
Private Identification Schemes for
5G IoT Networks

July 2021M
as

te
r's

 th
es

is

M
aster's thesis

Kenneth Gabrielsen

2021
Kenneth Gabrielsen

NT
NU

N
or

w
eg

ia
n

Un
iv

er
si

ty
 o

f
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

Fa
cu

lty
 o

f I
nf

or
m

at
io

n
Te

ch
no

lo
gy

 a
nd

 E
le

ct
ric

al
En

gi
ne

er
in

g
De

pa
rt

m
en

t o
f I

nf
or

m
at

io
n

Se
cu

rit
y

an
d

Co
m

m
un

ic
at

io
n

Te
ch

no
lo

gy

Private Identification Schemes for 5G IoT
Networks

Kenneth Gabrielsen

Master of Science in Communication Technology
Submission date: July 2021
Supervisor: Stig F. Mjølsnes
Co-supervisor: Ruxandra F. Olimid

Norwegian University of Science and Technology
Department of Information Security and Communication
Technology

Title: Private Identification Schemes for 5G IoT Networks

Student: Kenneth Gabrielsen

Problem description:

This work will investigate the security problem of private identification, in particular

where mobile user equipment reports its identity to the core network. This problem is

clearly exhibited by IMSI catcher active attacks. Recently, the 5G standard has introduced

a public key cryptography-based solution for identity privacy. However, simpler resource-

constrained Internet-of-Things devices may not easily realize public-key cryptography,

therefore more lightweight solutions should be sought.

Analyze and compare state-of-the-art lightweight cryptography schemes for private

identification in IoT mobile networks. The study should include concrete performance

analyses related to real-world devices and protocols, both based on published reports and

own experimental testing.

Date approved: 2021-03-18

Responsible Professor: Stig F. Mjølsnes, IIK

Supervisor: Stig F. Mjølsnes, IIK

Co-supervisor: Ruxandra F. Olimid IIK

Abstract

This thesis explores the problem of Private Identification pertaining to the

introduction of Internet of Things (IoT) devices to the new 5G Mobile network.

The current solution in 5G for identity privacy relies on public-key cryptogra-

phy, and it is uncertain if this is reliable for IoT devices. This thesis specifies

requirements for a private identification protocol that sufficiently guarantees

the privacy of a subscriber, without it impacting IoT use cases in terms of

performance. An analysis of proposed lightweight alternatives is then done to

cover the informal security requirements for a suitable solution. To evaluate

performance, an experimental framework was created that greatly simplifies

the process of benchmarking cryptographic primitives and schemes. This is

then used to gather experimental results on the performance of the current

5G solution and proposed alternatives. Deductions are then made based on

the informal analysis and experimental results of the schemes. The 5G solu-

tion is found to be sufficiently performant for Massive IoT use cases without

high mobility. All but one of the symmetric solutions had sufficient identity

privacy for mobile networking. However, the remaining scheme did not have

sufficient reliability. The proposed schemes also suffer from a lack of under-

standing of how identification is done in 5G-AKA, which limits compatibility

and cryptographic flexibility.

Sammendrag

Oppgaven tar utgangspunkt i problemet med privat identifisering for Internet

of Things (IoT) enheter når de skal brukes i det nye 5G mobilnettet. Løsnin-

gen i 5G for å holde identifiserbar informasjon hemmelig benytter seg av

offentlig-nøkkel kryptografi. Med tanke på ytelse, så er det usikkert om dette

er en gunstig løsning for IoT enheter. Krav til en gunstig protokoll som ivaretar

privat identifisering i 5G mtp. ytelse for IoT blir først spesifisert. Disse kravene

