
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f E

ng
in

ee
rin

g
D

ep
ar

tm
en

t o
f M

ar
in

e
Te

ch
no

lo
gy

Karoline H
okstad Barstein

Karoline Hokstad Barstein

Towards automated welfare
monitoring of farmed salmon
exploiting deep learning and
computer vision

Master’s thesis in Marine Cybernetics
Supervisor: Martin Ludvigsen
Co-supervisor: Christian Schellewald, Rune Volden
July 2021

M
as

te
r’s

 th
es

is

Karoline Hokstad Barstein

Towards automated welfare
monitoring of farmed salmon
exploiting deep learning and computer
vision

Master’s thesis in Marine Cybernetics
Supervisor: Martin Ludvigsen
Co-supervisor: Christian Schellewald, Rune Volden
July 2021

Norwegian University of Science and Technology
Faculty of Engineering
Department of Marine Technology

Project Description

Working Title: Deep-Learning and Vision-Based Techniques for Monitoring Farmed

Salmon Welfare

Work Description:

Monitoring farmed fish welfare is crucial from ethical and financial perspectives. Going

towards a more autonomous fish farming industry, many aspects can be explored using

computer vision-based techniques on camera data from farmed fish sea cages to monitor

fish behavior. Deep-learning-based computer vision enables adaptable, scalable, and data-

driven methods suitable for overcoming challenges of the dynamic underwater environment

in sea cages. Examples of indicators of fish welfare that can be captured by vision are

swimming velocity, lice, wounds/injuries, gill cover frequency, and fish orientation. This

master’s thesis will investigate vision-based techniques on stereo camera data from farmed

salmon sea cages to monitor the welfare of farmed salmon.

The thesis is written in collaboration with FiiZK, a supplier of software, closed cage, and

technical tarpaulins in the aquaculture industry, and SINTEF, a research organization

that conducts contract research and development projects. FiiZK provides the necessary

equipment for running machine learning models, and SINTEF provides stereo camera

data from salmon sea cages. Investigation of data availability, evaluation of the limitation

of the data, and constructing the scope is a part of the work in the thesis.

Workflow:

1. Data acquisition and decision of main focus of the thesis: Investigate available

camera data from salmon sea cages and record new data if needed. The data

availability and limitations will be evaluated to formulate the scope of the thesis.

2. Perform a background and literature review on:

• Fish welfare indicators based on fish behavior.

• Previous studies on monitoring fish behavior.

• Relevant traditional computer vision methods.

i

• Relevant (deep-learning) vision-based techniques.

3. Choose fish welfare indicators to look closer at, by:

• Classification of indicators by visual and temporal detectability.

• Investigation of the quality and size of the dataset.

4. Implement computer vision and deep learning methods for fish welfare monitoring:

• Prepare datasets.

• Investigate how to combine vision-based techniques to gain insight about farmed

salmon welfare.

• Perform tasks using chosen vision-based techniques on the prepared dataset.

5. Evaluate the results of the individual methods and the final experimental pipeline.

6. Conclude the thesis and make a recommendation for applications, improvements,

and further work.

ii

Summary

Preserving fish welfare is an extensive issue in the fish farming industry. An industrial

salmon sea cage can contain as many as 200 000 fish, and monitoring the welfare of this

amount of individual animals is challenging. Manual observations and measurements of

behavior, environmental factors, and fish health have been predominant. However, farmed

salmon production is still expanding, and there is a need for more thorough and efficient

methods. One problem is the inefficiency of manual operations, another is the lack of

a complete spatial and temporal overview of the sea cage. Most sea cages today have

underwater cameras installed used for manual observations, and several indicators of fish

welfare can be monitored visually. This can be exploited by computer vision technology.

Underwater images are subject to complex challenges, but the evolution in computer-

vision and deep-learning technology shows promise for applying such methods for practical

purposes to better and more efficiently monitor fish welfare. This thesis proposes a proof-

of-concept for estimating farmed salmon swimming velocity on a dataset of stereo video

from industrial sea cages by combining deep-learning object detection, IOU-based object

tracking, and image scene depth estimation by semi-global block matching.

A number of salmon welfare indicators were evaluated and classified based on their visual

and temporal detectability. Swimming activity, or more specifically swimming velocity,

was considered as the most feasible indicator to study, given the dataset. Scattering, low

contrast, color distortions, and light reflections represent additional challenges for vision-

based techniques underwater, compared to terrestrial applications. Swimming velocity

was to be estimated by tracking each fish by measuring the position of a fixed point on the

fish body. The middle point of object detection bounding boxes served as this fixed point.

Fish anatomy was studied to decide which object to track, together with considerations of

the limitations of the dataset itself, depth estimation, and object detection. The caudal

fin appeared to be the best choice.

For object detection, the YOLOv4 model was chosen due to its GPU parallel computing

capabilities and its superior performance in terms of speed and accuracy. Image frames

were extracted from the videos and annotated. Each training image was augmented four

times, resulting in a training set with five versions of each image. The best-performing

iii

network weights through the training were saved and used for the final model. To ob-

tain 3D positions for the salmon, stereo matching by semi-global block matching was

implemented. From the resulting disparity maps, the 3D position of caudal fins could be

estimated by using the average disparity value of a predefined inner middle area of the

bounding box and the center point of the bounding box. Detections with an average dis-

parity value in this inner area above a certain threshold, indicating a non-smooth depth

estimation of the fin surface, were discarded. The proposed object tracking method was

based on overlap between detection boxes, meaning no image or motion information was

required. The algorithm was modified to allow “gaps” between detections in consecutive

frames. The individual components were combined to form a final experimental pipeline

to estimate salmon swimming velocity. The 3D caudal fin positions were tracked in two

video experiments. For each 3D track, the mean velocity was calculated using the dis-

tance between consecutive points, the number of frames between each certain point, and

the frame rate of the videos. Further, the mean salmon swimming velocity and standard

deviation were calculated for each experiment.

The detection model was tested on speed and performance. The model performed at

87.49% mAP@0.50 after training on 208 original images. For the stereo 3D reconstruction

part, the total reprojection error of the camera calibration was 0.2234 pixels. Further,

the disparity maps showed improvement after applying a weighted least squares filter.

Speckles were removed, and surfaces appeared smoother. Measurements of known sizes

in reconstructed calibration images corresponded with the ground truth sizes. The track-

ing algorithm was tested on the YOLOv4 detections. By using a moderate IOU overlap

threshold, we achieved reliable tracks. The maximum and average track length increased

when allowing gaps and the number of total tracks was reduced. The final tracking algo-

rithm was subject to some issues caused by the detection results, e.g., tracks constructed

of false positives and split tracks caused by false negatives.

Visualizations and 3D plots of tracks from the final pipeline experiments, together with

measurements of mean velocity and standard deviation over all tracks in each video, were

analyzed. The mean salmon swimming velocities were measured to 0.5479 ms−1 and

0.6561 ms−1, and the standard deviations to 0.3175 ms−1 and 0.3149 ms−1, respectively.

Motion blur was the main contributor to errors in the final pipeline of swimming velocity

estimation. The object detection model performed sufficiently on detecting caudal fins in

real-time. The modification of the tracking algorithm to allow gaps induced an improve-

ment in the length of tracks and decreased the number of tracks, indicating that tracks

split due to gaps in the original algorithm were merged in the modified algorithm. For the

tracking algorithm, camera egomotion affecting IOU overlap appeared as the largest issue.

A next step might be to include a motion model for the egomotion or use an algorithm

that considers image information.

iv

Overall, by removing insufficient detections and disparity estimations from the tracks, we

obtained an experimental pipeline that was able to estimate salmon swimming velocities

in the two experiments conducted. 3D plots of tracks corresponded with the observed

motion of the fish relative to the camera. The mean velocities computed from the tracks

were reasonable for the swimming velocity of farmed salmon. As a proof-of-concept, the

system shows that there is large potential in applying and combining well-known vision-

based techniques for monitoring fish welfare in industrial sea cages and that image quality

is the main limitation as of today.

v

vi

Sammendrag

Bevaring av fiskevelferd er et omfattende tema i oppdrettsnæringen. En industriell lakse-

merd kan inneholde s̊a mange som 200 000 fisk, og det er utfordrende å overv̊ake velferden

til denne mengden enkeltdyr. Manuelle observasjoner og målinger av atferd, miljøfaktorer

og fiskehelse har vært dominerende. Oppdrettslaksproduksjonen utvides imidlertid fort-

satt, og det er behov for grundigere og mer effektive metoder. Et problem er ineffek-

tiviteten ved manuell operasjon, et annet er mangelen p̊a en fullstendig romlig og tidsmes-

sig oversikt over merden. De fleste laksemerder i dag har undervannskameraer installert

brukt til manuelle observasjoner, og flere indikatorer for fiskevelferd kan overv̊akes visuelt.

Dette kan utnyttes av datasynteknologi. Undervannsbilder er underlagt komplekse utfor-

dringer, men utviklingen innen datasyn og dyplæringsteknologi viser muligheter til å bruke

slike metoder for praktiske formål, for bedre og mer effektiv overv̊akning av fiskevelferd.

Denne oppgaven foresl̊ar et proof-of-concept for estimering av svømmehastighet for opp-

drettslaks p̊a et datasett med stereovideo fra industrielle laksemerder. Dette ved å kom-

binere objektdeteksjon ved dyp læring, IOU-basert objektsporing og dybdeestimering av

bildescener ved semi-global blokkmatching.

En rekke laksevelferdsindikatorer ble evaluert og klassifisert ut fra deres visuelle og tidsmes-

sige detekterbarhet. Svømmeaktivitet, eller nærmere bestemt svømmehastighet, ble ansett

som den mest gjennomførbare indikatoren å studere, gitt datasettet. Spredning, lav kon-

trast, fargeforvrengninger og lysrefleksjoner representerer ytterligere utfordringer for syns-

baserte teknikker under vann, sammenlignet med terrestriske applikasjoner. Svømme-

hastigheten ble beregnet ved å spore hver fisk ved å måle posisjonen til et fast punkt

p̊a fiskekroppen. Midtpunktet for deteksjonsboksene fungerte som dette faste punktet.

Fiskeanatomi ble studert for å bestemme hvilket objekt som skulle spores, sammen med

hensyn til begrensningene i selve datasettet, dybdeestimering og gjenstandsdeteksjon.

Kaudalfinnen s̊a ut til å være det beste valget.

For objektgjenkjenning ble modellen YOLOv4 valgt p̊a grunn av parallelle databehan-

dlingsmuligheter p̊a GPU og overlegen ytelse n̊ar det gjelder hastighet og nøyaktighet.

Bilder ble hentet fra videoene og annotert. Hvert treningsbilde ble augmentert fire

ganger, noe som resulterte i et treningssett med fem versjoner av hvert bilde. De beste

vii

nettverksvektene fra treningen ble lagret og brukt til den endelige modellen. For å oppn̊a

3D-posisjoner for laksen ble stereomatching ved semi-global blokkmatching implementert.

Fra de resulterende dybdeestimatene kunne 3D-posisjonen til kaudalfinner estimeres ved

å bruke det gjennomsnittlige dybdeestimatet til et forh̊andsdefinert indre midtomr̊ade av

deteksjonsboksen og midtpunktet for deteksjonsboksen. Deteksjoner med et gjennomsnit-

tlig dybdeestimat i dette indre omr̊adet over en viss terskel, som indikerer en ikke-jevn

dybdeestimering av finneflaten, ble forkastet. Den foresl̊atte objektsporingsmetoden var

basert p̊a overlapp mellom deteksjonsbokser, noe som betyr at ingen bilde- eller beveg-

elsesinformasjon var nødvendig. Algoritmen ble modifisert til å tillate “hull” mellom

deteksjoner i p̊afølgende bilder. De enkelte komponentene ble kombinert for å danne en

endelig eksperimentell pipeline for å estimere laksens svømmehastighet. Finneposisjoner

i 3D ble sporet i to videoeksperimenter. For hvert 3D-spor ble gjennomsnittshastigheten

beregnet ved hjelp av avstanden mellom p̊afølgende punkter, antall bilder mellom hvert

bestemte punkt og bildefrekvensen til videoene. Videre ble den gjennomsnittlige lakse-

shastigheten og standardavviket beregnet for hvert eksperiment.

Deteksjonsmodellen ble testet p̊a hastighet og ytelse. Modellen hadde en ytelse p̊a

87.49% mAP@0.50 etter trening p̊a 208 originale bilder. For 3D-rekonstruksjonsdelen

var den totale reprojeksjonsfeilen for kamerakalibreringen 0,2234 piksler. Videre viste

dybdeestimeringene forbedring etter p̊aføring av et vektet minste kvadrat-filter. Hull i

dybdeestimeringene ble fjernet, og overflatene ble jevnere. Målinger av kjente lengder i

rekonstruerte kalibreringsbilder samsvarte med de sanne størrelsene. Sporingsalgoritmen

ble testet p̊a YOLOv4-deteksjonene. Ved å bruke en moderat grense for IOU-overlapp

oppn̊adde vi p̊alitelige spor. Maksimal og gjennomsnittlig sporlengde økte n̊ar det ble

tillatt hull, og antall spor ble redusert. Den endelige sporingsalgoritmen var gjenstand

for noen problemer for̊arsaket av deteksjonsresultatene, for eksempel spor konstruert av

falske positive deteksjoner og splittede spor for̊arsaket av falske negative deteksjoner.

Visualiseringer og 3D-plott av spor fra eksperimentene med den endelige pipelinen, sam-

men med m̊alinger av gjennomsnittshastighet og standardavvik over alle spor i hver video,

ble analysert. Gjennomsnittlig laksesvømmehastighet ble m̊alt til henholdsvis 0,5479 ms−1

og 0,6561 ms−1, og standardavvikene til 0,3175 ms−1 og 0,3149 ms−1.

Uskarphet var den viktigste bidragsyteren til feil i den endelige pipelinen for estimering

av svømmehastighet. Objektdeteksjonsmodellen detekterte kaudalfinner i sanntid. Modi-

fiseringen av sporingsalgoritmen induserte en forbedring i sporlengden og reduserte antall

spor, noe som indikerer at sporene som ble splittet p̊a grunn av hull i den opprinnelige

algoritmen, ble sl̊att sammen i den modifiserte algoritmen. For sporingsalgoritmen var

kameraets egenbevegelse, som p̊avirker IOU-overlapp, som det største problemet. Et neste

steg kan være å inkludere en bevegelsesmodell for egenbevegelse eller bruke en algoritme

som tar hensyn til bildeinformasjon.

viii

Samlet sett oppn̊adde vi en eksperimentell pipeline som var i stand til å estimere lak-

sens svømmehastighet i de to eksperimentene, ved å fjerne utilstrekkelige deteksjoner og

dybdeestimeringer fra sporene. 3D-plott av spor samsvarte med den observerte beveg-

elsen til fisken i forhold til kameraet. Gjennomsnittlige hastigheter beregnet fra sporene

var rimelige for svømmehastigheten til oppdrettslaks. Som et proof-of-concept viser sys-

temet at det er stort potensial i å anvende og kombinere velkjente visjonsbaserte teknikker

for å overv̊ake fiskevelferd i industrielle laksemerder, og at bildekvalitet er den viktigste

begrensningen per i dag.

ix

x

Preface

This master’s thesis is carried out during the spring/summer of 2021. It is submitted

as the final thesis for the Master of Science (M.Sc.) degree at the Norwegian University

of Science and Technology (NTNU). This report accounts for 100% of the final grade in

TMR4930 - Marine Technology, Master’s Thesis.

The work has been performed at the Department of Marine Technology (IMT) at NTNU in

collaboration with FiiZK and SINTEF Ocean, under the supervision of Professor Martin

Ludvigsen (NTNU) and co-supervisors Rune Volden (FiiZK) and Christian Schellewald

(SINTEF Ocean). The outline for the project was formed in collaboration with them. The

presented work contributes to the knowledge building for the characterization and stereo

camera-based metric measurements of salmon within ongoing projects at SINTEF Ocean

(i.e. INDISAL (NFR 282423), OWITOOLS (FHF 901594)). SINTEF Ocean provided

the data originating from the FHF project LAKSIT (FHF 901184). FiiZK provided the

necessary equipment.

Through the two module courses the autumn semester of 2020, TMR06 - Autonomous

Marine Systems and TTK25 - Computer Vision for Control, I have gained more knowl-

edge about computer vision and deep learning and especially the applications of these

in marine systems and underwater technology. The topics in TMR06 have given me an

essential insight into the opportunities that exist in these fields and the challenges that

must be conquered. In TTK25 I gained invaluable insight into the current evolution in

the application of computer vision and deep learning methods in aquaculture. This has

been a great inspiration for the design of this project. The work presented is solely done

by me, unless otherwise stated.

Trondheim, July 9, 2021

Side 6 av 6 Sign. initialer:

VEDLEGG TIL ANSETTELSESAVTALEN

av 18.08.2020
mellom
Karoline Barstein
og
FORTE TECHNOLOGY AS

LØNN

Lønn er p.t. 600 000 norske kroner pr år. Ved lønnsoppgjøret i 2022 vil lønn justeres med
minimum 4%. Tilsvarende ved lønnsoppgjøret i 2023.

Regulering av lønnen skjer iht. Arbeidsgivers bestemmelser om lønnsregulering.

Oslo, den 18.08.2020

___________________________ ___________________________

For FORTE TECHNOLOGY AS Karoline Barstein
John Kårikstad

Karoline Hokstad Barstein

xi

xii

Acknowledgements

I would like to express my deepest thanks to my supervisor Professor Martin Ludvigsen

(NTNU), for his guidance and motivation throughout the project. His concise and honest

feedback has been essential to conduct the writing of this thesis. Further, my co-supervisor

Rune Volden (FiiZK) deserves my gratitude for providing me with inspiration and mo-

tivation during the process. He has also been the key person to retrieve access to the

equipment needed, which was decisive to carry out the project. Finally, I would like to

express my appreciation to my co-supervisor Christian Schellewald (SINTEF Ocean), a

key person for acquiring image data, sharing computer vision knowledge, and providing

essential guidance and motivation to finalize the thesis.

K.H.B.

xiii

xiv

Abbreviations

AP Average Precision

AUC Area Under Curve

AUV Autonomous Underwater Vehicle

CNN Convolutional neural network

COCO Common Objects in Context

CPU Central Processing Unit

CUDA Compute Unified Device

Architecture

CV Computer Vision

DL Deep Learning

FC Fully Connected

FN False Negative

FP False Positive

FPS Frames Per Second

GAN Generative Adversarial Network

GD Gradient Descent

GPU Graphics Processing Unit

GUI Graphical User Interface

IOU Intersection Over Union

MOT Multiple Object Tracking

MSE Mean Square Error

NMS Non-Max Suppression

NN Neural network

PR Precision Recall

R-CNN Region-based CNN

RAM Random Access Memory

ReLU Rectified Linear Unit

RGB Red Green Blue

ROI Region Of Interest

RPN Region Proposal Network

SGD Stochastic Gradient Descent

SSD Single-Shot Multibox Detector

SVM Support Vector Machine

TN True Negative

TP True Positive

VoTT Visual Object Tagging Tool

WI Welfare Indicator

WLS Weighted Least Squares

xv

xvi

Table of Contents

1 Introduction 1

1.1 Background . 1

1.1.1 Motivation . 1

1.1.2 Underwater Imaging . 2

1.1.3 Fish Welfare Indicators . 4

1.1.4 Research Question . 6

1.1.5 Related Work . 7

1.2 Contribution . 8

1.3 Thesis Outline . 8

2 Deep Neural Networks 11

2.1 Artificial Neural Networks . 11

2.1.1 Basic Structure . 11

2.1.2 Training . 13

2.1.2.1 Backpropagation . 13

2.1.2.2 Gradient Descent . 15

2.1.2.3 Overfitting . 16

2.1.2.4 Data Augmentation . 17

2.2 Convolutional Neural Networks . 18

2.2.1 Convolutional Layer . 19

xvii

Table of Contents

2.2.2 Rectified Linear Unit (ReLU) . 21

2.2.3 Pooling Layer . 21

2.2.4 Fully Connected Layer . 22

2.2.5 Overall View . 23

2.2.6 Transfer Learning . 23

3 Object Detection and Tracking 25

3.1 Object Detection . 25

3.1.1 Basic Structure . 25

3.1.2 State-of-the-Art Models . 27

3.2 YOLOv4 . 30

3.3 Detection-Based Multiple Object Tracking 35

3.3.1 Kalman Filter . 36

3.3.2 Optical Flow . 36

3.3.3 IOU Tracking . 37

4 Stereo Vision for 3D Reconstruction 39

4.1 Single-View Geometry . 39

4.1.1 Pinhole Camera Model . 39

4.1.1.1 Principal Point Offset . 40

4.1.1.2 Camera Rotation and Translation 41

4.1.2 Distortion Model . 42

4.2 Stereo-View Geometry . 43

4.2.1 Epipolar Geometry . 43

4.2.1.1 Epipolar Line . 44

4.2.1.2 The Fundamental Matrix 44

4.2.2 Image Rectification . 45

xviii

Table of Contents

4.3 Stereo Matching . 46

4.3.1 The Correspondence Problem . 46

4.3.1.1 Block Matching . 47

4.3.1.2 Semi-Global Block Matching 50

4.3.1.3 Feature Matching . 51

4.3.2 Disparity Post-Processing . 51

4.4 The Reconstruction Problem . 52

5 Implementation 55

5.1 Data Acquisition . 55

5.1.1 Data Collection . 55

5.1.2 Preparations for Object Detection 56

5.1.2.1 Selection of Object of Interest 57

5.1.2.2 Annotation . 59

5.2 Implementation Prerequisites . 62

5.2.1 Computer . 62

5.2.2 Software . 63

5.3 Object Detection Model . 64

5.3.1 Selection of Detection Model . 64

5.3.2 Training . 66

5.3.2.1 Data Augmentation . 66

5.3.2.2 Transfer Learning . 67

5.3.2.3 Network Configuration . 67

5.3.2.4 Validation . 69

5.3.3 Evaluation of Detection Model . 70

5.3.4 Object Detection Pipeline . 73

5.4 Stereo 3D Reconstruction . 73

xix

Table of Contents

5.4.1 Camera Calibration . 74

5.4.2 Undistortion and Rectification . 75

5.4.3 Stereo Matching . 75

5.4.3.1 Selection of Stereo Matching Algorithm 76

5.4.3.2 Tuning of Stereo Matching Parameters 76

5.4.4 Disparity Post-Processing and Triangulation Pre-Processing 76

5.4.5 Triangulation and Pointclouds . 77

5.4.6 Depth Estimation Pipeline . 77

5.5 Tracking Algorithm . 78

5.5.1 Modified IOU Tracking Algorithm 78

5.5.2 Evaluation of Tracking Algorithm 80

5.6 Swimming Velocity Estimation . 80

5.6.1 3D Position of Individual Caudal Fins 81

5.6.2 3D Velocity . 82

5.6.3 Final Pipeline . 83

6 Results 85

6.1 Detection Model . 85

6.2 Depth Estimation . 89

6.2.1 Camera Calibration . 89

6.2.2 Disparity Post-Processing . 90

6.2.3 3D Reconstruction . 92

6.3 Video Analysis of Tracking . 94

6.4 Swimming Velocity . 98

6.4.1 Detections and Disparities . 98

6.4.2 3D Tracks . 101

6.4.3 Mean Velocity and Standard Deviation 106

xx

Table of Contents

7 Discussion 107

7.1 Dataset and Annotation . 107

7.1.1 Dataset . 107

7.1.2 Annotation . 108

7.2 Performance of Detection Model . 108

7.3 Stereo Matching and 3D Reconstruction 109

7.3.1 Camera Calibration . 109

7.3.2 Stereo Matching Algorithm . 109

7.3.3 Disparity Post-Processing . 110

7.3.4 3D Reconstruction . 110

7.4 Tracking Algorithm . 111

7.4.1 Comparison of Algorithms . 111

7.4.2 Implementation and Tuning . 112

7.4.3 Influencing Factors . 112

7.5 Swimming Velocity Estimation . 113

7.5.1 Detections and Disparities . 113

7.5.2 3D Tracks . 113

7.5.3 Mean Velocity and Standard Deviation 114

7.5.4 Pipeline Implementation . 114

8 Conclusions and Further Work 117

8.1 Conclusions . 117

8.2 Further Work . 119

Bibliography 121

Appendix 129

A Source Code . 129

xxi

Table of Contents

xxii

List of Figures

1.1 The underwater imaging process illustrating the losses of light to an image

in an underwater imaging system. Image courtesy by (Funk et al. 1972). . 3

2.1 Graph model of a neuron. 12

2.2 Illustration of a single-layer, fully connected neural network. 12

2.3 Illustration of forward- and backpropagation during training in a neural

network. 14

2.4 Early stopping point and overfitting. 17

2.5 Examples of data augmentation techniques. Image courtesy by Chen et al.

(2020). 18

2.6 Fukushima’s concept of convolutional networks from 1980. Basic features

are extracted by receptive fields at the lower layers (left) and combined

to more complex features at the higher levels (right). Image courtesy of

Fukushima (1980). 19

2.7 A visual explanation of convolution. Based on Goodfellow et al. (2016). . . 20

2.8 Edge detection using two different kernels, one capturing vertical edges and

one capturing horizontal edges. By combining the results we obtain the

majority of edges in the image. Figure retrieved from CNN Edge detection

(2018) and modified. 21

2.9 Max-pooling operation. 22

2.10 Layers of a typical CNN. 23

3.1 High-level architecture of an object detector. 26

xxiii

List of Figures

3.2 Example result from object detection. The outputs are bounding boxes and

class predictions for each object of interest in the image. Image courtesy

by Redmon et al. (2016). 26

3.3 YOLO bounding box and class prediction. Image courtesy of Redmon et al.

(2016). 29

3.4 SSD training process. Image courtesy of Liu et al. (2015). 30

3.5 Anchor box and predicted offsets. Width and height of the bounding box

are predicted as offsets from cluster centroids. The center coordinates of

the box relative to the top left corner of the cell are found by using a

sigmoid function, which forces the output to be between 0 and 1. Image

courtesy of Redmon & Farhadi (2016). 31

3.6 An example of the application of the CSPNet strategy (here, on DenseNet

(Huang et al. 2017)). Image courtesy of Wang et al. (2020). 34

3.7 (a) Information propagation in FPN, red line. (b) Information propagation

in PANet, green line. Image courtesy of Liu et al. (2018). 34

3.8 Original PAN vs. YOLOv4 modified PANet. Image courtesy of Bochkovskiy

et al. (2020). 35

3.9 The aperture problem. The line appears to be moving to the right when

viewing through the aperture, but is in reality also moving down. It is not

possible to determine the correct direction of movement unless the ends of

the line are visible. 37

3.10 Principle of the IOU tracking algorithm. Based on Bochinski et al. (2017). 38

4.1 The Euclidian transformation between the world and camera coordinate

frames. Image courtesy by Hartley & Zisserman (2003). 42

4.2 Checkerboard pattern, appearing with no distortion, positive radial dis-

tortion, and negative radial distortion, respectively. Image courtesy by

Ozcakir (2020). 42

4.3 Illustration of block matching process. Image courtesy by McCormick (2014). 48

4.4 SAD cost computation between two possibly matching blocks. Image cour-

tesy by McCormick (2014). 48

4.5 SGBM block diagram, using five directions. Image courtesy by The Math-

Works, Inc. (n.d.). 51

xxiv

List of Figures

5.1 Salmon external anatomy. 58

5.2 Screenshot from annotation tool (VoTT). 60

5.3 Example of image frame with extensive motion blur. 60

5.4 Example of image frame of scarce quality. The image contains a high level

of noise, several tale fin occlusions, and an unclear distinction between

foreground and background. 61

5.5 Example of an accepted image frame. The image has clear distinctions

between foreground and background, an acceptable amount of motion blur,

and few tale fin occlusions. 62

5.6 Comparison of YOLOv4 and other state-of-the-art object detectors. Image

courtesy of Bochkovskiy et al. (2020). 65

5.7 Four different augmentations of one training image. 67

5.8 Definition of Intersection over Union (IoU). 71

5.9 Calculation of average precision by using area under precision-recall curve.

Image courtesy of Padilla (2019). 72

5.10 Detection pipeline. 73

5.11 Chessboard detections in two calibration stereo pairs, (a) and (b), and (c)

and (d), respectively. 74

5.12 Example of rectified image pair. 75

5.13 Disparity estimation and 3D reconstruction pipeline. 77

5.14 Definition of the inner area of the bounding box, where the mean and

variance of the disparity is calculated. 82

5.15 Final overall pipeline, including caudal fin detection, image scene depth

estimation, and tracking. 83

6.1 YOLOv4 detections on images from test set. 87

6.2 Problematic YOLOv4 detections on images from test set. 88

6.3 YOLOv4 detections on images from test set, showing detections across scales. 88

6.4 Initial reprojection errors. Unit is pixels. 89

6.5 Improved reprojection errors. Unit is pixels. 89

xxv

List of Figures

6.6 Example of input images and resulting raw and filtered disparity maps.

The weighted least squares (WLS) filter is used. 90

6.7 Example of input images and resulting raw and filtered disparity maps.

The weighted least squares (WLS) filter is used. 91

6.8 Resulting pointcloud of a filtered disparity map, from two different views

angles. Notice the fish surface marked in red and how the smoothed edges

of the surface creates speckles/noise. 92

6.9 Measurement of checkerboard square size in four different pointclouds. The

number behind “Distance” shows the measured distance of the red line. All

units are millimeters. 93

6.10 Examples of 3D reconstruction from stereo image pairs. (a) and (b) are

original (left) images. (c) and (d) are the pointclouds after 3D reconstruc-

tion for images (a) and (b), respectively. 94

6.11 Results from object tracking; notice the bounding boxes of frame k+1 and

k + 2. They are false positives, but get included in the track. 96

6.12 Results from object tracking; too small IOU overlap between consecutive

frames. 97

6.13 Examples of good detections and disparity estimations. 98

6.14 Examples of disparity estimates discarded because of too small variance. . 100

6.15 Examples of disparity estimates discarded because of too high variance. . . 101

6.16 The longest track (128 frames, 5.33 s) of video 1 plotted in 3D coordinates. 102

6.17 The second longest track (108 frames, 4.50 s) of video 1 plotted in 3D

coordinates. 103

6.18 The longest track (108 frames, 4.50 s) of video 2 plotted in 3D coordinates. 104

6.19 The second longest track (83 frames, 3.46 s) of video 2 plotted in 3D coor-

dinates. 105

xxvi

List of Tables

1.1 Evaluation and classification of WIs identified by Nofima (2018), based on

their visual and temporal detectability. All WIs in the table are group

based, except gill cover frequency, which is individual based. 5

4.1 Stereo matching approaches, as described by Brown et al. (2003). 47

4.2 Common cost functions for measuring similarity in correlation-based stereo

matching methods. Based on Praveen (2019) and Brown et al. (2003). . . . 49

4.3 Nomenclature for cost function formulas. Based on Praveen (2019). 49

5.1 Camera information, taken directly from the information file provided from

SINTEF with the LAKSIT dataset. Two of these cameras were used for

the stereo setup. 56

5.2 Evaluation of objects of interest, using three criteria. 59

5.3 Main specifications of the computer used in the project. 63

5.4 Configuration of training parameters for YOLOv4. 68

5.5 Validation mAP after each 1000 iterations of the training process, together

with the best weights result. 70

5.6 Confusion matrix. 70

5.7 Tuning parameters for OpenCV StereoSGBM algorithm. 76

6.1 Accuracy results on test dataset with different IOU thresholds. 86

6.2 Accuracy results on test dataset with different confidence thresholds. . . . 86

6.3 Measured checkerboard square sizes in Figure 6.9. 93

xxvii

List of Tables

6.4 Quantitative results of tracking algorithms using detections from YOLOv4,

obtained from two test videos with a length of 3120 frames. 95

6.5 Statistics for two test videos. 106

xxviii

Chapter 1

Introduction

This report is a master’s thesis conducted in collaboration with FiiZK Digital Integrator

AS and SINTEF Ocean. Parts of the work are based on the work accomplished in my

specialization project on detection and tracking of fish feed pellets.

