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Abstract: The conventional target for self-excited galloping/flutter control of a civil structure often focuses 6 

on the critical wind speed. In the present work, a nonlinear control target is introduced, i.e., to ensure that the 7 

vibration amplitude is lower than a threshold value (pre-specified according to the expected structural 8 

performance) before a target wind speed. Unlike the conventional control target, the nonlinear one can take 9 

into account the underlying large-amplitude vibrations before the critical state and/or the structural safety 10 

redundancy after the critical state. To obtain the most economical TMD parameters that enable the nonlinear 11 

target, an optimization procedure involving nonlinear aeroelastic effect is developed for galloping control 12 

based on the quasi-steady aeroelastic force model, and for flutter control based on a nonlinear unsteady 13 

model. Three numerical examples involving the galloping/flutter control of different cross-sections are 14 

analyzed to demonstrate the different results designed by the conventional and nonlinear targets. It is 15 

demonstrated that the nonlinear target and optimization procedure can lead to more economical design 16 

results than the conventional ones in the galloping/flutter control for a structure with relatively large 17 

post-critical safety redundancy, and they are more reliable than the conventional ones for a structure that may 18 

experience large-amplitude vibrations before the critical wind speed. These superiorities of the nonlinear 19 

control target and new optimization procedure suggest that they may be utilized in the TMD parameter 20 

optimization for galloping/flutter control of structures in a wide domain of engineering fields. 21 
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1. Introduction 23 

Slender flexible structures may be susceptible to various types of wind-induced vibrations, among which 24 

the most dangerous ones are self-excited galloping and flutter. Tuned mass dampers (TMDs) have been 25 

widely utilized to control these self-excited instabilities due to their simplicity, effectiveness, and relatively 26 

low cost. The performance of a TMD is very sensitive to its mass, stiffness, and damping properties. An 27 

optimization procedure is generally required to determine the optimal TMD parameters that enable the 28 

control target. In the context of galloping/flutter control, the conventional target is to ensure the critical wind 29 

speed to be higher than a target value, e.g., for a long-span bridge, the critical flutter wind speed should be 30 

higher than a checking wind speed determined according to the wind environment at the bridge site (CCCC 31 

Highway Consultants 2004). Since the linear critical state of an aeroelastic system is not affected by the 32 

nonlinear part of the aeroelastic force, most previous studies on TMD parameter optimization in 33 

galloping/flutter control have been limited in a linear framework, in which only the linear part of the 34 

aeroelastic force is considered. Accordingly, in galloping control of structures, some design formulas (Fujino 35 

and Abé 1993) have been derived to obtain the optimal stiffness and damping parameters that maximize the 36 

critical wind speed for a pre-selected TMD mass; in flutter control, the optimal stiffness and damping 37 

parameters for a pre-selected TMD mass should be determined through parametric analyses (Chen and 38 

Kareem 2003). 39 

For a structure-TMD system with optimal stiffness and damping properties, both the effectiveness and 40 

robustness of the TMD can be enhanced by increasing the TMD mass (Fujino and Abé 1993; Chen and 41 

Kareem 2003). However, for a modern flexible, light-weighted structure, sometimes it might be necessary to 42 

make the TMD mass as low as possible due to some economical and practical considerations. To this end, it 43 

is of great significance to determine the minimum (and hence most economical) TMD mass that enables the 44 

aeroelastic system with sufficient wind-resistant capability, and then select an appropriate TMD mass 45 



 

 

according to some practical considerations (e.g., robustness and vibration amplitude of the TMD). Since the 46 

critical wind speed of a structure-TMD system with optimal stiffness and damping properties increases 47 

monotonically with increasing the TMD mass, it is convenient to obtain the minimum TMD mass that 48 

enables the conventional control target. 49 

However, the conventional control target as well as the minimum TMD mass determined according to the 50 

aforementioned linear framework may be insufficient (and hence unsafe) because large-amplitude limit cycle 51 

oscillations (LCOs) or even divergent vibrations may occur (in cases with sufficiently large external 52 

excitations) well below the critical wind speed for some cross-sections due to the nonlinear aeroelastic 53 

effects (Novak 1972). On the other hand, it is known that the post-critical LCO amplitudes for some 54 

cross-sections (Zhang et al. 2017) grow very slowly with increasing the wind speed, resulting in relatively 55 

wide wind speed ranges with acceptable post-critical vibrations. As a result, the conventional control target 56 

and the minimum TMD mass determined according to the linear framework may be over-conservative (and 57 

hence uneconomical) since an occasional event of post-critical LCO with acceptable vibration amplitude is 58 

unlikely to result in significant fatigue damage or catastrophic failure to a modern structure. Consequently, it 59 

might be necessary to consider the nonlinear aeroelastic effect in order to determine the minimum TMD 60 

mass that enables the aeroelastic system with sufficient wind-resistant capability, and further select a more 61 

appropriate TMD mass in the galloping/flutter control according to some practical considerations. Casalotti 62 

et al. (2014) attempted to control the post-flutter oscillations of suspension bridges by hysteretic tuned mass 63 

dampers, in which the nonlinear aeroelastic forces were considered by the quasi-steady theory. They showed 64 

that the hysteretic tuned mass dampers can effectively control the post-flutter responses by reducing the LCO 65 

amplitudes to very low levels. They proposed that the flutter condition may be considered as a limit state 66 

with an acceptable vibration amplitude exhibited by the structure. 67 

Following the idea of Casalotti et al. (2014), the present paper attempts to facilitate the control target with 68 



 

 

an acceptable vibration amplitude, i.e., to ensure that the vibration amplitude is lower than a threshold value 69 

before a target wind speed, which is referred to as the nonlinear control target in the following. To obtain the 70 

most economical TMD parameters that enable the nonlinear control target, an optimization procedure of 71 