blir brukt som utgangspunkt i analyse av en rekke symmetriske protokoller

som kan erstatte den nåværende 5G løsningen. For å evaluere ytelsen til disse

protokollene, så ble et eksperimentelt rammeverk laget. Rammeverket for-

enkler arbeidet med referansemåling av kryptografiske protokoller. Analysen

og de eksperimentelle resultatene blir da brukt som grunnlag for å svare på

oppgaveproblemet. Løsningen brukt i 5G for privat identifisering er tilstrekke-

lig i ytelse for å håndtere Massiv IoT bruksområder med liten mobilitet. Alle

untatt en av de symmetriske protokollene har derimot sikkerhetsvakheter

som gjør dem utsatt for en aktiv angreper. Den gjenstående protokollen er

ikke påligelig nok å bruke i mobilnettet. De symmetriske forslagene lider også

av en utilstrekkelig forståelse av hvordan identifisering blir gjort i 5G-AKA pro-

tokollen, som begrenser kompatibiliteten og den kryptografiske fleksibiliteten

til 5G-AKA.

Preface

It is assumed that the reader possesses basic knowledge of cryptography.

Simple knowledge of the mobile network may also help at times.

This thesis required working with multiple programming languages, dif-

ferent hardware, and a bunch of libraries and software. Initially, I did not

know how to program with low-level hardware, so that was definitely a learn-

ing process. That required separating the experimental framework into two

design stages, where I first just made something that worked. The next version

is a lot more streamlined, so if anyone else wants to do something similar,

they could use this work as a basis to hopefully dodge most of the issues I

encountered.

At times I struggled with a lack of direction and scope with the thesis. My

supervisors Stig Frode and Ruxandra were definitely helpful in giving me a

sense of direction in those moments. Thank you.

I could not have completed this thesis without such a strong support

group. I am grateful to my parents for the love and understanding they gave

me during these difficult times. My friends’ support was also a much-needed

relief when I was tired of everything and close to giving up. Thank you.