This chapter focuses on the whole picture of the thesis, explaining the background, mo-

tivation, and some important topics. Further, research questions are defined, and the

outline of the thesis is explained.

1.1 Background

1.1.1 Motivation

The history of Norwegian aquaculture started on Hitra in 1970 with a farm built by

pioneers. Since then, several hundred fish farms have been built along the Norwegian

coastline (Norwegian Seafood Federation 2011). The temperature and sea currents due

to the Atlantic Gulf Stream provide optimum living conditions for salmon, and Norway

accounts for over 50% of the global production of Atlantic salmon (Ernst & Young 2019).

Nevertheless, only 0.5% of Norway’s coastal zone area is used for salmon production

(Norwegian Seafood Federation 2012), suggesting there are still huge opportunities for

expanding production. However, several challenges need to be encountered to ensure a

more efficient and sustainable industry while expanding.

An extensive problem in farmed fish production is monitoring fish welfare. The industry

is closely governed; nevertheless, the mortality of fish is large during operations (Overton

et al. 2019).

1

Chapter 1. Introduction

Today, fish welfare governing is mainly based on manual observations of the fish’s be-

havior through video streams from submerged cameras or directly from above the water

surface. This is more or less an infeasible task in terms of accuracy due to observers’ fa-

tigue and the lack of a complete overview of the situation in the sea cage. Increasing the

level of autonomy will be important when going towards a more sustainable and efficient

fish farming industry with a higher focus on fish welfare. Deep-learning-based computer

vision techniques appear promising for observing and monitoring farmed fish. As most

aquaculture sea cages today have underwater cameras installed for visual monitoring of

the sea cage environment, a basic framework is already established to apply such tech-

niques. However, underwater computer vision is subject to complex challenges in terms

of both hardware and signal quality, including high device costs, complex device setups,

and distortion in signals and light propagation introduced by the water as a medium

(Lodi Rizzini et al. 2015). Also, due to the high costs of proper underwater cameras,

most existing installed devices provide scarce data quality. As the computer vision and

deep learning fields evolve, state-of-the-art models for image analysis are constantly get-

ting more accurate and fast. Several frameworks have been developed to facilitate rapid

and scalable development. But so far, few have investigated practical application and

combination of such methods to monitor fish welfare by using low-cost camera setups in

industrial sea cages.

1.1.2 Underwater Imaging

Application of standard computer vision techniques to underwater images requires dealing

with some additional problems compared to terrestrial imagery. Underwater images can

suffer from problems such as limited range visibility, low contrast, non-uniform lighting,

blurring, bright artifacts, diminished color, and noise (Schettini & Corchs 2010).

In underwater imaging, an artificial light source projects light on the target, and the re-

flections are recorded by the camera. This happens when photons are transmitted and

attenuated through the water before the reflected photons are registered by the camera

(Ludvigsen et al. 2020). Underwater images are typically characterized by reduced visi-

bility, caused by light being exponentially attenuated when traveling through the water.

This limits the visibility to around twenty meters in clear water and five meters or less in

turbid water (Schettini & Corchs 2010).

There are three important, general problems occurring in underwater imaging: attenu-

ation, backscatter, and small-angle forward scattering. Six important, special cases of

these are listed below, based on Funk et al. (1972), and visualized in Figure 1.1.

• Source light is outward scattered and does not reach the target.

• Source light is attenuated.

2

1.1. Background

• Source light is backward scattered.

• Reflected light is attenuated.

• Reflected light is outward scattered and does not contribute to the image.

• Reflected light is small-angle forward scattered.

scattering

light emitted
light

D*
receiver

or
camera

received
light

transmission
through
seawater

absorption -, ^

small-angle ^^Ai^T^^^^'o
forward scattering

C
reflected
light

sca1:tering

Figure 2.1. Block diagram of basic imaging situation.

object
or

target

2-11

Figure 1.1: The underwater imaging process illustrating the losses of light to an image in

an underwater imaging system. Image courtesy by (Funk et al. 1972).

The first problem, the spectral attenuation of visible light, is dependent on the colored

dissolved matter, suspended matter, or plankton in the water. In addition, the water

itself heavily attenuates the red part of the light spectrum. In the blue-green region in

clear water, light can be transmitted with less attenuation than other wavelengths (Funk

et al. 1972).

The second problem is backscatter. Seawater normally contains high concentrations of

particles and when a photon hits a particle, its direction is changed either back towards

the camera or out of the camera field of view (FoV). This leads to light-scattering, which

again reduces the amounts of light that forms the imagery. Backscattering is when the

scattered light reaches back to the sensor without hitting the object. This can degrade

the image contrast seriously and cause blur (Funk et al. 1972).

The last problem, small-angle forward scattering, is when photons change direction with-

out any other alternation. This can cause major losses of resolution. How serious these

3

Chapter 1. Introduction

losses are depends on the nature of the water, the imaging system and its geometry, and

resolution requirements (Funk et al. 1972).

As one goes to deeper water, the amount of light is reduced. Depending on their wave-

length, colors will be lost one by one with depth. Blue has the longest wavelength, thus,

underwater images will normally be dominated by blue color (Schettini & Corchs 2010).

Motion blur can be present in underwater images. In conditions with low lightning (as

in underwater imagery), the image quality is always a trade-off between motion blur and

noise. When the illumination level is low, a long exposure time is required to obtain

a sufficient signal-to-noise ratio. However, a long exposure time increases the risk of

motion blur in the images. Motion blur is in general caused by relative motion between

the camera and the subject (Kurimo et al. 2009). For underwater images, the causes

for relative motion can be, e.g., dynamic water surface, moving subjects (e.g., fish), or

moving camera due to currents.

1.1.3 Fish Welfare Indicators

With the recent evolution and growth in modern fish farms, fish welfare has become an

emerging issue. The industry affects millions of individual fish, yet, the fish are treated

legally and morally with less concern for their health and welfare than in other animal

industries (Gismervik et al. 2020). Nevertheless, farmers themselves have been interested

in the topic, and it has been covered in numerous research and reviews in the last years

(Nofima 2018). This information can be widespread and not necessary accessible for the

farmers. However, the greatest challenge occurs when the information about fish welfare

is to be implemented in production. Measuring fish welfare can be difficult, and one might

not even know how to measure it.

As a tool for measuring welfare of farmed Atlantic salmon, Nofima (2018) has developed a

set of welfare indicators (WIs). They can be directly animal-based or indirectly resource-

based, but some can be hard to implement on-site, e.g., if a laboratory must analyze

samples.

Some WIs require special sensors or tools to be observed, some require human intervention,

and some can be observed visually. There are WIs that can be observed in a snapshot

or short video clips (e.g., surface activity, skin patterns, swimming speed), while others

require observation over a long period of time (e.g., death rate or growth). In this thesis,

visual detectability over a short period of time (a short video clip) was a constraint as

it is a study of the application of computer vision techniques for monitoring fish welfare.

Animal-based WIs identified in the Nofima (2018) report were reviewed and classified

systematically to extract the possible welfare indicators to analyze. The result is shown

4

1.1. Background

in table Table 1.1.

Table 1.1: Evaluation and classification of WIs identified by Nofima (2018), based on

their visual and temporal detectability. All WIs in the table are group based, except gill

cover frequency, which is individual based.

Indicator Visually detectable?

(animal based) In snapshot or short video clip Over longer time

Death rate No No

Swimming activity Yes No

Fin presence/orientation Yes No

Gill rate Yes No

Skin patterns Yes No

Positioning Yes Yes

Freezing behavior Yes No

School structure Yes No

Horizontal/vertical distribution No No

Swimming speed Yes No

Appetite Yes Yes

Growth No Yes

Cataracts Yes No

Red water (shells, blood) Yes No

Surface activity Yes No

Gill cover frequency Yes No

The WI sickness was also considered. However, it is difficult to evaluate it as a simple

“yes” or “no” as sickness is a wide term. It could be diseases appearing on the exterior

of the fish, making it possible to detect visually. If the sickness is only visual in the fish’s

interior, it will not be possible to detect on camera. Sickness could evolve with time, or

it could be visible only by studying changes in behavior (detectable over a longer time).

As this project was restricted to analyzing short video sequences, all WIs not visually

detectable in snapshots or short video clips were discarded. The dataset and the method-

ology settled the final constraints. Because of motion blur and lack of detail in the

images, WIs requiring high detail level like gill rate and skin patterns were discarded. In

the specialization project underwater object detection and tracking was studied, and it

was desirable to continue working with these methods. The acquired dataset contained

underwater imagery from sea cages, capturing swimming fish from a close distance. Thus,

the WI surface activity, that requires imagery closer to the surface, was also discarded.

The same applies for WIs like school structure and horizontal/vertical distribution, as

they would require an overview of the fish in the cage from a farther distance. The final

choice was the WI swimming activity, or more specifically, swimming velocity.

5

Chapter 1. Introduction

1.1.4 Research Question

This thesis examines the combination of computer-vision and deep-learning based methods

to obtain information about salmon welfare from a dataset of stereo video sequences from

an industrial sea cage. Hence, the research question addressed is How can established

computer-vision and deep-learning methods be applied and combined to obtain information

about salmon welfare? This question is answered by looking more specifically at the

following questions:

1. How can information about fish welfare be obtained from a dataset of stereo video

sequences of farmed salmon in a sea cage? How can welfare be defined, and which

welfare indicators are visually detectable from video sequences?

2. How can depth information be extracted from the underwater image dataset pro-

vided?

3. How can fish, or parts of a fish, be detected using deep-learning based object detec-

tion?

4. How can one fish be tracked through several image frames simply and efficiently?

5. Can the methods found be combined to form a system to extract information about

salmon welfare?

This will be studied through the following objectives:

1. Provide a brief overview of existing work on:

• Underwater object detection

• Underwater object tracking

• Underwater stereo matching and 3D reconstruction

2. Perform a literature study on fish welfare indicators and from this construct the

scope for the thesis.

3. Perform a literature study on traditional and deep-learning (DL) based computer

vision techniques, including:

• Artificial neural networks

• Convolutional neural networks

• State-of-the-art object detection models

• Multiple object tracking

• Stereo matching and 3D reconstruction

4. Acquire and prepare stereo image data of farmed Atlantic salmon retrieved from

industrial sea cages for object detection tasks.

5. Train and validate an deep-learning-based off-the-shelf object detection model to

investigate object detection in real-time.

6. Investigate the application of a simple object tracking algorithm on the results from

the object detection.

6

1.1. Background

7. Perform stereo matching and 3D reconstruction.

8. Combine the chosen methods into a pipeline to retrieve 3D positions for individual

fish in consecutive frames and thereby estimate swimming velocities.

9. Analyze the results from the chosen methods and identify and discuss the weaknesses

of the dataset, the individual methods, and the total pipeline.

10. Suggest recommendations for future work based on the results.

1.1.5 Related Work

In recent years, fish welfare has been emphasized in the fish farming industry at the same

time as vision-based techniques have evolved. Lien et al. (2019) use an aerial camera

platform to determine spatial feed distribution in sea cages, as a contribution to optimizing

feeding. This is achieved by counting the splashes caused by feed pellets hitting the water

surface. Splash pixels are distinguished from calm water surface pixels by their increased

brightness. A video analysis procedure for assessing vertical fish distribution in sea cages

is presented by Stien et al. (2007). They mark fish tank walls with black lines and identify

those parts of the lines that are not obstructed by fish in the individual image frames.

By comparing the visual part of the line with the known extent of the lines percentage

coverage is calculated, which indicates the vertical fish distribution. Ziyi et al. (2014)

measure the feeding activity of farmed fish based on difference frame (e.g., the subtraction

of two consecutive images) analysis.

Traditional stereo vision techniques are not new, and they have been implemented for

image analysis in aquaculture for several years. As early as 2001, Serna & Ollero esti-

mated individual fish’s biomass by using a stereo setup and traditional stereo matching

algorithms to estimate the depth of key points determining the fish geometry. From this,

they use a simple relation to estimate the biomass. Pérez et al. (2018) use a stereo camera

setup to estimate fish size. They use traditional stereo matching to correct the pairs of

images and segmentation to obtain silhouettes of fish and exclude objects not fulfilling

certain criteria for being a fish. From the silhouettes, the length and height for each fish

are estimated. Using this combined with the depth information from stereo matching,

they determine the fish’s position and size in space. They achieved a maximum error of

4%. Note that these results are obtained using a physical frame that the fish must pass

through while photos are taken, thereby “forcing” a controlled environment.

Deep-learning based methods have been successfully applied for detecting objects in un-

derwater environments. Fulton et al. (2018) investigate four different state-of-the-art

methods based on convolution neural networks (CNN) for the detection of marine litter.

The model that performed the best in terms of accuracy was Faster R-CNN with a mAP

of 81%. Another CNN-based approach is presented by Han et al. (2020) for detecting ma-

7

Chapter 1. Introduction

rine organisms. They use a model based on Faster R-CNN, but apply several adjustments

to be able to detect very small objects and to run the model in real-time. Xu & Matzner

(2018) implemented and tested a YOLO model on fish detection using three different

datasets, obtaining a mAP of almost 54% when training and testing on all three datasets.

An interesting finding was that the model did not generalize very well when training on

two of the datasets and testing on the third. For online fish detection and tracking Li

et al. (2018) proposes a combination of YOLOv3 and parallel correlation filter, achieving

promising results.

1.2 Contribution

The main contribution of this thesis is an experimental pipeline demonstrating how vision-

based techniques can be used and combined to obtain information about farmed salmon

welfare. In specific, we developed a proof-of-concept to estimate salmon spatial movement

and swimming velocity by combining deep-learning based object detection, a tracking

algorithm based on IOU overlap, and 3D reconstruction by semi-global block matching.

In addition, the thesis includes considerations of the visual and temporal detectability

of welfare indicators for farmed Atlantic salmon, which can serve as a basis for further

research on vision-based monitoring of welfare in the fish farming industry.

1.3 Thesis Outline

The thesis has now been introduced and some issues of fish welfare have been uncovered

and investigated. We have looked into the challenges of underwater imaging, proposed

the research question for the thesis, and presented some related work. The remaining

parts of the thesis will be structured as follows:

• Chapter 2 provides a theoretical background on deep learning, focusing on neural

networks and in particular convolutional neural networks.

• Chapter 3 investigates object detection and multiple object tracking methods by

presenting the most important theoretical parts and providing details on some cen-

tral models.

• Chapter 4 introduces the concepts behind stereo vision and goes further into camera

calibration, stereo matching, and 3D reconstruction.

• Chapter 5 describes the methods used in this project, including data acquisition,

data processing, detection model, image scene depth estimation, and tracking algo-

rithm, and the implementation of the proposed experimental system.

8

1.3. Thesis Outline

• Chapter 6 provides an overview of the results from the individual components and

the proposed pipeline.

• Chapter 7 presents a discussion about the limitations of the project and an inter-

pretation of the results.

• Chapter 8 concludes the findings in the project and proposes recommendations for

future work.

9

Chapter 1. Introduction

10

Chapter 2

Deep Neural Networks

Although the greatest strength of machine learning models is their ability to adapt and

learn, there is no single model that can fit all purposes. A neural network can be designed

in numerous ways, and there exist many different classes of neural networks suited for

different purposes or different data structures. To understand how neural networks learn

and predict and to understand which type of network is appropriate for a specific objec-

tive is crucial to obtain optimal and, even more important, valid results. The following

chapter will provide the most important theory behind neural networks and, in particular,

convolutional neural networks, which are the core building blocks of object detectors.

2.1 Artificial Neural Networks

Artificial neural networks, or simply neural networks (NNs), are essential when consider-

ing artificial intelligence, machine learning, and deep learning. They are inspired by the

natural neural networks in the brain and consist of many elementary processing units,

encouraged by biological neurons, which are interconnected to gain and preserve knowl-

edge through learning (Wu 1992). By processing examples, NNs have the ability to adapt

and construct their own rules of behavior through experience, analogous to the learning

process of the human brain (Haykin 1998). In addition, neural networks are powerful

tools for performing information-processing tasks as they have the ability to recognize

patterns in complex datasets.

2.1.1 Basic Structure

The structures of neurons and NNs are commonly visualized as weighted directed graphs.

The neuron graph model in Figure 2.1 consists of the following elements (Haykin 1998):

11

Chapter 2. Deep Neural Networks

1. Weights . The synaptic weight wi is multiplied by the input signal xi. A larger

weight means the particular input has a larger impact on the network.

2. Summing point
∑

for summing the weighted input signals together with a bias.

Analogous to a constant in a linear function, the bias b can shift the input left or

right to fit the prediction better with the data.

3. Activation function f to saturate the neuron’s output amplitude and to intro-

duce nonlinearity, making it possible for the network to learn nonlinear patterns.

The results are passed as input for neurons in the next layer of the network.

Figure 2.1: Graph model of a neuron.

A neural network contains sets of neurons structured in interconnected layers. Figure 2.2

shows a visual representation of a simple neural network. It consists of an input layer, a

hidden layer, and an output layer. The network in the figure is fully connected since every

neuron in layer l is connected to every neuron in layer l + 1. It is a single-layer network

because it has one hidden layer. All layers in a network that are neither the input nor

the output layer are hidden layers. A network with several hidden layers is referred to as

a deep network, giving rise to the term deep learning.

Figure 2.2: Illustration of a single-layer, fully connected neural network.

12

2.1. Artificial Neural Networks

In Figure 2.2, an input signal xi in the input layer l = 1 is multiplied by the weight w1
ji

before it is passed to neuron j. The summation step adds the weighted input and the

bias to produce the linear combination z2j =
∑

iw
1
jixi + b2j . This result is passed on to an

activation function φ, resulting in the output o2j = φ(z2j) which is provided as input for

the next layer in the network. For an arbitrary layer l, the summing computations for a

single neuron j can be generalized as

zlj =
m∑
i=0

wljio
l−1
i + blj. (2.1)

Then, after passing through the activation function, we achieve the output

olj = φ(zlj). (2.2)

This can be extended to vector form, including all neurons spanning the layer, which gives

zl = Wlol−1 + bl (2.3)

and the output vector

ol = φ(zl) = [φ(zl1) φ(zl2) ... φ(zlj)]
T . (2.4)

2.1.2 Training

To alter the weights of the connections between neurons and the biases to be optimal for

a network, one must train the network. This is where the learning in machine learning

appears.

2.1.2.1 Backpropagation

The training of a neural network is an iterative process, as visualized in Figure 2.3. The

first phase, forward propagation, introduces training (labeled) data to the network. The

labels are not exposed to the network during the forward propagation, and the network

predicts and assigns labels on this data based on its current weights and biases. I.e.,

all neurons perform their calculations (as described in (2.1)-(2.4)) on the information

received from the previous layer and pass this to neurons in the next layer. Finally, the

output layer makes its prediction and outputs a label. Further, a loss function is used

to estimate the error (loss). The output is a measure of how accurate the prediction was

relative to the true label. Finally, the loss information is propagated backward in the

backpropagation phase. This information propagates to all contributing neurons, layer by

layer. Each neuron receives a part of the loss information based on how large a neuron’s

relative contribution had to the output and updates weight and biases accordingly. Ideally,

13

Chapter 2. Deep Neural Networks

the network aims for zero loss, i.e., the backpropagation is to optimize a cost function C

(the loss function) with respect to any weight w and bias b in the network.

Forward propagation

Backward propagation

Loss

Figure 2.3: Illustration of forward- and backpropagation during training in a neural net-

work.

An important assumption to be made about the cost function when backpropagation is

applied is that the cost function can be written as an average over cost functions Cx for

individual training examples, i.e.,

C =
1

n

∑
x

Cx. (2.5)

This assumption is necessary because backpropagation computes the partial derivatives
∂Cx

∂w
and ∂Cx

∂b
for every training sample x. Then ∂C

∂w
and ∂C

∂b
are recovered by averaging

over the training samples. A second important assumption is that the cost function can

be written as a function of the outputs ol from the network, i.e. C = C(ol). Note that

the desired output (label) y is also part of the cost function but is not considered as a

variable in the individual cost functions, as its value is fixed for each sample.

Now we introduce a small change ∆zlj to the neurons weighted input zlj, giving the ac-

tivation output φ(zlj + ∆zlj). This change propagates through subsequent layers of the

network, changing the total cost by ∂C
∂zlj

∆zlj. Further, we define the error in the jth neuron

in the lth layer, δlj, as

δlj =
∂C

∂zlj
, (2.6)

where zlj is as defined in (2.1). Backpropagation yields a procedure to compute this error

for every layer and relate them to ∂Cx

∂w
and ∂Cx

∂b
.

The error in the output layer, δL, can on vector form (including all neurons in the layer)

be described as

δL = ∇oC � φ′(zL), (2.7)

14

2.1. Artificial Neural Networks

where ∇oC is the rate of change in the cost with respect to the output activations and

φ′(zL) is the rate of change in the activation function φ at zlj. (2.7) is necessary to compute

the error in the former layers, and the error in layer l in terms of the error in layer l+ 1 is

δl = ((wl+1)T δl+1)� φ′(zl). (2.8)

(2.8) can be interpreted as moving the error back through the network, which gives a

measure of the error at the output in the previous layer. Combining (2.8) with (2.7)

now gives the error for any layer in the network. Since the overall goal is to relate the

change in the cost to the weights in the network, we can now define (2.9) and (2.10) which

are the rates of change of the cost with respect to any bias and weight in the network,

respectively.
∂C

∂blj
= δlj (2.9)

∂C

∂wljk
= ol−1k δlj (2.10)

With the four equations (2.7)-(2.10) in mind, the backpropagation algorithm can now be

formulated as in Algorithm 1.

Algorithm 1 Backpropagation algorithm (Nielsen 2015)

Input x: Set the corresponding activation ol for the input layer.

Forward propagation: For each l = 2, 3, ..., L compute zl = wlol−1 + bl and ol = φ(zl)

Output error δL: Compute the vector δL from (2.7).

Backpropagation of error: For each l = L− 1, L− 2, ..., 2 compute δl from (2.8).

Output: Calculate the gradient of the cost function, given by (2.9) and (2.10).

For further details on the algorithm and the derivation of the equations, see Nielsen (2015).

2.1.2.2 Gradient Descent

Now that the cost function C and the backpropagation are introduced, the next step is to

look at how one can minimize the cost function. We can visualize the loss function as a

landscape, where the goal is to find the global minimum. This is a comprehensive task, and

there are no effective methods for finding the true global minimum. However, using the

iterative technique gradient descent (GD) can provide the local minimum, which in most

cases is sufficient. The weights are gradually changed in small increments by calculating

the gradient of the loss function. The gradient ∇(f) of a scalar-valued multi-variable

function f(x1, x2, ..., xD) ∈ RD is defined as

∇(f) =

[
∂f

∂x1
,

∂f

∂x2
, ...,

∂f

∂xD

]T
, (2.11)

15

Chapter 2. Deep Neural Networks

i.e., the gradient captures the rate of change of the function with respect to each directional

component; thus, it reveals in which direction to do the next increment. Consequently,

one can update the weights and biases in the network component-wise according to

wljk → wljk
′ = wljk − η

∂C

∂wljk
, (2.12a)

blj → blj
′ = blj − η

∂C

∂blj
. (2.12b)

While the gradient decides in which direction one should adjust the weights and biases, the

learning rate, η, determines the adjustment step size. It is important to choose the learning

rate sufficiently, as it introduces a trade-off between fast convergence and overshooting.

Further, the entire process is repeated with batches of data in consecutive iterations

(epochs) until convergence or until a maximum number of epochs. In the GD approach,

the gradient is computed separately for each training input and then averaged over all

training inputs in one batch. This means that the computational cost increases linearly

with the size n of the training dataset; hence learning will occur slowly when n gets large.

To speed up the learning, one can apply stochastic gradient descent (SGD). The idea is

to estimate the cost function gradient by evaluating the gradient of a set of randomly

chosen training inputs x1, x2, ..., xm, referred to as a mini-batch. If the mini-batch m is

large enough, we can assume this set as representative for the entire batch. Although the

estimates are influenced by statistical fluctuations and thus are not perfectly accurate, the

direction will generally be sufficient to decrease the cost function and eventually find the

local minimum at a lower computational cost than with the vanilla GD (Nielsen 2015).

2.1.2.3 Overfitting

Machine learning models are subjected to the problem of overfitting. Overfitting is the

phenomenon where the model learns noise and detail in the training set too well; thus,

it cannot generalize the patterns it learns and will perform badly when presented to new

data. Figure 2.4b illustrates the concept by a polynomial approximation. We see that for

order 10, the model quite accurately estimates the target function, which is the kind of

result that is desirable. For order 20, the model fits the training data almost perfectly,

but the interpolation is very bad between the training points.

16

2.1. Artificial Neural Networks

GENÇAY AND QI: PRICING AND HEDGING DERIVATIVE SECURITIES 729

Fig. 1. Early stopping based on cross-validation.

it is difficult to decide when it is best to stop training by just
looking at the learning curve for training by itself. It is possible
to overfit the training data if the training session is not stopped
at the right point.

The onset of overfitting can be detected through cross valida-
tion in which the available data are divided into training, vali-
dation, and testing subsets. The training subset is used for com-
puting the gradient and updating the network weights. The error
on the validation set is monitored during the training session.
The validation error will normally decrease during the initial
phase of training (see Fig. 1), as does the error on the training
set. However, when the network begins to overfit the data, the
error on the validation set will typically begin to rise. When the
validation error increases for a specified number of iterations,
the training is stopped, and the weights at the minimum of the
validation error are returned.

D. Bagging

In bagging (or bootstrap aggregating), multiple versions of
a predictor is generated and they are used to get an aggregated
predictor. The multiple versions are formed by making bootstrap
replicates of the training set and using these as new training sets.
When predicting a numerical outcome, the aggregation takes the
average over the multiple versions that are generated from boot-
strapping. According to [7], both theoretical and empirical evi-
dence suggests that bagging can greatly improve the forecasting
performance of a good but unstable model where a small change
in the training data can result in large changes in model, but
can slightly degrade the performance of stable models. NNs,
classification and regression trees, and subset selection in linear
regression are unstable, while-nearest neighbor methods are
stable [6]. In the present study we use NNs for option pricing
and hedging, thus bagging becomes relevant.3

As proposed by [7] when the NN output,, is numerical,
bagging works as follows. Let represent the training set
that consists of data , where
is the number of observations in the training set. The NN
model represented by (1) is fitted to the training set and this
generates a predictor : if the input is we predict
by . Now, suppose we have a sequence of training sets

3We would like to thank an anonymous referee for suggesting this method to
us.

each consisting of independent obser-
vations from the same underlying distribution as. We can use
the to get a better predictor than the single learning set
predictor by working with the sequence of predictors

. An obvious procedure is to replace by the
average of over , i.e., by .
However, usually there is only a single training setwithout the
luxury of replicates of . In this case, repeated bootstrap sam-
ples can be drawn from

. Each is a random
pick from the original training set
with replacement. The bootstrap samples are used to
form predictors . The bagging predictor can
thus be calculated as

(10)

where represents the total number of bootstrap replicates of
the training set.

We slightly modify the bagging procedure of [7] to deal
with the cross validation performed on ten NN models with
the number of hidden layer units varying between 1 to 10.
First, the available data are divided into the training, validation,
and testing subsets as in cross validation and early stopping.
Second, a bootstrap sample is selected from the training set.
The bootstrap sample is then used to train the NN with 1 to
10 hidden layer units. The validation set is used to select the
best NN that has the optimal number of hidden layer units,
and the best model is used to generate one set of prediction
on the testing set. This is repeated 25 times giving 25 sets of
predictions (). Third, the bagging prediction is the
average across the 25 sets of predictions, and the prediction
error is computed as the difference between the actual and the
bagging prediction values.

E. Performance Measures and Test Statistics

Mean squared prediction errors (MSPE) and average hedging
errors (AHE) are used to measure the pricing and delta-hedging
accuracy, respectively. The mean, standard deviation of these
measures across all experiments, as well as, a measure that
combines the mean and the variance in a single statistic, will be
reported.

To test whether the forecasts from two competing models are
equally accurate, we use the Diebold-Mariano (DM) test for the
significance of the difference between the MSPE or the AHE of
the NN model and the one that utilizing one of the overfitting
preventing methods. Denote the MSPE or the AHE of the NN
model for the ith experiment as , those
of the NN model trained with certain regularization as , the
differential as , and the spectral density of
at frequency 0 by . The DM test is based on the statistic

DM (11)

where , and is a consistent estimate of
. Under the null hypothesis of equal forecasting accuracy,

the asymptotic distribution of is standard normal. We use

(a) Early stopping point. Image cour-

tesy of Gençay & Qi (2001).

interpolation between training points is very poor. Overfitting can also be a very important problem in MLPs, and
much work has been devoted to preventing overfitting with techniques such as model selection, early stopping, weight
decay, and pruning [10, 5, 6, 7].

-1.5

-1

-0.5

0

0.5

1

1.5

0 10 20

y

x

Approximation
Training Data

Target Function without Noise

-1.5

-1

-0.5

0

0.5

1

1.5

0 10 20

y

x

Approximation
Training Data

Target Function without Noise

Order 2 Order 10

-1.5

-1

-0.5

0

0.5

1

1.5

0 10 20

y

x

Approximation
Training Data

Target Function without Noise

-1.5

-1

-0.5

0

0.5

1

1.5

0 10 20

y

x

Approximation
Training Data

Target Function without Noise

Order 16 Order 20

Figure 1. Polynomial interpolation of data fromy = sin(x=3) + �. Significant overfitting can be seen for orders 16 and 20.

