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Abstract. Probabilistic methods in wind turbine design are becoming more important in
order to achieve a higher and more economic utilization of the structural resources. A design is
thereby evaluated through its reliability by taking uncertainties into account. The influence of
uncertainties emerging specifically within the fatigue limit state can be essential on a structure’s
reliability. For that reason, this study investigates two different sources for uncertainties within
probabilistic fatigue design. The influence of a reduced approach, where the random behavior of
a structural failure is only represented through an uncertain critical Miner sum, is compared to
an approach, where also the S-N curve is subjected to uncertainties. For this, an offshore wind
turbine with monopile support structure is investigated. The reliability analysis is performed
through crude Monte Carlo simulations which utilize a Gaussian Process regression model in
order to determine the wind turbine’s structural response. The results show that both sources
of uncertainties, the critical Miner sum and the S-N curve, contribute differently to the overall
reliability. Uncertainties of the critical Miner sum have a rather small influence, whereas the
implementation of an uncertain S-N curve leads to a noticeable increase of the reliability.

1. Introduction

1.1. Motivation

Wind turbine structures are well established electricity generators, for which a share in the
global energy generation of approximately 15% is predicted for the year 2050 [1]. This will turn
wind turbines into mass-produced articles with high expectations towards their profitability,
and consequently their reliability. To fulfill these expectations from a structural perspective,
the designs must be utilized efficiently. Current design standards require the application of
semi-probabilistic approaches, which cover for uncertainties by application of partial safety
factors. Since these are not custom-tailored to the structure under consideration, certain reserves
may be still available, which can be detected and utilized. One promising approach is the analysis
and prediction of a structure’s reliability through fully probabilistic methods. Here, major
uncertainties are considered during the design process. The structure is then designed for an
adequate survival probability, or reliability. Since wind turbines are mainly exposed to dynamic
loads, the fatigue strength is often the primary driver for the structural design. Consequently,
investigating the structural reliability with focus on fatigue is of high interest. However, this
can be challenging. For one thing, compared to a deterministic approach, the structural analysis
within a reliability setting will now have to cover for a broad spectrum of configurations. This
makes the already computationally elaborate fatigue investigation even more costly. For another
thing, the overall effort will further increase with raising number of considered uncertainties. And
these can be quite numerous within the design of wind turbines [2]. Naturally, in order to
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maintain a certain performance or even to make a reliability estimation possible, one tries to
reduce the quantity of considered uncertainties, e.g. by selecting only those, which are assumed
to be most influential. This is sometimes the case in the fatigue post-processing part, where the
Miner-Sum D is compared to a critical Miner-Sum Dcr in order to obtain a possible failure. Both
variables possess uncertainties which should be considered during a reliability analysis based
on the recommendations of the Joint Committee of Structural Safety (JCSS) [3]. The critical
Miner-Sum Dcr is inherently uncertain and the Miner-Sum D is highly dependent on the
structural response and the used S-N curve, which in turn, is based on material tests with
distinct uncertainties. In some investigations, uncertainty in the fatigue post-processing is solely
implemented by taking the variation of the critical Miner-Sum Dcr into account. The motivation
for this investigation is therefore to detect the influence of this reduction on the reliability of a
wind turbine’s support structure, compared to the full post-processing approach.

1.2. Challenges

The implementation of a structural reliability approach which allows for a fatigue evaluation
within an acceptable time frame is the most critical aspect within this investigation. For the
verification of modern wind turbines several thousand load cases must be observed for a single
fatigue analysis. In reliability investigations, where sampling methods are common, simulation
time raises drastically since several fatigue analyses are required in order to achieve adequate
accuracy.

1.3. Intention and Scope

We aim to demonstrate, how the reliability of a wind turbine is influenced by different fatigue
strength verification approaches and how such verification routines can be implemented with
computationally affordable methods. This is done based on a case study where a reference
offshore wind turbine is implemented into a modern simulation environment and evaluated at a
number of locations along its support structure.