Contents

List of Figures xi

List of Tables xiii

List of Acronyms xv

1 Introduction 1
1.1 Motivation . 1

1.2 Research . 2

1.2.1 Research Questions . 2

1.2.2 Research Objectives . 2

1.3 Methodology . 3

1.4 Outline . 3

2 Private Identification 5
2.1 The Private Identification Problem . 5

2.1.1 The Private Identification Problem 6

2.1.2 The Private Identification Protocol 6

2.2 Trivial Solutions . 7

2.2.1 Key Search . 7

2.2.2 Public-key Cryptography . 8

2.2.3 Pseudonyms or Temporary Identifiers 9

3 Private Identification for Mobile Networks 11
3.1 Preliminaries . 11

3.1.1 Mobile Communications Network Architecture 11

3.1.2 Subscriber Identification preceding 5G 14

3.1.3 5G-AKA . 15

3.1.4 PID Protocol 5G Adaption . 17

3.2 5G ECIES . 18

3.2.1 Asymmetric Cryptography Components 19

3.2.2 Symmetric Cryptography Components 20

3.2.3 ECIES at UE . 20

vii

3.2.4 ECIES at HN . 22

3.3 5G-AKA ECIES PID Protocol compatibility 23

3.3.1 ECIES Security . 23

3.3.2 SUCI Overhead . 24

3.3.3 Performance . 24

4 Onboarding IoT and Proposed Schemes 25
4.1 Massive and Critical IoT . 25

4.1.1 Critical IoT . 25

4.1.2 Massive IoT . 25

4.2 Revised Threat Model . 26

4.2.1 PID Protocol 5G IoT Adaption . 26

4.3 HashXOR . 27

4.3.1 Scheme Description . 27

4.3.2 SUCI Linkability Attack . 28

4.3.3 Chosen SUCI Attack . 29

4.3.4 DDoS Attack . 29

4.3.5 PID Protocol Compatibility . 29

4.3.6 Scalability . 30

4.3.7 SUCI Overhead . 30

4.4 PPSE-AKA . 30

4.4.1 Scheme Description . 30

4.4.2 SUCI Linkability Rttack . 31

4.4.3 PID Protocol Compatability . 31

4.4.4 SUCI Overhead . 32

4.5 Braeken’s Scheme . 32

4.5.1 MiTM Attack . 32

4.5.2 PID Protocol Compatibility . 32

4.5.3 SUCI Overhead . 33

4.6 SEL-AKA . 33

4.6.1 SUCI Linkability Attack . 33

4.6.2 PID Protocol Compatability . 33

4.6.3 SUCI Overhead . 33

4.7 Khan et al. Scheme . 34

4.7.1 Scheme Description . 34

4.7.2 Scheme Flaws . 34

4.7.3 PID Protocol Compatability . 35

4.7.4 SUCI Overhead . 35

4.8 NewHope . 35

4.8.1 SUCI Overhead . 36

5 Experimental Setup 37

5.1 Hardware Selection . 37

5.2 Software . 39

5.3 Experimental Framework . 39

5.4 Experimentation . 42

5.4.1 Experimental Methodology . 42

5.4.2 Cryptographic Scheme Implementations 43

6 Experimental Results 45
6.1 Primitives . 45

6.2 Implemented Schemes . 46

6.3 Estimated Schemes . 46

7 Discussion 49
7.1 Observations . 49

7.1.1 Scheme Analysis . 49

7.1.2 Performance . 51

7.2 Answers to Research Questions . 52

8 Conclusion 55
8.1 Summary of Thesis . 55

8.2 Future Work . 56

References 57

Appendices

A Setting up and using the framework 61

B Step-by-step derivation of experimental results 69

List of Figures

2.1 Subscriber-Provider Communication . 5

3.1 Mobile Architecture . 12

3.2 SUPI/IMSI . 13

3.3 SUCI . 15

3.4 5G-AKA . 16

3.5 ECIES UE Encryption . 21

3.6 ECIES Scheme Output . 22

3.7 ECIES HN Decryption . 22

5.1 Development Boards . 38

5.2 A session of benchmarking and resulting output 41

A.1 PlatformIO project in VScode . 62

xi

List of Tables

3.1 ECIES Profiles . 19

5.1 Device Specifications . 38

6.1 Average Primitive Execution Time . 45

6.2 Average Impleemented Scheme Execution Time 46

6.3 Scheme Cost Using primitives . 47

6.4 Average Estimated Scheme Execution Time . 47

7.1 Analysis of Proposed Schemes Overview . 50

xiii

List of Acronyms

5G-AKA 5G Authentication and Key Agreement.

DDoS Distributed Denial-of-Service.

ECC Elliptic-Curve Cryptography.

ECIES Elliptic Curve Integrated Encryption Scheme.

GUTI Globally Unique Temporary Identifier.

HN Home Network.

HNI Home Network Identifier.

IMSI International Mobile Subscriber Identity.

IoT Internet of Things.

KDF Key Derivation Function.

PID Private Identification.

PKC Public-Key Cryptography.

RNG Random Number Generator.

SN Serving Network.

SUCI SUbscription Concealed Identifier.

SUPI SUbscription Permanent Identifier.

TMSI Temporary Mobile Subscriber Identity.

xv

UE User Equipment.

USIM Universal Subscriber Identity Module.

VN Visiting Network.

Chapter1Introduction

The Internet of Things (IoT) growth has been staggering over the last few years, and this

trend is expected to continue. Statista forecasts that there were 30.7 billion IoT devices in

2020, which is expected to grow to more than 75 billion by 2025 [Sta]. Using these numbers,

Safaei et al. anticipate that there will be 9 smart devices per person by 2025 [SMBE17]. Such

growth spurs a significant increase in sent data that may involve identifiable information

about individuals or the device itself.

Meanwhile, the 5G network is in the process of being rolled out in several countries.

In Britain, it is expected that the new mobile network will cover 90% of the population by

2027 [OF18]. 5G also contains new security specifications on how to handle user identity

privacy. Contrary to previous mobile network generations, it ensures the confidentiality

of a user’s identity by using public-key cryptography [rGPP18]. This is a viable solution

for commodity mobile devices [JNNN17]. But it is also expected that the 5G network will

facilitate communication between IoT devices. Public-key solutions typically do not work

well with computationally constrained devices, which may impede the onboarding of IoT

to the 5G Mobile Network. This problem has spurred on several lightweight symmetric

proposals for handling identity privacy in the 5G network.

