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A B S T R A C T   

The coupling of computational thermodynamics and kinetics has been the central research theme in Integrated 
Computational Material Engineering (ICME). Two major bottlenecks in implementing this coupling and per-
forming efficient ICME-guided high-throughput multi-component industrial alloys discovery or process param-
eters optimization, are slow responses in kinetic calculations to a given set of compositions and processing 
conditions and the quality of a large amount of calculated thermodynamic data. Here, we employ machine 
learning techniques to eliminate them, including (1) intelligent corrupt data detection and re-interpolation (i.e. 
data purge/cleaning) to a big tabulated thermodynamic dataset based on an unsupervised learning algorithm and 
(2) parameterization via artificial neural networks of the purged big thermodynamic dataset into a non-linear 
equation consisting of base functions and parameterization coefficients. The two techniques enable the effi-
cient linkage of high-quality data with a previously developed microstructure model. This proposed approach not 
only improves the model performance by eliminating the interference of the corrupt data and stability due to the 
boundedness and continuity of the obtained non-linear equation but also dramatically reduces the running time 
and demand for computer physical memory simultaneously. The high computational robustness, efficiency, and 
accuracy, which are prerequisites for high-throughput computing, are verified by a series of case studies on 
multi-component aluminum, steel, and high-entropy alloys. The proposed data purge and parameterization 
methods are expected to apply to various microstructure simulation approaches or to bridging the multi-scale 
simulation where handling a large amount of input data is required. It is concluded that machine learning is a 
valuable tool in fueling the development of ICME and high throughput materials simulations.   

1. Introduction 

The demand for advanced materials has been ever-increasing, but 
the time to develop, produce, and deploy a new material is often 20 
years or more [1,2]. The rapidly evolving high-throughput computing 
(HTC) technique and Integrated Computational Material Engineering 
(ICME) are widely adopted in the materials field and are regarded as 
promising solutions for accelerating this timeframe [2–5]. One of the 
prerequisites for HTC and ICME to succeed in materials discovery and 

process optimization lies in the robustness and computational efficiency 
in the individual task so that a large number of tasks can be easily in-
tegrated and executed within a feasible time scale. 

Microstructure simulation, built on the coupling of computational 
thermodynamics and kinetics, is a crucial part of any ICME framework. 
Up to now, various microstructure simulation approaches have been put 
forward, including the phase field approach which can provide a 
detailed description of the spatial distributions of microstructure fea-
tures [6–8], and the Kampmann–Wagner numerical (KWN) model which 
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can address multi-scale multi-component industrial problems due to its 
computation efficiency [9–11]. Nevertheless, these microstructure 
modeling approaches require access to a large amount of thermody-
namic data, usually in the format of phase diagram data. These data are 
usually generated by CALPHAD software such as Thermo-Calc or Pandat 

software [12–14]. Often one can call the CALPHAD software and 
calculate thermodynamic data in every grid point and at every time step 
as the strategy adopted by DICTRA (Thermo-calc’s diffusion phase 
transformation module) and MICRESS (an implementation of phase field 
method) software [15,16]. However, with this so-called in-situ coupling 

Fig. 1. Tabulated thermodynamic dataset of θ(Al2Cu) phase in Al-Cu alloys for aging simulations: (a) and (b) are the raw data corresponding to solvus temperature 
and Cu partition coefficient, respectively; (c) and (d) are the corresponding datasets after intelligent detection (yellow points represent corrupt data); (e) and (f) are 
the corresponding re-interpolation data. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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it is time-consuming in handling multi-component industrial alloy. A 
popular approach for efficient data access is the tabulation or mapping 
file technique [17–20] which is to generate these thermodynamic data 
in pre-defined grid points and then to apply a multilinear interpolation 
procedure to calculate the values among these grid points. Due to its 
efficiency, this technique has been applied not only to the phase field 
models [21,22] and KWN models [10,18,23] but also in many other 
disciplines, e.g., combustion modeling [19,24], indoor airflow simula-
tion in building application [25], and organ simulation in biology [26]. 