2. Methods

2.1. Structural Reliability

The basic structural reliability approach incorporates the consideration of uncertainties into the
structural design process. It provides information about the exceedance of certain design limits
under defined conditions during a reference period in terms of estimates of their probabilities
of occurrence [4]. Within the structural design process, the design limits leading to failure are
usually of prime importance and used to determine the actual structural reliability, which is the
probability to meet the design requirements, or in other words to maintain structurally safety
without failure. The terms structural reliability R and failure probability pf are used equally to
evaluate the structural performance of a design. They are commonly linked as

R (X) = 1− pf . (1)

To determine the necessary failure probability pf , it is common to establish performance
functions G (X). These relate the input uncertainties, which are therein described as random
variables X, with each other [5]. In the structural design process this is often illustrated with the
basic reliability problem, or R− S problem, where the performance function G(R,S) is formed
by one load effect S compared to one resistance R [6].

G(R,S) = R− S (2)

The limit state function (LSF) G(R,S) = 0 divides the space of the random variables into a
safe domain without failure (G > 0), and into a failure domain where the design requirements
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are not met (G < 0). The probability of failure pf is then equivalent to the probability that
the basic random variables, in case of the basic reliability problem the load effect S and the
resistance R, lie within the failure domain or directly on the LSF.

pf = P [G(R,S) ≤ 0] (3)

Likewise, the reliability R corresponds to the probability that these basic random variables are
located within the remaining safe domain.

R = P [G(R,S) > 0] (4)

For a general performance function G (X), the probability of failure pf is calculated through the
joint probability density function fX (x) considering all basic random variables X [6]. This leads
to a multi-dimensional integration over the failure domain of the joint probability function. The
number of integration dimensions corresponds to the number of basic random variables.

pf = P [G(X) ≤ 0] =

∫

· · ·

∫

G(X)≤0
fX (x) dx (5)

It is common to express the structural reliability not in terms of probabilities, but rather to set
it in perspective to the standard normal distribution by using the so called reliability index β
which is obtained from the standard normal inverse cumulative distribution function Φ−1(x) [5].

β = Φ−1(R) = Φ−1(1− pf ) (6)

The reliability index β expresses the reliability R as multiples of standard deviation from the
mean. If, for example, two reliabilities R1 = 99.865% and R2 = 99.999% are compared, then
the impression arises that their values are close together. However, an evaluation based on their
reliability indices β1(R1) = 3 and β2(R2) = 6 helps to get a better impression, namely that
these reliabilities are not close.

2.2. Monte Carlo Simulations

In order to solve equation 5 several different approaches exist, from direct and numerical
integration, through simulation techniques to first- and second-order reliability methods [6]. A
widely used approach in reliability analyses are Monte-Carlo simulation methods (MCS) since
they are comparatively easy to implement, even for complex systems [7]. The MCS is a sampling
method where every basic random variable Xi gets sampled, meaning a random number,
determined as sample x̂i, is generated according to the basic variable’s probability distribution
fXi

(x). The performance function is then deterministically evaluated based on the generated
sample set x̂ = [x̂1, x̂2, . . . , x̂n] for limit state violation. If a violation occurs, the corresponding
MCS trial is counted as failed. For a complete MCS, several trials N with individual sample
sets x̂i, where 1 ≤ i ≤ N , are computed. The domain of each random variable which is covered
by the selected samples through all MCS trials, is thereby denoted as sampling space. Based on
the total number of failed trials nf , the probability of failure pf can be estimated:

pf ≈
nf

N
. (7)

This method is denoted as direct sampling or ‘crude’ Monte-Carlo. As already mentioned, it
is the most simple MCS approach, but also not very efficient [6]. More precise results with a
smaller number of samples can be achieved by the application of variance reduction methods,
e.g. through stratified sampling or importance sampling schemes. However, since these methods
are quite sophisticated, only crude MCS is implemented within this investigation.
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2.3. Gaussian Process Regression

The Gaussian process regression (GPR) can be used to make predictions based on available
observations with the advantage, that also the associated uncertainty is available as probabilistic
output [8]. For this, the available observations are supposed to possess input xi and output values
yi which are assumed to be connected through an unknown function f which is disturbed by
some additive noise η [9].

yi = f(xi) + ηi (8)

