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A B S T R A C T

Iconography studies the visual content of artworks by considering the themes

portrayed in them and their representation. Computer Vision has been used

to identify iconography subjects in paintings and Convolutional Neural

Networks (CNN) enabled the effective classification of characters in Christian

art paintings. However, it still has to be demonstrated if the classification

results obtained by CNNs rely on the same iconographic properties that

human experts exploit when studying iconography. A suitable approach

for exposing the process of classification by neural models relies on Class

Activation Maps, which emphasize the areas of an image contributing the

most to the classification. This work compares state-of-the-art algorithms

(CAM, Grad-CAM, Grad-CAM++, and Smooth Grad-CAM++) in terms

of their capacity of identifying the iconographic attributes that determine

the classification of characters in Christian art paintings. Quantitative and

qualitative analyses show that Grad-CAM, Grad-CAM++, and Smooth Grad-

CAM++ have similar performances while CAM has lower efficacy. Smooth

Grad-CAM++ isolates multiple disconnected image regions that identify

small iconography symbols well. Grad-CAM produces wider and more

contiguous areas that cover large iconography symbols better. The illustrated

analysis is a step towards the computer-aided study of the variations of

iconography elements positioning and mutual relations in artworks and

opens the way to the automatic creation of bounding boxes for training

detectors of iconography symbols in Christian art images.
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S A M M E N D R A G

Ikonografi studerer det visuelle innholdet i kunstverk ved å vurdere temaene

som er portrettert i dem, og deres representasjon. Computer Vision har

blitt brukt til å identifisere ikonografifag i malerier og Convolutional Neural

Networks (CNN) muliggjorde en effektiv klassifisering av tegn i kristne

kunstmalerier. Det må imidlertid fremdeles demonstreres om klassifiser-

ingsresultatene oppnådd av CNN er avhengige av de samme ikonografiske

egenskapene som menneskelige eksperter utnytter når de studerer ikonografi.

En passende tilnærming for å eksponere klassifiseringsprosessen ved nevrale

modeller er avhengig av klasseaktiveringskart, som understreker områdene i

et bilde som bidrar mest til klassifiseringen. Dette arbeidet sammenligner

toppmoderne algoritmer (CAM, Grad-CAM, Grad-CAM++ og Smooth Grad-

CAM++) når det gjelder deres evne til å identifisere ikonografiske attributter

som bestemmer klassifiseringen av tegn i kristne kunstmalerier. Kvantita-

tive og kvalitative analyser viser at Grad-CAM, Grad-CAM++ og Smooth

Grad-CAM++ har lignende ytelser mens CAM har lavere effekt. Smooth

Grad-CAM++ isolerer flere frakoblede bilderegioner som identifiserer små

ikonografisymboler godt. Grad-CAM produserer bredere og sammenhen-

gende områder som dekker store ikonografisymboler bedre. Den illustrerte

analysen er et skritt mot datastøttet studie av variasjonene av ikonografiske

elementers posisjonering og gjensidige relasjoner i kunstverk, og åpner veien

for automatisk oppretting av avgrensningsbokser for å trene detektorer av

ikonografisymboler i kristne kunstbilder.
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1
I N T R O D U C T I O N

Iconography is the discipline that concerns itself with the subject

matter of artworks, as opposed to their form [53]. It is studied to

understand the meaning of artworks and to analyze the influence

of culture and beliefs on art representations across the word, from

the Nasca [59] to the Byzantine [54] civilization. Iconography is a

prominent topic of the art history studied through centuries [39, 62,

74]. The attribution of iconography elements (henceforth classes) is an

important task in art history, related to the interpretation of meaning

and to the definition of the geographical and temporal context of an

artwork.

With the advent of digital art collections, iconography class attribu-

tion has acquired further importance, as a way to provide a significant

index on top of digital repositories of art images, supporting both

students and experts in finding and comparing works by their iconog-

raphy attributes. However, the analysis of iconography requires spe-

cialized skills, based on the deep knowledge of the symbolic meaning

of a very high number of elements and of their evolution in space and

time.1 This makes the manual attribution of iconography classes to

image collections challenging, due to the tension between the available

amount of expert work and the high number of items to be annotated.

1 The WikiPedia page on Christian Saint symbolism (https://en.wikipedia.org/
wiki/Saint_symbolism – As of June 2021) lists 257 characters with 791 attributes.

1

https://en.wikipedia.org/wiki/Saint_symbolism
https://en.wikipedia.org/wiki/Saint_symbolism


2 introduction

A viable alternative relies on the use of semi-automatic computer-

aided solutions supporting the expert annotator in the task of asso-

ciating iconography classes to art images. Computer Vision (CV) has

already been used for artwork analysis tasks, such as genre identifica-

tion [89], author identification [65], and even subject identification and

localization [13]. The field of computer-aided iconography analysis is

more recent and addressed by few works [28, 47]. Borrowing the stan-

dard CV terminology, the problem of computer-aided iconography

analysis can be further specialized into iconography classification, which

tackles the association of iconography classes to an artwork image as

a whole, and iconography detection, which addresses the identification

of the regions of an image in which the attributes representing an

iconography class appear.

Applying CV to the analysis of art iconography poses challenges

in part general and in part specific to the art iconography field. As in

general-purpose image classification and object detection, the avail-

ability of large high quality training data is essential. The natural

image data set in use nowadays are very large and provided with

huge numbers of annotations. Conversely, in the narrower art domain,

image data sets are less abundant, smaller, and with less high quality

annotations. Furthermore, unlike natural images, painting images are

characterized by less discriminative features than natural ones. The

color palette is more restricted and subject to artificial effects, such

as colored shadows and chiaroscuro. Images of paintings may also

portray partially deteriorated subjects (e.g., in frescoes) and belong to

historical archives of black and white photos.

Despite the encouraging results of applying CNNs for iconography

classification [47], it remains unclear how such a task is performed
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by artificial models. Depending on the class, the human expert may

consider the whole scene portrayed in the painting or instead focus

on specific hints. Considering Christian art iconography, an example

of the first scenario occurs in paintings of complex scenes, such as

the crucifixion or the visitation of the magi. The latter case is typical

of the identification of characters, especially Christian saints, which

depends on the presence of very distinctive attributes. When CNNs

are used for the classification task, the problem of explainability arises,

i.e., of exposing how the CNN has produced a given result. A widely

used strategy to clarify CNN image classification results relies on the

use of Class Activation Maps [55, 69, 81], which visualize the regions

of the input images that have the most impact on the prediction of the

CNN. Computing the most salient regions of an image with respect

to its iconography can help automate the creation of bounding boxes

around the significant elements of an artwork from only image-wide

annotations. This result could reduce the effort of building training

sets for the much harder task of iconography detection.

This work addresses the following research questions:

• Are Class Activation Maps an effective tool for understanding

how a CNN classifier recognizes the iconography classes of a

painting?

• Are there significant differences in the state-of-the-art CAM

algorithms with respect to their ability to support the explanation

of iconography classification by CNNs?

• Are the image areas highlighted by CAMs a good starting point

for creating semi-automatically the bounding boxes necessary

for training iconography detectors?
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The contributions of the conducted research can be summarized as

follows:

• We apply four state-of-the-art class activation map algorithms2

(namely, CAM [87], Grad-CAM [64], Grad-CAM++ [15], and Smooth

Grad-CAM++ [52]) to the CNN iconography classification model

presented in [47], which exploits a backbone based on ResNet50 [33]

trained on the ImageNet data set [23] and refined on the ArtDL3

data set consisting of 42,479 images of artworks portraying Chris-

tian saints divided into 10 classes.

• For the quantitative evaluation of the different algorithms, a test

data set has been built which comprises 823 images annotated

with 2957 bounding boxes surrounding specific iconographic

symbols. One such annotated image is shown in Figure 1.1.

We measured the agreement between the areas of the image

highlighted by the algorithm and those annotated manually as

ground truth. Furthermore, we analyze the class activation map

area based on percentage of covered bounding boxes and per-

centage of covered area that does not contain any iconographic

symbol.

• For the quantitative evaluation of the different algorithms, an

additional test data set, which comprises 823 images annotated

with 882 bounding boxes surrounding specific saints, has been

built. We measured the agreement between the areas of the im-

age highlighted by the algorithm and those annotated manually

as ground truth.

2 Note that, in order to avoid ambiguity, we refer to the specific algorithm as “CAM”
and to the generic output as “class activation maps

3 http://www.artdl.org (As of June 2021).

http://www.artdl.org
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• The comparison shows that Grad-CAM, Grad-CAM++, and

Smooth Grad-CAM++ deliver better results than the original

CAM algorithm in terms of area coverage and explainability.

This finding confirms the result discussed in [52] for natural

images. Smooth Grad-CAM++ produces multiple disconnected

image regions that identify small iconography symbols quite

precisely. Grad-CAM produces wider and more contiguous

areas that cover well both large and small iconography symbols.

To the best of our knowledge, such a comparison has not been

performed before in the context of artwork analysis.

• We perform a qualitative evaluation by examining the overlap

between the ground truth bounding boxes and the class acti-

vation maps. This investigation illustrates the strengths and

weaknesses of the analyzed algorithms, highlights their capacity

of detecting symbols that were missed by the human annotator

and discusses cases of confusion between the symbols of differ-

ent classes. A simple procedure is tested for selecting “good

enough” class activation maps and for creating symbol bounding

boxes automatically from them. The results of such a procedure

are illustrated visually.

Figure 1.1 shows an example of the assessment performed in this

paper. On the left, an image of Saint John the Baptist has been

manually annotated with the regions (from A to D) associated with

key symbols relevant for iconography classification. On the right, the

same image is overlaid with the CAM heat map showing the regions

contributing the most to the classification.

The rest of this document is organized as follows: Chapter 2 sur-

veys related work; Chapter 3 describes the different CAM variants
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A

B

C

D

Figure 1.1: On the left: Saint John the Baptist image and iconography
symbols identified manually (e.g., cross (A), face (B), and lamb
(C), and hand pointing at lamb (D)). On the right: the CAM
heat map associated with classification results of a CNN-based
solution.

considered in our study; Chapter 4 describes the adopted evaluation

protocol and the results of the quantitative and the qualitative analysis;

finally, Chapter 5 draws the conclusions and outlines possible future

work.



2
B A C K G R O U N D C O N C E P T S A N D R E L AT E D W O R K

This chapter introduces relevant background concepts related to Arti-

ficial Intelligence and surveys the essential previous research in auto-

mated artwork analysis and CNN interpretability, the foundations of

our work.

2.1 artificial intelligence

This section introduces the most important characteristics and sub-

fields of Artificial Intelligence since they serve as a foundation for

this research. In particular, Section 2.1.1 introduces the most im-

portant characteristics of Machine Learning, Section 2.1.2 presents

Artificial Neural Networks, Section 2.1.3 describes Convolutional Neu-

ral Networks in the context of image analysis, Section 2.1.4 presents

the concept of Residual networks, and, finally, Section 2.1.5 gives an

overview of Computer Vision techniques.

2.1.1 Machine Learning

This section introduces the concept of Machine Learning, a sub-field of

Artificial Intelligence that can simulate a form of inductive reasoning

given sets of sample data.

7



8 background concepts and related work

Machine Learning deals specifically with problems for which it is

possible to draw conclusions from a set of examples. Such examples

may be, for instance, images, videos, time series, text, or numerical

data, depending on the problem. In particular, classification is one of

the tasks of Machine Learning algorithms, and it aims at automatically

assigning labels to unknown data given examples of similar data.

A data set may be labelled (i.e., each sample is associated with a

class or a numerical quantity) or unlabelled. Labels, when present,

are characterized by different levels of granularity, depending on

the problem. For instance, given an image, it is possible to create a

label referred to the image as a whole or a specific part of the image

(e.g., a person, or an object). Labels can be created in different ways,

depending on the nature of the data. In general, it is possible to create

labels manually for each sample in a data set (e.g., for each image,

indicating its content). In particular cases, it may be possible to create

labels automatically or semi-automatically (e.g., using a heuristic

procedure). The presence or absence of the labels determines the class

of algorithms employed for learning from the data. In particular, it is

possible to identify the four main branches of learning [18]:

• Fully supervised learning relies on labelled data (i.e., given a

set of data labelled with a given granularity, a new datum is

classified with the same level of granularity);

• Unsupervised learning relies on unlabelled data (i.e., it is pos-

sible to group data according, for instance, to similar character-

istics, but it is not possible to assign a label to each group of

data):
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• Self-supervised learning does not rely on data annotated by

humans;

• Reinforcement learning exploits the creation of adversary models

with the purpose, for example, to develop stronger models (e.g.,

for improving the ability in playing a game)

Depending on the problem, a single datum may be associated with

a variable number of labels, which in general may be greater than

one. For instance, a sentence can be labelled concerning the emotions

it conveys, and an image concerning the different objects it contains.