However, when incorporating these tabulated thermodynamic data 
into a microstructure model, several challenges are encountered. Firstly, 
the numerical quality of these tabulated data such as smoothness must 
be guaranteed, which is essential for the convergence of the iterative 
algorithms used in the numerical solution of microstructure models. 
Fig. 1 (a) and (b) show the tabulated Gibbs-Thomson phase diagram 
data of the θ(Al2Cu) phase in the Al-Cu system for an aging treatment 
simulation [10,27], which is generated by the TQ module of 
Thermo-Calc software (TCAl 4.0 database). It contains four axes, i.e., 
curvature, Cu concentration, solvus temperature, and Cu partition co-
efficient. Note that the curvature is the reciprocal of the radius of a 
precipitate and will affect its growth kinetic in microstructure simula-
tion via the Gibbs-Thomson effect [10]. Clearly, some incorrect or 
corrupt data exists at very low Cu concentrations shown in Fig. 1 (a) and 
(b), which would hinder the subsequent iterative calculations if the 
calculations need access to these data points. Similar corrupt data is also 
found in a complex multi-component Fe-based system as mentioned 
later. The occurrence of these corrupt data is due to that some of the 
boundary was not the focus when building the corresponding thermo-
dynamic database. Note that the occurrence of these corrupt data is rare 
thanking to the great efforts from the CALPHAD community but still not 
avoidable owing to the extrapolation algorithms from simple to complex 
systems used in the CALPHAD software to perform thermodynamic 
computations. The corrupt data would be more likely to occur in a 
compositionally complex alloy system whose tabulation file has higher 
dimensions and a larger amount of data. Due to the sheer amount of 
these data (usually up to hundreds of MB in binary format file), it is 
impossible to manually identify and remove these corrupt data. Up to 
now, an intelligent automated thermodynamic data purge/cleaning 
procedure is still lacking, which will be treated in this work. It should be 
noted that the previous treatment is either to try different initial pa-
rameters in CALPHAD software or to optimize the thermodynamic 
database. 

Moreover, although the tabulation technique greatly shortens the 
simulation time as compared to the direct coupling method, the demand 
for computer physical memory is high because a large amount of data 

must be loaded into the computer memory. For example, as mentioned 
later in the case studies, the required computer memory is increased by 
11700% (the size of the called binary file is 1587 MB) when simulating 
the solidification process of an Al-Co-Cr-Fe-Ni-Ti high entropy alloy 
using the KWN model as compared to the direct coupling method. This 
limits the application of the tabulation technique towards HTC in which 
shared memory mode parallel computing is often adopted. Thus, it is 
valuable if an efficient and low-memory-usage coupling technique is 
developed to bridge this identified gap. A straightforward method is to 
parameterize the tabulation data into an equation. Artificial neural 
networks (ANN), as a powerful regression algorithm, can handle this 
task, as demonstrated by Strandlund more than 10 years ago [12]. 
However, given the rapid recent progress in ANN, it is justifiable to 
re-visit this topic and explore what the latest ANN technique can offer on 
data purge and regression analysis within the context of microstructure 
modeling. 

Here we report our exploration with materials informatics [1,28] to 
solve the above-mentioned two bottlenecks. A flowchart of the proposed 
machine learning framework is shown in Fig. 2. Firstly, a machine 
learning algorithm is adopted to make intelligent data purge, including 
corrupt data detection and recalibration/re-interpolation. Then, these 
recalibrated data are trained by ANN, and a non-linear equation with a 
small parameterization dataset (only about 4 KB) is obtained to repre-
sent the whole tabulated data. Note that the calibration is conducted 
outside of the CALPHAD software. Finally, the equation with the 
parameterization dataset is coupled with the microstructure model 
using a straightforward method to enable high-throughput microstruc-
ture simulations. Successful case studies are presented in three compo-
sitionally complex alloy systems, including aluminum, steel, and 
high-entropy alloys. 