2.5 5.0 7.5 10.0 12.5 15.0 17.5

−1.0

−0.5

0.0

0.5

1.0

1.5 GP variance
GP mean

Figure 1: GPR example for f(x) = sin(x) with
applied SE kernel and l = 1. (Prediction = solid
line, variance = blue area)

This unknown function f , which identifica-
tion is of significant importance to perform
the intended regression, can be of more or
less arbitrary shape, meaning that there is
an indefinite number of possible functions
which could adequately describe the obser-
vations. Because of that, the GP is not
representing the unknown functions them-
selves, it is describing their probability dis-
tribution. This means, that the correspond-
ing probability density function of the mul-
tivariate distribution within the GP, is lead-
ing to probabilities of functions, and not
scalars. This is utilized to obtain the actual
regression function by computing its expected
value, which is again a function. To get a
better understanding of how GPR works the
probability theory is considered. There, GPR is assigned to the class of Bayesian non-
parametric regression models which utilizes, as indicated by its name, a Gaussian process
(GP) [9]. Bayesian methods are usually characterized by defining a prior distribution based
on a random function (stochastic process) which is then updated by incorporating m obser-
vations x = (x1, x2, . . . , xm) in order to generate a fitted posterior distribution [10]. When
implementing a GP, these prior and posterior distributions are assumed to be normally dis-
tributed. A GP is generally defined by a mean function µ(x) and a covariance kernel function
κ(xi, xj). The kernel function maps covariances between each individual observation location
based on their relative position in space (or time) leading to the covariance matrix K(x,x).

K(x,x) =








κ(x1, x1) κ(x1, x2) . . . κ(x1, xm)
κ(x2, x1) κ(x2, x2) . . . κ(x2, xm)

...
...

. . .
...

κ(xm, x1) κ(xm, x2) . . . κ(xm, xm)








The mapping depends highly on the selected kernel function as it can be demonstrated by
reference to a squared exponential (SE) covariance function with a characteristic length-scale
parameter l and a distance rij between two observations xi and xj [11]:

κ(xi, xj) = exp

(

−
r2ij
2l2

)

. (9)

It is apparent that observations located close to each other (rij tends to 0) will result in a
high covariance, whereas locations with higher relative distances (large rij) will result in low
covariances. With the covariance matrix K(x,x) the probability of the multivariate Gaussian
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distribution is completely defined

p(y(x)) = N (µ(x) ,K (x,x)) (10)

where x and y are the observation location and result vectors. To implement a prediction or
regression for an unknown location (x∗, y∗), the covariance matrix is extended within the GP [9].

p

([
y(x)
y∗(x∗)

])

= N

([
µ(x)
µ(x∗)

]

,

[
K (x,x) K (x, x∗)
K (x∗,x) κ (x∗, x∗)

])

(11)

All additional parameters µ(x∗), K (x, x∗), K (x∗,x) and κ (x∗, x∗) are obtainable through the
already provided mean and kernel functions. To finalize the prediction, solely the univariate
marginal distribution for x∗, designated as posterior distribution, must be computed from the
extended GP multivariate distribution in Equation 11. From this distribution, which is Gaussian
as well, the mean and variance can be obtained with basic statistics. The mean value then
corresponds to the intended prediction based on the initial observations. An example of a GPR
result is shown in Figure 1. There, the regression of a simple sinusoidal curve is plotted for three
periods for logarithmically distributed observations. It is noticeable, that the variance raises
with increasing distance between the observations, which results in a decline of the prediction
accuracy. For further details on GPR, like the mathematical background or adequate kernel
selection strategies, the reader is referred to the relevant literature ([8],[9],[10]).

2.4. Fatigue evaluation with uncertainties

During the verification of a wind turbine design or a structure in general, several different limit
states must be considered. A limit state defines a condition where design requirements are no
longer met by the considered structure or component [12]. Usually, the governing limit states are
the ultimate limit states (ULS) corresponding to extreme environmental loads and the fatigue
limit states (FLS) related to failure by cyclic loading [13]. When evaluating fatigue limit states,
the Palmgren-Miner linear damage hypothesis [14] is used, where a linear accumulation of all
experienced damages of a structure or component under consideration is applied in order to
estimate the total damage. This total damage is often referred as the Miner sum and can be
calculated as follows:

D =

k∑

i=1

ni

Ni
(12)

where
D = accumulated fatigue damage
k = number of different stress ranges
ni = number of stress cycles experiences at ∆σi

Ni = number of stress cycles to failure at ∆σi

∆σi = stress range

A violation of the fatigue limit state occurs when the accumulated fatigue damage D reaches a
critical value Dcr. Within deterministic design, this value is normally set to be 1.0. For reliability
analysis, the JCSS suggests to model Dcr as a lognormal distributed random variable with a
mean of µDcr = 1.0 and a coefficient of variation of CoVDcr = 0.3, since the critical damage
value possesses a distinct random nature [3]. To determine the Miner sum, detailed information
is required about the number of stress cycles to failure for each stress range ∆σi. These are
obtained in standardized fatigue tests [15], where predefined specimens are loaded periodically
at constant load amplitudes until failure occurs. This is repeated several times to obtain a
statistical distribution of the cycles to failure. Followed by a statistical evaluation [16], the S-N,
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or Wöhler curve is obtained from the test results, which describes the finite life of a material by
just two parameters as shown below:

log10 N = log10 a−m log10 ∆σ (13)

where
m = inverse slope of the S-N curve
log

10
a = intercept of the log N axis

N = number of stress cycles to failure at ∆σ

Typical values can be found in structural design standards. Since these are usually intended
for deterministic design, a safety margin is already implemented, meaning the provided S-N
data describes a quantile curve rather than the mean curve. The S-N data used within this
investigation is obtained from a DNV GL Offshore Standard, which provides S-N curves as
mean-minus-two-standard-deviation curves corresponding to a probability of survival of 97.7%
or to a 0.023-quantile curve [17]. For usage in structural reliability, the obtained S-N data
must be converted to mean-curves with probabilities of survival of 50% by adding two standard
deviations σ.

log10 N |50% = log10 a|97.7% + 2σ −m log10 ∆σ (14)

The slopes of the S-N curves remain unchanged. DNV GL defines a ‘lump‘ standard deviation
for logN of σ = 0.2 for all its S-N data, regardless which detail category is chosen for nominal
stress S-N curves or whether a hot-spot stress S-N curve is used. This implies that the coefficient
of variation will be different for each S-N curve. The experienced stress cycles ni are calculated
based on classical structural mechanics with time dependent load functions as inputs. For wind
turbines, this is typically done by the aid of time domain analyses resulting in time dependent
stress results. These are then analyzed with counting and classification methods, e.g. through the
rainflow counting method [18] as used within this investigation, to separate the time depending
stress signals into discrete stress cycles. These can then be evaluated according to Palmgren-
Miner, as stated in Equation 12.

2.5. Numerical Wind Turbine Model

For this investigation the NREL 5-MW reference wind turbine [19] is used, together with the
monopile design from the Offshore Code Comparison (OC3) project [20]. The connection to
the sea bottom is defined as fixed clamping, meaning no soil model is implemented. The
environmental conditions are selected from the UpWind project’s K13 shallow water site [21]. As
simulation environment the multi-physics simulator OpenFAST (v2.3.0) is used, which allows to
perform transient analyses of the wind turbine. The wind turbine properties and site conditions
are listed in Table 1. As governing load case for the fatigue design the power production
design load case DLC 1.2 based on the IEC-3 Standard is utilized [22]. Within the DLC 1.2
a normal turbulence model, a normal sea state and no currents are applied. Wind and wave
directions have to be considered both in-line and misaligned. The fatigue load cases have been
derived from the scatter diagrams provided within the UpWind design basis for the shallow water
site [21]. In total, to perform a single fatigue verification, an analysis of 43,179 different load cases
is required. To reduce this number, two general measures are considered: For one, the symmetric
behaviour of the monopile support structure is utilized. Only seven basic combinations of wind
and wave directions are calculated for each possible configuration of wind speed, significant wave
height and peak period. From these basic load cases, all possible 144 configurations within the
directional scatter diagram are derived through rotation and/or mirroring of the results. By
this, the number of load cases is reduced to 2,632. Further, an approach described by Stieng and
Muskulus [23] is employed, where the observation is made, that for similar designs, the damage
occurring in some load cases, can be predicted by the knowledge of the damage of a few load
cases.
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Table 1: Basic data used for model