Those are examples of multi-instance classification. Depending on

the considered data, the approach may be different, where the most

general approaches deal with multi-instance data sets.

Next, we introduce weakly supervised learning, a branch of machine

learning not relying on full ground-truth labels.

Weakly supervised learning

Zhou has given an introduction to weakly supervised learning [88],

emphasizing how it differs from fully supervised learning. Such

difference is based on the concept of supervision. Supervised learning

relies on training examples, which allow the creation of predictive

models during the training phase. Such predictive models are able,

given data unknown to the network (i.e., the test set), to assign them

one or multiple labels. On the other hand, unsupervised learning

allows, for instance, to group similar data, but not to assign a class

to each group. Supervised learning, for this reason, is more precise

than unsupervised learning, but requires labels both on the training

set and on the test set. Since the annotation process is tedious and

has a high cost, it was necessary to introduce an alternative kind of
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supervision, based on partial, inaccurate or coarse-grained labels. This

kind of supervision is named “weakly supervised” and the associated

learning technique is called “weakly supervised learning.” There exist

several types of weak supervision. Three of the most relevant are:

• Incomplete supervision (i.e., only a subset of the data is labelled);

• Inexact supervision (i.e., the training data labels are coarse-

grained);

• Inaccurate supervision (i.e., the labels are not always ground-

truth).

In case of incomplete supervision, two techniques can be employed:

• Active learning, which assumes that an oracle (e.g., a human

expert) can label the missing data when necessary;

• Semi-supervised learning, which aims at exploiting the lack of

labels o improve the learning performance, without the interven-

tion of external oracles.

Inexact supervision is the most interesting sub-field of weakly su-

pervised learning in the case of Christian paintings. Different from

other scenarios, Christian art is characterized by iconographical sym-

bols associated with saints, hence labels can be defined hierarchically.

In particular, the saints’ labels are coarse-grained if compared with

the symbols’ labels, and the supervision may be limited to the saints’

labels, to automatically find the symbols associated with the saints

without indicating which symbol has been identified. In this way, a

significantly lower amount of annotations is required.
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Inaccurate supervision is also interesting in the case of artworks

since the labels of the ArtDL data set were generated automati-

cally [47], starting from basic information related to the painting

(e.g., the title). For example, Figure 2.1 represents Saint Peter Martyr,

characterized by a knife on the top of his head, differently from Saint

Peter the Apostle.

Weakly supervised learning showed promising results in diverse

fields. Recent research by Ali-Dib et al. [2] proposed the application

of this technique to the crater shape retrieval task. This example

emphasizes the advantages of avoiding detailed manual labelling

since it presents a particularly time-consuming task. Figure 2.2 shows

the main challenge associated with this research, i.e., the number

and variety of craters on the Moon. Similarly to the ArtDL data set,

the same image may contain a variable number of objects, possibly

belonging to the same class.

Weakly supervised learning is also employed in the field of medicine.

For example, Kanavati et al. recently proposed research on lung carci-

noma, to differentiate between lung carcinoma and non-neoplastic [35],

while Dong et al. applied weakly-supervised learning for endoscopic

lesions segmentation [24].

2.1.2 Artificial Neural Networks

This section introduces Artificial Neural Networks, one of the main

computational models employed in Machine Learning.

An Artificial Neural Network (ANN) is a collection of connected

nodes (the artificial neurons) forming a structure loosely inspired by

the biological brain structure. In particular, the principle behind the
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Figure 2.1: An example of inaccurate label – Saint Peter Martyr is different
than Saint Peter the Apostle, and is characterized by a knife on
the top of his head. During the automatic labelling process in the
creation of the ArtDL data set [47], it was incorrectly assigned
the “Saint Peter” label.
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Figure 2.2: Weakly-supervised learning applied to crater detection – This
figure shows the challenge in detecting craters. Only a few of
them are indicated, but the results presented by [2] are able to
find more of them automatically.

definition of Neural Networks is that the complexity of the data can

be better tackled by creating a system constituted by several atomic

structures (also indicated as nodes or artificial neurons), each with

a simple and limited purpose. The complexity, therefore, emerges

from the combined behaviour of those nodes. This idea is similar to

the behaviour observed in a biological brain, where atomic structures

(e.g., the neurons) manage to perform challenging tasks (e.g., image

recognition, critical thinking, and motion) by establishing a network.

While the most elementary type of neural network (i.e., the feed-

forward neural network) has a simple structure and does not contain

cycles (being, indeed, a Directed Acyclic Graph), there exist more

complex networks, which introduce a wider variety of substructures

and possibly, as in the case of Recurrent Neural Networks, cycles.

Figure 2.3 presents a basic example of feed-forward ANN, which

consists of an input layer, only one hidden layer, and an output

layer. During the process through which the network learns based
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Input 1
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Figure 2.3: An example of Artificial Neural Network – This example shows
a basic ANN, with an input (in orange), one hidden layer (in red)
and an output (in green).

on the given examples (i.e., the training), the network evolves. Each

connection is associated with a weight, which changes during the

learning process (or training). The nodes, on the other hand, do not

change and perform the same operation.

The nodes can perform virtually any type of operation on the

input. In particular, continuous and derivable functions are preferred

since the training process relies on the progressive update of the arc

weights, which happens by computing derivatives. For instance, ReLU

is a common operation, defined as:

ReLU(x) = max(0, x) (2.1)

This function is continuous on the entire domain (R), but it is deriv-

able only in R \ {0}. For this reason, there exist alternative functions

with similar behaviour and derivable in all R.
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Another dimension of analysis considers the number of layers of

a network rather than its nodes. If a neural network has more than

one layer, it is a deep network and it is studied in the context of Deep

Learning, a sub-field of Machine Learning, dealing specifically with

more complex data and problems. In particular, one-layer ANNs can

deal with a limited number of problems and cannot deal with data

sets that are not linearly separable. In general, complex data are not

linearly separable, therefore a multi-layer network is necessary to

perform predictions. Shallow Learning, on the other hand, refers to

one or two-layer networks [18].

2.1.3 Convolutional Neural Networks

This section (extracted from [56, 73]) introduces the concept of Con-

volutional Neural Network, as a particular case of Artificial Neural

Networks. Being used chiefly for image-based data, Convolutional

Neural Networks are fundamental in this research work.

A Convolutional Neural Network (CNN) is a neural network that,

given an input datum represented as a tensor and a set of classes,

can be used to predict the class (or, more in general, the classes) to

which the datum belongs. More precisely, CNNs are a class of artificial

neural networks (ANN), which, differently from traditional ANNs, can

perform convolutions in one or more dimensions using convolutional

layers. In particular, convolutions are defined by introducing one or

more filters, which are tensors of numbers. A filter is originally placed

in correspondence of the top-left corner of the tensor representing

an input datum (e.g., an image), and an element-wise multiplication

between the filter and the underlying datum elements is performed.
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The multiplied elements are then summed and placed in an output

tensor, in the same position as the filter top-left corner position. The

filter, then, is moved by a quantity called stride along all the tensor

elements, until the entire tensor has been covered. It is also possible to

introduce padding, which consists of adding zeros to the tensor borders

to obtain an output tensor with the same dimensions as the input

tensor. Figure 2.4 presents the result of convolution on a bidimensional

tensor with a single filter. The highlighted elements represent the first

operation performed by the convolution, which in this example is

given by:

1 2

0 4

 ∗
1 2

0 −1

 = 1 · 1+ 2 · 2+ 0 · 0+ 4 · (−1) = 1 (2.2)

Additional to the convolution, many CNNs include pooling op-

erations which output, for each position of the filter, the maximum

element below the filter (max pooling) or the average of the elements

below the filter (average pooling). In the final part of a CNN, it is neces-

sary to insert fully connected layers, which consider all the inputs from

the previous layer, perform a linear combination of such inputs, and

output a vector whose length corresponds to the number of classes of

the problem. The content of this vector consists of the probabilities

associated with the different classes. A CNN, then, is formed by a

sequence of convolutional layers, pooling layers, more complex layers

based on them, and fully connected layers. This means that it encodes

a complex transformation of the initial data into the labels associated

with them. When images are considered, a convolution is defined over

three dimensions (the width, the height, and the depth, which initially
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Figure 2.4: A convolution with a single filter.

represent the colour channels encoded in the RGB format, while the

subsequent layers represent the effect of the application of different

filters over the input). This means that the input tensor has the shape

n×m× 3 for a coloured image with n×m pixels. After the first

convolution, the output tensor will have the shape n ′ ×m ′ × f where

f is the number of filters, and n ′ and m ′ depend on the filter size and

the presence of padding.

2.1.4 Residual networks

This section introduces the concept of Residual Networks, a class

of ANNs whose purpose is contrasting the vanishing gradient phe-

nomenon (i.e., the inability of deep networks to update their initial

weights as the learning progresses) in Deep Residual Learning.

Residual Networks are implemented by introducing skip connec-

tions. Intuitively, their purpose is to create, in addition to the main

path from the input layer to the output layer, shorter paths, which

are meant to propagate promising results using fewer steps. The

main building block of Residual Networks, differently from tradi-
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tional CNNs, is a residual block. The concept of “residual block” is

generic, hence there exist several kinds of residual blocks. Khan et al.

recently presented a thorough survey about the architectures of deep

convolutional neural networks [37], which analyses different residual

blocks.

Deep Residual Networks have been exploited in the Image Recog-

nition task. He et al. [33] applied plain (i.e., non-residual networks)

to the CIFAR-10 data set [41], and observed that a consistent decrease

in the training error was not associated with an equally consistent

decrease in the test error, yielding to the network saturation as the

depth increased. Moreover, increasing the number of layers yielded a

higher error, both for the training and the test set.

The application of residual networks (e.g., ResNet50), instead, yields

better results both in terms of training and test error. He et al. [33]

also compared the behaviour of plain and residual networks for 20, 32,

44, 56, 110, and 1202 layers on CIFAR-10 and show that increasing the

number of layers in residual networks yields better results, different

from plain networks.

Deep Residual Networks have been applied to images in other con-

tests. Some prominent examples include Image Super-Resolution [43,

45, 49, 61, 71], which aims at up-scaling and improving low-resolution

images quality, and Steganalysis [10, 79], which aims at discovering

messages hidden using steganography [7]. In the context of artworks

analysis, Milani and Fraternali showed that the ResNet50 architecture

is effective in classifying artworks in the ArtDL data set [47].
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Artificial Intelligence

Machine Learning

Deep Learning

Computer Vision

Figure 2.5: The relationship between Artificial Intelligence, Machine
Learning, Deep Learning and Computer Vision – This diagram
shows that Computer Vision is a generic technique, not necessar-
ily implemented using Machine Learning.

2.1.5 Computer Vision

This section introduces Computer Vision (CV), whose aim is to study

the content and the meaning of pictures or videos [51]. While this task

is in general particularly easy for human beings, it is challenging for

computers, since it requires abstracting complex and variable data (for

instance, the task of recognizing a person in an image is made more

difficult by the fact that the same individual can look different based

on their facial expression).

The increasing availability of images, during the last year, has made

a greater quantity of labelled data available. They are particularly

important since they allow the application of Neural Networks to

extract meaningful information from them. Moreover, analysing im-



20 background concepts and related work

ages requires the use of Deep Learning, rather than Shallow Learning.

In this case, the recent development of new technologies (i.e., more

powerful GPUs), combined with data availability, has contributed to the

massive development of the field. The application of Neural Networks

to Computer Vision is now the predominant research direction, even if

not the only one. Figure 2.5 shows the relationship between Artificial

Intelligence, Machine Learning, Deep Learning, and Computer Vision,

emphasizing the extension of Computer Vision beyond the currently

used methods.

2.2 automated artwork image analysis

The large availability of artworks in digital format has allowed re-

searchers to perform automated analysis in the fields of digital human-

ities and cultural heritage using Computer Vision and Deep Learning

methods. Several data sets containing various types of artworks have

been proposed to support such studies [9, 22, 28, 36, 38, 46, 47, 68].

The performed analyses span several classification tasks and tech-

niques: from style classification to artist identification, comprising

also medium, school, and year classification [14, 63, 86]. These re-

searches are useful to support cultural heritage studies and asset

management, e.g., automatic cataloguing of unlabeled works in online

and museum collections, but their results can be exploited for more

complex applications, such as authentication, stylometry [26], and

forgery detection [25].