TMD parameters involving nonlinear aeroelastic effect is developed for galloping control based on the 72 

quasi-steady aeroelastic force model, and for flutter control based on a nonlinear unsteady model. The 73 

optimization procedure is designed to determine the minimum TMD mass that enables the nonlinear target. 74 

The optimal frequency ratio and damping ratio are calculated based on existing formulations. Three 75 

numerical examples involving the galloping/flutter control of different cross-sections are analyzed to 76 

demonstrate the different results designed by the conventional and nonlinear targets.  77 

2. A control target involving nonlinear aeroelastic effect 78 

Two typical curves of self-excited LCO amplitude q versus wind speed U are schematically shown in Fig. 79 

1(a) and Fig. 1(b), respectively, in which the critical wind speed Ucr is highlighted by a solid rectangular 80 

marker; the amplitudes of stable (s) and unstable (us) LCOs are represented by solid and dashed lines, 81 

respectively; sn represents the point of a saddle-node bifurcation (Strogatz 1994). It is worth mentioning that, 82 

in the absence of any disturbance, both stable and unstable LCOs are theoretically possible steady-state 83 

motions of a system; however, it is unable to observe an unstable LCO in wind tunnel tests since 84 

disturbances (e.g., free-stream turbulence) are inevitable. The system in Fig. 1(a) exhibits convergent 85 

vibrations for U < Ucr, and performs LCOs after the occurrence of a supercritical Hopf bifurcation (Strogatz, 86 

1994) at Ucr. On the other hand, for the system in Fig. 1(b), stable LCOs can occur after the saddle-node 87 

bifurcation (which occurs before Ucr) although an external disturbance (which should be larger than the 88 

amplitude of the unstable LCO) is required to excite the stable LCO; after the occurrence of a subcritical 89 

Hopf bifurcation at Ucr, the system can perform LCOs in the absence of any external disturbance. These 90 

bifurcations have been well studied by Strogatz (1994) and Nayfeh and Balachandran (2008) and these two 91 



 

 

typical self-excited responses have been analyzed for different aeroelastic systems by several authors, e.g., 92 

Dowell (1995). 93 

It is obvious that the uncontrolled structures (red lines) in Figs. 1(a) and 1(b) cannot satisfy the 94 

conventional control target (i.e., Ucr ≥ Utarget) and are definitely unsafe, while the green lines both enable the 95 

conventional control target. However, for a modern structure with relatively large post-critical safety 96 

redundancy, the green line in Fig. 1(a) may be over-conservative since an occasional event of post-critical 97 

LCO with acceptable vibration amplitude is unlikely to result in significant fatigue damage or catastrophic 98 

failure to the structure. On the other hand, the green line in Fig. 1(b) may be unsafe because large-amplitude 99 

LCOs (or in other cases, divergent vibrations) can occur well before Ucr. As a result, concerning the 100 

galloping/flutter control of a structure with TMDs, the TMD parameters designed according to the 101 

conventional control target may be over-conservative or unsafe, depending on the aeroelastic behavior of the 102 

specific structure. 103 

To this end, a nonlinear control target is introduced herein following the idea of Casalotti et al. (2014), i.e., 104 

to ensure q ≤ qthres for U ≤ Utarget, where qthres ≥ 0 is an amplitude threshold pre-specified according to the 105 

expected structural performance. For a structure with relatively large post-critical safety redundancy, the 106 

nonlinear control target can take into account the post-critical safety redundancy of the structure by setting 107 

qthres as a positive value (i.e., the maximum allowable post-critical LCO amplitude), and hence result in a 108 

more economical design of TMDs. As an example, the blue line in Fig. 1(a) represents a design scheme that 109 

satisfies the nonlinear control target. It is noted that the slopes of various curves in Fig. 1(a) are not 110 

necessarily the same (indeed, a reduced slope is often desired for the controlled structure). Both the green 111 

line and blue line in Fig. 1(a) satisfy the nonlinear control target, while the blue line is obviously more 112 

economical (only considering the cost of the TMDs) than the green line. 113 

On the other hand, for a structure that may experience large-amplitude LCO or divergent vibration before 114 



 

 

Ucr, the nonlinear target can take into account the underlying large-amplitude vibrations before the critical 115 

state, and hence lead to more reliable design results of TMD parameters. If qthres = 0, the nonlinear control 116 

target is to completely mitigate the galloping/flutter vibrations below Utarget. It is noted that the nonlinear 117 

control target with qthres = 0 is stricter than the conventional one (i.e., Ucr ≥ Utarget) because the former 118 

prohibits the occurrences of LCOs or divergent vibrations below Utarget. As an example, the green line in Fig. 119 

1(b) satisfies the conventional control target while it does not satisfy the nonlinear one; Usn ≥ Utarget (where 120 

Usn is the wind speed at the saddle-node point) is required to achieve the nonlinear control target, as 121 

demonstrated by the blue line in Fig. 1(b). 122 

3. Optimization of TMD parameters involving nonlinear aeroelastic effect 123 

In order to obtain the minimum (and hence most economical) TMD mass that enables the nonlinear 124 

control target, an optimization procedure of TMD parameters involving nonlinear aeroelastic effect is 125 

developed for galloping control based on the quasi-steady aeroelastic force model (Parkinson and Smith 126 

1964), and for flutter control based on a nonlinear unsteady model (Zhang et al. 2019). The layouts of TMDs 127 

considered in the present work are schematically presented in Fig. 2 [the TMDs can be placed inside or 128 

outside the structure depending on the structure configuration, the two TMDs in Fig. 2(b) are identical], in 129 

which B and D represent the width and depth of the structural cross-section, respectively; Lt is the distance 130 

between the centers of the structure and the TMDs. These layouts are commonly used in the control of 131 

wind-induced vibration of structures such as power transmission lines and bridges (e.g., Fujino and Abé 1993; 132 