2. Methods 

An unsupervised algorithm, which is named “Density-based spatial 
clustering of applications with noise” (DBSCAN) [29], is applied to 
purge data. The ANN and DBSCAN algorithms, as implemented in 
Tensorflow software [30], is adopted. The obtained non-linear equation 
with the parameterization dataset is coupled with the previously 
developed solidification and precipitation KWN models [9,23] using a 
FORTRAN-based Dynamic-Link Library with the “Plug and Play” 
feature. Almost all figures in the paper are made using the matplotlib 
[31]. 

Fig. 2. Flowchart of the proposed machine learning framework to enable high-throughput microstructure simulations in compositionally complex alloy systems.  
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3. Results 

3.1. Data purge 

We firstly take binary Al-Cu alloy as an example to illustrate the 
methodology and then extend it to multi-component alloy systems. As 
shown in Fig. 1 (a) and (b), the tabulated phase diagram data are divided 
into two clusters: one with few data points, called corrupt data, and the 
other with the majority data points, called normal data. The corrupt 
data, if not filtered, have a great influence on regression analysis using 
ANN (the detail of the ANN algorithm is introduced later) as shown in 
Fig. S1 in the Supplementary Information. Hence, the data purge is 
necessary before making the regression analysis using ANN. 

There are two mainstream methodologies to perform clustering 
analysis, i.e. supervised and unsupervised learning algorithms. For the 
former, represented by the “Support Vector Machine” (SVM) algorithm 
[32], some pre-labeled training data are required. However, the good 
choice of the labeled training data, which still requires heavy human 
intervention (see Fig. S2 in the Supplementary Information), is critical 
for the good performance of this algorithm. In contrast, unsupervised 
learning algorithms do not need to label data in advance. Here, the 
unsupervised algorithm DBSCAN is applied to the Al-Cu system. It is a 
density-based classification algorithm and only two hyperparameters 
need to be determined: the ε (Eps) neighborhood of every point and the 
minimum number of points required to form a dense region (minPts). 
This algorithm consists of the following steps to deal with the tabulated 
data of θ(Al2Cu) phase in Al-Cu system (Fig. 1):  

1) Input the entire tabulation dataset, and choose the data with the 
curvature equal to zero (K1 = 0);  

2) Choose two columns, i.e., Cu content and solvus temperature, as 
shown in Fig. 1 (a);  

3) Make standardization using StandardScaler [29,33] on the data in 
the two columns, and use the DBSCAN algorithm to detect all corrupt 
data by tuning the values of ε (Eps) and minPts, as shown in Fig. 1 (c); 
It should be noted that StandardScalar is to standardize features by 
removing the mean and scaling to unit variance [33].  

4) Make inverse standardization for the two columns and repair the 
corrupt data (note that the solvus temperature and Cu partition co-
efficient are repaired simultaneously as explained later), as shown in 
Fig. 1 (e) and (f);  

5) Choose the next group data with the curvature of Ki+1 (Ki+1 = Ki +

ΔK), and go to steps 2–4;  
6) Until all curvatures are chosen, input the repaired dataset, and 

choose the data with the minimum Cu content (C1), as shown in 
Fig. 1 (a);  

7) Choose two columns, i.e., curvature and solvus temperature, and 
perform the same program of steps 3–4;  

8) Choose the next group data with the Cu content of Ci+1 (Ci+1 = Ci +

ΔC), and go to step 7;  
9) Until all Cu contents are chosen, a complete repaired dataset is 

obtained. 

Note that the corrupt data simultaneously occur at the axes corre-
sponding to the solvus temperature and Cu partition coefficient in this 
example (Fig. 1 (c) and (d)). Thus, the two axes are scanned simulta-
neously, and only two cycles are performed to complete the data purge 
of this binary system. To ensure that all corrupt data can be detected, the 
two hyperparameters are adjusted each cycle. A two-step algorithm is 
proposed to make data repair. The first step is to manually calculate the 
data corresponding to corrupt points by the console mode of Thermo- 
Calc software instead of its TQ module. The first step also provides an 
interface for inputting data from other sources. If the first step does not 
work, a linear interpolation/extrapolation will be performed to over-
write the corrupt data. The purged tabulated data are shown in Fig. 1 (e) 
and (f). Note that the change of steps 1–5 and 6–9 will not affect the 

result. 