A task that is more related to our proposal is artwork content

analysis, which focuses on the automatic identification and, if possible,

localization of objects inside artworks. The literature contains several
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state-of-the-art approaches [5, 13, 21, 28, 34, 47, 66]. Since there is

an abundance of deep learning models trained with natural images

but a deficiency of art-specific models, many studies focus on the

transferability of previous knowledge to the art domain [5, 8, 19, 29,

47]. This approach is known as Transfer Learning and consists of

fine-tuning a network, previously trained with natural images, using

art images. The consensus is that Transfer Learning is beneficial for

tasks related to artworks analysis.

The next sections present the main contributions in the field of

automated artwork image analysis in greater detail, focusing on style

recognition (Section 2.2.1) and object retrieval (Section 2.2.2).

2.2.1 Image style recognition

One of the most common tasks in automated artwork image analysis

is style classification [9, 36, 46], which consists of recognizing the

style of a given painting. As highlighted by Karayev et al. [36], it is

difficult to define visual style rigorously, even if recognizing different

styles is an easy task for human beings. For this reason, it is also

challenging to define different styles, which do not only characterize

artworks but also photography, which may be considered a form of

art as well. In particular, the work from Karayev et al. is an example

of fully supervised learning, since both the WikiArt (formerly known

as WikiPaintings) and the Flickr Style data sets contained labelled

images. Figure 2.6 shows different paintings from the WikiArt data

set and shows some of the diverse styles present in the data set.

1 Pigeon on a Peach Branch, Emperor Huizong, 1108.
2 Angel Gabriel, nd, c. 867.
3 Portrait of Ambroise Vollard, Pablo Picasso, 1910.



22 background concepts and related work

(a) Gongbi style1 (b) Byzantine Art2 (c) Cubism3

Figure 2.6: Examples of different styles from the WikiArt data set.

To tackle this task, Karayev et al. implemented the Stochastic Gradi-

ent Descent method with adaptive subgradient and proposed the One

vs. All reduction to binary classifier to perform multi-class classifica-

tion (i.e., when an image is described by more than one label).

Considering the results on a subset of the WikiArt data set com-

prising 85,000 images labelled with 25 different art styles, they obtain

per-class accuracies ranging from 72% to 94% and show that their

method can be used for performing style-based image search.

A more recent research by Mao et al. [46], instead, proposed the

DeepArt framework, whose aim is to capture contents and styles of

visual arts. Different from the contribution by Karayev et al., Mao

et al. propose Art500k, a new data set including also WikiArt. The

categories of Art500k allow the subdivision of artworks by artist,

genre (e.g., interior, portrait, landscape), medium and art movement

(e.g., Cubism, Realism, Expressionism). Even if this method improves

previous results on the same data set in terms of the art movement

and genre identification, a comparison with the WikiArt data set is

missing, consequently, the results are not directly comparable with the

ones proposed by Karayev et al. The abundance of different data sets
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is a typical characteristic of works focusing on automated artworks

analysis and does not concern only the style recognition problem.

For example, Khan et al. introduced Painting-91 [38] in 2014, while

recent data sets in the Christian paintings sub-field were proposed by

Gonthier et al. [28] and Milani and Fraternali [47].

Similarly to Mao et al. [46], Bianco et al. proposed the use of a

multi-task formulation for performing artist, style, and genre catego-

rization [9], introducing a new data set, MultitaskPainting100k, based

on WikiArt. Moreover, they applied state-of-the-art methods and

their method to the Art500k data set introduced by Mao et al., show-

ing advancement in the state of the art. This method is particularly

interesting because it uses residual blocks, which have proven effec-

tive also in the work by Milani and Fraternali on Christian paintings

classification [47].

Approaches similar to the ones used for style recognition were used

for tackling other tasks. For instance, Strezoski and Worring [68] pro-

posed a multi-task learning approach which, starting from a learned

shared representation, was able to perform artist attribution, type

prediction (e.g., painting, print, photograph), material prediction, and

period estimation. Since WikiArt was insufficient for performing the

required analysis, the authors introduced the OmniArt data set, which

instead included chiefly artworks from the Rijksmuseum collection,

the collection from the Met and the Web Gallery of Art collection.

2.2.2 Object retrieval

Object retrieval, in general, consists of locating the object of research

(e.g., an inanimate object, an animal or a person), typically inside
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(a) High contrast4 (b) Range of colours5 (c) Innatural shapes6

Figure 2.7: Typical challenges faced in paintings analysis.

an image. In the context of artwork analysis, the retrieval task can

be performed, for example, in the photograph of a painting or of

a sculpture. In the specific sub-field of Christian art, it is possible

to establish a hierarchy of semantically interconnected objects. For

instance, a Christian saint can be regarded as an object, and the

iconographical symbols associated with them are additional objects

dependent on the presence of the saint (e.g., the presence of a lion

depends on the presence of Saint Jerome).

One of the main challenges in dealing with paintings is the differ-

ence in the depiction of paintings and photographs, since the first

show, for instance, higher contrast, a more limited range of colours

and, depending on the style, unnatural shapes. Figure 2.7 presents

three examples of those challenges. Crowley and Zisserman [22] ac-

knowledged this problem, but still recognized similarities between

natural images and artworks. For this reason, they proposed the ap-

plication of Transfer Learning on a network pre-trained on the PASCAL

VOC natural images data set. For evaluating the images, they relied on

4 Tahitian women under the palms, Paul Gauguin, 1892.
5 The Gold Scab, James McNeill Whistler, 1879.
6 Violin and Newspaper (Musical Forms), Georges Braque, c. 1912.
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the “Your Paintings” data set, comprising 210,000 medium-resolution

oil paintings and now part of Art UK.7 Moreover, they measured the

spatial consistency between the objects in the natural images and the

ones in the paintings with the purpose of re-ranking paintings with

high classification scores. This approach, however, does not guarantee

that an object in a painting can be matched consistently with an object

in a natural image, since in the case of transformations (e.g., rotations),

parts of the object may be hidden.

Different from Crowley and Zisserman, Gonthier et al. proposed

a novel approach [28], based on IconArt, a novel Christian Art data

set, which makes this research particularly relevant for this thesis.

Different from previous researches, they proposed a weakly super-

vised approach for detecting objects in the paintings, relying only on

image-level labels rather than on detailed labels. Their purpose is the

detection of iconographic elements in paintings, in addition to the

main subjects (i.e., the saints). The need of relying on an unlabelled

data set derives from the absence of a fine-grain labelled artworks

data set, which makes this field different from the one of natural

images. Moreover, the necessity of defining a new data set, rather than

relying on the existing ones, stems from the specific sub-field of their

research, similarly to Crowley and Zisserman researched on weakly-

supervised learning applied to ancient Greek Gods and animals in

pottery [21], where they defined a smaller data set in the bigger Bea-

zley Art data set.8 Christian paintings are characterized by symbols

distinctly associated with an iconographical meaning. In other genres,

instead, paintings may still be associated with symbolical meanings,

but the associations between objects and symbolic meanings are more

7 https://artuk.org/ (As of June 2021).
8 https://www.beazley.ox.ac.uk/carc (As of June 2021).

https://artuk.org/
https://www.beazley.ox.ac.uk/carc


26 background concepts and related work

arbitrary, and for this reason, cannot be the object of comprehensive

studies. The IconArt data set, indeed, includes labels referring to, for

instance, “ruins” and “nudity,” which are not peculiar to Christian

paintings, together with peculiar labels, such as “Saint Sebastian” and

“Jesus.” In this data set, each image contains a variable number of

labels, so Gothier et al. introduced new multiple-instance learning

(MIL) technique. Their workflow consists of four main steps:

• Application of Faster R-CNN as a feature extractor, extracting

candidate bounding boxes, which are initially class-agnostic (i.e.,

a bounding box is not associated with a specific class);

• Given an image and a visual category (e.g., “angel”), the label

associated with that category is +1 if the image contains the

visual category and −1 otherwise;

• If an image contains a category and a set of candidate bounding

boxes, it is possible to hypothesize that at least one bounding

box is associated with the category, so the goal is finding this

bounding box;

• Given an image, a set of bounding boxes proposals and a visual

category, the authors apply gradient descent to find a “hyper-

plane separating the most positive element of each positive image

from the least negative element of the negative image.”

The proposed approach has the advantage of requiring only image-

level annotations. At the same time, it relies on the strong hypothesis

that an image containing a certain category must also contain a class-

agnostic bounding box that can be associated with that category. This

proposal, therefore, needs robust initially generated bounding boxes.
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Angel

(a) Single angel9

Angel

Angel

Angel

(b) Multiple angels10

Figure 2.8: Qualitative representation of the failure in detecting “angel” and
“nudity”, based on the results from [28].

The evaluation process relies on partially overlapping labels, which

make it particularly challenging. For instance, an angel is likely

characterized by the labels “angel” and “nudity,” which likely cover

the entire figure or a relevant part of it. The initial selection of the

candidate bounding boxes, however, undergoes a filtering process,

which keeps only the most relevant ones in a given area. For this

reason, the presence of two nearly coincident bounding boxes is

discouraged and yields to poor performances for some classes and

high inter-class variability. Two examples of this phenomenon can be

observed in Figure 2.8, based on the results presented in [28].

2.3 interpretability and activation maps

In recent years, Deep Learning models have been treated as black-

boxes, i.e. architectures that do not expose their internal operations

9 Rapimento di Elena, Guido Reni, 1631.
10 Madonna col Bambino, Giovanni Bellini, c. 1490-1500.
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to the user. These systems are used for various approaches and their

interpretability is fundamental in many fields, especially when the

outputs of the models are used for sensitive applications. Activation

Maps are one of the techniques employed to explain the behaviour of

neural models dealing with image data.

Section 2.3.1 presents the problem of interpretability, while Sec-

tion 2.3.2 gives an overview about activation maps, discussed in fur-

ther detail in Chapter 3.

2.3.1 Interpretability

Different from traditional algorithms, neural networks learn induc-

tively from sets of examples. The black-box model developed as a

result of the learning process, for this reason, is the result of sequences

of complex operations on the input data and cannot be predicted in

advance. For the same reason, understanding why a model works

in a certain way is equally challenging. Interpretability deals with

the understanding of the reasons why a model behaves in a certain

way and is effective in detecting, for instance, possible biases in the

model. Understanding the internal logic of the model is important

also from an ethical point of view, especially for sensitive applications

(e.g., medicine). In the context of art, ethical considerations are neg-

ligible, but interpretability is crucial for understanding which parts

of an image are the most prominent for determining the outcome of

classification [47].

Guidotti et al. [31] surveyed the most prominent methods for ex-

plaining black-box models, considering critical applications of Ma-

chine Learning. In particular, they focused their analysis on the
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Table 2.1: An example of bias in language translation, based on the obser-
vations of [58]. This bias was likely introduced by the gender
unbalance in the jobs in the example, and exemplifies how a black-
box model can yield to biased results, making interpretability an
indispensable cross field of research.

English Italian
Attributed

gender

The scientist obtained
promising results.

Lo scienziato ha ottenuto
risultati promettenti.

Male

The nurse is taking care
of Bob.

L’infermiera si sta pren-
dendo cura di Bob.

Female

The doctor won an impor-
tant prize.

Il dottore ha vinto un pre-
mio importante.

Male

The babysitter is really
loving.

La babysitter è davvero
amorevole.

Female

The engineer is estimated
by his colleagues.

L’ingegnere è stimato dai
suoi colleghi.

Male

That student loves play-
ing with dollies.

Quella studentessa adora
giocare con le bambole.

Female

That student loves play-
ing with trucks.

Quello studente adora
giocare con i camion.

Male

The housekeeper works
really well.

La governante lavora
davvero bene.

Female
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introduction of unconscious biases introduced by such models. In

some cases, biases discriminate minorities and black people (e.g., by

deeming them more likely to be repeat offenders). This is also the

case of text translation. Prates et al. observed that the translation of

sentences from gender-neutral languages (e.g., Hungarian) to English

using Google Translate relied on assumptions based on the difference

between traditionally male-dominated fields and female-dominated

fields [58]. Table 2.1 presents an example, based on the observations

from Prates et al. paper [58], of this phenomenon, which was solved af-

terwards for translations to the English language. The table considers

the results of the English to Italian translation, as of June 2021.

In Christian paintings analysis, biases are also a potential problem.

From a Machine Learning point of view, the reasons are likely similar

to the ones introducing biases penalizing black people and associating

genders to professions. Some Saints, indeed, appear more often

in Christian paintings, which makes data sets such as ArtDL [47]

unbalanced and prone to biases.

