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Abstract

The emissions of produced water is a growing concern due to the negative envi-

ronmental impact. A potential solution is de-oiling hydrocyclones, which is the

most commonly used technology to treat produced water. The Compact Sepa-

rator Laboratory (CSL) is a produced water treatment plant, which allows for

the study of hydrocyclone performance and the development of control methods

to maintain their efficiency.

The primary purpose of this project has been to implement Model Predictive

Control (MPC) in the CSL. MPC is an advanced control algorithm, which makes

use of a model of the process as well as any available measurements. Implement-

ing MPC may be beneficial as it could help automatically keep the oil content

of the produced water below the maximum level of 30 ppm.

A previously developed first-principles hydrocyclone model has been used as the

foundation for the model in the MPC. However, certain alterations have been

made, notably an experimental polynomial approximation of one of the model

parameters. A nonlinear MPC was developed and tested in simulation, before

it was implemented in the CSL. It has been tested for two disturbances, namely

increases in the inlet flow rate and the inlet oil concentration.

A second-degree polynomial of the internally separated oil in the hydrocyclone

was experimentally obtained. The experimentally implemented MPC handled

an increase in the inlet oil concentration well. When increasing the flow rate,

on the other hand, the MPC failed to act efficiently.
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Sammendrag

Utslipp av produsert vann er en voksende bekymring p̊a grunn av den nega-

tive miljøp̊avirkningen. En potensiell løsning er de-oiling hydrosykloner, som

er den mest brukte teknologien for å rense produsert vann. Compact Separa-

tor Laboratory (CSL) er et renseanlegg for produsert vann, som muliggjør for

undersøkelsen av hydrosykloners ytelse og utviklingen av kontrollmetoder for å

vedlikeholde deres effektivitet.

Den primære hensikten til dette prosjektet har vært å implementere Model

Predictive Control (MPC) i CSL. MPC er en avansert kontrollalgoritme, som tar

bruk av en modell av prosessen, samt tilgjengelige målinger. Implementeringen

av MPC kan være gunstig, ettersom det kan hjelpe å automatisk holde oljeniv̊aet

til det produserte vannet under maksimalgrensen p̊a 30 ppm.

En tidligere utviklet førsteprinsipps-modell har blitt brukt som grunnlaget for

modellen i MPC-en. Imidlertid har enkelte endringer blitt gjort, mest merkbart

en eksperimentell polynomtilnærming av en av modellens parametre. En ikke-

lineær MPC ble utviklet og testet i simulering, før den ble implementert i CSL.

Den har blitt testet for to forstyrrelser, nemlig økninger i strømningshastigheten

og oljekonsentrasjonen ved innløpet.

Et andregradspolynom av den internt separerte oljen i hydrosyklonen ble eksper-

imentelt funnet. Den eksperimentelt implementerte MPC-en taklet en økning

i oljekonsentrasjonen ved innløpet bra. Ved en økning i strømningshastigheten

ved innløpet derimot, klarte ikke MPC-en å handle effektivt.
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Acronyms

Acronyms

CSL Compact Separator Laboratory

CV Controlled Variable

DAQ Data Acquisition

DV Disturbance Variable

FOPDT First-Order-Plus-Dead-Time

IPOPT Interior Point Optimizer

MIMO Multiple-Input-Multiple-Output

MPC Model Predictive Control

MV Manipulated Variable

NHL Norsk Hydroteknisk Laboratorium

NLP Non Linear Programming

OCP Optimal Control Problem

OIW Oil-In-Water

PDR Pressure Drop Ratio

SISO Single-Input-Single-Output

SUBPRO Subsea Production and Processing

VI Virtual Instrument
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Acronyms

Nomenclature

Symbol Units Description

Fs - Flow split

Mh - Control horizon

N - Time horizon

o - Oil

P bar, Pa Pressure

Ph - Prediction horizon

Qex m3/h Excess flow rate

Qin m3/h Inlet flow rate

QO m3/h Overflow rate

Qsep m3/h Separated flow rate

QU m3/h Underflow rate

rU m Underflow pipe radius

rU m Overflow pipe radius

VHC m3 Hydrocyclone volume

VO m3 Oil-rich volume

VU m3 Water-rich volume

w - Water

Zin % Inlet flow valve opening

ZO % Overflow valve opening

ZU % Underflow valve opening

βin,o -,ppm Inlet oil fraction/concentration

βU,o -,ppm Underflow oil fraction/concentration

βO,o -,ppm Overflow oil fraction/concentration

ρ kg/m3 Density

η - Separation efficiency
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Chapter 1

Introduction

1.1 Background

Produced water is a commonly occurring bi-product in the oil- and gas industry.

It is also referred to as oilfield wastewater and consists of various organic and

inorganic components. The discharge produced water may negatively affect

the environment and has become an increasing global concern. Therefore, it is

desirable to treat the produced water, to minimize the environmental impact of

the oil and gas industry.[1] In Norway, it is legally required that the produced

water is separated to a concentration less than 30 mg/L, before being discharged

to the sea.[2]

Since the 1980s, hydrocyclone separation has been the most frequently applied

technology for the treatment of produced water.[3] De-oiling hydrocyclones work

by using a centrifugal force to separate the oil droplets from the produced water,

which enters through a tangential inlet chamber. The separated oil exits through

the stream referred to as the ’overflow’, while the treated water exits through

the ’underflow’.[4]

The Compact Separator Laboratory (CSL) has been used as part of this project.

It is a part of Subsea Production and Processing (SUBPRO), which is a centre

for research-based innovation at NTNU.[5] The laboratory provides for the inves-
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CHAPTER 1. INTRODUCTION

tigation of hydrocyclone performance, and has been used to research potential

control structures in order to maintain their efficiency.

1.2 Literature Review

In the last few years, there has been some research into control-oriented modeling

of de-oiling hydrocyclones. In Durdevic et al. (2015) a set of First-Order-

Plus-Dead-Time (FOPDT) models were experimentally identified.[6] A control-

oriented model of an inline de-oiling hydrocyclone was developed based on mass

balance equations in Das and Jäschke (2018).[7] A first-principles mathematical

model for a hydrocyclone was derived in Vallabhan et al. (2020),[8] which forms

the basis of the model used in this thesis. Two non-linear control methods were

proposed in Vallabhan and Holden (2020), namely feedback linearization control

and sliding mode control.[9]

Control strategies for hydrocyclones are often based on the Pressure Drop Ratio

(PDR),[6] which will be explained in section 3.5. An issue with the traditional

PDR centered control approach, is that it struggles to maintain efficiency when

increases in the inlet concentration occur.[10][11]

Due to this problem, three new control schemes have been proposed, a feed-

back/cascade, feed-forward and Model Predictive Control (MPC). They have

been implemented in simulation,[10] based on the previously developed first-

principles mathematical model of the hydrocyclone.[8] The feed-back and feed-

forward schemes have also been implemented and tested experimentally. MPC

on the other hand, has not yet been experimentally implemented.

1.3 Project Aim

The main aim of this project is to implement MPC in the Compact Separator

Laboratory. MPC is an advanced process control algorithm, which has the

goal of computing the trajectory of one or more inputs u, also referred to as

the Manipulated Variable (MV). The MV trajectory which is calculated leads

2



1.4. SPECIALIZATION PROJECT

to the optimal output of the plant, y, which is called the Controlled Variable

(CV). The purpose of implementing MPC in this case is to automatically limit

the underflow oil concentration beneath the maximum allowed level of 30 ppm.

This may be achieved by varying the opening of the hydrocyclone’s overflow

valve, which is denoted as ZO. ZO is considered as the MV in this case, meaning

the goal of the MPC is to calculate the optimal overflow valve opening. The oil

fraction in the underflow is the CV. The disturbances considered are the inlet

flow rate Qin and the inlet oil fraction βin,o, both of which are controllable in

the laboratory.

For the MPC to work properly, it is essential to have a reasonably accurate

model of the system. If the model is flawed, using MPC may only make mat-

ters worse.[12] The already developed mathematical model is used as a starting

point.[8] However, certain alterations may have to be made, in order for it to

work when implementing the MPC in the CSL.

1.4 Specialization Project

The work presented in this master thesis is to a certain extent a continua-

tion of my specialization project, which was completed in the fall semester of

2020.[13] The project was partly centered around experimentally determining the

oil droplet size distribution at the inlet of the hydrocyclone. An offline sensor

was used to investigate how the distribution varied as a result of changing the

inlet pressure drop.

Additionally, the overflow rate QO was estimated by two different methods, as

it unlike the underflow and overflow is not being measured by a flowmeter. The

two methods used were the hydrocyclone mass balance, and the valve equation,

which were both compared to an experimental measurement of the overflow.

Having available methods of estimating QO is useful, as this flow rate may be

included when modeling the hydrocyclone.

3



CHAPTER 1. INTRODUCTION

1.5 Thesis Overview

The remainder of this thesis is structured in the following manner:

Chapter 2 contains a description of the experimental process, along with a

few practical aspects related to the Compact Separator Laboratory.

Chapter 3 presents the basic theory related to hydrocyclone technology and

typical control strategies.

Chapter 4 introduces and explains the model of the hydrocyclone.

Chapter 5 explains the basic principle of MPC, in addition to the methods

used for implementation in this project.

Chapter 6 presents the results and the main analysis surrounding them.

Chapter 7 contains further analysis and discussion related to the results and

methods, and a comparison with some previously obtained control results.

Chapter 8 gives the conclusions of the project, as well as some suggestions

for future work.

4



Chapter 2

Process Description

This chapter presents an overview of the laboratory and the examined pro-

cess. Some practical aspects related to the performed experiments are also

included.

2.1 Compact Separator Laboratory

The examined process is part of a produced water treatment plant, which is

located at Norsk Hydroteknisk Laboratorium (NHL), Trondheim. The plant

is known as the Compact Separator Laboratory (CSL), and was completed in

the summer of 2017.[14] It has been used as part of a SUBPRO backed project,

with the aims of researching and developing models and control methods re-

lated to hydrocyclone separation. The research may have industrial benefits, as

advanced control structures may help maintain hydrocyclone efficiency, in the

presence of disturbances.[5] Increased hydrocyclone efficiency could reduce the

environmental footprint of the oil-and gas industry.

The experimental test rig has the ability to generate three different disturbances,

namely changes in inlet oil concentration, flow rate and droplet distribution.

The first two disturbances will be considered when implementing MPC in the

laboratory. An overview of the CSL is shown in Figure 2.1

5



CHAPTER 2. PROCESS DESCRIPTION

Figure 2.1: Compact Separator Laboratory

6



2.2. EXPERIMENTAL SETUP

2.2 Experimental Setup

The flowsheet in Figure 2.2 gives an overview of the examined process:[15]

OIWOIW

PTPT

P-01

P-02

Oil Reject
(Overflow)

PV-01 PV-02

FTFT

FTFT

HC-01

TTTT

SP-01

PTPT

DPDP

DPDP

PDR=DPT-01/DPT-02

DIV

PDR=DPT-01/DPT-02

DIV

PDRC

01

PDRC

01

OIWOIW

SP-02

PT-01

FV-01

FT-01 PT-02
OIW-01 DPT-02

DPT-01 FT-02 TT-01 OIW-02

Water Reject
(Underflow)

DP-01=PT-01 - PT-02

SUB

DP-01=PT-01 - PT-02

SUB

SP

V-01V-01

V-02V-02

T 02

T 01

Figure 2.2: Process flowsheet

Table 2.1 contains an explanation of the terminology used in the flowsheet, that

is the names and descriptions of the instruments and equipment.