1.1 Motivation

To facilitate further understanding of recently proposed symmetric protocols and how

they fit with the 5G security specifications is of main importance in this thesis. Their

different means to achieve identity privacy for the 5G network create interesting trade-offs

in regards to security and performance. Understanding their differences and drawbacks

could be helpful for designing better solutions that achieve identity privacy. Jimenez et

al. also highlights the need to evaluate the performance of the current 5G solution for

identity privacy on commodity IoT devices [JNNN17].

1

2 1. INTRODUCTION

1.2 Research

This section details the relevant thesis research questions and associated research objec-

tives.

The main research goal is to comprehensively assess recent lightweight protocols

suitable to maintain identity privacy in mobile networking [Cho21, KDM18, PGGM20,

GSZ19, Bra20]. This assessment includes both security analysis and performance analysis

adhering to mobile network user privacy requirements and IoT performance requirements.

As such, the current 5G solution for this problem is also evaluated for comparison.

1.2.1 Research Questions

– RQ1. To what degree is the current 5G identity privacy scheme suitable for IoT

devices?

– RQ2. To what degree do the lightweight alternatives substitute the current solution

in regards to both security and performance?

– RQ3. What are the possible trade-offs and differences between these lightweight

solutions?

– RQ4. Do the proposed solutions minimally interfere with current 5G security speci-

fications and architecture?

1.2.2 Research Objectives

– RO1. Analyze the current 5G Authentication and Key Agreement (5G-AKA) protocol

and its identification scheme and create a set of requirements suitable for a 5G

Private Identification Protocol.

– RO2. Extend this protocol to cover requirements for onboarding IoT devices in

regards to performance and security.

– RO3. Do security analysis of proposed lightweight schemes for private identification

in mobile networking.

– RO4. Create an experimental framework for testing the proposed schemes.

– RO5. Use the framework to evaluate proposed scheme performance on commodity

IoT devices.

– RO6. Use scheme security analysis and experimental results to answer research

questions.

1.3. METHODOLOGY 3

1.3 Methodology

The methodology used for this thesis can be divided into four parts. The first is research

into recent private identification protocols, their applicability to mobile networks, and

their applicability for lightweight embedded devices. This is done through a literature

study of relevant papers, technical specifications regarding 5G, and publications with the

relevant scheme proposals.

The second is the development of an experimental framework for evaluating the

performance of the proposed schemes.

The third is an experiment carried out by using the aforementioned framework. The

experiments are done on several IoT devices varying in computational power, reflecting

the current IoT market. This will evaluate the schemes based on their performance.

The fourth is a discussion of the applicability of the schemes using the literature study

and the results from the experiments, where they are matched according to a proposed

set of necessary security and performance requirements for a 5G IoT Private Identification

Protocol.

1.4 Outline

This thesis consists of 6 chapters, including this one.

Chapter 2 presents the Private Identification problem and solution, the Private Identi-

fication protocol, in a general setting. Some trivial solutions are also presented.

Chapter 3 presents the problem in mobile networks, the historical solutions, and the

current solution proposed for the 5G mobile network. It extends the standard protocol

requirements to be applicable in mobile networking.

Chapter 4 presents the problem in the context of IoT and mobile networking, where

the protocol requirements are extended again to be applicable for IoT devices using the

mobile network. The proposed schemes and security analysis is also done here.

Chapter 5 details the experimental framework and its functionality. It also presents

the experimental setup using the framework.

Chapter 6 details the experimental results gathered using the framework.

Chapter 7 Summarizes the security analysis and experimental results and answers the

research questions.

4 1. INTRODUCTION

Chapter 8 Concludes the thesis by summarizing the accomplished work and points

out some future research that could be done.

Chapter2Private Identification

This chapter gives an overview of the Private Identification problem, along with an ex-

planation of a proposed general protocol to handle the problem, and relevant security

requirements for it.

2.1 The Private Identification Problem

This problem pertains to the scenario where a client entity, with no secure communication

established, needs to register its identity to a server entity over a communication system.

This is either just done to register said client entity or as the setup for authentication to

facilitate further communication.

K1

Kn

S1

Sn

......

