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Introduction

The success of a mathematical description of the world has led to an
abundance of inverse problems in science and engineering. An inverse
problem can be associated with any mathematical equation that describes
the causal influence of a variable r ∈ R on an observable variable d ∈ D,
and this type of equation is termed a forward model. Here, the sets R
and D are taken to be Hilbert spaces. In many applications a forward
model can be theoretically based and captured by a function f : R → D;
hence, the forward model can be expressed

[
d|r
]

= f(r). (1)

Computing the observation d for a given configuration of the causal
variable r is the forward problem associated with the forward model,
whereas computing r for a given d is the inverse problem.

An inverse problem is said to be well-posed if a unique solution exists
and the solution changes continuously with variations in the observations
(Hadamard, 1902, 1923). Well-posed problems are desirable because they
in principle can be solved exactly by stable algorithms. Problems that
are not well-posed are said to be ill-posed, and inverse problems of this
type are often approached by regularization techniques. Regularization
techniques impose restrictions on the solution that make the regularized
problem well-posed. Tikhonov regularization is a classical regularization
technique (Tikhonov, 1963) that offers a solution r̂ to ill-posed problems
through minimization of an objective function,

r̂ = argmin
r

{∣∣∣∣f(r)− d
∣∣∣∣+ α

∣∣∣∣r− r∗
∣∣∣∣} . (2)

Here, α > 0 is a small parameter and r∗ is a reasonable guess for the
solution. The regularization and associated minimization is most com-
monly carried out with respect to the L2 norm, but other norms may be
used. Nevertheless, the minimization problem is in general complicated
and requires the use of a suitable numerical optimization procedure.
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Introduction

We have so far discussed inverse problems in which the observations
are assumed to be exact. In real world applications, the assumption of
exact observations tends to be unreasonable. Observations are burdened
by measurement errors which, even for well-posed problems, may entail
that the correct solution can not be found. Measurement errors can be
detrimental for so-called ill-conditioned problems, which are character-
ized by that small errors in the observations yield much greater errors
in the solution. This type of inverse problems can be approached by
regularization techniques. However, numerical approaches yield solutions
that are point estimates; hence, the inherent uncertainties of the obser-
vations are not reflected. A probabilistic approach that incorporates the
measurement errors therefore seems more reasonable, and it can provide
a solution on the form of a probability statement. In a probabilistic
setting, the forward model takes the form

[
d|r
]

= f(r) + ed|r, (3)

where ed|r is a stochastic variable representing the measurement errors.
The probabilistic forward model has an associated probability density
function (pdf) p(d|r), which is termed the likelihood model.

Solving the inverse problem in a statistical framework involves identi-
fying an estimator r̂(d) : D → R, from which an estimate of the unknown
causal variable r can be computed. Estimators are often evaluated ac-
cording to a loss function L(r, r̂(d)), which is typically taken to be the
sum of squared residuals, i.e., L(r, r̂(d)) =

∣∣∣∣r − r̂(d)
∣∣∣∣2 .The expected

loss of the estimator is captured by the risk function Sr̂(r), which is
defined pointwise in R as

Sr̂(r) =

∫

D
L(r, r̂(d)) dp(d|r). (4)

In the minimax approach, the optimal estimator is the estimator that
minimizes the maximum risk. That is, the minimax risk is
Smm = inf sup

r̂ r∈R
Sr̂(r), and the optimal minimax estimator is the one

that achieves this risk. The minimax approach is a general principle for
estimator selection, but it tends to be infeasible due to computational
complexity, and results regarding the assessment of estimator uncertainty
are limited. However, Stark (1992) reports results on minimax confidence
intervals for a linear forward function (Backus, 1989; Donoho, 1989).
Alternatively, estimator selection can be based on minimization of the
average risk. This is the framework of Bayesian statistics, in which
optimal estimators minimize the average risk. In practice, estimation and
uncertainty quantification are easily available in a Bayesian framework,
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albeit substantial computational effort may be needed in some cases. We
therefore further pursue inverse problems in a Bayesian framework.

Bayesian inversion

We now consider r and d to be real valued random vectors of dimen-
sion nr and nd, respectively. In a Bayesian framework, the solution to
the inverse problem is the posterior model p(r|d), which can be used
for estimation and uncertainty assessment. The posterior model is the
probability density function given by

p(r|d) =
p(d|r)p(r)

p(d)
∝ p(d|r)p(r). (5)

Here, p(r) is the prior model, which represents the prior knowledge and
beliefs that the modeler has about r. Furthermore, p(d|r) is the likelihood
model describing the relationship between r and d. The normalizing
constant p(d) tends to be challenging to compute and can make it difficult
to obtain posterior models.

For certain combinations of prior models and likelihood models, the
form of the posterior models are known. A class of prior models C is
said to be conjugate with respect to a likelihood model, if the corre-
sponding class of posterior models is also C (Casella and Berger, 2001).
Gaussian prior models provide the perhaps most well known examples of
conjugacy; Gaussian prior models are conjugate with respect to so-called
Gauss-linear likelihood models (Tarantola, 2005), which are likelihood
models that are Gaussian with expectation linear in r. This relation
provides the foundation of geostatistics and Kriging interpolation (Chilès
and Delfiner, 1999), and because Gaussian prior models can adequately
represent many phenomena, the relation is often used in Bayesian inver-
sion frameworks due to analytically available posterior models. Moreover,
predictive quantities can be computed directly from the parameters of
the posterior model.

The nr-dimensional random vector r is a Gaussian random field (GRF)
with nr-dimensional expectation vectorµr and (nr×nr) covariance matrix
Σr, if its pdf is of the form (Johnson and Wichern, 2007)

p(r) = (2π)−nr/2 |Σr|−1/2 exp

{
−1

2
(r− µr)

T Σ−1
r (r− µr)

}
, (6)

with the superscript T indicating the matrix transpose. We denote this
Gaussian pdf by ϕnr (r;µr,Σr). A Gauss-linear forward model is of the
form [d|r] = Fr + ed|r, where F is an (nd × nr) matrix representing the
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Introduction

linear operation on r and the nd-dimensional vector ed|r is an error term
with Gaussian distribution. We assume the error term to be zero in
expectation; hence, the likelihood model can be expressed

p(d|r) = ϕnd(d; Fr,Σd|r), (7)

where Σd|r is the associated (nd × nd) covariance matrix. The Gaussian

posterior model ϕnr
(
r;µr|d,Σr|d

)
is easily available through computa-

tion of its conditional parameters (Johnson and Wichern, 2007),

µr|d = µr + ΓrdΣ
−1
d (d− µd) (8)

Σr|d = Σr − ΓTrdΣ
−1
d Γrd,

where Γrd = ΣrF
T contains the inter-variable covariances between r and

d. Moreover, µd = Fµr and Σd = FΣrF
T .

If a non-conjugate prior model is used, assessment of the posterior
model tends to be simulation based. Markov chain Monte Carlo (McMC)
is a widely used simulation technique for posterior model assessment
(Mosegaard and Tarantola, 1995; Sen and Stoffa, 1996; Eidsvik et al.,
2004a).

Markov chain Monte Carlo simulation

McMC simulation schemes make use of Markov chains to simulate from
the target distribution π(r) = p(r|d). The chain requires a transition
kernel pt

(
r′|r
)
, by which the chain can enter new states r′ given its

current state r. Such a transition kernel must ensure that the target
distribution π(·) is the equilibrium distribution of the chain, i.e.,

∫

B
π(r) dr =

∫
pt(B|r)π(r) dr, ∀B ∈ B, (9)

where

pt(B|r) =

∫

B
pt(r

′|r) dr′ (10)

and B is the Borel σ-field on Rnr . This condition is ensured by using
reversible chains where the transition kernel satisifies the detailed balance
equation (Gamerman and Hedibert, 2006),

π(r)pt(r
′|r) = π(r′)pt(r|r′), ∀(r, r′). (11)

The transition kernel pt(r′|r) consists of a proposal kernel q(r′|r) and a
probability α(r′|r) ∈ [0, 1], such that pt(r′|r) = α(r′|r)q(r′|r) for r′ 6= r

6



defines the probability to move to a new state. Hence, the complement
of the integral of the transition kernel over all new states defines the
probability to remain in the current state, and the transition kernel can
be expressed

pt(B|r) =

∫

B
q(r′|r)α(r′|r) dr′ (12)

+ I(r ∈ B)

[
1−

∫
q(r′|r)α(r′|r) dr′

]
, ∀B ∈ B,

where I(·) is the indicator function, being equal to 1 if its argument is
true and 0 otherwise.

Identifying a transition kernel pt(r′|r) that can produce a Markov
chain with the target distribution π(·) as its equilibrium distribution may
appear as a daunting task. Conveniently, the Metropolis-Hastings (M-H)
algorithm (Hastings, 1970) provides the means by which to do so. The
M-H algorithm designates an acceptance probability that ensures that
the transition kernel pt(·|·) defines a reversible chain when combined with
an arbitrary proposal kernel q(·|·),

α(r′|r) = min

{
1,
π(r′)q(r|r′)
π(r)q(r′|r)

}
. (13)

The M-H algorithm defines an irreducible and aperiodic chain with tran-
sition kernel pt(·|·) with π(·) as its limiting distribution if the proposal
kernel q(·|·) is aperiodic and irreducible and α(r′|r) > 0 for all possible
values of (r′, r) (Roberts and Smith, 1994).

The sequence of simulations {rk}nk=1 from the McMC algorithm con-
verges in distribution to the target distribution π(r) as n→∞. Hence,
obtaining a result in finite time necessitates decisions about where to
start and when to stop the algorithm. Usually, the initial state of a
chain is drawn at random and will not be from a representative region of
π(r). A subsequent sequence of simulations are notably influenced by the
initial state, before the chain is sufficiently close to π(r). This notably
affected sequence of simulations is termed the burn-in of the chain, and
we discard it because these simulations are not representative of π(r).
For practical purposes, we draw inspiration from the Gelman-Rubin con-
vergence diagnostic (Gelman and Rubin, 1992) to decide when to stop
a chain, unless otherwise stated. We run several chains in parallel and
compare the results to determine an appropriate stopping point. The
time necessary to reach a stopping point depends on how efficiently the
chain navigates the target distribution π(r), which is captured by the
concept of mixing. A chain is said to have good mixing if approximately
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Introduction

independent simulations are not far apart in the sequence of simulations,
and conversely a chain has bad mixing if approximately independent sim-
ulations are far apart. Good mixing is preferable because it entails that
the chain rapidly arrives at an acceptable degree of convergence. The
mixing of a chain is influenced by the proposal kernel q(·|·); hence, the
proposal kernel should be selected with care if computational efficiency
is a concern.

In a setting where the form of the posterior model is unknown, McMC
simulation is traditionally performed by using the prior model p(r) as
proposal distribution (Mosegaard and Tarantola, 1995). The associated
M-H acceptance probability is given by

α(r′|r) = min

{
1,
p(d|r′)
p(d|r)

}
. (14)

Although this approach is generally valid, it tends to suffer from low
acceptance rates in multivariate settings. Moreover, in the absence of
a very informative prior model there is an inverse relationship between
acceptance rates and data quality. The acceptance rate increases as the
uncertainty associated with the measured data increases, and decreases
as the number of data points increases.

If a prior model that is conjugate with respect to a linear likelihood
model is used with a non-linear likelihood model, the conjugate property
can be exploited for more efficient simulation by use of an approximated
linear likelihood model, pL(d|r) ≈ p(d|r). Proposals can then be made
from an approximate posterior model pL(r|d) ∝ pL(d|r)p(r). Simulating
from an approximate posterior model is similar to simulating from the
prior model due to the conjugate property, but the proposals are likely
to be better; hence, this approach may increase the acceptance rate. The
associated M-H acceptance probability is

α(r′|r) = min

{
1,
p(d|r′)/pL(d|r′)
p(d|r)/pL(d|r)

}
. (15)

Note that α(r′|r) → 1 if the likelihood model is close to linear
p(d|r)→ pL(d|r), as expected.

8



Reservoir data

Oil and gas reservoirs are formations of rock in the subsurface in which
hydrocarbons have accumulated. Reservoirs are expensive to produce
and necessitate the construction of production wells. Hence, attempts
to produce reservoirs that are poorly suited for production entails big
economical losses. However, producing well suited reservoirs can yield
very large payoffs. The ability to identify a reservoirs suitability for
production is therefore of utmost importance in the oil and gas industry.
The process of doing so is called reservoir characterization, which we will
return to later. Reservoir characterization relies on data from potential
reservoirs, which usually consist of seismic data and well data. Seismic
data has good spatial coverage and poor precision, whereas well data has
poor spatial coverage and high precision.

Seismic AVO data

Seismic data are collected by emitting compressional waves into the sub-
surface and measuring and registering the amplitude of the waves that
are reflected back. These data and can be collected from large subsurface
volumes in search for potential hydrocarbon reservoirs at relatively low
cost. The arrival times of the reflections relative to the time of emission
are also registered. The arrival times make it possible to map the regis-
tered amplitudes to particular locations in the subsurface; hence, seismic
data are a representation of the subsurface based on wave amplitudes
and times.

The physics involved in the collection of seismic data is complex and
relies on intimate details of the medium that the seismic waves propagate
through. Seismic wave energy is reflected back at interfaces defined
by rock or fluid inhomogeneities. Moreover, the proportion of reflected
energy is dependent on the angle of incidence of the emitted seismic
waves on the interfaces, which is described by the Zoeppritz equations
(Zoeppritz, 1919). These equations relate the reflectivity coefficients at
interfaces to changes in the elastic properties and angle of incidence. The
elastic properties consist of P-wave velocity and S-wave velocity, which
are jointly referred to as seismic velocities, and density.

The angle dependency of the reflected energy is very useful for detect-
ing hydrocarbons, because the seismic responses of fluid transitions have
a strong and characteristic angle dependency. This attribute forms the
basis for seismic amplitude variation with offset (AVO) data and seismic
AVO analysis. Seismic AVO data consist of seismic data associated with
different angles of incidence of the emitted compressional waves on in-
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Introduction

terfaces in the subsurface. For a specific subsurface target, seismic AVO
data are collected by varying the horizontal distance between the source
that emits the compresssional waves and the receiver that measures the
reflections, while keeping the subsurface target centered between them.
In practice, receivers are usually placed at numerous distances from the
source to obtain seismic data from different subsurface targets simultane-
ously. This principle is used in offshore seismic data collection, in which
a large number of receivers are towed behind a moving ship that emits
compressional waves into the subsurface.

As an emitted compressional wave travels through the subsurface, it
becomes distorted and stretched due to dispersion, and the shape of the
distorted pulse is termed a seismic wavelet. The measured reflection at
a given point in time contains contributions from several reflectivity co-
efficients in the subsurface, weighted by the seismic wavelet. Hence, the
received signal is modeled as a convolution of a sequence of reflectivity co-
efficients with a seismic wavelet in a time interval. In practice, the seismic
wavelet is unknown and application dependent, because the dispersive
process is sensitive to the medium that the seismic waves travel through.
Therefore, in order to construct a sensible seismic forward model, seismic
data should be supplemented by well data from which the seismic wavelet
can be estimated.

Well data

In oil and gas exploration, it is usual to drill bore-holes at locations of
particular interest in a seismic survey to obtain information that enables
interpretation of the seismic data. Core samples, which are informative
about the subsurface lithology, are collected during drilling. Once the
wells are drilled, measuring instruments are placed in the bore-holes and
hoisted up while producing well log data on a regular and relatively fine
grid along the well profiles. Measurements of the seismic velocities and
density, as well as measurements of petrophysical properties are recorded.
The measuring instruments are highly accurate; hence, well log data are
subject only to minor measurement errors and can be considered as good
approximations to the truth.

The reflectivity coefficients that can be used to estimate the seismic
wavelet along the wells can be computed from well data using the Zoep-
pritz equations. Estimating the seismic wavelet at a few locations in a
seismic survey tends to be adequate because the wavelet shape varies
slowly with lateral position (Walden and White, 1998), due to layering
effects. Another important use of well data is in the construction of rock
physics models, which are necessary to interpret seismic data in terms
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of petrophysical properties. The seismic data are related to the elastic
properties, and a rock physics model can in turn relate the elastic prop-
erties to petrophysical properties. A rock physics model can either be
based on theoretical relations or be empirically approximated.

Bayesian reservoir characterization

The goal of reservoir characterization is to evaluate a reservoir’s suit-
ability for production. Reservoir characterization is a spatial problem in
which the reservoir zone of interest is discretized into a reservoir grid Gr,
consisting of nr grid points. A spatial reservoir variable r from which
the production suitability of a reservoir can be inferred, is defined on
the reservoir grid Gr. That is, each random variable contained in r is
associated with a location in Gr, which enables spatial effects to influ-
ence the characterization. A reservoir variable consists of a few selected
petrophysical properties related to the producibility of the reservoir under
study and typically includes permeability/porosity and water saturation,
which are volumetric fractions, i.e., quantities limited to [0, 1]. Porosity
is informative about the presence of pores in the rock, which are pockets
of empty space where hydrocarbons can settle. The degree to which the
empty spaces in the rock are connected is described by permeability. The
connectivity of the pores is important for fluid flow through the rock,
which is crucial for the extraction of hydrocarbons. Permeability is usu-
ally strongly dependent on porosity, and since the former is complicated
to measure, it is often derived from the latter. Water saturation is in-
dicative of the location of hydrocarbons. Because water is denser than
hydrocarbons, gravitational effects tend to separate the fluids. Hence, hy-
drocarbons can typically be found at locations where the water saturation
is low. In reservoirs that are lithologically heterogeneous, porosity and
water saturation may not be sufficiently informative and should prefer-
ably be accompanied by lithology variables, such as volume of clay, to
explain certain phenomena. The reservoir variable r contains np selected
petrophysical properties and can be expressed as r = [r1, ..., rnp ], with
each rk being defined on the reservoir grid Gr, for k = 1, ..., np. Hence, r
is an npnr-dimensional vector. For ease of presentation we will consider
np = 1 in the following.

Reservoir characterization of a subsurface reservoir volume is typically
done by inversion of seismic data. This is an inverse problem in which
seismic data d on a seismic grid Gd, consisting of nd grid points, is
sought to be explained by the reservoir variables r. We confine ourselves
to seismic AVO data. The inversion is either cast into an optimization
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setting or into a probabilistic setting. In an optimization setting, a highly
accurate seismic forward model is used and the deviation between d and
the seismics computed by the seismic forward model is minimized with
respect to the elastic properties (Sen and Stoffa, 2013). Probabilistically,
the inverse problem is usually approached in a Bayesian framework using
approximate Zoeppritz equations (Buland and Omre, 2003; Gunning
and Glinsky, 2004; Larsen et al., 2006). The Bayesian seismic reservoir
characterization is represented by the posterior model p(r|d), which is
proportional to the product of a likelihood model p(d|r) and a prior model
p(r), both of which has to be specified, see Equation 5.

Likelihood model

The likelihood model represents the chain of data acquisition, from the
target variables of the inversion to the data, and is based on geophysics
theory and well data. Well data from representative regions of the reser-
voir volume are particularly important for seismic wavelet estimation and
may also be used to inform the rock physics model.

The Zoeppritz equations can in principle completely describe the
relation between the PP reflectivity coefficients c(t, θ) and the elastic
properties along a seismic trace. The elastic properties are canonical
variables of the equation and consist of the seismic velocities, which are the
P-wave velocities Vp(t) and the S-wave velocities Vs(t), and the densities
ρ(t). However, the equations are difficult to interpret and their solution
is unstable due to nonlinearity. Therefore, the Zoeppritz equations tend
to be linearly approximated, and several linear approximations exist,
including Bortfeld’s approximation (Bortfeld, 1961), Aki and Richards’
approximation (Aki and Richards, 1980), and Shuey’s approximation
(Shuey, 1985). In Bayesian inversion frameworks, the Aki and Richards’
approximation is a common choice (Buland and Omre, 2003; Larsen et al.,
2006; Grana and Della Rossa, 2010; Rimstad et al., 2012). We use a time
continuous reflectivity function for the PP reflection coefficients, based
on the Aki and Richards’ approximation (Buland and Omre, 2003),

c (t, θ) = a1 (t, θ)
δ

δt
ln
(
Vp (t)

)
+ a2 (t, θ)

δ

δt
ln
(
Vs (t)

)
(16)

+ a3 (t, θ)
δ

δt
ln
(
ρ (t)

)
,
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where

a1 (t, θ) =
1

2

(
1 + tan2 (θ)

)
, (17)

a2 (t, θ) = −4
V̄ 2
s (t)

V̄ 2
p (t)

sin2 (θ) , (18)

a3 (t, θ) =
1

2

(
1− 4

V̄ 2
s (t)

V̄ 2
p (t)

sin2 (θ)

)
. (19)

Moreover, V̄p(t), V̄s(t), and ρ̄(t) are time dependent averages which are
assumed to be adequately represented by a constant or moving average
in a time window. The above approximation can for nθ offset angles
be discretized and represented in matrix form as c = ADm. Here,
we discretize according to Gr. Hence, c is an nθnr-dimensional vector.
Moreover, A is the sparse (nθnr × 3nr) matrix

A =




A1(θ1) A2(θ1) A3(θ1)
...

...
...

A1(θnθ) A2(θnθ) A3(θnθ),


 (20)

where A1(θi), A2(θi), and A3(θi) are (nr×nr) diagonal matrices contain-
ing discrete time samples of a1 (t, θi), a2 (t, θi), and a3 (t, θi), respectively,
for i = 1, ..., nθ. Furthermore, the (3nr × 3nr) matrix D is a first order
differential operator. Lastly, the 3nr-dimensional vector m contains the
elastic properties, discretized on Gr, in the logarithmic domain. Hence,
a reflectivity likelihood model is

[
c|m

]
= ADm + ec|m, (21)

where ec|m is an nθnr-dimensional vector containing approximation er-
rors.

The seismic AVO data d are the convolution of a seismic wavelet with
the reflectivity coefficients c. The wavelet is discretized to be consistent
with the resolution of the reflectivity coefficients, and the convolutional
likelihood model is

[
d|c
]

= Wc + ed|c. (22)

Here, the (nθnd×nθnr) matrix W contains discretizations of the seismic
wavelet W (t, θ) for all nθ offset angles, and the nθnd-dimensional vector
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ed|c contains observation errors. The wavelet matrix is of the form

W =




W1 0inr . . . . . . 0inr

0inr W2 0inr . . .
...

... 0inr
. . .

...
...

...
. . . 0inr

0inr . . . . . . 0inr Wnθ



, (23)

where the (nd×nr) matrices Wi contain nd discretizations of the seismic
wavelet, with each row corresponding to the seismic wavelet centered at
a location in Gd.