7



CHAPTER 2. PROCESS DESCRIPTION

Table 2.1: Flowsheet terminology

Name Description

T-01 Water tank

T-02 Oil barrel

P-01 Water pump

P-02 Oil pump

V-01 Variable speed drive (P-01)

V-02 Variable speed drive (P-02)

FV-01 Inlet valve

PT-01 Pressure transmitter

FT-01 Flow transmitter

PT-02 Pressure transmitter

SP-01 Sampling point 1

OIW-01 Inlet OIW sensor

DPT-01 Overflow pressure drop transmitter

PV-01 Overflow valve

DPT-02 Underflow pressure drop transmitter

HC-01 Hydrocyclone

FT-02 Flow transmitter

TT-01 Temperature transmitter

OIW-02 Underflow OIW sensor

PV-02 Underflow valve

SP-02 Sampling point 2

The produced water is generated by sending tap water from a 5000 liter water

tank, by using the water pump (P-01). Oil is then injected from an oil barrel, by

use of the oil pump (P-02). The injected oil then mixes with the water, before

it is sent to the inlet of the hydrocyclone (HC-01). Both the oil and water flow

rates are controllable by their respective variable speed drives, V-01 and V-02.

This allows us to generate two of the previously mentioned disturbances, namely

the inlet concentration and flow rate. The inlet concentration may be increased

8



2.2. EXPERIMENTAL SETUP

by increasing the speed of the oil pump, thus injecting a larger amount of oil.

The total flow rate may similarly be increased by the water pump. If the goal is

to keep the inlet concentration constant at the same time, the oil pump speed

may have to be increased as well.

The flow rate of produced water is measured by a flowmeter (FV-01), as is the

flow rate of the water reject (underflow) (FV-02). However, the overflow is not

being measured. As mentioned previously, there are two methods available to

estimate the overflow, namely the valve equation and the overall mass balance

of the hydrocyclone.[13]

The hydrocyclone contains two liners, which are placed in parallel. They have

a common inlet and two outlets. A photo of the hydrocyclone is included be-

low.

Figure 2.3: Photo of the hydrocyclone

9



CHAPTER 2. PROCESS DESCRIPTION

The inlet valve (FV-01), may be varied in order to change the inlet droplet dis-

tribution. Decreasing the valve opening leads to an increase in pressure drop

(DP-01), which results in decreasing droplet distributions.[15] This was part of

the focus of the specialization project, however for this thesis we are not con-

sidering the droplet distribution.[13]

Two Oil-In-Water-sensors are present to measure the oil concentration at the

inlet and underflow. These measurements allow for the investigation of the

hydrocyclone’s efficiency. It is also a benefit to be able to measure the inlet

concentration, as it is one of the two considered disturbances.

Figure 2.4: Oil-In-Water sensor

In addition to online concentration measurements, the laboratory also has the

capability of offline measurements. There are two sampling points (SP-01 and

10



2.3. STARTUP PROCEDURE

SP-02) which make this possible. SP-01 and the accompanying sampling proce-

dure are shown in Appendix C.

The inlet OIW-sensor has been too unstable to rely on for accurate measure-

ments of the inlet oil concentration. Therefore, a previously obtained relation-

ship between the oil pump speed (rpm) and inlet concentration, βin,o, has been

used.[16] The relationship is given in Table 2.2:

Table 2.2: Relationship between rpm and βin,o

P-02 speed [rpm] βin,o [ppm]

130 165

170 294

200 346

250 455

280 547

All the available measurements are logged by use of the graphical programming

language LabVIEW and corresponding Data Acquisition (DAQ) cards. The

LabVIEW program is also used to implement control structures and give sig-

nals to the laboratory, such as opening a valve or increasing the water pump

speed.

2.2.1 Mastersizer - Offline Sensor

The offline sensor is called the ’Mastersizer 3000’, which is a device that may be

used to measure both the concentration and droplet distribution of a sample.

Appendix D gives the procedure used for operating the Mastersizer. It has been

used on some occasions to validate the assumed inlet oil concentration.

2.3 Startup Procedure

The general startup procedure of the lab is described in this section. Firstly, it

is important to make sure there is a sufficient amount of water in the tank, and

11



CHAPTER 2. PROCESS DESCRIPTION

oil in the barrel, and that the air supply is on. When the preliminary actions

are performed, the water pump may be activated. For the experiments in this

project, we have usually set the pump speed to 1950 rpm, which corresponds to

an inlet flow rate of approximately 3.9-4.0 m3/h. The next step is to wait for

the measurements of the underflow OIW-sensor to stabilize. The oil pump may

then be activated, and once again we wait for the sensor readings to stabilize.

When all these steps are finished, experiments may be performed. In this project

the experimental actions mostly involve changing the values of certain variables,

such as the inlet flow rate and oil concentration.
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Chapter 3

Hydrocyclone Separation

This chapter presents some of the most relevant theory concerning de-oiling hy-

drocyclones, produced water, and control methods applied for hydrocyclones.

3.1 Background

Hydrocyclones have been used to treat produced water in the oil and gas in-

dustry since the 1980s. They are sometimes called ’liquid-liquid de-oiling hy-

drocyclones’ or ’enhanced gravity separators’.[4] They provide numerous benefits

compared to conventional gravity separators, which were the most used technol-

ogy previously. Some of the benefits include the ease of use, the low maintenance

required, and their efficiency and compactness.[3]

3.2 Properties of Produced Water

The properties of produced water depend on several factors. They include the

product and location of the field, and the operating conditions and production

method. Typically its contents include minerals, oil compounds and gases, which

are either dispersed or dissolved. Additionally, production chemicals and solids

may be present.[1]

13



CHAPTER 3. HYDROCYCLONE SEPARATION

In the CSL, EXXSOL D60 is used as an oil replacement. The EXXSOL D60

is mixed with tap water to create the produced water. It mainly consists of

paraffins, isoparaffins, and cycloparaffins, which are names often used for long-

chain hydrocarbons.[17]

3.3 Principle

Figure 3.1 is a simplified sketch of a hydrocyclone:

QU

P3

Qin

P1

QO

P2

Figure 3.1: Simplified hydrocyclone sketch

As Figure 3.1 illustrates, a hydrocyclone contains an inlet stream Qin and two

outlet streams QO and QU . The produced water stream Qin enters a tangential

inlet, which results in a high velocity vortex system. The vortex creates a high

acceleration field, forcing the oil towards the centre and the water towards the

walls of the cyclone. The oil-rich stream exits through the overflow QO, while

the treated water exits through the underflow QU .[18][4]

A hydrocyclone may have several liners, which may be removed or added de-

pending on flow rate requirements.[8] The hydrocyclone considered in the CSL

has two liners.

Some hydrocyclones have a swirl element placed at the inlet. This forces the

flow into a swirl motion, meaning the fluids achieve both angular and axial

velocity.[7] This type is referred to as an ’inline hydrocyclone’. However, the one

in the CSL is without a swirl element. In that case, the hydrocyclone’s geometry

itself induces swirling.[8]
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3.4. PERFORMANCE

3.4 Performance

When determining the performance of a de-oiling hydrocyclone, there are two

main criteria to consider, namely the separation efficiency and the flow split.

3.4.1 Separation Efficiency

The separation efficiency η is given by Equation (3.1):[18]

η = 1 − βU,o
βin,o

(3.1)

βU,o and βin,o represent the fraction of oil in the underflow and inflow respectively.

The value of η should be high, indicating a low fraction of oil in the underflow,

compared to the oil fraction in the inlet flow. The separation efficiency may

alternatively be expressed in terms of flow rate, as Qsep

Qin,o
.[8] Qsep represents the

internally separated oil flow in the hydrocyclone, and Qin,o represents the inlet

oil flow rate.

The inlet flow rate is one of the factors determining the hydrocyclone’s separa-

tion efficiency. The hydrocyclone in the CSL has a minimum inlet flow rate of

1.44 m3/h, and a maximum of 4.53 m3/h, according to the vendor. However, as

the hydrocyclone contains two liners, Qin,min is in fact 2.88 m3/h. Within the

range of Qin,min and Qin,max, the separation efficiency is nearly constant. On

the other hand, outside of this range there is a significant reduction in efficiency.

Both when the value is below the minimum and over the maximum, the drop-off

is present.[18] Figure 3.2 illustrates this point:[8]
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CHAPTER 3. HYDROCYCLONE SEPARATION

Figure 3.2: Separation efficiency [%], as a function of Qin
[8]

3.4.2 Flow Split

Flow split is the other main aspect relevant when assessing hydrocyclone per-

formance. It is also the other factor influencing the separation efficiency. Equa-

tion (3.2) gives the flow split:[18]

Fs =
QO

Qin

(3.2)

Contrary to the separation efficiency, the flow split should be low. A small value

of Fs indicates a low flow rate QO. Fs is typically kept in the range of 2-3%,

however it may be as low as 1%. The separation efficiency increases rapidly

from 0 to 1%. A too low flow split leads to an increased amount of oil in the
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underflow. The efficiency stops increasing, and remains nearly constant when

increasing the flow split above approximately 3%.[18]

3.5 PDR Control

As previously mentioned, control methods for hydrocyclones are often based on

the Pressure Drop Ratio (PDR), which is defined as:

PDR =
P1 − P2

P1 − P3

(3.3)

where P1, P2 and P3 represent the pressures at the inlet, overflow and underflow,

as shown in Figure 3.1. The purpose of the PDR control strategy is to keep the

flow split Fs at a certain reference value. Fs is linearly correlated with the PDR.

Therefore we can choose a setpoint for the PDR value, instead of the flow split.

A benefit of this approach is that pressure measurements are generally cheaper

and more accurate than flow measurements.[19] A typical PDR control scheme

is shown in Figure 3.3:[15]

SP

INLET

PDRC

  01

DPT

01

DPT

02

PT

01

OIL REJECT WATER REJECT
PV-01

PV-02

Figure 3.3: Typical PDR control scheme
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Chapter 4

Modeling

This chapter introduces a dynamic mass-balance model of the de-oiling hydro-

cyclone, which is largely based on Vallabhan et al. (2020).[8]

4.1 Modeling Approaches

Before MPC can be implemented, a model of the system must be determined.

The accuracy of the model is highly important, as there is no way to tune the

MPC to compensate for an inaccurate model. In many cases a model may have

to be updated, due to changes in the process. The changes may occur because

of changes in operating conditions or deterioration of the plant.[12]

There are two main ways to develop a process model. One way is by using

mathematical equations to describe the physical behaviour of the system, which

is also known as white-box modeling.[20] Another approach is known as data-

driven modeling, which is based on analysing a system’s input and output.

In contrast to a physical model, it is not formed from any knowledge of the

physical process itself. The data-driven approach is therefore particularly useful

when there is little understanding about the system which is being modelled.[21]

Another name for this approach is black-box modeling.

Black- and white-box modeling may be combined, which is an approach known
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4.2. DYNAMIC MASS BALANCE MODEL

as grey-box modeling. This method combines the theoretical knowledge of first-

principles modeling, with available data. Grey-box modeling was used for a

de-oiling hydrocyclone system in Bram et al. (2020), where first principles were

used to define the model’s structure and the parameters were identified by a

data-driven approach.[19]

4.2 Dynamic Mass Balance Model

The hydrocyclone in question may be represented by a series of model equations,

based on its total mass balance. This model was first proposed in Vallabhan et al.

(2020),[8] and serves as the foundation for the model described in this section.

However, some alterations have been made, in order to fit the experimental

conditions. Notably, the parameter Qsep has to be experimentally identified,

which will be further described in section 4.2.3. Therefore, the approach used

may be described as grey-box modeling, since we are combining first-principles

modeling with parameter identification.

It is worth noting that there are essentially two models being used, one for im-

plementing MPC in simulation and one for the actual experimental implemen-

tation. However, the differences are not that substantial. They are described in

section 4.2.5.

4.2.1 Volume Partitioning

The hydrocyclone may be partitioned into an oil-rich and a water-rich volume,

denoted by VO and VU respectively. VO is located at the center of the hydrocy-

clone, where most of the oil will exit through the overflow. VU is the remainder

of the of the hydrocyclone’s volume, which contains a higher fraction of water.