(Si , Ki)
Subscriber Si Provider P

Database of
 Subscribers

Subscriber-key pairs

Input:

Input:

Provider Output: (Si , Ki)

....

M1

M2

Mm

m Communication Rounds

Figure 2.1: Subscriber sends concealed Si to provider P, who then derives the identity.
Figure inspired from protocol overview in [MO17b].

5

6 2. PRIVATE IDENTIFICATION

The client entity is known as the subscriber, and the server entity is known as the

provider. This relationship is one-to-many, where a provider has to handle several sub-

scribers concurrently. Subscriber i knows of its identity Si and may also possess a crypto-

graphic subscriber key Ki that could be used to establish secure communication with the

provider. The provider has a register of all the subscriber identities and their associated

subscriber key, as seen in Figure 2.1.

The subscriber key cannot initially be used to establish communication, as the provider

would have no way of knowing which cryptographic key to use for decryption. The sub-

scriber needs to transmit its identity so that the provider can select the proper subscriber

key.

However, transmitting this identity would compromise the privacy of the subscriber.

The identity could, for instance, be used to track the location of the subscriber.

2.1.1 The Private Identification Problem

Mjølsnes and Olimid define this problem, specifically for mobile networks, as the Private

Identification Problem [MO19] [MO17b].

How can we construct efficient and scalable private identification mechanisms in

(mobile) communication systems? More concrete, how can a device identify itself to the

(mobile) network) while never disclosing its permanent identity to an adversary?

2.1.2 The Private Identification Protocol

Mjølsnes and Olimid define the Private Identification Protocol (PIP) in symmetric settings

[MO17b]:

1. Input:

– Each subscriber Si ,1 ≤ i ≤ n owns a pair (Si , Ki)

– Provider P owns the pairs associated to all subscribers (Si ,Ki)1≤i≤n

2. A subscriber Si runs one or more instances of PIP with the service provider P

3. Output:

– P learns the identity Si

– For an adversary A, PIP is secure.

They also state the following informal security requirements, quoted directly [MO17b]:

2.2. TRIVIAL SOLUTIONS 7

– Privacy. The protocol must not leak any information that can help identify the

subscriber or learn the private shared key.

– Unlinkability. Two or more message exchanges cannot be linked to the same

subscriber

– Protection against location disclosure or tracking. Tracking a subscriber’s loca-

tion should not be possible.

– Protection against cloning and impersonation. The subscribers must not be prone

to cloning or impersonation after one or more runs of the private identification

protocol. Impersonation performed by replay attacks could be up to some point

avoided by subsequent authentication mechanisms.

– Efficiency. The private identification protocol must comply with speed, computa-

tional power, number of rounds, etc., with the requirements.

– Scalability. The identification protocol must be scalable to a substantial amount of

subscribers (hundreds of millions).

Thesis terminology

This thesis uses slightly different abbreviations for simplicity:

– Private Identification (PID).

– Private identification Problem becomes PID Problem.

– Private Identification Protocol becomes PID Protocol.

2.2 Trivial Solutions

This section describes some trivial solutions to private identification. They each have

some significant flaw that prevents them from being used.

2.2.1 Key Search

A Key Search solution trivially creates a private identification scheme with a computational

trade-off. A subscriber Si chooses a random value ,say ri , and encrypts it using the

subscriber key Ki . The subscriber then transmits ri and its encrypted value to provider

P . Provider P will then iterate through all (Si ,Ki) subscriber-key pairs and decrypt the

encrypted ri using each key Ki , checking if the sent ri value matches with the decrypted

value. If they match, the corresponding Si is chosen as the subscriber identity.

8 2. PRIVATE IDENTIFICATION

This is a computationally expensive solution that is linearly bound, as it iterates

through all subscribers. Variations of this solution may not necessarily use the subscriber

key. Hashing could also be used, where Si is hashed with value ri , the hashed value, and

ri are transmitted. The Provider P would then need to iterate through all identities and do

the same hashing to identify the correct Si .

