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Gibbs’s classical thermodynamic framework approximates systems as infinitely large phases separated by infinitely thin
surfaces. The range of validity of this classical framework comes naturally under scrutiny as we become interested in
the properties of ever smaller systems. This communication clarifies that, while Gibbs’s original framework of bulk
phase thermodynamics did require modifications to describe the properties of very small (i.e. non-additive) phases, his
classical framework remains fundamentally valid to describe the thermodynamic properties of surfaces. We explain
why classical surface laws are applicable at the nanoscale, as suggested by simulations and confirmed by experiments.
We also show that a generalized Gibbs-Tolman-Koenig-Buff equation and the resulting Tolman’s law for surface tension
are obtained from a classical thermodynamic analysis in the Tolman region, a region of interaction between the system
and the environment.

INTRODUCTION

Gibbs’s standard thermodynamic framework1 is based on
the assumption of infinitely large phases separated by in-
finitely thin surfaces, providing a good description of suffi-
ciently large systems that are subject to comparatively short
ranged interactions. As we become interested in the ther-
modynamic properties of ever smaller systems, the range of
validity of this classical framework comes naturally under
scrutiny.

It has recently been suggested with certain prominence that
Gibbs’s theory needs to be modified in order to give an ade-
quate description of surface tension at the nanoscale. In ref.
2, Dong sets forth the proposition that there is a normally
confined regime where the system’s actual pressure p devi-
ates from its reference thermodynamic limit value p∞, and a
strongly confined regime where, in addition to the pressure,
the surface tension γ also deviates from the flat reference value
γ∞. Dong contends that, while the normally confined regime
(γ = γ∞; p 6= p∞) was addressed by Hill in his thermodynam-
ics of small systems3, the strongly confined regime (γ 6= γ∞;
p 6= p∞) escapes current paradigms and it requires new mod-
ifications to Gibbs’s thermodynamic theory. These modifica-
tions, which ostensibly need to be introduced for extending
Gibbs thermodynamics of interfaces and which are indispens-
able for an adequate description of nanoscale systems, rest on
an expression of this form2:

γ∞ = γ +A
(

∂γ

∂A

)
V
, (1)

where A is the surface area of the system, and the derivative is
taken at constant volume V .

However, as we account in the following, the regime where
γ deviates from γ∞ does not require strong confinement, nor
does it require that the pressure p (nor any other of the sys-
tem’s intensive properties) departs from its bulk thermody-
namic value. In fact, the regime where γ 6= γ∞ falls within
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Gibbs’s surface thermodynamic framework, and it was suc-
cessfully addressed by Gibbs in 1876 and others in the first
half of the past century.

The remainder of this communication is organized as fol-
lows. First, we invoke earlier work by Gibbs and others to
show that the regime where γ 6= γ∞ is not one of strong con-
finement as claimed in ref. 2, and that it can indeed occur
even in large systems whose intensive volumetric properties
(such as pressure and chemical potential) don’t depart from
the bulk reference values produced by classical thermodynam-
ics. We then show how a generalized Gibbs-Tolman-Koenig-
Buff equation and the resulting Tolman’s law are obtained in
a simple fashion by considering the thermodynamics in the
Tolman region, i.e. a region of interaction between the system
and the environment. Finally, we close this communication
with a brief discussion and concluding remarks.

GIBBS THERMODYNAMICS AND SURFACE TENSION

As phases become smaller and surfaces curve, the surface
tension γ does deviate from the flat reference value γ∞. This
was described by Tolman in this journal, when he showed
that4
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= 1−2
δ

r
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δ

r

)2

, (2)

where r is the radius of curvature, and δ an additional Tolman
length separating the equimolar dividing surface from the sur-
face of tension4. Tolman’s law (2) indicates that the area and
the volume are not two independent variables of the surface
tension (as implied by eq. 1), but rather that γ depends on
surface curvature. The Tolman length δ tells us also that, as
surfaces curve, they may no longer be treated as if they were
infinitely thin. This apparent deviation from Gibbs’s paradigm
was addressed by Gibbs himself (ref. 1, p. 232), as well as
in this journal by Tolman4, Koenig5 and Buff6, when they
proposed the expression known as the Gibbs-Tolman-Koenig-
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Buff (GTKB) equation, which, for a spherical surface reads
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and, integrated from ∞ to r, produces Tolman’s law (2).
Thus, as Tolman showed, the γ 6= γ∞ regime is not one of

strong confinement. It only requires a curved surface, and it
can occur even when the phase is large enough such that its
intensive properties (e.g. pressure) do not depart from their
bulk thermodynamic value.

Indeed, strong confinement only occurs when the system
is so small that, not only the surface tension γ departs from
its flat reference value γ∞, but also the intensive properties of
the phase itself deviate from bulk values (e.g. p 6= p∞). It
is at this scale that the phase may no longer be treated as if
it were infinitely large. This deviation from Gibbs’s original
paradigm was addressed by Hill -also in this journal-7 when
he innovatively applied Gibbs’s concept of excess functions
to describe, not dividing surfaces as originally done by Gibbs,
but the properties of increasingly small volumetric phases in-
stead. Indeed, Hill’s use of excess functions is not restricted
to surface problems, and it is applicable to phases which may
be so small that properties of bulk liquid do not obtain even at
r = 0 (ref. 3, ch. 12).