The total volume is given by VHC = VU +VO. Note that while the total volume is

constant, the amount of oil and water inside VO and VU varies. The partitioned

hydrocyclone system is illustrated by Figure 4.1:
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QUQin
VU

Qex,oQsep Qex,w

VO
QO

Figure 4.1: Partitioned hydrocyclone system

The subscript o indicates oil flow while w indicates water flow. Qsep represents

the flow rate of the internally separated oil. Qex,w denotes the excess flow rate

of water, which VO receives due to not being completely filled with oil. There

will therefore be some water flowing from VU to fill up the free volume in VO.

Similarly, Qex,o represents the oil flow rate to the water-rich volume.

4.2.2 Mass Balance

The mass balance is defined for each of the control volumes, with respect to the

volume of oil. This may be formulated by the following equations:

dVU,o
dt

= Qin,o −Qsep −QU,o +Qex,o (4.1)

dVO,o

dt
= Qsep −QO,o −Qex,o (4.2)

4.2.3 Polynomial Fitting

As previously mentioned, there is no way to measure the flow rate of the in-

ternally separated oil, Qsep. It is therefore approximated by a second degree

polynomial, as given in Equation (4.3):
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4.2. DYNAMIC MASS BALANCE MODEL

Qsep

Qin,o

= (p2Q
2
O + p1QO + p0) (4.3)

It is assumed that QO is the only factor impacting the internal separation effi-

ciency Qsep

Qin,o
.

Two polynomial approximations are considered. One was obtained in Vallabhan

et al. (2020),[8] where ZO was varied from 1 to 100 %, with ZU = 40 %, P1 = 6

bar and βin,o = 1000 ppm. The resulting values of the polynomial coefficients

were p0 = 0.8414, p1 = 5190 and p2 = −4.821 · 107. This result was achieved

by simulation, and is the one used when implementing the simulated MPC.

However, for the experimental implementation of MPC, a new polynomial has

been experimentally calculated. The results will be presented in section 6.2. In

this case, the separation efficiency η is used, which is calculated according to

Equation (3.1).

The MATLAB function ’polyfit’ has been used for the polynomial approxima-

tions. This function finds the polynomial of a specified degree which best fits

the data, according to the method of least squares.[22]

4.2.4 Volume Fractions

The oil volume fractions in the overflow and underflow are found by dividing the

oil volume by VO and VU respectively, as shown in Equation (4.4) and (4.5):

βO,o =
VO,o

VO
(4.4)

βU,o =
VU,o
VU

(4.5)

The inlet flow rate of oil is given by Equation (4.6):

Qin,o = βin,oQin (4.6)
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The oil-streams of the underflow and overflow may be calculated as the product

of the oil fraction and the flow rate of the respective streams:

QO,o = βO,oQO (4.7)

QU,o = βU,oQU (4.8)

Equation (4.1) and (4.2) may then be rewritten in terms of change in oil frac-

tion instead of volume change. Qex,o and Qex,w are assumed to be negligible

for the purpose of this model, which further simplifies it to the form given by

Equation (4.9) and (4.10):

dβO,o

dt
=

1

VO
(Qsep − βO,oQO) (4.9)

dβU,o

dt
=

1

VU
(Qin,o −Qsep − βU,oQU) (4.10)

The model may be formulated in state-space form, by representing the two states

βO,o and βU,o as x1 and x2:

ẋ1 =
1

VO
(Qsep − x1QO) (4.11)

ẋ2 =
1

VU
(Qin,o −Qsep − x2QU) (4.12)

4.2.5 Experimental vs Simulated Model

When implementing MPC in simulation, the model being used is exactly as

described by Equation (4.9) and (4.10). However, when implementing MPC

in the Compact Separator Laboratory, there are some differences that must be

considered. For instance, in simulation it was assumed that the hydrocyclone
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consists of only one liner. The hydrocyclone in the CSL consists of two liners,

meaning that Equation (4.6) must be changed to the following:

Qin,o =
βin,oQin

2
(4.13)

Another crucial difference is that when simulating, we can not make use of the

flowmeter measurements of QU . It is therefore estimated by using the valve

equation:

QU = Cv1ZU

√
2

ρw
(P3 − Patm) (4.14)

ρw is the density of water, P3 is the pressure at the underflow, Patm is the

atmospheric pressure and ZU is the underflow valve opening. Cv1 represents

the valve constant for the underflow. In the laboratory, this estimation is not

necessary, as QU is measured directly by a flowmeter.

QO is estimated by the same method:

QO = Cv2ZO

√
2

ρo
(P2 − Patm) (4.15)

ρo is the density of the oil and P2 is the pressure at the overflow. ZO is the

overflow valve opening, which importantly serves as the control input, u. Cv2 is

the overflow valve constant.

When simulating, P2 and P3 are calculated by using the MATLAB function

’fsolve’, which is nonlinear system solver.[23] ’fsolve’ is used to solve the above-

mentioned valve equations, with respect to P2 and P3.

The valve equation is also used for the experimental MPC, as QO needs to be

estimated. However, the pressure P2 may be then be read directly from the

pressure transmitter available in the CSL.
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4.2.6 Simulation Parameters

Table 4.1 contains the values of the model parameters used for the MPC simu-

lations:

Table 4.1: Simulation model parameters

Parameter Value Unit

Cv1 7.854 ·10−5 m2

Cv2 3.141 ·10−6 m2

P2,init 3 bar

P3,init 4 bar

rO 0.001 m

rU 0.005 m

VHC 2.090 ·10−4 m3

VO 5.224 ·10−7 m3

VU 2.084 ·10−4 m3

ZU 50 %

ρo 910 kg/m3

ρw 1000 kg/m3
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Chapter 5

Model Predictive Control

This chapter presents a theoretical overview of Model Predictive Control (MPC).

It also includes a description of the developed MPC and the methods used to

implement it.

5.1 Background

In various process industries, Model Predictive Control is an often used control

approach, especially for Multiple-Input-Multiple-Output (MIMO) systems.[12]

MPC systems were first developed in the 1970’s, and has since been used exten-

sively in industry, in addition to being a field often researched in academia.[24]

There are several advantages related to using MPC. One advantage is the ability

to handle constraints, both on the system’s inputs and outputs. If the model

being used is sufficiently accurate, it may capture the interactions between the

inputs, outputs and disturbances, and provide early warnings of any potential

errors. However, the advantages are highly dependent on the model accuracy,

as an inaccurate model could only make things worse.[24]

For this particular project, the purpose of implementing MPC is to keep the oil

concentration of the underflow stream, βU,o, below 30 ppm. A couple of different

approaches to achieving this goal is discussed later in this chapter.
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We may distinguish between nonlinear MPC and linear MPC. The main differ-

ence consists of whether the model is linear or not. In this case, the model is

nonlinear due to the valve equation. However, for the sake of simplicity, it is

usually referred to in this report as simply MPC, as opposed to NMPC.

5.2 Principle

The main idea of MPC is that the controller combines a dynamic model and

plant measurements in order to predict future output values.[24] This principle

is demonstrated in Figure 5.1.[25]

...

Figure 5.1: MPC principle[25]

The controller calculates a series of input changes, usually in order to keep the

output at a certain set point. Of the input sequence, only the first calculated

value is applied to the actual process. Then a new sequence is calculated, and

again the first value is fed to the process. The calculation is achieved according

to an objective function, J . Further details about the objective function will be

provided in section 5.5.
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5.3 Process Variables

In MPC applications, the input variable is often referred to as the Manipu-

lated Variable (MV), while the output variable is called the Controlled Vari-

able (CV). Measured disturbances are sometimes called Disturbance Variable

(DV)s. The aforementioned variables for this particular project are included in

Table 5.1:

Table 5.1: Key variables

Type Description Symbol

MV Overflow valve opening ZO

CV Underflow oil fraction βU,o

DV1 Inlet flow rate Qin

DV2 Inlet oil fraction βin,o

This is a Single-Input-Single-Output (SISO) system, since only one MV and one

CV are being considered. As mentioned in chapter 4, there are two states, x1 and

x2. They represent the oil fraction in the overflow and underflow respectively,

and will be used interchangeably with the symbols βO,o and βU,o.

5.4 Constraints

There are two main groups of constraints, which are called equality and inequal-

ity constraints. As previously mentioned, one of the main benefits of MPC is

the ability to handle inequality constraints, which is the only type of constraint

present in this project.

It is often further distinguished between two additional types of constraints. The

first type is called hard constraints, which may never be violated. The other

type is known as soft constraints, which will be explained in section 5.5.2.

There are certain constraints which must be upheld for practical reasons. For

one, the valve opening ZO, must be within its physical limitations. In other
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words, the opening of ZO must be within in the range 0 to 100 %. This constraint

is formulated in the following way:

umin ≤ u ≤ umax (5.1)

When implementing MPC, it is often beneficial to restrict excessive input move-

ment. Therefore, an additional constraint is added on the change in input,

∆u:

− ∆umax ≤ ∆u ≤ ∆umax (5.2)

5.5 Objective Function

The objective function is optimized in order to find the optimal sequence of

changes in the MV, the first of which is fed to the process.[24] The choice of

objective function is important as it will largely impact the behaviour of the

controller, which should achieve the goal of keeping x2 below 30 ppm. A couple of

different options have been considered, which are presented in this section.

5.5.1 Setpoint Tracking

Setpoint tracking is a commonly used MPC approach, which has been imple-

mented previously in simulation.[10] It involves the use of an objective function

as given in Equation (5.3):

J = min

∫ Ph

0

(
Q(x2 − xSP2 )2 +R∆u2

)
dt (5.3)

The principle of this approach is to minimize the difference between the state

value, x2 and a chosen setpoint, xSP2 . The larger the deviation between the

achieved value and the setpoint, the more cost is added.
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Additionally, it is often a goal to minimize the change in input, represented by

∆u. The reason for minimizing ∆u is to help stabilize the MPC, and avoid

unnecessarily high input usage.

Q and R are tuning parameters. They allow one to choose whether to emphasize

the setpoint deviation or input usage, for this particular cost function. Usually,

Q is selected as larger than R, meaning a larger emphasis on setpoint deviation.

For this particular project, Q must be selected as many orders of magnitude

larger than R. The reason why is related to the units of the process variables.

x2, which represents the underflow oil fraction, has very low numerical values.

For instance if x2 = 33 ppm and xSP2 = 30 ppm, the numerical value given to the

cost function is only 3·10−6, since we are operating with fractions. ∆u, on the

other hand, may have values between 0 and 1. Therefore Q should be selected

as much larger than R, in order to scale for the units.

There is a potential disadvantage related to using setpoint tracking. The disad-

vantage is that the MPC acts in way to keep x2 at exactly 30 ppm. However,

the goal is to keep x2 below 30 ppm, not at an exact setpoint. Therefore, it may

be disadvantageous to use setpoint tracking.

5.5.2 Soft Constraints

To achieve the stated goal, a better solution may be to use soft constraints. In

contrast to hard constraints, soft constraints may be violated. However, the

degree of violation is included as a cost in the objective function.[24]

To include a cost in the objective function, a slack variable s is introduced. s is

then added to the cost function, as replacement for the setpoint tracking term of

Equation (5.3). Equation (5.4) shows a cost function with soft constraints:

J = min

∫ Ph

0

(
Qs2 +R∆u2

)
dt (5.4)

The slack variable s essentially represents the deviation between the value of x2

and a given setpoint. It may be beneficial to implement soft constraints such
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that the value of does not exceed an upper limit nor go beneath a lower limit.

The reason for including a lower limit as well, may be justified by not wanting

to have too much flow in QO.

This method is also known as range control, where the output is not supposed to

reach a certain setpoint. Instead, the output value is kept between a lower and

an upper limit. The lower and upper limits may be included as hard constraints.

However, the use of hard constraints on the outputs could lead to infeasible so-

lutions for the optimization problem.[24] Therefore, soft constraints as described

above, is likely a better option.

