keep it, or something
similar. As it stands, the LCI database contains some copied information from EqHub, but since
the API for EqHub is flexible and efficient, this is largely pointless, and an improved system
would drop this duplication entirely. Ideally, the LCI replacement would integrate tightly with
EqHub, to make duplicate TEK numbers and inconsistent data less likely.

Finally, SAP. SAP is the most difficult of the source systems to modify. It would be fairly trivial
to transfer the LCI data model to a more specialized data model, but SAP overlaps in part with
both EqHub and the LCI database, while also having its own tag system and internal structure.

The issue is that SAP is designed to be a monolith, without really interacting with external
systems. SAP ideally is meant to manage all the data: equipment requisition, measurements,
status notifications, personnel, tags, and so on. At the same time, it is fairly rigid in the way
it wants to represent this data, with platform numbers and codes, as well as tag names. Other,
external systems that want to interact with SAP needs to translate and conform to the SAP model
if they want to retrieve the data.

As a consequence, it is almost impossible to entirely replace SAP. An approach might be to
take specific parts of SAP and move them to a different system, or somehow modify the current
SAP setup to integrate better with an external model. As it stands, some data in SAP replicate or
conflict with data stored in the LCI database or EqHub. SAP functional location is similar to LCI
tag attributes, and SAP construction types is similar to EqHub equipment. These parts could be
removed from SAP, to reduce the number of opportunities for conflicts.

Suggested Replacement

Ignoring what is or is not possible for now, it is useful to visualize the ideal industrial system, to
understand how the current system can be modified to get closer to this ideal. The suggested
system consists of two main components: First, a database for tags, similar to the current LCI
database, which contains information from the control system, manual reporting like functional
tests and notifications, a collection of tag specific documents, and a simple reference to a TEK
number in EqHub.

Secondly, EqHub would remain and contain what it contains today, but organized and ex-
panded as described in section 9.3.

The suggestion uses a modern approach called an “Asset Administration Shell” (AAS)[40].
The idea is to collect the information in a “Shell” around each asset, so that all instance data is
accessible in the same place, conceptually close to the actual asset. A central system like the LCI
database is now would then have the much more limited role of just connecting and referencing
the shell of each asset. Some external system would contain the connections between each
asset, but any further data storage would be delegated to the shell.

The resulting model is very clean, see figure 9.1. In order to make this practical, it would most
likely mean somehow integrating this with SAP. It might be possible to reference these shells
from SAP in some way. Perhaps an effort should be made to investigate how SAP can be modified
to fit with a modern approach to information modeling, such as the Asset Administration Shell.
If not, then at some point it may need to be replaced, at least in part.

CHAPTER 9. LIMITATIONS AND EXTENSIONS 68

Master EqHub

Shell

Shell

Shell

Attributes
Documents
Reporting
Live data

Attributes
Documents
Reporting
Live data

Attributes
Documents
Reporting
Live data

Figure 9.1: Suggested AAS-based structure.

9.5 Information Model

While the model introduced by APOS is solid, it is worthwhile to discuss whether the issues
uncovered through testing and using the server are due to limitations in the information model,
and not in the source systems or the server.

Limited Scope

APOS intentionally only covers equipment related to safety instrumented systems. While this is
a deliberate choice, it does create some serious issues. For a company like Aker BP it is not ideal
to apply a complex type model to only a small part of their system, which does not even cover
the entirety of their safety-critical equipment, while keeping a different model for everything
else. If APOS is to be used in practical, technical solutions, and move beyond just being used for
modeling in smaller projects, it must cover all types of equipment.

One solution to this is to make the information model expandable, so that others can extend
it to cover other types of equipment, but it is worth noting that the limited scope of the project
makes it a less likely candidate for a standard information model for equipment. The general
idea of a model like APOS applied to all types of equipment is good, but as it stands using APOS
in practice would either mean applying it to part of the information, and using a different in-
formation model for the rest. Alternatively, equipment related to safety instrumented systems
could be separated into another system entirely.

Both solutions encounter the problem of having to connect the two systems, and teach op-
erators how to use both. Discussions with both Aker BP and other companies partnered with
the APOS project indicates that while there is general interest in a common information model,
the fact that it can only be applied to a subset is potentially problematic.

CHAPTER 9. LIMITATIONS AND EXTENSIONS 69

Model Inflexibility

One notable difference between the classes in EqHub and the L2 groups in APOS is that L2
groups, in many cases, are more specific. This highlights a problem with the APOS model that is
difficult to solve, and that reflects a general challenge in this kind of type-based modeling.

In ISA-95, the concepts of Equipment and Physical Assets are different. Equipment class
refers to the functionality of equipment, while Physical Asset refers to its make and model. In
the chosen interpretation of the APOS model, L3 equipment is chosen to correspond to Physical
Assets. In a way, this means that the Equipment class of a node is defined by the L2 group its
physical asset type, but this immediately highlights an issue with the model.

The reason why this is not the way ISA-95 models functionality is that some physical as-
sets can potentially perform multiple separate functions. If APOS is general enough that an L3
equipment type could belong to multiple L2 groups, then there is no consistent way to model
it in the current model. For example, it is not entirely unfeasible that a gas detector could be
made that is capable of being configured to use both line-based and point-based measurement,
which would place it in two separate L2 categories.