Figure 2 shows the results of using an MLP to approximate the same training set as used in the polynomial approx-
imation example. The training details were as follows: a single hidden layer MLP, backpropagation, and 100,000
stochastic training updates were used. The learning rate was reduced linearly to zero from an initial learning rate of
0.5 (reducing the learning rate to zero is required for convergence and we have found that the linear reduction performs
similarly to other learning rate schedules [4]). As for the polynomial case, the smallest network with one hidden unit (4
weights including the bias weights) did not approximate thedata well. With two hidden units (7 weights), the approx-
imation is reasonably good. In contrast to the polynomial case however, networks with 10 hidden units (31 weights)
and 50 hidden units (151 weights) also resulted in reasonably good approximations. Hence, for this particular (very
simple) example, MLP networks trained with backpropagation do not lead to a large degree of overfitting, even with
more than 7 times as many parameters as data points. It is certainly true that overfitting can be a serious problem with
MLPs. However, this example highlights the possibility that MLPs trained with backpropagation may be biased to-
wards smoother approximations. Other experiments that we have performed indicate that this possibility is not limited
to very simple examples, as used here for ease of visualization. Figure 3 shows a different example where significant
overfitting can be seen in larger MLP models. The same equation was used but was only evaluated at0; 1; 2; : : : ; 5,
creating 6 data points. The figure shows the results of using MLP models with 1 to 4 hidden nodes. For this example,
the 3 and 4 hidden node cases produce an approximation which is expected to result in worse generalization. A test
dataset was created by evaluating the equation without noise (y = sin(x=3)) at intervals of 0.1. For the first example,
the largest network produced the best generalization error(hidden layer sizes (1, 2, 10, 50) corresponded to test errors
(0.257, 0.0343, 0.0222,0.0201). For the second example, the 2 hidden node networks were best (hidden layer sizes
(1, 2, 3, 4) corresponded to test errors (0.0943,0.0761, 0.103, 0.103). Results are averaged over ten trials.

3 Local Overfitting
Techniques such as model selection and early stopping typically assume that overfitting is a global phenomenon.
However, overfitting can vary significantly throughout the input space of the model. Figure 4 shows the results of
polynomial interpolation for data generated from the following equation:y = (� os(x) + � 0 � x < �os(3(x� �)) + � � � x � 2� (1)� is a uniformly distributed random variable between -0.25 and 0.25. Five equally spaced points were generated in
the first region and 15 equally spaced points were generated in the second region, i.e. there are two regions which
have different underlying functions and different data densities. Observe that the overfitting behavior is different in
the two regions of the data. The order 6 model provides a reasonable approximation of the left hand region and

2

(b) Example of overfitting. Image

courtesy of Lawrence & Giles (2000).

Figure 2.4: Early stopping point and overfitting.

We can diagnose overfitting in a model by comparing training accuracy and validation

accuracy. If the accuracy is much better on the training set than on the validation set,

the model is likely overfitting. Now, how can we prevent this phenomenon? An obvious

solution is to use a larger training set with more variance in the training data, but this

is not always realizable. Another feasible method is early stopping. We identify the

early stopping point as the point in the training where the validation accuracy goes from

improving to perform worse, as visualized in Figure 2.4a, and then stop the training

at this point. Data augmentation and regularization methods are also used to prevent

overfitting.

2.1.2.4 Data Augmentation

Data augmentation is a strategy applied to neural network training datasets to obtain

larger diversity in the data without collecting any new data. One can transform the

images in position or in color, or one can generate synthetic images by using a Generative

Adversarial Network (GAN). The former is the least time-consuming and computationally

inexpensive and thus most relevant for this case. Many techniques exist for transforming

images, e.g., tilt, shear, flip, noise, brightness, hue, and saturation. Some examples are

shown in Figure 2.5.

17

Chapter 2. Deep Neural Networks

A Simple Framework for Contrastive Learning of Visual Representations

(a) Original (b) Crop and resize (c) Crop, resize (and flip) (d) Color distort. (drop) (e) Color distort. (jitter)

(f) Rotate {90◦, 180◦, 270◦} (g) Cutout (h) Gaussian noise (i) Gaussian blur (j) Sobel filtering

Figure 4. Illustrations of the studied data augmentation operators. Each augmentation can transform data stochastically with some internal
parameters (e.g. rotation degree, noise level). Note that we only test these operators in ablation, the augmentation policy used to train our
models only includes random crop (with flip and resize), color distortion, and Gaussian blur. (Original image cc-by: Von.grzanka)

2012; Hénaff et al., 2019; Bachman et al., 2019), it has
not been considered as a systematic way to define the con-
trastive prediction task. Many existing approaches define
contrastive prediction tasks by changing the architecture.
For example, Hjelm et al. (2018); Bachman et al. (2019)
achieve global-to-local view prediction via constraining the
receptive field in the network architecture, whereas Oord
et al. (2018); Hénaff et al. (2019) achieve neighboring view
prediction via a fixed image splitting procedure and a con-
text aggregation network. We show that this complexity can
be avoided by performing simple random cropping (with
resizing) of target images, which creates a family of predic-
tive tasks subsuming the above mentioned two, as shown in
Figure 3. This simple design choice conveniently decouples
the predictive task from other components such as the neural
network architecture. Broader contrastive prediction tasks
can be defined by extending the family of augmentations
and composing them stochastically.

3.1. Composition of data augmentation operations is
crucial for learning good representations

To systematically study the impact of data augmentation,
we consider several common augmentations here. One type
of augmentation involves spatial/geometric transformation
of data, such as cropping and resizing (with horizontal
flipping), rotation (Gidaris et al., 2018) and cutout (De-
Vries & Taylor, 2017). The other type of augmentation
involves appearance transformation, such as color distortion
(including color dropping, brightness, contrast, saturation,
hue) (Howard, 2013; Szegedy et al., 2015), Gaussian blur,
and Sobel filtering. Figure 4 visualizes the augmentations
that we study in this work.

Crop
Cutout

Color
Sobel

Noise Blur
Rotate

Average

2nd transformation

Crop

Cutout

Color

Sobel

Noise

Blur

Rotate

1s
t t

ra
ns

fo
rm

at
io

n

33.1 33.9 56.3 46.0 39.9 35.0 30.2 39.2

32.2 25.6 33.9 40.0 26.5 25.2 22.4 29.4

55.8 35.5 18.8 21.0 11.4 16.5 20.8 25.7

46.2 40.6 20.9 4.0 9.3 6.2 4.2 18.8

38.8 25.8 7.5 7.6 9.8 9.8 9.6 15.5

35.1 25.2 16.6 5.8 9.7 2.6 6.7 14.5

30.0 22.5 20.7 4.3 9.7 6.5 2.6 13.8
10

20

30

40

50

Figure 5. Linear evaluation (ImageNet top-1 accuracy) under in-
dividual or composition of data augmentations, applied only to
one branch. For all columns but the last, diagonal entries corre-
spond to single transformation, and off-diagonals correspond to
composition of two transformations (applied sequentially). The
last column reflects the average over the row.

To understand the effects of individual data augmentations
and the importance of augmentation composition, we in-
vestigate the performance of our framework when applying
augmentations individually or in pairs. Since ImageNet
images are of different sizes, we always apply crop and re-
size images (Krizhevsky et al., 2012; Szegedy et al., 2015),
which makes it difficult to study other augmentations in
the absence of cropping. To eliminate this confound, we
consider an asymmetric data transformation setting for this
ablation. Specifically, we always first randomly crop im-
ages and resize them to the same resolution, and we then
apply the targeted transformation(s) only to one branch of
the framework in Figure 2, while leaving the other branch
as the identity (i.e. t(xi) = xi). Note that this asymmet-

Figure 2.5: Examples of data augmentation techniques. Image courtesy by Chen et al.

(2020).

2.2 Convolutional Neural Networks

A convolutional neural network (CNN) is a special class of NN that utilizes the mathe-

matical convolution operation rather than matrix multiplication. The idea behind CNNs

is, analogous to traditional NNs, also motivated by neurobiology. Hubel & Wiesel (1959)

found that single neurons in cats’ visual cortex were activated when triggered by visual

stimulus. They referred to these neurons as receptive fields. They suggested that visual

processing in the brain is a hierarchical process of feature detectors that identify basic

features at the lower levels and combine these to more complex features at the higher

levels. Fukushima (1980) proposed a neural network to recognize patterns, directly in-

spired by Hubel and Wiesel, using convolutional layers that exploit receptive fields to find

the average of patches of an image. This concept is shown in Figure 2.6. One further

improved the idea of CNNs in the following years by applying backpropagation (LeCun

et al. 1989), max-pooling (Weng et al. 1993), and gradient-based learning (Lecun et al.

1998), where the latter can be seen as the birth of modern CNNs. In 2012, the popularity

of CNNs increased drastically after a much deeper and wider CNN, AlexNet (Krizhevsky

et al. 2017), achieved state-of-the-art performance in the ImageNet competition, learning

much more complex features than its predecessors.

As of 2020, CNNs are widely used for image processing, image classification, and object

detection. Their power lies in capturing spatial and temporal dependencies, which is

essential when looking for patterns in images. To achieve this, the CNN architecture typ-

ically consists of three main layers, convolutional layer ; pooling layer ; and fully connected

layer. The rectified linear unit is commonly used as an activation function in CNNs to

18

2.2. Convolutional Neural Networks

1 9 8

S-layer

f " / i " j S - p l a n e

I P "-- ~ ~ S - c o l u m n

Fig. 4. Relation between S-planes and S-columns within an S-layer

case only one candidate appears in an S-plane, the
candidate is unconditionally determined as the repre-
sentative from that S-plane. If no candidate appears in
an S-plane, no representative is selected from that
S-plane.

Since the representatives are determined in this
manner, each S-plane becomes selectively sensitive to
one of the features of the stimulus patterns, and there is
not a possibility of formation of redundant con-
nections such that two or more S-planes are used for
detection of one and the same feature. Incidentally,
representatives are selected only from a small number
of S-planes at a time, and the rest of the S-planes are to
send representatives for other stimulus patterns.

As is seen from these discussions, if we consider
that a single S-plane in the neocognitron corresponds
to a single excitatory cell in the conventional cognitron
(Fukushima, 1975), the procedures of reinforcement in
the both systems are analogous to each other.

4. Rough Sketches of the Working of the Network

In order to help the understanding of the principles
with which the neocognitron performs pattern re-
cognition, we will make rough sketches of the working
of the network in the state after completion of self-
organization. The description in this chapter, however,
is not so strict, because the purpose of this chapter is
only to show the outline of the working of the network.

At first, let us assume that the neocognitron has
been self-organized with repeated presentations of
stimulus patterns like "A", "B", "C" and so on. In the
state when the self-organization has been completed,
various feature-extracting cells are formed in the net-
work as shown in Fig. 5. (It should be noted that Fig. 5
shows only an example. It does not mean that exactly
the same feature extractors as shown in this figure are
always formed in this network.)

Here, if pattern "A" is presented to the input layer
U o, the cells in the network yield outputs as shown in

^

UsI Ucl Us2

ki=I

k1=3

k1=4

k1=5

I I
I I
I I
I I

Fig. 5. An example of the interconnections between ceils and the
response of the cells after completion of self-organization

Fig. 5. For instance, S-plane with k 1 = 1 in layer Us1
consists of a two-dimensional array of S-cells which
extract A-shaped features. Since the stimulus pattern
"A" contains A-shaped feature at the top, an S-cell
near the top of this S-plane yields a large output as
shown in the enlarged illustration in the lower part of
Fig. 5.

A C-cell in the succeeding C-plane (i.e. C-plane in
layer Ucl with k~ = 1) has synaptic connections from a
group of S-cells in this S-plane. For example, the C-cell
shown in Fig. 5 has synaptic connections from the
S-cells situated within the thin-lined circle, and it
responds whenever at least one of these S-cells yields a
large output. Hence, the C-cell responds to a A-shaped
feature situated in a certain area in the input layer, and
its response is less affected by the shift in position of
the stimulus pattern than that of presynaptic S-cells.
Since this C-plane consists of an array of such C-cells,
several C-cells which are situated near the top of this
C-plane respond to the A-shaped feature contained in
the stimulus pattern "A". In layer Ucl, besides this
C-plane, we also have C-planes which extract features
with shapes l ike/- , ~, and so on.

In the next module, each S-cell receives signals
from all the C-planes of layer Ucl. For example, the

Figure 2.6: Fukushima’s concept of convolutional networks from 1980. Basic features

are extracted by receptive fields at the lower layers (left) and combined to more complex

features at the higher levels (right). Image courtesy of Fukushima (1980).

introduce nonlinearity. These components are described in the following subsections.

2.2.1 Convolutional Layer

The convolutional layers are the core building blocks of a CNN. They embody the feature

extraction in the network; hence, they learn the feature representations of the input images

(Rawat & Wang 2017). Convolution, often denoted f ∗ g, is a mathematical operation

composed of two real-valued functions f and g. It can be defined as

(f ∗ g)(t) :=

∫ ∞
−∞

f(τ)g(t− τ)dτ. (2.13)

If we see f(τ) as our input and g(τ) as a weighting function, (2.13) is the weighted

average of f at time instant t weighted by g. This gives inputs that are more recent in

time a higher weight. Looking at convolution in the context of neural networks, we can

write a discrete version of (2.13):

s(t) = (x ∗ w)(t) =
∞∑

τ=−∞

x(τ)w(t− τ). (2.14)

The weighting function w(τ) is often referred to as a kernel, and the output s(t) as

the feature map. In the context of image recognition, the inputs are usually multidi-

mensional arrays of data representing pixels, typically two-dimensional (width, height) or

three-dimensional (width, height, depth), where the depth dimension contains the color

channels of the pixel (normally RGB). The kernel is often of the same dimension as the

input, typically with a smaller spatial extent than the input but with equal depth. If we

look at a two-dimensional input image I, the kernel K is also two-dimensional, and we

can extend (2.14) to, as described in Goodfellow et al. (2016),

S(i, j) = (I ∗K)(i, j) =
∑
m

∑
n

I(m,n)K(i−m, j − n). (2.15)

19

Chapter 2. Deep Neural Networks

Now, while (2.14) captures the temporal relationship by weighting more recent inputs

higher, (2.15) captures the cornerstone in CNNs, namely the spatial relationship between

individual pixels in an image. A visual approach by matrices may be more intuitive in the

context of image recognition. Figure 2.7 shows visually how the convolution operation

I ∗K is executed on an input I and a kernel K to produce the output. Notice that the

operation computes the dot product of the kernel and a local part of the input of the same

size as the kernel. The kernel is slid across the input, and the dot product is computed

for each part.

a

e

i

b

f

j

c

g

k

d

h

l

w

y

x

z

aw+bx+ey+fz

ew+fx+iy+jz

cw+dx+gy+hz

gw+hx+ky+lz

bw+cx+fy+gz

fw+gx+jy+kz

Input

Kernel

Output

Figure 2.7: A visual explanation of convolution. Based on Goodfellow et al. (2016).

In Figure 2.7, the kernel is slid one pixel at a time to produce the output. The number

of pixels slid each time, the stride S, is one of the hyperparameters for the convolutional

layer. Other tunable parameters include K, the number of kernels ; F, the receptive field

size, i.e., the kernel spatial extent; and P, the size of zero padding, which controls the

dimension of the output and preserves information at the boundaries. Figure 2.8 shows

an example of the output after convolution with two different kernels capturing edges.

20

2.2. Convolutional Neural Networks

Vertical edges

Horizontal edges

Figure 2.8: Edge detection using two different kernels, one capturing vertical edges and

one capturing horizontal edges. By combining the results we obtain the majority of edges

in the image. Figure retrieved from CNN Edge detection (2018) and modified.

2.2.2 Rectified Linear Unit (ReLU)

The activation function used in CNNs usually is the rectified linear unit (ReLU). It is

defined as

ReLU(x) = max(0, x). (2.16)

Hence, it is mathematically fundamental and thus computationally inexpensive. Math-

ematically this also means that its derivative is either 0 or 1 for negative and positive

inputs, respectively. In other words, it does not saturate since the gradient is always 1 if

the neuron activates, which prevents the vanishing gradient problem (that the gradient

becomes vanishing small as it recedes from the final layer). It is also convenient as it is

easy to evaluate in the backpropagation equations (recall (2.7) and (2.8)).

2.2.3 Pooling Layer

A limitation of the resulting feature map after convolution is that it contains the exact

locations of the features. If the features in the input change position, this can result in

a different feature map. The pooling layer downsamples the feature maps by summariz-

ing the presence of features in smaller patches of the feature map. This creates a lower

resolution feature map but preserves the main structures. The intricate structures are

left out, preventing overfitting (see section 2.1.2.3) in the learning phase. Hence, the

21

Chapter 2. Deep Neural Networks

model becomes more robust to variations in the position of the features in the input im-

age (Brownlee 2019). Another important function of the downsampling is that it reduces

the number of parameters, consequently, it reduces the computational load. The pool-

ing layer’s effects are usually added periodically between the convolutional layers, after

introducing nonlinearity with ReLU. Several types of pooling exist, resulting in different

filtering of the feature map. The most common type of pooling is max pooling, which

summarizes the most activated presence of the feature. It extracts the maximum value in

each window, hence, it preserves the best fit of the feature in each window. The pooling

operation requires two hyperparameters: stride S and spatial extent F. The example in

Figure 2.9 uses S = 2 and F = 2 × 2. As for many aspects in neural networks, there

is also a trade-off here: a small spatial extent will preserve more information but will

also decrease the effect of the pooling layer, while a larger spatial extent leads to loss of

information.

76 65 55

87 62

69 68

77

52

2334

76

41

324847

69 48

7687Max-Pool

Figure 2.9: Max-pooling operation.

2.2.4 Fully Connected Layer

The final stage of a CNN is usually the fully connected (FC) layers, which perform the

classification task. FC layers are the main building blocks of traditional neural networks.

They are characterized by the full connectivity between neurons in one layer and the

activations in the previous layer, as demonstrated in Figure 2.2. These layers take one-

dimensional lists as input. Consequently, one must flatten the higher-dimensional feature

map prior to the FC layers. The general architecture of a CNN can be seen in Figure 2.10.

The final FC layer provides the classification score of the image, which is a measure

of the relative activation strength of a class compared to the other classes. This score is

normally interpreted as a probability, meaning its value typically lies in the interval [0, 1].

To obtain this, a normalized softmax activation function is usually used,

σ(zl)k =
ezk∑j
i=1 e

zi
for k = 1, ..., j, (2.17)

which normalizes the input vector zl into a vector ol = σ(zl) of length j, where j is the

number of neurons in the final FC layer, and thus also the number of classes. The entries

22

2.2. Convolutional Neural Networks

in ol will sum up to 1, meaning we can interpret olk as the probability of the input belonging

to class k.

2.2.5 Overall View

We have introduced the main parts of a convolutional neural network, and it remains

to take a step back and look at a typical CNN architecture. Several types of CNN

architectures exist, but the most common approach is to stack the different layers onto

each other in the order shown in Figure 2.10.

P
o
olin

g

R
eL

u

P
o
olin

g

R
eL

U

C
on

v

R
eL

U

C
on

v

C
on

v

In
p
u
t

C
lass

p
red

iction

F
u
lly

con
n
ected

Figure 2.10: Layers of a typical CNN.

Notice the repeating pattern Convolution-ReLU-Pooling between the input layer and

the fully connected output layer. For every repetition of this pattern, one will obtain

more complex features. The output of the low layers (to the left) will be simple patterns

like edges and bright spots. The middle layers will contain more prominent features like,

in the context of, e.g., face detection, a nose, a mouth, or an eye, while the output of the

high layers (to the right) will contain more sophisticated and complex patterns like an

entire face. This is analogous to the network presented in Figure 2.6. In addition, we can

add more fully connected layers before the output layer to make the network learn even

more sophisticated and complex combinations of features.

2.2.6 Transfer Learning

A CNN is rarely trained from scratch on custom data as it is very time-consuming and

would require vast amounts of data. Objects tend to share many of the same low-level

features like edges, corners, or bright spots. This can be exploited to pre-train the network

for general patterns on large, general, publicly available datasets such as ImageNet (Deng

et al. 2009), before training on a custom dataset to learn the more complex and specific

features. This is called transfer learning, and this technique is widely used for training

neural network models.

23

Chapter 2. Deep Neural Networks

24

Chapter 3

Object Detection and Tracking

Convolutional neural networks serve as a basis for most modern object detection algo-

rithms. This chapter will explain the concept of object detection further and present some

state-of-the-art models. Additionally, the chosen model for object detection in this thesis,

YOLOv4, will be investigated more in detail. Finally, we will dive deeper into multiple

object tracking and explore some essential methods.

3.1 Object Detection

Object detection is a computer vision technique that aims to detect, locate, and identify

object instances of certain classes in images. The goal is to perform two primary tasks:

1. Locate an arbitrary number of objects in an image.

2. Estimate bounding boxes for, and assign a class to, each object.

3.1.1 Basic Structure

On a high level, an object detection model will have architecture, as shown in Figure 3.1.

In the feature extractor, a CNN produces a feature map from an image as described in

section 2.2, which is further fed into a detection part that localizes and classifies objects

of interest. Figure 3.2 visualizes the output from an object detector: bounding box

predictions describing the localization of the objects in the image and class predictions

for each bounding box.

25

Chapter 3. Object Detection and Tracking

Images
Feature extractor Bboxes, classesDetectorImages

Images

Feature map

Figure 3.1: High-level architecture of an object detector.

The most basic form of object detection is a rather comprehensive technique, the so-

called sliding window technique. Basically, a CNN performs image classification on a wide

range of different crops of the image. The CNN is first trained for classification of images

containing particular objects of interest. Then, detection is performed by sliding windows

of different sizes over the entire image, usually starting from the top-left corner, going

in small steps to the bottom-right corner, and classifying each crop (window). Hence, a

single image will require many forward passes through the CNN, meaning this technique

demands a high computational load. In the past years, there has been an evolution in

the performance of object detectors, and newer detection models perform significantly

faster and more accurately. Roughly, we can divide the modern object detection models

into two main parts: one-stage and two-stage detectors. The principal difference is that

one-stage detectors only contain a single neural network, completing the two tasks 1 and

2 in one step, while two-stage detectors separate the two tasks.

Poselets
RCNN

D&T

Humans

DPM

YOLO

(a) Picasso Dataset precision-recall curves.

VOC 2007 Picasso People-Art
AP AP Best F1 AP

YOLO 59.2 53.3 0.590 45
R-CNN 54.2 10.4 0.226 26
DPM 43.2 37.8 0.458 32
Poselets [2] 36.5 17.8 0.271
D&T [4] - 1.9 0.051

(b) Quantitative results on the VOC 2007, Picasso, and People-Art Datasets.
The Picasso Dataset evaluates on both AP and best F1 score.

Figure 5: Generalization results on Picasso and People-Art datasets.

Figure 6: Qualitative Results. YOLO running on sample artwork and natural images from the internet. It is mostly accurate although it
does think one person is an airplane.

including the time to fetch images from the camera and dis-
play the detections.

The resulting system is interactive and engaging. While
YOLO processes images individually, when attached to a
webcam it functions like a tracking system, detecting ob-
jects as they move around and change in appearance. A
demo of the system and the source code can be found on
our project website: http://pjreddie.com/yolo/.

6. Conclusion
We introduce YOLO, a unified model for object detec-

tion. Our model is simple to construct and can be trained

directly on full images. Unlike classifier-based approaches,
YOLO is trained on a loss function that directly corresponds
to detection performance and the entire model is trained
jointly.

Fast YOLO is the fastest general-purpose object detec-
tor in the literature and YOLO pushes the state-of-the-art in
real-time object detection. YOLO also generalizes well to
new domains making it ideal for applications that rely on
fast, robust object detection.

Acknowledgements: This work is partially supported by
ONR N00014-13-1-0720, NSF IIS-1338054, and The Allen
Distinguished Investigator Award.

Figure 3.2: Example result from object detection. The outputs are bounding boxes and

class predictions for each object of interest in the image. Image courtesy by Redmon et al.

(2016).

Two-Stage Detectors

Two-stage detection models are usually R-CNN based, including R-CNN, Fast R-CNN,

Faster R-CNN, and Mask R-CNN. The term R-CNN means region-based CNN and basi-

cally describes what the two stages do:

1. Region-proposal. Arbitrary objects are found and located in the image through a

region-proposal system which can be based on classical CV methods (for instance,

26

3.1. Object Detection

selective search) or a region-proposal neural network.

2. CNN. The results from stage 1 (region candidates) are passed to a CNN to classify

the object each of them contains.

These models prioritize and have been shown to obtain high accuracy, but they tend to

be complex and not very fast due to the high computational load of the two stages.

One-Stage Detectors

The most common types of one-stage object detection models are the Single Shot Detector

(SSD) and the You Only Look Once (YOLO) detectors. These treat the object detection

problem as a regression problem. Hence, they only use a single deep neural network and

skip the region-proposal stage. The network runs detection directly over a dense sam-

pling of possible locations, learning the class probabilities and bounding box coordinates.

These models typically have lower accuracy than two-stage detectors. However, they are

significantly simpler and faster; thus, they are more suitable for real-time object detection

systems.

3.1.2 State-of-the-Art Models

Which models represent state-of-the-art changes quickly due to the rapid evolution of the

field, but in this section, some state-of-the-art models as of 2020/2021 will be presented.

Faster R-CNN

It should be noted that to categorize Faster R-CNN as state-of-the-art in 2021 is far-

fetched, but it is an essential contribution to the field of object detection. The two-stage

R-CNN-based models were introduced by Girshick et al. (2013) with R-CNN. The idea

was to use a selective search algorithm to propose regions of interest (ROI) and feed each

of them into a CNN to produce feature maps. Then, each feature map was further passed

into a support vector machine (SVM) to be classified. Finally, linear regression is applied

to fit the bounding boxes tightly to the detected and classified objects. Although the

R-CNN model performed well at the time, it had some essential drawbacks. Firstly, the

selective search algorithm is inefficient. Secondly, the multi-stage approach requires each

stage to be trained separately, and the results of each stage are to be cached on disk to

train the next stage. Lastly, each region proposal must be fed into the CNN for feature

extraction, meaning several passes are required for each image. This makes it unfeasible

to detect objects in real-time. In 2015 an improved version, Fast R-CNN (Girshick 2015),

intended to solve the latter problem and part of the second problem. They proposed an

27

Chapter 3. Object Detection and Tracking

ROI pooling layer, where the features inside any valid ROI are converted to a fixed-size

vector by using max pooling. This made it possible to share CNN computations across

all proposals in an image, consequently, each image only needs one forward pass. Also,

extracted features from the CNN were not cached anymore, meaning the extensive disk

space required in R-CNN was discarded. The result was a faster and more accurate object

detection model, but the first problem, the region-proposal stage, was still a barrier. Faster

R-CNN (Ren et al. 2015) extends Fast R-CNN by introducing a region-proposal network

(RPN) to replace the selective search algorithm. Specifically, the same CNN that is used

for feature extraction is used for region proposal, drastically reducing the computational

load. Faster R-CNN performs well in terms of accuracy, but as stated by the authors, it

is still not fast enough for real-time detection.

Mask R-CNN

Mask R-CNN (He et al. 2017) extends Faster R-CNN by adding instance segmentation

to create masks on the detected objects. The ROI pooling in Faster R-CNN is replaced

by the so-called ROI Align, which is better at preserving spatial information necessary

for creating masks lost in ROI pooling. After ROI Align, the result is fed into two

convolutional layers creating the final pixel-level masks.

YOLO (You Only Look Once)

The first YOLO version was published in 2016 and was the first object detection model to

perform object detection using a single CNN on the entire image only once. The object

detection problem is treated as a regression problem to spatially separated bounding boxes

and associated class probabilities (Redmon et al. 2016). The general YOLO model divides

the input image into a grid of cells. As shown in Figure 3.5, each cell is responsible for

some number of prior bounding boxes, called anchor boxes, with objectness scores and

class probabilities for each box. The anchor boxes form the basis for the bounding box

prediction, in which the final prediction consists of predicting offsets from these predefined

boxes and then use non-max suppression (NMS). The objectness scores represent how

confident the bounding box is about the presence of an object in a specific class. The

class probability map is responsible for finding out the class of the possible object, whether

or not an object is present. The combined result of these two is a final score representing

the probability that a bounding box contains a specific type of object. From the first

YOLO version, several improvements have been published in which the 2020 YOLOv4

(Bochkovskiy et al. 2020) is the latest published release. The first version struggled to

detect smaller objects appearing in groups, and there were problems with accuracy and

incorrect localization. YOLOv2 (Redmon & Farhadi 2016) led to significantly improved

28

3.1. Object Detection

accuracy with the introduction of the Darknet-19 feature extraction network. The next

version, YOLOv3 (Redmon & Farhadi 2018), intended to detect smaller objects better

by proposing multi-scale prediction. However, this required a higher computational load.

YOLOv4 aims to be faster while still providing multi-scale prediction. It yields a good

trade-off between accuracy and speed compared to other models, hence it is a good choice

for real-time accurate object detection. It is also optimized for GPU parallel computation

in that it is possible to run in real-time on a conventional GPU. YOLOv4 is investigated

more in detail in section 3.2.

making predictions. Unlike sliding window and region
proposal-based techniques, YOLO sees the entire image
during training and test time so it implicitly encodes contex-
tual information about classes as well as their appearance.
Fast R-CNN, a top detection method [14], mistakes back-
ground patches in an image for objects because it can’t see
the larger context. YOLO makes less than half the number
of background errors compared to Fast R-CNN.

Third, YOLO learns generalizable representations of ob-
jects. When trained on natural images and tested on art-
work, YOLO outperforms top detection methods like DPM
and R-CNN by a wide margin. Since YOLO is highly gen-
eralizable it is less likely to break down when applied to
new domains or unexpected inputs.

YOLO still lags behind state-of-the-art detection systems
in accuracy. While it can quickly identify objects in im-
ages it struggles to precisely localize some objects, espe-
cially small ones. We examine these tradeoffs further in our
experiments.

All of our training and testing code is open source. A
variety of pretrained models are also available to download.

2. Unified Detection

We unify the separate components of object detection
into a single neural network. Our network uses features
from the entire image to predict each bounding box. It also
predicts all bounding boxes across all classes for an im-
age simultaneously. This means our network reasons glob-
ally about the full image and all the objects in the image.
The YOLO design enables end-to-end training and real-
time speeds while maintaining high average precision.

Our system divides the input image into an S × S grid.
If the center of an object falls into a grid cell, that grid cell
is responsible for detecting that object.

Each grid cell predictsB bounding boxes and confidence
scores for those boxes. These confidence scores reflect how
confident the model is that the box contains an object and
also how accurate it thinks the box is that it predicts. For-
mally we define confidence as Pr(Object) ∗ IOUtruth

pred . If no
object exists in that cell, the confidence scores should be
zero. Otherwise we want the confidence score to equal the
intersection over union (IOU) between the predicted box
and the ground truth.

Each bounding box consists of 5 predictions: x, y, w, h,
and confidence. The (x, y) coordinates represent the center
of the box relative to the bounds of the grid cell. The width
and height are predicted relative to the whole image. Finally
the confidence prediction represents the IOU between the
predicted box and any ground truth box.

Each grid cell also predicts C conditional class proba-
bilities, Pr(Classi|Object). These probabilities are condi-
tioned on the grid cell containing an object. We only predict

one set of class probabilities per grid cell, regardless of the
number of boxes B.

At test time we multiply the conditional class probabili-
ties and the individual box confidence predictions,

Pr(Classi|Object) ∗ Pr(Object) ∗ IOUtruth
pred = Pr(Classi) ∗ IOUtruth

pred (1)

which gives us class-specific confidence scores for each
box. These scores encode both the probability of that class
appearing in the box and how well the predicted box fits the
object.

S × S grid on input

Bounding boxes + confidence

Class probability map

Final detections

Figure 2: The Model. Our system models detection as a regres-
sion problem. It divides the image into an S×S grid and for each
grid cell predicts B bounding boxes, confidence for those boxes,
and C class probabilities. These predictions are encoded as an
S × S × (B ∗ 5 + C) tensor.