Kwon and Park 2004), and the optimization procedures developed for the layouts in Figs. (2a) and (2b) are 133 

applicable for other structures with one and two degrees of freedom, respectively. It is noted that the spatial 134 

distribution of the wind along the span of the structure can change the critical condition and the post-critical 135 

responses (e.g., Arena et al. 2014). In this paper, it is assumed that the structure is exposed to a wind flow 136 

distributed uniformly along its span. In addition, the equations of motion in section 3.1 assumes that the 137 



 

 

vibration is dominated by a single mode, while the equations of motion in section 3.2 assumes that the 138 

vibration is dominated by a vertical mode and a torsional mode. These assumptions are widely adopted in the 139 

galloping and flutter analyses of line-like structures. However, these assumptions may lead to inaccurate 140 

results if the multimode coupling effect is significant (e.g., Chen and Kareem 2006; Arena and Lacarbonara 141 

2012). An analysis considering the interaction of multiple modes is necessary for such a system. 142 

3.1. Optimization of TMD parameters for galloping control based on quasi-steady theory 143 

According to the quasi-steady theory (Parkinson and Smith 1964), the governing equations for the 144 

galloping vibration of the structure-TMD system in Fig. 2(a) immersed in two-dimensional flow can be 145 

expressed as (Fujino and Abé 1993) 146 

2 2 2
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where ms and mt are the masses of the primary structure and TMD per unit length, respectively; ys and yt are 147 

the vertical displacements of the structure and TMD, respectively; overdot represents the derivative with 148 

respect to time t; ξs, y and ξt are the mechanical damping ratios of the structure and TMD, respectively; ωs, y 149 

and ωt represent the natural circular frequencies of the structure and TMD, respectively; ρ is the air density; 150 

D represents the depth of structural section; U is the mean wind speed; CFy represents the aeroelastic lift 151 

force coefficient which can be expanded as 152 
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where sy

U
  is the effective angle of attack; Aj (j = 1 ~ n) are aeroelastic damping coefficients obtained 153 

through polynomial fitting on the experimental CFy(α) curve. For symmetric sections (with respect to the 154 

chord line), only odd-order terms are necessary for the polynomial expansion since even-order terms 155 

contribute insignificantly to the overall dynamics. For a section unsymmetrical with respect to the chord line 156 

(such as a bridge deck), even-order terms are also necessary (Arena et al. 2016). It is worth noting that the 157 



 

 

applicability of the quasi-steady theory should be limited to cases at relatively high reduced wind speeds 158 

without interference between galloping and vortex-induced vibration (Gao and Zhu 2017). 159 

Introducing the dimensionless variables , s y t =  , Ys = ys/D, Yt = yt/D, and reduced wind speed 160 

, ( )r s yU U D=  , Eq. (1) can be expressed in the dimensionless form as 161 
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where prime represents the derivative with respect to τ; μ = ρD2/(2ms); Rm = mt/ms and Rf =ωt/ωs, y are the 162 

mass ratio and frequency ratio between the TMD and the primary structure, respectively. 163 

For a wide domain of engineering structures, it’s known that the aeroelastic galloping force [of order µUr 164 

as shown in Eq. (3)] and mechanical damping force (of order 2ξs, y) are small compared with the inertia force 165 

and mechanical stiffness force (both of order 1). The solutions of the governing equations tend to 166 

quasi-harmonic vibrations governed by the fundamental frequency components. This behavior is quite 167 

common for civil structures immersed in wind flow, where µ is typically of order 10−3. Accordingly, some 168 

asymptotic techniques, e.g., the averaging method (Nayfeh and Balachandran 2008), can be utilized to obtain 169 

the equivalent linearization approximation of the governing equations for the structure-TMD system. By 170 

assuming that the vibrations of the structure-TMD system are quasi-harmonic vibrations dominated by a 171 

single fast frequency, the aeroelastic damping expressed by the polynomial in Eq. (3a) can be approximated 172 

by an equivalent aeroelastic damping coefficient according to the averaging method 173 

2

1, 
0

0

2 1
1

1

1
( ) sin

( )

!!
                      = 2 ( )

( 1)!!

j
n

s
eq s r j

js r r

n
j

j s r

j

Y
A q U A d

q U U

j
A q U

j



 
 =

+
−

=

 
= −  

  

+





 (4) 

where !! represents the double factorial operation. 174 

By replacing the aeroelastic damping coefficients Aj (j = 1 ~ n) with the equivalent aeroelastic damping 175 



 

 

coefficient A1, eq(qs/Ur), the equivalent linearization approximation of Eq. (3) can be obtained as 176 
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Eq. (5) can be expressed into the state-space format as 177 
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It is noted that Eq. (6) is similar to the linear state-space equation utilized for TMD parameter 178 

optimization in Fujino and Abé (1993) except that A1 in the linear equation is replaced by A1, eq(qs/Ur) in Eq. 179 

(6). The eigenvalues of the structure-TMD system can be obtained through a complex eigenvalue analysis 180 

based on Eq. (6). The two pairs of complex eigenvalues, i.e., 1 , 
1 , 2 , 

2  (where  represents the 181 

complex conjugate), are related to the modal frequencies and damping ratios of the structure-TMD system as 182 

21j j j j ji    = + −  (7) 

where 1i = − ; ωj and ξj (j = 1 or 2) are the modal circular frequencies and damping ratios corresponding to 183 