In ISA-95 this would be solved by simply making the PhysicalAsset class the actual model of
gas detector, and using the Equipment class to indicate which way it is being used. One way
to solve this issue might be to simply create two different L3 nodes, one for each function of
the gas detector, but this too is not ideal. Perhaps in practice ISA-95 needs to be reconsidered
entirely, and be replaced with some other OPC-UA companion standard capable of maintaining
the APOS hierarchy without creating this issue.

Alternatively, the issue might be seen as a criticism of the APOS hierarchy, in that some cate-
gories may be too specific. More general categories would be less likely to have this issue. Either
way, APOS should address this issue, and make a decision on how to handle types that fit into
multiple categories. As technology advances, this is likely to become more common, even in
safety instrumented systems.

9.6 Further work on the server

The server is little more than proof of concept, which is what it was intended to be. There are
several concrete steps that can be taken to turn it into a server that could be used in practice, or
integrated with the unified OPC-UA platform in development at Aker BP.

Some decisions were taken due to performance limitations. These will be ignored for this
section, as it can be assumed that a fully functional solution would have taken the necessary
steps to resolve the issues using the methods indicated thus far in this chapter.

As such, there are two main fields that should be addressed. First, the server is not fully
compliant with the OPC-UA standard, due to some shortcuts made to save time. Next, there is
more relevant data in other Aker BP systems that can and should be integrated with the current
model.

Compliance

In order to ensure compliance with the OPC-UA standard, a few steps must be taken. The SDK
handles a large part of this challenge, by dealing with the most difficult part of the OPC-UA

CHAPTER 9. LIMITATIONS AND EXTENSIONS 70

standard to implement: communication, encoding, security and user sessions. There are two
requirements missing from the Browse service implementation.

• It does not respect the BrowseResultMask flag, meaning that all fields are returned for each
reference, no matter what flags are set. This is not a big problem, clients are unlikely to
run into issues because of this, but it is worthwhile and fairly simple to fix.

• It does not respect limits, and does not provide ContinuationPoints. There are two steps to
fixing this. When browsing, fetch only as many results from the source system as requested
by the user. If this is not possible, for example if all attributes must be fetched at the
same time, then only the requested number of references should be returned, along with
a continuation point, and the remaining references should be stored until Browse is called
again with the continuation point from before.

The server should in general change to no longer buffer data beyond what is requested
through continuation points. This is discussed at length in chapter 3, but an ideal OPC-UA
server has no internal state. The ContinuationPoints are a deliberate exception to this, but these
are generally temporary, limited in number, and the client has some measure of control over
them.

Buffering is not acceptable for the final iteration of this server, as the full tag hierarchy would
easily fill gigabytes of memory. If the server is to serve as an interface, then this buffering must
be eliminated, even if this results in superfluous requests to the source systems due to imprecise
APIs. Making this change is not very difficult, but it would require the source systems to be able
to handle the traffic better than they do today.

Extending the server

As mentioned, this project interacts with two separate but related projects. APOS, and the Aker
BP project to create a universal OPC-UA platform. A natural next step would be to look at in-
tegrating this server with the existing OPC-UA servers for the various control systems. These
are not structured based on the LCI tag structure, but rather based on internals of the control
system. In theory, the server could be expanded to read from these tags, to obtain live values for
the control system configuration and physical measurements.

This would not be trivial, however. The data present in these servers is typically organized
not based on tags, but rather based on the control system itself. Each tag may have several
values, for control inputs, outputs, error values, and so on. The data in the control systems will
typically not be organized in a way convenient for contextualizing in the data model. Integrating
this data is a considerable project.

Of course, once contextualized, this server is designed to be easily accessible. Combining
data from the control systems with the rich context from LCI and EqHub and the reporting from
SAP would be an important step towards creating a unified OPC-UA platform.

The extended model could be as seen in 9.2. A new node type, which contains the input-
s/outputs on a standard format as well as configuration and other properties relevant for the
control system in question, would be added. This structure could be quite complicated, and
would contain references to other objects in order to model control loops, or other complex
information available in the control system.

CHAPTER 9. LIMITATIONS AND EXTENSIONS 71

LCINodeProperty

Control System

Output
1

Property

Property

Figure 9.2: Expanded LCINode.

Figure 9.3 shows the extended information flow. Most likely, contextualizing the control
nodes would require information from LCI or SAP, which would have to be fetched. The server
would likely maintain one connection to the control system OPC-UA server for each connecting
user, and call OPC-UA services on those underlying systems for the relevant nodes.

Path to Production

Given this it is relevant to ask, what are the concrete steps to put this server into production,
deploying it and using it as an official solution?

Assuming the general mapping from source systems to APOS is acceptable, the first step
would be to limit which attributes and fields are read from the source systems. Many properties
seen thus far are likely to not be very useful. Beyond this, APOS aims to define strict information
models for each type. The data from the source systems should be mapped to this information
model, in order to reflect that part of APOS.

As discussed in the specialization project, ideally every field would be limited by a strict data-
type limiting the legal values for each attribute. Similarly, the legal fields for each equipment
type would be strictly limited, and any that cannot be mapped over would be ignored.