For evaluating YOLO on PASCAL VOC, we use S = 7,
B = 2. PASCAL VOC has 20 labelled classes so C = 20.
Our final prediction is a 7× 7× 30 tensor.

2.1. Network Design

We implement this model as a convolutional neural net-
work and evaluate it on the PASCAL VOC detection dataset
[9]. The initial convolutional layers of the network extract
features from the image while the fully connected layers
predict the output probabilities and coordinates.

Our network architecture is inspired by the GoogLeNet
model for image classification [34]. Our network has 24
convolutional layers followed by 2 fully connected layers.
Instead of the inception modules used by GoogLeNet, we
simply use 1× 1 reduction layers followed by 3× 3 convo-
lutional layers, similar to Lin et al [22]. The full network is
shown in Figure 3.

We also train a fast version of YOLO designed to push
the boundaries of fast object detection. Fast YOLO uses a
neural network with fewer convolutional layers (9 instead
of 24) and fewer filters in those layers. Other than the size
of the network, all training and testing parameters are the
same between YOLO and Fast YOLO.

Figure 3.3: YOLO bounding box and class prediction. Image courtesy of Redmon et al.

(2016).

SSD (Single Shot Multibox Detector)

Similar to YOLO, SSD (Liu et al. 2015) only uses a single shot to detect multiple objects

in an image. The feature extraction network is the same as in Faster R-CNN, namely

the VGG-16 network. As YOLO, SSD utilizes the concept of anchor boxes, but where

YOLO is limited in that its grid cells are of fixed aspect ratios, SSD uses grids of different

aspect ratios and scales. Further, SSD adds more convolutional layers instead of YOLO’s

fully connected layers in the detection stage. The result is a network handling differently

sized objects better and achieving more tightly-fitted bounding boxes. However, the latest

YOLO versions are still superior in terms of speed according to Redmon & Farhadi (2018).

RetinaNet

As previously stated, the two-stage R-CNN-based models are more accurate than one-

stage detectors. One of the biggest problems in the latter is that there is an extreme

29

Chapter 3. Object Detection and Tracking

SSD: Single Shot MultiBox Detector 3

(a) Image with GT boxes (b) 8 × 8 feature map (c) 4 × 4 feature map

loc : ∆(cx, cy, w, h)
conf : (c1, c2, · · · , cp)

Fig. 1: SSD framework. (a) SSD only needs an input image and ground truth boxes for
each object during training. In a convolutional fashion, we evaluate a small set (e.g. 4)
of default boxes of different aspect ratios at each location in several feature maps with
different scales (e.g. 8 × 8 and 4 × 4 in (b) and (c)). For each default box, we predict
both the shape offsets and the confidences for all object categories ((c1, c2, · · · , cp)).
At training time, we first match these default boxes to the ground truth boxes. For
example, we have matched two default boxes with the cat and one with the dog, which
are treated as positives and the rest as negatives. The model loss is a weighted sum
between localization loss (e.g. Smooth L1 [6]) and confidence loss (e.g. Softmax).

2.1 Model

The SSD approach is based on a feed-forward convolutional network that produces
a fixed-size collection of bounding boxes and scores for the presence of object class
instances in those boxes, followed by a non-maximum suppression step to produce the
final detections. The early network layers are based on a standard architecture used for
high quality image classification (truncated before any classification layers), which we
will call the base network2. We then add auxiliary structure to the network to produce
detections with the following key features:

Multi-scale feature maps for detection We add convolutional feature layers to the end
of the truncated base network. These layers decrease in size progressively and allow
predictions of detections at multiple scales. The convolutional model for predicting
detections is different for each feature layer (cf Overfeat[4] and YOLO[5] that operate
on a single scale feature map).

Convolutional predictors for detection Each added feature layer (or optionally an ex-
isting feature layer from the base network) can produce a fixed set of detection predic-
tions using a set of convolutional filters. These are indicated on top of the SSD network
architecture in Fig. 2. For a feature layer of size m × n with p channels, the basic el-
ement for predicting parameters of a potential detection is a 3 × 3 × p small kernel
that produces either a score for a category, or a shape offset relative to the default box
coordinates. At each of the m× n locations where the kernel is applied, it produces an
output value. The bounding box offset output values are measured relative to a default

2 We use the VGG-16 network as a base, but other networks should also produce good results.

Figure 3.4: SSD training process. Image courtesy of Liu et al. (2015).

foreground-background class imbalance during training. These detectors do not distin-

guish between easy examples, such as an empty white background, and complex examples,

such as a noisy, textured background. This leads to the loss being dominated by easy

examples. The problem is addressed in RetinaNet by introducing focal loss, i.e., reshaping

the standard cross-entropy loss to down-weight the easy examples and focus on training

the complex examples (Goyal et al. 2017). This approach improves accuracy, but SSD

and YOLO perform faster.

EfficientDet

On a high level, EfficientDet maintains the same structure as the previously mentioned

one-stage detectors. The main contribution of EfficientDet was to build a scalable de-

tection model with both higher accuracy and better efficiency compared to models such

as YOLOv3, RetinaNet, and Mask R-CNN. Tan et al. (2019) compared different design

choices for all parts of the model architecture and finally chose an optimized structure,

which made EfficientDet consistently achieve better accuracy and efficiency than prior

detectors. Note that YOLOv4 was published around the same time as EfficientDet as an

important opponent.

3.2 YOLOv4

YOLOv4 is at the time of writing a state-of-the-art one-stage object detection model. It

yields a good trade-off between accuracy and speed compared to other models, and by

using the Darknet framework, it is a convenient off-the-shelf solution. This makes the

model sufficient and applicable for industrial use. This section aims to provide a more

detailed description of YOLOv4 as it is the model chosen for implementation. First, we

will explain the most critical parts of the YOLOv4 architecture and concepts. Then, we

will look at the improvements in YOLOv4 compared to previous versions and finally argue

30

3.2. YOLOv4

why this version is the most suitable for this project.

YOLOv4 is an important improvement of YOLOv3. The model can generally be divided

into three parts: backbone, neck, and head. Together, the backbone and the neck performs

feature extraction and aggregation, while the head is responsible for the detection. Feature

maps are obtained at three different scales in the feature extraction stage and then passed

into the detector, where bounding boxes and classes are predicted for each scale.

Grid Cells

The general YOLO model divides the input image into an S×S grid of cells. This makes

the detection more efficient than, e.g., R-CNN-based algorithms that run bounding box

and class predictions over the same image several times to capture all ROIs. Each grid cell

is responsible for predicting a number of bounding boxes with objectness scores and class

probabilities, as illustrated in Figure 3.5. Note that one cell can only make predictions

for one object.

Bounding Box Prediction

Using “brute force” to predict and learn bounding box sizes directly is inefficient and

would make the network converge slowly. In general, most bounding boxes will have

specific aspect ratios. One can utilize this to determine a set of prior bounding boxes,

or anchor boxes, that the model can predict the offset from instead of directly predicting

bounding box width, height, and location. K-means clustering is applied to find a selection

of anchors that best represent the dataset. YOLOv3 and YOLOv4 use nine different

anchor boxes, 3 for each scale.

Figure 3.5: Anchor box and predicted offsets. Width and height of the bounding box

are predicted as offsets from cluster centroids. The center coordinates of the box relative

to the top left corner of the cell are found by using a sigmoid function, which forces the

output to be between 0 and 1. Image courtesy of Redmon & Farhadi (2016).

31

Chapter 3. Object Detection and Tracking

The network predicts 4 offset coordinates for each anchor box, namely tx, ty, tw, and th.

If (cx, cy) is the offset of the cell from the top left corner of the image, and if pw, ph are

width and height of the anchor box, the bounding box coordinate predictions correspond

to:

bx = σ(tx) + cx (3.1a)

by = σ(ty) + cy (3.1b)

bw = pwe
tw (3.1c)

bh = phe
th (3.1d)

I.e., YOLO actually predicts center offsets relative to the top left of the cell and dimension

offsets relative to the prior bounding box size. Further, an objectness score is predicted

for each bounding box using logistic regression. This score represents the probability that

there is an object contained in the bounding box. If the bounding box prior overlaps a

ground truth bounding box by more than any other bounding box prior, the objectness

is set to 1. If a bounding box prior overlaps a ground truth object by more than an IOU

threshold of 0.5 but is not the best overlap, the prediction is ignored (Redmon & Farhadi

2018).

Class Prediction

Each box predicts the probability of it belonging to the different classes using multi-label

classification. Each cell in the S × S grid will predict C conditional class probabilities

P (ci|object), i.e. the probability of class ci given that the bounding box contains an

object. The conditional class probabilities are multiplied by each of the cells’ bounding

box objectness score to yield each box’s class probability score. This is further multiplied

by the IOU of the predicted bounding box and the ground truth bounding box to obtain

the class-specific confidence score of the bounding box, which encodes both the probability

of that class appearing in the box and how well the predicted box fits the object (Redmon

et al. 2016). While previous versions used a softmax for classification, assuming all classes

mutually exclusive, YOLOv3 and YOLOv4 use independent logistic classifiers. This opens

the door for multi-label classification, which is useful for overlapping classes like, e.g.,

Woman and Person.

Loss Function

A substantial improvement in YOLOv3 was the complex loss function which used bi-

nary cross-entropy for objectness and classification loss and mean square error (MSE)

for bounding box offset loss. By using MSE, one treats the bounding box coordinates

32

3.2. YOLOv4

as independent variables, but in fact, it does not consider the integrity of the object it-

self (Bochkovskiy et al. 2020). Thus, YOLOv4 also takes the IOU of the bounding box

prediction and the ground truth into consideration. However, the IOU between two non-

overlapping boxes would be zero, so using only IOU in the loss function would not help

when the predicted box is close to but not overlapping a ground truth box. To solve this,

they use something called CIOU-loss, which considers three geometric factors: overlap

area, central point distance, and aspect ratio. This leads to faster convergence and better

performance (Zheng et al. 2019).

Feature Extraction

YOLOv3 introduced a new feature extraction network called Darknet-53. This is a hybrid

of the YOLOv2 backbone Darknet-19 and residual networks. YOLOv2 struggled with

detecting small objects, and YOLOv3 aims to solve this problem by producing feature

maps at three different scales (from the three last residual blocks) in the feature extractor.

The feature maps are fed forward at different locations in the network to detect small,

medium, and large-sized objects. Darknet-53 is a 53-layer CNN that is pretrained on

ImageNet. In general, objects have a lot of similar features like edges, bright spots, and

corners. Pretraining on a large, general dataset like this lets the network learn general

patterns and prevents overfitting. In YOLOv4, Darknet-53 is improved by applying a

CSPNet (Cross Stage Partial Network) strategy. We will not go through the details of

this strategy, but the essence is that it deals with the following problems:

• Strengthening the learning ability of a CNN.

• Removing computational bottlenecks.

• Reducing memory costs.

CSPNet aims to solve these problems by allowing more gradient flow through the network

by eliminating repeated gradient information and thus enable the network to be less

computationally heavy. This is employed by separating the feature map of the base layer

into two parts. One part goes through a dense block and a transition layer and merges

with the other part through a cross-stage hierarchy (split-merge strategy). An illustration

of the CSPNet strategy is shown in Figure 3.6 and more details are provided in Wang

et al. (2020).

Multi-Scale Prediction

In YOLOv3, multi-scale prediction was introduced to improve the detection of objects

of different sizes, maintained in YOLOv4. As explained in the previous section, feature

maps at three different scales are fed from the backbone to 3 branches in the neck. At

33

Chapter 3. Object Detection and Tracking

CSPNet: A New Backbone that can Enhance Learning Capability of CNN A PREPRINT

Overall speaking, the proposed CSPDenseNet preserves the advantages of DenseNet’s feature reuse characteristics, but
at the same time prevents an excessively amount of duplicate gradient information by truncating the gradient flow. This
idea is realized by designing a hierarchical feature fusion strategy and used in a partial transition layer.

Partial Dense Block. The purpose of designing partial dense blocks is to 1.) increase gradient path: Through the
split and merge strategy, the number of gradient paths can be doubled. Because of the cross-stage strategy, one can
alleviate the disadvantages caused by using explicit feature map copy for concatenation; 2.) balance computation of
each layer: usually, the channel number in the base layer of a DenseNet is much larger than the growth rate. Since the
base layer channels involved in the dense layer operation in a partial dense block account for only half of the original
number, it can effectively solve nearly half of the computational bottleneck; and 3.) reduce memory traffic: Assume
the base feature map size of a dense block in a DenseNet is w × h× c, the growth rate is d, and there are in total m
dense layers. Then, the CIO of that dense block is (c×m) + ((m2 +m)× d)/2, and the CIO of partial dense block is
((c×m) + (m2 +m)× d)/2. While m and d are usually far smaller than c, a partial dense block is able to save at
most half of the memory traffic of a network.

Figure 3: Different kind of feature fusion strategies. (a) single path DenseNet, (b) proposed CSPDenseNet: transition
→ concatenation→ transition, (c) concatenation→ transition, and (d) transition→ concatenation.

Partial Transition Layer. The purpose of designing partial transition layers is to maximize the difference of gradient
combination. The partial transition layer is a hierarchical feature fusion mechanism, which uses the strategy of truncating
the gradient flow to prevent distinct layers from learning duplicate gradient information. Here we design two variations
of CSPDenseNet to show how this sort of gradient flow truncating affects the learning ability of a network. 3 (c) and
3 (d) show two different fusion strategies. CSP (fusion first) means to concatenate the feature maps generated by
two parts, and then do transition operation. If this strategy is adopted, a large amount of gradient information will be
reused. As to the CSP (fusion last) strategy, the output from the dense block will go through the transition layer and
then do concatenation with the feature map coming from part 1. If one goes with the CSP (fusion last) strategy, the
gradient information will not be reused since the gradient flow is truncated. If we use the four architectures shown in
3 to perform image classification, the corresponding results are shown in Figure 4. It can be seen that if one adopts
the CSP (fusion last) strategy to perform image classification, the computation cost is significantly dropped, but the
top-1 accuracy only drop 0.1%. On the other hand, the CSP (fusion first) strategy does help the significant drop in
computation cost, but the top-1 accuracy significantly drops 1.5%. By using the split and merge strategy across stages,
we are able to effectively reduce the possibility of duplication during the information integration process. From the
results shown in Figure 4, it is obvious that if one can effectively reduce the repeated gradient information, the learning
ability of a network will be greatly improved.

Apply CSPNet to Other Architectures. CSPNet can be also easily applied to ResNet and ResNeXt, the architectures
are shown in Figure 5. Since only half of the feature channels are going through Res(X)Blocks, there is no need to

5

Figure 3.6: An example of the application of the CSPNet strategy (here, on DenseNet

(Huang et al. 2017)). Image courtesy of Wang et al. (2020).

medium and small scale (medium and high resolution), the feature maps are concatenated

with the previous feature maps to benefit from larger-scale detection and pull out finer-

grained information. While YOLOv3 uses a modified FPN (Dollár et al. 2017) in the neck,

YOLOv4 implements a modified PANet (Liu et al. 2018) architecture for this purpose.

Model design in preliminary DL was simple: each layer only took input from the previous

layer, similar to what is explained in section 2.2. This means localized information might

be lost in the high layers, including essential information for fine-tuning the prediction.

In modern DL, several layers can be connected, e.g., as in DenseNet (Huang et al. 2017),

where all layers are connected to each other. Figure 3.7 shows the PANet for object

detection. In (a), a red line shows how the FPN moves the localized spatial information

upward. In reality, the red line goes through around ten layers to reach the top. PANet,

however, introduces a shortcut, shown in (b) with a green line. This line only goes through

around ten layers to get to the top layer. This way, fine-grained localized information is

made available to the top layers.

mask

box

class

𝑃2

𝑃3

𝑃4

𝑃5

𝑁5

𝑁4

𝑁3

𝑁2

(a) (b) (c) (d)

(e)

Figure 1. Illustration of our framework. (a) FPN backbone. (b) Bottom-up path augmentation. (c) Adaptive feature pooling. (d) Box
branch. (e) Fully-connected fusion. Note that we omit channel dimension of feature maps in (a) and (b) for brevity.

Second, to recover broken information path between
each proposal and all feature levels, we develop adaptive
feature pooling. It is a simple component to aggregate fea-
tures from all feature levels for each proposal, avoiding ar-
bitrarily assigned results. With this operation, cleaner paths
are created compared with those of [4, 62].

Finally, to capture different views of each proposal, we
augment mask prediction with tiny fully-connected (fc) lay-
ers, which possess complementary properties to FCN orig-
inally used by Mask R-CNN. By fusing predictions from
these two views, information diversity increases and masks
with better quality are produced.

The first two components are shared by both object de-
tection and instance segmentation, leading to much en-
hanced performance of both tasks.

Experimental Results With PANet, we achieve state-of-
the-art performance on several datasets. With ResNet-50
[23] as the initial network, our PANet tested with a single
scale already outperforms champion of COCO 2016 Chal-
lenge in both object detection [27] and instance segmenta-
tion [33] tasks. Note that these previous results are achieved
by larger models [23, 58] together with multi-scale and hor-
izontal flip testing.

We achieve the 1st place in COCO 2017 Challenge In-
stance Segmentation task and the 2nd place in Object De-
tection task without large-batch training. We also bench-
mark our system on Cityscapes and MVD, which similarly
yields top-ranking results, manifesting that our PANet is a
very practical and top-performing framework. Our code
and models are available at https://github.com/
ShuLiu1993/PANet.

2. Related Work
Instance Segmentation There are mainly two streams of
methods in instance segmentation. The most popular one is
proposal-based. Methods in this stream have a strong con-
nection to object detection. In R-CNN [17], object propos-

als from [60, 68] were fed into the network to extract fea-
tures for classification. While Fast/Faster R-CNN [16, 51]
and SPPNet [22] sped up the process by pooling features
from global feature maps. Earlier work [18, 19] took mask
proposals from MCG [1] as input to extract features while
CFM [9], MNC [10] and Hayder et al. [20] merged feature
pooling to network for faster speed. Newer design was to
generate instance masks in networks as proposal [48, 49, 8]
or final result [10, 34, 41]. Mask R-CNN [21] is an effective
framework falling in this stream. Our work is built on Mask
R-CNN and improves it from different aspects.

Methods in the other stream are mainly segmentation-
based. They learned specially designed transformation
[3, 33, 38, 59] or instance boundaries [30]. Then instance
masks were decoded from predicted transformation. In-
stance segmentation by other pipelines also exists. DIN [2]
fused predictions from object detection and semantic seg-
mentation systems. A graphical model was used in [66, 65]
to infer the order of instances. RNN was utilized in [53, 50]
to propose one instance in each time step.

Multi-level Features Features from different layers were
used in image recognition. SharpMask [49], Peng et al. [47]
and LRR [14] fused feature maps for segmentation with
finer details. FCN [44], U-Net [54] and Noh et al. [46] fused
information from lower layers through skip-connections.
Both TDM [56] and FPN [35] augmented a top-down path
with lateral connections for object detection. Different from
TDM, which took the fused feature map with the highest
resolution to pool features, SSD [42], DSSD [13], MS-CNN
[5] and FPN [35] assigned proposals to appropriate feature
levels for inference. We take FPN as a baseline and much
enhance it.

ION [4], Zagoruyko et al. [62], Hypernet [31] and Hy-
percolumn [19] concatenated feature grids from different
layers for better prediction. But a sequence of operations,
i.e., normalization, concatenation and dimension reduction
are needed to get feasible new features. In comparison, our

Figure 3.7: (a) Information propagation in FPN, red line. (b) Information propagation

in PANet, green line. Image courtesy of Liu et al. (2018).

The original PANet adds neighboring layers together, but the YOLOv4 version concate-

nates them, as shown in Figure 3.8. In FPN, the objects are detected independently at

different scale levels, which may create repeated predictions. Also, it might not exploit

information from other feature maps. PAN, on the other hand, fuses information from all

layers first to prevent this.

34

3.3. Detection-Based Multiple Object Tracking

Figure 5: Modified SAM.

Figure 6: Modified PAN.

3.4. YOLOv4

In this section, we shall elaborate the details of YOLOv4.

YOLOv4 consists of:

• Backbone: CSPDarknet53 [81]

• Neck: SPP [25], PAN [49]

• Head: YOLOv3 [63]

YOLO v4 uses:

• Bag of Freebies (BoF) for backbone: CutMix and
Mosaic data augmentation, DropBlock regularization,
Class label smoothing

• Bag of Specials (BoS) for backbone: Mish activa-
tion, Cross-stage partial connections (CSP), Multi-
input weighted residual connections (MiWRC)

• Bag of Freebies (BoF) for detector: CIoU-loss,
CmBN, DropBlock regularization, Mosaic data aug-
mentation, Self-Adversarial Training, Eliminate grid
sensitivity, Using multiple anchors for a single ground
truth, Cosine annealing scheduler [52], Optimal hyper-
parameters, Random training shapes

• Bag of Specials (BoS) for detector: Mish activation,
SPP-block, SAM-block, PAN path-aggregation block,
DIoU-NMS

4. Experiments

We test the influence of different training improve-
ment techniques on accuracy of the classifier on ImageNet
(ILSVRC 2012 val) dataset, and then on the accuracy of the
detector on MS COCO (test-dev 2017) dataset.

4.1. Experimental setup

In ImageNet image classification experiments, the de-
fault hyper-parameters are as follows: the training steps is
8,000,000; the batch size and the mini-batch size are 128
and 32, respectively; the polynomial decay learning rate
scheduling strategy is adopted with initial learning rate 0.1;
the warm-up steps is 1000; the momentum and weight de-
cay are respectively set as 0.9 and 0.005. All of our BoS
experiments use the same hyper-parameter as the default
setting, and in the BoF experiments, we add an additional
50% training steps. In the BoF experiments, we verify
MixUp, CutMix, Mosaic, Bluring data augmentation, and
label smoothing regularization methods. In the BoS experi-
ments, we compared the effects of LReLU, Swish, and Mish
activation function. All experiments are trained with a 1080
Ti or 2080 Ti GPU.

In MS COCO object detection experiments, the de-
fault hyper-parameters are as follows: the training steps is
500,500; the step decay learning rate scheduling strategy is
adopted with initial learning rate 0.01 and multiply with a
factor 0.1 at the 400,000 steps and the 450,000 steps, re-
spectively; The momentum and weight decay are respec-
tively set as 0.9 and 0.0005. All architectures use a sin-
gle GPU to execute multi-scale training in the batch size
of 64 while mini-batch size is 8 or 4 depend on the ar-
chitectures and GPU memory limitation. Except for us-
ing genetic algorithm for hyper-parameter search experi-
ments, all other experiments use default setting. Genetic
algorithm used YOLOv3-SPP to train with GIoU loss and
search 300 epochs for min-val 5k sets. We adopt searched
learning rate 0.00261, momentum 0.949, IoU threshold for
assigning ground truth 0.213, and loss normalizer 0.07 for
genetic algorithm experiments. We have verified a large
number of BoF, including grid sensitivity elimination, mo-
saic data augmentation, IoU threshold, genetic algorithm,
class label smoothing, cross mini-batch normalization, self-
adversarial training, cosine annealing scheduler, dynamic
mini-batch size, DropBlock, Optimized Anchors, different
kind of IoU losses. We also conduct experiments on various
BoS, including Mish, SPP, SAM, RFB, BiFPN, and Gaus-
sian YOLO [8]. For all experiments, we only use one GPU
for training, so techniques such as syncBN that optimizes
multiple GPUs are not used.

7

Figure 3.8: Original PAN vs. YOLOv4 modified PANet. Image courtesy of Bochkovskiy

et al. (2020).

3.3 Detection-Based Multiple Object Tracking

Object tracking is to locate a moving object in consecutive image frames over time. From

an initial set of bounding boxes for each frame, an object tracking algorithm aims to

identify each object and track them as they move across image frames, maintaining their

identity.

Object tracking can be performed on single objects or multiple objects. As our purpose

is to track fish in a sea cage, we will focus on multiple object tracking (MOT) methods.

Further, object tracking can be detection-based or detection-free, where the detection-

based methods use results (bounding boxes) provided from an object detector. Detection-

free algorithms require objects to be marked manually in the first frame, and then, they

locate these objects in consecutive frames. The former is more popular because new

objects are discovered and disappearing objects are terminated automatically, while the

latter cannot deal with objects that disappear. However, an important drawback with

the detection-based approach is that its performance is highly dependent on the object

detection results (Luo et al. 2014).

An important aspect is to distinguish between online (real-time) and offline methods.

Online methods must be able to track on a frame-to-frame basis, meaning they can only

track based on the current frame and the past frames. Offline methods, however, can

consider the whole timeline of frames. Classical object tracking algorithms involve well-

established methods such as Kalman filter and optical flow. Further, as deep neural

networks have evolved, they have also been applied for object tracking. Object tracking

algorithms have a wide range of applications and can be used as a basis for calculating

physical properties such as the direction or velocity of an object. This section will take a

closer look at some non-deep learning, multi-object tracking algorithms that utilize results

from an object detector and that can be applied for online purposes. First, two classical

and well-established methods are introduced, followed by a more straightforward concept

35

Chapter 3. Object Detection and Tracking

based on bounding boxes and IOU.

3.3.1 Kalman Filter

Mathematically, the Kalman filter (KF) is a recursive state estimator that can predict

and correct a wide range of linear processes where the state is assumed to be Gaussian

distributed. The objective of the KF is to provide an optimal estimate at each time

step, based on a motion model (with process noise) of the objects and several noisy

measurements of the objects’ positions. As long as all noise is Gaussian, optimality

is guaranteed (Shantaiya et al. 2015). For MOT, in particular, the individual state of

each object is usually composed of its position and velocity, and the measurements could

be some properties of bounding boxes provided by an object detector, e.g., the center

coordinates.

The KF model requires a proper motion model of the objects and a method (usually

an optimization method, like the Hungarian algorithm) for matching predictions to their

corresponding measurements for each step of prediction and correction. However, it does

not need any semantic information from the image itself. It guarantees global optimality,

especially its power lies in its prediction ability, which is essential for object occlusion.

3.3.2 Optical Flow

The concept of optical flow is, as many other concepts in machine vision, inspired by

biological processes. James J. Gibson introduced optical flow in the 1940s to describe

the visual stimulus presented to animals when moving through the world (Cutting 2000).

Transferred to computer vision, optical flow is the apparent motion of the brightness

variations in consecutive image frames, i.e., motion is caused by the relative movement

between the observer and the scene. That means apparent motion can occur although no

actual motion is present, e.g., consider the case of a moving ball in fixed lightning versus

a stationary ball in moving lightning. The method’s main goal is to capture pixel-wise

image motion, achieved by estimating the apparent motion field between every pair of

consecutive image frames. The most basic assumption of optical flow is that when a point

x = (x, y) at time instant t moves to a point (x + dx) at time instant t+ dt, the intensity

of the point does not change. This is referred to as the constant intensity assumption:

f(x + dx, t+ dt) = f(x, t). (3.2)

We have the relationship dx = vdt, where v is the velocity vector of x at time t, which is

referred to as the optical flow vector. This allows rewriting (3.2) to

f(x + vdt, t+ dt) = f(x, t). (3.3)

36

3.3. Detection-Based Multiple Object Tracking

Further, dt is assumed infinitesimally small, and thus (3.3) can be approximated by first-

order Taylor expansion to

f(x, t) + (∇f)(x, t)Tvdt+ ft(x, t)dt = f(x, t), (3.4)

which is equal to

(∇f)(x, t)Tvdt+ ft(x, t)dt = 0. (3.5)

The spatial gradient ∇f and the temporal derivative ft can be approximated when given

a sequence of images. However, the result is still an underdetermined problem, as the two

elements of v are unknown, and we only have one equation. This is commonly referred to

as the aperture problem, shown in Figure 3.9. Several methods aim to solve this problem,

e.g., the Lucas-Kanade method, which uses the assumption that a point will move in the

same direction as its neighbors and thus has the same optical flow vector. More details

are provided in van den Boomgaard (2017).

Motion vector

Figure 3.9: The aperture problem. The line appears to be moving to the right when

viewing through the aperture, but is in reality also moving down. It is not possible to

determine the correct direction of movement unless the ends of the line are visible.

We can distinguish between dense and sparse (feature-based) optical flow. The former

tracks motion in the entire image, while the latter tracks specific points or features of

interest (e.g., corner points or edges). Thus, when bounding boxes are provided from an

object detector, one can, for instance, pass the center points of the bounding boxes to a

sparse optical flow algorithm to track the boxes’ movements.

3.3.3 IOU Tracking

The previously mentioned methods for tracking objects include sophisticated tasks such

as modeling object motion and using image semantic information to track motion in

subsequent image frames. Tracking methods based on deep learning introduce complexity

that may not be necessary for many cases. Bochinski et al. (2017) propose and assess a

much simpler method, assuming an object detector already determines bounding boxes.

They present an IOU tracking algorithm based on the overlap between bounding boxes in

37

Chapter 3. Object Detection and Tracking

consecutive frames. It assumes that a unique object’s bounding box in one frame will have

a certain overlap with the same object’s bounding box in the next frame. Hence, no image

information is taken into account since all information is provided by bounding boxes

determined by an object detector. This means the overall complexity of the algorithm is

very low compared to other state-of-the-art trackers. It simply chooses the best match in

terms of IOU overlap above a certain threshold σIOU for all bounding boxes in subsequent

frames. Further, for a track to be included as valid, it must have at least one IOU score

above a threshold σh, it must consist of at least tmin frames, and the detection must have

a detection score of at least σl. Figure 3.10 visualizes the concept.

x
y

Fr
am

es

Figure 3.10: Principle of the IOU tracking algorithm. Based on Bochinski et al. (2017).

38

Chapter 4

Stereo Vision for 3D Reconstruction

Stereo vision – in the context of computer vision – refers to a technique where based on

the 2D views from two cameras one is able to extract the 3D position of feature points

or objects by triangulation. The extension to more views is also known as multiple-view

geometry. This chapter will focus on the specific case of using two cameras observing the

same scene. An object is detected in both cameras but at slightly different positions at

the image, making it possible to extract estimated depth information when the relative

position of the two cameras is known. Stereo vision is not a new technique; it has matured

over the past three decades but still faces many challenges.

4.1 Single-View Geometry

To understand stereo vision, some basic knowledge about single-view geometry is needed.

In principle a camera projects points from the 3D world onto a 2D plane, and this trans-

formation can be approximated by a camera model. The contents of this section is largely

based on Hartley & Zisserman (2003).