NREL 5-MW Baseline Wind Turbine

Rotor configuration Upwind, 3 blades
Drivetrain, gearbox High speed, multiple-stage
Rotor, hub diameter 126 m, 3m
Hub height 90 m
Cut-in, rated, cut-out wind 3 m/s, 11.4 m/s, 25 m/s
Cut-in, rated rotor speed 6.9 rpm, 12.1 rpm

OC3 Monopile

Monopile diameter 6 m
Wall thickness 60 mm
Considered length 30 m

UpWind shallow water site

Water depth 21.4 m MSL
Current normal, extreme 0.6 m/s, 1.2m/s
Weibull parameters wind A=10.61 m/s, k=2.08 m/s

Design lifetime 20 years

And that naturally, those load cases are se-
lected, which generate the most partial dam-
age. This allows for a massive reduction in
number of load cases to compute. Therefore,
after an initial calculation of the complete load
case set, the approach leads to an additional
reduction to 2,951 load cases from which
only 168 are simulated based on the sym-
metry utilization, as described above. Dur-
ing verification the guidelines [12] and recom-
mended practice for fatigue design [17] from
DNV GL have been followed. Thereby we con-
sider stress concentration factors which are
used together with the hot spot S-N curve for
tubular joints in seawater with cathodic pro-
tection. For evaluation, the already mentioned
rainflow method is implemented with applica-
tion of 270 different stress bins. The widths of
the bins vary depended on the stress range magnitude. For small stress ranges up to 30 MPa,
the bin widths are 0.25 MPa. For intermediate stress ranges up to 60 MPa and for large stress
ranges up to 150 MPa, the widths are 0.5 MPa and 1.0 MPa, respectively. The simulation time
for each load case is set to 150 seconds from which only the last 120 seconds are employed for
the damage accumulation. This is a distinction from the 6× 10 Minute requirement defined in
the IEC-3 standard [22]. However, since this is a comparative study of different fatigue evalua-
tion methods which are always applied to the same set of analysis results, the influence of this
reduced simulation time is assessed as tolerable.

2.6. Simulation approach

Fatigue analyses for
samples w. reduced LCs

Gen. of samples (LHS)
for stiffness & geometry

LC reduction
to 2,951 FLC (168 BLC)

Initial deterministic
fatigue analysis

with full set of LC
43,179 FLC (2,632 BLC)

Rainflow counting &
GP training

Monte Carlo Simulation
Sample generation

for all random variables

Figure 2: Calculation approach (LC = load
cases; BLC = basic load cases; FLC = fatigue
load cases; LHS = latin hypercube sampling).

In order to make a comparison of the dif-
ferent approaches for considering uncertain-
ties during fatigue evaluation, a Monte Carlo
simulation is performed with the computa-
tion sequence as shown in Figure 2. To re-
duce the computation time during the MC
simulation, a GPR model is implemented cov-
ering for all random variables which are di-
rectly influencing and changing the wind tur-
bine structure. The GPR predicts the struc-
tural response with regard to the defined ran-
dom input variables. During the MC simula-
tion, the time consuming transient analyses,
which would have been executed for every MC
trial, are replaced by evaluations of the much
faster GPR model. This reduces the total sim-
ulation time by a substantial amount.

2.6.1. Random variables The utilized random variables with their corresponding probability
distributions are summarized in Table 2. The random variables for stiffness K and geometry
G, with mean values of 1.0 each, are relative measures. This definition is based on the
implementation possibilities within the simulation environment OpenFAST. Here, the wind
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turbine’s support structure and tower structure are considered in separate sub-modules with
different modelling approaches. The substructure geometry is implemented through direct input
of the dimensions of the elements and assigned to a linear elastic and isotropic material with
underlying information for the Young’s modulus E. In this case, where a monopile structure
is used, the geometry inputs correspond to the outer diameters Di and the thicknesses of the
tubular sections ti. For generating sample diameters D̂i and sample thicknesses t̂i, their nominal
values are multiplied with the sample geometry value Ĝi. For generating sample values for the
Young’s modulus Êi, their nominal values are multiplied with the sample stiffness value K̂i. The
tower geometry is implemented within OpenFAST only in terms of distributed stiffnesses Kd

over the tower length. Therefore, only a dependency on the random variable K is implemented
for the tower. Sample values for the distributed stiffnesses K̂di are produced by multiplication

of their nominal values with the sample stiffness value K̂i. To consider the random variable S

for the S-N curve data, the mean S-N curve µS must be obtained.