The topic of biases in images was surveyed more deeply also by

Buhrmester et al. [11]. The authors emphasized one of the major

challenges related to interpretability, that are the trade-off between

interpretability and accuracy. In general, the explainability decreases

as the prediction accuracy increases, which constitute a major problem

in critical applications, where a loss of accuracy is not acceptable. On

the other hand, explainability is fundamental to help to understand

whether a model shows good performances, for instance, because of

biased data. In particular, a typical threat to Deep Learning models is

the presence of adversarial examples, which are indistinguishable from

the original examples for a human observer but make the model col-
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+ Perturbation
pattern = "Whale"

+ No
perturbation = "Parrot"

Figure 2.9: An example of adversarial perturbations – this image illustrates
the effect of adversarial perturbation on images in terms of
classification. The DeepFool method, presented in [48], generates
a suitable perturbation.

lapse. In this context, Moosafi-Dezfooli et al. [48] proposed DeepFool,

which shows how some deep neural networks achieving impressive

results were unstable to small perturbations of the images, even if

imperceptible for human beings. Figure 2.9 illustrates a qualitative

example of this phenomenon.

Different from critical fields (e.g., security and health), counterfeit

picture of paintings are not considered as a threat for artworks analy-

sis. Moreover, this thesis shows that promising classification results

correspond to results coherent with Art History studies. Christian

iconography, indeed, has been described clearly and, for the saints

under analysis, followed strictly. A model, then, is expected to focus

on well-known symbols. Other fields (e.g., astrophysics and medicine),

on the other hand, may hide details currently unknown to the experts

in the field, and a network may discover novel patterns. In such a case,

it would be challenging to understand if the new patterns correspond
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to discoveries (e.g., scientific discoveries) or the inadequacy of the

model.

2.3.2 Activation Maps

In the literature, many techniques aim at explaining the behaviour

of neural models [11, 31]. Saliency Masks are used to address the

outcome explanation problem by providing a visualization of which part

of the input data is mainly responsible for the network prediction. The

most popular Saliency Masks are obtained with the Class Activation

Map (CAM) approach. CAMs [87] have shown their effectiveness in

highlighting the most discriminative areas of an image in several fields,

ranging from medicine [32] to fault diagnostics [69]. The original

formulation of CAMs has been subsequently improved. Selvaraju

et al. [64] introduced Grad-CAM, which exploits the gradients that

pass through the final convolutional layer to compute the most salient

areas of the input. Chattopadhay et al. [15] introduced Grad-CAM++

which considers gradients too but is based on a different mathematical

formulation that improves the localization of single and multiple

instances. Smooth Grad-CAM++ [52] applies Grad-CAM++ iteratively

on the combination of the original image and Gaussian noise.

The use of CAMs is not limited to the explainability of Deep Learn-

ing classification models but is the starting point for studies related to

the weakly supervised localization of content inside the images [84].

CAMs have been also employed in several fields, including art [70, 80],

food segmentation [76], and medicine [50].

Concerning the applications to artwork analysis, Yang and Min [80]

presented an approach based on CNNs for classifying the artistic
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media (e.g., pencil, pastel, etc.) used in artworks. In their research,

CAMs are used to identify the most prominent areas for determining

the artistic medium, showing similar performance and recognition

pattern with human, emphasizing that CAMs, in this case, focus on

regions deemed relevant for a human classifier as well. Surapaneni et

al. [70], employed Grad-CAM for exploring gender biases in artworks.

This research is closer to the topic of this thesis since Class Activation

Maps are used to identify the most relevant parts of an image, given a

pre-trained model. The goal, instead, is opposite: while the objective

of Christian artworks analysis is finding the saints and their symbols,

exploiting a vast data set in which such symbols are repeated, Surapa-

neni et al. used Class Activation Maps to show that the repetition of

some characteristics (e.g., long hair) leads to misclassifying artworks

(e.g., concerning the gender), similarly to the case of biased transla-

tions presented in Table 2.1. Figure 2.10 shows an example of image

candidate to misprediction caused by gender biases, similar to the one

presented in [70].
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Figure 2.10: Gender misprediction – This example is similar to the one
presented in [70], since this man has characteristics traditionally
associated with women in some cultures (i.e., a necklace, long
hair and long clothes). Such characteristics may confuse a
biased model.



3
C L A S S A C T I VAT I O N M A P S F O R I C O N O G R A P H Y

C L A S S I F I C AT I O N

This thesis compares different CAM algorithms: Grad-CAM, Grad-

CAM++, and Smooth Grad-CAM++. Their implementation is based

on the mathematical definitions provided, respectively, by [87], [64],

[15], and [52].

Figure 3.1 shows the ResNet50 classifier architecture used to com-

pute the class activation maps. The input of the network is an image

and the output is the set of probabilities associated with the different

classes. In the evaluation, the input images portray artworks and the

output classes denote 10 Christian Saints. ResNet50 contains an initial

convolutional layer (conv1) followed by a sequence of convolutional

residual blocks (conv2_x . . . conv5_x). A Global Average Pooling (GAP)

module computes the average value for each feature map obtained

as an output of the last layer (conv5_x). The probability estimates

are computed by the last component, which is typically a Fully Con-

nected (FC) layer [44].

Figure 3.1: The ResNet50 architecture.

This chapter presents the four algorithms analyzed in this thesis.

Section 3.1 introduces CAM; Section 3.2 introduces Grad-CAM; Sec-

35
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Figure 3.2: CAM structure – This figure presents an example of how CAM is
calculated for an input image, suggesting that the most relevant
areas are associated with higher values.

tion 3.3 introduces Grad-CAM++ and Section 3.4 introduces Smooth

Grad-CAM++.

3.1 cam

CAMs [87] are based on the use of GAP, which has been demonstrated

to have remarkable localization abilities [60]. The GAP operation

averages the feature maps of the last convolutional layer and feeds

the obtained values to the final fully connected layer that performs

the actual classification. Class activation maps are generated by per-

forming a weighted sum of the feature maps of the last convolutional

layer for each class. Figure 3.2 presents CAM structure more precisely,

and shows that the most prominent areas of the image correspond to

higher values in the activation map.

Before introducing a compact definition of CAM, it is necessary to

introduce the following quantities, defined on an input image1:

1 In the original paper, Ak is indicated as fk. Here, Ak is chosen to keep a consistent
notation across the analyzed methods.
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• c represents a class;

• (x, y) represents a spatial location in the input image (i.e., the

position of a pixel);

• k is a unit in the last convolutional layer of the network;

• Ak(x, y) represents the activation of unit k in the last convolu-

tional layer at (x, y);

• Fk =
∑

x,yAk(x, y) is the result of the application of global

average pooling;

• wc
k is the weight associated with class c for unit k and indicates

the importance of FK for class c;

• Sc =
∑

kw
c
kFk is the input to softmax;

• Pc =
exp(Sc)∑
c exp(Sc) is the output of softmax for class c, assuming a

bias term of zero;

Consequently, Sc can be formulated as:

Sc =
∑
k

wc
k

∑
x,y

Ak(x, y) =
∑
x,y

∑
k

wc
kAk(x, y) (3.1)

The actual class activation map value Mc(x, y) for a class c and a

position x, y in the input image, then, is expressed as follows:

Mc(x, y) =
∑
k

wc
kAk(x, y) (3.2)
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where Ak(x, y) is the activation value of feature map k in the last

convolutional layer at position (x, y), and wc
k is the weight associated

with feature map k and with class c.

By exploiting the definition of Mc, Sc can be rewritten as:

Sc =
∑
x,y

Mc(x, y) (3.3)

Intuitively, a high CAM value at position x, y is the result of an aver-

age high activation value of all the feature maps of the last convolution

layer.

Differently from the original approach, we compute the CAM output

not only for the predominant class but for all the classes. The ArtDL

data set contains multi-class multi-label images and this formulation

allows us to analyze which regions of the artwork are associated with

which classes, also in the case of incorrect classification.

3.2 grad-cam

Grad-CAM [64] is a variant of CAM which considers not only the

weights but also the gradients flowing into the last convolution layer.

In this way, the layers preceding the last one also contribute to the

activation map. An advantage of using gradients is that Grad-CAM

can be applied to any layer of the network. Still, the last one is

especially relevant for the localization of the parts of the image that

contribute most to the final prediction. Furthermore, the layer used

as input for the prediction can be followed by any module and not

only by a fully connected layer. Grad-CAM exploits the parameters
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αc
k, which represents the neuron importance weights and are calculated

as:

αc
k =

1

Z

∑
x,y

∂Sc

∂Ak(x, y)
(3.4)

where 1
Z

∑
x,y denotes the global average pooling operation (Z =∑

x,y 1) and ∂Sc

∂Ak(x,y)
denotes the back-propagation gradients. In the

gradient expression, Sc is the score of the class c and Ak represents

the k-th feature map. The Grad-CAM for a class c at position (x, y) is

then given by:

Mc
Grad−CAM(x, y) = ReLU

(∑
k

αc
kAk(x, y)

)
(3.5)

where the ReLU operator maps the negative values to zero. As in the

case of CAM, we compute the output of Grad-CAM for all the classes

under analysis.

It is possible to show that Grad-CAM is a generalization of CAM.

Considering a set of feature maps Ak, indexed by the positions x and

y, the score associated with a class c is defined as:

Sc =
∑
k

wc
k ·
1

Z

∑
x

∑
y

Ak(x, y) (3.6)

Hence, the result of the application of GAP, Fk, is defined as:

Fk =
1

Z

∑
x

∑
y

Ak(x, y) (3.7)
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Considering now the gradient of the score Sc with respect to the

feature map Fk, it results:

∂Sc

∂Fk
=

∂Sc

∂Ak(x,y)

∂Fk

∂Ak(x,y)

=
∂Sc

∂Ak(x, y)
·Z (3.8)

Hence, the weight wc
k is:

wc
k = Z · ∂Sc

∂Ak(x, y)
=

∑
x

∑
y

∂Sc

∂Ak(x, y)
(3.9)

Hence, up to a constant term 1
Z , normalized during the visualization,

wc
k is identical to αc

k, and GradCAM is a strict generalization of CAM.

3.3 grad-cam++

Grad-CAM++ [15] is a generalization of Grad-CAM aimed at better

localizing multiple class instances and at capturing objects more com-

pletely. Differently from Grad-CAM, Grad-CAM++ applies a weighted

average of the partial derivatives, to cover a wider portion of the object

and of better detecting multiple occurrences of the same object. In

particular, the authors propose to define the weights wc
k by calculating

the pixel-wise gradients weighted average, where αc
k is the weighting

factor:

wc
k =

∑
x,y

αc
k(x, y) · ReLU

(
∂Sc

∂Ak(x, y)

)
(3.10)
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where Ak(x, y) is the activation map calculated in the last convolu-

tional layer as in the cases of Grad-CAM and Grad-CAM++.

In particular, the weighting factor is defined as:

αc
k(x, y) =


1∑

l,m
∂Sc

∂Ak(l,m)

if ∂Sc

∂Ak(x,y)
= 1

0 otherwise

(3.11)

and highlights all the objects of a certain class giving them the same

importance.

Given a class c, the score Sc is calculated based on αc
k:

Sc =
∑
k

[∑
a,b

αc
k(a, b) · ReLU

(
∂Sc

∂Ak(a, b)

)]∑
x,y

Ak(x, y) (3.12)

where (a, b) and (x, y) are positions in Ak, over which they iterate.

Consequently, it holds that:

∂2Sc

(∂Ak(x, y))2
= 2αc

k(x, y)
∂2Sc

(∂Ak(x, y))2
+
∑
a,b

Ak(a, b)

[
αc
k(x, y)

∂3Sc

(∂Ak(x, y))3

]
(3.13)

The parameter αc
k(x, y) can be rewritten as follows:

αc
k(x, y) =

∂2Sc

(∂Ak(x,y))2

2 ∂2Sc

(∂Ak(x,y))2
+ [

∑
a,bAk(a, b)]

∂3Sc

(∂Ak(x,y))3

(3.14)



42 class activation maps for iconography classification

The parameter wc
k, therefore, can be defined as:

wc
k =

∑
x

∑
y

αc
k(x, y)ReLU

(
∂Sc

∂Ak(x, y)

)
(3.15)

which leads to

wc
k =

∑
x,y


∂2Sc

(∂Ak(x,y))2

2 ∂2Sc

(∂Ak(x,y))2
+

[∑
a,b

Ak(a, b)

]
∂3Sc

(∂Ak(x,y))3

ReLU
(

∂Sc

∂Ak(x, y)

)

(3.16)

As in the other CAMs, it holds that

Mc
Grad−CAM++(x, y) = ReLU

(∑
k

wc
kAk(x, y)

)
(3.17)

3.4 smooth grad-cam++

Smooth Grad-CAM++ [52] is a variant of Grad-CAM++ that can focus

on subsets of feature maps or of neurons for identifying anomalous

activations. Smooth Grad-CAM++ applies a random Gaussian pertur-

bation on the image z and exploits the visual sharpening of the class

activation maps by averaging random samples taken from a feature

map close to the input. The value of the activation map Mc in a

position (x, y) is defined as:

Mc
SGCpp(x, y, z) =

1

n

n∑
1

Mc
GCpp(x, y, z+N(0, σ2)) (3.18)

where, for an image z, Mc
GCpp(x, y, z) =M

c
Grad−CAM++(x, y).
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where n is the number of samples, N(0, σ2) is the 0-mean Gaussian

noise with standard deviation σ, and Mc
SGCpp is the activation map

for the input z+N(0, σ2). The final result is obtained by iterating the

computation of Grad-CAM++ on inputs resulting from the overlap of

the original image and random Gaussian noise.