3.2. Parameterization of tabulated data based on ANN 

We previously had employed the table look-up and interpolation 
procedure to achieve efficient access to these thermodynamic quantities 
in microstructure modeling [10,34,35]. However, as mentioned above, 
this efficient access is at the expense of large computer physical memory 
usage, which would put restrictions when the microstructure simulation 
was embedded in a parallel-running-mode high-throughput ICME 
simulation. If the tabulated thermodynamic dataset could be parame-
terized, e.g., the solvus temperature (y1) and Cu partition coefficient (y2) 
can be expressed by the Cu content (x1) and curvature (x2), less memory 
would be demanded in a HTC case study. The ANN algorithm can 
perform this parameterization as demonstrated below. 

As shown in Fig. 3, a fully connected three-layer ANN is shown, 
including one input layer, one hidden layer, and one output layer. The 
number of input and output nodes are defined by the problem to be 
solved while the number of hidden nodes is arbitrary. Assuming there 
are N input nodes, J hidden nodes, and K output nodes, the non-linear 
regression function is expressed as 

yk = θk +
∑J

j=1
Wjksigmoid

(

θj +
∑N

n=1
ωnjxn

)

(1.1)  

sigmoid(x)= 1 / (1+ exp(− x)) (1.2) 

The sigmoid function is the used activation function. The sets of 
weights Wjk and ωnj and the sets of biases θk and θj can be determined by 
training the ANN. When one hidden layer is chosen, the total number of 
weights and biases is (N+1)J + (J+1)K. The neural network can be 
trained by using x1, x2, …, xN to reproduce the target values, t1, t2, …, tK. 
The loss function is given by 

E=
1

2S
∑S

s=1

∑K

k=1
(yks − tks)

2 (2)  

where S is the total training number of each target value, tk. We choose 
the conventional backpropagation algorithm [36] combined with the 
gradient descent optimizer to update the weights and biases (the 
learning rate is set as 0.1). 70% of the whole data is used as the training 
dataset, and the remaining as the test dataset. It is worth noting that the 
training and test datasets have been completely disordered, and stan-
dardized using StandardScaler before ANN training. 

The ANN algorithm is applied to train the tabulated dataset of the θ 

Fig. 3. Schematic diagram of the used three-layer ANN.  
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phase in the Al-Cu system, and the comparisons of the predictions and 
target values are shown in Fig. 4. Note that the predictions contain both 
the output results using the training and test datasets. Good consistency 
can be found between the targets and regression results with both the 
training loss and test loss (Equation (2)) up to approximately 0.007. 
Moreover, the test loss is always slightly higher than the training loss in 
all iterations (Fig. 4 (e)), suggesting that there is no overfitting. 

After making the ANN regression, we can create a parameterization 
dataset combined with Equation 1.1 to express the discrete tabulated 
phase diagram data points with good accuracy. The parameterization 
dataset consists of four parts: weights (W) and biases (θ), structural 
parameters (N, J, and K), activation function, and standardization pa-
rameters. The size of the parameterization dataset is only about 4 KB, 
which is far smaller than that of the tabulated dataset (391 KB in binary 
form). The data compression will be more significant in a multi- 
component alloy system. 