Any holes in compliance mentioned thus far would need to be filled, and the issues men-
tioned with respect to the performance of the source systems would need to be solved, either by
finding different APIs, or upgrading the backend systems the server currently uses.

Moving on, the mapping would need to be filled out for all equipment and failure classifier
types. In practice, in order to use this the way Aker BP wants to, the APOS model itself would
likely need to be extended with equipment not related to safety instrumented systems.

Next would be integrating this by now stable model into the other information, as discussed
above. A server which places data from control systems in the LCI context, and is capable of
accessing data as an interface, without replicating, could be called “version 1”. Beyond that, the
server would eventually be expanded and combined with other projects to cover all tag-related
data in Aker BPs systems.

CHAPTER 9. LIMITATIONS AND EXTENSIONS 72

Server

EqHub

LCI

SAP

Control Systems

EquipmentNode

LCINode

SAPEvent

Control Node

R
E
S
T

O
D
B
C

O
D
A
T
A

O
P
C
U
A

Figure 9.3: Extended data flow.

Chapter 10

Conclusions and Discussion

10.1 Summary and Conclusions

The goal of this project was to investigate the challenges of applying the APOS OPC-UA model
to a set of existing source systems. The result stretches the limit of what was achievable, given
limited time, and the source systems in question. All three systems had factors that complicated
the development process.

The LCI Aveva information model, while functional, is very general. The type of informa-
tion model used by the LCI database can in theory be used to implement any other information
model, meaning that the information model itself does not describe the contents to any mean-
ingful level. External context which describes the contents is needed. In addition, the database
appears to be inefficiently constructed. It was necessary to bypass the provided views entirely,
as they were too inefficient. Even with optimizations, it takes 1-2 seconds to fetch each node,
and while parallelization might be possible, it can only help a limited amount if the issues are
caused by the database or hardware constraints.

The SAP API also has performance issues. While the backend appears to be more than fast
enough, there is no currently active and accessible API except for the very slow one used for the
Fiori app. While the app works fine, the API is difficult to use and generally unsuited to automa-
tion. Parallelization is possible, but appears to have quickly diminishing returns. It seems like
it is possible to get queries down to 3-4 seconds per tag when searching for both measurements
and notifications. Still, this is too slow for a practical application that would be used for data
analysis.

The solution is most likely creating a proper, dedicated API with enough resources to handle
the load from external applications. If that is not possible, it might be that the only solution is to
somehow expose the underlying databases, and use data from them directly.

EqHub does not have performance issues. The Sharecat API is more than fast enough to
be used for data analysis, and the server could fairly easily be rewritten to not require loading
equipment on startup. The API could be made even faster if it implemented bulk requests, but
that is a limitation that can be worked around. More importantly, the primary issue here is the
loose and inconsistent information model. While the “class” attribute seems consistent, this is
usually not sufficient for mapping to the APOS model, and so complex filters must be created.

The solution to these issues might be enforcing a detailed information model such as the
APOS model. The essential requirement for such a model is that it is extensive enough to con-

73

CHAPTER 10. CONCLUSIONS AND DISCUSSION 74

tain all equipment, detailed enough that it produces consistent results, and compliant enough
with other standards that mapping from the existing schemas used by equipment suppliers is
not too complicated. APOS aims to satisfy these goals, but this project reinforces these require-
ments. Without a strict information model, different suppliers will inevitably end up with dif-
ferent interpretations of the model, and a practical product using the data, such as an OPC-UA
server, will have to use complex filtering and exceptions to cover all possible interpretations.
This is discussed in more detail in section 9.3.

While it is quite possible to design a replacement for the current setup at Aker BP, replacing
something like this is expensive and difficult. There are good reasons why Aker BP have opted
to not keep the existing systems, rather than redesigning everything from scratch. An AAS based
system, like the one suggested in section 9.4, would be easier to work with and in the end be
a cleaner information model, but the importance of a good information model is usually sec-
ondary to a system that is usable.

10.2 Discussion

In chapter 1.2, three questions were stated:

1) What requirements should be posed to APOS to make it possible to develop practical OPC-
UA servers using the APOS information model?

2) Is the model developed in the specialization project sufficient to model the data found in
Aker BPs systems?

3) What requirements should be posed to the contents and technical implementations of in-
formation management systems in order to make them compatible with the type of OPC-
UA server described in this project?

By exploring the systems provided by Aker BP, and seeing what challenges these pose. These
questions can be answered. The requirements for APOS are established in sections 9.3 and 9.5.
APOS must be detailed and thorough enough that it can be applied to a system like EqHub, and
enforced on all equipment. Ideally, it should provide a versioned, machine-readable document
containing the full information model, where each legal field is specified.

This also raises another serious issue. Using the APOS model effectively requires a separate
model for safety instrumented systems. In many cases, this prevents a major challenge for the
adoption of APOS. If the APOS information model is to be used in this way, integrated with
existing systems, it should either be modified to cover all equipment, or be designed in such a
way that it can be easily expanded.