Different from the previously analyzed approaches, Smooth Grad-

CAM++ allows regulating the additional hyper-parameters σ and

n. However, the original study did not focus on the comparison

of different parameter settings. In this research, instead, different

combinations are analyzed in the context of Christian artworks.





4
E VA L UAT I O N

This chapter addresses research activities related to evaluation of dif-

ferent CAM algorithms, adapting and extending the content presented

in [57]. The evaluation exploits the ArtDL data set [47], an existing

artwork collection annotated with image-level labels. The purpose of

the evaluation is:

1. To understand whether the class activation maps effectively

localize both the overall representation of an iconography class

and the distinct symbols that characterize it.1

2. To compare CAM algorithms in their ability to do so. A subset

of the images has been annotated with bounding boxes framing

iconography symbols associated with each saint to evaluate the

localization ability of class activation maps. Figure 4.1 illustrates

the symbols in a painting of Saint Jerome.

This chapter is organized as follows: Section 4.1 presents the evalu-

ation protocol adopted in this thesis, focusing on the data set and the

experimental procedures; Section 4.2 presents the quantitative assess-

ment of class activation map algorithms, while Section 4.3 concerns

the qualitative analysis.

1 The attributes associated with the classes present in the ArtDL data set are illustrated
in [42] and listed in [78].

45
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Figure 4.1: Saint Jerome – The cardinal’s galero (A), the crucifix (B), the lion
(C), the cardinal’s vest (D), the book (E), the stone in the hand
(H), and the face (G).

4.1 evaluation protocol

This section introduces the evaluation protocol adopted in this work.

In particular, Section 4.1.1 presents the ArtDL data set, one of the

contributions of this thesis, and Section 4.1.2 presents the experimen-

tal procedures used to evaluate the results, both quantitatively and

qualitatively.
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4.1.1 Data set

This section introduces the ArtDL data set and the definition of symbol-

level and saint-level annotations. The ArtDL data set [47] comprises

images of paintings that represent the Iconclass [20] categories of 10

Christian Saints: Saint Dominic, Saint Francis of Assisi, Saint Jerome,

Saint John the Baptist, Saint Anthony of Padua, Saint Mary Magdalene,

Saint Paul, Saint Peter, Saint Sebastian, and the Virgin Mary. In

particular, out of the whole data set, 823 sample images were selected

and manually annotated with bounding boxes that frame each symbol

separately. The representation of such classes in Christian art paintings

exploits specific symbols, i.e., markers that hint at the identity of the

portrayed character. Table 4.1 presents the symbols associated with

the 10 Iconclass categories represented in the ArtDL data set.

Table 4.1: Iconclass categories and symbols associated with them.

Iconclass category Symbols

Anthony of Padua Baby Jesus, bread, book, lily, face, cloth

Dominic Rosary, star, dog with a torch, face, cloth

Francis of Assisi Franciscan cloth, wolf, birds, fish, skull, stigmata, face, cloth

Jerome Hermitage, lion, cardinal’s galero, cardinal vest, cross, skull,
book, writing material, stone in hand, face, cloth

John the Baptist Lamb, head on platter, animal skin, pointing at Christ, point-
ing at lamb, cross, face, cloth

Mary Magdalene Ointment jar, long hair, washing Christ’s feet, skull, crucifix,
red egg, face, cloth

Paul Sword, book, scroll, horse, beard, balding head, face, cloth

Peter Keys, boat, fish, rooster, pallium, papal vest, inverted cross,
book, scroll, bushy beard, bushy hair, face, cloth

Sebastian Arrows, crown, face, cloth

Virgin Mary Baby Jesus, rose, lily, heart, seven swords, crown of stars,
serpent, rosary, blue robe, sun and moon, face, cloth, crown
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4.1.1.1 The annotation process

This section presents the annotation process of the test set in more

detail, focusing first on the saints-level annotations and then on the

symbol-level annotations, showing that this process is tedious, differ-

ent from the automatic generation of bounding boxes. The annotations’

creation relied on ODIN [72], recently proposed by Torres et al. ODIN

is a flexible tool, and allows creating annotations in a standard format,

MS COCO, used in this research. ODIN gives the possibility of annotat-

ing images at different levels of details, possibly relying on previous

training outcomes. Additionally, this tool is compatible with Jupyter

notebook, the environment used for developing this research’s analyses,

and allows the creation of annotations collaboratively.

saint-level annotation : This section introduces saint level

annotations, focusing on the principal challenges in the annotation

process.

The manual annotation of saints required a thorough analysis of

artworks, focusing on the most prominent symbols associated with

the saints, even for a limited subset of characters. The study of the

artworks with the lowest quality (e.g., where the saints were exceed-

ingly small compared to the overall artwork or when the picture’s

quality was low) presented additional challenges. In this situation,

it was more laborious to identify the symbols and, consequently, to

distinguish saints with similar characteristics (e.g., face or clothes).

Annotating an image consists of the following phases:

• Identification of (some) relevant symbols;

• Identification of symbols unique to a specific saint;
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• Identification of the character associated with the symbols (an

artwork may contain, in general, multiple saints, in general,

located close to their most relevant symbols);

• Creation of a bounding box surrounding the saint figure and

possibly attached symbols (e.g., the ointment jar of Saint Mary

Magdalene);

• For the biggest symbols (e.g., the lion of Saint Jerome), creation

of additional bounding boxes, enclosing only those symbols,

associated with the saint’s class.

Figure 4.2: A multitude of saints – This artwork presents 50 characters,
among whom there are Christian saints. Creating manual an-
notations according to the proposed workflow would require
considerable human effort, time and expertise. Creating symbol-
level annotations would require a considerable additional effort.

The proposed workflow allows creating fewer bounding boxes

than the symbol-level annotations workflow but is tedious and time-

consuming. While this data set was limited to 10 saints, Christian

artworks include hundreds of saints associated with symbols. A

human annotator should understand, given a set of symbols, the as-
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Table 4.2: Saint-level bounding boxes distribution – This table presents
the number of saint-level bounding boxes associated with each
saint. In particular, the most frequent saints are in general associ-
ated with a higher number of bounding boxes.

Saint Saint bounding boxes

Anthony of Padua 26

Dominic 30

Francis of Assisi 85

Jerome 136

John the Baptist 82

Mary Magdalene 66

Paul 34

Peter 85

Sebastian 49

Virgin Mary 289

sociated saint. Figure 4.22 contains 50 figures, each associated with

symbols, and is an example of this challenge. Table 4.2 presents the

saint-level bounding boxes distribution.

symbol-level annotations : This section introduces symbol-

level annotations, accentuating why they are necessary to conduct

accurate analyses and the related challenges.

The ArtDL images are associated with high-level annotations speci-

fying which Iconclass categories appear in them (from a minimum of

1 to a maximum of 7). Whole-image labels are not sufficient to assess

the different ways in which the class activation maps methods focus

on the image content. For this purpose, it is necessary to annotate

the data set with bounding boxes that localize the symbols listed in

Table 4.1.

In particular, a symbol:

2 Predella of the Saint Domenico Altarpiece, Beato Angelico, 1423.
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• Can be included completely within a single bounding box (e.g.,

Saint Jerome’s lion;

• Can be split into multiple bounding boxes (e.g., Saint Peter’s

bushy hair, usually divided into two parts separated by the

forehead).

A symbol representation is the union of all the bounding boxes

annotated with the same symbol label. For instance, Saint Sebastian’s

arrows correspond to a unique symbol but correspond to multiple

bounding boxes annotations. When the same symbol relates to more

than one saint (e.g., Baby Jesus may appear with both the Virgin

Mary and St. Anthony of Padua), its presence is denoted with a label

composed of the symbol name and the Saint’s name.

The creation of symbol-level annotations, for each image, relies on

the following workflow:

• Identification of all the relevant symbols;

• Identification of the character associated with the symbols;

• For each symbol, identify its parts (e.g., Saint Peter’s forehead

separates his hair, so it needs two bounding boxes);

• For each part, create a bounding box associated with the sym-

bol’s label (which includes the saint name).

Creating this additional workflow is required since what discrimi-

nates a saint from the other is the difference in the symbols associated

with them. It is expected, for this reason, that class activation maps

focus chiefly on the relevant symbols regions (i.e., on the symbols

specific to the saint under analysis). Saint-level bounding boxes, in-
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stead, are not able to suitably capture the reasons why an artwork was

associated with a saint.

Then, a crucial phase consists of selecting the most frequent symbols

across the entire data set (assuming that the symbols in the train and

test set have an akin distribution). Infrequent symbols do not allow

precise analyses because, presumably, they were not deemed relevant

during the training.

Figure 4.3: A multitude of symbols – This example shows a complex art-
work, containing multiple characters, in part associated with
symbols. A manual analysis would require expertise and consid-
erable effort.
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A prominent Christian artwork particularly rich in symbols is The

Last Judgment by Michelangelo Buonarroti, presented in Figure 4.3.3 A

variety of studies have focused on the analysis of this artwork and of

its meaning [1, 6, 12], which underlines its complexity, the importance

of using automated analyses to support experts and the difficulty of

creating accurate annotations in the field of Art History.

4.1.1.2 Symbol filtering

This section presents the procedures adopted for filtering symbols,

based on the number of ground-truth annotations in the test set.

While some symbols appear in the majority of the images of the

corresponding Saint, others are absent or rarely present. For each

Saint, only the symbols that appear in at least 5% of the paintings

depicting the respective Saint are kept. This filter eliminates 23 of

the 84 possible symbols associated with the 10 Iconclass categories

and reduces the number of symbol bounding boxes from 2957 to 2887.

Table 4.3 presents the characteristics of the data set used to compare

the class activation maps algorithms.

Table 4.3: Symbol and bounding box distribution.

Iconclass category Symbol classes Symbol bounding boxes

Anthony of Padua 6 83

Dominic 4 59

Francis of Assisi 5 295

Jerome 11 434

John the Baptist 5 231

Mary Magdalene 5 283

Paul 6 132

Peter 9 408

Sebastian 3 267

Virgin Mary 7 695

3 The Last Judgment, Michelangelo Buonarroti, 1537 - 1541.
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Figure 4.4 shows the distribution of the bounding boxes within the

images. Most images contain from 2 to 5 bounding boxes. A few do

not contain annotations. The latter case occurs when the automatic

classification of the ArtDL data set is incorrect (e.g., for images in

which a character named Mary was incorrectly associated with the

Virgin Mary).

Figure 4.4: Bounding box distribution: most images contain from 2 to 5

bounding boxes (average = 3).

4.1.2 Experimental procedures

This section introduces the experimental procedures used in this thesis.

Section 4.1.2.1 presents the generation of class activation maps; Sec-

tion 4.1.2.2 introduces the selection of the threshold and Section 4.1.2.3

introduces the Intersection Over Union metrics, used for performing

quantitative analyses.

4.1.2.1 Generation of Class Activation Maps

The class activation maps are generated by feeding the image to the

ResNet50 model and applying the computation explained in Section 3.
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They have a size equal to h×w× c where h and w are the height and

width of the conv5_x layer and c is the number of classes. Since the

output size (h, w) is smaller than the input size, due to the convolution

operations performed by the ResNet architecture, each class activation

map is upsampled with bilinear interpolation to match the input image

size. Min-max scaling is applied to the upsampled class activation

maps to normalize them in the [0, 1] range.