Solutions may also choose to improve upon existing scalability by using different data

structures. The identities could be organized into binary trees, which would improve the

identity search from linear to logarithmic. However, this incurs some penalties. Some

additional parameters that could be used to identify the subscriber must also be sent over

the communication channel. These additional parameters are necessary for properly

indexing the relevant data structure used. Another consideration is added complexity to

the solution, which could be significant for existing architectures that have to be revamped

to accommodate new data structures.

2.2.2 Public-key Cryptography

Public-Key Cryptography (PKC), also known as Asymmetric Cryptography, can ensure

confidentiality of the identity and authentication of the provider. In a PKC cryptosystem,

there are two separate keys used for encryption and decryption. A user X generates a

Public Key used for encryption, which is kept accessible to anyone, and a Private Key kept

secret, used for decryption. The user Y then uses the public key of X to encrypt a message.

This message can only be decrypted and read by X. The security of a PKC solution is

derived from the hardness and intractability of certain mathematical problems.

Preliminary

Take, for instance, integer factorization. Given two very large prime numbers, p and q ,

where p < q . They are each quantified by kp and kq bits. Say both of them are 1536

bits long. Then, p × q = N , where N is roughly of size kp + kq . This will produce a

3072-bit number. This multiplication is done in milliseconds for a commodity computer,

and even with no optimization, the time complexity is O(kp ×kq), a roughly quadratic

increase of operations for each bit. However, finding the prime factors p and q from

N is computationally expensive. The factorization, even with optimized factorization

algorithms like Pollard Rho, has a time complexity of O(
p

N), the number of operations

growing exponentially with each bit [Pol75]. For the same commodity computer, it would

take trillions of years to find the factorization. In fact, the largest factorized number,

RSA-250, in the aforementioned format, is "only" 829-bits long. The factorization utilized

approximately 2700 CPU-core years using a conventional high-end server CPU (2.1Ghz

Intel Xeon Gold 6130) as a reference [BGG+20].

RSA is a PKC cryptosystem that builds on this idea of factoring being a hard problem

[RSA78]. The user first finds any two suitably large prime numbers p and q , which form

2.2. TRIVIAL SOLUTIONS 9

the basis of a private key. The modulo N , made by multiplying p and q , is used as a basis

for the public key. The public key is made accessible, and the private key is kept secret.

The different security strengths are then denoted with N-bit RSA. Using the example

from the previous paragraph would make them 3072-bit RSA keys, and it would have the

equivalent security of a 128-bit symmetric key in classic security settings [Bar20].

Application to the Problem

The provider P is in possession of a public-private key pair (PKP ,SKP). Each subscriber

is registered with and can use PKP for encryption. A subscriber Si uses PKP to encrypt

its identifier: EncPKP (Si), and sends the encrypted identity to the provider. The provider

decrypts using SKP to get Si = DecSKP (EncPKP (Si)).

Although this offers an elegant solution to the problem, it comes with the necessity

of a Public Key Infrastructure (PKI), which could be burdensome for certain applications

of the problem. The encryption process may also be burdensome for computationally

constrained devices without lowering the security strength to inadequate levels. The

public keys of each provider also have to be provisioned securely, and it may be difficult

to update the public key of a provider and delegate the new key to each subscriber. The

security is also reliant on a single private key, and if compromised, it would require manual

intervention with every subscriber device to update to a new provider public key.

2.2.3 Pseudonyms or Temporary Identifiers

Instead of a subscriber sending its long-term identifier Si , the subscriber sends a pseudonym

for Si , say T I Di , which acts as a temporary identifier: the provider stores all temporary

identifiers and their long-term identifier associations. Hence, T I Di is used as the index to

determine the actual subscriber identity Si .

Some solutions partially apply this solution by having the provider periodically refresh

a pseudonym for a subscriber and send it to the subscriber after establishing secure

communications. This is the case for mobile networks. A different application of this

solution category is to have the pseudonym change for every identification phase. This

is accomplished by the subscriber and provider sharing temporary parameters that up-

date after every identification. These temporary parameters are then used to derive the

pseudonym. However, this requires the subscriber and provider to have the parameter

values synchronized. If the subscriber’s parameters start to deviate from the provider’s,

de-synchronization will happen, as the provider cant derive the identity. To remedy

this, a re-synchronization mechanism is necessary. This is often a burdensome pro-

cess that causes privacy leakage. Furthermore, these solutions can usually be forced to

de-synchronize by an adversary.