log10 N |50% = log10 a|97.7% + 2σS
︸ ︷︷ ︸

µS

−m log10 ∆σ (15)

Here, the hot spot stress S-N curve for tubular joints in seawater with cathodic protection is
considered, the intercept of the log N axis for the steeper curve part is given by log10 a =
10.18 [17]. With the standard deviation of σS = 0.2, a mean value of µS = 10.58 follows. The

distribution of S is thusN (µS , σS) or respectivelyN (10.58, 0.2). Given a sample Ŝ, the following
effective S-N curve is then used:

log10 N = Ŝ −m log10 ∆σ. (16)

Table 2: Overview of random variables.

Parameter Distribution Mean µ CoV

K Stiffness lognormal 1.0 0.005
G Geometry lognormal 1.0 0.010
Dcr Miner sum lognormal 1.0 0.300
S S-N data normal − σ = 0.2

Table 3: Overview of implemented GPRs.

Item Amount

Evaluated nodes along the MP height 13
Circumferential evaluation points 60
Stress bins per evaluation point 270
Number of GPR models 210, 600

2.6.2. Gaussian Process Regression To replace the transient structural simulation with the
evaluation of a GPR model, the required outputs must be identified. For that, the Miner sum
from Equation 12 is considered once again. Here, the partial fatigue damage Di is calculated
through dividing the experienced stress cycles ni for a given stress range ∆σi by the number
of stress cycles leading to structural failure Ni at the same stress range. To obtain the total
damage D, the partial damages are accumulated over all stress ranges. This time, the Miner
sum is expressed as a LSF:

G (R− S) = Dcr −
k∑

i=1

ni

Ni
≤ 0. (17)

As already partly indicated, the resistances, namely the stress cycles leading to structural failure
N and the critical Miner sum Dcr, are both post-processing variables which are not involved
in the actual structural simulations. Only the number n of stress cycles experienced (for each
stress rang considered) are actual outputs from the time consuming simulations. Therefore, these
are modeled by a Gaussian Process. To implement this, training data is needed which must be
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dependent to the two basic random variables for stiffness K and geometry G. This is obtained
by sampling from both variables. Subsequently, the OpenFAST inputs are adjusted for each
sample of scaling factors (see above) and used to perform the structural simulations in order to
obtain the experienced stress cycles. For the training of the model an optimised Latin Hypercube
Sampling (LHS) approach is implemented based on the work of Bates [24]. In total nLHS = 50
training sets are produced and used for the simulations. In order to better fit the tail behavior
of the random variables, the region for which LHS is applied, is slightly increased. Therefor, the
CoV values of the random variables are raised by 25%, each. The time-dependent stress results,
obtained at several different evaluation positions along the monopile (MP), are transformed into
stress cycles which are allocated into different stress range bins through the rainflow counting
approach as stated earlier. The obtained number nsim of cycles within the simulation time tsim
are proportionally increased to match the number of cycles ntot during the complete turbine’s
design life ttot.

ntot =
ttot
tsim

· PLC · nsim (18)

RNG

Geom. & Stiff.
samples K̂, Ĝ

S-N curve
sample Ŝ

Crit. Damage
sample D̂cr

GPR
Binned cycles

LSF G1

LSF G2

S-N curve
97.7% survival

Figure 3: Implemented MC procedure with
parallel utilization of sampled data.