4.1.2.2 Choice of the threshold value

A class activation map contains values in the range from 0 to 1. Given

a threshold t, the class activation map can be separated into the

background (pixels with a value lower than t) and the foreground

(pixels with a value greater than t). The choice of the threshold value

aims at making foreground areas concentrate on the Saints’ figure and

symbols. Figure 4.5 shows the impact of applying different threshold

values to a class activation map. As the threshold value increases, the

foreground areas (in white) become smaller and more distinct and the

background pixels increase substantially at the cost of fragmenting

the foreground areas and missing relevant symbols. To investigate

the choice of the proper threshold, the quantitative evaluation of

Section 4.2 reports results obtained with multiple values uniformly

distributed from 0 to 1 with a step of 0.05.
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(a) Original

(b) Threshold of 0.1 (c) Threshold of 0.2

(d) Threshold of 0.4 (e) Threshold of 0.6

Figure 4.5: Analysis with different thresholds – Black areas correspond
to class activation map values below the specified threshold
(background) while white pixels correspond to class activation
map values greater or equal than the threshold (foreground). An
increment in the threshold value results in smaller and more
distinct areas.

4.1.2.3 Intersection Over Union metrics

IoU is a standard metrics used to compute the overlap between two

different areas. It is defined as:

IoU =
A∩
A∪
,

where A∩ is the intersection between the two areas and A∪ is their

union. IoU ranges between 0 and 1, with 0 meaning that the two

areas are disjoint and 1 meaning that the two areas overlap and

have equal dimensions (Figure 4.6). We use IoU to compare the

foreground regions of the class activation maps with the ground
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Figure 4.6: Intersection Over Union – This figure presents a graphical rep-
resentation of the IoU metric, computed considering two rectan-
gular areas. In general, the areas can have any shape.

truth bounding boxes. The computation of the class activation maps

and the metrics does not depend on the number of Saints in the

painting because every Iconclass category is associated with a different

activation map independent of the others. All the reported results are

valid regardless of the number of Saints. This metrics is employed in

diverse quantitative analyses. Depending on the analysis, different

definitions are employed to calculate the areas used in the computation

of the union and the intersection.

4.2 quantitative analysis

This section presents the qualitative comparison results concerning the

effectiveness of the class activation maps algorithms in the localization

of iconography classes and their symbols.

Smooth Grad-CAM++ is the only method that requires hyper-

parameters: the standard deviation σ and the number of samples

s. To set the hyper-parameter values a grid-search was executed in the
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following space: σ ∈ {0.25, 0.5, 1} and s ∈ {5, 10, 25}. Only the best and

worst Smooth Grad-CAM++ configurations are reported, to highlight

the boundary values reached by this algorithm. The results show that

the number of samples barely affects the results, whereas the standard

deviation has a higher impact. To reduce the computational cost, a

lower number of samples is preferable.

This section is organized as follows: Section 4.2.1 presents the

component IoU analysis, while Section 4.2.2 presents the global IoU

analysis.

4.2.1 Component IoU

This metrics evaluates how well the class activation map focuses

on the individual Saints’ symbols. First, the class activation map’s

foreground area is divided into connected components, i.e., groups of

pixels connected to each other. The IoU value is calculated between

each ground truth bounding box and the connected components that intersect

it. Then, the average IoU across all symbol classes is taken. This

procedure is repeated for all threshold values. Figure 4.7 shows that

Figure 4.7: Component IoU at varying threshold levels.
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the best results are obtained by Smooth Grad-CAM++ with a standard

deviation σ = 1 and a number of samples s = 5. The reason for

this is that Smooth Grad-CAM++ tends to produce smaller and more

focused areas, which yield more connected components and better

coverage of the distinct symbols. Grad-CAM tends to create larger

and more connected areas. This increases the size of the union and

such an increase is not compensated by an equivalent increase of

the intersection, which motivates the lower IoU values. In all the

considered class activation maps variants, the component IoU peak is

found for a threshold value t ∈ {0.05, 0.1}. Grad-CAM creates larger

and more connected regions and thus a higher threshold is needed

to obtain the same number of components as the other methods.

This explains why the component IoU peak is found at a higher

threshold. Figure 4.84 compares the component IoU values produced

on a sample image by different class activation maps algorithms. For

the same threshold value, Smooth Grad-CAM++ creates more and

better-focused components.

4.2.2 Global IoU

An alternative metrics is the IoU between the union of all the bounding

boxes in the image and the entire foreground area of the class activation

map taken at a given threshold. This metrics is calculated for all

threshold values and assesses how the class activation map focuses on

the whole representation of the Saint, favouring those class activation

maps methods that generate wider and more connected areas rather

than separated components. Figure 4.9 shows that Grad-CAM is

4 San Sebastian’s Martyrdom, Giovanni Maria Butteri, 1550-1559.
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(a) Original

(b) CAM
Avg. cIoU: 0.35

(c) Grad-CAM
Avg. cIoU: 0.15

(d) Grad-CAM++
Avg. cIoU: 0.13

(e) Smooth GC++
Avg. cIoU: 0.11

Figure 4.8: Different values of component IoU produced by different class
activation maps algorithms (Smooth Grad-CAM++ with σ = 1
and s = 5) at threshold t = 0.1. Ground truth bounding boxes
are shown in red. Here, cIoU refers to the component IoU.

significantly better than the other analyzed methods. As already

observed, Grad-CAM tends to spread over the entire figure and covers

better the Saint and the associated symbols. Due to the complementary

role of the component and global IoU metrics, the method with the

best component IoU (Smooth Grad-CAM++ with σ = 1 and s = 5)

has the worst global IoU. Differently from the component IoU, the

global IoU peak position on the x axis does not change across methods,

because the influence of the number of components is less relevant

when the global metrics is computed. Figure 4.10
5 compares the global

IoU values produced on a sample image by different class activation

5 Saint Jerome in the study, nd, 1604.
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Figure 4.9: Global IoU at varying threshold levels.

maps algorithms. For the same threshold value, Grad-CAM generates

wider areas that cover more foreground pixels.

(a) Original

(b) CAM
Global IoU: 0.47

(c) Grad-CAM
Global IoU: 0.34

(d) Grad-CAM++
Global IoU: 0.32

(e) Smooth GC++
Global IoU: 0.25

Figure 4.10: Different values of global IoU produced by different class ac-
tivation maps algorithms (Smooth Grad-CAM++ with σ = 1
and s = 5) at threshold t = 0.05. Manually annotated symbol
bounding boxes are shown.
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4.2.2.1 Bounding box coverage

Figure 4.11: Bounding box coverage at varying threshold values.

When analyzing the class activation maps algorithms, a factor to

consider is also how many bounding boxes are covered by each class

activation map. This metrics alone is not enough to characterize

the performance because a trivial class activation map covering the

entire image would have 100% coverage. However, coupled with the

two previous metrics, it can give information about which method

can generate class activation maps that can highlight a considerable

fraction of the iconographic symbols that an expert would recognize.

The bounding box coverage metrics considers that a bounding box is

covered by the class activation map only if their intersection is greater

than or equal to 20% of the bounding box area. Figure 4.11 presents the

results: Grad-CAM and Smooth Grad-CAM++ intersect, on average,

more bounding boxes than the other methods. This result confirms

that Grad-CAM covers wider areas while focusing on the correct

details at the same time. The worst method, CAM, performs poorly

also in the two previous metrics. This indicates that it generates class
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activation maps that are smaller and less focused on the iconographic

symbols compared to the other approaches.

4.2.2.2 Irrelevant attention

Figure 4.12: Irrelevant attention at varying threshold values.

When evaluating the global IoU, a low value can occur for two

reasons:

1. The two areas have a very small intersection;

2. The two areas overlap well, but one is much larger than the

other.

Thus, an analysis of how much the class activation maps focus on ir-

relevant parts of the image helps to characterize low global IoU values.

Irrelevant attention corresponds to the percentage of class activation

map area outside any bounding box. Figure 4.12 shows that CAM has

the lowest irrelevant attention, coherently with the previous results.

Figure 4.13
6 compares the irrelevant attention values produced on

a sample image by different class activation maps algorithms. For

the same threshold value, CAM generates smaller irrelevant areas,

6 Madonna with Child and Infant St. John surrounded by Angels, Tiziano Vecellio,
1550.
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whereas Grad-CAM and Smooth-Grad-CAM++ include more irrele-

vant regions corresponding to the painting frame. The tendency of

Smooth Grad-CAM++ to focus on irrelevant areas can be seen also in

Figure 4.8 and 4.10.

(a) Original

(b) CAM
Irr. att.: 0.45

(c) Grad-CAM
Irr. att.: 0.72

(d) Grad-CAM++
Irr. att.: 0.75

(e) Smooth GC++
Irr. att.: 0.83

Figure 4.13: Different values of irrelevant attention produced by different
class activation maps algorithms (Smooth Grad-CAM++ with
σ = 1 and s = 5) at threshold t = 0.1. Manually annotated
symbol bounding boxes are reported.

4.3 qualitative analysis

This section presents a qualitative analysis of the results obtained by

the different class activation maps algorithms and highlights their

capabilities and limitations. Each example shows the original im-

age, the class activation maps generated by each algorithm (with the

background in black and foreground in white) and the ground truth
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bounding boxes. In this section, the generation of bounding boxes

serves the purpose of performing qualitative analyses, and this work

proposes a heuristic procedure for generating them.

This section is organized as follows: Section 4.3.1 presents posi-

tive examples; Section 4.3.2 presents negative examples; Section 4.3.3

presents an example of sculpture with multiple instances; Section 4.3.4

presents some examples of symbols not indicated in the ground truth

and found by the Class Activation Map algorithms; Section 4.3.5

presents the case of co-occurring classes; Section 4.3.6 proposes a

method to create bounding boxes from Class Activation Maps; Sec-

tion 4.3.7 presents qualitative analyses with symbol bounding boxes;

Section 4.3.8 presents qualitative analyses with whole saint bounding

boxes and Section 4.3.9 presents an evaluation of the automatically

obtained bounding boxes using common metrics.

4.3.1 Positive examples

Figure 4.14
7 shows an example in which all the algorithms focus well

on the iconography symbols. The image contains seven symbols with

different size, shape, and position, all identified and separated by the

class activation map algorithms. The irrelevant area on the top right

corresponds to a portion of the cardinal’s vest that has the same colour

and approximate shape of the cardinal’s galero appearing in many

paintings of Saint Jerome.

Figure 4.15
8 shows an example in which all the algorithms perform

well on a painting in which the visibility of the symbols is very

low. All class activation maps algorithms identify at least two out

7 Saint Jerome in his Study, Jan van Remmerswale, 1533.
8 St. Paul, nd, ca. 1510.
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(a) Original

(b) CAM (c) Grad-CAM

(d) Grad-CAM++ (e) Smooth GC++

Figure 4.14: Class activation maps with seven recognized symbols associated
with Saint Jerome.

of the three symbols. Only CAM misses the sword, which the other

algorithms identify by focusing on the hand holding it or on the sword

blade. The example of Figure 4.15 and many similar ones of black and

white and poor quality images highlight the ability of class activation

maps algorithms to extract useful maps also when the image has low

discriminative features.

Figure 4.16
9 illustrates a counterexample of the difficulty of detect-

ing such generic attributes as the vest. The vest is identified thanks to

a specific detail: the change of colour typical of the black and white

Dominican habit.

4.3.2 Negative examples

Class activation maps algorithms tend to fail consistently in two cases:

when multiple symbols are too close or have substantial overlap and

when the representation of a symbol is rather generic and covers a

wide area of the image.

9 Saint Dominic Guzmán and Four Saints, Guerau Gener, 1405.



4.3 qualitative analysis 67

(a) Original

(b) CAM (c) Grad-CAM

(d) Grad-CAM++ (e) Smooth GC++

Figure 4.15: Class activation maps extracted from a drawing of Saint Paul.
Four out of five symbols are identified despite their low visibil-
ity.

Figure 4.17
10 illustrates a typical example: Virgin Mary’s face and

Baby Jesus are merged into a single region, while the vest, which is

a rather generic attribute, is missed altogether or highlighted only

through small irrelevant details.

4.3.3 Multiple instances

A few artworks contain multiple instances of the same saint (i.e.,

the same character is present multiple times in the artwork). In

addition, some artworks contain scenes where the characters have

similar poses and are associated with similar symbols. A notable

10 Madonna col Bambino, Antonio Vivarini, ca. 1441.
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(a) Original

(b) CAM (c) Grad-CAM

(d) Grad-CAM++ (e) Smooth GC++

Figure 4.16: Class activation maps extracted from a paining of Saint Dominic.
The rather generic vest attribute is identified by focusing on its
double color.

example is presented in Figure 4.18,11 which represents Saint Anne

(on the left) and the adult Virgin Mary (on the right). In addition,

Virgin Mary is depicted, as a child, also in the left panel, in the arms

of Saint Anne.

Virgin Mary is always recognized when depicted as an adult, in the

right panel. Moreover, Grad-CAM, Grad-CAM++, and Smooth Grad-

CAM++ highlight her as the daughter of Saint Anne, in the left panel.