5.6 MPC Implementation in CasADi

CasADi is a free, open source framework for numerical optimization, which has

been used to implement MPC in this project.[26] It is available for C++, Python

and Octave/MATLAB, with the choice of language having little significance on

the performance.[27] For this project, MATLAB has been used, with the com-

plete code provided in appendix A. Implementation examples of using CasADi,

including multiple shooting, which has been used as a template, are given in the

attached link.[28]

The rest of this section contains a rudimentary overview of how CasADi has

been used in this project. For a more detailed on how to use CasADi, the reader

might find Rawlings, Mayne and Diehl (2019)[29] and the CasADi manual[27]

useful.

5.6.1 Step 1 - Defining the Model

The first step of using CasADi for MPC implementation is to formulate the

state-space model. As mentioned in chapter 4, the model in this particular

project is given as:

ẋ1 = 1
VO

(Qsep − x1QO)

ẋ2 = 1
VF

(Qin,o −Qsep − x2QU)
(5.5)
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x1 and x2 represents the oil fractions in the overflow and underflow respectively.

The equations used to calculate Qsep, QO and Qin,o are defined, as is the input

u, and the constraints on u and ∆u. The states x1 and x2, slack variable s, the

model parameters, and cost function J are also defined.

5.6.2 Step 2 - Formulating the NLP

The next step is to formulate a Non Linear Programming (NLP) problem. This

is achieved by transforming an Optimal Control Problem (OCP), meaning the

cost function J and the associated constraints, into an NLP problem.[29] The

NLP problem is given in the following form:

min f(x)

gL ≤ g(x) ≤ gU

xL ≤ x ≤ xU
(5.6)

gL and gU represent the lower and upper bound of the constraints, while xL and

xU are the lower and upper limits for the variables.

There are three commonly used techniques to achieve the transformation, namely

direct single shooting, direct multiple shooting and collocation methods. They

fall under two categories, sequential and direct approaches. Single shooting falls

under former category, while the multiple shooting and collocation belong to the

latter category.[29] For this project, direct multiple shooting has been used.

Direct multiple shooting was first proposed in Bock and Plitt (1984).[30] The

method may be summarized by the following steps, as described in Tamini and

Li (2009):[31]

1. Divide the time horizon into equally sized sub-intervals,

2. For each sub-interval parameterize the control function and initial states,

and evaluate the state trajectories,

3. Add continuity constraints,

4. For each sub-interval, compute the objective function.

31



CHAPTER 5. MODEL PREDICTIVE CONTROL

5.6.3 Step 3 - IPOPT Solver

The final step is to solve the NLP problem. IPOPT is used, which is an NLP

solver included in CasADi. The method that IPOPT uses is known as interior

point line search filter method. It attempts to find a local solution of an NLP

problem as defined in Equation (5.6).[32]

5.7 LabVIEW Implementation

For the experimental implementation of MPC, an additional step is to implement

it in LabVIEW. This sections contains an outline of how the implementation is

achieved.

LabVIEW is a graphical programming language which is used for measurements

and control of the CSL. It allows for the creation a of Virtual Instrument (VI).

A VI consists of user interface, called a front panel, a block diagram and an

icon and connector pane. The user interface consists of controls and indicators,

which are used to control and read the systems inputs and outputs. The block

diagram contains the graphical code.[33]

An already existing VI has been modified to implement the MPC. The MPC

itself is not included directly in LabVIEW, rather LabVIEW calls a MATLAB

script which performs the optimization. An overview of the LabVIEW imple-

mentation is illustrated by Figure 5.2, while the entire block diagram is provided

in appendix B.

At the center of the implementation is a script node, which accesses and runs

the MATLAB code. However, the code only runs if the case structure is set to

’True’, which is controlled by an indicator switch in the front panel. Otherwise,

the node simply clears the MATLAB workspace. It is beneficial to have a simple

way of turning off the controller, as we do not want to run the MPC at all times.

The MV is sent to the daq, and all the input and output data which is necessary

for analysis is stored in an Excel file.
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Matlab code

True/False

Timed while loop

OutputsInputs

Figure 5.2: LabVIEW implementation overview

The inputs consists of measured and estimated values needed in the model, MPC

parameters and constraints. Many of the inputs have been included as control

inputs in LabVIEW, in order to enable customization and live experimentation

with different values for the parameters and constraints.

Table 5.2 contains a description of the inputs which are given to the MPC:
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Table 5.2: LabVIEW - MPC inputs

Input Description

Cv Valve constant

Qin Measured inlet flow rate

QO Estimated overflow rate

QU Measured underflow rate

umin Minimum input value

umax Maximum input value

∆umax Maximum input change

βin,o Estimated inlet oil concentration

βu,o Measured underflow oil concentration

Mh Control horizon

Ph Prediction horizon

P2 Overflow pressure

Q Tuning parameter

R Tuning parameter

xU2 Upper ppm limit of βU,o

Table 5.3 gives a description of the MPC’s outputs:

Table 5.3: LabVIEW - MPC outputs

Output Description

u Optimal ZO value

t Time used to find optimal solution

Solver status Indicates optimization success/failure

Iterations Number of iterations optimizer used

Objective Numerical value of objective function

The key output is naturally the calculated optimal ZO value. The other values,

for instance the solver status, may help indicate how the MPC is performing.
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Additionally, the predicted future values of x1 and x2 are included, along with

the future control inputs.

The part of the LabVIEW front panel related to the MPC is shown in Fig-

ure 5.3

Figure 5.3: Front panel of the LabVIEW MPC program
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Chapter 6

Results

The results of this project have been obtained both by simulation in MAT-

LAB and by performing experiments in the Compact Separator Laboratory.

Firstly, the simulated MPC results are presented. Then the results related to

the polynomial approximation are given. Finally, the results of testing the MPC

experimentally are shown.

6.1 Simulated MPC

The MPC with soft constraints as described in chapter 5, has been simulated

in MATLAB. The values of the parameters and constraints that have been used

are given in Table 6.1:
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Table 6.1: Simulated MPC - parameters and constraints

Parameter Value

umin 0%

umax 100%

∆umax 1%

u0 35%

Q 106

R 0.1

Mh 10

N 60

Ph 15

xU2 30 ppm

xL2 20 ppm

xinit2 25 ppm

When performing the simulations, the inlet concentration βin,o is increased from

500 to 900 ppm at t = 30, while the inlet flow rate Qin is increased from 2.16

m3/h to 2.52 m3/h at t = 45. White Gaussian noise has been added to both

Qin and βin,o, by use of the MATLAB function ’awgn’.[34] The simulated results

are shown in Figure 6.1:
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Figure 6.1: Simulated MPC results - ∆umax = 1%

When the increase in βin,o occurs, there is as expected a corresponding increase

in βU,o. The increase leads to βU,o surpassing the setpoint of 30 ppm, which is

indicated by the upper red line. The controller reacts by increasing the overflow

valve opening, ZO. As the maximum change in ZO per iteration is 1%, several

steps are needed before βU,o returns below the upper limit.

The increase in Qin on the other hand, has the effect of lowering the underflow

oil concentration. The controller then reacts in the opposite manner, namely

by closing ZO. This occurs because the controller wants to avoid that βU,o goes

below the lower limit of 20 ppm, which is indicated by the lower red line.

A notable observation that was made, is that the controller appears to stabilize
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when βU,o is in the midpoint between the upper and lower limits. This is observed

towards the end of the simulation, when ZO keeps decreasing, even though βU,o

is within the acceptable range of values. The same behaviour is also observed

for the first half of the simulation, before there are any steps in the disturbances.

In that time period, there are minor decreases in ZO, before it stabilizes when

βU,o is approximately 25 ppm.

The value of ∆umax likely has a large impact on the behaviour of the controller.

Figure 6.2 shows simulated results using the same parameters as in Table 6.1,

with the exception of ∆umax being 5% instead of 1%.

Figure 6.2: Simulated MPC results - ∆umax = 5%

We observe that changing the constraint on the input change ∆umax, does in fact

39



CHAPTER 6. RESULTS

have a large impact on the controller’s behavior. The controller increases ZO in

larger steps, which brings βU,o down below the maximum level faster.

The controller is also somewhat more unstable in the region before the distur-

bances occur, that is from t = 0 to 30 s. This means a lower value of ∆umax

could help stabilize the control action.

6.2 Polynomial Approximation

Two steps have been performed to obtain the polynomial approximation of Qsep.

The first step was to gather the necessary experimental data in the Compact

Separator Laboratory. The second step was to use the data to obtain the poly-

nomial expression.

6.2.1 Experimental Data

The experimental data used for approximating Qsep was gathered by performing

steps on ZO, which led to varying values of βU,o and QO. In this case, the

values of QO were estimated based on the hydrocyclone mass balance. Qin

was kept constant at approximately 4.0 m3/h. βin,o was assumed constant at

300 ppm, according to the pump-concentration relationship. The value of inlet

concentration was also verified by use of the offline Mastersizer sensor. The

resulting data is shown in Figure 6.3:
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Figure 6.3: Data used for the polynomial approximation of Qsep

Steps were first performed from ZO = 3% to 23%, in increments of 4 percentage

points. Then additional steps were added for values of ZO between 15% and

23%, in increments of 2 percentage points. Overflow valve openings from 3% to

23% covers most of the relevant range for the hydrocyclone. At higher values

of ZO, the impact of increasing the valve opening is minimal. At values of ZO

lower than 3%, a significant amount of oil will be sent through the underflow.

Therefore, it is undesirable to operate in those ranges of ZO-values.

The figure shows a significant drop in βU,o for the first few steps. For instance

when ZO is increased from 3% to 7%, there is approximately a halving in βU,o. As

the valve opening increases further, the corresponding effect on βU,o decreases.
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For the last few steps there is virtually no change in βU,o at all.

A reason why βU,o decreases the most for the first few steps is likely due to

the relative change in ZO. Consider for instance the first 6 steps in ZO. The

absolute increase in ZO is the same at 4 percentage points. However, the relative

increase is smaller for each step. The most noticeable change occurs from 3% to

7%, when the valve opening more than doubles in absolute value. At the later

steps, the change in βU,o is insignificant.

6.2.2 2nd Degree Polynomial

Figure 6.4 illustrates the results of the experimentally found polynomial for

approximating the separation efficiency:

Figure 6.4: Experimentally determined relationship between η and QO
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The red dots represent the separation efficiency η, which was calculated based

on the experimental data shown in Figure 6.3. The calculation of η was based on

the average values of βU,o, for each step of ZO. βin,o was assumed to be constant.

The blue line represents the resulting 2nd degree polynomial, which is given in

Equation (6.1):

η(QO) = −5.5455Q2
O + 2.2052QO + 0.7209 (6.1)

As previously mentioned, the separation efficiency may be formulated in terms

of flow rate as Qsep

Qin,o
. This gives the following estimate for Qsep:

Qsep = Qin,o(−5.5455Q2
O + 2.2052QO + 0.7209) (6.2)

The experimental data is also given in Table 6.2.

Table 6.2: Data used for polynomial approximation

η[−] QO [m3/h]

0.8140 0.05210

0.9121 0.1094

0.9308 0.1638

0.9328 0.1966

0.9334 0.2061

0.9347 0.2111

0.9353 0.2275

0.9356 0.2310

0.9360 0.2337

0.9371 0.2428

The results shown in Table 6.2 and Figure 6.4, further illustrate a previously

mentioned point, namely that the separation efficiency increases rapidly for

lower values of QO, but that the increase tapers off for higher values. If one
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ignores the data point at QO ≈= 0.05 m3/h, the remaining points would show

a nearly linear relationship between η and QO, which further demonstrates this

fact.

6.3 Experimental MPC

As with the simulated MPC, the experimental MPC has been evaluated for two

disturbances, namely Qin and βin,o. However, for practical reasons, we are now

considering only one disturbance at the time.