While Gibbs’s original framework of bulk phase thermody-
namics did require some modifications to describe the ther-
modynamic properties of small phases3,7,8, it remains ade-
quate to describe the properties (such as surface tension9)
of the surfaces surrounding these phases. In fact, it was re-
cently proven that, at curved surfaces, Gibbs’s theory is in-
deed a nanothermodynamic framework10, and that, in contrast
to classical laws pertaining to bulk phases, classical interfacial
laws result when strong interactions with the environment are
considered11. Furthermore, recent experiments and simula-
tions confirm the applicability of Gibbs surface thermodynam-
ics at the nanoscale, where classical laws, such as the Young-
Laplace law12,13, Kelvin’s relation14, Young’s equation15, the
Gibbs-Thomson equation16 and Tolman’s law17,18, remain
valid.

THE TOLMAN REGION

In the following, we show that the GTKB equation (3), and
hence the resulting Tolman’s law (2), may be obtained in a
simple fashion by describing the thermodynamics in what we
call the Tolman region, a region of interaction between the
system and the environment.

As the system interacts with the environment, there is an ef-
fective interaction region surrounding it. How far this region
extends beyond the system’s boundary depends on (i) how
quickly the interaction potential decays as a function of dis-
tance, and (ii) the tolerance of the approximation made when
the system is described as separate from the environment. If
the interaction potential around a system of size r decays as
as a function of the distance δ from the surface as (r+δ )−α

(for some positive α), then the Tolman region may be defined
by the largest distance δ that fulfills the condition

(r+δ )−α > λ r−α (4)

for some λ ∈ (0,1), where the parameter λ is the tolerance of
the approximation11.

The Tolman length δ accounts for the interactions between
the system and the environment, and it extends the size of
the bare system (which has volume V and surface area A) to
become a coupled system with a total volume V + Vδ . At
thermochemical equilibrium, the (not necessarily so) thin in-
teraction region surrounding the system has a volume Vδ , and
it must thus contain an energy Eδ , resulting in an interfacial
pressure Pδ given by

Pδ ≡−
dEδ

dVδ

. (5)

Since the interfacial pressure Pδ is a function of the surface
tension γ and the radius of curvature r, we may write
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Combining (5) and (6) and substituting dEδ with γdA, we ar-
rive at
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The last expression is a generalized version of the GTKB
equation, and it reduces to its familiar form (3) when spherical
curvature, i.e.

Vδ = Aδ

(
1+

δ

r
+

1
3

δ 2

r2

)
(8)

and the Young-Laplace law

Pδ (γ,r) = 2
γ

r
(9)

are invoked.
While the generalized expression (7) and its derivation are

shown here for the first time, the spherical case (3) was orig-
inally treated by Tolman (ref. 4, eq. 4.1), Koenig (ref. 5, eq.
71) and Buff (ref. 6, eq. 17). Indeed, when integrated from ∞

to r, this expression produces Tolman’s law (2) where-from
δ became known as the Tolman length, a parameter we may
now interpret as the thickness of the effective interaction re-
gion surrounding the system. This thickness is the mismatch
between the Laplace radius defining the system’s surface of
tension (r) and the Gibbs adsorption radius defining an ideal
equimolar dividing surface that is beyond the bare system and
into the environment (r+δ ). These two surfaces need not be
far apart in terms of molecular layers, but the effect of their
separation becomes significant for surfaces with small radii.
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DISCUSSION AND CONCLUSION

Gibbs’s classical thermodynamic framework has time and
again been shown to be an effective theory to describe suffi-
ciently large phases enclosed by sufficiently thin surfaces. In
the macroscopic regime, the properties of the phase and the
surface are very well approximated as those of an infinitely
large phase and an infinitely thin Gibbs dividing surface.

How large need a such a phase be? Need it be so large that
its surface is flat? No. A phase with a curved surface may
have properties that are very well described by Gibbs’s clas-
sical theory (e.g. water droplet). How about the properties of
the curved surface then? As accounted above, the properties
of curved surfaces are also well described by Gibbs’s original
thermodynamic theory.

What if the phase is so small that additivity breaks down?
In this case, Gibbs classical thermodynamics still provides a
good description for surface properties, as shown by simula-
tions and experiments in refs. 12–18. However, some modifi-
cations are now needed to describe the properties of the phase.
It is here Hill’s ingenuity came into play. He applied the trick-
ery that Gibbs had used to successfully describe vanishingly
thin surfaces, i.e. excess functions, to describe vanishingly
small volumetric phases instead3. In both cases, excess func-
tions take care of non-additivity by accounting for the differ-
ence between the small system functions and the correspond-
ing bulk functions.

In conclusion, and in contrast to the claims set forth in
ref. 2, Gibbs thermodynamics of interfaces does not require
modifications to adequately describe surface properties at the
nanoscale. Gibbs thermodynamics provides a good descrip-
tion for surfaces regardless of system size. Moreover, if the
surface is treated as a region of interaction between the system
and the environment, a classical thermodynamic analysis pro-
duces a generalized Gibbs-Tolman-Koenig-Buff relation and
the resulting Tolman’s law; and also other laws such as the
Young-Laplace law, the Kelvin equation and Young’s wetting
equation11. This provides an explanation for why classical
surface laws are applicable at very small scales, as suggested
by simulations (see e.g. refs. 13, 15, and 17) and confirmed
by experiments (see e.g. refs. 14 and 16).
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