λj, respectively. 184 

By substituting a specific qs/Ur (e.g., qs/Ur = a) into Eq. (6), the eigenvalues of the structure-TMD system 185 

with pre-determined TMD parameters at various Ur can be obtained through complex eigenvalue analyses, 186 

and an equivalent critical state is achieved when at least one of the modal damping ratios become zero. The 187 

equivalent critical state can be interpreted as an Ur at which the LCO amplitude achieves qs = aUr. In the 188 

following part, the equivalent critical state will be denoted as Ur(a) to avoid confusion with the linear critical 189 

state, i.e., Ur, cr = Ur(0). For a given Rm, the optimal Rf and ξt that maximize the Ur(a) can be determined by 190 

the formulas given in Fujino and Abé (1993), i.e., 191 
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In the present work, the purpose of TMD parameter optimization is to find a group of Rf, ξt, and Rm that 192 

enables the nonlinear control target with the minimum Rm. Since the optimal Rf and ξt for a TMD with a 193 

specific Rm are always determined by Eq. (8), the optimization purpose reduces to obtain the minimum Rm 194 

that enables the nonlinear control target. For an aeroelastic system that exhibits a supercritical Hopf 195 

bifurcation at the critical wind speed [e.g., Fig. 1(a)], it is obvious that the nonlinear control target can be 196 

achieved if Ur(qs, thres/Ur, target) ≥ Ur, target. For an aeroelastic system that exhibits a subcritical Hopf bifurcation 197 

[e.g., Fig. 1(b)], if qs, thres ≥ qs, sn, then Ur(qs, thres/Ur, target) ≥ Ur, target also enables the nonlinear control target; 198 

however, if qs, thres ≤ qs, sn, it is necessary to ensure Ur(qs, sn/Ur, sn) ≥ Ur, target in order to achieve the nonlinear 199 

control target. The following procedure is then suggested for optimizing the TMD parameters (including Rf, 200 

ξt, and Rm) in galloping control: 201 

(i) For the concerned structure, define an appropriate control target (i.e., qs ≤ qs, thres for Ur ≤ Ur, target) 202 

according to the expected structural performance; 203 

(ii) Calculate the galloping responses of the uncontrolled structure at various Ur according to the 204 

quasi-steady aeroelastic force model; 205 

(iii) Calculate the A1, eq(qs/Ur) curve according to Eq. (4); 206 

(iv) For a case that exhibits a supercritical Hopf bifurcation, substitute A1, eq(qs, thres/Ur, target) into Eq. (6), and 207 

obtain the equivalent critical state Ur(qs, thres/Ur, target) of the structure-TMD system for various Rm [with Rf and 208 

ξt determined by Eq. (8)] through complex eigenvalue analyses; 209 

(v) For a case that exhibits a subcritical Hopf bifurcation, if qs, thres ≥ qs, sn, substitute A1, eq(qs, thres/Ur, target) into 210 

Eq. (6), and obtain Ur(qs, thres/Ur, target) of the structure-TMD system for various Rm [with Rf and ξt determined 211 



 

 

by Eq. (8)] through complex eigenvalue analyses; if qs, thres ≤ qs, sn, substitute A1, eq(qs, sn/Ur, sn) into Eq. (6), and 212 

obtain Ur(qs, sn/Ur, sn) of the structure-TMD system for various Rm [with Rf and ξt determined by Eq. (8)] 213 

through complex eigenvalue analyses; 214 

(vi) Determine the minimum Rm that enables the control target according to the Ur(qs, thres/Ur, target) versus Rm 215 

curve [or Ur(qs, sn/Ur, sn) versus Rm curve if qs, thres ≤ qs, sn for a case that exhibits a subcritical Hopf bifurcation]; 216 

the corresponding optimal Rf and ξt are determined by Eq. (8). 217 

3.2. Optimization of TMD parameters for flutter control based on nonlinear unsteady theory 218 

The governing equations for the nonlinear flutter of the structure-TMD system in Fig. 2(b) immersed in 219 

two-dimensional flow can be expressed as (Gu et al. 1998) 220 
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where ms and Is are the mass and mass inertia of the primary structure per unit length, respectively; ys and αs 221 

are the vertical and torsional displacements of the structure, respectively; ξs, y and ξs, α are the vertical and 222 

torsional mechanical damping ratios of the structure, respectively; ωs, y and ωs, α are the vertical and torsional 223 

natural circular frequencies of the structure, respectively; mt = mt, 1 + mt, 2 is the total mass of two TMDs per 224 

unit length, with mt, 1 and mt, 2 representing the masses of the upstream and downstream TMD devices, 225 

respectively; in the present work, mt, 1 = mt, 2; yt, 1 and yt, 2 are the vertical displacements of the upstream and 226 

downstream TMD devices, respectively; Fse and Mse are the self-excited lift force and torsional moment 227 

acting on the structure per unit length, respectively. In the present work, only Rm = mt/ms, ωt, and ξt are 228 

considered as design parameters, while Lt is assumed as a pre-determined value and 2

I t t sR m L I= . 229 

According to Zhang et al. (2019; 2020), Fse and Mse can be respectively expressed as 230 
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where B represents the width of structural section; K = ωB/U is the reduced frequency; qy and qα are the 231 

amplitudes of ys and αs, respectively; 
iH   and 

iA  (i = 1 ~ 4) are nonlinear unsteady flutter derivatives with 232 

the amplitude-dependent feature.  233 

By substituting Eq. (10) into Eq. (9), the equations of motion are actually linearized equations with 234 

amplitude-dependent aeroelastic damping and stiffness. For specific combinations of vertical and torsional 235 

vibration amplitudes, the linearized equations can be expressed in the state-space format with 236 

amplitude-dependent aeroelastic damping and stiffness as 237 

Y = GY  (11) 

where Y is the state vector and G is the eigenvalue matrix, which can be respectively expressed as 238 
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where G5, 1, G5, 2, G5, 5, G5, 6, G6, 1, G6, 2, G6, 5, and G6, 6 can be respectively expressed as 239 

2 2 2 2

5, 1 , 40.5 ( ,  )s y m t yG R U K H q B K= − − +    (13a) 

2 2

5, 2 30.5 ( ,  )G U BK H q K=   (13b) 