The seismic likelihood model is

p(d|m) =

∫
p(d|c,m)p(c|m) dc =

∫
p(d|c)p(c|m) dc, (24)

which can be expressed

[d|m] = WADm + ed|m, (25)

where ed|m = Wec|m + ed|c. The error terms are typically assigned Gaus-
sian distributions (Buland and Omre, 2003), which yields a Gauss-linear
seismic likelihood model. This likelihood model can readily be used in a
Bayesian seismic inversion framework for the elastic properties, given a
prior model p(m). A Gaussian prior model is advantageous for its conju-
gate property, but not required. However, if reservoir variables are the
target of the inversion, a rock physics likelihood model p(m|r) is needed.
The rock physics model can be integrated into the seismic inversion model
or be used in rock physics inversion, i.e., after seismic inversion to elastic
properties. However, for the uncertainties to propogate all the way from
the seismic data to the reservoir variables, the data acquisition procedure
should be described all the way from r to d by a likelihood model. The
overall likelihood model is

p(d|r) =

∫
p(d|m, r)p(m|r) dm =

∫
p(d|m)p(m|r) dm, (26)

where the latter step follows because m are canonical variables of the
Zoeppritz equations. The rock physics forward function may be non-linear
and, if so, the forward function in the overall likelihood model p(d|r)
is non-linear. Under these circumstances, simulating from the posterior
model tends to be computationally inefficient in spatial settings. However,
if a linear forward function seems feasible, either by empirical estimation
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or theoretical approximation, computationally efficient inversion schemes
can be based on a Gauss-linear rock physics model. The rock physics
forward function is then represented by the (3nr × nr) matrix B and the
overall likelihood model takes the form

[d|r] = Gr + ed|r = WADBr + ed|r, (27)

where ed|r = WADem|r + ed|m is assumed to be Gaussian, with em|r a
3nr-dimensional vector containing rock physics model errors. Hence, the
overall likelihood model is defined to be Gauss-linear.

Prior & Posterior model

The prior model p(r), see Equation 5, is assigned on a subjective basis,
but should be representative of r. A prior model is representative if it is
accurately centered and realistically represents the uncertainty and spa-
tial continuity in r. Prior model assignment can be based on experience,
expert knowledge, beliefs, data, or any combination thereof. If represen-
tative well data of the reservoir variables are available, it is natural to
adopt an empirical Bayes approach to prior model assignment, and we
do so. The empirical Bayes method entails estimation of the prior model
from representative data, which can be done either non-parametrically or
parametrically. We will be concerned with parametric empirical Bayes,
to which an introduction can be found in Casella (1985). Reservoir vari-
ables tend to be multimodal due to underlying lithology/fluid (LF) classes
(Grana and Della Rossa, 2010; Rimstad et al., 2012); hence, a Gaussian
prior model may not be adequate. A prior model p(r) should often have
support for multimodality, and two Gaussian-based parametric model
alternatives have emerged in the Bayesian seismic inversion literature;
namely, Gaussian mixture models and selection Gaussian models.

Gaussian mixture models

Gaussian mixture models (GMMs) can represent multimodal distribu-
tions and have successfully been applied to reservoir characterization
(Grana and Della Rossa, 2010; Rimstad et al., 2012; Fjeldstad et al., 2021).
As the name implies, GMMs are generated by combining Gaussian mod-
els. Typically, the mixture is based on pre-defined LF classes that notably
affect the reservoir variables; hence, the model relies on conditional Gaus-
sian distributions for the reservoir variables, p(r|κ) = ϕnr(r;µr|κ,Σr|κ),
where κ ∈ Ωnr

κ is a spatial mode indicator variable representing the LF
classes. Here, Ωκ = {ω1, ..., ωnκ} is the set of LF classes. A Gaussian

15



Introduction

mixture prior model p(r) can be expressed as

p(r) =
∑

Ωnrκ

p(r|κ)p(κ), (28)

where p(κ) is a prior model for κ. Defined as such, the prior model for the
reservoir variables is a probability weighted sum of Gaussian distributions,
each of which has a parameterization that is characteristic for a particular
LF class.

The prior model for κ should honor geophysical laws and tenden-
cies with respect to LF ordering and transitions, and spatial continuity.
Markov models can impose such constraints and have a long standing tra-
dition in geophysical applications, first appearing in the form of Markov
chains in 1D applications (Krumbein and Dacey, 1969). A first-order
Markov chain prior model for κ can be expressed

p(κ) = p(κ1)

nr∏

i=2

p(κi|κi−1), (29)

where p(κ1) is the stationary probability and p(κi|κi−1), i = 2, ..., nr are
transition probabilities. Higher order chains can be defined to add addi-
tional constraints such as minimum layer thickness. The interpretability
and functionality of Markov models have made them widely used in geo-
physical applications, and in particular to exploring the LF properties
of reservoirs (Eidsvik et al., 2004b; Larsen et al., 2006; Ulvmoen et al.,
2010).

Generally, Markov models are specified in the form of Markov ran-
dom fields (MRFs), which are typically defined according to the Gibbs
formulation (Besag, 1974; Kindermann and Snell, 1980). This formula-
tion generalizes the Markov chain definition to higher spatial dimensions
and is based on so-called cliques. A clique is defined on an undirectional
graph as a set of mutually adjacent vertices, i.e., every pair of vertices
in a clique are adjacent. Moreover, a maximal clique c is a clique that
is not a subset of a larger clique, and the set of maximal cliques on the
graph is denoted by C. The MRF model can be expressed in terms of
maximal cliques as

p(κ) ∝ exp



−

∑

c∈C
ψc(κc)



 , (30)

where ψc(κc) is the clique potential function for the maximal clique c
and κc are the LF classes in the maximal clique c.
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The neighbordhood structure of an MRF is related to its cliques, as
described by the Hammersley-Clifford theorem (Hammersley and Clifford,
1971). Intuitively, the neighborhood structure of an MRF can be defined
locationwise from its defining cliques as the set of locations in the union of
all cliques that include the target location, except the target location itself,
as illustrated in Figure 1. The MRF model supports arbitrary spatial
dimensionality and higher order neighborhoods; hence, the Markov chain
model specified in Equation 29 is a special case of an MRF in 1D with
neighborhoods consisting of the two nearest locations, except for border
effects.

Clique Neighborhood

Figure 1: Cliques with corresponding neighborhoods. The neighborhoods
are defined with respect to the cells marked by a cross.

The full conditional densities are p(κi|κic), with the subscript ic de-
noting the complement of location i on the graph, i.e., ic = {1, ..., nr}\i,
i = 1, ..., nr. These densities are defined by the neighborhood struc-
ture of the MRF, which can be identified through application of the
Hammersley-Clifford theorem. The typically large grids associated with
reservoir characterization entails that the normalization constant of the
MRF is computationally prohibitive. Therefore, assessment of p(κ) tends
to be simulation based and is often done by using the full conditional
densities p(κi|κic), that is, simulation is usually done by single-site Gibbs
sampling.

GMMs are conjugate prior models subject to Gauss-linear likelihood
models (Grana et al., 2017; Fjeldstad and Grana, 2018); hence, p(r|d) is
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also a GMM and of the form

p(r|d) =
∑

Ωnrκ

p(r|κ,d)p(κ|d). (31)

Note that the conditional pdf p(r|κ,d) is Gaussian and therefore easy
to evaluate. Evaluation of the mixing weights p(κ|d) is more involved.
Assessment of the posterior model p(κ|d) is complicated due to the ver-
tically convolutional seismic likelihood model, which results in p(κ|d)
being a convolved hidden Markov model (Lindberg and Omre, 2014).
Consequently, p(κ|d) will be a higher-order Markov model, irrespective
of the order defined in p(κ). This entails that assessment of the exact
posterior Markov model becomes computationally infeasible. However,
assessment can be based on approximations (Rimstad and Omre, 2013;
Fjeldstad and Grana, 2018).

Selection Gaussian models

The selection Gaussian model is inspired by the concept of selection prob-
ability distributions (Azzalini, 1985; Arellano-Valle et al., 2006; Azzalini,
2013). The selection concept has been extended to spatial settings (Al-
lard and Naveau, 2007; Omre and Rimstad, 2021) and has successfully
been applied to seismic inversion (Karimi et al., 2010; Rimstad and Omre,
2014). The selection Gaussian model is a very flexible class of models
and is a viable candidate for representing multimodal random variables.
A selection Gaussian random field (S-GRF) is based on two interacting
GRFs: the basis GRF r̃ and the auxiliary GRF ν. The basis GRF is
specified on the reservoir grid Gr, whereas the auxiliary GRF is specified
on a grid Gν , which may differ. The conditional random field (RF) [ν |̃r]
is Gauss-linear; hence, (r̃,ν) are jointly Gaussian, with joint pdf

p



[

r̃
ν

]
 = ϕnr+nν



[

r̃
ν

]
;

[
µr̃
µν

]
,

[
Σr̃ Γr̃ν
ΓTr̃ν Σν

]
 . (32)

Here, µr̃ is the nr-dimensional expectation vector of r̃ and Σr̃ is its (nr×
nr) covariance matrix. Similarly, µν is the nν-dimensional expectation
vector of ν and Σν is its (nν × nν) covariance matrix. Lastly, Γr̃ν is the
(nr × nν) cross-covariance matrix between r̃ and ν. A truncation of the
auxiliary GRF ν is defined according to the nν-dimensional selection set
A. The conditional RF r = [r̃|ν ∈ A] is selection Gaussian, with pdf

p(r) = p(r̃|ν ∈ A) =
Φnν (A;µν|r̃,Σν|r̃)

Φnν (A;µν ,Σν)
ϕnr(r̃;µr̃,Σr̃), (33)
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where the nominator and denominator are the Gaussian probabilities of
the selection set. That is, the denominator is

Φnν (A;µν ,Σν) =

∫

A
ϕnν (ν;µν ,Σν) dν, (34)

and similarly for the nominator with appropriate distributional parame-
ters. The conditional parameters in Equation 33 are computed by stan-
dard Gaussian conditioning formulas (Johnson and Wichern, 2007),

µν|r̃ = µν + ΓTr̃νΣ
−1
r̃ (r̃− µr̃) (35)

Σν|r̃ = Σν − ΓTr̃νΣ
−1
r̃ Γr̃ν .

The flexibility of the distribution enters through the cross-covariance Γr̃ν
between r̃ and ν, and the shape of the selection set A.

To robustly represent the variability in the reservoir variables, a spa-
tially stationary prior model is sensible, because it captures the total
uncertainty reflected in the well data at every location. An RF is said
to be stationary if its associated pdf is spatially shift invariant for any
subset of its random variables. That is, the pdf of the chosen subset of
random variables must depend only on the distances between them and
not on their specific location. We specify an S-GRF model with nν = nr,
which can support stationarity, except for border effects. Moreover, it
enables mode transitions at every location in the reservoir grid, which
can be important for precisely locating regions of interest in the spatial
domain. To restrict model complexity, we specify an intervariable spatial
correlation structure, which is contained in the (nr × nr) matrix Ω and
defined through a translation invariant and positive definite correlation
function ρ(·). We define a stationary Gaussian distribution for r̃ with ex-
pectation vector µr̃inr and covariance matrix Σr̃ = σ2

r̃Ω. Here, µr̃ and σ2
r̃

are the locationwise expectation and variance of r̃, respectively, and inr
is the nr-dimensional vector of ones. Furthermore, because the influence
of [ν|ν ∈ A] on r̃ depends on the location of A only through the relative
location of A to the distribution of the auxiliary variable, we define a
stationary and locationwise standard Gaussian distribution for ν, with ex-
pectation vector µν = 0inr and covariance matrix Σν = γ2Ω+(1−γ2)Inr ,
where Inr is the (nr × nr) identity matrix. Here, γ is the locationwise
correlation between r̃ and ν. In this framework, the cross covariance
matrix is an (nr × nr) matrix of the form Γr̃ν = γσr̃Ω. Lastly, we use
a location invariant selection set, i.e., A = Anr . The locationwise selec-
tion set A consists of nA disjoint real intervals, A =

⋃nA
i=1[ai, bi], ai < bi.

The S-GRF specified above is stationary and the conditional parameters
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involved in its pdf in Equation 33 can be expressed

µν|r̃ = 0inr + γσ−1
r̃ (r̃− µr̃inr) (36)

Σν|r̃ = (1− γ2)Inr .

Hence, the model parameters are ΘSG = [µr̃, σr̃, γ, A, ρ]. The first four
parameters are primarily related to the locationwise distributions of the
S-GRF, whereas ρ(·) primarily relates to the spatial correlation structure.

We now briefly consider S-GRFs of low dimensionality to build some
model intuition. Figure 2 presents three examples of univariate selection
Gaussian pdfs and associated cumulative probability functions (cdfs),
with the effect of the selection set highlighted. The geometry of the selec-
tion set A notably affects the selection Gaussian distribution and is the
source of vast model flexibility, provided that the correlation γ between
the basis variable r and the auxiliary variable ν is sufficiently strong.
Figure 3 illustrates the selection Gaussian distribution in a multivariate
setting based on the bimodal and trimodal univariate distributions shown
in Figure 2.

Figure 2: Univariate selection Gaussian distributions. Skewed (top row),
bimodal (middle row), and trimodal (bottom row). The left column
displays the shape of the selection set A superimposed on the joint dis-
tribution of r̃ and ν, whereas the middle and right column display the
resulting pdf and cdf of r, respectively.
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Figure 3: Multivariate selection Gaussian distributions with bimodal (top
row) and trimodal (bottom row) marginals. Bivariate distributions (left
column) and realizations from corresponding 2500-variate S-GRFs (right
column). A moderate level of spatial correlation is used.

S-GRFs are conjugate prior models with respect to Gauss-linear like-
lihood models (Omre and Rimstad, 2021); hence p(r|d) is also an S-GRF
and of the form

p(r|d) = p(r̃|ν ∈ A,d) (37)

=
Φnr

(
A;µν|r̃,d,Σν|r̃,d

)

Φnr

(
A;µν|d,Σν|d

) × ϕnr
(
r̃;µr̃|d,Σr̃|d

)
.

The expressions for the parameters involved in the posterior model can be
developed from classical Gaussian theory. The conditional expectation
vectors are

[
µr̃|d
µν|d

]
=

[
µr̃inr
0inr

]
+

[
Σr̃G

T

Γνr̃G
T

]
Σ−1
d (d− µd) , (38)

and the conditional covariance matrices are
[

Σr̃|d Γr̃ν|d
Γνr̃|d Σν|d

]
=

[
Σr̃ Γr̃ν
Γνr̃ Σν

]
−
[

Σr̃G
T

Γνr̃G
T

]
Σ−1
d

[
GΣr̃ GΓr̃ν

]
, (39)
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hence

µν|r̃,d = µν|d + Γνr̃|dΣ
−1
r̃|d(r̃− µr̃|d), (40)

Σν|r̃,d = Σν|d + Γνr̃|dΣ
−1
r̃|dΓr̃ν|d.

Recall that G is the forward function of the likelihood model. Further-
more, Σd = GΣrG

T .
The prior and posterior models are, therefore, both available once a

suitable assessment strategy for S-GRFs is developed. The assessment
strategy should be capable of dealing with non-stationary S-GRFs because
the posterior model will, even if the prior model is stationary, tend to be
non-stationary. In the following, we will discuss the assessment of a prior
S-GRF model, but the same discussion applies to the assessment of the
posterior model.

In the univariate case, the selection Gaussian distribution can easily
be evaluated analytically by use of well known Gaussian cdfs,

p(r) = p(r̃|ν ∈ A) (41)

=

∑nA
i=1

(
Φ1(bi, µν|r̃, σ2

ν|r̃)− Φ1(ai, µν|r̃, σ2
ν|r̃)
)

∑nA
i=1

(
Φ1(bi, µν , σ2

ν)− Φ1(ai, µν , σ2
ν)
) ϕ1(r̃;µr̃, σ

2
r̃ ).

Evaluation of the pdf becomes challenging for high dimensional S-
GRFs and is usually simulation based. The simulation is performed in two
steps; first the auxiliary variable ν is simulated from the truncated Gaus-
sian pdf p

(
ν|ν ∈ A

)
= I (ν ∈ A)ϕnν (ν;µν ,Σν)

[
Φnν (A;µν ,Σν)

]−1 and
then the conditional basis variable

[
r̃|ν,ν ∈ A

]
is simulated from the con-

ditional Gaussian pdf ϕnr
(
r̃;µr̃|ν ,Σr̃|ν

)
. The latter step is straightfor-

ward because efficient algorithms for simulation from GRFs are available,
whereas the former is more involved and typically relies on an McMC
algorithm. A sensible simulation strategy is to simulate the truncated
auxiliary GRF [ν|ν ∈ A] piece by piece; hence, the form of the condi-
tional pdfs of the RF is important. For a block b ⊆ {1, ..., nr} of size nb,
a block based decomposition of the pdf p(ν|ν ∈ A) is

p(ν|ν ∈ A) = p(νb,νbc |νb ∈ Anb ,νbc ∈ Anr−nb) (42)
= p(νb|νbc ,νb ∈ Anb)p(νbc |νb ∈ Anb ,νbc ∈ Anr−nb),

where the subscript bc denotes the complement of the block. In the
following, we somewhere omit subscripting expectations and variances
for ease of notation. The expectations and variances that appear without
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a subscripted variable are to be understood as if subscripted by ν. We
first consider the case of a single-site block, i.e., a block of size nb = 1
that consists only of one location, b = i, i ∈ {1, ..., nr}. The associated
block pdf is

p(νb|νbc ,νb ∈ Anb) =
I(νb ∈ Anb)p(νb|νbc)
P (νb ∈ Anb |νbc)

(43)

=
I(νi ∈ A)ϕ1(νi;µi|ic , σ2

i|ic)

Φ1(A;µi|ic , σ2
i|ic)

.

This block pdf is a truncated Gaussian pdf and represents the locationwise
full conditional pdfs of the truncated GRF. Hence, the locationwise
full conditional pdfs of the truncated GRF are computationally easily
available, which entails that single-site Gibbs sampling may be feasible.
Single-site Gibbs sampling is a viable and efficient simulation strategy for
RFs with weak spatial correlation structure that simulates sequentially
from the locationwise full conditional distributions. The single-site Gibbs
simulation algorithm is presented in pseudo code in Algorithm 1.

Algorithm 1: Do k simulation sweeps of
[
ν|ν ∈ A

]
by single-site

Gibbs.

Precompute conditioning weights ki and conditional
marginal variances σ2

i|ic :

For i from 1 to nr
ki = Σi,icΣ

−1
ic .

σ2
i|ic = σ2

i − kiΣ
T
i,ic .

End

Initialize ν0 ∈ A.

For j from 1 to k
Set νj = νj−1

For i from 1 to nr
Compute conditional mean and simulate:

µji|ic = µi + ki

(
νjic − µic

)
.

νji ∼
I(νji ∈A)ϕ1

(
νji ;µj

i|ic ,σ
2
i|ic

)
Φ1

(
A;µj

i|ic ,σ
2
i|ic

) .

End
End
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Note that the conditioning weights ki are identical for locations that
are not influenced by border effects in stationary S-GRFs, which may be
exploited for more efficient precomputation. In non-stationary S-GRFs
the conditioning weights tend to be unique for each location. Moreover,
computation of the parameters involved in the full conditional marginals
may be prohibitive if the grid under study is large and the range of
the spatial correlation is long. In such situations it may be necessary
to reduce computational time by approximating the full conditionals as
π(νi|νic) ≈ π(νi|νin), with νin consisting of random variables that are
notably correlated with νi.

The feasibility of the single-site Gibbs algorithm depends on the
properties of the locationwise full conditional pdfs. These pdfs become
increasingly constrained with increasing correlation in the RF, which is
detrimental to the mixing of the algorithm in multimodal settings. Block-
wise sampling, which is based on a partition of the grid into blocks con-
sisting of collections of adjacent grid points, offers a possible solution to
the limitations of single-site Gibbs sampling. The sampling is performed
blockwise and sequentially, which enables reduction of the influence of
the RF outside the block on the locationwise marginals within the block
by strategic inter-block sampling. The pdf of a block b ⊆ {1, ..., nr} of
size nb > 1 is

p(νb|νbc ,νb ∈ Anb) =
I(νb ∈ Anb)p(νb|νbc)
P (νb ∈ Anb |νbc)

(44)

=

∏
i∈b I(νi ∈ A)ϕ1(νi;µi|bc,v , σ2

i|bc,v)

Φnb(A
nb ;µb|bc ,Σb|bc)

.

Here, the subscript bc,v denotes the union of the complement of the
block and the already visited locations within the block. Note that
the normalization constant Φnb(A

nb ;µb|bc ,Σb|bc) can not be expressed
in a sequentially conditional form; hence, assessment of the block pdf
requires evaluation of a high dimensional Gaussian orthant probability,
which is challenging. Therefore, we use the Metropolis Hastings approach
presented in Rimstad and Omre (2014) with proposal

q(νb|νbc ,νb ∈ Anb) =
∏

i∈b
I (νi ∈ A)

ϕ1

(
νi;µi|bc,v , σ2

i|bc,v
)

Φ1

(
A;µi|bc,v , σ2

i|bc,v
) , (45)
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and associated Metropolis-Hastings acceptance probability

α(ν ′b|νb) = min

{
1,
p(ν ′b|νbc ,νb ∈ Anb)

p(νb|νbc ,νb ∈ Anb)
· q(νb|νbc ,νb ∈ Anb)

q(ν ′b|νbc ,νb ∈ Anb)

}

= min





1,
∏

i∈b

Φ1

(
A;µ′i|bc,v , σ

2
i|bc,v

)

Φ1

(
A;µi|bc,v , σ2

i|bc,v
)




.

Note that the expectation in the nominator of the product is taken with
respect to ν ′b, whereas the expectation in the denominator is taken with
respect to νb. The initialization of the blockwise M-H McMC algorithm
is presented in Algorithm 2 and the simulation algorithm is presented in
Algorithm 3.

Algorithm 2: Initialize blockwise McMC simulation algorithm.

Partition the grid into blocks bi ⊆ {1, ..., nr} of sizes nbi ,
with associated block complements bci = {1, ..., nr} /bi,
i = 1, ..., Nb.

Construct inter-block sampling orders Oi, i = 1, ..., Nb.

Precompute inter-block conditioning weights ki and
conditional marginal variances σ2

i|bc,v :

For i from 1 to Nb

For j from 1 to nbi
Set m to be the j-th element of Oi.
km = Σm,bc,vi

Σ−1
bc,vi

.

σ2
m|,bc,vi

= σ2
m − kmΣT

m,bc,vi
.

End
End

Initialize ν0 ∈ A.
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Algorithm 3: Do k simulation sweeps of
[
ν|ν ∈ A

]
by blockwise

M-H McMC simulation.

Initialize according to Algorithm 2.

For j from 1 to k
Set νj = νj−1

For i from 1 to Nb

For l from 1 to nbi
Set m to be the l-th element of Oi.
Compute conditional mean and simulate:

µj
m|bc,vi

= µm + km

(
νj
bc,vi
− µbc,vi

)
.

Simulate proposal ν ′
m|bc,vi

from q(ν ′
m|bc,vi

).
End
Accept ν = [ν ′bi|bci

,νbci ]
T with probability α(ν ′b|νb).