6.3.1 Change in Inlet Concentration

The values of the parameters and constraints that have been used are given in

Table 6.3:

Table 6.3: Experimental MPC parameters

Parameter Value

umin 5%

umax 25%

∆umax 0.1%

u0 6%

Cv 0.018

xU2 28 ppm

xL2 22 ppm

Q 106

R 0.1

The values differ somewhat from the ones used in simulation. The overflow

valve opening has been constrained to the region 5% to 25%, as this is deemed

the relevant range. This was previously demonstrated in Figure 6.3. If ZO

is below 5%, a lot of oil will likely be sent through the underflow, which is

undesirable. For values of ZO higher than 25%, the separation efficiency will
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not increase. Additionally, a lot of water will be sent through the overflow,

which is undesirable. ∆umax was set to 0.1%, as small changes are sufficient

to achieve relatively large changes in the output. This constraint value will

additionally help the controller act in a stable manner.

For the first test of the experimental MPC, Qin was kept constant, while βin,o

was increased from 294 ppm to 346 ppm. The increase is achieved by increasing

the rpm of the oil pump from 170 to 200, as per Table 2.2. The results are

shown in Figure 6.5:

Figure 6.5: Experimental MPC results - increase in βin,o

The increase in βin,o leads to an immediate increase in the predicted βU,o values,

which is given by the blue line. The controller immediately acts by opening
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ZO. The increase in ZO is very gradual, due to the constraint on ∆u, and the

relatively small changes that are necessary to achieve the reduction in predicted

βU,o-values. The control action quickly leads to the predicted value returning to

its starting point of approximately 25 ppm.

A similar response is observed in the measured output value, which is mea-

sured by the underflow OIW-sensor. However, the response is much slower.

The actual concentration takes a lot longer to change, as can be seen from the

gradual increase and decrease. As βin,o immediately changes, the predicted val-

ues immediately increase. In reality, there is some delay before the changes in

inlet concentration occur, which explains the slower response of the measured

value.

6.3.2 Change in Inlet Flow Rate

The experimental MPC was also tested for an increase in the inlet flow rate.

Qin was increased from approximately 3.98 to 4.18 m3/h, while βin,o was kept

constant at an estimated 356 ppm. The same values as given in Table 6.3 were

used, with the exception of the valve constant Cv, which was given a value of

0.015. The initial valve opening was different as well.

46



6.3. EXPERIMENTAL MPC

Figure 6.6: Experimental MPC results - increase in Qin

The increase in Qin led to a minor decrease in the predicted value of βU,o, which

is observed at t ≈ 1800 s. The controller quickly acts by closing the valve, to

keep the predicted value stable. The increased inlet flow rate also leads to a

decrease in the measured value, albeit after some more time. The closing of ZO

eventually leads to βU,o increasing again. The measured value increases above

where it was when it started, which is probably a sign of model mismatch.

Figure 6.6 illustrates that the MPC evidently does not handle changes in Qin

well. A probable reason is that the approximation of Qsep was found while

keeping Qin. This could mean that the model works poorly when operating at

other values of Qin.

47



Chapter 7

Discussion

In this chapter, further analysis of the results is presented, along with discussion

about the methods used and the assumptions made. Finally, we compare the ex-

perimental MPC results with some previously obtained results, from Vallabhan

et al. (2021).[16]

7.1 Polynomial Approximation

There are a few important points to consider related to the polynomial expres-

sion. As mentioned in the previous chapter, the data was gathered while keeping

Qin at a constant value. This means that the approximation of Qsep may be

inaccurate when operating at different values of Qin. The inlet concentration

was also assumed to be constant when gathering data for the polynomial. To

improve the accuracy of the approximation, the polynomial could be expanded

in a couple of different ways. One option is to add several polynomials, which

are valid for different value ranges of the inlet concentration and flow rate. It

was assumed that the internal separation Qsep

Qin,o
depends solely on QO. In reality,

QU also affects the internal separation. Therefore, another way to improve the

approximation of Qsep is to expand the polynomial to also include QU .

Another point to consider is that the QO-values are not measured, but estimated

from the mass balance of the hydrocyclone. The mass balance method is con-
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sidered to give reasonably accurate estimates of QO, however it may have led

to some inaccuracy of the approximation. Ideally, there would be a flowmeter

measuring the QO stream as well.

In Figure 6.3, sudden peaks are observed in QO, for instance at t ≈ 6500 s. The

peaks occurred due to operating the sampling point SP-01, leading to momen-

tary increases in QO. The sampling was done in order to validate the assumed

inlet concentration using the offline Mastersizer sensor, since the inlet OIW-

sensor did not give accurate readings.

One might notice that the experimental plots which have time on the x-axis

do not start at t = 0. The reason for this is that some time is required for

the experimental setup to stabilize. The starting time is the point at which

the conditions in the laboratory were considered stable enough to perform the

experiments.

7.2 Experimental MPC

There are several experimental conditions which should be considered, when

evaluating the experimental MPC results. One frequently occurring problem

was the instability of the underflow OIW-sensor. The sensor measurements are

expected to oscillate somewhat, but at times the oscillation was too high. This

lead to some difficulties in obtaining valid experimental results. There may be

several reasons for the instability of this sensor. One could be that the sensor

needs a good amount of time to stabilize. In industrial applications this is not a

problem, as they would be continuously active. However, the CSL does not have

the capacity to run continuously. The frequent restarting of the experimental rig

may be a reason for why the sensor was not always giving accurate and stable

measurements.

The inlet sensor was not used in any of the experiments. Instead a previously

derived relationship between the oil pump speed and inlet oil concentration

was used. This was considered necessary, as the inlet OIW-sensor proved to

not accurately measure the oil concentration. However, there are some issues
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related to using this approximation. If the relationship is inaccurate, that is an

issue, since βin,o is an important part of the model and one of the considered

disturbances. Another problem is that the actual increase in βin,o is gradual,

as opposed to an immediate increase. The MPC would act differently if the

values of βin,o were to increase gradually, as opposed to an immediate increase,

which was the case in the performed experiments. An additional issue with this

approximation is that it does not capture the natural fluctuations in βin,o.

The experimental results indicate that the implemented MPC handles changes

in the inlet oil concentration well, but not changes in the inlet flow rate. Ideally,

more experiments should be done to verify these findings, preferably with the

inlet OIW-sensor working properly. If more results could replicate these findings,

we could be more confident in these two mentioned conclusions.

QO was estimated by the valve equation for the MPC, instead of the mass

balance method, which was used for the polynomial approximation. The valve

equation was used in order to include the Manipulated Variable, ZO, in the

model. An issue with this approach is that we need a value for the valve constant

Cv. It was experimented with different values of Cv, according to what seemed

to correspond with the mass balance estimated QO-values. The Cv was also

adjusted according to what would make the model predict reasonably correct

values of βU,o.

Another issue discovered during some of the experiments, was that the actual

valve opening did not correspond exactly with the commanded value from Lab-

VIEW. The values of ZO in the plots are the commanded values, however, the

actual values may have differed somewhat.

There were some notable differences between the simulated and experimental

MPC results. The deviation may be explained by the model differences, specif-

ically the polynomial for Qsep and the number of hydrocyclone liners. Other

influential differences include the values of Qin, βin,o and ZU .
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7.3 Comparison with Direct Feedback Results

It is considered useful to compare the experimental MPC results with previously

obtained results, which were gathered by using an alternative control method.

The method we are comparing with is direct feedback control.

In this control method, a simple PI-controller with a dead-band was used, in

order to directly control the hydrocyclone separation. Figure 7.1 shows the

experimental results of direct feedback control when increasing Qin:[16]
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Figure 7.1: Direct feedback control - increase in Qin

The controller has a setpoint of 28 ppm, and a dead-band of ±2 ppm. Fig-

ure 7.1 illustrates that this method appears to deal with an increase in Qin

more successfully than the MPC.
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Figure 7.2 shows the response to an increase in βin,o:
[16]
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Figure 7.2: Direct feedback control - increase in βin,o

Figure 7.2 illustrates that the controller also handles an increase in the inlet

concentration well, similarly to the experimental MPC.
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Since the direct feedback controller seemingly outperforms the MPC, it may be

used as alternative control method for the hydrocyclone. However, there are

a couple of disadvantages related to direct feedback control. First of all it is

sensitive to measurement noise. As the measured values of βin,o illustrate, there

appears to be a significant amount of measurement noise present. Therefore it is

necessary to include a dead-band. The dead-band works by stopping the control

action when the process value reaches within its values. The control valve then

receives the previous value.
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Conclusion

The main aim of this project was to implement Model Predictive Control for a

de-oiling hydrocyclone in the Compact Separator Laboratory (CSL).

A nonlinear Model Predictive Control was first implemented in simulation. The

objective function used soft constraints to include both an upper and a lower

limit on the oil concentration in the underflow. The implementation was done

in MATLAB, by use of the open-source optimization software CasADi. The

MPC uses direct multiple shooting to transform the control problem into a Non

Linear Programming (NLP) problem, which is solved by the NLP solver IPOPT.

The next step consisted of implementing MPC in the CSL. Before this step, a

polynomial approximation of the internally separated oil was experimentally

obtained. The experimental MPC was implemented in a manner similar to the

simulated one, but included the additional step of creating a LabVIEW program,

to communicate with both MATLAB and the CSL.

The MPC was tested for two disturbances, namely the inlet flow rate Qin and

inlet oil concentration βin,o. As seen in Figure 6.5, the MPC appears to handle

changes in βin,o well. Figure 6.6 showed that the MPC struggled to deal with a

step inQin, which is likely mainly due to limitations of the 2nd degree polynomial

of Qsep.
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8.1 Future Work

As mentioned, the MPC appears to handle changes in βin,o well, but not changes

in Qin. This is in contrast with PDR control, which does not work when changes

in βin,o occur. Therefore, an interesting opportunity would be to combine MPC

with a PDR controller. More specifically, it may act as a supervisory layer to the

PDR controller. A suggested control scheme is illustrated in Figure 8.1:

MPC

INLET

PDRC

  01

DPT

01

DPT

02

PT

01

OIL REJECT WATER REJECT
PV-01

PV-02

SP

Figure 8.1: PDR control scheme with MPC as supervisory layer

It would be interesting to investigate how the MPC deals with a third distur-

bance, namely the droplet distribution. One could also consider an additional

input, namely the underflow valve opening ZU , which for this project has been

kept constant.

There are several potential ways to improve the model. One of the main short-

comings of the model is the polynomial approximation of Qsep, which is only

valid for one value of Qin. It could therefore be beneficial to expand the poly-

nomial.

Lastly, a clear way to increase the MPC’s performance, is to somehow improve

the performance of the inlet OIW-sensor, to a point where it accurately measures

βin,o.
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Appendix A

Matlab Code

This chapter contains the Matlab code that has been used in this Master’s thesis.

It is further divided into the code used for the simulated MPC, the experimental

MPC and the polynomial fitting.