5, 5 , , 12 2 0.5 ( ,  )s y s y m t t yG R UBKH q B K= − − +      (13c) 

2

5, 6 20.5 ( ,  )G UB KH q K=   (13d) 

2 2

6, 1 40.5 ( ,  )yG U BK A q B K=   (13e) 



 

 

2 2 2 2 2

6, 2 , 30.5 ( ,  )s I tG R U B K A q K= − − +     (13f) 

2

6, 5 10.5 ( ,  )yG UB KA q B K=   (13g) 

3

6, 6 , , 22 2 0.5 ( ,  )s s I t tG R UB KA q K= − − +        (13h) 

It is noted that Eq. (11) is similar to the linear state-space equation utilized for TMD parameter 240 

optimization in Gu et al. (1998) except that the flutter derivatives in Eq. (11) are dependent on vibration 241 

amplitudes. By substituting the flutter derivatives at specific vertical and torsional vibration amplitudes into 242 

Eq. (11), the eigenvalues of the structure-TMD system with pre-determined TMD parameters at various U 243 

can be obtained through complex eigenvalue analyses, and an equivalent critical state is achieved when at 244 

least one of the modal damping ratios become zero. The equivalent critical state can be interpreted as a wind 245 

speed at which one or both of the (vertical and torsional) vibration amplitudes achieve the pre-specified 246 

values. In the following part, the equivalent critical state will be denoted as U(qy, qα), U(qy), or U(qα), 247 

depending on which amplitude(s) achieve the pre-specified value(s). It should be stated that, for a specific Rm, 248 

parametric analyses are required to obtain the optimal ωt and ξt since analytical formulas are unavailable. 249 

For an aeroelastic system that may encounter vertical-torsional coupled flutter, the nonlinear control 250 

target can be set as qy ≤ qy, thres and qα ≤ qα, thres for U ≤ Utarget, where qy, thres and qα, thres are vertical and torsional 251 

amplitude thresholds pre-specified according to the expected structural performance, respectively. Similar to 252 

the procedure for galloping control, an optimization procedure for flutter control is presented as follows: 253 

(i) For the concerned structure, define an appropriate control target (i.e., qy ≤ qy, thres and qα ≤ qα, thres for U ≤ 254 

Utarget) according to the expected structural performance; 255 

(ii) Calculate the nonlinear flutter responses of the uncontrolled structure at various U according to the 256 

nonlinear unsteady aeroelastic force model; 257 

(iii) For a case that exhibits a supercritical Hopf bifurcation, substitute the flutter derivatives at qy = qy, thres 258 

and qα = qα, thres into Eq. (11), and obtain the equivalent critical state [i.e., U(qy, thres, qα, thres), U(qy, thre), or U(qα, 259 



 

 

thre)] of the structure-TMD system for various Rm (with corresponding optimal ωt and ξt determined through 260 

parametric analyses) through complex eigenvalue analyses; 261 

(iv) For a case that exhibits a subcritical Hopf bifurcation, if qy, thres ≥ qy, sn and qα, thres ≥ qα, sn, substitute the 262 

flutter derivatives at qy ≤ qy, thres and qα ≤ qα, thres into Eq. (11), and obtain the equivalent critical states [i.e., 263 

U(qy, qα), U(qy), or U(qα)] of the structure-TMD system with flutter derivatives at various vibration states for 264 

various Rm (with corresponding optimal ωt and ξt determined through parametric analyses) through complex 265 

eigenvalue analyses; if qy, thres ≤ qy, sn or qα, thres ≤ qα, sn, substitute the flutter derivatives at qy ≤ qy, sn and qα ≤ qα, 266 

sn into Eq. (11) and obtain the equivalent critical states of the structure-TMD system with flutter derivatives 267 

at various vibration states for various Rm (with corresponding optimal ωt and ξt determined through 268 

parametric analyses) through complex eigenvalue analyses;  269 

(v) For a case that exhibits a supercritical Hopf bifurcation, determine the minimum Rm that enables the 270 

control target according to the curve of equivalent critical state [i.e., U(qy, thres, qα, thres), U(qy, thre), or U(qα, thre)] 271 

versus Rm; for a case that exhibits a subcritical Hopf bifurcation, determine the values of Rm at various 272 

vibration states according to the curves of equivalent critical states [i.e., U(qy, qα), U(qy), or U(qα)] versus Rm, 273 

and the largest value at various vibration states is the minimum Rm that enables the nonlinear control target; 274 

the corresponding optimal ωt and ξt can be determined through parametric analyses. 275 

It is noted that the difference between the design results of the new optimization procedure and the 276 

conventional one is essentially due to their different control targets, and the difference is determined by the 277 

considered structure and design targets. For the differences between the results of the two targets, the main 278 

parameter of interest is the TMD mass. The purpose of the new optimization procedure is to determine the 279 

minimum TMD mass that enables the nonlinear control target. In practical applications, a larger value may 280 

be required to improve the effectiveness and robustness of the TMDs. Moreover, it should be stated that the 281 

vibration amplitude of a TMD device increases with decreasing its mass, which may limit the practical 282 



 

 

application of a TMD device with a very small mass. Therefore, the space constraint for the TMD installation 283 

might be another important parameter to consider in practical applications. 284 

4. Numerical examples 285 

4.1. Galloping control 286 

The galloping controls for two cross-sections are studied in this subsection to demonstrate the different 287 

results designed by the conventional and nonlinear targets. The two selected cross-sections are 288 

representatives of structures that exhibit the typical galloping responses shown in Figs. 1(a) and 1(b), 289 

respectively. Throughout this subsection, µ = 1/1000 and ξs, y = 3.0‰ for both cross-sections. It should be 290 

stated that the optimization purpose in the following analyses is to determine the minimum TMD mass that 291 

enables the expected control target, while the applicability and robustness of the minimum TMD mass are 292 

not analyzed. The bifurcation diagram of a structure-TMD system is generated using the following procedure. 293 