The model is confused by the presence of Saint Anne, which assumes

11 This sculpture is located in the altarpiece of Kvernes stavkyrkje, in the Averøy
Municipality, Møre og Romsdal, Norway. The original stave church was built during
the first half of the 14th century, while there are no information on the author or
realization period of the sculpture.
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(a) Original

(b) CAM (c) Grad-CAM

(d) Grad-CAM++ (e) Smooth GC++

Figure 4.17: Class activation maps with merged symbols and missed generic
attributes.

the typical pose of Virgin Mary and that holds, in her right arm, a

baby, which is likely Baby Jesus. Notably, Baby Jesus is recognized in

both panels and with a similar class activation map intensity.

The choice of differentiating the most prominent regions of the

artwork using gradients emphasizes the focus on the main characters

and symbols more effectively than in single-instance examples.

4.3.4 Relevant irrelevant regions

An interesting case occurs when the class activation maps algorithms

focus on a seemingly irrelevant area which, instead, contains a relevant

iconography attribute not present in the ground truth. Figure 4.19

illustrates three examples. The painting of Saint John the Baptist (a)12

12 Portrait of François I as St John the Baptist, Jean Clouet, 1518.
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(a) Original

(b) CAM (c) Grad-CAM

(d) Grad-CAM++ (e) Smooth Grad-CAM++

Figure 4.18: Class activation maps for multiple instances and similar poses
and symbols.

contains a seemingly irrelevant area in the top left, which focuses on a

bird. This is a less frequent attribute of the Saint that is not listed in

the iconography symbols used to annotate the images but appears in
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some paintings. The same happens with Saint Jerome (b),13 where the

class activation maps algorithms highlight an hourglass, an infrequent

symbol present only in a subset of the ArtDL images and not used in

the annotation. Finally, another case occurs with the iconography of

Saint Jerome (c),14 where the class activation maps algorithms focus

on the outdoor environment. This is a well-known symbol associated

with the Saint, who retired in the wilderness, but one that is hard to

annotate with bounding boxes and thus purposely excluded from the

ground truth annotations.

Figure 4.19: Class activation maps highlighting regions containing relevant
iconography attributes not present in the ground truth: a bird
associated with Saint John the Baptist (a) an hourglass asso-
ciated with Saint Jerome (b) and the wilderness where Saint
Jerome retired (c).

13 Saint Jerome, Albrecht Durer, 1521.
14 Landscape with St. Jerome, Simon Bening, 1515-1520.



72 evaluation

4.3.5 Confusion with unknown co-occurring class

Figure 4.20
15 presents an example in which all analysed variants make

confusion between Saint John the Baptist and Jesus Christ. The latter

is an Iconclass category too, but not one represented in the ArtDL data

set. Given the prevalence of paintings depicting Saint John the Baptist

in the act of baptizing Christ over those where the Saint occurs alone,

the CAM output highlights both the figures. This ambiguity would

reduce if the data set were annotated with the Iconclass category for

Jesus.

(a) Original

(b) CAM (c) Grad-CAM

(d) Grad-CAM++ (e) Smooth GC++

Figure 4.20: Class activation maps with confusion between Saint John the
Baptist and Jesus Christ.

15 Baptism of Christ, Guido Reni, ca. 1622-1623
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4.3.6 Bounding box generation

The goal of the presented work is to compare the effectiveness of alter-

native class activation map algorithms in isolating the salient regions

of artwork images that have the greatest impact on the attribution of

a specific iconography class. The capacity of a class activation map

algorithm to identify precisely the areas of an image that correspond

to the whole Saint or to one of the iconography symbols that charac-

terize him/her can help build a training set for the object detection

task. The class activation map can be used as a replacement for the

manual annotations necessary for creating a detection training set by

computing the smallest bounding boxes that comprise the foreground

area and using such automatically generated annotations for training

an object detector. This approach is known as weakly supervised object

detection and is an active research area [82].

To investigate the class activation maps’ potential in supporting

weakly supervised object detection, the region proposals obtained by

drawing bounding boxes around the connected components of the

class activation maps have been compared visually with the ground

truth bounding boxes of the iconographic symbols. For completeness,

we have also computed the bounding boxes surrounding all the fore-

ground pixels and compared them with manually created bounding

boxes surrounding the whole Saints. The candidate region proposals

to use as automatic bounding boxes have been identified with the

following heuristic procedure.

1. Collect the images on which all the four methods satisfy a mini-

mum quality criterion: for symbol bounding boxes component

IoU greater than 0.165 at threshold 0.1 (see Figure 4.7) and for
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whole Saint bounding boxes global IoU greater than 0.24 at

threshold 0.05 (see Figure 4.9).

2. Compute the Grad-CAM class activation map of the selected

images and apply the corresponding threshold: 0.1 for symbol

bounding boxes and 0.05 for whole Saint bounding boxes.

3. Only for symbol boxes: split the class activation maps into

connected components. Remove the components whose average

activation value is less than half of the average activation value

of all components. This step filters out all the foreground pixels

with low activation that usually correspond to irrelevant areas

(Figure 4.13).

4. For each Iconclass category, draw one bounding box surrounding

each component (symbol bounding boxes) and one bounding

box surrounding the entire class activation map (whole Saint

bounding boxes).

In the procedure above, Grad-CAM is chosen to compute the can-

didate symbol and whole Saint bounding boxes because it has the

highest value of the bounding box coverage metrics (together with

Smooth Grad-CAM++) and covers wider areas at the same time focus-

ing on the correct details.

4.3.7 Symbol bounding boxes

Figure 4.21 presents some examples of the computed symbol bound-

ing boxes (green) compared with the ground truth bounding boxes

(red). The proposed procedure can generate boxes that in many cases

correctly highlight and distinguish the most important iconography
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Figure 4.21: Examples of symbols bounding boxes generated from Grad-
CAM (green) and manually annotated (red).

symbols present in the images. When the symbols are grouped in a

small area (e.g., the bushy hair and beard of Saint Peter), the procedure

tends to generate one component that covers all of them, thus creat-

ing only one bounding box. Sometimes, elements in the image that

have not been manually annotated in the ground truth are correctly

detected (e.g., the scroll in the hand of Saint John the Baptist in the

first painting of Figure 4.21).

Figure 4.22: Examples of saints bounding boxes generated from Grad-CAM
(green) and manually annotated (red).
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4.3.8 Whole Saint bounding boxes

Figure 4.22 illustrates some examples of computed whole Saint bound-

ing boxes (green) compared with the ground truth boxes (red). The

automatically generated bounding boxes localize almost entirely the

Saint’s figure and include only very small irrelevant areas.

Figures 4.21 and 4.22 show that the simple procedure for processing

class activation maps outputs is sufficient to generate good quality

bounding boxes that can act as a proxy to the ground truth for training

a fully supervised object detector.

4.3.9 Evaluation of whole Saint bounding boxes

For the whole Saint case, each estimated bounding box can be labelled

with the iconography class of the corresponding Saint portrayed in the

image. In this way, it is possible to quantify the coincidence between

the bounding box of the ground truth and the bounding box computed

from the class activation map. This analysis is qualitative with respect

to bounding boxes creation, since it does not perform a thorough

comparison of methods for creating them.

For this purpose, three object detection metrics have been computed:

the average IoU value between the GT and the estimated bounding

boxes, Mean Average Precision and GT-known Loc. The latter is used in

several works [67, 16, 4] to evaluate the localization accuracy of object

detectors and is defined as the percentage of correct bounding boxes.

A bounding box is considered correct only when the IoU between the

GT box (for a specific class) and the estimated box (for the same class)

is greater than 0.5.
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Mean Average Precision cannot be used for symbol-level bounding

boxes, since the ground-truth bounding boxes are annotated with

classes (e.g., Saint Sebastian - arrows). On the other hand, the ones

defined automatically cannot be associated with a class since the

training process concerns only the saints and their classes. Similarly,

GT-known Loc counts the number of correct bounding boxes with

respect to ground-truth labels, but the network can extract only the

saint-level labels.

Results are reported in Table 4.4. Grad-CAM confirms as the method

with the best performances, Smooth-Grad-CAM++ yields similar re-

sults, and CAM is the worst performing method in all the computed

metrics. Grad-CAM produces bounding boxes that, on average, have

0.55 IoU with the GT boxes and the GT-Known Loc metric shows that

61% of those boxes have an IoU value greater than 0.5.

Figure 4.23 presents the normalized distribution of IoU values for

Grad-CAM. We can observe that ∼ 83% of the generated boxes have

an IoU value greater than 0.3 and that most values are in the range

between 0.4 and 0.9, with ∼ 12% having an IoU greater than 0.9.

Table 4.5 shows the mAP values obtained with GradCAM on the ten

ArtDL classes. It shows that in general common classes tend to have a

higher mAP, consistently with other results.

The whole Saint estimated bounding boxes appear suitable for

creating the pseudo ground truth for training an object detector with

the weakly supervised approach. Two observations motivate the

viability of Grad-CAM for this purpose. As in the GT-known Loc

metrics, the goodness of object detection is usually evaluated with

a minimal IoU threshold of 0.5. The boxes generated automatically

with Grad-CAM obtain 0.55 IoU on average, which suggests that the
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automatically estimated bounding boxes have a quality similar to the

bounding boxes produced by a fully supervised object detector, albeit

inferior to the quality of the bounding boxes created by humans. Grad-

CAM, designed to be an interpretability technique, can be used also to

estimate bounding boxes that reach 31.6% mAP on cultural heritage

data without any optimization. This finding compares well with the

fact that methods designed and optimized specifically for weakly

supervised object detection reach values around 14% on artworks data

sets similar to ArtDL [28, 30]. For this reason, simple and generic

techniques, such as Grad-CAM, which can localize multiple Saint

instances and even multiple characteristic features, are a promising

starting point for advancing weakly supervised object detection studies

in the cultural heritage domain.

Table 4.4: Average IoU, GT-Known accuracy and mAP values for the whole
Saint bounding boxes estimated with the four analyzed class
activation map techniques. The values are calculated with an
activation threshold equal to 0.05.

Method
Average
IoU

GT-Known
Loc (%)

mAP (at IoU
> 0.5)

CAM 0.489 49.70 0.206

Grad-CAM 0.551 61.20 0.316

Grad-CAM++ 0.529 59.88 0.292

Smooth Grad-CAM++ 0.544 61.18 0.307

To conclude, this section has shown that Class Activation Map

methods can be used effectively to create bounding boxes based on a

simple heuristic procedure.
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Figure 4.23: Normalized distribution of IoU values between whole-Saint
Grad-CAM estimated bounding boxes and ground truth bound-
ing boxes.

Table 4.5: Mean Average Precision (mAP) values for each class of the ArtDL
data set. Bounding boxes are estimated with GradCAM.

Saint Mean Average Precision

Anthony 0.076

John 0.289

Paul 0.173

Francis 0.33

Magdalene 0.616

Jerome 0.228

Dominic 0.142

Virgin 0.442

Peter 0.399

Sebastian 0.468
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C O N C L U S I O N S A N D F U T U R E W O R K

This chapter presents the conclusions drawn from this research and

proposes future promising directions of research, in the context of

a wider project, whose goal is to be able to explain the meaning

of artworks automatically. Section 5.1 presents the contributions

of the work and how it has contributed to answering the research

questions identified in the Introduction. Section 5.2 outlines promising

research directions, while Section 5.3 presents the context of this work,

emphasizing the contribution of this research in the overall project.

5.1 contributions

This work has presented a comparative study about the effectiveness

of class activation maps as a tool for explaining how a CNN-based

classifier recognizes the Iconclass categories present in images por-

traying Christian Saints. The symbols relevant to the identification

of the Saints were annotated with bounding boxes and the output of

the class activation maps algorithms were compared to the ground

truth using four metrics. The analysis shows that Grad-CAM achieves

better results in terms of global IoU and covered bounding boxes and

Smooth Grad-CAM++ scores best in the component IoU thanks to its

precision in delineating individual small size symbols. The irrelevant

attention metrics promotes the original CAM algorithm as the best

81
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approach, but the low component IoU and box coverage complement

such an evaluation showing that CAM covers too small areas. While

for natural images, Smooth Grad-CAM++ outperforms the other three

algorithms [52], in our use case, Grad-CAM is the method of choice

for deriving from class activation maps the bounding boxes necessary

to train a weakly supervised detector.

This work has addressed the research questions presented in the

Introduction:

• Are CAMs an effective tool for understanding how a CNN classifier

recognizes the iconography classes of a painting?