3.3. The generalization to multi-component alloy systems 

The current proposed thermodynamic data purge and parameteri-
zation techniques can be generalized to multi-component alloy systems. 
For the system with N components, N cycles are performed to check its 
data quality if corrupt data occur at y1, y2, …, yK simultaneously like 
Fig. 1. This data purge method is further applied to some multi- 
component alloy systems, including non-stoichiometric FCC phase 
precipitating from the liquid in the Al-Zn-Mg-Cu system (from Thermo- 
Calc, TCAl 4.0 database), non-stoichiometric FCC phase precipitating 
from BCC matrix in the Fe-Cu-Al-Mn-Ni system (from Thermo-Calc, 
TCFe 8.0 database), and non-stoichiometric FCC phase precipitating 
from the liquid in the Al-Co-Cr-Fe-Ni-Ti high entropy system (from 
Thermo-Calc, TCFe 8.0 database). The results are shown in Fig. 5. For 
the Al-Zn-Mg-Cu system, no corrupt data are found. Thus, the ANN al-
gorithm (N = 4, J = 10, and K = 4) is directly applied to the raw 
thermodynamic dataset (an example of this dataset is shown in Fig. S3), 
and the comparisons of the predictions and target values are shown in 
Fig. 5 (a). The regression results match well with the targets with both 

Fig. 4. Comparison of predictions and target values based on the ANN algorithm for θ phase in Al-Cu alloys: data corresponding to (a, c) solvus temperature and (b, 
d) Cu partition coefficient; and (e) the variances of the training and test loss values (after standardization) with the iteration number. Note that the used ANN has N =

2 input nodes, J = 10 hidden nodes, and K = 2 output nodes. 
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the training loss and test loss below 0.01. For the Fe-Cu-Al-Mn-Ni system 
(Fig. 5 (b)), some corrupt data exist in its tabulated dataset. The pro-
posed data purge and parameterization techniques have been applied, 
and the corresponding purged and ANN regression (N = 5, J = 10, and 
K = 5) results with the training loss and test loss being about 0.025 are 
shown in Fig. 5 (b). For the Al-Co-Cr-Fe-Ni-Ti high entropy system 
(Fig. 5 (c)), no corrupt data exist, which could be because the phase 
diagram above solidus is simpler to be calculated than that below solidus 
for an alloy. So the ANN algorithm (N = 6, J = 25, and K = 6) has been 
applied to deal with the raw dataset, the training and test loss being 
about 0.05. Note that the tabulated datasets of these non-stoichiometric 
phases are more complex than those stoichiometric phases (like the θ 
phase in the Al-Cu system), which further suggests the power of the 
adopted ANN regression. After making the ANN regression, the corre-
sponding parameterization datasets are generated to represent these 
tabulation data. The sizes of the tabulation files (binary form) of Al-Zn- 
Mg-Cu, Fe-Cu-Al-Mn-Ni, and Al-Co-Cr-Fe-Ni-Ti systems are significantly 
reduced from 791 MB, 819 MB, and 1587 MB to about 4 KB, 
respectively. 

3.4. The application of the data purge and parameterization method in 
microstructure modeling 

After obtaining the base functions and parameterization datasets, 
one can couple them with different microstructure models via a 
Dynamic-Link Library file in the so-called “Plug and Play” manner. Here, 
as an example, we apply the proposed method to the KWN model to 
evaluate the feasibility and demonstrate the advantages. Note that the 
KWN model was previously coupled with the CALPHAD thermodynamic 

data via the tabulation technique [37]. Three cases are performed, 
including as-cast grain size predictions in the inoculated 
Al-xZn-2Mg-2Cu alloys (wt.%) and Al3.32Co27.27Cr18.18Fe18.18-

Ni27.27Ti5.78 high entropy alloy (at.%) [38], and aging precipitation of 
spherical FCC phases from BCC matrix at 900 K in the 
Fe-1Cu-1Al-0.5Mn-0.5Ni alloy (at.%). 