The increases are based on the provided load
case probabilities of occurrence PLC as given
in the scatter diagrams of the UpWind design
basis [21]. The total number of cycles per
stress range bin is obtained by summing
this over all load cases. This procedure is
repeated for all samples according to the LHS
approach, leading to training data consisting
of stress cycle information for each stress
range bin obtained at different realizations
for K and G. Based on this training data,
GPR are implemented for each of the 270
stress range bins. By this a single GPR model
approximates the number of stress cycles for

a given sample set
(

K̂, Ĝ
)

. To obtain the

complete structural response, the GPR models of every bin must be executed. The GPR is
implemented through the Julia library from Fairbrother et. al [25]. As covariance function a
standard Matérn class kernel with ν = 3/2 is considered based on previous works of Stieng and
Muskulus [26]. The length-scale parameter is thereby set to l = 1.0. An overview of the number
of GPR models is given in Table 3.

2.6.3. Monte Carlo Simulation In order to implement the MC simulation process, four fatigue
LSF are defined, which are all based on Equation 17. Fatigue LSF G1 considers all introduced
random variables K,G,Dcr and S:

G1(K,G,Dcr,S) = Dcr −
k∑

i=1

ni(K,G)

Ni(S)
. (19)

The other fatigue LSF are defined analogously, but their dependence on the random variables
differs. The random variables K and G are always taken into account, but the consideration of
Dcr and S is different for each LSF. G2 utilizes an uncertain critical Miner sum threshold Dcr,
but a deterministic S-N curve with 97.7% of survival. Fatigue LSF G3 is purely deterministic,
with a critical Miner sum threshold of Dcr = 1, and the 97.7% S-N curve. Fatigue LSF G4 has a
critical Miner sum threshold ofDcr = 1, but an uncertain S-N curve. The procedure to evaluate a
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single MC sample is illustrated in Figure 3 for the two major FLS G1 and G2. As shown, random
numbers are generated for each of the random variables according to their defined probability
distributions. As random number generator (RNG) a Mersenne Twister is used [27]. To obtain
properly distributed random numbers the inverse transform method is utilized [6]. The two

samples K̂ and Ĝ are used within the GPR as described in the previous subsection to obtain the
binned stress cycles. With Ŝ the effective S-N curve is determined. Finally, with consideration of
D̂cr the LSF G1 is evaluated. For evaluating LSF G2, a deterministic S-N curve is utilized. The
process for LSF G3 and G4 is similar. To reduce the computation time all LSF evaluations are
based on the same sample sets, meaning that the generated stress cycle bin information, the
critical damage values, and the S-N curve data are re-used. Finally, the MC simulation trials are
checked for violation of every LSF in order to obtain their corresponding probabilities of failure:

p̂fi = P (Gi ≤ 0) ≈
nfailed
Ntotal

. (20)

The accuracy of these estimators p̂fi, which is highly dependent on the number of total samples
Ntotal, can be expressed through their coefficients of variation (CoV) [28]:

CoVi =

√

1− p̂fi
Ntotal · p̂f

. (21)

Since it is targeted for a CoV of approximately 10% for a probability of failure with a magnitude
of p̂f = 10−4, the sampling process is repeated nMC = 1, 064, 000 times.

3. Results

As final measure the reliability indices βi are computed as described previously in Section 2.1.
An overview of all results is given below.

Table 4: Summary of MC simulation results at Ntotal = 1, 064, 000 trials

Result description LSF G1 LSF G2 LSF G3 LSF G4

Ŝ S-N Curve Random Deterministic Deterministic Random

D̂cr Critical Miner sum Random Random Deterministic Deterministic

nfailed Failed trials 221 1, 696 792 96
p̂f Failure probability 2.077 · 10−4 15.940 · 10−4 7.444 · 10−4 0.649 · 10−4

CoV Coefficient of variation 6.7% 2.4% 3.5% 12.0%
β Reliability index 3.53 2.95 3.18 3.83

During implementation of the GP, it is noted, that the amount of available training data varies
for different stress ranges. For low stress ranges, cycle information are provided by every training
sample. In regions of high stress ranges, less data is available, meaning only a small number, or
even just single training samples, feature cycle information.