4.1.1 Pinhole Camera Model

Under the pinhole camera model, a point in space P = (X, Y, Z)T is projected onto a

plane, to the point p = (x, y)T , through the mapping

R3 7→ R2 : (X, Y, Z)T 7→
(
f
X

Z
, f
Y

Z

)T
= (x, y)T , (4.1)

39

Chapter 4. Stereo Vision for 3D Reconstruction

where f = Z is the image plane or focal plane. Using homogeneous coordinates, (4.1) can

simply be expressed as a linear mapping
X

Y

Z

1

 7→
fXfY
Z

 =

f 0 0 0

0 f 0 0

0 0 1 0

X

Y

Z

1

 = diag(f, f, 1)
[
I3×3 03×1]

X

Y

Z

1

 , (4.2)

where diag(f, f, 1) is a diagonal matrix, I3×3 is the identity matrix and 03×1 is the zero vec-

tor. We define X as the world point represented by the homogeneous vector [X, Y, Z, 1]T ,

x as the image point, and P = diag(f, f, 1)
[
I3×3 03×1] as the homogeneous camera pro-

jection matrix. This means we can write (4.2) as

x = PX. (4.3)

4.1.1.1 Principal Point Offset

In (4.3) we assume that the principal point (i.e., the point where the optical axis of the

camera meets the image-sensor plane) is the origin of the image plane. This is usually not

the case as the optical axis of the camera typically goes through the centre of the image.

Hence, we have a mapping

(X, Y, Z) 7→ (f
X

Z
+ px, f

Y

Z
+ py)

T (4.4)

between world and image plane coordinates, where P = (px, py)
T is the principal point.

In homogeneous coordinates, one can write this expression as

fX + Zpx

fY + Zpy

Z

 = K
[
I3×3 03×1]

X

Y

Z

1

 , (4.5)

where K is the camera calibration matrix,

K =

f 0 px

0 f py

0 0 1

 . (4.6)

We need to change coordinates from meters to pixels by using the pixel density of the

imaging sensor. We start by defining the number of pixels per unit of distance in image

coordinates along the horizontal and vertical direction, respectively, as

mx =
nx
sx
, my =

ny
sy
, (4.7)

40

4.1. Single-View Geometry

where nx, ny, sx, and sy are the number of pixels in the imaging sensor and the physical

size of the sensor in meters, respectively. When (4.6) is multiplied by an extra factor

diag(mx,my, 1) we obtain

K =

αx 0 cx

0 αy py

0 0 1

 , (4.8)

where αx = fmx and αy = fmy represent the camera’s focal length in terms of pixel

dimensions in x and y directions, respectively. x0 and y0 represent the principal point in

pixel units. Pixels can be non-square, which has the effect of introducing unequal scale

factors in each direction, meaning mx and my can be different. However, for today’s

cameras mx = my (squared pixels) is a reasonable assumption. The parameters contained

in K are the internal, or intrinsic, camera parameters. More details can be found in

Hartley & Zisserman (2003).

4.1.1.2 Camera Rotation and Translation

Generally speaking, points in the real world will be expressed in terms of the world coordi-

nate frame, another Euclidian coordinate frame. We can relate the two coordinate frames

with a rotation R and a translation t, as seen in Figure 4.1. Let Xw be an inhomogeneous

3-vector representing a point in the world coordinate frame, and let Xc represent the same

point in the camera coordinate frame. Then we can, for the transformation from world

to camera frame, write

Xc = Rc
wXw − tcw, (4.9)

where Rc
w is a 3× 3 rotation matrix and tcw is a 3× 1 translation vector relating the two

coordinate frames. Sub- and superscripts c and w represents the camera and the world

coordinate frames, respectively. In homogeneous coordinates, the same transformation

can be written

Xc
w = Tc

wXw, (4.10)

where

Tc
w =

[
Rc
w tcw

01×3 1

]
. (4.11)

If (4.5) and (4.9) are combined, we obtain the camera matrix P , written as

P = K [R t] . (4.12)

Hence, P relates a point expressed in the world coordinate frame with the image coordi-

nate frame (pixel coordinates). While the parameters of K are called intrinsic parame-

ters, the parameters of R and t are called extrinsic parameters. The intrinsic parameters

41

Chapter 4. Stereo Vision for 3D Reconstruction

are usually determined during a single-view calibration. The extrinsic coordinates repre-

sent the relative position of the cameras in a stereo setup and are determined by stereo

calibration.

Figure 4.1: The Euclidian transformation between the world and camera coordinate

frames. Image courtesy by Hartley & Zisserman (2003).

4.1.2 Distortion Model

The ideal pinhole camera model assumes a linear mapping between the image plane and

the world coordinate system. For cameras with non-pinhole lenses (i.e., real lenses), this

assumption does not hold. For wide-angle lenses, radial distortion can have a significant

impact. I.e., if a pin-hole model is used, the error will become more prominent as the

focal length decreases. When light rays bend more near the edges of a lens compare to

its optical center, radial distortion appears. Figure 4.2 shows how a checkerboard pattern

affected by positive and negative radial distortion, respectively.

Figure 4.2: Checkerboard pattern, appearing with no distortion, positive radial distortion,

and negative radial distortion, respectively. Image courtesy by Ozcakir (2020).

42

4.2. Stereo-View Geometry

A lens can also produce tangential distortion. This happens when the lens and the

image plane are not parallel. To obtain a linear relationship between the image and

the real world, nonlinearities introduced by this need to be removed. Considering the

distorted image coordinates [xd, yd]
T in relation to the pin-hole image coordinates [x, y]T ,

the distortion can be approximated as[
xd

yd

]
=

[
x(1 + k1r

2 + k2r
4 + ...) + (2p1xy + p2(r

2 + 2x2))

y(1 + k1r
2 + k2r

4 + ...) + (2p2xy + p1(r
2 + 2y2))

]
, (4.13)

where the first terms express the radial distortion and the last terms express the tangential

distortion. The term (1 + k1r
2 + k2r

4 + ...) is a distortion factor affecting the distorted

image coordinates [xd, yd]
T . The factors k1, k2, ... are radial distortion coefficients, and

p1 and p2 are tangential distortion coefficients. From this, the distorted pixel coordinates

can be obtained by multiplication of the distorted image coordinates with the camera

calibration matrix K, as udvd
1

 = K

xdyd
1

 . (4.14)

This is the forward projection from scene to image plane. We are facing the inverse prob-

lem in many cases, i.e., recovering 3D points given their corresponding image coordinates.

However, there is no analytic solution to this problem if distortion is taken into consid-

eration. Computer vision software as OpenCV does, however, provide functionality for

undistortion if the distortion parameters are known.

4.2 Stereo-View Geometry

Stereo-view geometry is primarily inspired by how human eyes perceive the world. A

stereo-vision setup is similar to the structure of the human eyes, namely two cameras

places next to each other, sensing the same scene but at slightly different angles.

4.2.1 Epipolar Geometry

Epipolar geometry is the natural projective geometry between two views. It is only

dependent on the cameras’ internal parameters and pose and is thus independent of the

scene structure (Hartley & Zisserman 2003).

43

Chapter 4. Stereo Vision for 3D Reconstruction

4.2.1.1 Epipolar Line

Assume a 3D point X that is imaged in two views, at x in the first and x′ in the second.

We want to find the relation between x and x′. Let these two image points, the space

point X, and the two camera centers (C and C′) be co-planar, and denote this plane as

π. The back-projected rays from x and x′ will intersect at X, and they will lie in π. Now,

assume we only know x, and we want to find x′. We know the ray is defined by x, that

the camera baseline determines π, and that the ray corresponding to x′ lies in π. Thus,

x′ must lie on the line of intersection l′ of π with the second image plane. The line l′ is

the image in the second view of the ray back-projected from x, also called the epipolar

line corresponding to x. We will see that this observation is highly beneficial in terms of

the stereo correspondence problem as we can restrict the search for a point corresponding

to x to the line l′ instead of the whole image (Hartley & Zisserman 2003).

4.2.1.2 The Fundamental Matrix

The fundamental matrix F summarizes epipolar geometry in an algebraic matter, derived

from the mapping between a point and its epipolar line. The previous findings suggest

there is a map

x 7→ l′ (4.15)

from a point in one image to its corresponding epipolar line in the other image. This is a

projective mapping, represented by the fundamental matrix F.

F can be found by geometric derivation, following two steps. In the first step, the point x

in the first image is mapped to an arbitrary point x′ in the other image lying on l′. This

point is a potential match for x and is found by a transfer via the plane π, a plane in space

not passing through either of the camera centers. The ray through the first camera center

corresponding to x meets π in the point X, which is then projected to a point x′ in the

second image. The projected point x′ must lie on the epipolar line l′ since X lies on the

ray corresponding to x. Thus, the points x and x′ are both images of X lying on a plane.

This means the set of all such points xi in the first image and the corresponding points

x′i in the second image are projectively equivalent. Hence, there is a 2D homography Hπ

mapping every xi to x′i. In the second step, l′ is obtained as the line joining x′ to the

epipole e′. The epipolar line can be written as

l′ = e′ × x′ = [e′]×x′ = [e′]×Hπx = Fx, (4.16)

since x′ = Hπx and when we define F = [e′]×Hπ.

44

4.2. Stereo-View Geometry

4.2.2 Image Rectification

The search for corresponding points is now limited to a search along the epipolar line.

However, the search can be simplified further. By performing image rectification, the

epipolar lines with the same Y component in both images are in one-to-one correspon-

dence. This is achieved by simulating rotations of the cameras to generate two co-planar

image planes that are parallel to the baseline. Algebraically this means applying 2D

projective transformations (homographies) in both images. The goal for the rectified im-

ages is to achieve a common image plane and parallel epipolar lines for the two images,

meaning epipoles go towards infinity.

To reproject the image planes onto a common parallel plane, the first step is to map the

epipole to infinity by finding a projective transformation H. Precisely, the epipole must

be mapped to the particular infinite point (1, 0, 0)T .

First, recall the camera matrix decomposed as P = K [R t] as defined in Equation 4.12,

and let x = PX be a point in the image. Assuming the calibration matrix K is known,

we can apply its inverse to x to obtain the point

x̂ = K−1x. (4.17)

When substituting Equation 4.17 into Equation 4.12, we can write

x̂ = [R t] X, (4.18)

where x̂ is the image point expressed in normalized coordinates, and Pn = K−1P = [R t]

is a normalized camera matrix, i.e., the effect of the known calibration matrix K has been

removed.

Further, we consider a pair of normalized camera matrices P = [I 0] and P′ = [R t],

i.e., camera matrices of a stereo system with the world origin positioned at the first

camera. The fundamental matrix corresponding to the normalized camera pair is called

the essential matrix, E, and has the form

E = [t]×R = R[RT t]× =

0 0 0

0 0 −tx
0 tx 0

 . (4.19)

I.e., the essential matrix maps corresponding points in rectified stereo images by a hori-

zontal shift tx and the image planes are transformed to a parallel plane. This means the

search for corresponding points can be simplified to a search along the horizontal axis as

illustrated in Figure 4.3. For more details on the derivations, see Hartley & Zisserman

(2003).

45

Chapter 4. Stereo Vision for 3D Reconstruction

4.3 Stereo Matching

Stereo matching is the process of finding correspondences between two images of the

same scene. The distance between matching points in the two images is used to find the

disparity map, which can be used to compute the 3D position of points in the scene.

4.3.1 The Correspondence Problem

The correspondence problem involves finding which pixel in the first image corresponds to

which pixel in the second image. Searching for matching pixels through the whole image

would be highly computationally expensive; thus, it is crucial to decrease the search area

to reduce the load. If the images are fully rectified, the corresponding pixel will have the

same Y position in both images; hence, one can limit the search along the X-axis.

Since the two cameras in the stereo setup have different fields of view, and due to potential

occlusion, some points in one image will have no corresponding points in the other image.

I.e., the stereo system must also determine what parts of the image should not be matched.

There is a number of algorithms to determine disparities, and Table 4.1 briefly explains

a selection of approaches. We can categorize the methods in to local and global methods.

Local methods exploit constraints on a small number of pixels surrounding a pixel of

interest. They are statistical methods and prioritize matching cost computation and cost

aggregation, usually by exploiting a winner-takes-it-all strategy by choosing the disparity

with the least cost for all pixels, rather than using an energy function as in the global

methods. These methods can be very efficient, but also sensitive to ambiguous regions

like occlusion regions or regions without any distinct texture. Global methods exploit

constraints on scanlines or on the entire image, and optimize an energy function created

from these regions. They have a higher computational complexity, but are less sensitive

to locally ambiguous regions since they provide additional support for regions that are

difficult to match locally (Liu & Aggarwal 2005).

A disparity map can be dense or sparse. Dense matching methods aim to reconstruct

every pixel in the image, while sparse methods only reconstruct pixels for selected feature

points in the image (Ahmed et al. 2020).

46

4.3. Stereo Matching

Table 4.1: Stereo matching approaches, as described by Brown et al. (2003).

Approach Brief description

Local methods

Block matching Search for maximum match score or minimum error over

small region, typically using variants of cross-correlation or

robust rank metrics.

Gradient-based methods Minimize a functional, typically the sum of squared differ-

ences, over a small region.

Feature matching Match dependable features rather than the intensities them-

selves.

Global methods

Dynamic programming Determine the disparity surface for a scanline as the best

path between two sequences of ordered primitives. Typi-

cally, order is defined by the epipolar ordering constraint.

Intrinsic curves Map epipolar scanlines to intrinsic curve space to convert

the search problem to a nearest-neighbors lookup problem.

Ambiguities are resolved using dynamic programming.

Graph cuts Determine the disparity surface as the minimum cut of the

maximum flow in a graph.

Nonlinear diffusion Aggregate support by applying a local diffusion process.

Belief propagation Solve for disparities via message passing in a belief network.

Correspondenceless methods Deform a model of the scene based on an objective function.

As the thesis focuses on methods suited for practical purposes, efficiency is prioritized

and the emphasis will be on local methods. Of the local methods presented here, block

matching and semi-global block matching provide dense disparity maps, as they use and

compare image windows. Feature matching only considers a sparse set of image features,

giving sparse density maps.

4.3.1.1 Block Matching

Block-matching algorithms look for matching locations in the two images. This class of

methods is one of the earliest and simplest approaches for stereo matching. They match

small image patches, or blocks, along the same horizontal axis in the rectified images.

A search strategy is employed to find the location on the same horizontal axis with the

highest similarity between image patches. The matching cost aggregation is commonly

accomplished by averaging or summing the matching cost in the blocks. The first block

checked for a match is the block in the second image with the same center coordinate

as the block in the reference image. Then the block is moved to the left in the second

47

Chapter 4. Stereo Vision for 3D Reconstruction

image, until it hits the block most similar to the reference block. Figure 4.3 and Figure 4.4

illustrate the process.

(a) Reference block (black box) in the left image.

(b) Initial search position (white box) and true match (green box) in the right image. The

yellow box shows the horizontal search line.

Figure 4.3: Illustration of block matching process. Image courtesy by McCormick (2014).

The block-matching methods differ mainly in the cost function used to measure similarity.

An example of sum of absolute differences (SAD) cost computation between two possibly

matching blocks is shown in Figure 4.4. The definitions of SAD and some other common

methods are shown in Table 4.2.

Figure 4.4: SAD cost computation between two possibly matching blocks. Image courtesy

by McCormick (2014).

48

4.3. Stereo Matching

Table 4.2: Common cost functions for measuring similarity in correlation-based stereo

matching methods. Based on Praveen (2019) and Brown et al. (2003).

Method Cost function

Sum of squared difference (SSD) CSSD(d) =
∑

(u,v)∈Wm(x,y)

[IL(u, v)− IR(u− d, v)]
2

Sum of absolute difference (SAD) CSAD(d) =
∑

(u,v)∈Wm(x,y)

|IL(u, v)− IR(u− d, v)|

Normalized cross-correlation (NCC) Î = I(x,y)−Ī
||I−Ī||Wm(x,y)

CNCC(d) =
∑

(u,v)∈Wm(x,y)

ÎL(u, v)ÎR(u− d, v)

Rank transform Rank(x, y) =
∑

(i,j)(x,y)

L(i, j), L(i, j) =

{
0 : I(i, j) < I(x, y)

1 : otherwise

CRT (d) =
∑

(u,v)∈Wm(x,y)

|RankL(u, v)−RankR(u− d, v)|

Census transform Census(x, y) = Bitstring(i,j)∈Wm
(I(i, j) ≤ I(x, y))

CCT (d) =
∑

(u,v)∈Wm(x,y)

CensusL(u, v)− CensusR(u− d, v)

Nomenclature for the equations in Table 4.2 can be found in Table 4.3.

Table 4.3: Nomenclature for cost function formulas. Based on Praveen (2019).

Symbol Explanation

IL Left image or first camera image

IR Right image or second camera image

Wm Matching window

d Pixel disparity

I(u, v) Image pixel intensity at location

As seen in the cost functions in Table 4.2, block matching requires that the scene points

have the same intensity in each image. This requirement can only be strictly accurate if

surfaces are perfectly matte. This is one of the dominant factors affecting the similarity

measure (Praveen 2019):

• Photometric constraints (Lambertian/non-Lambertian surfaces): Lambertian sur-

faces look the same to the observer regardless of the angle of view. An example

49

Chapter 4. Stereo Vision for 3D Reconstruction

of this is a perfectly “matte” surface. If a surface is not Lambertian, it might not

appear similar regarding illuminance and brightness in the two images, which makes

matching difficult.

• Noise in the images: Low-quality sensors or magnified unwanted light sue to high

ISO settings can cause noise. For the special case of underwater images there are

additional affects that can make images noisy (see section 1.1.2). The noise can be

different for the two cameras, affecting the goodness of matching.

• Pixels containing multiple surfaces: This problem will mainly occur for an objects

that lie too far away in the scene. The baseline is directly proportional to the dis-

tance of objects, i.e., stereo systems with small baseline will encounter this problem

even at average distances. For systems with larger baseline the issue will occur at a

greater distance. Thus, it is important to choose the baseline that fits the use case.

• Occluded pixels: There will be pixels in a scene that is visible in one image but

not in the other due to occlusion. As there will be no match for these pixels, it is

not possible to find the disparity for them. They can only be estimated by, e.g.,

interpolation techniques.

• The surface texture of the 3D object: Blank walls, roads, or skies have no useful tex-

ture, making it impossible to compute their disparity by block-matching algorithms.

Computation of disparity for these points requires global methods that consider the

information in the entire image.

• The uniqueness of the object in the scene: The algorithm can match incorrect pixels

if objects in the scene are not unique. A larger block could help, but this is also

more computationally expensive.

• Synchronized image capture from the two cameras: The images must be captured

at the exact same time. This is especially important if there is movement in the

scenes. This can be achieved by hardware trigger, or at software level if there is

continuous recording. The former gives perfect synchronization, while the latter

could be less accurate.

4.3.1.2 Semi-Global Block Matching

Semi-global block matching (SGBM) was introduced by Hirschmuller (2008). Simply

explained, the SGBM algorithm differs from the simple block matching algorithm by

enforcing smoothness constraints between neighboring pixels so that they take similar

disparity values, in addition to calculating local optimal disparity value for each pixel.

I.e., SGBM introduces global constraints to the local block matching method. This will

in general lead to better results, but comes with an additional computational expence.

The SGBM algorithm is explained by a block diagram in Figure 4.5.

50

4.3. Stereo Matching

Figure 4.5: SGBM block diagram, using five directions. Image courtesy by The Math-

Works, Inc. (n.d.).

4.3.1.3 Feature Matching

Feature-based methods involve examining features in the image and checking if the layout

of a subset of features is similar in the two images. Image features can be, among others,

corners, edges, circles, patches, curve segments, and line segments. Feature detection

algorithms search for features in each images that can be matched with features in other

images. The region around a feature is described compactly in the descriptor. Then,

the features in the reference image are matched with features in the second image by

using the feature descriptors. By cost-matching using brute force or nearest neighbor,

corresponding feature pairs are extracted from the stereo pair.

Technological developments are advancing from block-matching methods, and feature-

matching is a technique that is accelerating in stereo vision. Feature-matching can be

accomplished in real time, but these methods are not able to detect small changes in the

stereo images (Hämäläinen et al. 2005). Feature-matching methods are sensitive to the

aperture problem, and to avoid this, one should require that a good feature has local

variation in at least two directions.

4.3.2 Disparity Post-Processing

Some of the effects affecting the similarity measure when calculating the disparity maps

can be handled by post-processing the disparity maps. Some examples of post-processing

are, according to Praveen (2019):

• Removal of spurious stereo matches: A simple way to encounter this problem is to

use the median filter, but it might fail if there are larger spurious speckles present.

Speckle filtering can be achieved using other approaches, e.g., removal of tiny blobs

that are inconsistent with the background. It removes most incorrect disparity

values, but also leaves holes or blank values.

• Filling of holes in the disparity map: Holes are mainly caused by occlusion or

51

Chapter 4. Stereo Vision for 3D Reconstruction

removal of false disparities. Left-right disparity consistency checks can be used to

detect occlusion.

• Sub-pixel estimation: Most stereo matching algorithms output integer disparity val-

ues, meaning disparity maps become discontinuous and information is lost. Gradient

descent and curve fitting are common methods to solve this problem.

4.4 The Reconstruction Problem

Given that the correspondence problem is solved and that we have pair of matching points

(x, x′) in the left and right image, respectively, it remains to reconstruct the corresponding

scene point. This point, X = (xL, yL, zL) (relative to the left camera origin C), has pixel

displacements u and u′ along the horizontal image axis. We need to find the depth, zL,

by geometric derivation. While u and u′ are the horizontal components of the image

points, v and v′ similarly represent the vertical component of the image points. Usually,

these components are defined relative to the upper left corner of the image. The focal

length f is the same for both cameras. 3D reconstruction from disparity maps given

the camera parameters is called triangulation, as we use similar triangles to derive the

following relationship:

u = f

(
xL
zL

)
. (4.20)

Similarly for X = (xR, yR, zR) relative to the right camera, we have

u′ = f

(
xR
zL

)
. (4.21)

The length b relates the two camera centers, meaning xR = xL + b. The disparity is a

pixel shift along the horizontal axis and can be defined as d = u′−u. This, together with

(4.20) and (4.21), means

d = u′ − u = f

(
xR
zL

)
− f

(
xL
zL

)
= f

(
xL + b− xL

zL

)
= f

(
b

zL

)
. (4.22)

From (4.22), zL can be obtained by rearrangement, as

zL = f

(
b

d

)
. (4.23)

A similar procedure can be done to obtain xL and yL, and the final 3D reconstruction is

thus

X = (xL, yL, zL) =

(
u
zL
f
, v
zL
f
, f
b

d

)
. (4.24)

(4.24) requires the baseline b, the disparity d, and the focal length f to be known to be

able to obtain zL. The image point x = (u, v) is also assumed to be known such that xL

and yL can be obtained from zL.

52

4.4. The Reconstruction Problem

A disparity-to-depth mapping matrix Q can be derived from these equations to reduce

the 3D reconstruction calculations to
xL

yL

zL

wL

 = Q ·

u

v

d

1

 . (4.25)

The matrix Q is defined as
1 0 0 −px
0 1 0 −py
0 0 0 f

0 0 −1
b

px−p′x
b

 , (4.26)

where px and py are the x and y components of the left principal point, respectively, and

p′x is the x component of the right principal point. Now, inserting this into Equation 4.25

gives
1 0 0 −px
0 1 0 −py
0 0 0 f

0 0 −1
b

px−p′x
b

u

v

d

1

 =

u− px
v − py
f

px−p′x−d
b

 =

xL

yL

zL

wL

 . (4.27)

When the left and right principal points are equal, this gives

zL =
−bf

−d− (px − p′x)
⇒ zL

wL
=
fb

d
, (4.28)

which is the same as in Equation 4.23 using homogeneous coordinates.

53

Chapter 4. Stereo Vision for 3D Reconstruction

54

Chapter 5

Implementation

The purpose of the following chapter is to present and substantiate the chosen method-

ology for the project. First, we provide a description of the dataset, including several

aspects regarding the collection, annotation, and processing of the data. Then we will

explain the selection of the detection model. Next, we will look further into the selection

and modification of the tracking algorithm. The following section will present the pre-

requisites for the implementation of the methods. Next, the network configuration and

the training of the object detector are described. The last section will explain how the

methods are evaluated.

5.1 Data Acquisition

This section will present the collection and processing of the dataset, including the process

of acquiring the dataset, and some details about the camera and the images. Further, we

will present the pre-processing of the data.

5.1.1 Data Collection

Image data of the quality and quantity that was desirable for training neural networks

was hard to collect. NTNU possesses a fish farm equipped with a variety of sensors for

research means in Ålesund, Norway. It was possible to go there to collect camera data,

but with the Covid-19 pandemic and limited time, it was desirable to get hands on an

existing dataset. Also, after a meeting with doctoral fellows at NTNU Ålesund it was

clear that the cameras and equipment available might not be suitable for acquiring high-

quality video, and the environment might not be satisfactory considering algae blooms

and weather conditions.

55

Chapter 5. Implementation

Table 5.1: Camera information, taken directly from the information file provided from

SINTEF with the LAKSIT dataset. Two of these cameras were used for the stereo setup.

Camera model Blackfly BLFY-PGE-13E4C

Camera vendor Point Grey Research

Sensor E2v EV76C560 (1/1.8” Color CMOS)

Resolution 1280× 1024

SINTEF has a variety of image and video data which was made available for this project.

One of these was the LAKSIT dataset, which was chosen to be examined further since

it contained a large quantity of high-quality stereo video. The data was in the form of

separate stereo video streams recorded for short periods of time with a frame rate of 24

FPS, ranging from 2000 frames (about 1.5 minutes) to 3120 frames (about 2 minutes).

The video streams were recorded from within the same cage at an approximate depth of 5

meters and the camera was fixed by a rope. The videos were taken in the time between the

25th of October 2016 and the 21st of February 2017 including periods where the camera

was taken out of the cage due to a few fish farming operations. Camera information for

the two cameras is shown in Table 5.1.

5.1.2 Preparations for Object Detection

The used subset of recordings contained 17 video streams, in total 33 minutes and 42

seconds. Looking at previous studies and keeping in mind the fact that the dataset was

limited, a decision was made to set some requirements for the training and validation sets

for the object detection model.

1. the number of training image frames should be at least 80,

2. the datasets should contain image frames from all provided video data sources, and

3. all objects of interest in the chosen image frames should be possible to distinguish

from other objects with a human eye.

Requirement (1) and (2) were to guarantee a certain variability in the datasets. Require-

ment (3) was important because of limited visibility in the image frames. A dangerous

pitfall when choosing training data is that objects of interest actually are present in frames

of the dataset, but not labeled. This can e.g. happen when objects are blurry or too simi-

lar to other types of objects. However, it is important to make sure the network can detect

objects in the various data sources it is supposed to be applied to, hence, the training and

validation sets must reflect this. To manifest these requirements and to keep a certain

amount of randomness, a custom algorithm was used to pick a number of random frames

from the video streams, using the open-source software FFmpeg and OpenCV, as follows:

56

5.1. Data Acquisition

1. Concatenate all video streams to one stream.

2. Count the total number of frames in the stream.

3. Pick a sample of n unique random indices between zero and the total number of

frames.

4. Extract video frames corresponding to these indices.

The most suitable frames for training were chosen manually. The videos contained some

motion blur, and since they were recorded in dynamic environments some of the random

frames extracted did not contain any fish or was not suitable because of conditions like

too much motion blur, inadequate lightning, or turbidity.

The resulting dataset contained 260 images and was further split randomly, 80% for

training, 10% for validation, and 10% for testing. Next, all images were labeled, and

images in the original training set were augmented (see section 5.3.2.1) before the training

phase was initiated.

5.1.2.1 Selection of Object of Interest

To be able to analyze the swimming velocity of fish from video sequences, each fish must

be identified and tracked through a sequence of frames, and the depth of an individual fish

must be estimated. Because of the problems introduced by the water as a medium (see

section 1.1.2), depth estimation of underwater images is more challenging than terrestrial

images.

To be able to estimate the fish velocity, the position of a fixed point on the fish must be

estimated in each frame. By using object detection we can use the middle point of each

bounding box as this fixed point. It remains to decide what object to detect and track.

Detecting the entire fish could be a possible approach for tracking and estimating depth

of the fish. However, based on initial tests of depth estimation algorithms, it was difficult

to obtain a good and contiguous depth estimate for the entire surface of the fish. Thus,

it was decided to focus on an object of interest on the fish surface, and use this object to

identify the fish for tracking, and for estimation of the depth of the fish.

57

Chapter 5. Implementation

Nare

Gill cover
Pectoral fin

Pelvic fin

Anal fin

Caudal fin

Adipose fin

Dorsal fin

Lateral line

Jaw

Eye

Figure 5.1: Salmon external anatomy.

Table 5.2 summarizes the author’s subjective perception of some of the fish anatomic

objects shown in Figure 5.1, and their appearance in underwater images form the LAKSIT

dataset. Each object is evaluated by three criteria, based on observations of the image

frames. The first criterion, highly affected by motion blur, is important because objects

tend to get their edges blurred out because of motion blur in the data, making it harder for

the object detection model to recognize the object and for the stereo matching algorithm

to match pixels. The next criterion is easily confused with other objects. E.g., a salmon has

a variety of fins, some of them with a similar shape. Since the detected object will identify

a single fish, it is important to avoid that several objects are detected on the same fish.

The last criterion is highly affected by low contrast. This relates to the same problems as

for the first criterion. If an object is highly affected by low contrast (which is common in

underwater images, see section 1.1.2), it will be hard for the object detector to distinguish

the object from other objects and the background. Edges will be less prominent, and the

object will diminish. The more of these criteria are evaluated to “no” for an object, the

better the object is for our pipeline.

58

5.1. Data Acquisition

Table 5.2: Evaluation of objects of interest, using three criteria.

Anatomic object Highly affected

by motion blur

Easily confused

with other ob-

jects

Highly affected

by low contrast

Eye Yes No Yes

Jaw Yes No Yes

Gill cover Yes No Yes

Dorsal fin No Yes No

Adipose fin No Yes No

Tail (caudal) fin No No No

Anal fin No Yes No

Pelvic fin No Yes No

Pectoral fin No Yes No

The tail fin is not as affected by motion blur as the fish eye. It has a distinct shape which

is hard to confuse with other objects that could appear in image data from a sea cage.

The tail fins are larger than other fins, making them easier to track in consecutive frames

when using a tracking algorithm based on IOU overlap.

There are some drawbacks of using the caudal fin as the object of interest, especially

related to depth estimation. The fin is moving sideways, meaning the depth of the fin will

vary relative to the body of the fish from the camera perspective in the dataset (looking

at the fish from one side). This was however considered as less important as the goal is

an estimation of the depth.

5.1.2.2 Annotation

Only raw data was provided, hence, the labeling/annotation process was to be done from

scratch. In this case, Microsoft’s Visual Object Tagging Tool (VoTT) was used. It is an

open-source annotation and labeling tool for image and video assets. It provides a GUI

where one can simply draw bounding boxes around the objects and label them as desired.

Despite the fact that VoTT does not support the YOLOv4 Darknet annotation format,

it is user friendly and fast, and runs on Windows 10. We used the web tool RoboFlow to

easily convert to the correct format and custom algorithms to list all training, validation,

and test files in separate text files, like Darknet requires.

59

Chapter 5. Implementation

Figure 5.2: Screenshot from annotation tool (VoTT).

Figure 5.3: Example of image frame with extensive motion blur.

60

5.1. Data Acquisition

Figure 5.4: Example of image frame of scarce quality. The image contains a high level

of noise, several tale fin occlusions, and an unclear distinction between foreground and

background.

61

Chapter 5. Implementation

Figure 5.5: Example of an accepted image frame. The image has clear distinctions be-

tween foreground and background, an acceptable amount of motion blur, and few tale fin

occlusions.