End
End

Note that both the presented simulation approaches rely on simula-
tion from conditional locationwise pdfs, and that simulation within the
selection set A is necessary at each grid location. Rejection sampling from
ϕ1(νi;µi|bc , σ2

i|bc) is a natural approach, but its efficiency depends on the
degree of support ϕ1(νi;µi|bc , σ2

i|bc) has for A. There is an inverse relation-
ship between the computational efficiency and the distance between µi|bc
and the selection set A. However, this should not be an issue in sensibly
defined S-GRFs, because the modeler has full control over the position of
A. Nevertheless, unsensible models that impede efficient simulation from
the truncated Gaussian distributions can arise in conditional S-GRFs.

The cdf associated with [νi|νi ∈ A] is a piecewise rescaled Gaussian cdf
and can be related to the Gaussian cdf Φ1

(
νi;µi, σ

2
i

)
, which can easily be

used to sample [νi|νi ∈ A] by inverse transform sampling. This approach
is not sensitive to the location of A in terms of computational efficiency
and can produce samples in fixed computation time. The method of
inverse transform sampling is illustrated in Figure 4 for the truncated
Gaussian distributions associated with the univariate bimodal and tri-
modal selection Gaussian distributions displayed in Figure 2. A value u
of the truncated Gaussian cdf is simulated from U [0, 1] and the associated
value of the Gaussian cdf, uG is computed. Lastly, the simulated vari-
able νu is obtained from the inverse Gaussian cdf applied to uG. Inverse
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transform sampling from a univariate truncated normal distribution is
outlined in Algorithm 4.

Figure 4: Inverse transform sampling from a bimodal truncated Gaussian
distribution (top row) and a trimodal truncated Gaussian distribution
(bottom row). In the right column, the solid black lines represent the
selection Gaussian cdfs, and the dashed black lines represent the Gaussian
cdfs. Moreover, the orange lines indicate the flow of the inverse transform
algorithm and the grey lines mark the naive inverse transform.

Algorithm 4: Draw a sample
[
ν|ν ∈ A

]
by inverse transform sam-

pling.

Compute p(Ai) = Φ(bi;µν , σ
2
ν)− Φ(ai;µν , σ

2
ν), i = 1, 2, ..., nA

Construct s with entries s0 = 0 and sj =
∑j

i=1 p(Ai),
j = 1, 2, ..., nA

Define normalizing constant C = snA
Generate u ∼ U [0, 1].
Find the mode m satisfying sm−1 ≤ Cu ≤ sm,
m = 1, 2, ..., nA

Compute u relative to the Gaussian cdf,
uG = Φ(am, µν , σ

2
ν) + C(u− sm−1

C )
Compute ν ∈ A from Φ−1(uG;µν , σ

2
ν).

27



28



References

Aki, K. and Richards, P. G. (1980). Quantitative Seismology: Theory
and Methods. W.H. Freeman and Co.

Allard, D. and Naveau, P. (2007). A New Spatial Skew-Normal Random
Field Model. Communications in Statistics - Theory and Methods,
36:1821–1834.

Arellano-Valle, R. B., Branco, M. D., and Genton, M. G. (2006). A
Unified View on Skewed Distributions Arising from Selections. The
Canadian Journal of Statistics, 34:581–601.

Azzalini, A. (1985). A Class of Distributions Which Includes the Normal
Ones. Scandinavian Journal of Statistics, 12(2):171–178.

Azzalini, A. (2013). The Skew-Normal and Related Families. Cambridge
University Press.

Backus, G. E. (1989). Confidence Set Inference with a Prior Quadratic
Bound. Geophysical Journal International, 97:119–150.

Besag, J. (1974). Spatial Interaction and the Statistical Analysis of
Lattice Systems. Journal of the Royal Statistical Society: Series B
(Methodological), 36:192–225.

Bortfeld, R. (1961). Approximations to the Reflection and Transmission
Coefficients of Plane Longitudinal and Transverse Waves. Geophysical
Prospecting, 9(4):485–502.

Buland, A. and Omre, H. (2003). Bayesian linearized AVO inversion.
Geophysics, 68:185–198.

Casella, G. (1985). An Introduction to Empirical Bayes Data Analysis.
The American Statistician, 39(2):83–87.

Casella, G. and Berger, R. L. (2001). Statistical Inference. Cengage
Learning.

29



Chilès, J.-P. and Delfiner, P. (1999). Geostatistics: Modeling Spatial
Uncertainty. Wiley.

Donoho, D. L. (1989). Statistical estimation and optimal recovery,
Technical report No. 214. Department of Statistics, University of
California, Berkeley.

Eidsvik, J., Avseth, P., Omre, H., Mukerji, T., and Mavko, G. (2004a).
Stochastic reservoir characterization using prestack seismic data. Geo-
physics, 69:978–993.

Eidsvik, J., Mukerji, T., and Switzer, P. (2004b). Estimation of Geo-
logical Attributes from a Well Log: An Application of Hidden Markov
Chains. Mathematical Geology, 36(3):379–397.

Fjeldstad, T., Avseth, P., and Omre, H. (2021). A one-step Bayesian
inversion framework for 3D reservoir characterization based on a Gaus-
sian mixture model - A Norwegian Sea demonstration. Geophysics,
86(2):R221–R236.

Fjeldstad, T. M. and Grana, D. (2018). Joint probabilistic petrophysics-
seismic inversion based on Gaussian mixture and Markov chain prior
models. Geophysics, 83:1JF–Z3.

Gamerman, D. and Hedibert, F. L. (2006). Markov Chain Monte Carlo:
Stochastic Simulation for Bayesian Inference, volume 2. Chapman &
Hall/CRC Taylor & Francis Gruop.

Gelman, A. and Rubin, D. B. (1992). Inference from Iterative Simulation
Using Multiple Sequences. Statistical Science, 7(4):457–472.

Grana, D. and Della Rossa, E. (2010). Probabilistic petrophysical-
properties estimation integrating statistical rock physics with seismic
inversion. Geophysics, 75:O21–O37.

Grana, D., Fjeldstad, T. M., and Omre, H. (2017). Bayesian Gaussian
Mixture Linear Inversion for Geophysical Inverse Problems. Mathe-
matical Geosciences, 49:493–515.

Gunning, J. and Glinsky, M. E. (2004). Delivery: an open-source model-
based Bayesian seismic inversion program. Computers & Geosciences,
30(6):619–636.

Hadamard, J. (1902). Sur les problèmes aux dériveés partielles et leur
signification physique. Princetion Univ. Bull., 13:49–52.

30



Hadamard, J. (1923). Lectures on Cauchy’s Problems in Linear Partial
Differential Equations. Yale University Press.

Hammersley, J. M. and Clifford, P. (1971). Markov fields on finite
graphs and lattices. Not submitted for publication.

Hastings, W. K. (1970). Monte Carlo sampling methods using Markov
chains and their applications. Biometrika, 57(1):97–109.

Johnson, R. A. and Wichern, D. W. (2007). Applied Multivariate
Statistical Analysis. Pearson Prentice Hall, Upper Saddle River, 6
edition.

Karimi, O., Omre, H., and Mohammadzadeh, M. (2010). Bayesian
closed-skew Gaussian inversion of seismic AVO data for elastic material
properties. Geophysics, 75:R1–R11.

Kindermann, R. and Snell, J. L. (1980). Markov Random Fields and
Their Applications. American Mathematical Society.

Krumbein, W. C. and Dacey, M. F. (1969). Markov chains and embedded
Markov chains in geology. Journal of the International Association
for Mathematical Geology, 1:79–96.

Larsen, A. L., Ulvmoen, M., Omre, H., and Buland, A. (2006). Bayesian
lithology/fluid prediction and simulation on the basis of a Markov-chain
prior model. Geophysics, 71:R69–R78.

Lindberg, D. V. and Omre, H. (2014). Blind categorical deconvolution
in two-level hidden Markov models. IEEE Transactions on Geoscience
and Remote Sensing, 52(11):7435–7447.

Mosegaard, K. and Tarantola, A. (1995). Monte Carlo sampling of solu-
tions to inverse problems. Journal of Geophysical Research, 100:12431–
12447.

Omre, H. and Rimstad, K. (2021). Bayesian Spatial Inversion and
Conjugate Selection Gaussian Prior Models. Journal of Uncertainty
Quantification, To appear.

Rimstad, K., Avseth, P., and Omre, H. (2012). Hierarchical Bayesian
lithology/fluid prediction: A North Sea case study. Geophysics, 77:B69–
B85.

Rimstad, K. and Omre, H. (2013). Approximate posterior distributions
for convolutional two-level hidden Markov models. Computational
Statistics & Data Analysis, 58(1):187–200.

31



Rimstad, K. and Omre, H. (2014). Skew-Gaussian Random Fields.
Spatial Statistics, 10:43–62.

Roberts, G. O. and Smith, A. F. M. (1994). Simple conditions for the
convergence of the Gibbs sampler and Metropolis-Hastings algorithms.
Stochastic Processes and their Applications, 49(2):207–216.

Sen, M. K. and Stoffa, P. L. (1996). Bayesian inference, Gibbs’ sam-
pler and uncertainty estimation in geophysical inversion. Geophysical
Prospecting, 44(2):313–350.

Sen, M. K. and Stoffa, P. L. (2013). Global Optimization Methods in
Geophysical Inversion. Cambridge University Press.

Shuey, R. T. (1985). A simplification of the Zoeppritz equations. Geo-
physics, 50(4):609–614.

Stark, P. B. (1992). Minimax confidence intervals in geomagnetism.
Geophysical Journal International, 108:329–338.

Tarantola, A. (2005). Inverse problem theory and methods for model
parameter estimation. SIAM.

Tikhonov, A. N. (1963). Solution to incorrectly formulated problems and
the regularization method. Soviet Mathematics Doklady, 4:1035–1038.

Ulvmoen, M., Omre, H., and Buland, A. (2010). Improved resolution in
Bayesian lithology/fluid inversion from prestack seismic data and well
observations: Part 1 - Methodology. Geophysics, 75:R21–R35.

Walden, A. T. and White, R. E. (1998). Seismic Wavelet Estimation:
A Frequency Domain Solution to a Geophysical Noisy Input-Output
Problem. IEEE Transactions on Geoscience and Remote Sensing,
36(1):287–297.

Zoeppritz, K. B. (1919). Vllb. On reflection and transmis-
sion of seismic waves by surfaces of discontinuity. Nachrichten
von der Königlichen Gesellschaft der Wissenschaften zu Göttingen,
Mathematisch-physikalische Klasse, pages 66–84.

32



Summary of papers





Paper l: Bayesian seismic amplitude variation with offset
inversion for reservoir variables with

bimodal spatial histograms

Ole Bernhard Forberg, Øyvind Kjøsnes, and Henning Omre

Published in Geophysics, 2021, vol. 86, no. 3.

Abstract: An oil reservoir in the Kneler field in the Alvheim oil and gas
field in the North sea is studied. The reservoir is studied along a vertical
1D profile through which the reservoir is primarily lithologically homoge-
neous. Therefore, the reservoir profile can be adequately characterized by
the petrophysical properties porosity and water saturation. The reservoir
is considered at the initial state; hence, gravitational effects dominate
and keep hydrocarbons from mixing with water. Histograms based on
measured water saturations along the reservoir profile are consequently
clearly bimodal, which is challenging to model. Reservoir characteriza-
tion along the reservoir profile by seismic amplitude variation with offset
(AVO) inversion is carried out in a Bayesian framework. The prior spa-
tial model for porosity and water saturation is specified to be a selection
Gaussian random field (S-GRF), which is capable of representing multi-
modal spatial variables. We use linear models for the seismic and rock
physics likelihood models, which entail that the posterior model is also an
S-GRF and that the bimodal characteristics of water saturation can be
reproduced. The methodology is defined and demonstrated on two syn-
thetic cases inspired by the real data, and is thereafter applied to the real
case. The S-GRF inversion results are compared to results from a stan-
dard Gaussian model, and are considered to be substantial improvements.

Main contribution: Formulation of a Bayesian S-GRF seismic inver-
sion framework for reservoir variables and comparison with an alterna-
tive Bayesian Gaussian random field seismic inversion framework. The
methodology is demonstrated on real seismic data.
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Paper ll: Bayesian inversion of Time-Lapse Seismic AVO
Data for Multimodal Reservoir Properties

Ole Bernhard Forberg, Dario Grana, and Henning Omre

Published in IEEE: Transactions on Geoscience and Remote Sensing,
2021, vol. 59, no. 11.

Abstract: Reservoir fluid monitoring by inversion of time-lapse seismic
amplitude variation with offset (AVO) data for porosity and water satu-
ration is studied. The inverse problem is cast into a Bayesian framework
and a selection Gaussian random field (S-GRF) prior spatial model is
assigned for porosity and water saturation. Water saturation is of par-
ticular monitoring interest since production entails fluid replacement;
hence, the time-lapse model incorporates water saturation at different
time points. The likelihood model is Gauss-linear and is based on lin-
earized seismic and rock physics models, which entails that the associated
posterior model is also an S-GRF, with analytically assessable parameters.
Hence, the posterior model is capable of representing multimodality and
abrupt spatial mode transitions. Two realistic case studies are considered.
The first case study is on production of an oil reservoir in the North Sea,
where the movement of oil-water-contacts along a vertical profile is of
interest. The second case study is on injection of CO2 into a subsurface
potential CO2 storage unit, where the expansion of the CO2 region in a
cross section is of interest. In both case studies, the main property of
interest can be inferred from the changes in the predicted water satura-
tions. Based on the inversion results, which are considered to be very
encouraging, the proposed statistical formulation appears to be partic-
ularly well suited for fluid monitoring problems of the described type.

Main contribution: Extension of the Bayesian S-GRF seismic inversion
framework to time-lapse reservoir characterization. The methodology is
applied to two synthetic cases and is demonstrated to be well suited for
fluid monitoring problems.
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Paper lll: Bayesian seismic AVO inversion using a
laterally coupled multimodal prior model

Ole Bernhard Forberg, Øyvind Kjøsnes, and Henning Omre

To appear in IEEE: Transactions on Geoscience and Remote Sensing.

Abstract: A 2D section and a 3D volume of an oil reservoir in the Kneler
field in the Alvheim oil and gas field in the North Sea is studied. The
chosen reservoir zones are lithologically heterogeneous with considerable
variability in the clay content; hence, we propose a reservoir characteri-
zation scheme including volume of clay in addition to porosity and water
saturation. The characterization is based on Bayesian inversion of seismic
amplitude variation with offset (AVO) data. We use a laterally coupled
prior model for porosity, water saturation, and volume of clay, which may
reduce the impact of trace unique signal errors in the seismic AVO data.
The reservoir is considered at the initial state, which entails gravitation-
ally induced bimodal characteristics in water saturation due to poor fluid
mixing. Therefore, the prior model is specified to be a selection Gaussian
random field (S-GRF), which can support multimodality. The likelihood
model is linear and Gaussian, and consequently the posterior model is
also an S-GRF; hence, the form of the posterior model is known and its
parameters can be analytically computed. The inversion results of real
seismic AVO data from the two reservoir zones appear to be reliable along
validation wells. Moreover, a notable variance reduction is demonstrated
in the posterior model based on the prior model with lateral coupling, com-
pared to a posterior model based on an alternative prior model without.

Main contribution: Formulation of a three-dimensional laterally cou-
pled Bayesian S-GRF seismic inversion framework and comparison with
a trace-by-trace approach. Moreover, the prior model is specified to be
lithologically robust and to support different anisotropy for the reservoir
variables. The methodology is demonstrated on real seisimc data.
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Synthesis

Gaussian prior models are often adopted in the framework of Bayesian
inversion due to their parametric simplicity and conjugate properties.
A Gaussian prior model is conjugate with respect to linear and Gaus-
sian likelihood models, i.e., the posterior model is also Gaussian. This
conjugate property entails that predictive quantities can be analytically
computed by well known Gaussian conditioning formulas, which is very
computationally efficient. Although Gaussian prior models are suitable
for a vast range of phenomena, they can be inadequate for some, including
phenomena that exhibit multimodality and abrupt spatial mode transi-
tions. For these types of phenomena, a selection Gaussian prior model,
which has support for multimodality, can be more representative. A se-
lection Gaussian prior model is, like a Gaussian prior model, conjugate
with respect to linear and Gaussian likelihood models. However, the pos-
terior model assessment is simulation based and computationally more
expensive. In Paper l, we characterize a reservoir along a vertical 1D
profile in terms of porosity and water saturation. The reservoir is studied
at the initial state, which entails gravitationally induced bimodality in
water saturation, due to poor fluid mixing. We formulate a Bayesian
selection Gaussian seismic inversion framework through definition of a
linear and Gaussian likelihood model and a selection Gaussian random
field prior model and demonstrate that the bimodal characteristics of
water saturation can be reliably reproduced in predictions. Moreover,
the bimodal characteristics are shown to be less accurately reproduced in
predictions based on an alternative Gaussian model. The methodology is
tested on real seismic data. In Paper lll, we formulate a laterally coupled
three-dimensional selection Gaussian prior model and apply it to a 2D
case and a 3D case. Due to lithological heterogeneity, the resevoir zones
are characterized in terms of porosity, water saturation, and volume of
clay. The main objective of the paper is to investigate whether lateral
coupling in the prior model is advantageous compared with a trace-by-
trace approach to seismic inversion, in light of seismic data having strong
lateral continuity. The methodology is tested on real seisimc data and
we conclude that lateral coupling in the prior model has a positive effect.
In Paper ll, we apply the Bayesian selection Gaussian seismic inversion
framework to time-lapse characterization of a CO2 reservoir, in terms of
porosity and water saturation. The focus of the paper is on fluid monitor-
ing through prediction of water saturation at two time points. Because
the seismic signal from CO2 reservoirs are relatively strong, we perform
the seismic inversion trace-by-trace. The obtained predictions are highly
accurate and have clearly defined regions of gas and water. This suggests
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that trace-by-trace inversion of seismic data from CO2 reservoirs is highly
suitable; hence, large 3D volumes can be characterized at relatively low
computational cost.
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Bayesian seismic amplitude variation with offset inversion for reservoir
variables with bimodal spatial histograms

Ole Bernhard Forberg1, Øyvind Kjøsnes2, and Henning Omre1

ABSTRACT

We consider seismic amplitude variation with offset (AVO)
inversion for prediction of the reservoir properties porosity
and water saturation. An oil reservoir at the initial state is
studied; hence, gravitational effects dominate and keep hydro-
carbons from mixing with water. Histograms of observations
of water saturation along wells are consequently clearly
bimodal, which is challenging to model. The seismic AVO
inversion is cast into a Bayesian framework. The prior spatial
model for porosity and water saturation is specified to be a
selection Gaussian random field (S-GRF), which is capable
of representing spatial variables with multimodal histograms.
By using linear models for the seismic and rock-physics
likelihoods, the posterior model is also an S-GRF. Hence, the
Bayesian seismic inversion can be solved analytically, and the
bimodal characteristics of water saturation can be reproduced.
The methodology is defined and demonstrated on two syn-
thetic cases inspired by real data from an oil reservoir, and
thereafter applied to the real case. The well observations
are fairly accurately reproduced and the inversion results
are considered to be substantial improvements compared to
standard spatial Gaussian models.

INTRODUCTION

Reliable reservoir characterization is important for reservoir
management and drilling decisions. Geoscientific experience and
seismic data with good spatial coverage along with well-log data
provide the basis for this characterization. Seismic data are a wavelet
convolved source of reservoir information, subject to multiple
sources of uncertainty. Extracting the reservoir information contained
in these data constitutes the challenging seismic inverse problem.

Seismic amplitude variation with offset (AVO) inversion is a
widely used inversion scheme in which the ultimate goal is the pre-
diction of lithology and fluid (LF) properties (Larsen et al., 2006;
Buland et al., 2008); hence, it is highly applicable for reservoir char-
acterization. The technique uses the relationship that the strength of
the seismic reflections is dependent on the angle of incidence of the
seismic waves on interfaces in the subsurface, and the understand-
ing of this dates back to the conception of the Zoeppritz (1919)
equations, which establish a dependence of the seismic reflections
on the elastic rock properties (compressional wave [P-wave] and
shear wave [S-wave] velocity and mass density). Characterizing
a reservoir in terms of LF properties therefore also requires a
rock-physics model that links these elastic rock properties to the
LF properties of interest, called reservoir properties. The rock-phys-
ics model can, for example, be based on an empirical relation ob-
tained by fitting well-log observations (Mavko et al., 2009).
Bayesian inversion is a common framework for many geophysi-

cal problems (Tarantola, 2005). This approach provides reliable
reservoir characterization because the solution consists not only
of predictions, but it also provides information about their associ-
ated uncertainty. The Bayesian approach requires the definition of a
likelihood model and a prior model. The likelihood model is a prob-
abilistic geophysical model relating the reservoir properties to the
seismic AVO data, and the prior model reflects our a priori beliefs
about the reservoir properties and acts as an inversion constraint.
The ultimate solution in the framework of Bayesian inversion is
the posterior model, which is uniquely defined by the likelihood
and prior models.
The traditional assumptions in Bayesian seismic AVO inversion

are that the likelihood model is linear and Gaussian (Gauss-linear)
and that the prior model is a Gaussian random field (GRF) (Buland
and Omre, 2003). Assuming a Gauss-linear likelihood model en-
sures conjugacy for the Gaussian prior distribution, that is, that
the form of the posterior is the same as the form of the prior. Con-
sequently, the solution can be analytically evaluated. The spatial
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reservoir variables are usually represented on a very large grid;
hence, the computational demand of the inversion is important
and the analytical tractability is favorable (Buland et al., 2003).
A frequently used approach to evaluate the posterior model in
the absence of these assumptions is Markov chain Monte
Carlo (MCMC) methods (Mosegaard and Tarantola, 1995). These
algorithms are iterative and usually propose samples from the prior
model, each of which are accepted or rejected according to the
Metropolis rule applied to the likelihood of the current and proposed
samples. The convergence rates of these algorithms are usually low,
which may cause problems in real high-dimensional studies. Alter-
natively, nonparametric kernel estimation of the posterior model may
be an option (Ayani and Grana, 2020), but for seismic data these
methods tend to become computationally unfeasible.
The nonlinear Zoeppritz equations are a natural point of depar-

ture for defining the likelihood model, and many seismic AVO in-
version schemes use the Aki and Richards (1980) approximation of
these equations. In the traditional Bayesian framework for seismic
AVO inversion introduced in Buland and Omre (2003), the likeli-
hood model is Gauss-linear and is based on a linearization of the
Aki and Richards (1980) approximation. If the rock-physics rela-
tionship is nonlinear, but only weakly so, the Gauss-linearity of
the likelihood model can be preserved by using a linear approxima-
tion (Landrø, 2001).
Many reservoir properties, such as porosity and water saturation,

are naturally multimodal because of varying underlying LF classes
(Grana and Della Rossa, 2010). Classifying reservoir zones in terms
of such classes are prevailing and important problems (Larsen et al.,
2006; Ulvmoen et al., 2010). These are categorical inverse problems
in a spatial setting, usually modeled by Markov random fields
(Besag, 1974; Eidsvik et al., 2004). Another common approach
is truncated Gaussian simulation (Matheron et al., 1987). Spatial
variables that are continuous, with multimodal histograms over
value per location (spatial histograms), due to different underlying
LF classes, are challenging to model. The Gaussian mixture model
offers an alternative for modeling multimodality (Hasselblad,
1966); however, in spatial inversion it is necessary to model a
spatially defined mode indicator, and Markov random fields are
frequently used for this purpose (Rimstad et al., 2012;
Grana et al., 2017). Assessment of the resulting Gaussian mixture
random fields relies on MCMC algorithms that are computationally
demanding, particularly when conditioned on convolved seismic
data.
In this study, we use a Gauss-linear likelihood model based on

the linear Aki and Richards (1980) approximation of the Zoeppritz
equations and an approximated linear rock-physics model. We ex-
plore an alternative prior model for continuous spatial variables
with multimodal spatial histograms; the so-called selection Gaus-
sian random field (S-GRF), developed and coined as such in Omre
and Rimstad (2018) based on the selection concept introduced in
Arellano-Valle et al. (2006). This random field (RF) may represent
continuous spatial variables with spatial histograms being multimo-
dal, skewed, or peaked. Moreover, the S-GRF prior model is dem-
onstrated to be conjugate subject to a Gauss-linear likelihood model
(Omre and Rimstad, 2018), which makes it suitable as a prior model
in the Bayesian seismic AVO inversion framework. We demonstrate
the model on two synthetic cases inspired by real reservoir data, and
we test its practical capacity on a real data set from the Alvheim oil
and gas field in the North Sea.