4. Discussion

4.1. Major findings

4.1.1. General outcome As noticeable from the presented results, the reliability index β1 = 3.53
for LSF G1, where an uncertain S-N curve is implemented, is higher compared the reliability
index β2 = 2.95 for LSF G2, where always a S-N curve with 97.7 % of survival is utilized. This is
convincing, since due to the consideration of random S-N data, 97.7 % of all samples are higher
compared to the fixed S-N curve. Consequently, lower limit state violations are in place because
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in nearly all cases the resistances are higher compared to LSF G2. This can be verified by the
computed data, in 1,039,738 cases the S-N curves lie above the fixed curve,which corresponds to
97.72 % and matches the expectations. By comparing the results of G2 and G3 it is noticeable
that the influence of the uncertain critical Miner sum Dcr is somewhat smaller. The obtained
reliability index β3 = 3.18 for a deterministic value of Dcr = 1.0 is only slightly greater than
in the uncertain case with β2 = 2.95. This is founded in the underlying lognormal distribution
of the critical Miner sum Dcr, which possesses its maximum probability density just slightly
below 1.0, leading to approximately 56% of critical Miner sum samples smaller than in the
deterministic case. The highest influence on the reliability has the uncertain S-N curve as can be
seen from the obtained reliability index β4 = 3.83 for G4. Therefore, from a design perspective,
the results lead to the conclusion that by evaluating the S-N curve probabilistically, indeed a
less conservative approach is employed, though the reliability changes significantly which makes
an exploitation of considerable design capacities possible.

4.2. Outlook

For the comparison part of the fatigue evaluations, further investigations with prolonged
simulation time might be required in order to increase the accuracy of the obtained reliability
results. The simulation time incorporated within this study is small compared to the
requirements of typical design standards as described in Section 2.5. Longer simulation times
increase the possibility to capture extremes within the stochastic wave loading or extremes of the
structural response. Due to the short simulation times, such phenomena might be not covered,
which could lead to an overestimation of the obtained reliabilities. However, since the fatigue
evaluations for all LS are based on the same response data, we believe, that the order of reliability
increase between a deterministic and an uncertain S-N curve is still valid. From the pure analysis
perspective, several items could be improved or enhanced. For one, the number of uncertainties
pictured within this investigation is low, especially uncertainties in environmental conditions
are currently not considered. These could be fitted to a Weibull distribution with random
parameters. Likewise, further uncertainties could be added to the wind turbine model, such as
uncertainties within the soil behavior and the related stiffness of the bottom support. These
have been left out since it is not feasible to implement spring elements within the OpenFAST
environment without rewriting and recompiling the source code. In further investigations the
pile could be extended and horizontally supported to match the lateral soil stiffness. The model
approach could be adjusted as well. The sparsely populated stress cycle bins at high stress ranges
might be further investigated in detail to determine their influence towards the accuracy of the
GPR. The same applies to the selection of the GPR kernel and the settings of the corresponding
kernel parameters.

4.3. Conclusion

The influence of different uncertainties within the Palmgren-Miner linear damage hypothesis on
the structural reliability has been examined. For this, reliability analyses for the fatigue limit
state of an offshore wind turbine monopile support structure have been conducted. Different
configurations with deterministic and uncertain values for the S-N curve and for the critical
Miner sum Dcr have been analyzed by implementing a crude Monte Carlo approach. To reduce
the computational effort, surrogate models, which are based on Gaussian Processes Regression,
and trained by several numerical simulations, have been used. These approximate the required
structural responses within the crude Monte Carlo simulations, and in this way, allow for
the computation of the structural reliability in a manageable time. The results show that an
uncertain S-N curve substantially influences the reliability. Compared to a complete deterministic
configuration, where the S-N curve and the critical Miner sum are selected as specified by
governing design standards, the reliability index significantly increases from β3 = 3.18 to
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β4 = 3.83. On the contrary, the impact of an uncertain critical Miner sum is marginal and
even leads to a lower reliability. In comparison to the complete deterministic configuration, the
reliability index is slightly reduced from β3 = 3.18 to β2 = 2.95. This corresponds to the findings
of Dragt et. al. [29], where the influence of load sequence effects through over- and underloads
together with mean changes were studied, and more advanced fracture mechanics methods were
applied. Their results show, that under realistic loading conditions for wind turbines, sequence
effects only have a minor impact on the fatigue life. Consequently, for a configuration with both
uncertainties in the Palmgren-Miner linear damage hypothesis, the obtained reliability index
β1 = 3.53 is higher than in the deterministic case and shows the prevalent influence of the
uncertain S-N curve.
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