5.2 Implementation Prerequisites

In this section, different prerequisites for running the proposed detection and tracking

model are described, including hardware, software, and configuration of the detection

neural network.

5.2.1 Computer

The computer used in this project is an ASUS ROG Strix G15CK. For training and

validating the two deep learning models, a computer with a powerful GPU is required

to be able to run in a satisfactory time perspective. Further, an NVIDIA designed GPU

is required to run on the parallel programming platform CUDA which was used in this

project. The main specifications are listed in Table 5.3.

62

5.2. Implementation Prerequisites

Table 5.3: Main specifications of the computer used in the project.

Producer ASUS

Product series ROG Strix G15CK

Model NR008T

CPU Intel Core i5 (10th generation)

GPU NVIDIA GeForce RTX 2060 SUPER

RAM 2× 8 GB

Operating system Windows 10 Home

5.2.2 Software

This section presents the main software frameworks used in this thesis. These are related

to the deep-learning, computer vision, and image processing tasks.

CUDA

To accelerate the deep learning process, it can be sufficient to take advantage of the

parallel computing power of the computer’s graphics processing unit (GPU). While GPU

computing traditionally has been used for graphics-heavy operations such as video games,

it has now become more mainstream and can greatly improve the performance of other

computation-heavy operations such as deep learning. There are several platforms imple-

menting parallel computing on GPU. One of the most popular platforms is CUDA which

is developed by NVIDIA. This is the parallel computing platform used in this project,

firstly because it significantly speeds up the training time, and secondly because it is

required for running YOLOv4 in real-time. In this project, CUDA version 10.2 was used.

OpenCV

OpenCV is an open-source computer vision and machine learning software library. It

includes both classic and state-of-the-art algorithms for computer vision and machine

learning and contains more than 2500 optimized algorithms. OpenCV is commonly used

by a wide range of companies, from large international companies to start-ups. OpenCV

version 4.1.0 was used for this project, and it has been extensively used both in processing

raw image frames and as a part of the YOLOv4 model.

63

Chapter 5. Implementation

Darknet

Darknet is an open-source neural network framework. According to Redmon (2013–2016),

it is fast, easy to install, and supports CPU and GPU computation. The framework

supports running several YOLO versions, including YOLOv4, and additional modules

such as ImageNet Classification and Recurrent Neural Networks (RNN). To run Darknet

in real-time, OpenCV and CUDA are required.

5.3 Object Detection Model

This section presents the process of selecting the object detection model and aspects with

training the model to recognize fish tale fins.

5.3.1 Selection of Detection Model

Comparing the different detection models presented in section 3.1 is a demanding task.

One reason for this is that there is no single general measure that can take all factors

into consideration. Most detection models are tested on standard, large datasets with a

wide range of classes, such as the MS COCO dataset (Lin et al. 2014) or the PASCAL

VOC datasets (Everingham et al. 2014). While the performance on these datasets can

provide a general opinion of the performance, it cannot capture particularities that may

occur in specific datasets. Also, several metrics are commonly used for comparison. One

detection model can perform better than another in terms of one metric but can be

significantly worse using a different metric. For instance, YOLOv3 performs great on

the AP metric with a 0.5 IOU threshold, but bad on the AP metric averaging over IOU

thresholds between 0.05 and 0.95 (Redmon & Farhadi 2018). Another aspect is the trade-

off between speed and accuracy. Different ratios of importance will favor different models.

If we compare the models in Figure 5.6, EfficientDet will be a better choice if only accuracy

is taken into account, while YOLOv4 is an obvious choice when time is crucial. Finally,

the architecture design choices are of high importance when it comes to details such as the

size of the objects to be detected, the density of objects in a typical image, and the number

of classes involved. As a model optimized for multi-scale prediction will perform better on

a general dataset with objects of many different sizes, it may not be superior on a custom

dataset containing e.g. only small objects. For implementation considerations, most of

the highlighted models in this section are open-source and off-the-shelf, meaning they

can be implemented with little effort. There are however variations in how extensively

they can be configured to custom purposes, and how well they are supported in terms

of different frameworks and integrations. Hardware requirements as e.g. GPU support

64

5.3. Object Detection Model

are also aspects to consider, particularly when the model is to be applied in production

systems.

YOLOv4: Optimal Speed and Accuracy of Object Detection

Alexey Bochkovskiy∗

alexeyab84@gmail.com

Chien-Yao Wang∗

Institute of Information Science
Academia Sinica, Taiwan
kinyiu@iis.sinica.edu.tw

Hong-Yuan Mark Liao
Institute of Information Science

Academia Sinica, Taiwan
liao@iis.sinica.edu.tw

Abstract

There are a huge number of features which are said to
improve Convolutional Neural Network (CNN) accuracy.
Practical testing of combinations of such features on large
datasets, and theoretical justification of the result, is re-
quired. Some features operate on certain models exclusively
and for certain problems exclusively, or only for small-scale
datasets; while some features, such as batch-normalization
and residual-connections, are applicable to the majority of
models, tasks, and datasets. We assume that such universal
features include Weighted-Residual-Connections (WRC),
Cross-Stage-Partial-connections (CSP), Cross mini-Batch
Normalization (CmBN), Self-adversarial-training (SAT)
and Mish-activation. We use new features: WRC, CSP,
CmBN, SAT, Mish activation, Mosaic data augmentation,
CmBN, DropBlock regularization, and CIoU loss, and com-
bine some of them to achieve state-of-the-art results: 43.5%
AP (65.7% AP50) for the MS COCO dataset at a real-
time speed of ∼65 FPS on Tesla V100. Source code is at
https://github.com/AlexeyAB/darknet.

1. Introduction
The majority of CNN-based object detectors are largely

applicable only for recommendation systems. For example,
searching for free parking spaces via urban video cameras
is executed by slow accurate models, whereas car collision
warning is related to fast inaccurate models. Improving
the real-time object detector accuracy enables using them
not only for hint generating recommendation systems, but
also for stand-alone process management and human input
reduction. Real-time object detector operation on conven-
tional Graphics Processing Units (GPU) allows their mass
usage at an affordable price. The most accurate modern
neural networks do not operate in real time and require large
number of GPUs for training with a large mini-batch-size.
We address such problems through creating a CNN that op-
erates in real-time on a conventional GPU, and for which
training requires only one conventional GPU.

Figure 1: Comparison of the proposed YOLOv4 and other
state-of-the-art object detectors. YOLOv4 runs twice faster
than EfficientDet with comparable performance. Improves
YOLOv3’s AP and FPS by 10% and 12%, respectively.

The main goal of this work is designing a fast operating
speed of an object detector in production systems and opti-
mization for parallel computations, rather than the low com-
putation volume theoretical indicator (BFLOP). We hope
that the designed object can be easily trained and used. For
example, anyone who uses a conventional GPU to train and
test can achieve real-time, high quality, and convincing ob-
ject detection results, as the YOLOv4 results shown in Fig-
ure 1. Our contributions are summarized as follows:

1. We develope an efficient and powerful object detection
model. It makes everyone can use a 1080 Ti or 2080 Ti
GPU to train a super fast and accurate object detector.

2. We verify the influence of state-of-the-art Bag-of-
Freebies and Bag-of-Specials methods of object detec-
tion during the detector training.

3. We modify state-of-the-art methods and make them
more effecient and suitable for single GPU training,
including CBN [89], PAN [49], SAM [85], etc.

1

ar
X

iv
:2

00
4.

10
93

4v
1

 [
cs

.C
V

]
 2

3
A

pr
 2

02
0

Figure 5.6: Comparison of YOLOv4 and other state-of-the-art object detectors. Image

courtesy of Bochkovskiy et al. (2020).

How is the detection model chosen, then? The ideal solution would be to try out all mod-

els and all their configurations on our specific dataset, but this is obviously not feasible,

especially not for a project with time and effort limitations like in our case. Figure 5.6

shows how some state-of-the-art models perform in terms of the average AP between 0.05

and 0.95 IOU metric on the COCO dataset. It shows that YOLOv4 outperforms several

state-of-the-art detectors on the COCO dataset. While this comparison, as discussed,

cannot provide a perfect basis for the choice for our specific problem, it is a good starting

point. Further, certain priorities must be determined. In our case, speed is highly priori-

tized as we aim for detections in real-time. This speaks for choosing a one-stage model.

Caudal fins will appear in different sizes depending on their distance from the camera,

meaning the chosen model must be able to detect objects at different scales. Hence, both

SSD and YOLOv4 can be considered further. Since the model is envisioned implemented

for industrial use with limited financial resources, the ability to run online on a conven-

tional GPU is highly weighted. Taking all of the mentioned aspects into consideration,

YOLOv4 appeared to be the best choice for the purpose of this project.

Further, there exist several YOLO architectures. The YOLOv4-tiny-3l model is a modified

design that is customized to run faster than the original. It is thus more convenient to

use on smaller and lighter computers like e.g. edge devices in AUVs or in other sensor-

carrying underwater platforms. This model was studied and compared with the original

YOLOv4 model on detection of pellets in underwater images in the specialization project

and the original YOLOv4 model was found to perform better. Hence, the original model

was chosen for the work in this thesis.

65

Chapter 5. Implementation

5.3.2 Training

In this section, we will look into several aspects of the training process. First, the im-

portant phenomenon of overfitting is discussed. Further, we look at a method to achieve

larger variability in the training data: data augmentation. Next, the training configura-

tion of the detection network is presented. At last, we will explain the concept of transfer

learning and how it is used in this project.

5.3.2.1 Data Augmentation

YOLOv4 already integrates four different augmentation methods that can be adjusted in

the configuration file: angle, saturation, exposure, and hue. Note that angle (which is

supposed to decide how much an image can be rotated) is not yet supported for object

detection according to Bochkovskiy (2020b), thus the value is set to 0 as default. The

other values were also kept as default:

• Saturation: 1.5 (means random value, between 1
1.5

and 1.5)

• Exposure: 1.5 (means random value, between 1
1.5

and 1.5)

• Hue: 0.1 (means random value, ±0.1)

To achieve even more variability to the dataset, the images were augmented additionally

before training. Rotation augmentation was added since camera setups in sea cages vary

(meaning data can be recorded from many different points of view) and we wanted to

train the model to be able to handle this. Since caudal fins can be present at various

distances from the camera, we found it useful to add random crop augmentation such

that the model could be exposed to additional object sizes. The fins can appear at any

rotation, hence, rotation and horizontal and vertical flipping was added to provide a wider

dataset. The original images were highly influenced by variations in hue and exposure.

To prevent the model from placing a high importance on color, a gray-scale version of

each image was added. RoboFlow, the web tool used for converting annotation format

(see section 5.1.2.2), provides functionality to easily perform augmentation.

The final augmentations were:

• Rotation: Random value, between −15◦ and +15◦

• Crop: Random value, up to 60% zoom

• Flip: Horizontal and vertical (randomly)

• Gray-scale: All images

Thus, the resulting dataset before training contained four augmented versions of each

image in addition to the originals, in total 5 · 208 = 1040 training images. Examples of

augmented images are shown in Figure 5.7.

66

5.3. Object Detection Model

Figure 5.7: Four different augmentations of one training image.

5.3.2.2 Transfer Learning

For the object detector we use pre-trained model parameters provided by the authors

behind the YOLO model, achieved by training on ImageNet, and more specifically we use

the yolov4.conv.137 and the yolov4-tiny.conv.29 weights.

5.3.2.3 Network Configuration

Before training, the network architecture must be set up and training parameters must

be tuned. This happens in the configuration file. The authors of the YOLOv4 model

provide configuration files describing the general architecture of each model.

Since the chosen YOLOv4 model was the original YOLOv4 model, we used the corre-

sponding configuration file yolov4.cfg. Further, several parameters could be adjusted to

tune the models. We tested various configurations before choosing the final values. E.g.,

we tested a strategy recommended by the YOLOv4 authors, changing stride and filters in

the upsampling layers in the model to better detect small objects. However, we obtained

worse results with this configuration, probably because the fins also appear in large sizes

(although the majority appear quite small). Table 5.4 shows the final values used.

67

Chapter 5. Implementation

Table 5.4: Configuration of training parameters for YOLOv4.

Configuration parameter Value

Batch 64

Subdivisions 64

Width 544

Height 544

Channels 3

Momentum 0.949

Decay 0.005

Learning rate 0.001

Burn-in 1000

Max batches 10000

Policy steps

Steps 8000, 9000

Scales 0.1, 0.1

Batch size

During training, the network iteratively uses subsets of the training dataset to compute

the loss and update the weights, instead of running the entire dataset at once. The batch

size determines the size of the subset of images processed in one iteration. This value was

set to 64, which is the default value.

Subdivisions

The batches are again divided into mini-batches. The size of the mini-batches is the

number of images the GPU will process simultaneously in parallel. Due to the high image

resolution, the batches had to be divided into 64 mini-batches to prevent the GPU from

running out of memory. Channels was set to 3 because the network was set up to process

RGB (i.e., 3 channels) images.

Width, height, and channels

These parameters determine how the input images should be resized. Width and height

were set to a moderate resolution, 544 × 544, to more likely be able to capture small

objects and at the same time run within the capacity of the GPU.

Momentum and decay

Momentum and decay are used to control how the weights are updated. Momentum is

an optimizer that can help to speed up learning when the cost gradient is not changing

fast enough, and it prevents the learning to become unstable when the cost gradient is

high. The momentum values was set to 0.949, the default value. The decay parameter

helps prevent overfitting by introducing a penalty in the loss function when weights have

68

5.3. Object Detection Model

high values, and this was also set to default.

Learning rate, burn-in, max batches

As explained in section 2.1.2, the learning rate determines how fast the model should

learn, i.e., the step size of the adjustment of weights and biases. A too-small learning rate

will result in slow learning, while a too-large value may cause divergence in the training

loss which means the model will never find the optimal weights. Throughout the learning

process, the learning rate will be decreased to slow down the process and to approach an

optimum. The initial values were set as default.

In many cases, the training speed increases when the learning rate is kept lower in the first

iterations of the training. Burn-in decides how many iterations the learning rate should

slowly increase before it reaches its final value. The value is set to 1000 iterations, which

is the default value.

Max batches decide the maximum number of iterations/epochs before training is termi-

nated. According to the instructions in the Darknet repository (Bochkovskiy 2020a), this

value should be set to at least 3 times the number of classes, or a minimum value of 6000.

The value was set to 10000 after testing with several configurations showing that the best

weights were found between 5000-8000 batches in most cases.

Policy, steps, and scales

Policy decides how the learning rate should increase and decrease. This was set to be done

in steps in our model. The steps parameter is used when the steps policy is chosen and

decides at which steps (iterations) the learning rate should be decreased. Following the

instructions in the Darknet repository, this value was chosen to be 8000, 9000, i.e., 80%

and 90% of max batches. Further, the scales decide how much the learning rate should

decrease at these steps. Scales are set to 0.1, 0.1, which means the learning rate will be

multiplied by 0.1 at iterations 8000 and 9000.

5.3.2.4 Validation

Due to the problem of overfitting, it is desired to validate the performance of the detection

model throughout the training process. As stated in item 5.1.2, the validation set is a

randomly chosen subset of the original dataset. The model continuously validates its own

performance by calculating the mAP on the validation set, providing a basis for choosing

the best model when the training is terminated. To find the early stopping point, we

would ideally calculate the validation loss after each epoch and choose the model with

the smallest value. The model saves the weights for each 1000 epochs, but in addition

it always keeps the best weights, i.e., the weights achieving the highest validation mAP.

The mAP metric is widely used and adequate to make the final choice (see section 5.3.3

69

Chapter 5. Implementation

Table 5.5: Validation mAP after each 1000 iterations of the training process, together

with the best weights result.

Epoch # mAP@0.50

1000 70.93%

2000 84.75%

3000 87.27%

4000 77.59%

5000 73.59%

6000 74.51%

7000 85.87%

8000 80.33%

9000 82.98%

10000 80.15%

Best 87.79%

for more details on mAP). In Table 5.5, the mAP values after each 1000 iterations and

the best mAP are presented. The model performs quite stable throughout the training

and it seems adequate to use the weights giving the best mAP for the final model.

5.3.3 Evaluation of Detection Model

Important parameters to measure when evaluating an object detector are accuracy and

speed. Average precision (AP) is a widely used metric for measuring the accuracy of object

detection models. It is based on the precision-recall curve (PR) for a given set of validation

data. The precision component is a measure of how accurate the predictions are, i.e.,

the percentage of correct predictions among all predictions. The recall component is a

measure of how good the positives are considered. To explain this further, it is necessary

to understand how a detection case is considered true or false in this context. We define

four distinct output instances, the statistical terms True Positive, True Negative, False

Positive, and False Negative, in Table 5.6.

Predicted Positive Predicted Negative

Real Positive True Positive (TP) False Negative (FN)

Real Negative False Positive (FP) True Negative (TN)

Table 5.6: Confusion matrix.

70

5.3. Object Detection Model

Intersection Over Union

The intersection over union (IOU) is what determines which of the four categories in

Table 5.6 a prediction will constitute. The training dataset should be labeled with ground-

truth bounding boxes, i.e., real object boundaries, on all objects of interest. Under training

and validation, the predicted bounding boxes are compared to the ground-truth bounding

boxes. IOU measures the overlap between these two boundaries and can be defined as

IOU(a, b) =
Ai
Au

, (5.1)

where Ai is the area of intersection, and Au is the area of union, as illustrated visually in

Figure 5.8.

Area of Intersection

Area of Union

IOU =

Figure 5.8: Definition of Intersection over Union (IoU).

An IOU threshold is often predefined to determine what category to classify the prediction

as. That is, if a prediction gets an IOU value above the defined threshold, it is TP, while

IOU below the threshold value indicates FP.

Precision and Recall

With Table 5.6 in mind, we can further define

p =
TP

TP + FP
=

TP

all detections
, (5.2)

r =
TP

TP + FN
=

TP

all ground truths
, (5.3)

where p denotes the precision and r denotes the recall. The precision-recall curve shows the

trade-off between precision and recall, and a typical example is illustrated in Figure 5.9a.

71

Chapter 5. Implementation

(a) Example of precision-recall curve, in-

cluding the interpolated precision over all

points.

(b) Interpolated precision areas.

Figure 5.9: Calculation of average precision by using area under precision-recall curve.

Image courtesy of Padilla (2019).

Average Precision

With the definitions of precision and recall, we can now find the Average Precision (AP).

The computation of AP can, according to the PASCAL VOC2012 documentation, be

accomplished by the Area Under Curve (AUC) method as follows:

1. Interpolate the precision-recall curve over all points, keeping the maximum precision

value at each level. The result of the example in Figure 5.9a is the red line.

2. Calculate the AP as the area under the interpolated precision curve. The obtained

areas for the example are shown in Figure 5.9b.

For the provided example in Figure 5.9a and Figure 5.9b, the average precision is

AP = A1 + A2 + A3 + A4. (5.4)

A high area under the curve represents both high precision and high recall, hence, we

aim for a high AP. It should be noted that the exact computation of AP can be done

differently for different datasets. Moreover, for a multi-class problem, the mean average

precision (mAP) is commonly used. That is, we compute the AP for each class and then

compute the mean value. For the sake of consistency, we will use the term mAP for both

single-class and multi-class cases in this report. Finally, it should be mentioned that the

notation mAP@0.50 is short for mAP calculated with an IOU threshold of 0.50.

72

5.4. Stereo 3D Reconstruction

5.3.4 Object Detection Pipeline

Raw video data

Annotated images

Training set

Augmented images

Validation set

Pretrained weights

Annotation tool

Train/val/test split

Augmentation tool

Training

Test

Model weights

Test set (Offline) IOU tracker

3D reconstruction

Sufficient mAP?

Model mAP

Model with best
val. mAP?

Validation mAPs

Yes

Model weights

Depth maps w/ detections

Fish fin tracks w/ depth

IOU threshold
 Objectness threshold
Track length threshold
Gap length threshold

Caudal fin detections

Restart training

No

YOLOv4 object
detection model

Operational video data

Swimming velocity
estimation

Random frame
extractor

Extracted image frames

Figure 5.10: Detection pipeline.

Figure 5.10 shows the object detection pipeline from raw video sequences to the combined

system.

5.4 Stereo 3D Reconstruction

OpenCV’s implementations of functionality for stereo 3D reconstruction were used to

calibrate the stereo cameras and to estimate disparity maps.

73

Chapter 5. Implementation

5.4.1 Camera Calibration

The camera pair was calibrated using OpenCV Python implementations for camera cali-

bration. To estimate the camera parameters, 3D points in real world space and 2D image

points must be obtained. This mapping can be acquired using multiple image pairs of a

known calibration pattern from different viewpoints, e.g., chessboard patterns as included

in the LAKSIT dataset. In total, 21 image pairs of calibration images of a 7× 4 checker-

board were used for this task. The dimension of the checkerboard squares was given, as

30.4 millimeters, or 0.0304 meters. First, two empty lists for each camera are created.

One is for storing object points, corresponding to 3D points in real world space. The

other is for storing image points, i.e., 2D points in the image plane. Then, for each of the

cameras, we go through all calibration images. The chessboard corners are detected by

using OpenCV functionality. Examples of chessboard detections are shown in Figure 5.11.

(a) Left image. (b) Right image.

(c) Left image. (d) Right image.

Figure 5.11: Chessboard detections in two calibration stereo pairs, (a) and (b), and (c)

and (d), respectively.

74

5.4. Stereo 3D Reconstruction

After detecting chessboard corners, the camera intrinsic and extrinsic parameters are

found by using the OpenCV function calibrateCamera() using the object points and

image points for each camera. This function computes the camera matrix, distortion

coefficients, and rotation vectors and translation vectors estimated for each pattern view.

The reprojection error was used as a measure to evaluate the camera calibration. The goal

was to achieve a reprojection error below 1.0 pixels, and as close to zero as possible. First,

the reprojection error for each image and the total reprojection error was computed. Then,

outliers (image pairs with high individual errors) were removed to decrease the total error.

After obtaining sufficient results from camera calibration in terms of a low reprojection

error, the calibration parameters were stored and used for each image pair in undistortion,

rectification and finally disparity estimation.

5.4.2 Undistortion and Rectification

Unlike the camera calibration, which is only carried out one time for the stereo setup,

the undistortion and rectification process must be executed for each stereo pair. The

OpenCV function undistort() takes the intrinsics and extrinsics from the calibration

stage, to undistort and rectify a stereo pair. An example of a rectified image pair after

this process is shown in Figure 5.12.

Figure 5.12: Example of rectified image pair.

5.4.3 Stereo Matching

OpenCV’s implementation of semi-global block matching was used for obtaining disparity

maps. In the following sections, some details about the choice of matching algorithm and

tuning of the algorithm are explained.

75

Chapter 5. Implementation

5.4.3.1 Selection of Stereo Matching Algorithm

As the brief overview in Table 4.1 shows, there are several approaches for stereo matching.

Dense disparity maps were desired to obtain depth estimates of entire surfaces. A local

method was preferred to reach a certain performance. Hence, block matching was chosen

for calculating disparity maps. OpenCV’s implementations of block matching (StereoBM)

and semi-global block matching (StereoSGBM) were tested on a selection of stereo pairs.

In general, the disparity maps obtained with simple block matching had less remaining

points after disparity filtering than disparity maps obtained with SGBM. Despite a higher

computational complexity, SGBM was considered as a good compromise between accuracy

and performance.

5.4.3.2 Tuning of Stereo Matching Parameters

The StereoSGBM algorithm takes a number of parameters that must be tuned for each

specific case or dataset. OpenCV’s documentation (OpenCV 2021) explains the details

of the different parameters. The parameters were tuned by OpenCV’s recommendations,

and the final values can be seen in Table 5.7.

Table 5.7: Tuning parameters for OpenCV StereoSGBM algorithm.

Parameter Value

minDisparity 16

numDisparities 96

blockSize 11

P1 8·number of image channels·blockSize·blockSize
P2 32·number of image channels·blockSize·blockSize
disp12MaxDiff -1

uniquenessRatio 5

speckleWindowSize 10

speckleRange 32

mode StereoSGBM::MODE HH

5.4.4 Disparity Post-Processing and Triangulation Pre-Processing

The raw disparity maps were post-processed by adding OpenCV implementation of weighted

least squares (WLS) filter, based on Min et al. (2014). Before the 3D positions are com-

puted to create pointclouds, the processed disparity maps were filtered by keeping only

disparities larger than the minimum disparity value. Without this filtering, there will be

76

5.4. Stereo 3D Reconstruction

a “wall” with all the points with the minimum disparity (i.e., invalid points, or points far

away) in the back of the pointcloud.

5.4.5 Triangulation and Pointclouds

To compute the 3D positions of the points of an image from the disparity map to obtain

pointclouds, the OpenCV function reprojectImageTo3D() was used. This function takes

the disparity map and the Q matrix, which is a 4× 4 perspective transformation matrix

(disparity-to-depth mapping matrix) that can be obtained with the OpenCV function

stereoRectify(). These functions are based on the derivations in section 4.4.

5.4.6 Depth Estimation Pipeline

Camera parameters

Rectified image pairs

Undistortion and
rectification

Stereo matching
(SGBM)

(Offline) IOU tracker

3D reconstruction

Sufficient disparity
maps?

Disparity maps

Yes

Disparity maps

Depth maps w/ detections

Fish fin tracks w/ depth

IOU threshold
 Objectness threshold
Track length threshold
Gap length threshold

Caudal fin detections

Raw stereo images
(right view)

No

YOLOv4 object
detection model

Operational video data

Swimming velocity
estimation

YOLOv4 weights

Camera calibrationCalibration images
(right view)

Calibration images (left view)

Raw stereo images
(right view)

Tuning parameters

Retune

Figure 5.13: Disparity estimation and 3D reconstruction pipeline.

Figure 5.13 shows the final pipeline of the depth estimation model, from raw stereo images

to the overall pipeline of object detection, image scene depth estimation, tracking, and

finally swimming velocity estimation.

77

Chapter 5. Implementation

5.5 Tracking Algorithm

Since this project mainly focuses on industrial applications, it was desired to investigate

an algorithm that could run online and with minimal computational complexity. Also,

simplicity of implementation and scalability was highly weighted for the same reasons as

for the detection model. An algorithm with prediction capabilities, like the Kalman filter,

would normally be preferred when aiming to track objects that are subject to occlusion

like in this case. This would however lead to another problem; it would be challenging

to develop a motion model since the fins’ relative motion to the camera varies due to

the different camera positions and rotations. In this case, simplicity was prioritized.

We attempted to improve the impact of occlusion and the performance of the detection

model by modifying the IOU tracking algorithm by Bochinski et al. (2017) described in

section 3.3.3 to allow “gaps” in the detection.

5.5.1 Modified IOU Tracking Algorithm

The original IOU tracking algorithm by Bochinski et al. assumes that there are none

or few gaps in the detections. The detection results had several object sequences with

gaps of one or more frames due to both occlusion and detection accuracy, hence the

proposed method had to be extended to handle such cases. This was solved by keeping

a temporary list with all active tracks with one or more frames that could not find a

new match in the current frame, and introduce a threshold tgap for the maximum gap

length acceptable, as a “buffer-and-recover” strategy (Luo et al. 2014). If the length

of the gap exceeded tgap, the track was concluded as finished. The resulting algorithm

is described in Algorithm 2. Since the algorithm was intended for online applications

and since it had no predictive capabilities and did not consider image information, we

added the previous certain bounding box to cover the gaps. If the algorithm was intended

for offline applications, we could utilize the next certain frame after the gap, and do an

interpolation over the gap to find suitable bounding boxes during where detection failed.

Df denotes detections in frame f , dj is the jth detection in Df , Ta are active tracks, Tf

are finished tracks, and Tt is a set of temporary tracks. All active tracks that do not

find a match in frame f will be removed from Ta and added to Tt, and will remain there

until a new match is found in a subsequent frame or until the gap is larger than the gap

threshold tgap.

78

5.5. Tracking Algorithm

Algorithm 2 IOU Tracker Bochinski et al. (2017)

Input:

D = {D0, D1, ..., DF−1} = {{d0, d1, ..., dN−1}, {d0, d1, ..., dN−1}, ...}
σIOU , σl, σh, tmin, tgap

1: Initialize:

Ta = ∅, Tf = ∅, Tt = ∅
D = {{di|di ∈ Dj, di ≥ σl}Dj ∈ D}

2: for Df in D:

3: for ti ∈ Ta:
4: dbest = dj where max(IOU(dj, ti)), dj ∈ Df

5: if IOU(dbest, ti) ≥ σIOU :

6: add dbest to ti

7: remove dbest from Df

8: else if max score(ti) ≥ σh:

9: add ti to Tt

10: add ti to Tf

11: for ti ∈ Tt:
12: dbest = dj where max(IOU(dj, ti)), dj ∈ Df

13: if IOU(dbest, ti) ≥ σIOU :

14: add dbest to ti

15: ta = tf where id(tf) = id(ti), tf ∈ Tf
16: ta = ta + ti

17: remove ta from Tf

18: remove dbest from Df

19: remove ti from Tt

20: else if gap length(ti) ≤ tgap:

21: add ti to Tt

22: for dj ∈ Dt:

23: start new track t with dj and insert to Ta

24: Tf = Tf + Ta

25: for tj ∈ Tf :
26: if max score(ti) ≥ σh and len(ti) ≥ tmin:

27: add tj to Tres

28: return Tres

The parameters can be tuned to fit the detection input. A small σIOU will give more

matches but increases the possibility of mismatches. If detections are not very accurate

or objects are very small, it might be desirable to keep this value small. Similarly for σh,

if this parameter is small the requirements for a “good enough” track are decreased. Since

79

Chapter 5. Implementation

σl decides how good a detection must be to included as a candidate for a track, a small

value could induce false positives to be included in tracks. tmin determines the minimum

length of a track, hence, a small value will give fewer, but better tracks, which especially

is desirable if detection results are good in the first place. However, a larger value may be

better if detection results are questionable. Lastly, tgap decides the maximum acceptable

length of gaps in the tracks. This means, if the value is small, we require detections in

almost every frame.

It must however be noticed that there is at least one pitfall here: if detection results

are highly inaccurate, changes in the parameters will not necessarily improve the tracking

results. This may for instance cause numerous tracks to be created based on false positives.

5.5.2 Evaluation of Tracking Algorithm

Evaluation of object tracking algorithms is definitely not trivial. How such an algorithm is

evaluated is obviously dependent on what aspects we want to assess. Speed can easily be

determined by, e.g., measuring frames per second (FPS). Further, metrics for evaluation

of detection-based MOT algorithms can be divided into four subsets, namely, accuracy,

precision, completeness, and robustness. Accuracy measures how accurately the algorithm

tracks the targets. Precision is, as described in the previous section, a measure of how

precisely the objects are tracked. Metrics for completeness indicate how completely ground

truth trajectories are tracked, and robustness assesses how capable the algorithm is to

recover from occlusion. For further aspects of MOT evaluation, Luo et al. (2014) provide

a review of MOT and MOT evaluation metrics.