NOTATION

The n-dimensional vector of all ones is denoted in, and In is the
n × n identity matrix. Furthermore, let pð·Þ be a probability density
function (pdf) of its argument, and the corresponding cumulative
distribution function is Pð·Þ. The Boolean function Ið·Þ is the indi-
cator function, and it is for logical argument A defined as IðAÞ ¼ 1

if A is true, and IðAÞ ¼ 0 otherwise. Finally, the superscript T is
used to indicate the matrix transpose.

PROBLEM DEFINITION

We consider a 1D profile along a vertical well in an oil reservoir
whose dominant lithology is sandstone. The goal of our study is to
assess the storage capacity and fluid content in the reservoir along the
vertical profile, which wewill refer to as the reservoir profile. For this
purpose, we examine the distribution of porosity ϕ and water satu-
ration sw hereafter referred to as saturation, along the profile.
The reservoir profile is discretized into a regular gridLr, consisting

of nr grid points. Let rðzÞ ¼ ½ϕðzÞ; swðzÞ�T be the reservoir variables
at depth z ∈ Lr. Furthermore, ϕ ¼ ½ϕðz1Þ;ϕðz2Þ; : : : ;ϕðznrÞ�T and
sw ¼ ½swðz1Þ; swðz2Þ; : : : swðznrÞ�T are the porosity and saturation on
all ofLr, respectively. The 2nr-dimensional vector r ¼ ½ϕ; sw�T is the
reservoir variables on all of Lr.
Seismic data are our gateway to predict r. We have seismic AVO

data from the reservoir profile, that is, seismic data gathered with a
common midpoint, but at different offsets. Seismic data are collected
along the profile at nθ offset angles, and they are processed to a regu-
lar grid of timesLd, consisting of nd grid points. This seismic grid is
much coarser than the reservoir variable grid Lr. The seismic AVO
data on all of Ld are represented by the nθnd-dimensional vector d.
Data from the Kneler discovery in the Alvheim oil and gas field

in the North Sea are used in our study. Seismic data were acquired in
1996 before the initiation of hydrocarbon production. In Figure 1,
well porosities and saturations from well logging the reservoir pro-
file are displayed. Although sandstone dominates the lithology of
the profile, it contains four thin layers of shale, the locations of
which are indicated by the transparent gray zones. The saturation
increases consistently in all these shale layers, but the porosity
seems to be affected more strongly in the second layer from the
top than in the others. Moreover, it can be seen that the oil-
water-contact (OWC) is located at approximately 2132 m in depth.
The lower part of Figure 1 presents spatial histograms of the data.
We observe that the distribution of porosity appears to be unimodal
and symmetric, whereas the distribution of saturation, representing
the fluid content, appears to be bimodal.
The seismic AVO data associated with the reservoir profile are pre-

sented in Figure 2. These reflections result from heterogeneities in the
elastic rock properties along the well profile. The elastic rock proper-
ties are represented by the P- and S-wave velocities and the mass den-
sity, denoted by VP, VS, and ρ, respectively. For modeling purposes,
we represent the natural logarithm of the elastic rock variables on all of
Lr by the 3nr-dimensional vector m ¼ ½logðVPÞ; logðVSÞ; logðρÞ�T,
and we hereafter refer to m as the elastic rock variables. Observations
of the elastic rock properties along the reservoir profile are available,
but these observations are only used to assess the model parameters;
hence, they are not displayed.
To demonstrate and evaluate the suggested Bayesian seismic

AVO inversion technique, we introduce two synthetic case studies
strongly inspired by the observations from Kneler. The synthetic
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case studies are presented in parallel with the methodology, and
after demonstrating the inversion method on synthetic data, we also
invert the real seismic observations from Kneler.

Synthetic case studies

The well observations used in our synthetic case studies are
presented in Figures 3 and 4, corresponding to cases A and B,

respectively. The two case studies share a lot of similarities because
they are both constructed from the observations in Figure 1. In both
cases, an extension of the reservoir profile is introduced to avoid the
border problems associated with generating synthetic convolved
seismic data. The top and bottom of the reservoir profile are indi-
cated by dashed horizontal lines. Because the well observations are
highly spatially correlated, we thin the reservoir profile grid Lr to

Figure 1. Well logs from the reservoir profile in Kneler in the
Alvheim oil and gas field, collected in 1996: (a) porosity and (b) sat-
uration profiles.

Figure 2. Seismic AVO data, in the form of picked amplitudes along the reservoir profile, collected in 1996 from Kneler in the Alvheim oil and
gas field: (a) 10°, (b) 18°, (c) 27°, and (d) 35°.

Figure 3. Synthetic well in case A: (a) porosity and (b) saturation
profiles.
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nr ¼ 58 grid points, which is coarser than in Figure 1. Lastly, spatial
histograms of the synthetic well observations located within the res-
ervoir profile are shown at the bottom of the displays. Observe that
the porosity histograms are unimodal and fairly symmetric, whereas
both saturation histograms are strongly bimodal with slightly less
water in case A than in case B.

Case A

Case study A corresponds to an all-sand reservoir profile. It
is constructed by replacing the shale layers in the observations by
consistently simulated sand sequences. This case represents the
simplest reservoir design with one clearly defined OWC.

Case B

Case study B corresponds to a reservoir zone consisting of two
separately producible compartments. It is constructed by keeping
the dominant shale layer between 2122 and 2123 m depth, which
acts as an impermeable barrier, and replacing the other layers by
consistently simulated sand sequences. Furthermore, we introduce
a thin water zone underlying the oil zone on top of the major shale
layer. This case represents a more complex reservoir design with
two OWCs and mixed lithology.

MODEL DESCRIPTION

We phrase the assessment of r given d, ½rjd�, in a Bayesian spatial
inversion setting, which entails defining a prior model for the res-
ervoir variables pðrÞ and a likelihood model pðdjrÞ for the seismic
observations. The solution to the inversion is termed the posterior
model, and it is represented by the pdf pðrjdÞ obtained by an
application of Bayes’ rule,

pðrjdÞ ¼ pðdjrÞpðrÞ
pðdÞ ¼ const × pðdjrÞpðrÞ; (1)

with const being a normalizing constant which is usually very com-
putationally demanding to calculate.

Probability distributions

The class of Gaussian distributions is a natural candidate to re-
present variables that appear as unimodal and symmetric. An n-di-
mensional real-valued random vector x with expected value μx and
covariance matrix Σx is Gaussian if its pdf, pðxÞ, is of the form

pðxÞ¼ 1

ð2πÞn∕2jΣxj1∕2
exp

�
−
1

2
ðx−μxÞTΣ−1

x ðx−μxÞ
�
: (2)

We denote this n-dimensional Gaussian pdf by φnðx; μx;ΣxÞ.
The probability that the n-dimensional Gaussian vector x belongs

to the n-dimensional set U is given by

Pðx ∈ U; μx;ΣxÞ ¼
Z
Rn

Iðx ∈ UÞφnðx; μx;ΣxÞdx: (3)

We denote this n-dimensional Gaussian subset probability by
ΦnðU; μx;ΣxÞ.
In this study, we introduce the class of selection Gaussian dis-

tributions, which is very flexible, supporting multimodal, skewed,
and truncated distribution types. A selection Gaussian random var-
iable x is defined by two Gaussian random variables: the basis
variable ~x and the auxiliary variable ν. These variables are jointly
Gaussian, and the selection Gaussian random variable x is ob-
tained by conditioning x ¼ ½~xjν ∈ A� with A a nonempty subset
with the same dimension as ν. The distribution of the basis var-
iable primarily controls the location and variability of the associ-
ated selection Gaussian distribution, whereas the correlation
between ~x and ν and the geometry of the selection set A primarily
controls its shape. Constructing an n-dimensional selection Gaus-
sian random variable starts with defining the n-dimensional basis
variable ~x. This basis variable is Gauss-linearly extended by an
m-dimensional auxiliary variable ν; that is, ν conditioned on ~x
is Gaussian with expectation linear in ~x. Consequently, the joint
distribution of ~x and ν is Gaussian,

p

��
~x
ν

��
¼ φnþm

��
~x
ν

�
;

�
μ~x

μν

�
;

�
Σ~x Γ~xν

Γν~x Σν

��
; (4)

with μ~x, μν and Σ~x, Σν being the mean vectors and covariance ma-
trices of ~x and ν, respectively. The covariance between ~x and ν is
defined by Γ~xν ¼ ΓT

ν~x. Note that the auxiliary variable ν is intro-
duced only for modeling and has no physical interpretation. Fur-
thermore, define the nonempty selection set A with the same
dimension as ν. Then, the conditional variable x ¼ ½~xjν ∈ A� be-
longs to the class of selection Gaussian distributions (Arellano-
Valle et al., 2006):

Figure 4. Synthetic well in case B: (a) porosity and (b) saturation
profiles.
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pðxÞ ¼ pð~xjν ∈ AÞ ¼ Pðν ∈ Aj~xÞpð~xÞ
Pðν ∈ AÞ

¼ ΦmðA; μνj~x;Σνj~xÞφnð~x; μ~x;Σ~xÞ
ΦmðA; μν;ΣνÞ

; (5)

where

μνj~x ¼ μν þ Γν~xΣ−1
~x ð~x − μ~xÞ;

Σνj~x ¼ Σν − Γν~xΣ−1
~x Γ~xν: (6)

The flexibility of the selection Gaussian distributions enters
through the correlation between ~x and ν, specified in Γ~xν ¼ ΓT

ν~x,
and in the geometry of the selection set A. Note that the class of
Gaussian distributions is contained in the class of selection Gaus-
sian distributions because the class of selection Gaussian distribu-
tions where ~x and ν are uncorrelated or the selection set constitutes
the entire m-dimensional space, coincides with the class of Gaus-
sian distributions.
In Figure 5, the concept of the selection Gaussian distribution is

illustrated for a 1D example. Figure 5a depicts the joint distribution
of ~x and ν together with a selection set A, whereas Figure 5b shows
the selection set with its corresponding selection Gaussian distribu-
tion embedded.
Later, we will extend the Gaussian and selection Gaussian dis-

tribution classes to represent spatial variables along the reservoir
profile, the so-called GRF and S-GRF.
In a Bayesian framework (see equation 1), the class of Gaussian

distributions provides conjugate prior models with respect to Gauss-
linear likelihood models; that is, the resulting posterior model also
belongs to the class of Gaussian distributions. It can be demon-
strated (Omre and Rimstad, 2018) that the class of selection Gaus-
sian distributions is also conjugate with respect to Gauss-linear
likelihood models.
The class of high-dimensional selection Gaussian distributions is

challenging to assess because of the high-dimensional Gaussian
slice ΦmðA; μνj~x;Σνj~xÞ that must be computed. We approach this
challenge by simulation, we use a block-independent MCMC algo-
rithm to first simulate ν ∈ A (Omre and Rimstad, 2018), and then
we simulate x ¼ ½~xjν�, which is Gaussian and therefore easy to sim-
ulate from to obtain selection Gaussian realizations. The simulation
algorithm is presented in pseudocode in Appendix A.

Likelihood model

In our study, the likelihood model pðdjrÞ, rep-
resenting the seismic AVO acquisition procedure
given the reservoir variables, is decomposed into

pðdjrÞ ¼
Z

pðdjm; rÞpðmjrÞdm

¼
Z

pðdjmÞpðmjrÞdm: (7)

The last equality holds because m are canonical
variables of the wave equation, which is used to
model the seismic wave propagation.
In the likelihood decomposition, pðmjrÞ is

termed the rock-physics likelihood model and

pðdjmÞ is termed the seismic likelihood model. Inspired by Landrø
(2001), we use a linear rock-physics model, which, together with a
linearized seismic likelihood model (Buland and Omre, 2003), form
the likelihood model.
The rock-physics model is Gauss-linear and relates the reservoir

variables to the elastic rock variables ½mjr� ¼ Brþ emjr. Here, B is
a ð3nr × 2nrÞ-matrix containing the regression coefficients from a
multiple linear regression model for the elastic rock variables with
the reservoir variables as explanatory variables. The model error
induced by assuming this linear relation is represented by the cen-
tered Gaussian error term emjr, a 3nr-dimensional vector with the
covariance matrix

Σmjr ¼

2
64
σ2VPjrInr ξVPVS

Inr ξVPρInr
ξVPVS

Inr σ2VSjrInr ξVSρInr
ξVPρInr ξVSρInr σ2ρjrInr

3
75; (8)

where ξVPVS
Inr , ξVPρInr , and ξVSρInr are the covariances between VP

and VS, VP and ρ, and VS and ρ, respectively. Hence, the rock-phys-
ics likelihood model is

pðmjrÞ ¼ φ3nrðm;Br;ΣmjrÞ: (9)

Figure 6 displays the estimated regression models based on the
observations in Figure 1 after outlier removal. Note that the bimodal
characteristics of the saturation profile can be observed in the plots
in the right column.
In Table 1, the numerical values of the estimated coefficients and of

the standard deviations associated with the Gauss-linear rock-physics
likelihood model are displayed. Each regression model is defined by
the intercept α and the slopes βϕ and βsw of porosity and saturation,
respectively. Furthermore, σ is the associated standard deviation.
The covariance between VP and VS is estimated to be
ξVPVS

¼ 6.16 · 10−4, which corresponds to a correlation of 0.94.
The estimated correlations between ρ and the velocities are very
low; hence, we assume independence.We see that porosity is assigned
more explanatory power than saturation, which is also reflected in
Figure 6.
The seismic likelihood model is Gauss-linear and of the form

½djm� ¼ WADmþ edjm (Buland and Omre, 2003). The matrices
A and D emerge from the linearization of the Aki and Richards
approximation of the Zoeppritz equations, with D a ð3nr × 3nrÞ-
matrix functioning as a contrast operator with respect to the profile

Figure 5. Selection Gaussian distribution.
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direction and A being a ðnθnr × 3nrÞ-matrix containing the Aki
and Richards angle-dependent coefficients. The ðnθnd × nθnrÞ-
matrix W contains discretizations of a wavelet and functions as
a convolution operator. Lastly, edjm is an nθnd-dimensional vector
containing centered Gaussian error terms encompassing model
error and observation error, with the covariance matrix
Σdjm ¼ Wσ2cjmInθnrW

T þ σ2djcInθnd . Note that the first term indicates
that the error is colored, due to convolution. Furthermore, σ2cjm is the

variance associated with the model error resulting from the lineari-
zation of the Zoeppritz equations and σ2djc is the variance associated
with observation error. Hence, the seismic likelihood model is

pðdjmÞ ¼ φnθndðd;WADm;ΣdjmÞ: (10)

Figure 7 shows the estimated wavelet that defines the convolution
matrix W. The estimation is performed in a wide depth interval of

300 m of the well containing the reservoir profile.
Several estimation methods are tested: parametric
and nonparametric estimation methods, including
the conventional Roy White method (White and
Simm, 2003), with and without angular wavelet
dependency. The best seismic fit and inversion re-
sults are obtained by using a cubic spline
smoothed version of the wavelet estimated by
regressing the seismic data on the reflection coef-
ficients obtained by applying parts of the seismic
likelihood model on the elastic rock variables
along the well profile. The estimation is per-
formed simultaneously for all angles; that is,
the resulting wavelet is the onewavelet that jointly
fits all angle stacks best. Note that the estimated
wavelet has two sidelobes and appears slightly
skewed. Moreover, because the estimation interval
is more than six times wider than the study inter-
val, we expect no overfitting in the estimation.
Combining the rock physics and the seismic

likelihood models, the likelihood model takes
the form ½djr� ¼ Grþ edjr, withG ¼ WADB the
forward operator, an ðnθnd × 2nrÞ-matrix, and
edjr ¼ WADemjr þ edjm an nθnd-dimensional
vector, containing the total error, which is centered
and Gaussian. The corresponding covariance ma-
trix is Σdjr ¼ WADΣmjrðWADÞT þ Σdjm. Hence,
the likelihood model is Gauss-linear,

pðdjrÞ ¼ φnθndðd;Gr;ΣdjrÞ: (11)

Synthetic case studies

Figures 8 and 9 display synthetic seismic AVO
data generated from the reservoir variables in
cases A and B, respectively, using the likelihood
model pðdjrÞ; see equation 11.
The synthetic seismic data are generated with

a signal-to-noise ratio (S/N) of 5. The S/N gov-
erns the magnitude of the total error, and we
assume that it consists of 1% white noise. The
remaining 99% of the total error is wavelet-col-
ored errors, resulting from propagation and con-
volution of model errors from the rock physics
and reflection models.
The appearance of the synthetic seismic AVO

data in Figures 8 and 9 should be compared with
the corresponding observed data in Figure 2. Be-
cause the synthetic seismic data are based on the
reservoir variables associated with cases A and
B, the profiles should be similar but not identical

Figure 6. Rock-physics model. Estimated relationship between porosity and (a) P-wave
velocity, (c) S-wave velocity, and (e) density, with water saturation fixed to a value in
½0; 1� with step size 0.1. Estimated relationship between water saturation and (b) P-wave
velocity, (d) S-wave velocity, and (f) density, with porosity fixed to a value in ½0.2; 0.35�
with step size 0.05. The color of the lines gradually transitions from yellow to red, cor-
responding to the minimum and maximum values, respectively. The observed elastic
rock properties are indicated by points.
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to the observed data in Figure 2. The data profiles have many simi-
larities, although some deviations occur at the boundary depths.

Prior model

The prior model for the reservoir variables pðrÞ should capture
the characteristics of the observed porosity and saturation profiles
displayed in Figure 1. The following decomposition of the prior
distribution is useful for modeling:

pðrÞ ¼ pðϕ; swÞ ¼ pðϕjswÞpðswÞ; (12)

because it enables step-wise model construction. We start by defin-
ing a prior model for saturation. The saturation profile in sand in
Figure 1b appears as spatially smooth with the exception of an
abrupt fluid transition at the OWC, and the spatial histogram is
bimodal. A traditional GRF model cannot capture bimodal marginal
characteristics; hence, this class of models is unsuitable as a prior
model for saturation. However, a generalization of the GRF, termed
S-GRF, may capture bimodality (Omre and Rimstad, 2018). This
spatial RF model is based on the selection Gaussian model pre-
sented in the “Probability distributions” subsection. It is defined
by a basis GRF model, an auxiliary GRF, and a selection set.
The basis GRF model for saturation is

pð~swÞ ¼ φnrð~sw; μ~sw inr ; σ2~swΩÞ; (13)

with expected level μ~sw , variance level σ
2
~sw
, and ðnr × nrÞ correlation

matrix Ω. The correlation matrix is defined by the powered expo-
nential spatial correlation function ρðτ; αr; βrÞ ¼ expf−ðτ∕αrÞβrg
with τ > 0 being the grid point interdistances, whereas αr > 0

and 0 ≤ βr ≤ 2 are the scale and shape parameters, respectively.
The nr-dimensional auxiliary variable ν is Gauss-linearly and

conditionally independently related to the basis GRF,

pðνj~swÞ ¼ φnrðν; μνj~sw ; ð1 − γ2ν~swÞInrÞ

¼
Ynr
i¼1

φ1ðνi; μνij~sw ; ð1 − γ2ν~swÞÞ; (14)

where

μνj~sw ¼ 0inr þ Γν~sw ½σ2~swΩ�−1ð~sw − μ~sw inrÞ;
(15)

with Γν~sw ¼ γν~swσ ~swΩ being the covariance
between ν and ~sw, where γν~sw is the correlation
between ν and ~sw. The nr-dimensional selection
set A associated with the auxiliary variable
is specified such that A ¼ Anr , with
A ¼ ð−∞; a� ∪ ½b;∞Þ being a subset of the real
numbers. The prior model for saturation is the
discretized S-GRF with pdf

pðswÞ ¼ pð~swjν∈AÞ

¼ ΦnrðA;μνj~sw ; ð1− γ2ν~swÞInrÞ
ΦnrðA; 0inr ;γ2ν~swΩþð1− γ2ν~swÞInrÞ

φnrð~sw;μ~sw inr ;σ
2
~sw
ΩÞ

¼
Qnr

i¼1Φ1ðA;μνij~sw ; ð1− γ2ν~swÞÞ
ΦnrðA; 0inr ;γ2ν~swΩþð1− γ2ν~swÞInrÞ

φnrð~sw;μ~sw inr ;σ
2
~sw
ΩÞ:

(16)

This prior model will be spatially stationary in the sense that all
location-wise distributions are identical.
The porosity profile in sand in Figure 1a appears as spatially

smoothly varying, and the spatial histogram appears unimodal
and symmetric. A stationary GRF model therefore seems suitable,

pðϕÞ ¼ φnrðϕ; μϕinr ; σ2ϕΩÞ; (17)

with expected level μϕ, variance level σ2ϕ, and ðnr × nrÞ correlation
matrix Ω. The joint pdf pðϕ; ~sw; νÞ can be decomposed into

Figure 7. Estimated wavelet.

Table 1. Estimated parameters in the rock-physics likelihood
model. The estimated intercept α̂, slope of porosity β̂ϕ, and
slope of water saturation β̂sw are displayed together with the
estimated standard deviation σ̂ for each regression model in
the top table. Each row of the table contains the parameters
associated with the model for the elastic rock property
specified in the leftmost column. The estimated cross-
covariances between the elastic rock properties, ξ̂VPVS

, ξ̂VPρ,
and ξ̂VSρ, are shown in the lower table.