The previously-developed KWN model for as-cast grain size predic-
tion [23] is applied to the Al-xZn-2Mg-2Cu alloys inoculated by different 
amounts of Al-5Ti-1B grain refiners. The measured effective cooling rate 
is about 67 K/s [39]. The input parameters for this simulation are listed 
in Table S1 in the Supplementary Information. Four data access tech-
niques are performed, including the direct coupling method, using the 
original tabulation file, using the new tabulation file generated from the 
parameterization equation, and using the parameterization equation. 
The comparisons are shown in Fig. 6 (a) and (b). For the nucleation stage 
(Fig. 6 (a)), the four methods predict almost the same results, suggesting 
a good accuracy of the proposed parameterization technique. This is 
attributed to the quite low regression loss values shown in Fig. 5 (a). For 
the growth stage (Fig. 6 (b)), the two tabulation methods cannot run 
smoothly as compared to the direct coupling and parameterization 
methods. This is because the iterations have accessed the data which are 
beyond the range of the tabulation file. Note that the simulation cannot 
continue to run after about 7.5s using the direct coupling, as shown in 
Fig. 6 (b). This may be because the iterations have called the corrupt 
data points which are not met in the generated tabulation file. The grain 
sizes predicted by the four methods are almost the same (about 40 μm) 
and match well with the measured result (55μm) [39]. 

Fig. 6 (c) shows the results of as-cast grain size predictions using the 
proposed parameterization technique (including 30 cases). It is found 

Fig. 5. Part of the tabulated thermodynamic datasets and the corresponding data purge and parameterization results of the non-stoichiometric (a) FCC phase 
precipitating from liquid matrix in Al-Zn-Mg-Cu, (b) FCC phase precipitating from BCC matrix in Fe-Cu-Al-Mn-Ni, and (c) FCC phase precipitating from liquid matrix 
in Al-Co-Cr-Fe-Ni-Ti systems. Note that the solvus temperature in (a) and (c) actually corresponds to liquidus. 
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that the predictions match well with the experimental results [39]. Fig. 6 
(d) shows the corresponding computation performance using various 
techniques. Firstly, compared with the direct method, the running time 
is decreased by 99% using the two tabulation methods, while the com-
puter memory usage is increased by 2600%, which is attributed to 
loading the large tabulation file into the memory. Secondly, the pro-
posed parameterization technique not only makes the running time 
decreased by 99.8% as compared to the direct method but also keeps a 
very low usage of computer memory which is decreased by 97% as 
compared to the two tabulation methods. Note that the binary tabula-
tion file is significantly compressed down to only 0.004‰ of the original 
size using the parameterization technique. 

The KWN model is further applied to the Al3.32Co27.27Cr18.18-

Fe18.18Ni27.27Ti5.78 high entropy alloy (at.%) [38] to predict the grain 
nucleation during solidification. The input parameters for this simula-
tion are listed in Table S2 in the Supplementary Information. A com-
parison of the predicted nucleation rates using the tabulation and 
parameterization techniques is shown in Fig. 6 (e). Obviously, their 
predictions match well with each other, and the consumed computer 
memory is significantly reduced by 99% using the parameterization 
equation as compared to that using the tabulation technique. 

The KWN model [9] is applied to simulate the precipitation of 
spherical FCC phases from BCC matrix aging at 900 K in the 
Fe-1Cu-1Al-0.5Mn-0.5Ni alloy (at.%). The input parameters for this 
simulation are listed in Table S3 in the Supplementary Information. 

When the direct coupling method or original tabulation file was applied, 
the simulation broke down, which is attributed to the existence of 
corrupt data as shown in Fig. 5 (b). However, the simulation ran well 
using the purged tabulation file or the parameterization equation. The 
comparisons of their simulation results are shown in Fig. 6 (f). Clearly, 
they match well with each other, which is due to the good regression 
accuracy (Fig. 5 (b)). Compared with using the purged tabulation file, 
the consumed computer memory is significantly reduced by 98% using 
the parameterization equation. It is believed that the computation speed 
using the parameterization equation would be significantly increased as 
compared to using the direct coupling method assuming the simulation 
using the direct coupling method could run well. 