The formal methods for evaluating these aspects are based on metrics such as the number

of true positives, amount of false positives, the overlap of bounding boxes, or deviation

from the ground-truth trajectory. All of these metrics require labeling of ground-truth

behavior. This requires extensive work beforehand and would go beyond the time limits

of this project as it would also require additional work to set up and implement a code

framework for the assessment. Hence, the tracking algorithm’s performance in this thesis

will be evaluated mainly by qualitative measures, i.e., it will be discussed based on manual

observations of its behavior on test video clips. However, some metrics will be provided

to compare the relative behavior of the algorithm with and without modification.

5.6 Swimming Velocity Estimation

This section describes how detection, depth estimation, and tracking are combined to

obtain 3D positions of caudal fins in a video sequence, and how velocity vectors are

80

5.6. Swimming Velocity Estimation

computed from these.

5.6.1 3D Position of Individual Caudal Fins

To obtain velocity vectors and absolute velocity of the caudal fins, their 3D position must

be determined for each detection. Each detection consists of a rectangular bounding box

surrounding the fin. This means, the entire area in the bounding box will not contain

fin surface, since the fin has a triangular shape. From investigating the detections, it is

likely that the middle inner area of each bounding box will cover only fin surface. Hence,

a small area in the center of the bounding box was used to determine the goodness of the

disparity estimation of the fin. The inner middle area was defined as shown in Figure 5.14,

i.e., with a width and height of 10% of the bounding box width and height, respectively.

A minimum size of 10 × 10 pixels was set to get a certain number of disparity points

to consider even for small bounding boxes. For each bounding box in each frame, the

following steps are performed:

1. Compute the width, height, and position of inner bounding box/area.

2. Compute the mean disparity value of the inner area.

3. Compute the variance σi of the disparities in the inner area.

4. Keep the disparity only if σl < σi < σh, else discard the disparity value.

The low threshold σl introduced to filter out areas of invalid disparity, like the left area of

the left view and the right area of the right view, i.e., areas not covered by both cameras’

field of view. The high threshold σh is introduced to filter out non-smooth surfaces. For

the final system, σl was set to 10−6 and σh to 10−1.

81

Chapter 5. Implementation

Inner area

Bounding box

Figure 5.14: Definition of the inner area of the bounding box, where the mean and variance

of the disparity is calculated.

Further, the mean disparity value of each bounding box is used to find the 3D position of

each caudal fin detection, together with the center point of the bounding box, according

to the equations in section 4.4. This serves as an estimate for the the individual fish’s

position in a certain image frame.

5.6.2 3D Velocity

When each bounding box center point in each frame is assigned a 3D position estimate,

the final step is to find the mean velocity of each fin track in the video sequence. First,

the velocity vector v = (vx, vy, vz) for each fin, i.e., each 3D point Pi, between every pair

of frames is calculated, as

vx =
Pi+n,x − Pi,x

n
, (5.5)

vy =
Pi+n,y − Pi,y

n
, (5.6)

vz =
Pi+n,z − Pi,z

n
, (5.7)

82

5.6. Swimming Velocity Estimation

where n is the number of frames between the consecutive valid detections/depth estimates.

Further, the absolute velocity |v| of a fish between two consecutive frames is calculated,

as

|v| =
√
v2x + v2y + v2z , (5.8)

which has the unit of millimeters per frame. Then, the mean velocity is calculated for

each track and converted to meters per second by using the number of frames per second

of the video sequence, representing the mean velocity of an individual fish.

5.6.3 Final Pipeline

(Offline) IOU tracker

3D reconstruction

Depth estimation w/ detections

Fish fin tracks w/ depth

IOU threshold
 Objectness threshold
Track length threshold
Gap length threshold

Caudal fin detections

YOLOv4 object
detection model

Operational stereo video data

Swimming velocity
estimation

YOLOv4 weights

Disparity maps

Figure 5.15: Final overall pipeline, including caudal fin detection, image scene depth

estimation, and tracking.

Figure 5.15 shows a flow diagram of the final pipeline. Operational stereo video data is

passed into the object detector for detection of fish tale fins. The results are, together

83

Chapter 5. Implementation

with disparity maps calculated from the same stereo images, passed into the depth esti-

mation part, which estimates the 3D position of each tale fin. Further, the detections and

the depth estimates are passed into the tracker, using IOU overlap to track the individual

caudal fins (corresponding to individual fish). From the tracks and depths, the swim-

ming velocity can be estimated by calculating the linear movement between 3D points in

consecutive frames. As indicated, the tracking algorithm was implemented to run offline

in this project, i.e., detection and 3D reconstruction is first run on all frames before the

results are passed into the tracking algorithm. Recall that the tracking algorithm works

by the concept of an online tracker; it only considers current frame and past frames. It

is implemented like so in this project as a proof-of-concept and for easing the debugging

process.

84

Chapter 6

Results

This chapter is divided into four parts. First, the performance results from the object

detection on a custom validation set are presented. Next, we introduce the results from

stereo matching and 3D reconstruction. The following section presents results from testing

the tracking algorithm on small video clips to provide semi-quantitative and qualitative

assessments of its performance and its limitations. The last section introduces the results

from the final pipeline estimating salmon swimming velocity.

6.1 Detection Model

After the final detection model was chosen based on performance on the validation data,

it remained to test performance on new, unseen data. First, a speed test was performed,

showing that the model was running up to 52.3 FPS, which is more that the frame rate

of the videos (24 FPS). Note that the speed is also dependent on the type of hardware

(GPU) used, but the result indicates that the model is able to perform in real-time on a

low-cost GPU (see section 5.2 for hardware details).

Then the model was tested on a set of unseen images. The test set consisted of 26 images,

retrieved from the same video sources as the training and validation data. The model

was first tested with different IOU thresholds (0.25, 0.50, and 0.75) at confidence 0.25,

and measures for AP, TP, FP, and FN are presented in Table 6.1. This was conducted

to assess how well the network performed in fitting good bounding boxes to the objects.

Finally, the model was tested with different confidence scores at fixed mAP@0.50. It was

expected that the model would struggle to detect caudal fins with high confidence because

of the limitations in the dataset, hence, it was desirable to assess this aspect. The results

are shown in Table 6.2. Recall section 5.3.3 for definitions of the metrics used.

85

Chapter 6. Results

Table 6.1: Accuracy results on test dataset with different IOU thresholds.

IOU threshold AP TP FP FN

0.25 88.23% 159 75 15

0.50 87.49% 158 76 16

0.75 49.93% 110 124 64

Table 6.2: Accuracy results on test dataset with different confidence thresholds.

Confidence threshold TP FP FN

0.10 161 102 13

0.30 157 71 17

0.50 154 56 20

0.70 147 38 27

0.90 127 17 47

Figure 6.1 shows four examples of detections on images from the test set. Figure 6.2 shows

four examples of issues with the detection model. Figure 6.3 shows how the YOLOv4

model detects caudal fins across scales.

86

6.1. Detection Model

(a) (b)

(c) (d)

Figure 6.1: YOLOv4 detections on images from test set.

87

Chapter 6. Results

(a) Multiple bounding boxes “clustered” in

lower middle part of image.

(b) Double bounding boxes.

(c) False positive bounding box in upper middle

part of image.

(d) False negative detections, i.e., some caudal

fins are not detected.

Figure 6.2: Problematic YOLOv4 detections on images from test set.

(a) (b)

Figure 6.3: YOLOv4 detections on images from test set, showing detections across scales.

88

6.2. Depth Estimation

6.2 Depth Estimation

6.2.1 Camera Calibration

The initial mean reprojection errors are shown in Figure 6.4. The total error was measured

to 0.2517 pixels. The four image pairs with the highest reprojection errors were removed,

improving the reprojection error to 0.2234 pixels (Figure 6.5).

Figure 6.4: Initial reprojection errors. Unit is pixels.

Figure 6.5: Improved reprojection errors. Unit is pixels.

89

Chapter 6. Results

6.2.2 Disparity Post-Processing

Figure 6.6 and Figure 6.7 show examples of input images and their respective disparity

maps before and after filtering with the WLS filter.

(a) Left input image. (b) Right input image.

(c) Raw left disparity map. (d) Filtered left disparity map.

Figure 6.6: Example of input images and resulting raw and filtered disparity maps. The

weighted least squares (WLS) filter is used.

90

6.2. Depth Estimation

(a) Left input image. (b) Right input image.

(c) Raw left disparity map. (d) Filtered left disparity map.

Figure 6.7: Example of input images and resulting raw and filtered disparity maps. The

weighted least squares (WLS) filter is used.

91

Chapter 6. Results

(a) (b)

Figure 6.8: Resulting pointcloud of a filtered disparity map, from two different views

angles. Notice the fish surface marked in red and how the smoothed edges of the surface

creates speckles/noise.

6.2.3 3D Reconstruction

Figure 6.9 shows measurements of checkerboard square size on pointclouds calculated

with the same parameters as for the stereo images. The ground truth square size is 30.4

mm.

92

6.2. Depth Estimation

(a) (b)

(c) (d)

Figure 6.9: Measurement of checkerboard square size in four different pointclouds. The

number behind “Distance” shows the measured distance of the red line. All units are

millimeters.

Measured square size [mm]

Ground truth 30.40

Figure 6.9a 29.32

Figure 6.9b 29.68

Figure 6.9c 31.48

Figure 6.9d 31.96

Table 6.3: Measured checkerboard square sizes in Figure 6.9.

Figure 6.10 shows two examples of resulting pointclouds after stereo matching and 3D

reconstruction.

93

Chapter 6. Results

(a) (b)

(c) (d)

Figure 6.10: Examples of 3D reconstruction from stereo image pairs. (a) and (b) are

original (left) images. (c) and (d) are the pointclouds after 3D reconstruction for images

(a) and (b), respectively.

6.3 Video Analysis of Tracking

As stated in section 5.5.2, the tracking algorithm will mainly be assessed in qualitative

manners. Nevertheless, some metrics are presented in Table 6.4 to provide some insight

into the quantitative performance of the tracking and to compare the algorithms with and

without the modification to handle gaps. They are obtained from two test videos, both

with a length of 3120 image frames. Note that they are not set in a larger context and

are not comparable to results of other tracking algorithms or on other data. The results

94

6.3. Video Analysis of Tracking

in Table 6.4 are obtained with the following values:

σIOU = 0.3

σh = 0.3

σl = 0.7

tmin = 10

tgap = 10

The value of tgap was set to just below half the number of frames per second (24) in the

test video since, by prior observation, most gaps could last for up to 0.5 seconds. Since

the detection results included several gaps and the camera position was not stable, small

σIOU and σh thresholds were chosen. σl was chosen as 0.7 as the detection results were

reasonably accurate.

Table 6.4: Quantitative results of tracking algorithms using detections from YOLOv4,

obtained from two test videos with a length of 3120 frames.

Video no. Metric Original With gap modification

Maximum track length 96 frames 128 frames

1 Average track length 21.8 frames 28.3 frames

Total tracks 544 397

Maximum track length 100 frames 108 frames

2 Average track length 17.9 frames 21.3 frames

Total tracks 111 238

In Figure 6.11 and Figure 6.12, two different considerations of the choice of IOU overlap

threshold are presented.

95

Chapter 6. Results

(a) Frame k. (b) Frame k + 1.

(c) Frame k + 2. (d) Frame k (a), k+1 (b), and k+2 (c) layered

over each other (zoomed in).

Figure 6.11: Results from object tracking; notice the bounding boxes of frame k + 1 and

k + 2. They are false positives, but get included in the track.

96

6.3. Video Analysis of Tracking

(a) Frame k. (b) Frame k + 1.

(c) Frames k (a) and k + 1 (b) layered over each other. Notice the bounding boxes marked 806

and 809, and their IOU overlap.

Figure 6.12: Results from object tracking; too small IOU overlap between consecutive

frames.

97

Chapter 6. Results

6.4 Swimming Velocity

This section presents the results from studying the final pipeline on the same test videos

as in section 6.3. Note also here that the results are not set in a larger context and

are meant to explore the possibilities of 3D tracking and velocity estimation of fish from

image/video data.

6.4.1 Detections and Disparities

(a) (b)

(c) (d)

Figure 6.13: Examples of good detections and disparity estimations.

98

6.4. Swimming Velocity

In figures Figure 6.13, Figure 6.14, and Figure 6.15, the text can be interpreted as follows:

• “avg”: The mathematical average (mean) disparity value of the inner area of the

bounding box, as defined in Figure 5.14. “None” means the variance was found too

high and the depth estimation of that detection is discarded.

• “var”: The variance of the disparity values of the inner area of the bounding box,

as defined in Figure 5.14.

Figure 6.13 shows four examples of good detections and disparity estimations. The bound-

ing boxes are tight around the caudal fins. Most of the caudal fins have a smooth disparity

surface, and there is a clear distinction between the fin and the background.

Figure 6.14 shows four examples of discarded depth estimations. Depth estimations are

discarded if the variation in the inner area is below a minimum threshold. Figure 6.14a

shows a depth estimation that looks sufficient, but is discarded because the entire caudal

fin has (close to) the maximum disparity, leaving the variation very small. Figure 6.14b

shows depth estimations for fin detections in the left area of the left image, outside the

right camera field of view. Since the disparity cannot be calculated in areas not captured

by both cameras, this area gets an invalid disparity and must be removed. Figure 6.14c

and Figure 6.14d show two depth estimates correctly discarded, as the real surfaces of the

fins are not estimated accurately.

99

Chapter 6. Results

(a) (b)

(c) (d)

Figure 6.14: Examples of disparity estimates discarded because of too small variance.

Figure 6.15 shows two examples of disparity estimates discarded because the variation in

the inner area is above a maximum threshold.

100

6.4. Swimming Velocity

(a) (b)

Figure 6.15: Examples of disparity estimates discarded because of too high variance.

6.4.2 3D Tracks

The final 3D tracks were plotted in 3D plots to study if they were reasonable with respect

to the actual movement of the fish observed in the test videos. In both test videos, fish

are mostly moving from the right to the left, parallel to the camera. Figure 6.12 shows

the typical movement of fish in the videos. Note that the caudal fins have an egomotion

mainly perpendicular to the motion of the entire fish, i.e., the fin moves back and forth

from and towards the camera.

101

Chapter 6. Results

X
0.2 0.0 0.2 0.4 0.6 0.8Y

0.20.00.20.40.60.8

Z

2.0

2.2

2.4

2.6

2.8

3.0

(a) The track seen from the XZ-plane.

X

0.2 0.0 0.2 0.4 0.6 0.8

Y

0.2

0.0

0.2

0.4

0.6

0.8

Z2.02.22.42.62.83.0

(b) The track seen from the XY-plane.

X

0.2
0.0

0.2
0.4

0.6
0.8

Y

0.2

0.0

0.2

0.4

0.6

0.8

Z

2.0

2.2

2.4

2.6

2.8

3.0

(c) The track seen from the XYZ-plane. Note the dimen-

sions of the axes, and that a larger Z value means larger

depth (from the camera).

Figure 6.16: The longest track (128 frames, 5.33 s) of video 1 plotted in 3D coordinates.

Figure 6.16, Figure 6.17, Figure 6.18, and Figure 6.19 show the 3D path of the longest

and second-longest tracks obtained in the two test videos, respectively. The green dot

indicates the start point of the track, and the red dot indicates the end point. I.e., from

the camera point of view, the fish are swimming from right to left. Unit is meters.

102

6.4. Swimming Velocity

X
0.0 0.2 0.4 0.6 0.8Y

0.60.40.20.00.2

Z

2.2

2.4

2.6

2.8

(a) The track seen from the XZ-plane.

X

0.0 0.2 0.4 0.6 0.8

Y

0.6

0.4

0.2

0.0

0.2

Z2.22.42.62.8

(b) The track seen from the XY-plane.

X

0.0
0.2

0.4
0.6

0.8

Y

0.6

0.4

0.2

0.0

0.2

Z

2.2

2.4

2.6

2.8

(c) The track seen from the XYZ-plane. Note the dimen-

sions of the axes, and that a larger Z value means larger

depth (from the camera).

Figure 6.17: The second longest track (108 frames, 4.50 s) of video 1 plotted in 3D

coordinates.

103

Chapter 6. Results

X
0.2 0.0 0.2 0.4 0.6 0.8Y

0.40.20.00.20.40.6

Z

2.0

2.2

2.4

2.6

2.8

3.0

(a) The track seen from the XZ-plane.

X

0.2 0.0 0.2 0.4 0.6 0.8

Y

0.4

0.2

0.0

0.2

0.4

0.6

Z2.02.22.42.62.83.0

(b) The track seen from the XY-plane.

X

0.2
0.0

0.2
0.4

0.6
0.8

Y

0.4

0.2

0.0

0.2

0.4

0.6

Z

2.0

2.2

2.4

2.6

2.8

3.0

(c) The track seen from the XYZ-plane. Note the dimen-

sions of the axes, and that a larger Z value means larger

depth (from the camera).

Figure 6.18: The longest track (108 frames, 4.50 s) of video 2 plotted in 3D coordinates.

104

6.4. Swimming Velocity

X
0.2 0.0 0.2 0.4 0.6 0.8Y

0.80.60.40.20.00.2

Z

2.0

2.2

2.4

2.6

2.8

3.0

(a) The track seen from the XZ-plane.

X

0.2 0.0 0.2 0.4 0.6 0.8

Y

0.8

0.6

0.4

0.2

0.0

0.2

Z2.02.22.42.62.83.0

(b) The track seen from the XY-plane.

X

0.2
0.0

0.2
0.4

0.6
0.8

Y

0.8

0.6

0.4

0.2

0.0

0.2

Z

2.0

2.2

2.4

2.6

2.8

3.0

(c) The track seen from the XYZ-plane. Note the dimen-

sions of the axes, and that a larger Z value means larger

depth (from the camera).

Figure 6.19: The second longest track (83 frames, 3.46 s) of video 2 plotted in 3D coor-

dinates.

105

Chapter 6. Results

6.4.3 Mean Velocity and Standard Deviation

Table 6.5 shows the mean velocity, velocity standard deviation, maximum velocity, and

minimum velocity calculated over all detected tracks in two test videos.

Table 6.5: Statistics for two test videos.

Video 1 Video 2

Mean velocity [ms−1] 0.5479 0.6561

Velocity standard deviation [ms−1] 0.3175 0.3149

Minimum velocity [ms−1] 0.0707 0.1662

Maximum velocity [ms−1] 2.1427 2.4141

106

Chapter 7

Discussion

The discussion is divided into five parts. We address issues regarding the dataset and

annotation, and analyse the results of each individual component in the system. Finally,

the overall pipeline estimating salmon swimming velocity is discussed.

7.1 Dataset and Annotation

7.1.1 Dataset

To reduce the challenges of detection model overfitting without annotating more images,

each data point was augmented, resulting in a larger and more variable dataset. Addi-

tionally, the (approximate) early stopping point was found as explained in section 2.1.2.3.

Nevertheless, since the validation and test data were retrieved from the same video sources

as the training data, one cannot be confident that the results are not affected by over-

fitting. Also, the small size of the validation set (only 26 image frames) could affect the

choice of the final model since this decision is based on validation mAP only. Hence, there

is a possibility that another model, in reality, performs better.

Another factor affecting the performance of the detection model is the varying appearance

of a caudal fin. Its rotation relative to the camera determines its perceived shape, which

can be interpreted as triangular (seen from the side), rectangular (seen from the front

or back), or something in between depending on which side is exposed. The lighting

conditions affect the color and exposure of the fins. This might be another reason for

obtaining false positives. Since multiple moving fish are present in the detection volume,

caudal fins are occasionally occluded, partially or totally. Partially occluded fins are more

difficult to detect as their features will deviate from non-occluded fins.

107

Chapter 7. Discussion

The underwater imagery used for the experiment was governed by typical issues like

reduced visibility, blur, low contrast, noise, and diminished color. This affected all parts

of the process, and each method had to be tuned to cope with this. Visibility was limited

because of light attenuation. This was a problem when training the detection model to

recognize caudal fins in specific as they had a variety of appearances. For the depth

estimation part, this lead to water incorrectly reconstructed as surfaces on one hand, and

actual objects not being fully reconstructed on the other. Motion blur and low contrast

reduced the detail level and thus affected the number of matched pixels.

The dataset was a part of the experimental pipeline and reflects natural challenges with

underwater imaging. However, the system developed must be trained, tuned and verified

on other datasets before it could be applied for practical purposes.

7.1.2 Annotation

Caudal fins were detectable in the area closest to the camera and the concentration of

fins resulted in a certain degree of overlap and shadow zones. As fish (and thus, the

caudal fins) get further away from the camera lens, they get smaller and more blurry, and

there can possibly be a number of fins in an image frame without them being possible to

distinguish from other objects. Also, at its smallest size, a caudal fin can appear to be

only a few pixels in size. Labeling too small instances can increase the likelihood of the

detector finding other, similar patterns in the image that are not caudal fins, especially in

noisy images like in this case. Mistakenly labeled non-fins and non-labeled actual fins can

possibly explain why the results were affected by such a large number of false positives and

false negatives. The size of the fins was also challenging in terms of creating consistent

and well-fitted bounding boxes. A deviation in the margin of the bounding boxes of only

a few pixels will have a higher impact on small objects as the relative deviation will be

much larger. In addition, fins appearing at multiple distances from the camera makes the

annotation task more complex in terms of achieving well-fitted and consistent bounding

boxes at all scales. Typically, the bounding box margin of small objects will turn out

larger than for large objects.

7.2 Performance of Detection Model

The YOLOv4 detection model was running up to 52.3 FPS, which is more than the video

speed (24 FPS) and more than sufficient for real-time performance. We must however take

the hardware into consideration. The test was run on the GPU described in section 5.2,

which is not state-of-the-art but can perform much faster computations than a CPU.

108

7.3. Stereo Matching and 3D Reconstruction

When looking at performance at different IOU thresholds the AP of YOLOv4 remains

stable up to and around a threshold of 0.50. It is expected that AP will decrease as the

threshold increase, but in this case, we see a drastic drop in the performance between 0.50

and 0.75 IOU. This might be a result of inadequately fitted bounding boxes, as described

in section 7.1, causing the model to learn inconsistently. The model is not obtaining more

FP and FN at IOU 0.25 than at 0.50. This indicates that most IOU scores are between

0.50 and 0.75.

When increasing the confidence score threshold keeping a fixed IOU threshold, the amount

of detections (TP+FP) clearly declines, as expected. The drop in detections with in-

creased confidence suggests that confidence scores are distributed on all confidence scores.

Further, we see that the number of false detections is not far from the number of true

detections at confidence threshold 0.10, meaning we obtain a too high object count. The

number of FN is however relatively small at this threshold, so the model is able to detect

most actual fins.

In Figure 6.3 we see that the model shows good detections across scales, but it would be

advantageous to do further tests on where the visibility limit for annotating a fin should

be. In the upper right part of Figure 6.2 a fin far away is detected with confidence 76%,

while other fins at the same distance are not detected. This is a typical problem showing

that one should be consistent in the annotations.

7.3 Stereo Matching and 3D Reconstruction

7.3.1 Camera Calibration

The initial total reprojection error was measured to 0.2517 pixels, which, isolated, is

satisfactory. However, as shown in Figure 6.4, there was one significant outlier: image

number eight from the right camera. This image pair and the three other image pairs

with the highest reprojection errors were removed. The mean reprojection error after

removal was 0.2234 pixels, as shown in Figure 6.5, which can be considered as highly

satisfactory. The low reprojection error is probably a result of properly mounted cameras

not moving significantly relative to each other, correct timing of imaging, and identical

camera settings in the two cameras.

7.3.2 Stereo Matching Algorithm

The semi-global block matching algorithm performed reasonably well given the challenges

of the underwater dataset. The algorithm achieves dense disparity maps and provides a

109

Chapter 7. Discussion

trade-off between performance and efficiency suitable for many practical cases. However,

the depth estimation part was the greatest challenge of the entire system. It would be

desirable to achieve depth estimations of larger areas of the images. Even though enough

surfaces were properly matched for this proof-of-concept, a system for practical purposes

would need more reliable results. A larger amount of successful depth estimations would

give more datapoints to rely on, and thus contribute to more accurate swimming velocity

estimates.

7.3.3 Disparity Post-Processing

The raw disparity maps were cleary affected by speckles (regions with large variance be-

tween disparities), seen as “holes” in the disparity maps in Figure 6.6c and Figure 6.7c.

To a certain extent, the speckles were decreased by adjustment of the speckleWindowSize

and speckleRange parameters of the stereo matching algorithm. By filtering the dispar-

ity maps the speckles were nearly eliminated, and the disparities turned out smoother.

However, this introduced a new problem. As seen in Figure 6.6d and Figure 6.7d, not

only the surfaces are smoother, but also the edges of the fish. E.g., this is prominent on

the caudal fin of the middle fish in Figure 6.7. Figure 6.8 shows how the smooth edges

appear as noise in the pointclouds. Additional filtering could might reduce this noise and

make edges sharper. However, this noise was not considerable issue for this application,

as we only look at a small area in the middle of the caudal fin surface determined by the

detection bounding box. Naturally, this requires the assumption that the bounding boxes

are reasonably accurate.

7.3.4 3D Reconstruction

Constructing pointclouds from the calculated disparity maps is a good way to validate

the stereo matching. The calibration images of checkerboards were reconstructed in order

to measure the square size of the checkerboard squares. Even though the checkerboard

pointclouds are rarely reconstructed in full due to their non-structured and homogeneous

surfaces, the corners are distinctive and the distance between them should correspond to

the real square size. Table 6.3 shows the measured distances of some selected examples of

checkerboard square sizes shown in Figure 6.9. They deviate from the ground truth in the

order of 1-2 millimeters. As the square sizes were measured “by hand”, a measurement

error is introduced. As the squares were not fully reconstructed in the sense that there

was a gradual transition between white and black squares, the results are approximate.

However, they show that the distances of the 3D reconstruction are reasonable.

The 3D reconstructions directly reflect the goodness of the disparity estimations, but when

110

7.4. Tracking Algorithm

3D points are obtained the results can be associated to the real world. Measurements

from the pointclouds showed reasonable salmon lengths. These are however difficult to

validate as the ground truth and the age (and thus, the expected size) of the fish are

unknown, meaning the measurements of the checkerboard squares are more dependable.

Salmon body surfaces with a valid disparity/depth were mostly complete and uniform, as

seen in Figure 6.10. The same figure also shows that only a small amount of the fish in an

image actually achieve an entire surface of valid disparity values. Especially for fish close

to the camera (meaning small depth). We attempted to solve this problem by tuning

the disparity thresholds in the StereoSGBM algorithm (by increasing the numDisparities

parameter), but this resulted in more noisy disparity maps and pointclouds. Also, the

other previously smooth surfaces were exacerbated and the disparity maps were affected

by holes (invalid disparities). It must be emphasized that the goal of the 3D reconstruction

was never to achieve depth estimates of all fish in an image or a video sequence. Because

of the nature of the underwater images, this was not realistic. The main priority was to

achieve some satisfactory depth estimates that could serve as a part of the final pipeline.

In that context, results as in Figure 6.10 were satisfactory.

7.4 Tracking Algorithm

The tracking algorithm was implemented to investigate if it was possible to use detection-

based tracking on the results from the detection model, and if adequate results could

be obtained to identify a salmon over several frames. A sufficient tracking result was

to be used for estimating the salmon swimming velocity. As argued in section 5.5 the

IOU tracking algorithm was chosen as a starting point because it was by far the simplest

algorithm, and it required no image or motion information. Although the results are

difficult to assess quantitatively as no formal method is used, there are several aspects to

discuss.

7.4.1 Comparison of Algorithms

From here on, we will denote the original tracking algorithm as aorig and the modified

algorithm that allows gaps as amod. In the (informal) tests, amod performed better in

terms of the lengths of the tracks. The maximum track length increased in both tests.

The results are substantiated by the average track length which was larger with the

modification in both tests. With gaps allowed, the number of tracks was also reduced.

These results are probably obtained because tracks that were split due to gaps in aorig

were now merged. Hence, the modification indeed provided an improvement in the test

cases.

111

Chapter 7. Discussion

7.4.2 Implementation and Tuning

The implementation and tuning of the tracking algorithm also need some comments. Since

the first bounding box after a gap must overlap with the previous certain bounding box

to recover the track, the possibility of a match will in general decrease for every frame

of the gap. The confidence threshold σl was set to a medium/high value to decrease the

number of false tracks, but a natural consequence is that actual detections (with small

confidence) will be excluded and possibly split tracks. This is a trade-off that must be

considered for each specific application if detection results are not flawless.

In Figure 6.11, two false positive bounding boxes create a false track, since they fulfill

the IOU overlap minimum requirement. This could be avoided by choosing a higher

confidence threshold and/or a higher IOU overlap threshold. Figure 6.12 shows how the

original track with ID 806 is split due to overlap below the threshold, whereas the track

reappears in the next frame with a new ID. A lower IOU overlap threshold would reduce

this problem.

7.4.3 Influencing Factors

The results from tracking were highly impacted by the detection results and by the camera

movements. Since the IOU tracking algorithm is highly dependent on the object location

to be stable to get an IOU match, the maximum length of a track is directly limited by

the time the camera is able to retain its position and orientation. In the short test video

analysis, the amod algorithm was able to track sequences of about 3.8 to 5 seconds. This

corresponds to the maximum time fish are present in the camera FoV, if we consider fish

in the area where depth estimations were most reliable (i.e., in the “middle” of the camera

FoV). This indicates that there is promise in using this simple tracking algorithm to gain

insight about the behavior of the salmon, e.g., to find an average velocity vector over all

tracks in an image sequence.

A benefit of the IOU tracking algorithm is that it requires no prior knowledge about image

semantics or object motion. In our case this also introduces a considerable drawback.

Since the IOU tracker is not able to predict or recognize non-detected positions of the

caudal fins in case of gap or occlusion, tracks will be terminated if the next bounding

box after gap/occlusion does not overlap with the previous one. On the other hand, it

would be challenging to use an algorithm that requires a motion model, since the sensor

setups vary and the fish behave differently from a camera point of view depending on what

relative angle their motion has to the camera lens. Also, the movement of the camera

during video recordings would be challenging to capture in a motion model.

112

7.5. Swimming Velocity Estimation

7.5 Swimming Velocity Estimation

7.5.1 Detections and Disparities

As discussed in section 7.3, the depth estimations were of variable quality. This was the

motivation behind filtering the depth estimations based on the variance of the disparity

values. Figure 6.13 shows the combination of detections and depth estimations that are

desirable, namely, tight bounding boxes and distinct and smooth disparities on the caudal

fins. The lower variance threshold was introduced to filter out caudal fin detections with

invalid disparities, e.g., detections outside the valid area as in Figure 6.14b, and incorrect

disparity estimations as in Figure 6.14c and Figure 6.14d. Cases like Figure 6.14b were also

discarded because of the low threshold. The disparity values are close to the maximum

disparity over the entire fin. This might be a good detection, and one could argue that

it should be included. This is a trade off encountered when determining the threshold

value. However, looking closer at the magnitudes of the variances in Figure 6.14a and

Figure 6.14d, an attempt to adjust the threshold to include the former would also include

the latter. The high threshold was introduced to filter out non-smooth surfaces, like

shown in Figure 6.15. As for the low threshold it is difficult to find the perfect value,

filtering out all insufficient depth estimations and keeping all sufficient estimations. The

final threshold values were found to be satisfactory for the test videos, but might need

adjustments for other datasets or videos.