A.1 Simulated MPC

Used to do the simulations as shown in Figure 6.1 and 6.2

A.1.1 Main

%% Main simulated MPC file - nonlinear MPC (Casadi)

clc

close all

addpath('C:\Users\amund\OneDrive\Skrivebord\NTNU\

TKP4555\Matlab\casadi -windows -matlabR2016a -v3.5.3')

import casadi .*

par = initHC ();

T = 60; % Time horizon

61



APPENDIX A. MATLAB CODE

N = 60; % Sampling intervals

dt = T/N;

%% Initial conditions

x1 = 0.03; % Overflow concentration - initial

value

x2 = 25E-6; % Underflow concentration - initial

value

x0 = [x1;x2];

u0 = 0.35; % Initial value of the MV (Zo)

% Inital pressure values

P2 = 3*10^5;

P3 = 4*10^5;

%% Time (for plotting)

t = linspace(0, T, N);

%% Initializing values of u and x

xi = zeros(2,N);

ui = zeros(1,N);

%% The first initial values will be given the initial

condition

xi(:,1) = x0;

ui(1) = u0;
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%% Simulated values for in -flow and concentration (d1

& d2)

Qin1 = [0.0006.* ones(1,N/4) 0.0006.* ones(1,N/4)

0.0006.* ones(1,N/4) 0.0007.* ones(1,N/4)];

Betain1 = [0.0005.* ones(1,N/2) ,0.0009.* ones(1,N/2)];

Qin = awgn(Qin1 , 110);

Betain = awgn(Betain1 , 110);

xSP = 30E-6;

Q = 1E6;

R = 0.1;

%% Loop

elapsedTime = [];

for i = 2:N

disp('Iteration number:')

disp(i-1)

PQ = PressFlowRelation (0.5,ui(i-1),P2,P3,Qin(i),

par);

P2 = PQ(:,3);

P3 = PQ(:,4);

xi(:,i) = ModelNMPC(xi(:,i-1), ui(i-1), Qin(i),

Betain(i), dt , P2 , P3);

tic

[ui(i)] = SimulatedMultipleShooting(xi(:,i), ui(i

-1), Qin(i), Betain(i), dt , Q, R, xSP , P2 , P3);

elapsedTime = [elapsedTime;toc];

end
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%% Plotting results

set(groot , 'defaultTextInterpreter ','latex ');

set(groot , 'defaultAxesTickLabelInterpreter ','latex ');

set(groot , 'defaultLegendInterpreter ','latex ');

xL = 20E-6;

figure('visible ', 'on')

subplot (4,1,1)

stairs(t, ui.*100, 'b')

% title('MV - Overflow Valve Opening ')

ylim ([30 50])

ylabel('$Z_O$ [\%]')

subplot (4,1,2)

plot(t, xi(2,:).*1e6 , 'b')

hold on

yline(xSP*1e6, '--r')

hold on

yline(xL*1e6 , '--r')

% title('CV - Oil Concentration Underflow ($x_2$) ')

ylim ([0 50])

ylabel('$\beta_{U,o}$ [ppm]')

subplot (4,1,3)

plot(t, Qin .*3600 , 'b')

ylim ([2.0 2.6])

% title('D1 - Flowrate Inlet ')

ylabel('$Q_{in}$ [m$^3$/h]')
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subplot (4,1,4)

plot(t, Betain .*1e6, 'b')

% title('D2 - Oil Concentration Inlet ')

xlabel('$t$ [s]')

ylim ([400 1000])

ylabel('$\beta_{in,o}$ [ppm]')

% sgtitle('Simulated MPC Results ', 'FontSize ', 12)

% saveas(gcf ,[pwd '/Figures/SimulatedMPC_2 '],'epsc ')

A.1.2 Model

%% Model of the plant

function xend = ModelNMPC(x0,D,Qin ,Betain ,dt , P2 , P3)

addpath('C:\Users\subsea\Desktop\Amund\casadi -windows -

matlabR2016a -v3.5.5')

import casadi .*

%% Parameters

par = initHC ();

Vo = par.VRF();

Vf = par.Vol_HC -par.VRF;

Zu = 0.5; % Constant underflow valve opening

%% Model variables

x1 = SX.sym('x1');

x2 = SX.sym('x2');

x = [x1;x2];
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%% Model inputs

u = SX.sym('u'); % Overflow valve opening

%% Model equations

cv1 = pi *0.005^2;

cv2 = pi *0.001^2;

Qu = cv1*Zu*sqrt (2/par.Rho_w *(P3-par.Patm));

Qo = cv2*u*sqrt (2/par.Rho_o *(P2-par.Patm));

% Qsep polynomial approximation

p2 = -9.447e+07;

p1 = 9024;

p0 = 0.7648;

% Oil inflow

Qino = Betain .*Qin;

Qsep = Qino .*(p2*Qo.^2+p1*Qo+p0);

%% Model equations

xdot1 = (1/Vo)*(Qsep -x1*Qo);

xdot2 = (1/Vf)*(Qino -Qsep -x2*Qu);

xdot = [xdot1;xdot2 ];

ode = struct('x',x,'p',u,'ode',xdot);
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%% Integrator

opts = struct('tf',dt);

F = integrator('F', 'cvodes ', ode , opts);

sim = F('x0',x0 ,'p',D);

xend = full(sim.xf);

end

A.1.3 Controller (Multiple Shooting)

function u_opt = SimulatedMultipleShooting(x0 ,u0,Qin ,

Betain ,h,Q,R,xSP ,P2,P3)

import casadi .*

%% Model variables

x1 = SX.sym('x1'); %fraction of oil in overflow

x2 = SX.sym('x2'); %fraction of oil in underflow

x = [x1;x2];

nx = 2;

%% System inputs

u = SX.sym('D'); %[h^-1] - Dilution Rate: F/V

du = SX.sym('du'); %input variation

s = SX.sym('s');

%% System constraints

u_min = 0;
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u_max = 1;

du_max = 0.05;

du0 = 0;

s_min = 0;

s_max = inf;

s0 = 0;

% control horizon

mh = 10;

% prediction horizon

ph = 15;

%% Parameters

par = initHC ();

Vo = par.VRF();

Vf = par.Vol_HC -par.VRF;

Zu = 0.5; % Constant underflow valve opening

%% Model variables

x1 = SX.sym('x1');

x2 = SX.sym('x2');

x = [x1;x2];

%% Model inputs

u = SX.sym('u'); % Overflow valve opening

cv1 = pi *0.005^2;

cv2 = pi *0.001^2;
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%% Model equations

Qu = cv1*Zu*sqrt (2/par.Rho_w *(P3-par.Patm));

Qo = cv2*u*sqrt (2/par.Rho_o *(P2-par.Patm));

% Qsep polynomial approximation

p2 = -9.447e+07;

p1 = 9024;

p0 = 0.7648;

% Oil inflow

Qino = Betain .*Qin;

Qsep = Qino .*(p2*Qo.^2+p1*Qo+p0);

xdot1 = (1/Vo)*(Qsep -x1*Qo);

xdot2 = (1/Vf)*(Qino -Qsep -x2*Qu);

xdot = [xdot1;xdot2 ];

% Objective term

L = Q*s^2 + R*du^2; % Soft Constraints

Uu=[u;du;s];

% Formulate discrete time dynamics

% CVODES from the SUNDIALS suite

ode = struct('x',x,'p',Uu ,'ode',xdot ,'quad',L);

deltaX = 10E-6;
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%% Integrator

opts = struct('tf',h);

F = integrator('F', 'cvodes ', ode , opts);

% preparing symbolic variable

w={};

% preparing numeric variables and bounds

w0 = [];

lbw = [];

ubw = [];

g={};

lbg = [];

ubg = [];

J = 0;

% Formulate the NLP

% initial state as variable

Xk = MX.sym('X0', nx);

w = {w{:}, Xk};

lbw = [lbw; x0(1); x0(2)];

ubw = [ubw; x0(1); x0(2)];

w0 = [w0; x0(1); x0(2)];

%loop for discretized dynamic

for k=0:ph -1

% variable for the control in this control
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interval

Uk = MX.sym(['U_' num2str(k)]);

DUk = MX.sym(['DU_' num2str(k)]);

Sk = MX.sym(['S_' num2str(k)]);

Uk1=[Uk;DUk;Sk];

w = {w{:}, Uk1};

% bounds

lbw = [lbw; u_min; -du_max; s_min];

ubw = [ubw; u_max; du_max; s_max];

%initial

w0 = [w0;u0;du0;s0];

if k <= mh

if k == 0

DUk = Uk - u0;

else

DUk = Uk(1) - Uk_1;

end

% Add input movement constraint

g = {g{:}, DUk};

lbg = [lbg; -du_max ];

ubg = [ubg; du_max ];

else

Uk(1) = Uk_1;

DUk = 0;

end
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% Integrate till the end of the interval

Fk = F('x0',Xk ,'p',Uk1);

J = J + Fk.qf;

Pk = Fk.xf;

Xk = MX.sym(['X_' num2str(k+1)], nx);

w = {w{:}, Xk};

lbw = [lbw; 0; 0];

ubw = [ubw; 1; 1];

w0 = [w0; x0(1); x0(2)];

%calculating delta U

if k ~= ph - 1

% for computing du

Uk_1 = Uk1(1);

end

% Add continuinity constraint (closing shooting

gap)

g = {g{:}, Pk -Xk};

lbg = [lbg; zeros(nx ,1)];

ubg = [ubg; zeros(nx ,1)];

% Soft constraint
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g = {g{:}, (Xk(2)-Sk-xSP)};

lbg = [lbg; -deltaX ];

ubg = [ubg; 0];

end

% Create an NLP solver

prob = struct('f', J, 'x', vertcat(w{:}), 'g', vertcat

(g{:}));

solver = nlpsol('solver ', 'ipopt ', prob);

% Solve the NLP

sol = solver('x0', w0, 'lbx', lbw , 'ubx', ubw ,'lbg',

lbg , 'ubg', ubg);

w_opt = full(sol.x);

%first input

u_opt = w_opt(nx + 1);

end

A.1.4 Parameters

function [par] = initHC ()

par.Patm =101325; %Atmosphere pressure

par.Rho_in = 989;

par.Rho_o = 910;%850; %

density of oil kg/m3

par.Rho_w = 1000; %density

of oil kg/m3

par.D =[5e-6;12e -6;13e-6;14e -6;15e-6;16e-6;20e -6;25e

-6;30e-6;35e-6;40e-6;45e -6;50e-6;55e -6;60e-6];

par.Cd = 20; % 1; This is the value of Cd for sphere
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when the Reynolds number is greater

%than 10 and less than 100 where the

separated flow

%starts Reference plot in 'E. Loth Drag of

non -spherical

%solid particles of regular and irregular

shape 'For laminar flow

par.vis = 10^-6; %kinematic viscosity

par.Rov = 0.001; %

overflow radius

par.Rin = 0.0035; %par.Rin = 0.0018;

% [m] % inlet

radius

par.R1 = 0.02; % [m]

Cylindrical radius

par.L1 = 0.04; % [m]

Cylindrical length

par.R2 = 0.01; % [m]

first cone radius

par.alpha = 0.1745 ; %

first cone angle in radians

par.R1Half = sqrt(par.R1^2/2);

par.L2 = 0.0567;%(par.R1-par.R2)/tan (par.alpha);

par.R3 = 0.005; % [m]

second cone radius

par.beta = 0.0131 ; %

second cone angle in radians

par.R2Half = sqrt(par.R2^2/2);

par.L3 = 0.3820;%(par.R2-par.R3)/tan (par.beta);

par.Rfac =0.3718;

par.Rfac1 =0.27;

par.L4=0.6;
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par.Ru = 0.0127;

par.Ro = 0.00635;

par.Aup=pi *0.0127^2; % 1 inch pipe at the underflow

par.Aop=pi *0.00635^2; % 1/2 inch pipe at the overflow

par.Cdu =0.1;

par.Cdo =0.02;

par.Vol_HC= (pi*(( par.R1)^2)*par.L1)+(pi *(1/3) *((par.

R1)^2+( par.R2)^2+( par.R1)*(par.R2))*(par.L2))+ (pi

*(1/3) *((par.R2)^2+( par.R3)^2+( par.R2)*(par.R3))*(

par.L3))+(pi*(par.R3)^2*( par.L4));

par.VRF=(par.Vol_HC *(0.001/ par.R1)^2);% Volume of

reverse flow oil core -----VolumeofHC *(par.Rov/par.