4. Discussion 

In this study, data purge and parameterization techniques are pro-
posed, which ensures the quality of thermodynamic data and enables the 
microstructure simulation of compositionally complex alloys efficiently 
and thus paves the way for the ICME-guided high-throughput materials 
discovery and process parameters optimization. The existence of corrupt 
thermodynamic data in compositionally complex alloy systems largely 
hinders microstructure simulation, such as in the above-mentioned Fe- 
1Cu-1Al-0.5Mn-0.5Ni case. We also intentionally select Al-Co-Cr-Fe-Ni- 
Ti high entropy system (Fig. 5 (c)), in which by chance no corrupt data 
exists after several trial and error phase diagram calculations. The 

Fig. 6. Evolutions of (a) nucleation rate and (b) grain 
size with time during solidification in Al-9Zn-2Mg- 
2Cu alloy inoculated by 0.4 wt% Al5Ti1B master al-
loys using four different thermodynamic datasets 
visiting methods; (c) as-cast grain size predictions of 
Al-xZn-2Mg-2Cu alloys (x=2–12) inoculated by 
different amounts of Al-5Ti-1B master alloys using the 
proposed parameterization technique (30 cases are 
performed and some experimental results [39] are 
also given); (d) comparisons of computation perfor-
mance in predicting the results of (c) using four 
different thermodynamic data visiting methods (the 
period to make so experiments is estimated as 30 
days); (e) evolutions of nucleation rate with time 
during solidification in Al3.32Co27.27Cr18.18Fe18.18-

Ni27.27Ti5.78 high entropy alloy using different ther-
modynamic data visiting methods; (f) mean radius of 
spherical FCC phases precipitating from BCC matrix 
aging at 900K in the Fe-1Cu-1Al-0.5Mn-0.5Ni alloy 
(at.%).   
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proposed data purge technique can intelligently and efficiently identify 
corrupt data points in multi-component alloy systems, and then in situ 
repair these data by interpolation/extrapolation with few human in-
terventions. Usually what users need to do is to specify two suitable 
hyperparameters for the DBSCAN algorithm in every cycle, i.e., ε (Eps) 
and minPts. The purged tabulated dataset is further trained using a 
three-layer ANN, and a non-linear equation (Equation (1.1)) with a 
parameterization dataset can be obtained to represent a large amount of 
tabulated data with very high accuracy. The proposed parameterization 
method based on machine learning solves the seemingly irreconcilable 
dilemma, i.e., the efficiency issue associated with the direct coupling 
method and the memory issue associated with the tabulation method. 
Note that the ANN training process indeed requires substantial compu-
tational resources for a compositionally complex alloy system, but ac-
cording to the authors’ rich experience in the microstructure simulation 
field [40] it is worth doing for multi-component systems because this not 
only greatly saves much time and computational resources in adjusting 
model parameters and performing a high-throughput microstructure 
simulation but also effectively eliminates the interference originating 
from continuity and boundedness questions, as mentioned below. Note 
that for one alloying system, the obtained parameterization dataset can 
be applied to deal with different compositions and heat treatment 
histories. 

Apart from the excellent computation performance in terms of high 
computation speed and low memory cost, the proposed parameteriza-
tion method also poses other benefits, as shown in Fig. 6 (b). This is 
attributed to the continuity and boundedness of this obtained non-linear 
equation. The two features are also required by the microstructure 
simulation where the iterations are applied. The first is to verify its 
continuity. It has been proved in mathematics that any derivable func-
tion must be continuous at every point in its domain [41]. The derivable 
function of Equation (1.1) is expressed by: 

y′

(n, k)=
∑J

j=1
sigmoid

(

θj +
∑N

n=1
ωnjxn

)

ωnjWT
kj (3)  

where y′

(n, k) is the derivative of yk in Equation (1.1) with respect to the 
variable xn. WT is the transpose of the matrix W. Clearly, y′

(n, k) is the 
sum of several sigmoid(x) functions with the number of J. It is easy to 
prove that these sigmoid(x) functions in Equation (3) are derivable. 
Therefore, their sum is derivable [41] and finally, Equation (1.1) is a 
continuous function. The second is to verify the boundedness of Equa-
tion (1.1). These sigmoid(x) functions are bounded and their linear sum 
is bounded [41]. Fig. S4 in the Supplementary information gives an 
intuitive description of the two features of the non-linear equation in the 
Al-Mg-Zn system. When the solute concentrations are far beyond the 
maximum solute concentrations in the original tabulation file, the pre-
dicted values are well controlled in certain zones. Moreover, continuity 
is also observed easily in this example. 