Another issue is also discussed in section 9.5, in that APOS may in some cases be too inflex-
ible, and that the model run into issues with equipment that does not consistently belong to a
single L2 category. In terms of question 2), this is potentially also a problem with the chosen
model. It may be necessary to reconsider the base information model in a way that can handle
this, potentially using a different base model than ISA-95. Either way, this potential for conflict
should be addressed by the APOS project.

Finally, the source systems have for the most part been difficult to work with, which has
made the creation of a common OPC-UA server a considerable challenge. As discussed above,

CHAPTER 10. CONCLUSIONS AND DISCUSSION 75

both the contents of the systems and the existing interfaces have created challenges for this
project.

The requirements for technical systems in order to create a server like this one is simple
enough: they must have fast, flexible and well documented APIs, which for now is only fully
satisfied by EqHub.

Finally, for the information modeling itself. This is in many cases difficult to address. The
basic requirements are simple enough: Systems must use a consistent, organized, documented
data model. As seen in SAP, this means that failure notifications must not be allowed to be
loosely classified. The “Other” classification is problematic and should be avoided. In order
to ensure this, it is important that the information model is complex enough that valid failure
classifiers can always be selected. This model could be provided by APOS, or by some other stan-
dard. This lack of specificity may also be remedied with requirements placed on the engineers
that create these notifications to begin with.

The issue of relaxed requirements on information entry is also seen in EqHub. Applying
a strict model like APOS to inconsistent data is difficult, and often produces results of limited
quality. In EqHub especially, information entry could be subject to stricter requirements and
information modeling.

10.3 Future Work

Based on the conclusions made in this project, a few general recommendations to APOS and
the industry in general can be made. In addition, section 9.6 explains steps that can be taken
to improve the server implementation in such a way that it can be used as part of the unified
OPC-UA platform in development at Aker BP.

General Recommendations

Expand APOS to cover non-SIS equipment. As discussed in the previous section, APOS is less
likely to be chosen as a standard information model if cannot be applied to non safety-critical
equipment. The idea and core concepts of APOS are good, and in principle apply to all forms of
equipment. In fact, the concepts of failure modes, detections and causes may be underutilized
outside of safety analysis, despite being potentially useful for all equipment.

Regardless of whether APOS is expanded now, it should be designed to be expandable in
general. It is inevitable that assumptions about technical solutions will change in the future,
and in order to remain relevant in the future, the APOS project should define procedures for
expanding the information model to cover new types of equipment.

The industry needs a standard model for equipment. Ideally such a model should be hosted
and managed centrally, in a system like EqHub, or a larger collaboration. EqHub might be too
small an initiative, being entirely Norwegian, but a larger initiative might be handled by some-
thing like the IOGP (International Association for Oil and Gas Producers). The advantage of
APOS in such a setting is that it is not a flexible, general standard, and instead uses recommen-
dations and guidelines from other industrial standards to create a strict, specific information
model.

CHAPTER 10. CONCLUSIONS AND DISCUSSION 76

Ensure that existing systems are externally accessible. This is already in progress at Aker
BP, and it is becoming clear that access to data for analysis, contextualization, and visualization
is something industry is aware of. Whether the solution is an OPC-UA server like the one devel-
oped in this project, or extracting the data to a system like Cognite’s CDF and contextualizing it
later, providing automated access to live data is necessary.

If the underlying systems use non-standard but fast APIs, then a solution like an OPC-UA
interface could be useful. This is effectively how the LCI database could be, if it was faster. The
database requires specialized knowledge to access and understand, but an external OPC-UA
interface could make it more easily accessible. As such, making the source systems accessible
only really requires a fast and accessible API, not necessarily something as independent as OPC-
UA.

Enforce data consistency. A solid information model is worthless if it is not obeyed. If
the easiest solution for operators is not obeying the information model, then the result will
inevitably be data inconsistency. The reasons for this can be many, the user interface may be
difficult, or perhaps the information model is incomplete. Either way, automation rapidly loses
value when faced with inconsistent data.

Further Research

Finishing the server. This will mean following the points outlined in section 9.6, to fill in the
server, and integrate it with remaining Aker BP systems. This will require changes to the source
systems, as discussed in chapter 9 in general.

The server implementation is licensed under GPL 2, and as such it may be freely used and
expanded upon, provided the license is distributed along with the software, and that the source
code is made available to anyone with a copy of the product. It is based on the official SDK,
which should be relatively state-of-the-art, but it requires experience with both OPC-UA and
programming in C#. Integrating it with software written with a different system would likely be
difficult. In that case, it would most likely be better to re-implement the server with the methods
described in this thesis.

Repeating the experiments. Using the experience from this project, the process could be
repeated at another company, perhaps with a slightly different focus. Gathering more informa-
tion about the problems facing industry today could provide further insight into how the APOS
model should be developed in the future.

Appendix A

The Code

Unlike the specialization project, the code written for this project is not easilly runnable. It relies
on access to the various highly specific internal systems in Aker BP. That said, this section will
provide both technical documentation as well as instructions for reproducing the results, given
access to systems like the ones in use at Aker BP.

A.1 Technical Documentation

The code is written in C#, and compiles for .NET 5.0. There are three projects:

• SourceSystems, which handles connecting to the three source systems and transforming
the raw responses into something useable.

• Server, which contains the OPC-UA server itself.