By substituting the A1, eq(qs/Ur) at a specific value of qs/Ur into the state-space equation of motion, i.e., Eq. 294 

(6), the eigenvalues of the structure-TMD system with pre-determined TMD parameters at various reduced 295 

wind speeds can be obtained through complex eigenvalue analyses. An equivalent critical state is achieved 296 

when at least one of the modal damping ratios of the coupled system becomes zero. The equivalent critical 297 

state can be interpreted as a limit state of the structure-TMD system. More specifically, the critical state can 298 

be interpreted as follows: the structure can perform limit cycle oscillation with an amplitude of qs at a 299 

reduced wind speed of Ur. The stability of the limit state oscillation is then examined by numerical time 300 

integration of the equations of motion [i.e., Eq. (3) or (5)] using the 4th-order Runge-Kutta method. The 301 

bifurcation diagram can be generated when the critical states corresponding to various values of qs/Ur are 302 

available. 303 

Case A: galloping of a simulated system exhibits a supercritical Hopf bifurcation 304 

The galloping control for a simulated aeroelastic system with A1 = 8.0, A3 = −150.0, and Aj = 0 (j ≠ 1 or 3) 305 



 

 

is investigated as the first example. The CFy(α) and A1, eq(qs/Ur) curves of the simulated system are shown in 306 

Figs. 3(a) and 3(b), respectively. The galloping response of the uncontrolled structure is presented in Fig. 307 

4(a), in which the linear critical state is highlighted by a solid rectangular marker. 308 

The structure analyzed in this example is supposed to be one with relatively large post-critical safety 309 

redundancy, and the target reduced wind speed for galloping control is supposed as Ur, target = 20. Accordingly, 310 

the nonlinear control target is to ensure that qs ≤ qs, thres = 2 for Ur ≤ Ur, target = 20. The conventional one 311 

reduces to ensure that Ur, cr ≥ Ur, target = 20 since it focuses on Ur, cr. 312 

The conventional optimization procedure is firstly utilized to determine the minimum Rm that enables the 313 

conventional control target. The Ur, cr of the structure-TMD system for various Rm [with Rf and ξt determined 314 

by Eq. (8)] are obtained through complex eigenvalue analyses based on Eq. (6), and the results are shown in 315 

Fig. 5. The results suggest that a TMD with Rm = 2.5% is able to enable Ur, cr ≥ Ur, target = 20. The steady-state 316 

qs and qt (steady-state amplitude of Yt) of the structure-TMD system with Rm = 2.5% are shown in Fig. 4. It is 317 

noted that galloping vibrations are completely mitigated for Ur ≤ Ur, target = 20 as expected. However, Rm = 318 

2.5% should be over-conservative for this specific case considering its post-critical safety redundancy. 319 

The new optimization procedure is then utilized to determine the minimum Rm that enables the nonlinear 320 

control target. As noticed from Fig. 3(b), qs, thres/Ur, target = 2/20 corresponds to an A1, eq(2/20) ≈ 6.88. A1, 321 

eq(2/20) = 6.88 is then substituted into Eq. (6), and the Ur(qs, thres/Ur, target) of the structure-TMD system for 322 

various Rm [with Rf and ξt determined by Eq. (8)] are obtained through complex eigenvalue analyses, as 323 

shown in Fig. 5. The results suggest that a TMD with Rm = 1.8% is sufficient to ensure qs ≤ qs, thres = 2 for Ur 324 

≤ Ur, target = 20. The steady-state qs and qt of the structure-TMD system with Rm = 1.8% shown in Fig. 4 325 

further demonstrate that Rm = 1.8% determined by the proposed optimization procedure is the minimum (and 326 

hence most economical) value that enables the nonlinear control target. This example suggests that the 327 

nonlinear control target and optimization procedure are more economical than the conventional ones in 328 



 

 

designing TMDs for galloping control of a modern structure with relatively large post-critical safety 329 

redundancy. 330 

Case B: galloping of a B/D = 2 rectangular section 331 

The second example analyzes the galloping control for a B/D = 2 rectangular section. The CFy(α) 332 

[constructed from the experimental measurements in Santosham (1966)] and A1, eq(qs/Ur) curves for this 333 

cross-section are shown in Figs. 6(a) and 6(b), respectively. The aeroelastic damping coefficients are A1 = 334 

2.33, A3 = 1.10 × 103, A5 = −7.42 × 104, A7 = 1.66 × 106, A9 = −1.61 × 107, A11 = 5.73, and Aj = 0 (j ≠ 1, 3, 5, 335 

7, 9, or 11). The galloping response of the uncontrolled structure is presented in Fig. 7(a), in which hysteresis 336 

phenomenon is observed around Ur = 1 ~ 2.5. 337 

For this example, it is expected that no galloping vibrations can occur below Ur, target = 25 regardless of 338 

the initial excitation. Accordingly, the nonlinear control target is to completely mitigate the galloping 339 

vibrations below Ur, target = 25. The conventional one reduces to ensure that Ur, cr ≥ Ur, target = 25 since it 340 

focuses on Ur, cr. 341 

The Ur, cr of the structure-TMD system for various Rm [with Rf and ξt determined by Eq. (8)] are obtained 342 

through complex eigenvalue analyses based on Eq. (6), as presented in Fig. 8. The results suggest that a 343 

TMD with Rm = 0.3% can ensure the linear stability (i.e., the stability of the equilibrium position) of the 344 

structure-TMD system below Ur, target, i.e, Ur, cr > Ur, target = 25, while it is unable to shed light on the 345 

underlying LCO control before Ur, cr. The steady-state qs and qt of the structure-TMD with Rm = 0.3% and 346 

corresponding optimal Rf and ξt are shown in Figs. 7. It is noted that Ur, cr > Ur, target = 25 as expected, while 347 