R1)^2

par.K1=1/par.VRF;

par.K2=1/( par.Vol_HC -par.VRF);

A.1.5 Pressure-Flow Relationship

function Q_Flow = PressFlowRelation(xu,xo,P2 ,P3,Qin ,

par)

x0 = [P2,P3];

if xo <0.1

xo =0.05;

end

Cv1=par.Aup*par.Cdu;%Pipe dia underflow

Cv2=par.Aop*par.Cdo;%pipe dia overflow

%% Qin as a sum of Qo and Qu

%options = optimoptions('fsolve ','Display ','off ');

options = optimoptions('fsolve ','Display ','off','

OptimalityTolerance ',1e-10,'FiniteDifferenceType ','
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central ');

x = fsolve (@(x) PressEquations_withQin(Qin ,xu,xo,par ,x

),x0 ,options);

Qu=abs(Cv1*xu*sqrt (2/ par.Rho_w*(x(2)-par.Patm)));

Qo=abs(Cv2*xo*sqrt (2/ par.Rho_o*(x(1)-par.Patm)));

P2=abs(x(1));

P3=abs(x(2));

Q_Flow =[Qu Qo P2 P3];

A.1.6 Pressure Equations

function F = PressEquations_withQin(Qin ,Zu ,Zo ,par ,x)

Ain=pi*par.Rin ^2;

Cv1=par.Aup*par.Cdu;

Cv2=par.Aop*par.Cdo;

Au=pi*par.R3^2;

Ao=pi*par.Rov^2;

alpha1 =0.175;

%% INLET PRESSURE %%

% F(1)=P1+(K7)*(K1*2*(x(2)-par.Patm)+K2*2*(x(1)-par.

Patm)+K3*sqrt (2*(x(2)-par.Patm)/par.Rho_w)*sqrt (2*(x

(1)-par.Patm)/par.Rho_o))-x(1) *(1+K6)+K6*par.Patm;

% F(2)=P1+(K4)*(K1*2*(x(2)-par.Patm)+K2*2*(x(1)-par.

Patm)+K3*sqrt (2*(x(2)-par.Patm)/par.Rho_w)*sqrt (2*(x

(1)-par.Patm)/par.Rho_o))-x(2) *(1+K5)+K5*par.Patm;

K_1 =(5* par.Rho_w*( alpha1*Qin*par.R1)^2) /(4*( par.R3*pi*

par.Rin^2)^2);

K_2=(par.Rho_o*( alpha1*Qin*par.R1)^2*par.Rov ^2) /(4*((

par.R3*par.Rfac1)^2*pi*par.Rin^2)^2);

F(1)=x(2)-x(1) +((1/(2* Au^2))*(Cv1*Zu)^2*((2*(x(2)-par.
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Patm)))) -((1/(2*Ao^2))*(Cv2*Zo)^2*((2*(x(1)-par.Patm

))))+K_1 -K_2;

F(2)=Qin -(Cv1*Zu*sqrt (2*(x(2)-par.Patm)/par.Rho_w)) -(

Cv2*Zo*sqrt (2*(x(1)-par.Patm)/par.Rho_o));

end
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A.2 Experimental MPC

A.2.1 Main

%% Labview test

addpath('C:\Users\subsea\Desktop\Amund\casadi -windows -

matlabR2016a -v3.5.5')

import casadi .*

[timeElapsed , uOpt , obj , P, M, iterations , success ,

exitFlag , x1Horizon , firstx2 , lastx2] =

MultipleShootingLabview ([ BetaO;BetaU], Zo , Qin ,

Betain , dt, Q, R, x2SP , Qu , u_min , u_max , du_max , mh

, ph, deltaX , P2, valveConstant);

A.2.2 Controller

function [timeElapsed , uOpt , obj , P, M, iterations ,

success , exitFlag , x1Horizon , firstx2 , lastx2] =

MultipleShootingLabview(x0, u0 , Qin , Betain , h, Q, R

, x2SP , Qu, u_min , u_max , du_max , mh, ph, deltaX , P2

, valveConstant)

tic % Starting timer

import casadi .*

%% Model variables

x1 = SX.sym('x1'); % Overflow oil fraction , BetaO

x2 = SX.sym('x2'); % Underflow oil fraction , BetaU

x = [x1;x2];

nx = 2; % Number of states
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%% System inputs

u = SX.sym('D'); % Input

du = SX.sym('du'); % Input change

s = SX.sym('s'); % Slack

%% System constraints

du0 = 0;

s_min = 0;

s_max = inf;

s0 = 0;

%% Model Equations

par = initHC ();

Vo = par.VRF(); %

Vf = par.Vol_HC -par.VRF;

RhoO = 810; % kg/m3

%% Model variables

x1 = SX.sym('x1');

x2 = SX.sym('x2');

x = [x1;x2];

%% Model inputs

u = SX.sym('u'); % Overflow valve opening

%% Experimental polynomial for Qsep
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p2 = -5.5455 ;% ( -1.322e+08, -5.671e+07)

p1 = 2.205;% (6748 , 1.13e+04)

p0 = 0.7209;% (0.7378 , 0.7919)

Qo = valveConstant*pi *0.0127^2*u*sqrt ((2/ RhoO)*(P2-par

.Patm));

% Oil inflow

Qino = Betain .*Qin/2;

%% Polynomial is valid for [m3/h], therefore

converting the units

QoPerHour = Qo *3600;

QinoPerHour = Qino *3600;

QsepPerHour = QinoPerHour .*(p2*QoPerHour .^2+p1*

QoPerHour+p0);

Qsep = QsepPerHour /3600;

%% Model equations

xdot1 = (1/Vo)*(Qsep -x1*Qo);

xdot2 = (1/Vf)*(Qino -Qsep -x2*Qu);

xdot = [xdot1;xdot2 ];

% Objective term

L = Q*s^2 + R*du^2;
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Uu=[u;du;s];

ode = struct('x',x,'p',Uu ,'ode',xdot ,'quad',L);

%% Integrator

opts = struct('tf',h);

F = integrator('F', 'cvodes ', ode , opts);

% preparing symbolic variable

w={};

preparing numeric variables and bounds

w0 = [];

lbw = [];

ubw = [];

g={};

lbg = [];

ubg = [];

J = 0;

% Formulate the NLP

%initial state as variable

Xk = MX.sym('X0', nx);

w = {w{:}, Xk};

lbw = [lbw; x0(1); x0(2)];

ubw = [ubw; x0(1); x0(2)];

w0 = [w0; x0(1); x0(2)];

for k=0:ph -1
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% variable for the control in this control

interval

Uk = MX.sym(['U_' num2str(k)]);

DUk = MX.sym(['DU_' num2str(k)]);

Sk = MX.sym(['S_' num2str(k)]);

Uk1 = [Uk; DUk; Sk];

w = {w{:}, Uk1};

lbw = [lbw; u_min; -du_max; s_min];

ubw = [ubw; u_max; du_max; s_max];

w0 = [w0; u0; du0; s0];

if k <= mh

if k == 0

DUk = Uk - u0;

else

DUk = Uk(1) - Uk_1;

end

% Add input movement constraint

g = {g{:}, DUk};

lbg = [lbg; -du_max ];

ubg = [ubg; du_max ];

else

Uk(1) = Uk_1;

DUk = 0;

end

% Integrate till the end of the interval
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Fk = F('x0',Xk ,'p',Uk1);

J = J + Fk.qf;

%loop

Pk = Fk.xf;

% States variables for state at end of interval

% create states

Xk = MX.sym(['X_' num2str(k+1)], nx);

w = {w{:}, Xk};

lbw = [lbw; 0; 0];

ubw = [ubw; 1; 1];

w0 = [w0; x0(1); x0(2)];

%calculating delta U

if k ~= ph - 1

% for computing du

Uk_1 = Uk1(1);

end

% Add continuinity constraint (closing shooting

gap)

g = {g{:}, Pk -Xk};

lbg = [lbg; zeros(nx ,1)];

ubg = [ubg; zeros(nx ,1)];
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% Soft constraint

g = {g{:}, (Xk(2)-Sk-x2SP)};

lbg = [lbg; -deltaX ];

ubg = [ubg; 0];

end

%% Create an NLP solver

prob = struct('f', J, 'x', vertcat(w{:}), 'g', vertcat

(g{:}));

solver = nlpsol('solver ', 'ipopt ', prob);

%% Solve the NLP

sol = solver('x0', w0, 'lbx', lbw , 'ubx', ubw ,'lbg',

lbg , 'ubg', ubg);

w_opt = full(sol.x);

%% Various outputs

uOpt = w_opt(nx + 1);

obj = full(sol.f);

x1Horizon = w_opt (1:5: end);

P = w_opt (2:5: end); % x2

M = w_opt (3:5: end); % Control inputs
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stats = solver.stats(); % information

iterations = stats.iter_count; % Number of iterations

performed

success = stats.success; % 1 = success 0 = fail

exitFlag = stats.return_status ();

QoValve = full(Qo);

firstx2 = P(2);

lastx2 = P(11);

timeElapsed = toc; % ending timer

end
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A.3 Polynomial Fitting

%% Polynomial fitting %%

clc

close all

%% Data

T = readtable('ExpData /24.3.21. xlsx');

start = 1500; % Values before this measurement are

discarded

Qo = T{start :2150 ,2};

betaU = T{start :2150 ,3};

betaIn = 300;

betaIn2 = 420;

Zo = T{start :2150 ,4};

%% Plotting experimental results

set(groot , 'defaultTextInterpreter ','latex ');

set(groot , 'defaultAxesTickLabelInterpreter ','latex ');

set(groot , 'defaultLegendInterpreter ','latex ');

%% Data 2

T2 = readtable('ExpData /26.3.21. xlsx');

start2 = 810;

Qo2 = T2{start2 :1650 ,2};

betaU2 = T2{start2 :1650 ,3};
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Zo2 = T2{start2 :1650 ,4};

%% DataCombined (For Plotting)

QoCom = [Qo; Qo2];

betaUCom = [betaU; betaU2 ];

ZoCom = [Zo; Zo2];

%% Time (for plotting)

time1 = T{start :2150 ,6};

time2 = T2{start2 :1650 ,6};

time2 = T2{start2 :1650 ,6}+ max(time1)-min(time2);

time = [time1;time2 ];

%% Plotting experimental results COMBINED

figure('visible ','on');

subplot (3,1,1)

plot(time , QoCom , 'b')

ax=gca;

ax.XAxis.Exponent =0;

xlim([min(time), max(time)])

ylabel('$Q_O$ [m$^3$/h]')

% title('Overflow Flowrate ')

subplot (3,1,2)

plot(time , betaUCom , 'b')

ax=gca;

ax.XAxis.Exponent =0;

87



APPENDIX A. MATLAB CODE

xlim([min(time), max(time)])

ylabel('$\ beta_U$ [ppm]')

% title('Underflow Oil Concentration ')

subplot (3,1,3)

plot(time , ZoCom , 'b')

ax=gca;

ax.XAxis.Exponent =0;

xlim([min(time), max(time)])

ylim ([0 25])

xlabel('$t$ [s]')

ylabel('$Z_O$ [\%]')

% title('Overflow Valve Opening ')

% sgtitle('Experimental Data - Polynomial Fitting ')

saveas(gcf , [pwd '/Figures/ExperimentalDataPolynomial '

],'epsc')

%% Calculating average values

QoAvg1 = mean([Qo (1:67) ]);

QoAvg2 = mean([Qo (126:177) ]);

QoAvg3 = mean([Qo (197:264) ]);

QoAvg4 = mean([Qo (312:431) ]);

QoAvg5 = mean([Qo (466:540) ]);

QoAvgList = [QoAvg1 QoAvg2 QoAvg3 QoAvg4 QoAvg5 ];

% Discarded values:

% QoAvg6 = mean([Qo (677:762) ]);

% QoAvg7 = mean([Qo (803:850) ]);
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% QoAvg8 = mean([Qo (893:906) ]);

% QoAvg9 = mean([Qo (944:1018) ]);

% QoAvg10 = mean([Qo (1044:1068) ]);

%

% QoAvgList2 = [QoAvg6 QoAvg7 QoAvg8 QoAvg9 QoAvg10 ];

betaUAvg1 = mean([ betaU (1:67) ]);

betaUAvg2 = mean([ betaU (127:175) ]);

betaUAvg3 = mean([ betaU (214:249) ]);

betaUAvg4 = mean([ betaU (364:400) ]);

betaUAvg5 = mean([ betaU (433:535) ]);

betaUAvgList = [betaUAvg1 betaUAvg2 betaUAvg3

betaUAvg4 betaUAvg5 ];