• FRReader, which is the client implementation discussed in section 8.2.

Below is a general description of all provided files, there is also some inline documentation
where further explanation of some methods are needed.

SourceSystems

The SourceSystems code is divided into four parts: Auth contains the code required for authen-
ticating against Azure AD. EqHub, LCI and SAP contain code for the respective source systems.
There is also a file “Config.cs”, which contains classes for config deserialization.

• Auth/IADHeaderProvider, is an interface for obtaining Azure AD headers, the idea was
that the Selenium based solution was supposed to be temporary, but as no other method
ever became available, it has remained the only implementation.

• Auth/SeleniumHeaderProvider, uses Selenium running Google Chrome to simulate a
user trying to access either the EqHub frontend, or the SAP API. It follows one of several
different possible paths to try to obtain the authentication headers necessary for connect-
ing to the source systems. Using it in the future will almost certainly require maintenance,
as the authentication frontend is likely to change.

77

APPENDIX A. THE CODE 78

• EqHub/EqhubScrapeSource, uses web-scraping to extract data from EqHub. This was
replaced by a proper API based solution later.

• EqHub/EqhubSource, uses the Sharecat API to access data from EqHub.

• EqHub/Equipment.cs, contains the “Equipment” class, which is used as a container for
equipment attributes fetched from EqHub.

• EqHub/IEqhubSource, is an interface for the two different EqHub source classes, to make
switching between them easier.

• LCI/LCIAttribute.cs, LCI/LCIRelation.cs, LCI/LCITag.cs are data classes for the four dif-
ferent types of LCI data: Attributes, Relations and basic Tag data, respectively.

• LCI/LCINode.cs, is used as a container for data relevant to a specific LCI node, it keeps
track of which information has been fully retrieved, and can be created without fetching
any data from the source systems, which is convenient in the server, where data is filled
procedurally.

• LCI/LCIDBSource.cs maintains a connection to the LCI database, and uses it to extract
data. Requests cannot be made simultaneously, so it uses a binary semaphore for syn-
chronization.

• SAP/FlocMeasurement.cs, SAP/FlocNotification.cs contain the data classes for measure-
ments and notifications respectively. Both simple data transfer classes used for deserial-
ization of the response from the API, and slightly more advanced classes which has parsed
and filtered the desired data further.

• SAP/FunctionalLocation.cs, contains the data transfer classes for SAP functional loca-
tion. This ended up not being used, but the code to extract it exists and is fully functional.

• SAP/SapSource.cs is the primary class for reading from SAP. It uses an implementation
of IADHeaderProvider to get the necessary authentication headers, and makes requests
to the Fiori server. Requests here can be made in parallel, which can help a little with
performance.

• SAP/SAPTagData.cs is a container class for SAP data, similar to LCINode.cs, similarly it
keeps track of fetched data, to avoid fetching it twice.

• Config.cs contains config classes, these are filled from the various YAML files in the config
folder.

The SourceSystems project does not depend on OPC-UA, and could be used for other imple-
mentations. It only depends on YamlDotNet for yaml deserialization, Selenium for authentica-
tion, and HtmlAgilityPack for the scraping-based EqHub implementation.

APPENDIX A. THE CODE 79

Server

The Server is a fairly standard OPC-UA server implementation. It does not really do anything
very unusual for implementations using the official SDK.

• Events/MeasurementEvent.cs and Events/NotificationEvent.cs are event-state implemen-
tations for the two different types of SAP events. This is a fairly simple way to implement
events in the OPC-UA SDK, each event contains a list of fields that they expose through
overriden functions to the SDK, which handles the filtering and selection.

• APOSServer.cs extends the OPC-UA StandardServer class, and is the foundation for the
server itself. It would make it possible to override base functionality, but in this case all it
is used for is to add the two node managers.

• APOSUtils.cs is a utility class, for now it only contains the “DistinctBy” utility method,
which is useful in a few places.

• ExternalNodeManager.cs is a node manager that handles the nodes fetched from SourceSys-
tems. This means it is responsible for most of the complex functionality. It is implemented
from scratch, as required by the INodeManager interface from the SDK.

• InternalNodeManager.cs is a much simpler node manager that extends the CustomNode-
Manager2 class from the SDK. This class does most of the work for in-memory nodes,
meaning that it handles the APOS and ISA95 hierarchies.

• ServerController.cs is a utility class that contains the server itself, and manages any re-
sources that needs disposing. It is convenient to have a class like this, so that extra server
logic can be placed somewhere it does not interfere with the SDK.

The Server project obviously depends on the OPC-UA SDK, as well as the SourceSystems
project.

FRReader

FRReader is a simple OPC-UA client implementation, with a few very specific methods used for
the task of reading all tags belonging to an equipment group, then fetching all events from those.

The various OPC-UA methods are contained in the FRReader.cs class, while the overall logic
is in Program.cs.

Config

Finally, there are a few config files contained in the “Data” directory. Some of these are largely
static, the two “.xml” config files are used for configuring the server and FRReader client. There
are also a few .yml files that contain various parts of the configuration.

• config/APOS.NodeSet2.xml contains the parts of the APOS nodeset that are not generated
from config files. That is, the base types and event types.