LCOs with relatively large amplitudes occur well before Ur, target = 25. The results suggest that the 348 

conventional control target and optimization procedure in the linear framework may lead to unsafe design 349 

results of TMD parameters in the galloping control for similar cross-sections. 350 

To completely mitigate the galloping vibrations below Ur, target = 25, A1, eq(qs, sn/Ur, sn) = 7.01 should be 351 



 

 

utilized in the optimization procedure. The Ur(qs, sn/Ur, sn) of the structure-TMD system are obtained for 352 

various Rm [with Rf and ξt determined by Eq. (8)] though complex eigenvalue analyses based on Eq. (6), as 353 

shown in Fig. 8. The results suggest that a TMD with Rm = 3.0% should be adopted to enable the nonlinear 354 

control target. The steady-state qs and qt of the structure-TMD system with Rm = 3.0% and corresponding 355 

optimal Rf and ξt presented in Figs. 7 further demonstrate that Rm = 3.0% is the minimum Rm that enables the 356 

nonlinear control target. Note that Rm = 3.0% is much higher than Rm = 0.3% obtained using the conventional 357 

procedure. This example demonstrates that the nonlinear control target and optimization procedure are 358 

capable of controlling the underlying LCOs before the critical galloping wind speed, and hence they are 359 

more reliable than the conventional ones in designing the TMD parameters for galloping control of 360 

structures. 361 

4.2. Flutter control 362 

The flutter control of a B/D = 13 rectangular section is studied in this subsection. It is noted that the 363 

vibration frequency of an aeroelastic system may vary continuously with increasing the wind speed due to 364 

the aeroelastic stiffness effect, and hence multiple TMDs with distributed frequencies are often utilized in 365 

flutter control to enhance the robustness at various wind speeds (Kwon and Park 2004). However, since the 366 

main purpose of the present work is to highlight the effect of the nonlinear aeroelastic force, only two TMDs 367 

with identical parameters are considered. In addition, only Rm, ωt, and ξt are considered as design parameters, 368 

while Lt is assumed as a pre-determined value; to reduce the computational costs, Rf (it is assumed that ωt = 369 

Rfωcr, where ωcr is the circular frequency at the critical wind speed of the uncontrolled structure) and ξt for a 370 

specific Rm is always obtained through Eq. (8) instead of a parametric analysis in the following analyses. 371 

Case C: vertical-torsional coupled flutter of a B/D = 13 rectangular section 372 

Flutter derivatives for the considered cross-section can be found in Noda et al. (2003). The flutter 373 

performance of this section is similar to some streamlined bridge decks and hence it is often studied as a 374 



 

 

simplified bridge deck section. Only the amplitude-dependency of 
2H  , 

2A , and 
3A  are considered in the 375 

present example since other flutter derivatives are almost independent of vibration amplitudes. It is noted 376 

that in practical flutter control of a long-span bridge, the geometric nonlinearity originating from the cables 377 

(e.g., Arena et al. 2012) should also be considered while the geometric nonlinearity is not considered in this 378 

paper. The modal parameters of this example are ms =3.0 × 104 kg/m, Is =3.0 × 106 kg·m2/m, ωs, h = 0.63 rad/s, 379 

ωs, α= 1.51 rad/s, ξs, h = 5.0‰, ξs, α= 5.0‰, B = 30 m, and Lt = 13 m. According to a complex eigenvalue 380 

analysis with flutter derivatives at a small vibration amplitude (i.e., qα = 1.3°), Ucr = 57.8 m/s for the 381 

uncontrolled structure. However, due to the amplitude-dependency of some flutter derivatives, divergent 382 

vibrations may occur (in cases with sufficiently large external excitations) well below Ucr = 57.8 m/s. As an 383 

example, the displacement responses of the uncontrolled structure at U = 56.0 m/s starting from two different 384 

initial conditions are presented in Fig. 9(a), in which q0 represents the initial vibration amplitude. Only the 385 

torsional displacements are given for brevity. It is noted that the uncontrolled structure performs divergent 386 

vibration at U = 56.0 m/s (< Ucr = 57.8 m/s) if the initial excitation is sufficiently large. For this example, the 387 

nonlinear control target is to completely mitigate the self-excited vibrations below Utarget = 62 m/s, while the 388 

conventional one is to ensure that Ucr ≥ Utarget = 62 m/s. 389 

By substituting the flutter derivatives at a small vibration amplitude (i.e., qα = 1.3°) into Eq. (11), the Ucr 390 

of the structure-TMD system for various Rm [with Rf and ξt determined by Eq. (8)] are obtained through 391 

complex eigenvalue analyses, and the results are shown in Fig. 10. The results suggest that a TMD with Rm = 392 

0.56% can ensure Ucr ≥ Utarget = 62 m/s, while it is unable to shed light on the control of the underlying 393 

divergent vibrations before Ucr. Fig. 9(b) presents the displacement responses of the structure-TMD system 394 

with Rm = 0.56% at U = 61.0 m/s starting from two different initial conditions. It is noted the controlled 395 

structure may be unsafe since divergent vibration can occur at U = 61.0 m/s (< Utarget = 62 m/s) if the initial 396 

excitation is sufficiently large. 397 



 

 

By substituting the flutter derivatives at all available vibration amplitudes into Eq. (11), the U(qα) of the 398 

structure-TMD system for various Rm [with Rf and ξt determined by Eq. (8)] are obtained through complex 399 

eigenvalue analyses, as presented in Fig. 10. The results suggest that a TMD with Rm = 3.50% can be adopted 400 

to enable the nonlinear control target. Fig. 9(c) presents the displacement responses of the structure-TMD 401 

system with Rm = 3.50% at Utarget = 62 m/s starting from two different initial conditions. It is noted that the 402 

structure always performs convergent vibrations, and hence the nonlinear control target is achieved. This 403 

example demonstrates that the nonlinear control target and optimization procedure are capable of controlling 404 

the underlying divergent vibrations before the linear critical state, and hence they are more reliable than the 405 

conventional ones in designing the TMD parameters for flutter control of structures. 406 