α̂ β̂ϕ β̂sw σ̂

VP 8.348 −1.060 0.044 0.022

VS 8.046 −1.777 −0.029 0.030

ρ 7.902 −0.868 0.035 0.006

ξ̂VPVS
ξ̂VPρ ξ̂VSρ

6.16 · 10−4 0 0
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pðϕ; ~sw; νÞ ¼ pðνjϕ; ~swÞpðϕj~swÞpð~swÞ
¼ pðϕj~swÞpðνj~swÞpð~swÞ; (18)

where the latter equality follows because ½νj~sw� is conditionally in-
dependent of porosity. The porosity is defined to be Gauss-linearly
dependent on saturation,

pðϕj~swÞ ¼ φnrðϕ; μϕj~sw ;Σϕj~swÞ: (19)

Here,

μϕj~sw ¼ μϕinr þ Γϕ~swΣ
−1
~sw
ð~sw − μ~sw inrÞ;

Σϕj~sw ¼ σ2ϕΩ − Γϕ~swΣ
−1
~sw
Γ~swϕ; (20)

Figure 8. Synthetic seismic AVO data associated with case study A, in the form of picked amplitudes along the reservoir profile: (a) 10°,
(b) 18°, (c) 27°, and (d) 35°.

Figure 9. Synthetic seismic AVO data associated with case study B, in the form of picked amplitudes along the reservoir profile: (a) 10°,
(b) 18°, (c) 27°, and (d) 35°.
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with Γϕ~sw ¼ Γ~swϕ ¼ ρϕ~swσϕσ ~swΩ being the covariance between ϕ
and ~sw, where ρϕ~sw is the correlation between ϕ and ~sw.
The stationary GRF ~r ¼ ½ϕ; ~sw�T and the stationary auxiliary GRF

ν are correlated only through the correlation between ~sw and ν, rep-
resented by γν~sw. However, note that the auxiliary variable ν affects
porosity through ~sw if jρϕ~sw j > 0. The joint pdf of the GRFs is

p

�� ϕ
~sw
ν

��
¼ φ3nr

�� ϕ
~sw
ν

�
;

� μϕinr
μ~sw inr
0inr

�
;

�σ2ϕΩ Γϕ~sw Γϕν

Γ~swϕ σ2~swΩ Γν~sw
Γνϕ Γν~sw Σν

��
;

(21)

where

Γϕν ¼ Γνϕ ¼ ρϕ~swγν~swσϕΩ;

Σν ¼ γ2ν~swΩþ ð1 − γ2ν~swÞInr : (22)

It can be shown that the covariance Γϕνj~sw ¼ 0Inr , that is,
pðϕjswÞ ¼ pðϕj~swÞ. Consequently, the conditional pdf defining
the joint prior model is

pðϕjswÞ ¼ pðϕj~swÞ ¼ φnrðϕ; μϕj~sw ;Σϕj~swÞ; (23)

and the joint prior model is a stationary bivariate discretized S-GRF,

pðrÞ¼pðϕjswÞpðswÞ¼pðϕj~swÞpð~swjν∈AÞ

¼φnrðϕ;μϕj~sw ;Σϕj~swÞ
Qnr

i¼1Φ1ðA;μνij~sw;i ;ð1−γ2ν~swÞÞ
ΦnrðA;0inr ;γ2ν~swΩþð1−γ2ν~swÞInrÞ

×φnrð~sw;μ~sw inr ;σ
2
~sw
ΩÞ; (24)

parameterized by ΘS−G
p ¼½μϕ;μ~sw ;σ2ϕ;σ2~sw ;ρϕ~sw ;γν~sw ;A;ρðτ;αr;βrÞ�.

The seven first parameters are primarily related to the bivariate lo-
cation-wise selection Gaussian pdf for rðzÞ ¼ ½ϕðzÞ; swðzÞ�T. The
last parameter is primarily related to the spatial coupling along the
depth profile.
In traditional inversion of seismic AVO data for reservoir varia-

bles (Buland and Omre, 2003), a GRF prior model is used; hence,
we define a GRF model as a benchmark for the S-GRF model sug-
gested in the current study. We assign a discretized stationary GRF
prior model,

pðrÞ ¼ φ2nr

��
ϕ
sw

�
;

�
μϕinr
μsw inr

�
;

�
σ2ϕΩ Γϕsw

Γswϕ σ2swΩ

��
; (25)

with Γϕsw ¼ Γswϕ ¼ ρϕswσϕσswΩ, and parameterized by
ΘG

p ¼ ½μϕ; μsw ; σ2ϕ; σ2sw ; ρϕsw ; ρðτ; αr; βrÞ�.
Note that porosity and saturation are defined in the range ½0; 1�,

whereas the location-wise prior models are defined in ½−∞;∞�. The
possible inconsistencies due to this mismatch will depend on the
actual values of the model parameters, and we will discuss this sub-
ject subsequently.
All model parameters of the prior stationary S-GRF ΘS−G

p can
formally be estimated by maximum likelihood (Omre and Rimstad,
2018). Given well observations robs, the maximum likelihood esti-

mate is Θ̂S−G
p ¼ argmax

ΘS−G
p

fpðrobs;ΘS−G
p Þg, with pðrobs;ΘS−G

p Þ an

nr-dimensional selection Gaussian distribution. Alternatively,

maximum likelihood estimation can be based on the seismic data;
because the likelihood model is Gauss-linear, the seismic data have
a selection Gaussian distribution with parameters linearly related to
the parameters of the prior model. However, the maximum likeli-
hood estimation is challenging due to the high degree of multimo-
dality in the likelihood function.
We circumvent the difficulties posed by the maximum likelihood

estimation by using a step-wise heuristic approach. We initiate the
spatial correlation function to be ρðτ; αr; βrÞ ¼ Iðτ ¼ 0Þ; hence,
there is no spatial dependence. Because the prior model is station-
ary, the histograms and scatterplot of ½ϕ; sw� provided by the well
logs are used to infer all parameters except the spatial correlation —
this is the first step. The expectation and variance of the location-
wise Gaussian prior model for porosity are estimated by maximum
likelihood from the well logs. For saturation, we perform parametric
optimization by gridding the parameters and minimizing
the mean squared error (MSE) between the selection Gaussian
distribution and the spatial histogram of saturation. The resulting
approximate optimal parameters give a very good starting point,
but some small parameter adjustments may be necessary as spatial
correlation is introduced. In the second step, we find a suitable spa-
tial correlation by performing and evaluating the smoothness of
synthetic inversions, with the parameters estimated from the first
step fixed and varying spatial correlation parameters. Lastly, we
reinspect the synthetic inversion subject to the parameters estimated
from the first and second steps and determine whether to adjust the
parameter estimates from the first step or not. This last step requires
some experience and understanding of the parameters.
The model parameters ΘS−G

p of the prior stationary S-GRF, are
estimated from the outlier corrected observations along the reservoir
profile in Figure 1, and they are listed in Table 2. In the top row, the
model parameters associated with the bivariate location-wise GRF
basis model are displayed. The parameters associated with the aux-
iliary GRF are shown in the middle row, and the parameters asso-
ciated with the spatial correlation structure are listed in the bottom
row. Because the prior model is relatively low-parameterized, over-
fitting is unlikely. Note that the estimated intervariable correlation is
low; hence, the auxiliary variable only weakly affects porosity and

Table 2. Parameter values used in the prior S-GRF. The
parameters associated with the basis GRF are shown at the
top: the expected levels �μϕ; μ~sw �, variance levels �σ2ϕ; σ2~sw �,and intervariable correlation ρϕ~sw . The parameters associated
with the auxiliary GRF are shown in the middle: the
correlation with the basis GRF γν~sw and the marginal
selection set A. The parameters associated with the spatial
correlation structure are listed at the bottom: the scale
parameter αr and shape parameter βr.

μϕ μ~sw σ2ϕ σ2~sw ρϕ~sw

0.27 0.5 0.00019 0.04375 −0.164

γν~sw A

0.9 ½−∞;−1.1� ∪ ½1.1;∞�
αr βr

1.1 1.8
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the univariate location-wise prior models are unimodal for ϕðzÞ and
bimodal for swðzÞ.
Figure 10 contains four realizations from the stationary S-GRF

prior model, and these realizations should be representative of the
data shown in Figure 1, except for in the shale layers. Spatial histo-
grams of the four realizations are displayed at the bottom of the
displays. We observe that the porosity varies smoothly spatially
and has a unimodal spatial histogram, whereas the saturation ap-
pears with small spatial variability except for some identifiable steps
and has a bimodal spatial histogram. Note that the abrupt mode tran-
sitions occur randomly because the prior realizations are not con-
ditioned on seismic AVO data. Moreover, observe that the saturation
values sometimes are slightly outside the physical range ½0; 1�.
The model parameters of the benchmarking stationary GRF prior

model are also estimated from the outlier corrected observations
along the reservoir profile in Figure 1, and they are presented in
Table 3. Parameter estimation of the location-wise expectation
and variance is done by maximum likelihood, whereas the correla-
tions are assigned the same values as in the S-GRF prior model. The
parameters associated with the location-wise bivariate GRF model
are displayed in the top row, and the parameters associated with the
spatial correlation structure are listed in the bottom row.
Figure 11 contains four realizations from the stationary GRF

prior model, which should be representative of the data shown in
Figure 1, except for in the shale layers. Note that the porosity pro-
files appear as smoothly spatially varying, whereas the saturation
profiles appear with large variability and without identifiable steps.
The spatial histograms in the lower part of the displays are unim-
odal, and very wide for the saturation, which sometimes falls out-
side the physical range ½0; 1� by a substantial amount.
For the GRF and S-GRF prior models, the actual parameters

ðμϕ; σ2ϕÞ inferred from the observations are such that the probability
for ϕ to be within ½0; 1� is close to 1. The impact of the prior model
being defined in ½−∞;∞� is therefore not reflected in the inversion

results of porosity. However, the probability for sw to be outside
½0; 1� is not negligible, particularly in the GRF prior model. This
may impact the inversion results for saturation, and we describe
our approach for correction next.

Posterior model

In Bayesian inversion, the posterior model is defined by the like-
lihood and prior models; see equation 1. Because the likelihood
model pðdjrÞ is Gauss-linear and the prior model pðrÞ is an S-
GRF, the posterior model pðrjdÞ is also an S-GRF (Omre and Rim-
stad, 2018),

pðrjdÞ ¼ const × pðdjrÞpðrÞ
¼ const × pðdjϕ; swÞpðϕ; swÞ
¼ const × pð ~djϕ; ~swÞpðϕ; ~swjν ∈ AÞ: (26)

The latter equality follows from the likelihood function pðdjrÞ
being a function of r with d fixed to the actual observations. More-

Figure 10. Four realizations from the S-GRF prior model: (a) poros-
ity and (b) saturation profiles.

Figure 11. Four realizations from the GRF prior model: (a) porosity
and (b) saturation profiles.

Table 3. Parameter values used in the prior GRF. The
expected levels �μϕ; μsw�, variance levels �σ2ϕ; σ2sw�, and
intervariable correlation ρϕsw are shown at the top. The
parameters associated with the spatial correlation structure
are listed at the bottom: the scale parameter αr and shape
parameter βr.

μϕ μsw σ2ϕ σ2sw ρϕsw

0.27 0.45 0.00019 0.14583 −0.164

αr βr

1.1 1.8
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over, the likelihood function is invariant to the specification of prior
model pðrÞ. From the relation above, one may demonstrate that
pð ~d;ϕ; ~sw; νÞ is Gaussian and, hence, also that pðϕ; ~sw; νjdÞ is
Gaussian with ~d ¼ d being the actual observations. This entails that
the posterior model is an S-GRF with exact pdf

pðrjdÞ ¼ pðϕ; swjdÞ ¼ pðϕj~sw; dÞpð~swjd; ν ∈ AÞ

¼ φnrðϕ; μϕj~sw;d;Σϕj~sw;dÞ
ΦnrðA; μνj~sw;d;Σνj~sw;dÞ
ΦnrðA; μνjd;ΣνjdÞ

× φnrð~sw; μ~swjd;Σ~swjdÞ: (27)

Expressions for these parameters are developed in Appendix B.
The posterior distribution is assessed by simulation using the MCMC
algorithm described in Appendix A. Based on the posterior distribu-
tion, we use the marginal (location-wise) maximum posterior
(MMAP) as the predictor and the highest posterior density (HPD)
interval (HPDI) as the prediction interval (Casella and Berger, 2001).
The MMAP can be expressed as

r�¼fMAPðrijjdÞ¼argmax
rij

fpðrijjdÞg; i¼1;2; j¼1; :::;nrg;

(28)

with ðr1; r2Þ ¼ ðϕ; swÞ. The ð1 − αÞ × 100%

HPDI provides the shortest marginal intervals
with ð1 − αÞ × 100% coverage. The MMAP pre-
diction and HPD prediction intervals for unimo-
dal and symmetric and for bimodal posterior
distributions are illustrated in Figure 12. Note
that for unimodal and symmetric pdfs, such as
a Gaussian pdf, the MMAP prediction and
HPD prediction interval coincide with the tradi-
tional prediction and prediction interval. For
bimodal pdfs, the HPDI may appear as two in-
tervals with the MMAP located within one
of them.
The posterior distribution may support non-

physical values outside the interval ½0; 1�. There-
fore, we correct the predictor and prediction
intervals by truncation to ½0; 1�. Later, we observe
that, for our case studies, this truncation does not
appear as a major problem.
We use the mean absolute error (MAE) as the

criterion when comparingMMAP predictions with
observations. This criterion is suitable for multi-
modal variables because it does not favor central
expectation predictions as strongly as the alterna-
tive MSE. It is favorable to have MAE close to
zero. To evaluate the ð1 − αÞ × 100%HPD predic-
tion intervals, we use coverage, defined as the pro-
portion of observations inside the intervals. An
observed coverage of ð1 − αÞ × 100% is of course
optimal.

Synthetic case studies

The S-GRF model is used to predict porosity
and saturation from the synthetic seismic AVO

data shown in Figures 8 and 9. These data originate from synthetic
case studies A and B, respectively. The results are compared to re-
sults based on the GRF model.

Case A

We investigate the convergence of the MCMC algorithm used to
assess the posterior distribution before running the inversion
method. The posterior pdf of saturation is sampled 100,000 times,
and Figure 13 shows the location-wise convergence. The location-
wise posteriors of saturation are unimodal and bimodal along the res-
ervoir profile, and the convergence at the locations where the pos-
terior is strongly bimodal is slow (e.g., at depth 2132 m). The
MCMC algorithm appears to be stable after 50,000 iterations, so
we set the burn-in to 50,000 samples and base the results on the last
50,000 samples. In all subsequent inversions, the convergence of the
MCMC algorithm is checked before obtaining the results by inspect-
ing similar convergence plots. The plots are used to set the burn-in,
and the results are based on 50,000 samples following the burn-in.
The posterior pdf of porosity is unimodal at all grid locations; hence,
convergence is relatively fast and does not influence the burn-in.
Figure 14 shows the inversion results of the synthetic seismic

AVO data associated with case A; see Figure 8. The model param-
eters of the S-GRF prior model are listed in Table 2.

Figure 12. HPDI illustrated for (a) unimodal symmetric and (b) bimodal posterior. The
limits of the prediction intervals (the dotted-dashed orange lines) and the posterior within
(the blue fill), the MMAPs (the orange lines), and the minimum probability values asso-
ciated with prediction interval inclusion (the dashed horizontal lines) are shown.

Figure 13. Convergence of the posterior distribution of saturation displayed as percent-
age deviation between the running sample average and the total sample average of
100,000 samples for every 1000 samples.
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The porosity predictions (see Figure 14a) appear as well centered
with respect to the observations, except for some border effects at
the top. Furthermore, the prediction intervals look reasonable. The
saturation predictions (see Figure 14b) are also relatively well cen-
tered in the observations, and are not truncated. They have a clear
OWC transition, which occurs approximately 1 m higher than in-
dicated by the well observations. The prediction intervals appear to
have too high coverage. Note that the posterior pdf is clearly
bimodal in the approximate depth range of 2125–2135 m. Further-
more, the pdf of the OWC location (see Figure 14c) indicates that
the OWC is most likely to be in this depth range (2128–2135 m),
and it is centered at approximately 2131 m depth. The pdf of the
OWC location is obtained by reading the OWC location out of every
realization according to a reasonable rule. In Figure 14e, we observe
clear asymmetry in the marginal posterior pdf of saturation at depth
2132 m, and that the observed saturation is not very well predicted
at this particular depth.
To evaluate the sensitivity of the inversions to the prior model

assumptions, we use an alternative S-GRF prior model with asym-
metric and bimodal location-wise pdf for saturation. Figure 15
shows the results from the inversion in a format identical to Fig-
ure 14. Note in particular the location-wise prior pdf of saturation
in Figure 15d. The results appear as very similar to the ones ob-
tained with the previous model, and the pdf of the OWC location
(see Figure 15c) is now centered at approximately 2132 m depth.
The asymmetric prior model favors oil and causes a lowering of the
predicted OWC to approximately 0.5 m above the well observation
indications. This result is as expected because oil tends to be as-
signed to the locations where the uncertainty is high. Reproduction
of the observed OWC can probably be obtained by assigning an
even more asymmetric prior saturation model, but in practice the
true location of the OWC is unknown and the relative mode sizes
should reflect the expected fluid proportions.

Figure 16 shows the inversion results based on the GRF prior
model, in the same format as Figure 14. The model parameters
of the GRF prior model are listed in Table 3. The porosity inversion
results (see Figure 16a) are very similar to the corresponding results
based on the S-GRF prior model in Figure 14a. This is as expected
because porosity has a symmetric and unimodal prior model in both
models. The saturation predictions (see Figure 16b) appear as very
smooth and are frequently truncated. Moreover, the prediction in-
tervals are severely overestimated, that is, far too wide. The pdf of
the OWC location (see Figure 16c) indicates that the OWC is very
likely to be in the depth range 2125–2138 m, and it is centered at
approximately 2132 m depth. Note that this is a bigger depth range
than for the S-GRF results. The pdf of the OWC location is obtained
by reading the OWC location out of every realization, after smooth-
ing, according to the same rule applied to the S-GRF realizations.
The marginal prior and posterior saturation pdfs at depth 2132 m in
Figure 16d and 16e are consistent with these results, and they ex-
pose a predictor that is clearly regressed toward the prior mean.
Figures 17 and 18 display four realizations of porosity and sat-

uration profiles from the S-GRF and GRF posterior models, respec-
tively. Spatial histograms of the realizations are presented at the
bottom of each display. The simulated porosity profiles appear very
similar regardless of model, as expected, being relatively smooth
with unimodal spatial histograms. The simulated saturation profiles
are, however, very different for the two models. The realizations
from the S-GRF model (see Figure 17b) appear with a clear tran-
sition between fluids, indicating an OWC. Note that the depth of
this OWC is fairly uncertain, and it appears in the depth range of
2129–2134 m. The OWC depth indicated by the well observations,
2132 m, is within this range. Moreover, the spatial histogram of the
realizations is clearly bimodal and fairly symmetric. The saturation
profile realizations from the GRF model (see Figure 18b) are fairly
smooth without a clear fluid transition and the realizations fre-

Figure 14. S-GRF inversion results in case A: (a) porosity and (b) saturation profiles with 80% HPDI, (c) pdf of the OWC location, and
(d) marginal prior and (e) marginal posterior pdfs of saturation at depth 2132 m.
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quently fall outside the [0,1] range. The corresponding spatial histo-
gram is unimodal and very wide.
The inversion results based on the two models — the S-GRF and

the traditional GRF models, displayed in Figures 14 and 16, respec-
tively — appear as dramatically different for saturation. The for-
mer inversion results are more concordant to the well observations
and the physical understanding that an abrupt OWC transition
exists.

Case B

The challenge in this case, relative to case A, is to identify the two
OWCs with the oil zone between them. Figure 19 shows the inver-
sion results of the synthetic seismic AVO data associated with case
B (see Figure 9) based on an S-GRF prior model. The prior model
parameters are identical to the ones in case A (see Table 2), and the
format of the figure is identical to Figure 14.

Figure 16. GRF inversion results in case A: (a) porosity and (b) saturation profiles with 80% HPDI, (c) pdf of the OWC location, and (d) mar-
ginal prior and (e) marginal posterior pdfs of saturation at depth 2132 m.

Figure 15. S-GRF inversion results in case Awith alternative prior: (a) porosity and (b) saturation profiles with 80% HPDI, (c) pdf of the OWC
location, and (d) marginal prior and (e) marginal posterior pdfs of saturation at depth 2132 m.
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The porosity predictions and prediction intervals (see Figure 19a)
are very similar to the ones in case A. The saturation predictions
(see Figure 19b) reproduce the well observations reliably and are
not truncated. They appear with a few fluid transitions and with
two distinct OWCs at approximately 2119 and 2135 m depth. It
is very encouraging that multiple OWCs can be identified, although
both contact levels are approximately 2–3 m too deep. The thick-
ness of the oil zone between the OWCs is underpredicted; the in-
termediate oil zone is roughly 9 m, whereas the predictions indicate
that it is approximately 7 m. However, the prediction intervals in-
dicate that the posterior has support for up to 10 m thickness. The
pdf of the main OWC location (see Figure 19c) indicates that the
main OWC is very likely to be in the depth range of 2131–2139 m,
and it is centered at approximately 2135 m depth. The marginal
prior and posterior pdfs of saturation at depth 2132 m, shown in
Figure 19d and 19e, respectively, appear as expected based on
the prediction intervals.
Figure 20 shows the inversion results based on the GRF model, in

a format identical to Figure 14. The model parameters are identical
to the ones in case A (see Table 3). The porosity results are very
similar to the porosity results obtained with the S-GRF model,
whereas the saturation results (see Figure 20b) are very different.
The predictions are overly smooth and regressed toward the prior
mean; hence, no abrupt OWC transitions can be identified. More-
over, the predictions do not reflect the well observations and they
are frequently truncated. The marginal prior and posterior pdfs of
saturation at depth 2132 m (see Figure 20d and 20e, respectively),
reflect these features. The pdf of the main OWC location (see Fig-
ure 20c) indicates that the main OWC is very likely to be in the
depth range of 2132–2141 m, and it is centered at approximately
2136 m depth. Note that this is a larger depth range than for the
S-GRF results.

Figures 21 and 22 display realizations of porosity and saturation
profiles from the S-GRF and GRF posterior models, respectively.
The spatial histograms are also presented. The simulated porosity
profiles appear very similar for the two models, as expected. The
simulated saturation profiles from the S-GRF model (see
Figure 21b) contain abrupt transitions, but the simulated OWC loca-
tions are fairly uncertain. The spatial histogram is clearly bimodal.
The saturation profile realizations from the GRF model (see Fig-
ure 22b) appear as smooth without clear OWC locations, and with
a unimodal and wide spatial histogram. The realizations frequently
fall outside the valid ½0; 1� range.
The inversion results based on the two models, the S-GRF and

GRFmodels, displayed in Figures 19 and 20, respectively, appear as
dramatically different for saturation. The results based on the former
model are more concordant to the well observations and to our ex-
perience.