APPENDIX A. THE CODE 80

• config/APOS.TestClient.Config.xml is used for configuring the FRReader client. It should
largely not require any additional work.

• config/aposstructure.yml contains the configuration of the APOS hierarchy, as discussed
briefly in section 6.2.

• config/config.yml contains the main configuration elements discussed in chapter 5.

• config/knownteknos.yml contains a list of the known TEK numbers, used for populating
the hierarchy on startup. The provided version is empty, but it is written automatically by
the server as new types are discovered.

• config/Server.APOS.Config.xml contains the server configuration, including which port
it runs on.

In addition, there are two more folders. “cookies” contains a file for each site the AD Header
provider is asked to obtain cookies for, storing them for future use.

The “eqhub” folder contains a file for each TEK number extracted by the scrape-based EqHub
source, for efficiency. It is not used by the API-based source, since it is much faster.

A.2 Running the code

As mentioned, running the code requires access to the three source systems. It must actually be
run on a machine within the same Active Directory as the LCI database in order to work properly,
and the web-driver solution partly relies on this as well. Hence, in order to properly reproduce
the results, it should be run on an Aker BP machine. This poses a few issues, as some part of
the configuration for the Aker BP machines makes it impossible to compile .NET code, although
some solution may exist.

The solution to this problem used for the purposes of this project was highly specific and
will not be shared in detail here. Essentially, it meant publishing the code in a shared drive on
another machine, then connecting to the Aker BP machine over SSH and running the code from
there, then checking for the existence of a file to terminate the program. The code checking for
the file can be found in Server/Program.cs.

Running the published code should not require any other dependencies at all. Compiling
the code will require installing the .NET 5.0 SDK, which can be found here:
https://dotnet.microsoft.com/download. The code also needs the file Opc.ISA95.NodeSet2.xml
to be added to the Data/config folder, it can be found at
https://opcfoundation.org/UA/schemas/ISA-95/1.0/.

It should be possible to compile this on windows, mac or linux. The FRReader client should
run fine on any platform, but the Server code will be very difficult to make work on a non-
windows machine, seeing as it relies on native windows authentication.

There are a few environment variables that should be defined for the various projects:

• “DriverPath” is the path to the google web-driver, which can be found here:
https://chromedriver.chromium.org/downloads.

https://dotnet.microsoft.com/download
https://opcfoundation.org/UA/schemas/ISA-95/1.0/
https://chromedriver.chromium.org/downloads

APPENDIX A. THE CODE 81

• “WebDriverUserDataDir” is the user-data directory of the web driver. Typically something
like “%USERDIR%/AppData/Local/Google/Chrome/User Data/APOS”.

• “APOS_ROOT_DIR” is the path to the “Data” directory discussed above.

• “EQHUB_CLIENT_ID” is the OAUTH client ID for the EqHub API.

• “EQHUB_CLIENT_SECRET” is the OAUTH client secret for the EqHub API.

• “AD_EMAIL” is the email address used with Azure AD authentication, this should be your
Aker BP mail address.

• “LCI_USERNAME” is the short username for your account.

• “LCI_PASSWORD” is the password for your Aker BP account.

• “APOS_SERVER_ENDPOINT” is the URL of the server the FRReader should connect to.

Before building, the Paket package manager must be installed by running
dotnet tool restore, then dotnet paket restore can be used to download the packages.

Typically, for running the code, either use dotnet run --project [Project], or
dotnet publish and then simply run the .exe file under
[Project]/bin/Debug/net5.0/publish/[Project].exe.

The server is, by default, hosted on port 62546, but this can be changed by modifying the file
config/Server.APOS.Config.xml.

Appendix B

External Figures

(a) SAPNotification event type, subtype of APOSEv-
entType

(b) SAPMeasurement event type

Figure B.1: SAP Event types in hierarchy

82

APPENDIX B. EXTERNAL FIGURES 83

Figure B.2: LCI node in hierarchy.

APPENDIX B. EXTERNAL FIGURES 84

(a) EqHub node in hierarchy

(b) References to LCI tags on EqHub Node

Figure B.3: EqHub Node

APPENDIX B. EXTERNAL FIGURES 85

Figure B.4: SAP MeasurementDocument received by UAExpert

APPENDIX B. EXTERNAL FIGURES 86

Figure B.5: SAP Notification received by UAExpert, note the NodeIds of the APOS fields, these
have been mapped over.

APPENDIX B. EXTERNAL FIGURES 87

Figure B.6: Populated gas detector hierarchy.

APPENDIX B. EXTERNAL FIGURES 88

Figure B.7: Populated PSV hierarchy.