It should be mentioned that that TMDs are not suitable for the flutter control of a bridge deck if its 407 

negative aeroelastic damping varies rapidly with wind speed beyond the critical value (Chen and Kareem 408 

2003). For such a bridge deck, a very large additional damping ratio is required to increase its critical flutter 409 

wind speed. Therefore, both the conventional and nonlinear targets will result in a very large mass ratio since 410 

the effective damping ratio provided by the TMDs is proportional to the mass ratio. 411 

5. Conclusions 412 

The present paper discusses some shortcomings of the conventional target for self-excited 413 

galloping/flutter control and further introduces a nonlinear target, i.e., to ensure that the vibration amplitude 414 

is lower than a threshold value (pre-specified according to the expected structural performance) before a 415 

target wind speed. An optimization procedure of TMD parameters involving nonlinear aeroelastic effect is 416 

accordingly developed in order to determine the minimum TMD mass that enables the nonlinear target. 417 

Three numerical examples involving the galloping/flutter control of different cross-sections are analyzed 418 

to demonstrate the different results designed by the conventional and nonlinear targets. Results of the 419 

numerical examples demonstrate that: for a structure with relatively large post-critical safety redundancy, the 420 



 

 

nonlinear target can take into account the post-critical safety redundancy and hence lead to more economical 421 

design results; for a structure that may experience large-amplitude vibrations before the critical wind speed, 422 

the nonlinear target is more reliable since it can shed light on the control of LCOs or divergent vibrations 423 

before the critical state. The nonlinear control target and proposed optimization procedure may be utilized in 424 

the optimization of TMD parameters for self-excited galloping/flutter control of structures in a wide domain 425 

of engineering fields. 426 
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Appendix. List of symbols 435 

A1, eq = equivalent aeroelastic damping coefficient 436 

Aj = aeroelastic damping coefficients 437 

B = width of cross-section 438 

CFy = aeroelastic lift force coefficient 439 

D = depth of cross-section 440 

iH  , iA  = flutter derivatives 441 

Is = mass inertia of primary structure 442 

K = reduced frequency 443 

Lt = distance between centers of TMD and primary structure 444 

ms = mass of primary structure 445 



 

 

mt = mass of TMD 446 

qs = dimensionless vertical amplitude of primary structure 447 

qt = dimensionless vertical amplitude of TMD 448 

qy = vertical amplitude of primary structure 449 

qα = torsional amplitude of primary structure 450 

qs, thres = dimensionless vertical amplitude threshold 451 

qα, thres = torsional amplitude threshold 452 

Rf = frequency ratio between TMD and primary structure 453 

RI = mass inertia ratio between TMD and primary structure 454 

Rm = mass ratio between TMD and primary structure 455 

t = time 456 

U = wind speed 457 

Ucr = critical wind speed 458 

Ur = reduced wind speed 459 

Ur, cr = critical reduced wind speed 460 

Ur, target = target reduced wind speed 461 

Utarget = target wind speed 462 

Ys = dimensionless vertical displacement of primary structure 463 

Yt = dimensionless vertical displacement of TMD 464 

ys = vertical displacement of primary structure 465 

yt = vertical displacement of TMD 466 

sy

U
   = effective angle of attack 467 

αs = torsional displacement of primary structure 468 

ωs, y = vertical natural circular frequency of primary structure 469 

ωs, α = torsional natural circular frequency of primary structure 470 

ωt = natural circular frequency of TMD 471 

ξs, y = vertical mechanical damping ratio of primary structure 472 

ξs, α = torsional mechanical damping ratio of primary structure 473 

ξt = damping ratio of TMD 474 

ρ = air density 475 



 

 

µ = ρD2/(2ms) = density ratio between fluid and structure 476 

τ = ωst = dimensionless time 477 
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Fig. 1. Schematic diagrams of conventional and nonlinear control targets: (a) Supercritical Hopf bifurcation 522 

at Ucr; (b) Subcritical Hopf bifurcation at Ucr. Solid rectangular marker: Ucr; s: stable; us: unstable; sn: saddle 523 

node 524 
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Fig. 2. Schematic diagrams of structure-TMD systems: (a) Layout of TMD for galloping control; (b) Layout 528 

of TMDs for flutter control 529 
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Fig. 3. Case A, aeroelastic parameters: (a) CFy(α); (b) A1, eq(qs/Ur) 534 
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Fig. 4. Case A, galloping behaviors of uncontrolled structure and structure-TMD systems with Rm = 2.5% 538 

and 1.8%: (a) qs versus Ur ; (b) qt versus Ur 539 
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Fig. 5. Case A, Ur, cr and Ur(qs, target/Ur, target) versus Rm 542 
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Fig. 6. Case B, aeroelastic parameters: (a) CFy(α); (b) A1, eq(qs/Ur) 547 
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Fig. 7. Case B, galloping behaviors of uncontrolled structure and structure-TMD systems with Rm = 0.3% 551 

and 3.0%: (a) qs versus Ur; (b) qt versus Ur. Solid line: stable; dashed line: unstable 552 
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Fig. 8. Case B, Ur, cr and Ur(qs, sn/Ur, sn) versus Rm 555 
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Fig. 9. Case C, displacement histories of a rectangular section: (a) uncontrolled structure at U = 56.0 m/s; (b) 560 

structure-TMD system with Rm = 0.56% at U = 61.0 m/s; (c) structure-TMD system with Rm = 3.50% at U = 561 

62.0 m/s 562 
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Fig. 10. Case C, Ucr and U(qα) versus Rm 565 