DISCUSSION

Table 4 contains the prediction MAE values and prediction in-
terval coverages for the two models, for cases A and B. For porosity,
the model performances are very similar. The MAE values for the S-
GRF model are favorable for saturation: the MAE value for the S-
GRF model is approximately 45% lower than the MAE value for the
GRF model in case A, and in case B the MAE value for the S-GRF
model is slightly lower than that of the GRF model. Overall, the S-
GRF model therefore appears to be favorable. The picture is more
mixed when it comes to prediction interval coverages. In theory, the
coverage should be 0.80, but because the intervals are truncated, the
interpretation is more complex. The coverages are mostly close to
0.80, but none of the models appear as favorable.

Figure 17. Four realizations (real) from the S-GRF posterior model
in case A: (a) porosity and (b) saturation profiles with 80% HPDI.
Spatial histograms of the realizations (the black bars) are shown in
the lower part of the displays.

Figure 18. Four realizations (real) from the GRF posterior model in
case A: (a) porosity and (b) saturation profiles with 80%HPDI. Spa-
tial histograms of the realizations (the black bars) are shown in the
lower part of the displays.
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Both models have difficulties accurately predicting the satura-
tions in case B. This is most evident for the S-GRF model because
the fluid transitions are abrupt, and the mislocation of the intermedi-
ate oil zone and the underprediction of its thickness stands out as an
issue. These issues are most likely not a limitation of the method-
ology; rather, a reasonable explanation lies in the coarseness of the

seismic grid Ld relative to the reservoir grid Lr, which reduces the
accuracy of the predictions.
Computationally, the S-GRF inversions are more demanding than

the corresponding GRF inversions. The S-GRF inversions in this
study require approximately 6 min on a standard laptop computer,
whereas the GRF inversions are made within one second.

Figure 20. GRF inversion results in case B: (a) porosity and (b) saturation profiles with 80% HPDI, (c) pdf of the OWC location, and (d) mar-
ginal prior and (e) marginal posterior pdfs of saturation at depth 2132 m.

Figure 19. S-GRF inversion results in case B: (a) porosity and (b) saturation profiles with 80% HPDI, (c) pdf of the OWC location, and
(d) marginal prior and (e) marginal posterior pdfs of saturation at depth 2132 m.
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RESULTS — REAL SEISMIC DATA

Inversion of the real seismic AVO data displayed in Figure 2 is
more challenging than inversion of synthetic cases. The correspond-
ing real well observations (see Figure 1) contain several thin shale
layers not included in our prior models. Moreover, the fairly simple
Gauss-linear likelihood model may not be adequately representative
of the real physics of the seismic data collection. Lastly, the mag-
nitude and composition of the noise in the data are not known.
Figure 23 shows the real seismic data together with synthetically

generated seismic data. The expected synthetic seismic data from
the extended reservoir profile are used; that is, the seismic data
are generated without noise. The seismic fit is good; the correlation
between corresponding angle stacks is 0.96, 0.95, 0.56, and 0.50
for angles 10°, 18°, 27°, and 35°, respectively. Furthermore, the
S/N is estimated to be 10.
Figure 24 shows the inversion results of the real seismic AVO

data displayed in Figure 2 based on the S-GRF prior model with
the parameters listed in Table 2. The format of the figure is identical
to Figure 14. The predicted porosity (see Figure 24a) is in good
agreement with the observed porosity, except for in the shale layers
and at the top and bottom of the depth interval, wherewe observe mild
border effects. The predicted saturation (see Figure 24b) is for the
most part in good agreement with the observed saturation. The
OWC is predicted to be at approximately 2135 m depth, roughly 3 m
below what the well observations indicate. We also see that a water
zone is predicted between 2120 and 2123 m depth, coinciding with
the location of the major shale layer observed in the well. The volume
of the oil column in the reservoir is accurately predicted. Moreover,
the saturation predictions are centered in the corresponding well ob-
servations. The prediction intervals indicate a posterior model with
clear bimodality in the depth interval of the major shale layer, which

opens for an alternative saturation interpretation. The pdf of the OWC
location (see Figure 24c) indicates that the OWC is very likely to be in
the depth range of 2132–2139 m, and it is centered at approximately
2136 m depth. Lastly, the marginal pdfs at depth 2132 m (see Fig-
ure 24d and 24e) appear as expected based on the prediction intervals.
Figure 25 shows the inversion results of the real seismic AVO

data displayed in Figure 2 based on the GRF model, in a format
identical to Figure 14. The model parameters are listed in Table 3.
The predicted porosity (see Figure 25a) is in good agreement with
the observed porosity, except for in the shale layers and at the top of
the depth interval, where we observe mild border effects. The pre-
dicted saturation (see Figure 25b) is much smoother than the well
observations, and it is difficult to identify the location of the OWC
or of other changes in the fluid filling. This effect is caused by re-
gression toward the prior mean. Furthermore, the prediction inter-
vals are very wide. The pdf of the OWC location (see Figure 25c)
indicates that the OWC is very likely to be in the depth range of
2132–2141 m, and it is centered at approximately 2136 m depth.

Figure 21. Four realizations (real) from the S-GRF posterior model
in case B: (a) porosity and (b) saturation profiles with 80% HPDI.
Spatial histograms of the realizations (the black bars) are shown in
the lower part of the displays.

Figure 22. Four realizations (real) from the GRF posterior model in
case B: (a) porosity and (b) saturation profiles with 80% HPDI. Spa-
tial histograms of the realizations (the black bars) are shown in the
lower part of the displays.

Table 4. Quantitative comparison: prediction MAE values
and prediction interval coverages for the S-GRF and GRF
model for cases A and B.

Case Model

MAE Coverage

ϕ sw ϕ sw

A GRF 0.0126 0.1063 0.7414 1.0000

A S-GRF 0.0113 0.0600 0.7414 0.9828

B GRF 0.0120 0.2118 0.7931 0.8276

B S-GRF 0.0113 0.1796 0.7931 0.8276

R346 Forberg et al.

Downloaded from http://pubs.geoscienceworld.org/geophysics/article-pdf/doi/10.1190/geo2020-0086.1/5276266/geo-2020-0086.1.pdf
by NTNU user
on 28 April 2021



The marginal prior and posterior pdfs at depth 2132 m (see Figure 25d
and 25e) appear as expected based on the prediction intervals.
Figures 26 and 27 display realizations of porosity and saturation

profiles from the S-GRF and GRF posterior models, respectively.
The spatial histograms are also presented. As expected, we observe
that the simulated porosity profiles from the two posterior distribu-
tions are very similar, with unimodal spatial histograms. The simu-
lated saturation profiles, however, are very different for the S-GRF

and GRF posterior models. The realizations from the former (see
Figure 26b) appear with abrupt mode transitions, indicating changes
in the fluid filling. There are local mode transitions above the OWC,
between 2119 and 2124 m depth, which probably are related to the
major shale layer. Note that this local apparent water zone may not
be significant because the marginal posterior pdf is strongly
bimodal in this depth interval, which is reflected by some realiza-
tions not changing mode. Furthermore, the spatial histogram is

Figure 24. S-GRF inversion results for real seismic data: (a) porosity and (b) saturation profiles with 80% HPDI, (c) pdf of the OWC location,
and (d) marginal prior and (e) marginal posterior pdfs of saturation at depth 2132 m.

Figure 23. Seismic AVO fit: (a) 10°, (b) 18°, (c) 27°, and (d) 35°; real seismic data (the solid lines) and synthetic seismic data (the dashed lines).
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clearly bimodal as seen in the well observations. The realizations
from the GRF posterior model (see Figure 27b) appear with large
variance, but no abrupt mode transitions that may clearly be interpreted
as changes in the fluid filling. The spatial histograms are unimodal, and
the realizations frequently appear notably outside the ½0; 1� range.

The inversion results based on the S-GRF and GRF models, dis-
played in Figures 24 and 25, respectively, appear as very similar for
porosity, whereas the saturation results are dramatically different.
The former model produces inversion results that reproduce the well
observations better than the latter model.

Figure 26. Four realizations (real) from the S-GRF posterior model
for real seismic data: (a) porosity and (b) saturation profiles with
80% HPDI. Spatial histograms of the realizations (the black
bars) are shown in the lower part of the displays.

Figure 27. Four realizations (real) from the GRF posterior model for
real seismic data: (a) porosity and (b) saturation profiles with 80%
HPDI. Spatial histograms of the realizations (the black bars) are
shown in the lower part of the displays.

Figure 25. GRF inversion results for real seismic data: (a) porosity and (b) saturation profiles with 80% HPDI, (c) pdf of the OWC location,
and (d) marginal prior and (e) marginal posterior pdfs of saturation at depth 2132 m.
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Table 5 contains the prediction MAE values and the prediction
interval coverages for the two models for the real data case. The
MAE values for porosity are very similar for the two models,
whereas the S-GRF MAE value for saturation is better than that
of the GRF. The prediction interval coverages for porosity differ
in favor of the GRF model, but are severely below the ideal cover-
age of 0.80 for both models. This underestimation is a shale layer
effect. The prediction interval coverages for saturation are identical
and appear reasonable for both models, but truncation makes a clear
interpretation difficult.

CONCLUSION

The seismic AVO inversion problem is cast in a Bayesian frame-
work. The likelihood model is Gauss-linear, and the prior model is
an S-GRF, which is chosen due to its capability of representing the
observed multimodality in the reservoir variables. Seismic AVO in-
version of two synthetic data sets and of real seismic AVO data is
performed. The synthetic studies are used to demonstrate the meth-
odology and to explore its ability to identify fairly thin sections of
locally extreme saturation values along the profile. The inversion
results based on the S-GRF prior model are compared to corre-
sponding results based on a traditional GRF prior model. The for-
mer inversion results are clearly favorable because they reproduce
the abrupt changes in fluid filling for saturation and have lower
MAE values than the latter. The inversion results based on the real
seismic AVO data are very encouraging. The real porosity and sat-
uration observations along the well are reliably reproduced. The sat-
uration profile is predicted with abrupt transitions as observed in the
well. Inversion based on a traditional GRF prior model reproduces
these saturation transitions very poorly.
The methodology can be extended to 2D and 3D inversion prob-

lems at the expense of increased computational demands; however,
the computation time need not increase severely because the current
implementation can be improved and parallelized. The extension
can be done on a trace-by-trace basis, or it can include a lateral
correlation structure. This is currently a work in progress.
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APPENDIX A

SAMPLING FROM AN S-GRF

To draw samples from an S-GRF x, we make use of the decom-
position

pðxÞ¼pð ~xjν∈AÞ¼pð ~xjνÞpðνjν∈AÞ

¼φnð ~x;μ~xjν;Σ~xjνÞ ·
Iðν∈AÞφnðν;μν;ΣνÞR

Rn Iðν∈AÞφnðν;μν;ΣνÞdν
:

(A-1)

A sample is drawn by first sampling ν ∈ A, followed by sampling
x from φnð ~x; μ~xjν;Σ~xjνÞ.

Some clarifications of the algorithm follow:

1) Subindices b and −b represent grid point sets b ⊂ f1; : : : ; ng
and f1; : : : ; ng \ b, respectively.

2) The proposal distribution is

qðνbj−bÞ ¼
Y
i∈b

Iðνi ∈ AÞ φ1ðνijνbv ; ν−b; μν;ΣνÞ
Φ1ðνi ∈ Ajνbv ; ν−b; μν;ΣνÞ

;

(A-2)

with bv denoting the set of indices in b already visited.
3) The Metropolis-Hastings acceptance probability α is

α ¼ min

�
1;
pðν 0

bj−bÞ
pðνbj−bÞ

·
qðνbj−bÞ
qðν 0

bj−bÞ
�

¼ min

�
1;
Y
i∈b

Φ1ðν 0
i ∈ Ajν 0

bv ; ν−b; μν;ΣνÞ
Φ1ðνi ∈ Ajνbv ; ν−b; μν;ΣνÞ

�
: (A-3)

The blocks and the order in which they are visited are predeter-
mined, and the associated covariance matrices are precomputed to
reduce the computational time.

Table 5. Quantitative comparison: prediction MAE values
and prediction interval coverages for the S-GRF and GRF
model for real seismic data.

Model

MAE Coverage

ϕ sw ϕ sw

GRF 0.0206 0.1563 0.6207 0.8966

S-GRF 0.0202 0.1485 0.5172 0.8966

Algorithm 1: Draw m samples from an S-GRF by
Metropolis-Hastings MCMC.

Initialize ν with a value in A.

Iterate m times

Select spatial block b ⊂ f1; : : : ; ng.
Sample ν 0

bj−b sequentially from qðν 0
bj−bÞ.

Accept ν ¼ ½ν 0
bj−b; ν−b�T with probability α.

Sample x ∼ φnð~xjνÞ.
End
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APPENDIX B

THE POSTERIOR S-GRF

The discretized posterior S-GRF model is

pðrjdÞ ¼ pðϕ; swjdÞ ¼ pðϕj~sw; dÞpð~swjd; ν ∈ AÞ

¼ φnrðϕ; μϕj~sw;d ;Σϕj~sw;dÞ
ΦnrðA; μνj~sw;d;Σνj~sw;dÞ
ΦnrðA; μνjd;ΣνjdÞ

× φnrð~sw; μ~swjd;Σ~swjdÞ

¼ ΦnrðA; μνj~r;d;Σνj~r;dÞ
ΦnrðA; μνjd;ΣνjdÞ

φ2nrð~r; μ~rjd;Σ~rjdÞ: (B-1)

The last equality follows because ν is conditionally independent of
ϕ given ~sw; that is, ½νjϕ; ~sw; d� ¼ ½νj~sw; d�.
The expressions for the parameters involved in the posterior

model can be developed from the classic Gaussian theory; see
Johnson and Wichern (2007). The parameters involved in the
GRF basis prior model are

μ~r ¼
�
μϕinr
μ~sw inr

�
; Σ~r ¼

�
σ2ϕΩ ρϕ~swσϕσ ~swΩ

ρϕ~swσϕσ ~swΩ σ2~swΩ

�
:

(B-2)

It then follows that

�
μ~rjd
μνjd

�
¼

�
μ~r
0inr

�
þ
�
Σ~rGT

Γν~rGT

�
Σ−1
d ðd − μdÞ; (B-3)

and the conditional covariance matrices are

�
Σ~rjd Γ~rνjd
Γν~rjd Σνjd

�
¼
�
Σ~r Γ~rν

Γν~r Σν

�
−
�
Σ~rGT

Γν~rGT

�
Σ−1
d

�
GΣ~r GΓ~rν

�
;

(B-4)

hence

μνj~r;d ¼ μνjd þ Γν~rjdΣ−1
~rjdð~r − μ~rjdÞ;

Σνj~r;d ¼ Σνjd þ Γν~rjdΣ−1
~rjdΓ~rνjd: (B-5)
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Bayesian seismic AVO inversion using a
laterally coupled multimodal prior model

Ole Bernhard Forberg, Øyvind Kjøsnes, and Henning Omre

Abstract

A Bayesian seismic amplitude versus offset (AVO) inversion
scheme with a laterally coupled prior model for porosity, water
saturation, and volume of clay is proposed. A 2D section and a
3D volume of an oil reservoir at the initial state is studied, which
entails gravitationally induced bimodality in the water saturations
along vertical traces. A selection Gaussian random field (S-GRF)
prior model for porosity, water saturation, and volume of clay is
specified, which is capable of representing this bimodality. The
S-GRF is specified to have lateral correlation, which may reduce
the impact of trace unique signal errors in the seismic AVO data.
The likelihood model is linear and Gaussian, for which the S-GRF
prior model is conjugate; hence, the posterior model is also an S-
GRF. The form of the posterior distribution is therefore known and
its parameter values can be analytically computed. Real seismic
AVO data from the 2D section and the 3D volume is inverted
and the results appear to be reliable along validation wells and
represent a geologically plausible reservoir design. Furthermore, a
notable variance reduction in the laterally coupled posterior model
relative to an alternative posterior model without lateral coupling
is achieved.



Introduction

The seismic properties of a reservoir are related to its petrophysical prop-
erties, which are the basis for reservoir characterization. Porosity and
water saturation are informative about the storage capacity and fluid
content of a reservoir and can be adequate for reservoir characterization
in reservoirs that have a relatively homogeneous lithology. Within a fixed
lithotype the seismic velocites and density tend to be negatively correlated
with porosity, and the seismic velocities are higher in pores filled with wa-
ter than in pores filled with hydrocarbon (Mavko et al., 2009). However,
lithological heterogeneity may induce effects in the seismic properties that
can not be accounted for by porosity and water saturation alone; hence,
a lithological variable may be necessary to adequately characterize such
reservoirs (Grana and Della Rossa, 2010; Rimstad et al., 2012). Seismic
amplitude versus offset (AVO) data is often collected in order to char-
acterize reservoirs. This data can be related to petrophysical properties
by seismic models based on the Zoeppritz equations (Zoeppritz, 1919)
and rock physics models. The seismic model can either be approximated
or be based on full waveform, and similarly the rock physics model can
either be approximated from empirical data or based on poroelasticity
theory (Mavko et al., 2009).

In practice, the seismic AVO data are known while the petrophysical
properties are unknown. The prediction of the petrophysical properties
from the seismic AVO data can be formulated as an inverse problem
(Tarantola, 2005). Seismic inverse problems are often approached proba-
bilistically, in a Bayesian framework (Buland and Omre, 2003; Gunning
and Glinsky, 2004; Larsen et al., 2006). This framework requires the
definition of a likelihood model and a prior model, which together deter-
mine the form of the solution (Wang, 2006). The likelihood model is a
probabilistic forward model for data acquisition and is often comprised
of an approximate forward function and a stochastic error term (Buland
and Omre, 2003; Grana et al., 2017; Forberg et al., 2021b). The prior
model is a probability distribution representing experience and beliefs
about the properties to be predicted. The solution to the Bayesian in-
verse problem is the posterior model, which is a probability distribution
proportional to the product of the likelihood model and the prior model.
A Gauss-linear likelihood model, defined by a linear forward model with
Gaussian error terms, and a Gaussian random field (GRF) prior model,
are computationally advantageous in a Bayesian seismic inversion frame-
work (Buland et al., 2003). These model assumptions are convenient
because the Gaussian prior model is conjugate with respect to Gauss-
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linear likelihood models, i.e., that the posterior model is of the same form
as the prior model. Consequently, the posterior model is Gaussian, which
is extremely computationally advantageous in high dimensional settings
since predictive quantities can be analytically computed. Should these
assumptions be unjustifiable, one may use Markov chain Monte Carlo
(McMC) methods (Mosegaard and Tarantola, 1995; Sen and Stoffa, 1996;
Eidsvik et al., 2004) to assess the posterior distribution. These techniques
are based on iterative algorithms that usually generate samples from the
posterior model by proposing from the prior model and accepting based
on the Metropolis rule applied to the likelihood of the proposed and cur-
rent sample. The McMC algorithms tend to converge slowly for models
that are defined on large spatial grids with strong spatial coupling; hence,
the approach may be problematic in such cases.

Porosity and water saturation, and other continuous petrophysical or
elastic properties, seldom appear as Gaussian due to underlying lithology
and fluid classes. Rather, they appear as multimodal (Grana and Della
Rossa, 2010); hence, a Gaussian prior model is usually not appropriate.
The mixture Gaussian model (Hasselblad, 1966) offers support for mul-
timodality and can be used in spatial settings. A spatial definition of
the mixture Gaussian model requires a spatially defined mode indica-
tor, for which a Markov random field prior model has been proposed
(Rimstad et al., 2012; Fjeldstad and Grana, 2018). An advantage of this
approach is that the mixture Gaussian model is a conjugate prior model
with respect to Gauss-linear likelihood models. However, evaluation of
the posterior distribution is computationally demanding and relies on
McMC algorithms. An alternative approach relies on a S-GRF prior
model. The concept of selection probability distributions (Arellano-Valle
et al., 2006) has been developed and extended to spatial settings (Allard
and Naveau, 2007; Omre and Rimstad, 2021), and has been applied to
seismic inversion (Karimi et al., 2010; Rimstad and Omre, 2014; Forberg
et al., 2021b). This approach is further explored in the current study.

We extend the study in Forberg et al. (2021b) to invert a 2D section
and a 3D volume of a reservoir and use data from the same oil and gas
discovery in the North Sea. However, whereas porosity and water satu-
ration could provide adequate reservoir characterization in Forberg et al.
(2021b), the chosen inversion zones in the current study are more litho-
logically heterogeneous and contain a mix of sand and shale. Therefore,
we are also interested in characterizing the clay content in the inversion
zones. We operate in a Bayesian framework. The forward model consists
of an empirically approximated rock physics model combined with the
linearized seismic AVO formulation used in (Buland and Omre, 2003).
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The seismic model is a wavelet convolution of the linear Aki and Richards
approximation (Aki and Richards, 1980) of the Zoeppritz equations (Zoep-
pritz, 1919). From this model the seismic AVO responses are predicted
from the elastic properties P-wave velocity, S-wave velocity, and density.
The rock physics model is approximated by multiple linear regressions
of the logarithmic elastic properties on porosity, water saturation, and
volume of clay (Landrø, 2001; Grana et al., 2017; Forberg et al., 2021b).
We associate Gaussian error terms with the forward function; hence the
likelihood model is Gauss-linear. The prior model is an S-GRF, which
provides support for multimodality and is conjugate with respect to the
Gauss-linear likelihood model (Omre and Rimstad, 2021). Moreover, the
S-GRF prior model is laterally coupled with support for volume of clay.
To facilitate the extensions made in the current study, a feasible sampling
scheme for higher dimensions, which honors lateral coupling and supports
different anisotropy for porosity and water saturation, is developed. The
methodology is demonstrated on real 2D and 3D data from the Kneler
field in the Alvheim oil and gas field in the North Sea.
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Definitions and Notation

The reservoir zone under study is of spatial dimension m and it is dis-
cretized into the reservoir grid Gr, consisting of nr grid points. The
petrophysical properties of interest in the reservoir zone are referred to as
the reservoir properties. In the current study the reservoir properties are
porosity, water saturation, and volume of clay, which are contained in the
nr-dimensional vectors φ, sw, and vc, respectively. Hence, the reservoir
properties are represented by the 3nr-dimensional vector r = [φ, sw,vc].
The following shorthand notation is useful

rk =





φ, for k = 1,

sw, for k = 2,

vc, for k = 3.