APPENDIX B. EXTERNAL FIGURES 89

Figure B.8: LCI node in Fusion

Figure B.9: LCI node metadata in Fusion

APPENDIX B. EXTERNAL FIGURES 90

Figure B.10: EqHub node metadata in Fusion

Figure B.11: Measurement event in Fusion

Appendix C

Acronyms

APOS Automatisert prosess for oppfølging av instrumenterte sikkerhetssystemer (Eng: Auto-
mated process for follow-up of safety instrumented systems)

SIS Safety Instrumented System

SIF Safety Instrumented Function

PLC Programmable Logic Controller

DU Dangerous Undetected

DD Dangerous Detected

S Safe

SDK Software Development Kit

OPC-UA Open Protocol Communications - Unified Architecture

OPC (previously) OLE for Process Control

HTTP Hyper Text Transfer Protocol

HTTPS HTTP Secure

TCP Transmission Control Protocol

LCI Life Cycle Information

SAP Systems, Applications, and Products in Data Processing

DETNOR Det Norske Oljeselskap (The Norwegian oil company)

HTML HyperText Markup Language

JS JavaScript

JSON JavaScript Object Notation

91

APPENDIX C. ACRONYMS 92

ISOC Internet Society

IETF Internet Engineering Task Force

RFC Request For Comment

W3C World Wide Web Consortium

API Application Programming Interface

GUID Globally Unique Identifier

URL Universal Resource Locator

XML Extensible Markup Language

SOAP Service Oriented Architecture Protocol

ODBC Open Database Connectivity

SQL Structured Query Language

AD Active Directory

REST Representational State Transfer

SSO Single Sign On

YAML YAML Ain’t Markup Language

PSV Pressure Safety Valve

Bibliography

[1] Norsk olje og gass. URL https://www.norskoljeoggass.no/.

[2] YamlDotNet. URL https://github.com/aaubry/YamlDotNet.

[3] Soap version 1.2. apr 2007, (Accessed March 2021). URL
https://www.w3.org/TR/soap12/.

[4] IEC-61508 Functional safety of electrical-electronic-programmable electronic safety-related
systems. IEC, 2010.

[5] What is azure active directory?, may 2020, (Accessed March 2021). URL
https://docs.microsoft.com/en-us/azure/active-
directory/fundamentals/active-directory-whatis.

[6] Regular expression language - quick reference, mar 2021, (Accessed March 2021). URL
https://docs.microsoft.com/en-us/dotnet/standard/base-types/regular-
expression-language-quick-reference.

[7] ASP .NET, (Accessed March 2021). URL https://dotnet.microsoft.com/apps/aspnet.

[8] Aveva, (Accessed March 2021). URL https://www.aveva.com/.

[9] Cognite, (Accessed March 2021). URL https://www.cognite.com/.

[10] Cognite documentation, (Accessed March 2021). URL https://docs.cognite.com/.

[11] Sharecat TEK API 2.0, (Accessed March 2021). URL
https://api.sharecat.com/v2/help/index.html.

[12] EqHub - EPIM, (Accessed March 2021). URL http://epim.no/eq-hub/.

[13] SAP Fiori, (Accessed March 2021). URL https://www.sap.com/products/fiori.html.

[14] HTML & CSS, (Accessed March 2021). URL
https://www.w3.org/standards/webdesign/htmlcss.

[15] W3C JavaScript Web APIs, (Accessed March 2021). URL
https://www.w3.org/standards/webdesign/script.html.

[16] ODATA, (Accessed March 2021). URL https://www.odata.org/.

93

https://www.norskoljeoggass.no/
https://github.com/aaubry/YamlDotNet
https://www.w3.org/TR/soap12/
https://docs.microsoft.com/en-us/azure/active-directory/fundamentals/active-directory-whatis
https://docs.microsoft.com/en-us/azure/active-directory/fundamentals/active-directory-whatis
https://docs.microsoft.com/en-us/dotnet/standard/base-types/regular-expression-language-quick-reference
https://docs.microsoft.com/en-us/dotnet/standard/base-types/regular-expression-language-quick-reference
https://dotnet.microsoft.com/apps/aspnet
https://www.aveva.com/
https://www.cognite.com/
https://docs.cognite.com/
https://api.sharecat.com/v2/help/index.html
http://epim.no/eq-hub/
https://www.sap.com/products/fiori.html
https://www.w3.org/standards/webdesign/htmlcss
https://www.w3.org/standards/webdesign/script.html
https://www.odata.org/

BIBLIOGRAPHY 94

[17] SAP, (Accessed March 2021). URL https://www.sap.com/norway/index.html.

[18] Sharecat, (Accessed March 2021). URL https://www3.sharecat.com/.

[19] UA-.NETStandard Samples, (Accessed March 2021). URL
https://github.com/OPCFoundation/UA-.NETStandard-Samples.

[20] UA-.NETStandard, (Accessed March 2021). URL
https://github.com/OPCFoundation/UA-.NETStandard.

[21] W3C URI Specification, (Accessed March 2021). URL
https://www.w3.org/Addressing/URL/uri-spec.html.

[22] W3C Standards, (Accessed March 2021). URL https://www.w3.org/standards/.

[23] YAML ain’t markup language, (Accessed March 2021). URL https://yaml.org/.

[24] D. D. Chamberlin. Early history of sql. IEEE Annals of the History of Computing, 34(4):
78–82, 2012. doi: 10.1109/MAHC.2012.61.

[25] International Electrotechnical Commission. IEC-61511 Functional safety: Safety
instrumented systems for the process industry. International Electrotechnical Commission,
2018.

[26] International Electrotechnical Commission. IEC-60050 international electrotechnical
vocabulary, (Accessed April 2021). URL
https://www.electropedia.org/iev/iev.nsf/index?openform&part=192.