CAMs are effective for understanding how a CNN classifier

recognizes the iconography classes of a painting since they high-

light the most relevant areas of the painting and since from them

it is possible to obtain bounding boxes surrounding the most

relevant symbols.

• Are there significant differences in the state-of-the-art CAM algorithms

with respect to their ability to support the explanation of iconography

classification by CNNs?

The differences among different CAM algorithms are not exceed-

ingly significant, but this work shows that in general Grad-CAM

yields better results both quantitatively and qualitatively.

• Are the image areas highlighted by CAMs a good starting point for

creating semi-automatically the bounding boxes necessary for training

iconography detectors?

The image areas highlighted by CAMs are a good starting point

for creating bounding boxes, but the extraction of better bound-

ing boxes may rely either on new algorithms for extracting the
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bounding boxes or on other activation map algorithms since

there is margin for improvement in terms, e.g., of the GT Loc

metrics.

The contributions can be summarized as follows:

• Application of different state-of-the-art class activation map al-

gorithms on 10 classes of the ArtDL data set;

• Creation of a test data set, comprising 823 annotated images

annotated with 2957 bounding boxes surrounding specific icono-

graphic symbols;

• Creation of an additional test data set, comprising 823 annotated

images annotated with 882 bounding boxes surrounding specific

saints;

• Quantitative analyses of different algorithms concerning the

symbol bounding boxes;

• Quantitative analyses of different algorithms concerning the

saint bounding boxes;

• Comparison of the results of the different class activation map

algorithms with natural images;

• Qualitative evaluation aimed at identifying the strengths and

weaknesses of the different class activation map algorithms.

5.2 future work

Future work will concentrate on the comparison of other activation

mapping techniques [4, 16, 75, 85] and on devising precise bounding
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boxes surrounding the iconographical symbols. In particular, the

studies presented in [16] and [4] are based on the re-training of the

network, an approach quite different from the currently analyzed

alternatives.

The results of the CAMs algorithms selection can lay the foundation

to pursue the ultimate goal of our research, which is to use the output

of class activation maps to create training data sets for weakly super-

vised iconography symbol detection and segmentation. An automated

system for iconography analysis of artworks could promote educa-

tional applications development for Art History experts and students.

Another future research path consists of addressing more complex

Iconclass categories involving complex scenes (e.g., the crucifixion, the

nativity, the visitation of the magi, etc.) and exploring the iconography

of other cultures.

Among the proposed directions of research, the ability to create

better bounding boxes starting from the class activation maps lays

the foundations for thorough analyses of artworks. Several methods

deal with the problem of fine-grained visual categorization (e.g., [27,

40, 83]), which is relevant because it focuses on confined areas of

the images. In the context of artworks, such areas correspond to the

relevant symbols associated with saints. Another approach consists of

changing the network structure, to introduce additional components

aiming at directing the focus on the most relevant areas of the painting.

The more general methods trying to change the network layout are

known as attention mechanisms [77].

The next sections analyze those alternatives more in detail. Sec-

tion 5.2.1 presents promising fine-grained categorization methods,
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while Section 5.2.2 presents different recently proposed attention mech-

anisms.

5.2.1 Fine-grained categorization

This section introduces some promising fine-grained categorization

approaches which, given an input image, can extract bounding boxes

surrounding its most relevant parts.

Ge et al. [27] proposed to extract an initial segmentation from a

class activation map. The initial segmentation is then passed through

Mask R-CNN to obtain a probability map (i.e., a map that aims at

covering the object more precisely than the class activation map)

and, from this, a bounding box and segmentation. They propose

the application of their method on two data sets containing natural

images of animals and on one more generic data set. Their approach

also requires the implementation of LSTM to combine the outputs of

Mask R-CNN for generating the probability map. This method is

promising in their results, but it would be necessary to verify whether

their results are as promising when considering artworks and when

dealing with multiple objects in the same image, since they show only

single-instance classification examples.

Korsch et al. [40] proposed a different approach, based on both

the initial prediction and the back-propagation of feature importance.

This research considers two bird data sets, a car data set and a flowers

data set. This research is interesting because it shows promising

results using ResNet-50 as a backbone in the case of the cars data

set. Their proposal, differently from Ge et al.’s pipeline, focuses on

the computation of a sparse saliency map, from which they extract
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the bounding boxes of the parts of the image. Similarly to Ge et al.,

this research’s examples contain a single object, and applying this

approach to non-natural images containing multiple objects would

also be an interesting research path.

Other methods rely on subsequent crops of the original image,

to find the relevant part images. Zhang et al. [83] research shows

that their method can achieve higher localization accuracy than other

state-of-the-art methods without adding trainable parameters. Their

proposal is based on the introduction of two novel modules, used for

predicting the position of an object and for the attention part proposal.

This approach is applied to images concerning specific fields (i.e., cars,

birds, and aircraft), which does not allow to accurately estimate its

performances on ArtDL. Moreover, similarly to the other presented

approaches, all the examples focus on a single object per image.

5.2.2 Attention mechanisms

This section presents some recently proposed attention mechanisms.

In general, their purpose is to generate activation maps, possibly

changing the structure of the network. From activation maps, it is

possible to extract bounding boxes, for example as shown in this

research.

Bae et al. [3] proposed three changes to a CNN to improve the

quality of the activation maps:

• Replacing GAP with Thresholded Average Pooling (TAP): since

the score associated with a small relevant area in an image is

low, CAMs compute a high corresponding weight to compensate

it. For this reason, larger areas are considered relatively less
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important than smaller ones, even when they are associated with

the same maximum score. TAP determines the score associated

with a smaller area considering only the part of that area above

a certain threshold;

• Introducing Negative Weight Clamping (NWC): since a class

activation map is the weighted average of feature maps, such

feature maps may also be associated with negative weights. The

authors observed experimentally that not considering the feature

maps associated with negative weights brought to better results,

hence they neglect them;

• Introducing percentile: while the creation of bounding boxes

traditionally relies on fixed thresholds, independent of the image

(i.e., the class activation map always has values below a fixed

threshold t outside the bounding box), this research proposes

to create bounding boxes considering a threshold given by, e.g.,

the 90th percentile. This threshold depends on the distribution

of the class activation map values.

This research is particularly promising, since it proposes three

different methods, which can be applied separately, and their results

can be studied on the ArtDL data set. In particular, the percentile

method allows to compare results without re-training the network

or re-computing the activation maps, hence it may be applied to the

activation map methods presented in this thesis.

A completely different method, Attention Dropout Layer (ADL) was

proposed by Choe and Shim [17]. The idea behind their method is

to re-train the network, hiding the parts deemed most relevant at

that moment, so that during the training the network can focus on
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other relevant parts. Give an input, the algorithm randomly chooses

whether to hide parts of the image or using the entire image, for each

iteration. This method may allow focusing on more symbols than the

current ones, but in the case of multiple saints in an image, it may

attribute symbols to the wrong saint, since they may be loosely related

to him, and given more importance by ADL.

One possibility consists of combining different methods, comparing

the results on the ArtDL data set. For instance, the percentile can

be combined with GradCAM or with ADL. Such possibilities have

not been attempted so far and may give promising results also in the

analysis of natural images.

5.3 research context

The study described in this thesis fits in the context of a broader

research project, whose final goal consists of devising a textual de-

scription of the artwork meaning, given the picture of an artwork as

an input.

Figure 5.1 provides an overview of the main steps of the overall

project, which includes class activation maps calculation. In partic-

ular, class activation mapping analyses rely on a previous data set

preparation and a training procedure. The subsequent research steps

consist of the creation of bounding boxes, given the activation maps,

the extension of the proposed methodology to a more extensive data

set, conduction of further analyses to improve the previous result,

and, finally, the application in the field of digital humanities (e.g.,

historical and cultural studies or cultural heritage management opera-
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tions). Each step in the presented workflow also includes the results’

evaluation, which relies on different metrics.
Version February 22, 2021 submitted to Journal Not Specified 5 of 25

Stage 1 Stage 3

Stage 2 Stage 4Dataset
preparation

Images retrieval, data cleaning,
preliminary analysis, selection of a

subset of the dataset

Training
Comparison of several CNN

models for image classification

Activation
mapping

Comparison among several
activation mapping techniques

Bounding boxes
creation

Creation of the bounding boxes on the
basis of the activation maps found in
the previous step and using inference

Stage 5

Extension
Analysis on a wider dataset and

comparison with previous results;
evaluation of multiple labels in the

same image.

Stage 6

Further analysis
Depending on the results, possible
repetition of some of the previous

steps.
Stage 7

Application
Application of this research for
example to perform advanced

queries on artwork datasets and for
further studies in the field of

humanities.

Figure 2. Overall project workflow – this paper refers to the implementation of class activation maps.

fine-tune a network, which had been previously trained with natural images, using art161

images, as introduced in [24].162

Previous studies, however, do not perform comparative analyses using class activa-163

tion maps, which have two purposes: the semi-automatic generation of bounding boxes164

and segmentation and explaining why some areas were given more importance during165

the classification (this applies, for example, in situations in which there are symbols166

associated with specific saints, as shown in Section 5).167

Milani and Fraternali [11] presented a classifier, which allows to determine the pres-168

ence of subjects in artworks, associated with 10 different classes, representing Christian169

saints. Such classifier yielded good results in terms of image classification (achieved a170

precision of 71.7%), and is the foundation of this research. Milani and Fraternali analyzed171

the results obtained from the application of Class Activation Maps, focusing on some172

use cases. Different from them, this work analyzes both the results obtained in case of173

different class activation maps variants and compares them in order to determine which174

variant is better for the automated calculation of bounding boxes.175

3.2. Interpretability and Activation Maps176

Class Activation Maps (CAM) [15] have shown their effectiveness in the task of177

highlighting the most discriminative areas of an image in several fields, ranging from178

medicine [25] to fault diagnostics [12]. The original formulation of CAMs has been179

subsequently extended. In particular, Selvaraju et al. [16] introduced GradCAM, which,180

differently from CAM, also exploits the gradients that pass through the final convo-181

lutional layer. Chattopadhay et al. [17] introduced GradCAM++ which, similarly to182

GradCAM, considers gradients, but is based on a different mathematical formulation,183

which yielded to improvements in the localization of single and multiple instances. The184

other variant we analyze is SmoothGradCAM++, which was introduced by Omeiza185

et al. [18] and consists of applying GradCAM++ iteratively on the combination of the186

original image and a Gaussian noise.187

4. Class Activation Maps for Iconography Classification188

In this paper, we present a comparison of different class activation mapping meth-189

ods, which can be further employed for an iconographical analysis of visual artworks.190

The implementation of CAM, GradCAM, GradCAM++, and SmoothGradCAM++ is191

based on the mathematical definitions provided, respectively, by [15], [16], [17], and [18].192

To the best of our knowledge, no comparative studies consider CAM, GradCAM,193

GradCAM++, and SmoothGradCAM++ in the context of automatic artworks analysis.194

Milani and Fraternali [11] conducted the only study which performed an analysis on195

CAMs in this domain.196

Figure 3 presents the ResNet50 architecture, which was used to perform the classifi-197

cation on the basis of which the activation maps are computed. The input of the network198

is, in this research, a painting, and the output is the set of probabilities associated to the199

different classes (i.e., different saints). In general, ResNet is constituted by a sequence of200

Figure 5.1: Overall project workflow – the research described in this thesis
refers to the implementation of class activation maps (Step 3).

The study described in this thesis is meaningful since it performs

quantitative and qualitative analyses of different class activation map

algorithms., which are relevant because bounding boxes creation often

relies on such algorithms. In particular, a quantitative comparison

of class activation maps is necessary to determine which ones cover

the correct area in different scenarios, given an activation threshold.

Combining qualitative and quantitative comparisons, in turn, allows

determining whether such class activation maps locate the artwork

subject (i.e., a saint and the associated symbols). The coverage analysis

would support the definition of the boundaries of a target object and,

consequently, an appropriate bounding box surrounding it. Bounding

boxes can be later used to re-train networks and be explored in the

definition of more robust evaluation protocols to support compar-

isons with state-of-the-art approaches (e.g., the work of Milani and

Fraternali [47]).

The main advantage in using the workflow proposed in Figure 5.1

consists of avoiding the manual creation of the bounding boxes for

every image and later using the areas obtained by Class Activation

Maps to train an object detection model based on automatically gen-

erated bounding boxes. In particular, to achieve the initial results,



90 conclusions and future work

the overall research relies on a fine-tuning approach on Resnet50 [33],

which exploits transfer learning, as proposed by Milani and Fraternali

in [47]. In this case, high-level features, such as faces, objects, and

animals are in the topmost layers of the pre-trained network without

the need of completely retraining the proposed model.
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