(1)

Seismic AVO data informative about the reservoir properties is avail-
able on the seismic grid Gd, consisting of nd grid points. This data is
represented by the nθnd-dimensional vector d, where nθ is the number
of offset angles. The elastic properties on logarithmic form is contained
in the 3nr-dimensional vector m = [log(vp), log(vs), log(ρ)], where the
three nr-dimensional vectors vp, vs, and ρ contain the P-wave velocities,
S-wave velocities, and densities, respectively. All vectors, defined and yet
to be defined, are column vectors unless otherwise stated. An (n1 × n2)
matrix is a matrix with n1 rows and n2 columns, and In is the (n × n)
identity matrix. The superscript T indicates the transpose.

The reservoir properties are assumed to be stochastic; hence, r is a
random vector, implying the existence of an associated probability density
function (pdf) and a corresponding cumulative density function (cdf),
denoted by p(r) and P (r), respectively. Moreover, since each element of
r is considered a random variable associated with a specific location in
the reservoir grid Gr, r is a so-called discretized random field (RF).

The RF r is a discretized GRF if its pdf is Gaussian, i.e., of the form

p(r) = (2π)−
3nr
2 |Σr|−

1
2 exp

{
−1

2
(r− µr)

TΣ−1r (r− µr)

}
, (2)

where µr is the expectation vector and Σr is the covariance matrix. This
pdf is denoted by ϕ3nr (r;µr,Σr). The probability that r belongs to a
subset Q of the 3nr-dimensional space of real numbers is denoted by
Φ3nr (Q;µr,Σr) and given by the integral

Φ3nr (Q;µr,Σr) = Prob(r ∈ Q) (3)

=

∫

R3nr

I(r ∈ Q)ϕ3nr (r;µr,Σr) dr,
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where I(·) is the indicator function, which is equal to 1 if the argument
is true and equal to 0 otherwise.

The RF r is a discretized S-GRF if its pdf is selection Gaussian, i.e., of
the form demonstrated in (Arellano-Valle et al., 2006; Omre and Rimstad,
2021),

p(r) = p(r̃|ν ∈ A) =
p(ν ∈ A|r̃)
p(ν ∈ A)

p(r̃) (4)

=
Φnν

(
A;µν|r̃,Σν|r̃

)
ϕ3nr (r̃;µr̃,Σr̃)

Φnν (A;µν ,Σν)
,

where r̃ is the 3nr-dimensional basis variable, ν is the nν-dimensional
auxiliary variable, and A is the nν-dimensional selection set, see Forberg
et al. (2021b) for details. The conditional parameters involved in the pdf
can be computed as

µν|r̃ = µν + Γr̃νΣ
−1
r̃ (r̃− µr̃) , (5)

Σν|r̃ = Σν − Γr̃νΣ
−1
r̃ Γνr̃,

where the (3nr × nν) matrix Γr̃ν contains the covariances between r̃ and
ν.

The RF r is said to be stationary if the pdf of any subset of random
variables in r is shift invariant; hence, the pdf must depend only on the
distances between the selected random variables in the reservoir grid and
not on their specific locations. For the GRF r, this holds if the location-
wise expectation and variance are constant, and the correlation structure
is defined through shift invariant and positive definite correlation func-
tions. This entails that the expectation vector and covariance matrix has
the following form

µrk = µrk inr , and Σrk = σ2rkΩrk ; k = 1, 2, 3 (6)

where µrk and σ2rk are the locationwise expectation and variance, respec-
tively, and Ωrk is the spatial correlation matrix. This spatial correlation
matrix is defined through the shift invariant and positive definite correla-
tion function ρrk(τ ), with τ being the distance between two grid points.
Lastly, inr is the nr-dimensional vector of ones. The S-GRF r is said to
be stationary if the criteria for a stationary GRF hold and the selection
set A is identical in all locations, that is, if it can be expressed as the
cartesian product A = Anν , with A a subset of the real numbers.
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Methodology

The prediction of the reservoir properties r from the seismic AVO data
d is approached in a Bayesian framework. The solution to the inverse
problem is the posterior pdf p(r|d), defined by Bayes’ rule

p(r|d) = p(d|r)p(r)
p(d)

∝ p(d|r)p(r), (7)

with p(d|r) and p(r) the likelihood and prior models, respectively. The
denominator p(d) is the normalizing constant, which is generally hard
to compute. The methodology is based on model assumptions for the
likelihood and prior models that make analytical computation of p(d)
feasible.

Likelihood Model

The relationship between the seismic responses and the reservoir prop-
erties represents the seismic data acquisition procedure and is described
by the likelihood model p(d|r). This model can be decomposed into a
seismic likelihood model p(d|m) and a rock physics model p(m|r), see
Forberg et al. (2021b) for details.

The seismic model relates the elastic properties to the seismic re-
sponses. In the current study this model is based on a convolution
of the linear Aki and Richards (Aki and Richards, 1980) approxima-
tion to the Zoeppritz equations, and is of the form [d|m] = WADm +

ed|m = W
(
c + ec|m

)
+ ed|c (Buland and Omre, 2003), where the nθnr-

dimensional vector c contains the computed reflectivity coefficients. The
(nθnr × 3nr) matrix A and (3nr × 3nr) matrix D represents the Aki and
Richards approximation, with A containing angle dependent coefficients
and D being a first order differential operator. Convolution is introduced
through the (nθnd × nθnr) matrix W, which contains discretizations of
the seismic wavelet. Further, the nθnd-dimensional vector ed|m is an error
term assumed to be Gaussian, with expectation zero and (nθnd × nθnd)
covariance matrix Σd|m = Wσ2c|mInθnrW

T + σ2d|cInθnd . The variance
σ2c|m is associated with model error from the Aki and Richards approxi-
mation, while the variance σ2d|c is associated with observation error. Note
that ed|m contains both white and coloured noise since the model error
is wavelet convolved. The seismic likelihood model is Gauss-linear and
can be expressed as

p(d|m) = ϕnθnd

(
d;WADm,Σd|m

)
. (8)
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The rock physics model relates the reservoir properties to the elastic
properties. As in previous studies (Forberg et al. (2021b), Forberg et al.
(2021a)), the model is inspired by Landrø (2001) and formulated as a
multiple linear regression, [m|r] = Br + em|r. Regression coefficients
from multiple linear regressions of the logarithmic elastic properties on
the reservoir properties are contained in the (3nr × 3nr) matrix B, while
the 3nr-dimensional vector em|r represents the error associated with the
model. The error term em|r is assumed to be Gaussian with expectation
zero and (3nr × 3nr) covariance matrix Σm|r. Hence, the rock physics
likelihood model is Gauss-linear and can be expressed as

p(m|r) = ϕ3nr

(
m;Br,Σm|r

)
. (9)

The seismic and rock physics model applied in succession define the
forward model, which takes the form [d|r] = Gr + ed|r. Here, the
(nθnd × 3nr) matrix G = WADB is the forward operator and the nθnd-
dimensional vector ed|r = WADem|r + ed|m is an error term assumed
to be Gaussian with expectation zero and (nθnd × nθnd) covariance ma-
trix Σd|r = WADΣm|r(WAD)T +Σd|m. Hence, the likelihood model is
Gauss-linear and can be expressed as

p(d|r) = ϕnθnd

(
d;Gr,Σd|r

)
. (10)

The Gauss-linearity of the likelihood model entails that for certain para-
metric prior models the posterior model will be of the same form as the
prior model (Forberg et al., 2021a).

We use the signal-to-noise ratio (SNR) as a measure of the magnitude
of error in the seismic data. The SNR is defined as

SNR =
Trace

(
Var (Gr)

)

Trace
(
Var

(
d|r
)) =

Trace
(
GΣrG

T
)

Trace
(
Σd|r

) , (11)

with Trace(·) a function returning the sum of the diagonal elements
of its matrix argument. The SNR is dependent on the prior model
specification because Σr is involved in the expression.
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Prior Model

The prior model p(r) represents our understanding, experience, and beliefs
about the reservoir properties to be predicted. We operate in a setting
where porosity is assumed to be predominantly spatially smoothly varying
and to have a locationwise skewed and unimodal pdf. Water saturation
and volume of clay are assumed to exhibit abrupt spatial transitions and
to have locationwise bimodal pdfs. We base the model construction on
the decomposition

p(r̃,ν) = p(ν|r̃)p(r̃). (12)

The basis variable r̃ is assumed to be a stationary GRF,

p(r̃) = ϕ3nr(r̃;µr̃,Σr̃), (13)

with

µr̃ =



µφ̃inr
µs̃w inr
µṽcinr


 (14)

Σr̃ =




σ2
φ̃
Ωs λ1σφ̃σs̃wΩx λ2σφ̃σṽcΩs

λ1σφ̃σs̃wΩx σ2s̃wΩh λ3σs̃wσṽcΩx

λ2σφ̃σṽcΩs λ3σs̃wσṽcΩx σ2ṽcΩs




Here, (µφ̃, µs̃w , µṽc) and (σ2
φ̃
, σ2s̃w , σ

2
ṽc
) are the locationwise expectations

and variances of φ̃, s̃w, and ṽc, respectively. Moreover, (λ1, λ2, λ3) are
the locationwise correlations between φ̃ and s̃w, between φ̃ and ṽc, and
between s̃w and ṽc, respectively. Lastly, (Ωs,Ωh,Ωx) are (nr×nr) correla-
tion matrices containing structural spatial correlation, horizontal spatial
correlation, and a mix between structural and horizontal spatial corre-
lation, respectively. Different spatial correlation structures are needed
because porosity and volume of clay are defined by previous sedimentation
whereas water saturation is governed largely by current gravitation, which
entails that their anisotropies are likely to differ. The correlation matri-
ces are defined through shift invariant and positive definite correlation
functions ρrk(τ ;αk). The correlation structure between water saturation
and the other reservoir properties is defined to be Ωx = 1

2Ωs +
1
2Ωh.

The auxiliary GRF ν is defined on the reservoir grid Gr and we define
one auxiliary variable for each basis variable, i.e., ν = [ν1,ν2,ν3]. Hence,
nν = 3nr. The conditional relation between the auxiliary variable ν and
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the basis variable r̃ is

p(ν|r̃) =
3∏

k=1

p(νk|r̃k) =
3∏

k=1

ϕnr(νk;µνk|r̃k ,Σνk|r̃k) (15)

=

3∏

k=1




nr∏

i=1

ϕ1(νk,i;µνk,i|r̃k , (1− γ2k))


 .

Here, γk is the locationwise correlation between r̃k and νk, and the con-
ditional expectation is µνk|r̃k = 0inr + Γr̃kνkΣ

−1
r̃k

(
r̃k − µr̃k

)
, k = 1, 2, 3.

The (nr × nr) cross covariance matrix Γr̃kνk contains the covariances
between r̃k and νk and can be found on the diagonal of the (3nr × 3nr)
cross covariance matrix Γr̃ν ,

Γr̃ν =




γ1σφ̃Ωs λ1γ2σφ̃Ωx λ2γ3σφ̃Ωs

λ1γ1σs̃wΩx γ2σs̃wΩh λ3γ3σs̃wΩx

λ2γ1σṽcΩs λ3γ2σṽcΩx γ3σṽcΩs


 . (16)

Note that the expectation µνk|r̃k is linear in r̃ and that the conditional pdf
p(ν|r̃) in Equation 15 is Gaussian; hence, the auxiliary GRF is defined to
be Gauss-linearly related to the basis GRF, which entails that their joint
pdf p(r̃,ν) is Gaussian. Moreover, locationwise conditional independence
for [ν|r̃] is assumed.

The (3nr×3nr) covariance matrix associated with the auxiliary GRF
ν is

Σν =




Σν1 λ1γ1γ2Ωx λ2γ1γ3Ωs

λ1γ1γ2Ωx Σν2 λ3γ2γ3Ωx

λ2γ1γ3Ωs λ3γ2γ3Ωx Σν3


 , (17)

where

Σνk =





γ21Ωs + (1− γ21)Inr , k = 1,

γ22Ωh + (1− γ22)Inr , k = 2,

γ23Ωs + (1− γ23)Inr , k = 3.

(18)

Lastly, the 3nr-dimensional selection set A = [A1,A2,A3] consists
of the selection sets Ak corresponding to νk, k = 1, 2, 3. These selection
sets are of the form Ak = Anrk , where Ak =

⋃nAk
i=1 [ak,i, bk,i] are subsets

of the real numbers, with nAk being the number of disjoint subsets that
selection set Ak consists of. The prior model for the reservoir variables,
p(r), is the trivariate discretized stationary S-GRF
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p(r) = p(r̃|ν ∈ A) (19)

=

∏3
k=1

∏nr
i=1 ϕ1(Ak;µνk,i|r̃k , (1− γ2k))
Φ3nr(A; 0i3nr ,Σν)

ϕ3nr(r̃;µr̃,Σr̃).

This prior model is parameterized by
ΘSG
p =

{
[µr̃k , σ

2
r̃k
, λk, γk, Ak, ρrk(·)]; k = 1, 2, 3

}
, where the first five

parameters for each k are primarily related to the locationwise trivariate
selection Gaussian pdf, whereas the last parameter for each k primarily
relates to the spatial correlation structure.

The prior model p(r) has support for values outside the physical range
[0, 1] of the reservoir properties. In line with Forberg et al. (2021b), we
correct for this effect in the predictor and prediction intervals, which is
described in the next section.

The spatial correlation functions are for pairs of grid points defined
as

ρrk(τ ;αk) = exp

{
− τv
αv,k

}
× exp

{
− τh
αh,k

}
; k = 1, 2, 3, (20)

where τ = [τv, τh] are the grid distances, with τv ≥ 0 being the vertical
distance and τh ≥ 0 being the lateral distance between the grid points.
In m = 3 spatial dimensions, τh is the cartesian distance; hence, the
lateral correlation is isotropic. Lastly, αk = [αv,k, αh,k] are the range
parameters, being positive. These correlation functions define the spatial
correlation matrices Ωs and Ωh. Different anisotropies can be represented
by transformation of the reservoir grid, which will be explained later.

Posterior Model

Because the S-GRF prior model p(r) is conjugate with respect to the
Gauss-linear likelihood model p(d|r), the posterior model p(r|d) is also
an S-GRF, see Omre and Rimstad (2021),

p(r|d) = p(r̃|ν ∈ A,d) (21)

=

∏3
k=1 Φnr

(
Ak;µνk|r̃k,d,Σνk|r̃k,d

)

Φ3nr

(
A;µν|d,Σν|d

) × ϕ3nr

(
r̃;µr̃|d,Σr̃|d

)
.

The conditional parameters of this posterior model are developed in For-
berg et al. (2021b). We use a block-independent Metropolis-Hastings
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(M-H) McMC algorithm (Rimstad and Omre, 2014) to simulate from the
posterior model. These simulations form the basis for prediction and
uncertainty assessment. Simulation is done either trace-by-trace or by
conditioning on neighboring traces, depending on whether lateral correla-
tion is present or not. The McMC algorithms are presented in Appendix
A.

The reservoir properties are predicted by the marginal maximum
posterior (MMAP). This predictor identifies the values of the reservoir
properties with the highest marginal posterior probability density at each
grid point in Gr, and is defined as

r̂MMAP =

{
argmax

rk,i

{p(rk,i|d)}; k = 1, 2, 3, i = 1, ..., nr

}
. (22)

Prediction intervals in the form of (1−α)×100% highest posterior density
intervals (HPDI) are used to reflect the variability in the locationwise
posterior distributions (Forberg et al., 2021b). These intervals may con-
sist of a collection of disjoint regions, thereby reflecting multimodality in
the posterior distribution. The MMAP is located within one of the HPDI
regions. The coverage level (1−α)×100% is user specified and should be
assigned based on considerations about the application and the shape of
the distribution. Since the prior model can support non-physical values,
so can the MMAP predictions and HPDI. If they exceed [0, 1], they are
truncated to the appropriate limits of this range.

The MMAP prediction and accompanying (1− α)× 100% HPDI can
be quantitatively evaluated if observations of the reservoir properties, robs,
are available in some locations. The root-mean-square error (RMSE) is
a measure of predictor deviation from the observations; hence, the lower
the value, the better. The prediction intervals are evaluated by empirical
coverage, i.e., by computing the percentage of observations within the
prediction intervals. Empirical coverage close to the chosen coverage level
of the prediction intervals is favourable.
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Case: Real seismic AVO data from a 2D section

We apply the proposed Bayesian seismic inversion methodology to a 2D
section of the Kneler field in the Alvheim oil and gas field, in the North
Sea. The turbidite Alvheim reservoir is challenging to characterize due
to complex geological depositions. The oil reservoir under study mostly
consists of porous sandstone and is underlain by an aquifer, but its upper
part is composed of unconsolidated and interbedded sand and shale. The
chosen 2D section, with the location of two nearby exploration wells
indicated, is displayed in Figure 1. Note that the true aspect ratio of
the 2D section is altered for visualization purposes. The section has a
much bigger lateral extent than what it appears to; hence, the apparent
curvature in the section is much less severe. The 2D section follows the
interpreted top reservoir, ranging in depth from 1972 ms to 2052 ms in
two-way time, for 4600 m along a cross line. Vertically, the section starts
two seismic sample points above the interpreted top horizon, presumably
in a top shale layer, and ends in the underlying aquifer. The 2D section
contains 93 traces with a regular inter-trace spacing of 50 m, each of
which covers a depth range of 52 ms in two-way time. The reservoir grid
Gr consists of nr = 2511 grid points which are regularly spaced laterally
and with trace-unique vertical gridding, while the seismic grid Gd consists
of nd = 1302 grid points with similar grid structure. The trace-unique
vertical gridding consists of 27 points in the reservoir grid and 14 points in
the seismic grid. The data and inversion results are linearly interpolated
to a finer and regular grid for visualization. This artifical increase in
resolution produces somewhat smoother figures, but all computations are
performed on the irregular grids Gr and Gd.

Figure 1: Geometry of the 2D section with wells marked.

The exploration wells can be used for model construction and valida-
tion. Well B is in immediate vicinity of the 2D section, whereas Well A
is located a few cross lines away. Well B is the exploration well studied
in Forberg et al. (2021b), and its location relative to the 2D section
makes it the preferred basis for model construction. Measured well logs
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from Well B are displayed in Figure 2. The top reservoir is at about
1990 ms, and the underlying aquifer starts at 2020 ms, as reflected by a
clear oil-water contact (OWC) in the water saturation log. The charac-
teristics of the logs above 1990 ms reflect an overlying shale layer. An
increased variability in the logs can be seen between roughly 1990 ms
and 2004 ms. This variability does not appear to be consistent with
variations in the volume of clay alone; hence, there may be a notable
contribution from other minerals in this region. Below 2004 ms, a more
homogeneously cemented porous sandstone can be seen. Furthermore,
note that the elastic properties reflect two anomalous regions, which are
located at roughly 1998 ms and 2014 ms. These anomalies, and the above
mentioned increased variability between 1990 ms and 2004 ms, are likely
caused by intermittently occurring limestone, which has a small presence
throughout the 2D section. Well A is used exclusively for validation of
inversion results. The measured porosity, water saturation, and volume
of clay along Well A are displayed in Figure 3. The oil reservoir zone
appears to extend from the top of the depth interval to about 2030 ms
where the underlying aquifer starts. The OWC is not as clearly reflected
as in Well B, since the oil-water transition seems to occur in a region
that has relatively large variability in the volume of clay. Moreover, the
well logs indicate specks of limestone around 2005 ms, 2010 ms, and 2022
ms in the oil reservoir zone and reflect much variation in the mineral
fractions above 2005 ms.

Figure 2: Well B logs, displayed column-wise from left to right: P-wave
velocity, S-wave velocity, density, porosity, water saturation, and volume
of clay.
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Figure 3: Well A logs, displayed column-wise from left to right: Porosity,
water saturation, and volume of clay.

The seismic AVO data is presented in Figure 4, where the nθ = 4
angle stacks are displayed row-wise. The signal is relatively strong roughly
between traces 20 and 35, especially in the 27◦ and 35◦ stacks, which
in addition to fluid transitions may indicate a more abrupt change in
lithological properties than elsewhere. The signal in the middle part
of the 2D section, roughly between traces 40 and 65, is relatively weak
in the 35◦ stack, indicating an absence of fluid transitions. Moreover,
this region is located deeper than either side of it, which may indicate a
higher content of more compressible lithologies here than elsewhere in the
reservoir, for example a higher fractional content of shale. We hereafter
refer to this region as Center Region (CR).
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Figure 4: Seismic AVO data from the 2D section under study. The angle
stacks 10◦, 18◦, 27◦, and 35◦ are displayed in order from the top to bottom
row.

Model Construction

Model construction entails assigning parameter values to the likelihood
model p(d|r) and prior model p(r). Because the construction is based on
well logs from Well B, the model may not be adequately representative
in the entire 2D section. The effects of lateral correlation in the prior
model on the inversion results are highlighted by defining an alternative
prior model without lateral correlation, as in Forberg et al. (2021a), for
comparison. We refer to these prior models as prior models 1 and 2,
corresponding to the prior model with and without lateral correlation,
respectively. The inversions are carried out using SNR = 5.

Likelihood model

The likelihood model consists of a seismic likelihood p(d|m) and a rock
physics likelihood p(m|r). The matrices A and D in the seismic likelihood
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model are known, while the convolution matrix W requires estimation.
The wavelet function defining W is chosen to be the same as in Forberg
et al. (2021b); hence, the wavelet is estimated by regressing the seismic
data on synthetic reflection coefficients generated from observed elastic
properties by cmod = ADmobs. The estimation is based on data from
a depth interval of 300 m containing the reservoir zone and should be
representative in the current study. The estimated wavelet is displayed
in Figure 5.

Figure 5: Estimated wavelet.

The rock physics likelihood model requires specification of the regres-
sion matrix B and the covariance matrix Σm|r. The model is based on
well logs from Well B after removal of the possible limestone influences.
The three regression models all have an associated R2 value of at least 0.9.
In Table 1, the numerical values of the estimated regression coefficients
and standard deviations associated with the Gauss-linear rock physics
likelihood model are displayed. Moreover, the estimated inter-covariances
between the elastic properties are ξ̂vpvs , ξ̂vpρ, and ξ̂vsρ, with correspond-
ing correlations 0.656, 0.319, and 0.446. The performance of the rock
physics model is represented graphically in Figure 6, where the measured
and rock physics predicted logarithmic elastic properties are displayed
together. Note that the rock physics model performs relatively poorly in
the possibly limestone influenced interval between roughly 1900 ms and
2004 ms. The covariance matrix Σm|r has the variances associated with
the regressions on the diagonal and the inter-covariances ξ̂vpvs , ξ̂vpρ, and
ξ̂vsρ on the off-diagonal.
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Table 1: Estimated parameters in the rock physics likelihood model.
The estimated intercept α̂, the slopes (β̂φ, β̂sw , β̂vc) of porosity, water
saturation, and volume of clay, respectively, are displayed together with
the estimated standard deviation σ̂ for each regression model in the top
table. Each row of the table contains the parameters associated with
the model for the elastic property specified in the leftmost column. The
estimated cross-covariances between the elastic properties, ξ̂vpvs , ξ̂vpρ,
and ξ̂vsρ, are shown in the lower table.