[27] Roy T. Fielding, James Gettys, Jeffrey C. Mogul, Henrik Frystyk Nielsen, Larry Masinter,
Paul J. Leach, and Tim Berners-Lee. Hypertext transfer protocol - http/1.1. Jun 1999
(Accessed March 2021). URL https://tools.ietf.org/html/rfc2616.

[28] Roy Thomas Fielding. Architectural styles and the design of network-based software
architectures (PHD). 2000.

[29] International Organization for Standardization. ISO-14224: Petroleum, petrochemical and
natural gas industries: collection and exchange of reliability and maintenance data for
equipment. International Organization for Standardization, 2006.

[30] Dick Hardt. The oauth 2.0 authorization framework. Apr 2012 (Accessed March 2021).
URL https://tools.ietf.org/html/rfc6749.

[31] Courtney Hunt. Understanding the world wide web: A brief primer, Mar 2014 (Accessed
March 2021). URL https://www.socialmediatoday.com/content/understanding-
world-wide-web-brief-primer.

[32] Leach, P. and Mealing, M. and Salz, R. A universally unique identifier (uuid) urn
namespace. Jul 2005 (Accessed March 2021). URL
https://tools.ietf.org/html/rfc4122.

https://www.sap.com/norway/index.html
https://www3.sharecat.com/
https://github.com/OPCFoundation/UA-.NETStandard-Samples
https://github.com/OPCFoundation/UA-.NETStandard
https://www.w3.org/Addressing/URL/uri-spec.html
https://www.w3.org/standards/
https://yaml.org/
https://www.electropedia.org/iev/iev.nsf/index?openform&part=192
https://tools.ietf.org/html/rfc2616
https://tools.ietf.org/html/rfc6749
https://www.socialmediatoday.com/content/understanding-world-wide-web-brief-primer
https://www.socialmediatoday.com/content/understanding-world-wide-web-brief-primer
https://tools.ietf.org/html/rfc4122

BIBLIOGRAPHY 95

[33] Microsoft. Microsoft Open Database Connectivity (ODBC), 2016 (Accessed March 2021).
URL
https://cdn.simba.com/wp-content/uploads/2016/03/ODBC_specification.pdf.

[34] Einar Marstrander Omang. APOS OPC-UA. Dec 2020.

[35] OPC Foundation. Opc ua online reference, Feb 2021 (Accessed March 2021). URL
https://reference.opcfoundation.org/v104/.

[36] Marvin Rausand. Reliability of safety-critical systems: theory and applications. Wiley, 2014.

[37] SINTEF. Standardised failure reporting and classification of SIS failures in the petroleum
industry - draft version 3.0. Dec 2019.

[38] SINTEF. H5 - APOS object model specification - preliminiary draft. Apr 2020.

[39] SINTEF. Automatisert prosess for oppfølging av instrumenterte sikkerhetssystemer,
(Accessed May 2021). URL https://www.sintef.no/prosjekter/automatisert-
prosess-for-oppfolging-av-instrumenterte-sikkerhetssystemer/.

[40] Constantin Wagner, Julian Grothoff, U. Epple, Rainer Drath, S. Malakuti, Sten Grüner,
M. Hoffmeister, and P. Zimmermann. The role of the industry 4.0 asset administration
shell and the digital twin during the life cycle of a plant. 2017 22nd IEEE International
Conference on Emerging Technologies and Factory Automation (ETFA), pages 1–8, 2017.

https://cdn.simba.com/wp-content/uploads/2016/03/ODBC_specification.pdf
https://reference.opcfoundation.org/v104/
https://www.sintef.no/prosjekter/automatisert-prosess-for-oppfolging-av-instrumenterte-sikkerhetssystemer/
https://www.sintef.no/prosjekter/automatisert-prosess-for-oppfolging-av-instrumenterte-sikkerhetssystemer/

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f E
ng

in
ee

rin
g

Cy
be

rn
et

ic
s

Einar Marstrander Omang

OPC-UA Interface for Safety
Instrumented Systems

Master’s thesis in Cybernetics and Robotics
Supervisor: Mary Ann Lundteigen
Co-supervisor: Arvid Bjarne Nilsen

May 2021

M
as

te
r’s

 th
es

is

	Preface
	Executive Summary
	Introduction
	Background
	Objective
	Approach
	Outline

	Background
	Safety Instrumented Systems
	APOS
	Model
	OPC-UA Mapping

	OPC-UA Services
	NodeIds
	Browse
	Read
	Timeseries and Event Data
	Development of an OPC-UA server

	Source Systems
	Process
	LCI
	EqHub
	SAP

	Information Mapping
	EqHub
	LCI
	SAP

	Implementation
	Processing data from Source Systems
	Server
	Structural Overview

	Testing the Model
	Populating Gas Detectors
	Populating PSVs
	Results

	Usage
	General Uses
	Calculating Failure Rates
	Mass Data Extraction
	CDF

	Limitations and Extensions
	LCI
	SAP
	EqHub
	Restructuring
	Information Model
	Further work on the server

	Conclusions and Discussion
	Summary and Conclusions
	Discussion
	Future Work

	The Code
	Technical Documentation
	Running the code

	External Figures
	Acronyms
	Bibliography