The size of the inner area used to determine the mean and the variance of the disparity

values also needs some comments. Figure 5.14 shows the real ratio between the size of

the bounding box and the inner area. There could exist cases where this exact part of

the surface is smooth, but the disparity estimation in reality (and outside the inner area)

is faulty. There could also exist false positive caudal fin detections where the disparity

estimation inside the inner area is incidentally smooth (could be another type of object or

just an incorrect disparity estimation). Increasing the inner area would likely reduce these

problems. However, an increased area also increases the risk of including a larger area

than the actual fin, including the “background” in the mean and variance calculations.

This could exclude good fin surface estimates. In other words, we encounter an additional

trade off choosing a good size for the inner area.

7.5.2 3D Tracks

Since we chose the caudal fin as an identifier and tracking object, their egomotion affected

the depth estimates and thus the 3D position estimates. Overall, the 3D plots of the

tracks corresponded to observations of the tracks in the original videos. Video 1 was

113

Chapter 7. Discussion

more influenced by the camera egomotion. From the observations, the distinct jumps

in Figure 6.16b and Figure 6.17b seem to be mainly caused by large movements of the

camera. Another factor is that the fish position relative to the camera in this video is such

that the caudal fin egomotion also contributes to noticeable motion in the vertical and

horizontal directions. The former directly influences the vertical positions of the tracks.

The latter affects the vertical direction indirectly because the fin changes shape from the

camera point of view, meaning the bounding boxes vary in size and thus the middle point

used as tracking point moves relative to the real fin. In the second video, the egomotion of

the camera is less significant. This corresponds to Figure 6.18b and Figure 6.19b, where

the positions are more stable in the vertical direction. The depth calculations seen in

Figure 6.16a, Figure 6.17a, Figure 6.18a, and Figure 6.19a suggest that the system tends

to get the best (i.e., longest) tracks from fish not too far and not too close to the camera.

By tracking the fin motion, we wanted to assess whether the system could also be sufficient

for more detailed analyses of the caudal fin egomotion. Studies of the depth of the tracks

indicate that the system (including the dataset) might not be sensitive and accurate

enough to capture this.

7.5.3 Mean Velocity and Standard Deviation

Measurements of mean velocity over all tracks in the test videos are shown in Table 6.5.

According to Berge (2016), farmed salmon swim with a velocity of 0.7 bodylengths s−1

at daytime. Assuming a grown salmon length of around 0.8 m, the average swimming

velocity should be around 0.56 ms−1. This is a very rough approximation, but indicates

that the measured mean velocities are within a reasonable range. The measured standard

deviations show large variations in the mean velocities of the individual tracks. This is

expected, as each individual method combined into the total pipeline introduce errors that

affect the final velocity estimation. The maximum and minimum velocities substantiate

this as they deviate extensively from the mean value. By reducing the error in each

individual component, the total error could also be reduced.

7.5.4 Pipeline Implementation

The pipeline was implemented as an offline solution. The individual components are all

able to run in real-time, but effort was not put in implementing an online pipeline because

the work was conducted as a proof-of-concept. It is yet to be investigated whether the

combined system can run in real-time. As a part of a larger system monitoring fish

welfare, this can be an important factor. Performance of computer hardware and software

is constantly improving, making the forecasts optimistic to be able to implement a real-

114

7.5. Swimming Velocity Estimation

time system for estimating fish swimming velocity with the methods proposed in this

thesis. Another comment is that the implementation is somewhat aggravating, requiring

some manual actions in between the different components. With small changes the system

will run as an automatic pipeline.

115

Chapter 7. Discussion

116

Chapter 8

Conclusions and Further Work

8.1 Conclusions

An experimental pipeline has been established from well-known computer-vision and deep-

learning based methods for estimating farmed salmon swimming velocity and verified us-

ing industrial sea cage video. The work has involved studying fish welfare indicators,

examining and implementing vision-based methods, and developing a system for esti-

mation of salmon swimming velocity. Examinations of welfare indicators, the nature of

the dataset, and considerations of relevant methods indicated that swimming velocity

would be feasible to estimate by vision-based techniques. The results from image scene

depth estimation and considerations regarding object detection and tracking indicated

that tracking of fish caudal fins would be more feasible than tracking entire fish or other

parts of the fish. The YOLOv4 detection model was used to detect caudal fins, semi-global

block matching was used for 3D reconstruction, and a simple IOU tracking algorithm was

applied to finally provide an experimental pipeline for estimation of swimming velocity.

The work presented serves as a contribution to solve the challenges of fish welfare in

industrial fish farms by vision-based techniques. This was obtained by investigating how

well-known methods could be tuned, combined and applied for this purpose. The results

can provide useful insights to the limitations regarding today’s data quality, sensors,

and methods for object detection, 3D reconstruction, and object tracking, and provide

suggestions to how these aspects can be improved on the path towards a more sustainable

and autonomous fish farming industry.

The issues of underwater imagery affected all parts of the process, and each method

had to be tuned to cope with this. Welfare indicators like skin patterns and gill rate

were discarded directly because of reduced visibility and lack of details in the imagery.

Swimming velocity, however, did not require specific details, just an object or point of

117

Chapter 8. Conclusions and Further Work

interest to track, located on the fish. Object detection was affected by the visibility

decreasing with the distance from the camera, meaning at a certain point it is hard to

distinguish caudal fins from other objects or the background. In low visibility conditions

the annotation of the fins could not be performed due to missing definition of the imagery,

which affected the performance of the object detector that was trained and tested on these

annotations. Also for the depth estimation/3D reconstruction part, the same challenges

were prominent. Not all fish were properly reconstructed and parts of the water was

reconstructed incorrectly as surfaces. The former is typically a result of motion blur and

the latter a result of turbidity in the water and attenuation.

Considering the trade-off between speed and accuracy, the performance results of the

object detector showed that the speed was sufficient for real-time detection. Obtaining

a mAP@0.50 of 87.79%, we show that it is possible to detect salmon caudal fins by

applying off-the-shelf deep learning methods with minimal customization on industrial

sea cage imagery.

The largest issues concerning depth estimation appeared to be non-fully reconstructed

surfaces. The application of the WLS filter as a post-processing step for the raw disparity

maps showed an improvement, and the extra noise of smoothed edges added by the filter

was not a large concern for this application as we only use the surface of an inner area of the

caudal fins. The missing fish surface reconstructions are mainly a consequence of the image

quality. This was not crucial for a proof-of-concept, but for practical applications one

might consider using higher-resolution cameras, different lighting sources, and additional

measures to decrease the effect of attenuation and other issues caused by the nature of

underwater imaging.

Camera movements and detection results are the main issues regarding tracking of the

fins. The camera egomotion prevented consistency in the tracks, and gaps in the detection

results induced problems with relating bounding boxes to each other in subsequent frames.

From assessing the results from the tracking, the IOU tracking algorithm by itself performs

sufficiently for practical purposes. Additionally, we can see a slight improvement when

implementing a modification to allow gaps in detections between frames.

The performance of the final pipeline was directly affected by the performance in the

individual methods. Filtering out insufficient disparity estimations worked as expected,

and most erroneous disparities were discarded while keeping the majority of sufficient dis-

parities. Comparison of plotted 3D tracks and observations of the original videos showed

that the obtained tracks corresponded with the real motion of the fish relative to the

camera. The egomotion of the caudal fin in the depth direction did not appear to affect

the tracks directly, only indirectly by varying sizes of the bounding boxes in consecutive

frames. This also means that the system with the current stereo matching technique will

not be suitable for detailed analyses of caudal fin egomotion. The mean velocities com-

118

8.2. Further Work

puted from the test videos are reasonable compared to the numbers one would expect for

salmon swimming in sea cages at daytime. The standard deviations are of considerable

size, which is expected considering the contributions of errors in the individual compo-

nents. Since the fish in a school would be expected to have a uniform swimming velocity,

this suggests the estimate is suitable for considering the overall swimming velocity at a

certain time, but for detailed analyses it would be advantageous to reduce the standard

deviation.

Keeping in mind that this study was carried out as a proof-of-concept to investigate

the possibility of applying object detection and tracking to underwater image data and

with limited resources, we have gained important insight about the limitations of under-

water imaging with current sensors, which methods can be used for analyzing them, and

found promise in experiments estimating swimming velocity with well-known vision-based

methods. We have thus fulfilled the purpose. Object detection tests showed that sufficient

results could be obtained for industrial purposes. We have witnessed that tracking of cau-

dal fins in the current circumstances is feasible and can be achieved by applying simple

methods, but also that depth estimation is challenging in underwater imagery. Computer

vision and deep learning methods show promise for monitoring farmed salmon welfare,

but they are directly limited by image quality and precision of camera calibration.

8.2 Further Work

The thesis covers a broad spectre of research fields, including fish welfare, underwater

imaging, object detection and tracking, and stereo vision. As expected, several challenges

have appeared through the work of analyzing underwater images. In the following we

present some suggestions and recommendations for further work.

• Improve the depth estimation, which is the bottle neck of the system. One could

improve the method suggested in this thesis by, e.g., adjusting the parameters or

adding additional filters for post-processing. The recent advancements in deep-

learning based methods for disparity estimation could also be explored.

• Adjust the pipeline to study the egomotion and frequency of the caudal fins. This

will require improvements in the depth estimations as the current estimations are

not significantly affected by fin egomotion.

• Investigate how camera egomotion can be modeled or detected to achieve swimming

velocity estimations independent of camera motion.

• Consider tracking other parts of the fish, e.g., the eye or the entire fish. From

the results in this proof-of-concept this was not feasible, but with better depth

estimation this might give more accurate results as the eye is a smaller object and

only moves with the fish’s total movement.

119

Chapter 8. Conclusions and Further Work

• The tracking part may be improved by replacing the IOU tracking algorithm with

a more sophisticated algorithm considering image information. Optical flow could

be a feasible method.

120

Bibliography

Ahmed, M., Boudhir, A., Santos, D., Aroussi, M. & Karas, İ. (2020), Innovations in Smart

Cities Applications Edition 3: The Proceedings of the 4th International Conference on

Smart City Applications, Lecture Notes in Intelligent Transportation and Infrastructure,

Springer International Publishing.

Berge, A. (2016), ‘Laks kan svømme fra lakselus’. Available from: https://ilaks.no/

laks-kan-svomme-fra-lakselus/. (Accessed: 2021-06-02).

Bochinski, E., Eiselein, V. & Sikora, T. (2017), High-Speed Tracking-by-Detection With-

out Using Image Information. doi: 10.1109/AVSS.2017.8078516.

Bochkovskiy, A. (2020a), ‘AlexeyAB/darknet: YOLOv4 pre-release’. doi: 10.5281/zen-

odo.3829035.

Bochkovskiy, A. (2020b), ‘How to use angle=... in YOLO .cfg files’. [GitHub issue].

Available from: https://github.com/AlexeyAB/darknet/issues/4626. (Accessed: 2020-12-

01).

Bochkovskiy, A., Wang, C.-Y. & Liao, H.-Y. (2020), ‘YOLOv4: Optimal Speed and

Accuracy of Object Detection’, ArXiv abs/2004.10934. Available from: https://arxiv.

org/pdf/2004.10934.pdf. (Accessed: 2020-09-20).

Brown, M., Burschka, D. & Hager, G. (2003), ‘Advances in Computational Stereo’, Pat-

tern Analysis and Machine Intelligence, IEEE Transactions on 25, 993– 1008. doi:

10.1109/TPAMI.2003.1217603.

Brownlee, J. (2019), ‘A Gentle Introduction to Pooling Layers for Convolu-

tional Neural Networks’. Available from: https://machinelearningmastery.com/

pooling-layers-for-convolutional-neural-networks/. (Accessed: 2020-11-14).

Chen, T., Kornblith, S., Norouzi, M. & Hinton, G. E. (2020), ‘A Simple Framework for

Contrastive Learning of Visual Representations’, CoRR abs/2002.05709.

CNN Edge detection (2018). Available from: http://datahacker.rs/edge-detection/. (Ac-

cessed: 2020-11-13).

121

https://ilaks.no/laks-kan-svomme-fra-lakselus/
https://ilaks.no/laks-kan-svomme-fra-lakselus/
https://github.com/AlexeyAB/darknet/issues/4626
https://arxiv.org/pdf/2004.10934.pdf
https://arxiv.org/pdf/2004.10934.pdf
https://machinelearningmastery.com/pooling-layers-for-convolutional-neural-networks/
https://machinelearningmastery.com/pooling-layers-for-convolutional-neural-networks/
http://datahacker.rs/edge-detection/

Bibliography

Cutting, J. (2000), ‘Images, Imagination, and Movement: Pictorial Representations

and Their Development in the Work of James Gibson’, Perception 29, 635–48. doi:

10.1068/p2976.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K. & Fei-Fei, L. (2009), ImageNet: A

Large-Scale Hierarchical Image Database, in ‘CVPR09’.

Dollár, P., Lin, T., Girshick, R. B., He, K., Hariharan, B. & Belongie, S. J. (2017), ‘Feature

Pyramid Networks for Object Detection’, 2017 IEEE Conference on Computer Vision

and Pattern Recognition (CVPR) pp. 936–944. doi: 10.1109/CVPR.2017.106.

Ernst & Young (2019), ‘The Norwegian Aquaculture Analysis 2019’.

Everingham, M., Eslami, S., Van Gool, L., Williams, C., Winn, J. & Zisserman, A. (2014),

‘The Pascal Visual Object Classes Challenge: A Retrospective’, International Journal

of Computer Vision 111. doi: 10.1007/s11263-014-0733-5.

Fukushima, K. (1980), ‘Neocognitron: A Self-organizing Neural Network Model for a

Mechanism of Pattern Recognition Unaffected by Shift in Position’, Biological Cyber-

netics 36, 193–202.

Fulton, M., Hong, J., Islam, M. J. & Sattar, J. (2018), ‘Robotic Detection of Marine

Litter Using Deep Visual Detection Models’, CoRR abs/1804.01079.

Funk, C., Bryant, S. B. & Heckman, P. (1972), Handbook of Underwater Imaging System

Design.

Gençay, R. & Qi, M. (2001), ‘Pricing and hedging derivative securities with neural

networks: Bayesian regularization, early stopping, and bagging’, Neural Networks,

IEEE Transactions on Neural Networks and Learning Systems 12, 726–734. doi:

10.1109/72.935086.

Girshick, R. B. (2015), ‘Fast R-CNN’, CoRR abs/1504.08083.

Girshick, R. B., Donahue, J., Darrell, T. & Malik, J. (2013), ‘Rich feature hierarchies for

accurate object detection and semantic segmentation’, CoRR abs/1311.2524.

Gismervik, K., Tørud, B., Kristiansen, T. S., Osmundsen, T., Størkersen, K. V., Medaas,

C., Lien, M. E. & Stien, L. H. (2020), ‘Comparison of Norwegian health and wel-

fare regulatory frameworks in salmon and chicken production’, Reviews in Aquaculture

12(4), 2396–2410. doi: 10.1111/raq.12440.

Goodfellow, I., Bengio, Y. & Courville, A. (2016), Deep Learning, MIT Press. Url: http:

//www.deeplearningbook.org.

122

http://www.deeplearningbook.org
http://www.deeplearningbook.org

Bibliography

Goyal, P., Lin, T., Girshick, R. B., He, K. & Dollár, P. (2017), ‘Focal Loss for Dense

Object Detection’, CoRR abs/1708.02002.

Hämäläinen, T., Pimentel, A., Takala, J. & Vassiliadis, S. (2005), Embedded Computer

Systems: Architectures, Modeling, and Simulation, Lecture Notes in Computer Science,

Springer Berlin Heidelberg.

Han, F., Yao, J., Zhu, H. & Wang, C. (2020), ‘Marine Organism Detection and Classifica-

tion from Underwater Vision Based on the Deep CNN Method’, Mathematical Problems

in Engineering 2020, 1–11.

Hartley, R. & Zisserman, A. (2003), Multiple View Geometry in Computer Vision, Cam-

bridge books online, Cambridge University Press.

Haykin, S. (1998), Neural Networks: A Comprehensive Foundation, 2nd edn, Prentice

Hall PTR, USA.

He, K., Gkioxari, G., Dollár, P. & Girshick, R. B. (2017), ‘Mask R-CNN’, CoRR

abs/1703.06870.

Hirschmuller, H. (2008), ‘Stereo Processing by Semiglobal Matching and Mutual Informa-

tion’, IEEE Transactions on Pattern Analysis and Machine Intelligence 30(2), 328–341.

doi: 10.1109/TPAMI.2007.1166.

Huang, G., Liu, Z. & Weinberger, K. Q. (2017), ‘Densely Connected Convolutional Net-

works’, Proceedings of the IEEE Conference on Computer Vision and Pattern Recogni-

tion . doi: 10.1109/CVPR.2017.243.

Hubel, D. H. & Wiesel, T. N. (1959), ‘Receptive fields of single neurones in the cat’s

striate cortex’, The Journal of physiology 148, 574–591.

Krizhevsky, A., Sutskever, I. & Hinton, G. E. (2017), ImageNet classification with deep

convolutional neural networks, in ‘CACM’.

Kurimo, E., Kunttu, L., Nikkanen, J., Grén, J., Kunttu, I. & Laaksonen, J. (2009),

The Effect of Motion Blur and Signal Noise on Image Quality in Low Light Imaging,

pp. 81–90. doi: 10.1007/978-3-642-02230-29.

Lawrence, S. & Giles, C. (2000), Overfitting and neural networks: Conjugate gradient and

backpropagation, Vol. 1, pp. 114–119. doi: 10.1109/IJCNN.2000.857823.

LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W. & Jackel,

L. D. (1989), ‘Backpropagation Applied to Handwritten Zip Code Recognition’, Neural

Computation 1(4), 541–551. doi: 10.1162/neco.1989.1.4.541.

123

Bibliography

Lecun, Y., Bottou, L., Bengio, Y. & Haffner, P. (1998), ‘Gradient-based learning ap-

plied to document recognition’, Proceedings of the IEEE 86(11), 2278–2324. doi:

10.1109/5.726791.

Li, X., Liu, S., Gao, M., Cai, Y., Nian, R., Li, P., Yan, T. & Lendasse, A. (2018), ‘Embedded

Online Fish Detection and Tracking System via YOLOv3 and Parallel Correlation Filter’.

doi: 10.1109/OCEANS.2018.8604658.

Lien, A. M., Schellewald, C., Stahl, A., Frank, K., Skøien, K. R. & Tjølsen, J. I. (2019),

‘Determining spatial feed distribution in sea cage aquaculture using an aerial camera

platform’, Aquacultural Engineering 87, 102018. doi: 10.1016/j.aquaeng.2019.102018.

Lin, T., Maire, M., Belongie, S. J., Bourdev, L. D., Girshick, R. B., Hays, J., Perona, P.,

Ramanan, D., Dollár, P. & Zitnick, C. L. (2014), ‘Microsoft COCO: Common Objects in

Context’, CoRR abs/1405.0312.

Liu, S., Qi, L., Qin, H., Shi, J. & Jia, J. (2018), ‘Path Aggregation Network for Instance

Segmentation’, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition

pp. 8759–8768. doi: 10.1109/CVPR.2018.00913.

Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S. E., Fu, C. & Berg, A. C. (2015),

‘SSD: Single Shot MultiBox Detector’, CoRR abs/1512.02325.

Liu, Y. & Aggarwal, J. (2005), Local and Global Stereo Methods, pp. 297–308. doi:

10.1016/B978-012119792-6/50081-4.

Lodi Rizzini, D., Kallasi, F., Oleari, F. & Caselli, S. (2015), ‘Investigation of Vision-based

Underwater Object Detection with Multiple Datasets’, International Journal of Advanced

Robotic Systems 12, 1–13. doi: 10.5772/60526.

Ludvigsen, M., Hewage, T. D. M., Klingan, K., Holven, E. B., Sture, & Mo-Bjørklund, T.

(2020), Lecture Notes TMR4120 Underwater Engineering, 1 edn, NTNU - Department of

Marine Technology.

Luo, W., Zhao, X. & Kim, T. (2014), ‘Multiple Object Tracking: A Review’, CoRR

abs/1409.7618.

McCormick, C. (2014), ‘Stereo Vision Tutorial - Part I’. Available from: http://mccormickml.

com/2014/01/10/stereo-vision-tutorial-part-i/. (Accessed: 2021-04-11).

Min, D., Choi, S., Lu, J., Ham, B., Sohn, K. & Do, M. N. (2014), ‘Fast global image

smoothing based on weighted least squares’, Image Processing, IEEE Transactions on

23(12), 5638–5653.

Nielsen, M. (2015), Neural Networks and Deep Learning, Determination Press.

124

http://mccormickml.com/2014/01/10/stereo-vision-tutorial-part-i/
http://mccormickml.com/2014/01/10/stereo-vision-tutorial-part-i/

Bibliography

Nofima (2018), ‘Welfare Indicators for farmed Atlantic salmon: tools for assessing fish wel-

fare’, Report.

Norwegian Seafood Federation (2011), ‘Aquaculture in Norway’, Report.

Norwegian Seafood Federation (2012), ‘Seafood 2025’, Report.

OpenCV (2021), ‘cv::StereoSGBM Class Reference’. Available from: https://docs.opencv.

org/4.5.2/d2/d85/classcv 1 1StereoSGBM.html. (Accessed: 2021-05-11).

Overton, K., Dempster, T., Oppedal, F., Kristiansen, T. S., Gismervik, K. & Stien, L. H.

(2019), ‘Salmon lice treatments and salmon mortality in Norwegian aquaculture: a re-

view’, Reviews in Aquaculture 11(4), 1398–1417. doi: 10.1111/raq.12299.

Ozcakir, E. (2020), ‘Camera Calibration with OpenCV’. Available from: https://medium.

com/@elifozcakiir/camera-calibration-with-opencv-9fb104fdf879. (Accessed: 2021-06-02).

Padilla, R. (2019), ‘Metrics for object detection’. doi: 10.5281/zenodo.2554189.

Praveen, S. (2019), Efficient Depth Estimation Using Sparse Stereo-Vision with Other Per-

ception Techniques. doi: 10.5772/intechopen.86303.

Pérez, D., Ferrero, F. J., Alvarez, I., Valledor, M. & Campo, J. C. (2018), Auto-

matic measurement of fish size using stereo vision, in ‘2018 IEEE International In-

strumentation and Measurement Technology Conference (I2MTC)’, pp. 1–6. doi:

10.1109/I2MTC.2018.8409687.

Rawat, W. & Wang, Z. (2017), ‘Deep Convolutional Neural Networks for Image

Classification: A Comprehensive Review’, Neural Computation 29, 1–98. doi:

10.1162/NECO a 00990.

Redmon, J. (2013–2016), ‘Darknet: Open Source Neural Networks in C’. Available from:

http://pjreddie.com/darknet/. (Accessed: 2020-10-02).

Redmon, J., Divvala, S., Girshick, R. & Farhadi, A. (2016), You only look once: Unified,

real-time object detection, in ‘Proceedings of the IEEE conference on computer vision and

pattern recognition’, pp. 779–788. Available from: https://arxiv.org/pdf/1506.02640.pdf

(Accessed: 2020-10-25).

Redmon, J. & Farhadi, A. (2016), ‘YOLO9000: Better, Faster, Stronger’. Available from:

https://arxiv.org/pdf/1612.08242.pdf. (Accessed: 2020-10-25).

Redmon, J. & Farhadi, A. (2018), ‘YOLOv3: An Incremental Improvement’, ArXiv

abs/1804.02767. Available from: http://arxiv.org/abs/1804.02767. (Accessed: 2020-10-

16).

125

https://docs.opencv.org/4.5.2/d2/d85/classcv_1_1StereoSGBM.html
https://docs.opencv.org/4.5.2/d2/d85/classcv_1_1StereoSGBM.html
https://medium.com/@elifozcakiir/camera-calibration-with-opencv-9fb104fdf879
https://medium.com/@elifozcakiir/camera-calibration-with-opencv-9fb104fdf879
http://pjreddie.com/darknet/
https://arxiv.org/pdf/1506.02640.pdf
https://arxiv.org/pdf/1612.08242.pdf
http://arxiv.org/abs/1804.02767

Bibliography

Ren, S., He, K., Girshick, R. B. & Sun, J. (2015), ‘Faster R-CNN: Towards Real-Time

Object Detection with Region Proposal Networks’, CoRR abs/1506.01497.

URL: http://arxiv.org/abs/1506.01497

Schettini, R. & Corchs, S. (2010), ‘Underwater Image Processing: State of the Art of

Restoration and Image Enhancement Methods’, EURASIP Journal on Advances in Signal

Processing 2010. doi: 10.1155/2010/746052.

Serna, C. & Ollero, A. (2001), ‘A Stereo Vision System for the Estimation of Biomass in Fish

Farms’, IFAC Proceedings Volumes 34(29), 185–191. doi: 10.1016/S1474-6670(17)32814-

8.

Shantaiya, S., Verma, K. & Mehta, K. (2015), ‘Multiple Object Tracking using Kalman

Filter and Optical Flow’, European Journal of Advances in Engineering and Technology

2, 34–39.

Stien, L. H., Bratland, S., Austevoll, I., Oppedal, F. & Kristiansen, T. S. (2007), ‘A video

analysis procedure for assessing vertical fish distribution in aquaculture tanks’, Aquacul-

tural Engineering 37(2), 115–124.

Tan, M., Pang, R. & Le, Q. V. (2019), ‘EfficientDet: Scalable and Efficient Object Detec-

tion’, CoRR abs/1911.09070.

The MathWorks, Inc. (n.d.), ‘Stereo Disparity using Semi-Global Block Matching’. Available

from: https://www.mathworks.com/help//visionhdl/ug/stereoscopic-disparity.html. (Ac-

cessed: 2021-06-10).

van den Boomgaard, R. (2017), ‘Tracking motion features – optical flow’, Lecture notes in

Image Processing and Computer Vision. University of Amsterdam.

Wang, C.-Y., Liao, H., Yeh, I.-H., Wu, Y.-H., Chen, P.-Y. & Hsieh, J.-W. (2020), ‘CSP-

Net: A New Backbone that can Enhance Learning Capability of CNN’, 2020 IEEE/CVF

Conference on Computer Vision and Pattern Recognition Workshops (CVPRW) pp. 1571–

1580. doi: 10.1109/CVPRW50498.2020.00203.

Weng, J. J., Ahuja, N. & Huang, T. S. (1993), Learning recognition and segmentation of 3-D

objects from 2-D images, in ‘1993 (4th) International Conference on Computer Vision’,

pp. 121–128. doi: 10.1109/ICCV.1993.378228.

Wu, B. (1992), ‘An introduction to neural networks and their applications in manufacturing’,

Journal of Intelligent Manufacturing 3(6), 391––403. doi: 10.1007/bf01473534.

Xu, W. & Matzner, S. (2018), ‘Underwater Fish Detection using Deep Learning for Water

Power Applications’, CoRR abs/1811.01494.

126

https://www.mathworks.com/help//visionhdl/ug/stereoscopic-disparity.html

Bibliography

Zheng, Z., Wang, P., Liu, W., Li, J., Ye, R. & Ren, D. (2019), ‘Distance-IoU Loss: Faster

and Better Learning for Bounding Box Regression’, CoRR abs/1911.08287.

Ziyi, L., Xian, L., Liangzhong, F., Huanda, L., Li, L. & Ying, L. (2014), ‘Measuring feed-

ing activity of fish in RAS using computer vision’, Aquacultural Engineering 60. doi:

10.1016/j.aquaeng.2014.03.005.

127

Bibliography

128

Appendix

A Source Code

Source code for the object detection model, the depth estimation, the tracking algorithms,

and the final pipeline can be found at:

https://github.com/karolhb/fish-detection-depth-tracking

129

https://github.com/karolhb/fish-detection-depth-tracking

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f E

ng
in

ee
rin

g
D

ep
ar

tm
en

t o
f M

ar
in

e
Te

ch
no

lo
gy

Karoline H
okstad Barstein

Karoline Hokstad Barstein

Towards automated welfare
monitoring of farmed salmon
exploiting deep learning and
computer vision

Master’s thesis in Marine Cybernetics
Supervisor: Martin Ludvigsen
Co-supervisor: Christian Schellewald, Rune Volden
July 2021

M
as

te
r’s

 th
es

is

	Introduction
	Background
	Motivation
	Underwater Imaging
	Fish Welfare Indicators
	Research Question
	Related Work

	Contribution
	Thesis Outline

	Deep Neural Networks
	Artificial Neural Networks
	Basic Structure
	Training
	Backpropagation
	Gradient Descent
	Overfitting
	Data Augmentation

	Convolutional Neural Networks
	Convolutional Layer
	Rectified Linear Unit (relu)
	Pooling Layer
	Fully Connected Layer
	Overall View
	Transfer Learning

	Object Detection and Tracking
	Object Detection
	Basic Structure
	State-of-the-Art Models

	YOLOv4
	Detection-Based Multiple Object Tracking
	Kalman Filter
	Optical Flow
	IOU Tracking

	Stereo Vision for 3D Reconstruction
	Single-View Geometry
	Pinhole Camera Model
	Principal Point Offset
	Camera Rotation and Translation

	Distortion Model

	Stereo-View Geometry
	Epipolar Geometry
	Epipolar Line
	The Fundamental Matrix

	Image Rectification

	Stereo Matching
	The Correspondence Problem
	Block Matching
	Semi-Global Block Matching
	Feature Matching

	Disparity Post-Processing

	The Reconstruction Problem

	Implementation
	Data Acquisition
	Data Collection
	Preparations for Object Detection
	Selection of Object of Interest
	Annotation

	Implementation Prerequisites
	Computer
	Software

	Object Detection Model
	Selection of Detection Model
	Training
	Data Augmentation
	Transfer Learning
	Network Configuration
	Validation

	Evaluation of Detection Model
	Object Detection Pipeline

	Stereo 3D Reconstruction
	Camera Calibration
	Undistortion and Rectification
	Stereo Matching
	Selection of Stereo Matching Algorithm
	Tuning of Stereo Matching Parameters

	Disparity Post-Processing and Triangulation Pre-Processing
	Triangulation and Pointclouds
	Depth Estimation Pipeline

	Tracking Algorithm
	Modified IOU Tracking Algorithm
	Evaluation of Tracking Algorithm

	Swimming Velocity Estimation
	3D Position of Individual Caudal Fins
	3D Velocity
	Final Pipeline

	Results
	Detection Model
	Depth Estimation
	Camera Calibration
	Disparity Post-Processing
	3D Reconstruction

	Video Analysis of Tracking
	Swimming Velocity
	Detections and Disparities
	3D Tracks
	Mean Velocity and Standard Deviation

	Discussion
	Dataset and Annotation
	Dataset
	Annotation

	Performance of Detection Model
	Stereo Matching and 3D Reconstruction
	Camera Calibration
	Stereo Matching Algorithm
	Disparity Post-Processing
	3D Reconstruction

	Tracking Algorithm
	Comparison of Algorithms
	Implementation and Tuning
	Influencing Factors

	Swimming Velocity Estimation
	Detections and Disparities
	3D Tracks
	Mean Velocity and Standard Deviation
	Pipeline Implementation

	Conclusions and Further Work
	Conclusions
	Further Work

	Bibliography
	Appendix
	Source Code