% Discarded values:

%

% betaUAvg6 = mean([betaU (677:762) ]);

% betaUAvg7 = mean([betaU (803:850) ]);

% betaUAvg8 = mean([betaU (893:906) ]);

% betaUAvg9 = mean([betaU (944:1018) ]);

% betaUAvg10 = mean([betaU (1044:1068) ]);

%

% betaUAvgList2 = [betaUAvg6 betaUAvg7 betaUAvg8

betaUAvg9 betaUAvg10 ];

%% Calculating average values - Dataset 2

QoAvg11 = mean([Qo2 (1:100) ]);

QoAvg12 = mean([Qo2 (110:257) ]);

QoAvg13 = mean([Qo2 (285:440) ]);

QoAvg14 = mean([Qo2 (468:662) ]);
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QoAvg15 = mean([Qo2 (690:837) ]);

QoAvgListData2 = [QoAvg11 QoAvg12 QoAvg13 QoAvg14

QoAvg15 ];

betaUAvg11 = mean([ betaU2 (1:100) ]);

betaUAvg12 = mean([ betaU2 (110:257) ]);

betaUAvg13 = mean([ betaU2 (285:440) ]);

betaUAvg14 = mean([ betaU2 (468:662) ]);

betaUAvg15 = mean([ betaU2 (690:837) ]);

betaUListData2 = [betaUAvg11 betaUAvg12 betaUAvg13

betaUAvg14 betaUAvg15 ];

%% Calculating separation efficiency

etaList = [];

for i = 1: length(betaUAvgList)

eta = 1 - (betaUAvgList(i)/betaIn);

etaList = [etaList , eta];

end

% etaList2 = [];

% for i = 1: length(betaUAvgList2)

% eta2 = 1 - (betaUAvgList2(i)/betaIn2);

% etaList2 = [etaList2 , eta2];

% end

etaListData2 = [];

for i = 1: length(betaUListData2)

eta3 = 1 - (betaUListData2(i)/betaIn); % Betain
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is 300 for this aswell

etaListData2 = [etaListData2 , eta3];

end

%% Polynomial fitting

QoAvgList3 = sort([ QoAvgList QoAvgListData2 ]);

etaList3 = sort([ etaList etaListData2 ]);

p2 = polyfit(QoAvgList3 , etaList3 , 2); % 2nd degree

polynomial

xlist = linspace(min(QoAvgList3), max(QoAvgList3),

10000);

pol2 = polyval(p2 ,xlist);

p3 = polyfit(QoAvgList3 , etaList3 , 3); % 3rd degree

polynomial

pol3 = polyval(p3 ,xlist); %

%% Plotting

figure

scatter(QoAvgList3 , etaList3 , 'filled ', 'r')

hold on

plot(xlist , pol2 , 'b')

91



APPENDIX A. MATLAB CODE

xlabel('$Q_O$ [m$^3$/h]')

ylabel('$\eta$ [-]')

legend('Exp data','Polynomial ')

legend('Location ', 'northwest ')

% title('Polynomial Expression ')

saveas(gcf , [pwd '/Figures/PolynomialApproximation '],'

epsc')
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LabVIEW

Untitled 1
Last modified on 29.05.2021 at 15.31
Printed on 29.05.2021 at 15.32
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Figure B.1: LabVIEW - MPC block diagram
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Appendix C

Sampling Procedure

The procedure for operating the sampling points in the CSL.[14]

1. Check that the sampling bomb is drained and de-pressurized.

2. Open inlet valve until the pressure in the sampling bomb matches the

process pressure, then close inlet valve.

3. Open vent valve until the pressure in the sampling bomb is at atmospheric

level.

4. Extract sample from sample valve

5. Fully drain the sampling bomb, then close sample valve and vent valve.
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Appendix D

Mastersizer Procedure

The following is a procedure for operating the offline Mastersizer sensor; devel-

oped by Anders Andersen and Marcin Dudek.
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1. PURPOSE 
Mastersizer 3000 (Malvern Instruments) is used for quick and accurate particle size 

distribution analysis. It can work with both emulsions and dispersions. 

 

2. SCOPE 
Mastersizer 3000 uses laser diffraction for measuring the size of particles or droplets in a 

dispersion (from 0,01 to 3500 µm), by measuring the intensity of scattered light from those 

particles in a continuous phase. Data is then processed and presented as a size distribution. 
 

  

3. RESPONSIBILITIES 
The person responsible for the instrument is also responsible for updating this procedure. 
 

 

4. DEFINITIONS AND ABBREVIATIONS 
SOP – Standard operating procedure 

 

5.  EQUIPMENT 
Mastersizer 3000 

Hydro EV accessory 

Beakers (400 – 1000 ml) 

Hydro SV accessory 

Washing station for Hydro SV 

 

CHEMICALS 
Water 

Crude oil 

Organic solvents (Toluene, Isopropanol) 

Solid particles 
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6. METHOD 

 
This procedure describes performing a manual measurement. It is possible to create an SOP 

(Standard operating procedure) in an analogous way, to quickly repeat similar measurements. 

The person responsible for the instrument can also create SOP on request, during training. 

 

The instrument is equipped with two measurement accessories: Hydro EV (400-600 ml) and 

Hydro SV (6-7 ml). Depending on the amount of available sample, the user can choose 

whichever accessory fits best for his purposes. 

 

Before measurements make sure that the sample and solvents used for cleaning after, 

are compatible with the tubing (can be changed, but normally is PVC) and sealing 

material (Viton®). Incompatible solvent may damage the instrument. 

 

It is necessary to know the refractive index and the density of the dispersed material, as 

well as the refractive index of the dispersant before the measurement starts. 

 

The instrument needs to be turned on 30 min before measurements to ensure thermal stability 

in the cell. 

 

1. Turn on the computer and then the software on the desktop (Mastersizer 3000). 

2. In the bottom-right corner check, if the instrument and accessory is connected 

properly (Mastersizer 3000 and Hydro EV) 

3. Click New – Measurement File 

4. Click Manual Measurement from the Measurement ribbon at the top 

a. Name the sample 

b. Select particle type: 

i. Emulsions: spherical 

ii. Dispersions: non-spherical (recommended, however not necessary) 

c. Select material by: 

i. Using the existing database (you can edit the database by adding 

known materials or chemicals) 

ii. Manual input of the refractive index and the density 

d. Select dispersant by: 

i. Database (same as in c.) 

ii. Manual input of the refractive index 

e. Measurement duration 

Not that important, anywhere between 10-20 s (usually 10s) depending on how much 

time you have 

f. Blue laser light measurement  

Blue laser is used for very fine particles. If you expect that your sample contains 

particles smaller than 150 nm, then check that option. If not, leave it unchecked, as it 

will prolong your measurement. 
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g. Sequence 

Depends on how much time you want to spend on each sample. 3 runs per 

measurement is sufficient, more than 5 is unnecessary. 

h. Obscuration 

Heavily dependent on your sample and its concentration, may require some initial 

screening. See Additional Notes in the end of the procedure for more information. 

Standard values are: 

i. 10-20% for wet sample (emulsions, dispersions) 

ii. 1-10% for dry sample 

iii. 5-12% for crude oil emulsion (50-100 ppm concentration) 

i. Accessories – stirrer 

i. Anywhere between 2000-3000 rpm 

ii. Note: if you have a full beaker and stir too fast, spillage may occur 

j. Cleaning 

i. Normal – 3 sequences (for solid particles should be enough) 

ii. For crude oil emulsions (custom procedure) 

k. Analysis Model 

i. General Purpose – most likely use this 

ii. Narrow – if you expect only a single peak (very monodisperse system) 

l. Result type 

It is recommended to use the volume distribution, however the choice is up to the 

user. 

m. User sizes 

It is recommended to use the default sizes. 

 

Instructions for Hydro EV (points 5 to 10) 

Instructions for Hydro SV (points 11 to 15) 

 

5. Add beaker with dispersant (pure continuous phase) and lower the head. Make sure 

that the beaker is not full – 60-80% volume is usually enough for the measurement 

and to prevent spillage during mixing. 

6. Click Initialize the instrument to initialize and Start again to measure the 

background. The background is of good quality, when the indicator of energy on the 

1st and 20th detector is less than 100 and 20, respectively. 

7. Add the sample into the beaker until you have reached sufficient obscuration 

(indicator on the left side of the screen), wait 30-50 seconds and then start 

measurements. After the measurement is done, you may preform additional 

measurements or skip to cleaning. 

8. Start cleaning by clicking the Clean button (even though it may seem greyed out) 

9. Follow the instructions on the screen. If you rinse the apparatus with organic solvents, 

make sure you use the portable fume hood and half-mask with appropriate filters. 

When the cleaning sequence is complete, stop the stirrer and exit the measurement 

window. 
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10. Remember to save your measurement file in your folder. 

 

 

Cleaning: 

• Dispersion with solid particles – rinsing the system several times with water is 

sufficient 

• Crude oil emulsions – rinsing twice with isopropanol/toluene (50/50), then 

isopropanol once and then 4-5 times with tap water. 

 

Make sure to clean any spillage to prevent damaging the equipment. 

After measurements are complete, remember to clean the tray! 

 

There is a possibility of connecting temperature control unit to the cell, to measure size 

distributions in various temperatures. 

 

Instructions for Hydro SV 

11. Carefully add the dispersant (pure continuous phase) to the cell by using a pipette or 

syringe. Avoid creating gas bubbles in the cell. Do not scratch the glass of the cell. 

Insert the accessory back into the instrument. You may add magnetic stirrer in the cell 

to have and control the mixing in the cell. 

12. Click Initialize the instrument to initialize and Start again to measure the 

background. The background is of good quality, when the indicator of energy on the 

1st and 20th detector is less than 100 and 20, respectively. 

13. Take out the accessory from the instrument. Remove some dispersant and add your 

sample directly in the cell. This method may require some experience with the 

sample, as you need to be in a specific range of the obscuration (indicator on the left 

side of the screen). After adding the sample, put the accessory back into the 

instrument. If the appropriate level of obscuration is reached, wait 30-50 seconds and 

then start measurements. After the measurement is done, you may preform additional 

measurements or skip to cleaning. 

14. Cleaning is performed with a washing station. Take out the accessory and unlock the 

cell. Put the cell in the right position in the washing station and flush the cell several 

times with an appropriate solvent: 

• Dispersion with solid particles – rinsing the system several times with water is 

sufficient 

• Crude oil emulsions – rinsing twice with toluene, then twice with isopropanol, 

then 4-5 times with tap water. Finish the cleaning with flushing the cell with 

isopropanol. 

15. Put the cell on a fibreless cloth and let it dry. 

The results can be accessed by opening the measurement file. The software produces graphs, 

different distributions and various parameters, however the raw data can still be exported to a 

text file or excel sheet. 
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It is possible to install the software on user’s personal computer and access the files there. 

Ask the person responsible for the instrument for more details. 

 

7. SAFETY EQUIPMENT 
Safety goggles 

Lab coat 

Nitrile gloves 

Half-mask 

Portable fume hood 

 

 

8.  REFERENCES 
Mastersizer 3000 manual 

Malvern educational materials 

 

ADDITIONAL NOTES 
 

Obscuration tells you how much light is lost during your measurement. The software 

typically adjusts for 10-20% of obscuration, which means that the value above or below this 

range can yield inaccurate results. For example, if the concentration is too high, there is a risk 

of multiscattering (light is scattered off many particles). This will result in larger angle of 

scattering and a signal from very small particles (below 1 µm). Sometimes it can also be 

spotted by the presence of bimodal, non-continuous distribution of particles. Conversely, if 

the dispersion concentration is too low, the model in the software 'overadjusts' and can shift 

the distribution towards larger sizes of drops. 