α̂ β̂φ β̂sw β̂vc σ̂

log(vp) 8.528 −1.567 0.085 −0.503 0.034

log(vs) 8.456 −2.892 0 −0.975 0.066

log(ρ) 1.006 −0.910 0.035 −0.017 0.003

ξ̂vpvs ξ̂vpρ ξ̂vsρ
1.50 · 10−3 3.15 · 10−5 8.50 · 10−5

Figure 6: Predicted and measured logarithmic elastic properties, dis-
played column-wise from left to right: P-wave velocity, S-wave velocity,
and density. The logarithm of the measured elastic properties (points)
and the rock physics predicted reservoir properties (orange solid lines)
with associated 90% prediction intervals (transparent orange regions) are
displayed together.
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Prior model

The parameter values used in prior model 1 are obtained by the heuristic
parameter estimation approach described in Forberg et al. (2021b), and
are listed in Table 2. Determining an appropriate value for the range
parameter associated with lateral correlation is particularly difficult due
to insufficient well data. The 2D section is assumed to be lithologically
varying laterally because of different mineral fractions in CR. We there-
fore take a conservative approach and define a lateral correlation that in
practice establishes lateral dependency only on the two nearest traces in
each direction. It is also necessary to specify the anisotropies of porosity
and water saturation. Because the 2D section follows the interpreted
horizon of the reservoir, we assume lithological layering to follow the ge-
ometry of the section. This lithological layering is described by structural
correlation in porosity and volume of shale, represented by Ωs, and it is
achieved by computing the spatial correlations on a rectangular version
of the irregular 2D section. The fluid content in the reservoir zone is
superimposed on the lithology and obeys gravitational effects. Therefore,
the correlation structure of water saturation, represented by Ωh, is de-
fined to favour horizontal fluid contacts, which is achieved by computing
the spatial correlations on the irregular 2D section.

Table 2: Parameter values used in the prior S-GRF. The parameters
associated with the basis GRF model are shown in the top; the location-
wise expectations µr̃k in the leftmost block, the locationwise variances
σ2r̃k in the middle block, and the inter-variable correlations λk to the
right, k = 1, 2, 3. The parameters associated with the auxiliary GRF are
shown in the middle; the marginal selection sets Ak to the left and the
correlations with the basis GRF γk to the right. The range parameters
associated with the spatial correlation structures, αk,i for k = 1, 2, 3 and
i = 1, 2, are listed in the bottom.

µφ̃ 0.3

µs̃w 0.5

µṽc 0.15

σ2
φ̃

2.420 · 10−3
σ2s̃w 6.561 · 10−2
σ2ṽc 2.000 · 10−1

λ1 −0.25
λ2 −0.7
λ3 0.5

A1 (−∞,−0]
A2 (−∞,−1.2] ∪ [1.45,∞)

A3 [−0.15, 0.15] ∪ [1.6, 2.2]

γ1 0.9

γ2 0.95

γ3 0.95

αv,1 1
αh,1 25

αv,2 1
αh,2 25

αv,3 1
αh,3 25
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The parameter values used in prior model 2 are displayed in Table 2,
except for the lateral correlation which is assigned αh,1 = αh,2 = αh,3 = 0,
that is, no lateral correlation.

The locationwise prior models for porosity, water saturation, and vol-
ume of clay, representing the marginal pdfs in the RF r, are displayed
in Figure 7. The prior models are superimposed on histograms of well
log data, after outlier removal. The locationwise prior model for porosity
is unimodal and notably skewed in sandy regions, whereas the location-
wise prior models for water saturation and volume of clay are distinctly
bimodal. The distinct bimodality in the water saturation prior model
reflects the gravitational effects assumed to be present which cause abrupt
spatial fluid transitions. Volume of clay has a notable effect on the prior
models for porosity and water saturation. We see that the clay effect on
the prior model for porosity is a shift of location and an inverse relation-
ship between skewness and volume of clay, whereas the clay effect on the
prior model for water saturation is the alteration of the oil and water
probabilities, with high volume of clay corresponding to high probability
of water.

Figure 7: Locationwise prior models superimposed on histograms of well
logs from Well B. The histograms of porosity and water saturation
are colored yellow and brown, corresponding to data from sandy and
presumably shaly regions, respectively. This classification is based on
the bimodal distribution assigned to volume of clay. Moreover, because
the prior models for porosity and water saturation are relatively strongly
influenced by the volume of clay, a sandy prior model is displayed in
hatched yellow and a shaly prior model is displayed in hatched brown.
These models are based on the expected clay volume within each clay
mode.
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Results

We refer to the posterior models corresponding to prior models 1 and 2
simply as models 1 and 2, respectively. The convergence of the simulation
based model assessments is ensured by running several M-H McMCs from
random initial states until the assessed models can not be distinguished,
and by evaluation of locationwise convergence plots Forberg et al. (2021b).

The MMAP predictions from models 1 and 2 are displayed in Figures
8 and 9, respectively. The predictions from model 1, see Figure 8, indicate
two major high porosity oil zones between the overlying shale layer and the
underlying aquifer, separated by CR where, as suspected, a considerable
presence of high clay content is reflected in the predicted volumes of clay.
Moreover, the geometry of the predicted oil zones can be seen to have a
natural explanation in the predicted volumes of clay. A few specks of low
water saturation are predicted outside the major oil zones, but these are
most likely reflecting unsupported lithological hetereogeneity or noise in
the seismic AVO data. The predicted water saturations exhibit strong
continuity and smoothness, with distinctly defined regions of low values
and high values. The predictions from model 2, see Figure 9, indicate
high porosity oil zones on each side of CR, between the overlying shale
layer and the underlying aquifer. The geometry of the major oil zones
appear to have a natural explanation in the predicted volumes of clay.
However, the major oil zone to the right of CR is not contained within
the 2D section and appears to continue in the top horizon above CR.
Moreover, several minor disconnected regions of low water saturation are
predicted in CR, which based on the volume of clay predictions in CR,
are overlaid by water. Despite a prior model without lateral correlation,
the predictions clearly exhibit continuity, indicating strong continuity in
the seismic AVO data. Both models predict the top of the reservoir zone
to primarily have high water saturation and high clay content, which
strongly indicates the presence of an overlying shale layer. The porosity
predictions from the two models are very similar, but the predicted water
saturations and volumes of clay differ notably in CR. The predictions
from model 1 indicate that this region does not contain oil, whereas
the predictions from model 2 indicate several irregular and disconnected
regions of low water saturation and unphysical fluid transitions. Based on
the seismic data in Figure 4, we do not expect oil in CR. The predicted
volumes of clay from model 1 indicate a dominant presence of high clay
content in CR, whereas model 2 indicates more of a mix between sandy
regions and shaly regions. The clay volume predictions from model 1
seem geologically more plausible.
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Figure 8: MMAP predictions from model 1. (Top) Porosity. (Middle)
Water saturation. (Bottom) Volume of clay. The locations of Well A and
Well B are marked.

Figure 9: MMAP predictions from model 2. (Top) Porosity. (Middle)
Water saturation. (Bottom) Volume of clay. The locations of Well A and
Well B are marked.
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The locationwise variances of models 1 and 2 are displayed in Figures
10 and 11, respectively. The variances associated with the porosity pre-
dictions from both models are very similar and relatively low, except for
along the top and bottom of the 2D section and along a thin structure
across CR. The variances of water saturation and volume of clay from
model 1, see Figure 10, display a similar pattern with respect to their
corresponding predictions: the variances appear relatively low except for
at the borders separating low value and high value regions in the MMAP
predictions, and this effect is particularly apparent for water saturation.
The relatively strong variance contrast for water saturation is likely due
to less mixing of low value and high value regions in the predictions than
in the volume of clay predictions, which results in lower background vari-
ance. Moreover, the contrast between low and high variance is stronger
for water saturation and volume of clay than for porosity because the
locationwise posteriors of porosity are unimodal, while they are bimodal
at the region borders for water saturation and volume of clay. Lastly,
the variances appear to be relatively low to the left of CR, coinciding
with the strongest signals in the seismic AVO data, see Figure 4. The
variances of water saturation and volume of clay from model 2, see Figure
11, appear particularly high in CR and moderately high to the right of
CR. To the left of CR, where the strongest signals in the seismic AVO
data are, some identifiable regions can be discerned and the background
variance appears relatively low. Upon comparison of the two models, the
variances of model 1 appear to be more structured and the background
variances seem to be lower. This is particularly evident for water satu-
ration. Consequently, predictions from model 2 are more uncertain than
predictions from model 1, as expected, because model 1 incorporates data
from neighboring traces and thereby reduces uncertainty. The differences
in the locationwise variances should generate apparent differences in re-
alizations from the two posterior models, and for water saturation in
particular.
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Figure 10: Locationwise variances of model 1. (Top) Porosity. (Middle)
Water saturation. (Bottom) Volume of clay. The locations of Well A and
Well B are marked.

Figure 11: Locationwise variances of model 2. (Top) Porosity. (Middle)
Water saturation. (Bottom) Volume of clay. The locations of Well A and
Well B are marked.
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The inversion results from models 1 and 2 along Well A and Well B
are jointly presented in Figure 12. The two models yield very similar
porosity results; the predicted porosity profiles are in good agreement
with the well log observations and the associated HPDI look reasonable.
The predicted water saturation profiles are mostly in good agreement with
the well log observations, but a few notable exceptions occur. In Well
A, the predictions from both models along the top reservoir suggest the
presence of a shale layer which is not indicated by the well logs. Moreover,
the two models predict different OWC locations, with model 1 predicting
the OWC location roughly 4 ms deeper than model 2. Because Well A
is not located exactly on the cross line under study it is unclear whether
these well observations are representative; hence, we can not conclude
anything about these apparent discrepancies. In Well B, neither model
predicts the highly water saturated interval between 1998 ms and 2002
ms. However, this high water saturation occurrence is located within the
interval in which the rock physics model performs relatively poorly. The
predicted volume of clay profiles from models 1 and 2 are mostly in good
agreement, but differ at several lithological transitions. In Well A, the
two models yield very similar volume of clay results, but model 1 predicts
the deepest high clay content interval to start higher than what model 2
does. In Figures 8 and 9, we see that model 1 predicts a connected high
clay content layer from the left of the 2D section and through Well A,
whereas model 2 predicts disconnected regions here. A connected region
is geologically more likely. In Well B, the two models predict a different
thickness of the overlying shale layer. Based on the well log observations,
model 1 appears to predict the shale layer thickness accurately, whereas
model 2 underpredicts. Both models seem to overpredict the thickness
of the high clay content interval in the middle of the well, but model 2
predicts a slightly shorter interval than model 1. Note that the possibly
limestone influenced interval is located within these predicted high clay
content intervals. Lastly, model 2 predicts a slightly shorter interval of
high clay content than model 1 near the deeper end of the well observations.
Here, the predictions from model 2 appears to be more accurate than
the predictions from model 1. As expected from the locationwise model
variances displayed in Figures 10 and 11, the HPDI from model 2 reflect
more bimodality in the locationwise posteriors of water saturation than
the HPDI from model 1.
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Figure 12: Inversion results from model 1 (black) and model 2 (orange)
along Well A and Well B. The MMAP predictions (solid lines) are
displayed with 90% HPDI (dot-dashed lines). Well observations are
displayed on the reservoir grid (black points) and on the well log grid
(transparent points).

One realization of water saturation from each model, truncated to the
physical range [0, 1], is displayed in Figure 13. These realizations should
be compared with the corresponding MMAP predictions in Figures 8 and
9, respectively. The realization from model 1 exhibits most features of
the MMAP prediction, with identifiable regions of low water saturation
and with CR being a region of mostly high water saturation. In CR
and to the right of CR, the realization appears more heterogeneous than
the MMAP, as expected based on the locationwise posterior variances
displayed in Figure 10. The realization from model 2 appears similar to
the corresponding MMAP prediction to the left of CR, but it is otherwise
difficult to recognize features of the MMAP due to very high hetereogene-
ity. The large locationwise posterior variances in Figure 11 support this
predominant heterogeneity and lack of spatial structure. Realizations of
porosity and volume of clay do not have as marked differences, but the
clear differences observed in the water saturation realizations may still
impact potential subsequent results, such as production forecasting by
fluid flow simulation.
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Figure 13: One realization of water saturation from each model, truncated
to [0, 1]. (Top) Model 1. (Bottom) Model 2.

Quantitative performance measures, based on well log data on the
reservoir grid, are presented for the inversion results along Well A and
Well B in Table 3 for model 1 and in Table 4 for model 2. As expected,
the RMSE and empirical coverage indicate that the results in Well B are
overall better than in Well A. The difference in performance between the
wells is mostly a consequence of the conflicting predictions and observa-
tions at the top of Well A. The models perform very similarly in terms
of RMSE. Neither model achieves the desired empirical coverage of 0.9,
which is most likely a result of partly unrepresentative data in Well A
and a few poorly supported data points in Well B. Model 1 appears to
have lower empirical coverage than model 2, as expected, due to variance
reduction from lateral correlation. The most favourable feature of the
predictions from model 1 is the relatively high homoegeneity compared
to the predictions from model 2, see Figures 8 and 9, which strongly
suggests that the lateral coupling in model 1 reduces the effects of trace
unique signal errors in the seismic AVO data.

Table 3: RMSE and empirical coverage (EC) of the 90% HPDI along
wells A and B for model 1.

Model 1
Well A Well B

RMSE EC RMSE EC
φ̂ 0.121 0.630 0.059 0.852

ŝw 0.606 0.519 0.397 0.741

v̂c 0.392 0.852 0.492 0.741
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Table 4: RMSE and empirical coverage (EC) of the 90% HPDI along
wells A and B for model 2.

Model 2
Well A Well B

RMSE EC RMSE EC
φ̂ 0.118 0.630 0.059 0.852

ŝw 0.545 0.630 0.390 0.778

v̂c 0.394 0.889 0.495 0.815
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Case: Real seismic AVO data from a 3D volume

We apply the proposed seismic inversion methodology to a 3D volume of
the Kneler field in the Alvheim oil and gas field, in the North Sea. The 3D
volume consists of five crosslines containing traces 70 through 90; hence,
the region between traces 70 and 90 of the 2D section studied previously,
see Figure 1, is contained. The center crossline in the 3D volume is
referred to as C2D, which is the crossline studied in the previous section.
The 3D volume contains a total of 105 traces with a regular inter-trace
spacing of 50 m, each of which covers a depth range of 52 ms in two-way
time. That is, the distance between inlines and crosslines is 50 m.

The reservoir grid Gr consists of nr = 2835 grid points which are
regularly spaced laterally and with trace-unique vertical gridding, while
the seismic grid Gd consists of nd = 1470 grid points with similar grid
structure. The trace-unique vertical gridding consists of 27 points in the
reservoir grid and 14 points in the seismic grid.

Model construction

The model construction is based on Well B; hence, the likelihood model
is identical to the likelihood model of the previous section with estimated
wavelet shown in Figure 5 and rock physics parameters listed in Table
1. Moreover, the prior model parameter values are also identical and
are displayed in Table 2. However, note that the prior model is laterally
correlated in one additional spatial dimension compared to the laterally
correlated prior model of the previous section.

Results

The MMAP predictions are displayed in Figure 14. The MMAP predic-
tions from the previous section should be compared to the predictions
on crossline C2D, which appear very similar. However, a notable excep-
tion can be seen in the water saturations and volumes of clay: the oil
region and the high clay content region in the middle are now apparently
disconnected. The geometry of the oil zone and the high clay content
regions slowly vary across crosslines, demonstrating lateral continuity
perpendicular to the 2D section of the previous section.
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Figure 14: MMAP predictions. (Left column) Porosity. (Middle column)
Water saturation. (Right column) Volume of clay. The location of Well
B is marked.

The locationwise variance of the posterior model on crossline C2D

is displayed in Figure 15. Compared to the locationwise variances of
the posterior models in the previous section, shown in Figures 10 and
11, the variance appears to be reduced. This is particularly evident in
the variances of water saturation, which now have more structure due
to the disappearance of some high variance borders inside the oil zone.
The variance reduction is expected due to conditioning on additional
neighboring traces perpendicular to the ones of the previous section in
the sampling. Consequently, realizations from this posterior model should
exhibit less heterogeneity than realizations from either of the posterior
models in the previous section.
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Figure 15: Locationwise variances of the posterior on C2D. (Left) Porosity.
(Middle) Water saturation. (Right) Volume of clay. The location of Well
B is marked.

The inversion result is presented along Well B in Figure 16. The
MMAP predictions are overall in good agreement with the observations
for all reservoir properties. Furthermore, the HPDI appear reasonable.
Compared to the inversion results along Well B in the previous section,
the porosity result appears as very similar. The predicted water satura-
tion profile is very similar to the previously predicted profiles, but the
associated HPDI now reflect less bimodality in the posteriors. Lastly, the
predicted volume of clay profile is consistent with the predicted volume
of clay profile from the laterally correlated model in the previous section,
but does not overpredict the thickness of the high clay content interval
in the middle of the well as much. Moreover, the associated HPDI reflect
less bimodality in the posteriors.

Figure 16: Inversion result along Well B. The MMAP predictions (solid
lines) with 90% HPDI (dot-dashed lines). Well observations are displayed
on the reservoir grid (black points) and on the well log grid (transparent
points).
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Quantitative performance measures, based on well log data on the
reservoir grid, are presented for the inversion results along Well B in
Table 5. Compared to the RMSE and empirical coverage of model 1
along Well B in the previous section, the RMSE has slightly improved
for all reservoir properties. The empirical coverages have not changed.

Table 5: RMSE and empirical coverage (EC) of the 90% HPDI along
Well B.

RMSE EC

φ̂ 0.057 0.852

ŝw 0.392 0.741

v̂c 0.483 0.741
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Conclusion

A Bayesian seismic AVO inversion scheme for porosity, water saturation,
and volume of clay is proposed. The prior model is a laterally correlated
S-GRF, which can represent the gravitationally induced bimodality ob-
served in the water saturations. The likelihood model is Gauss-linear, for
which the S-GRF prior model is conjugate; hence, the posterior model
is also an S-GRF. An alternative S-GRF prior model without lateral
correlation is defined for comparison through seismic inversion of a 2D
section of real seismic AVO data from the Kneler field in the Alvheim
oil and gas field in the North Sea. Two major high porosity oil zones
are identifiable in the inversion results from both models, indicating high
lateral continuity in the seismic AVO data. However, the laterally corre-
lated S-GRF provides predictions that are more homogeneous and with
more clearly defined regions than the laterally uncorrelated S-GRF. Fur-
thermore, a relative locationwise variance reduction is observed in the
laterally correlated posterior S-GRF for water saturation and volume of
clay, and this is reflected in realizations of water saturation from the
posterior models. Inversion of a 3D volume containing a region of the
2D section is performed, and the inversion of the 2D region is compared
between the 2D and 3D inversion. An improvement in the predictions
and a reduction in the inversion uncertainty is observed in the 3D in-
version. Hence, although the seismic AVO data appears to have strong
lateral continuity, lateral correlation in the prior model for the reservoir
properties appears to be favourable to reduce trace unique signal errors,
even in conservative amounts as in this study.

Computationally, a laterally uncorrelated prior model is preferable
because sampling from the posterior model can be done on a trace-by-
trace basis. A laterally correlated prior model entails the involvement
of neighboring traces in conditional sampling from the posterior. This
requires more complex sampling schemes and higher computer demands.
However, conditioning on neighboring traces appears to improve the
inversion results and make the results less susceptible to trace unique
signal errors. The laterally correlated S-GRF is a more complex prior
model, but the benefits discussed above seem to justify the additional
cost this entails.
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Appendix: Sampling from an m-dimensional S-GRF

To draw samples from the m-dimensional and n-variate S-GRF x, we
make use of the decomposition

p(x) = p
(
x̃|ν ∈ A

)
= p

(
x̃|ν
)
p
(
ν|ν ∈ A

)
(A-1)

= ϕn

(
x̃;µx̃|ν ,Σx̃|ν

)
× I(ν ∈ A)ϕn (ν;µν ,Σν)∫

Rn I(ν ∈ A)ϕn (ν;µν ,Σν) dν
.

A sample is drawn by first sampling ν ∈ A, followed by sampling x from
ϕn

(
x̃;µx̃|ν ,Σx̃|ν

)
. The S-GRF is assumed to consist of n = nv×nh grid

points, with nv and nh being the number of grid points vertically and
laterally, respectively.

Algorithm 1: Draw k samples from x by M-H McMC, trace-by-
trace.

Partition x̃ and ν into traces, i.e., x̃ ∈ Rnv and ν ∈ Rnv .
Partition each trace into nb vertical blocks
bi ⊂ {1, ..., nv}; i = 1, ..., nb, and define block neighborhoods
bni = {1, ..., nv}\bi.
Iterate nh times
Initialize ν with a value in A.
Iterate k times
Iterate nb times
Select vertical block bi.
Sample ν ′bi|bni

sequentially from q(ν ′bi|bni
).

Accept ν = [ν ′bi|bni
,νbni ]

T with probability α.
End

Sample x ∼ ϕnv
(
x̃|ν
)
.

End
End
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Algorithm 2: Draw k samples from x by M-H McMC.

Partition the field into nb m-dimensional rectangular blocks,
bi ⊂ {1, ..., n}; i = 1, ..., nb, and define block neighborhoods
bni = (bnv,i × bh,i)

⋃
bnh,i, where bnv,i = {1, ..., nv}\bv,i is the

vertical neighborhood, bh,i are the traces in bi, and bnh,i consists
of laterally neighboring traces of bi. Moreover, the block bi has
complementing grid points bci = {1, ..., n}\bi.

Initialize ν with a value in A.
Iterate k times
Iterate nb times

Select block bi.
Sample ν ′bi|bni

sequentially from q(ν ′bi|bni
).

Accept ν = [ν ′bi|bni
,νbci ]

T with probability α.
End

Sample x ∼ ϕn
(
x̃|ν
)
.

End

Some clarifications of the algorithms follow:

• The proposal distribution is

q(νb|bn) =
∏

i∈b
I (νi ∈ A)

ϕ1

(
νi;µνi|νbv,n , σ

2
νi|νbv,n

)

Φ1

(
A;µνi|νbv,n , σ

2
νi|νbv,n

) , (A-2)

with subindex bv,n denoting the union of the set of indices in b
already visited and the block neighborhood.

• The Metropolis-Hastings acceptance probability, α, is

α = min




1,
p
(
ν ′b|bn

)

p
(
νb|bn

) ·
q
(
νb|bn

)

q
(
ν ′b|bn

)





(A-3)

= min




1,
∏

i∈b

Φ1

(
A;µ′νi|νbv,n , σ

2
νi|νbv,n

)

Φ1

(
A;µνi|νbv,n , σ

2
νi|νbv,n

)




.

The blocks and the order in which they are visited are predetermined,
and the associated covariance matrices are precomputed to reduce the
computational time.
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