The previous tabulation technique only generates the tabulated 
thermodynamic quantities data in certain ranges and an out-of-range 
extrapolation can return with negative values for the partition coeffi-
cient. Thus the simulation will become discontinuous and even break 
down (like Fig. 6 (b)) when the calculation occasionally attempts to 
access the data points beyond these ranges during an iteration. Owing to 
the proved continuity and boundedness features of this obtained non- 
linear equation (like Fig. S4), the proposed parameterization tech-
nique can generate reasonable values in numerical sense beyond the 
training concentration ranges, and thus makes an out-of-bound iteration 
smoother and run without breaking down like Fig. 6 (b) using the pro-
posed parameterization technique. Besides the high computational 
speed, very low memory consumption, and high robustness, data 
compression with rather a high accuracy is another advantage of the 
proposed parameterization technique, which is beneficial for the 
transfer of thermodynamic data among different computers. 

The Dynamic-Link Library file plays an important role in coupling 

the obtained non-linear equation and parameterization dataset with a 
microstructure model. Its “Plug and Play” feature makes researchers 
easily modify it to different alloy systems. This programming technique 
is applicable to other microstructure simulation methods [6–8]. 

As compare to Strandlund’s work more than 10 years ago [12], the 
present work firstly verified that data purge is necessary before making 
regression analysis using ANN. Secondly, the continuity and bounded-
ness features of the obtained non-linear equation by ANN are high-
lighted. By comparing with other methods, it is pointed out that the two 
features make iteration smoother and run without breaking down. 
Thirdly, the present work highlights these proposed methods by 
applying them to microstructure simulations of compositionally com-
plex alloys. The high computational robustness, efficiency, and accu-
racy, which are prerequisites for high-throughput computing, are 
verified by a series of case studies. 

Some improvements should be made in the future. Firstly, the 
DBSCAN algorithm is only applied to two-dimensional space and thus 
several cycles are performed to finish the data purge. Whether a multi- 
dimensional density-based clustering algorithm could be developed is 
worth exploring. Secondly, it is necessary to optimize the ANN algo-
rithm to lower the computational cost and increase training speed in 
compositionally complex alloy systems, such as using stochastic 
gradient descent (SGD) [42]. Thirdly, although some case studies are 
presented using the KWN model in this study, the proposed data purge 
and parameterization techniques are also applicable to the phase field 
approach and other fields using the tabulation technique as mentioned 
in the introduction. Finally, the access to CALPHAD software is not open 
enough and the thermodynamic models used in CALPHAD software to 
perform thermodynamic computation need to be further improved to 
generate higher quality tabulated thermodynamic datasets. All of these 
cannot be achieved without the co-efforts from the scientists in CAL-
PHAD, microstructure modeling, and machine learning research 
communities. 

5. Conclusions 

In this paper, a machine learning framework is proposed which not 
only ensures the quality of the used thermodynamic datasets but also 
accelerates the response in a microstructure model to a given set of 
compositions and processing conditions with high robustness and 
computational accuracy. Moreover, the straightforward coupling 
method between the microstructure module and parameterization 
dataset eliminates the two bottlenecks restricting the application of 
ICME to multi-component alloy systems and bridges the gap between the 
ICME framework and HTC in compositional complex alloy systems. The 
proposed data purge and parameterization methods are expected to 
apply to other microstructure simulation approaches like the phase field 
method or to bridging the multi-scale simulation where handling a large 
amount of input data is a prerequisite. 
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