Chapter3Private Identification for Mobile
Networks

The subscriber-provider model is used in mobile networks to ensure secure subscriber-

provider communication across heterogeneous mobile networks. This chapter will give

necessary preliminaries for how a mobile network operates. The amendments to the PID

Protocol necessary for mobile networking are described. How private identification is

handled by mobile networks, both legacy and current in 5G, is described. Finally, the

private identification scheme used in 5G is analyzed.

3.1 Preliminaries

This section is necessary for understanding the mobile network in context to the problem

of private identification.

3.1.1 Mobile Communications Network Architecture

This subsection describes the architecture of a Mobile Communications Network. See Fig-

ure 3.1 as a guideline. This communication network contains multiple distinct providers.

Hence, it is important to note that a subscriber could now communicate with a different

provider, then route the communication to the subscriber’s provider. This communication

needs to be facilitated through a three-tier architecture.

Mobile Network

A communication network that provides services like voice and data to subscribers over a

wireless link. Network coverage is achieved by organizing land areas into cells, where one

cell is served by a transceiver, known as a base station.

User Equipment

A subscriber uses its User Equipment (UE) to connect to the base station with the strongest

signal. Also known as Mobile Equipment when referring to mobile units. IoT Devices will

eventually be more prevalent on the 5G Mobile Network.

11

12 3. PRIVATE IDENTIFICATION FOR MOBILE NETWORKS

Mobile Communications Network

User Equipment Access Network Core Network

IoT Device

Mobile
 Equipment

USIM
card

USIM
card

Base-station

Base-station
Database of
Subscribers

Home Network

Subscriber Credential(s)
IMSI, Cryptographic Key

Subscriber Credential(s)
IMSI, Cryptographic Key

User Equipment Access Network Core Network

IoT Device

Mobile
 Equipment

USIM
card

USIM
card

Base-station

Base-station

Core Network

Database of
Subscribers

Visiting Network

Home Network

Figure 3.1: Three-tier mobile network architecture. Top: Access via Home network where
Serving Network is HN. Bottom: Roaming via a visiting network. Figure adapted from
existing figure in [MO19].

Universal Subscriber Identity Module Card

The Universal Subscriber Identity Module (USIM) card is a tamper-proof IC card within

the UE. It has basic cryptographic capabilities and stores subscriber credential(s) that

matches the profile of one subscriber.

3.1. PRELIMINARIES 13

MCC MNC MSIN

3 digits 3 or 2 digits 9 or 10 digits

SUbscription Permanent Identifier (SUPI) as IMSI

15 digits
60 bits

Figure 3.2: SUPI structure. All digits are 4 bit BCD encoded.

Network Operator

The provider to a subscriber in the context of mobile networks.

Home Network

The Home Network (HN) home environment of the subscriber. The UE establishes end-

to-end communication with the HN. Subscriber credentials are stored here for every sub-

scriber under the operator. The HN is responsible for providing service to the subscriber.

The Core network comprises multiple physical components that can communicate with

each other to provide subscriber services.

Serving Network

The UE communicates with a base station, which is part of the Serving Network (SN). It is

used as an access point to the HN. Usually belongs to the same operator as the subscriber,

which would make it the home network. It is responsible for routing the communication

to the home network.

Visiting Network

If UE has roaming enabled, then the UE can establish connections with serving networks

that belong to different operators. In that instance, the serving network is known as the

Visiting Network (VN).

IMSI/SUPI

The International Mobile Subscriber Identity (IMSI) uniquely identifies a subscriber for

all mobile networks. It is stored in the USIM and HN. The HN uses it as a tag to look up

subscriber credential(s) in the subscribers’ database. In the 5G network, the identifier is

known as SUbscription Permanent Identifier (SUPI), for which there are two main types,

one of them being The IMSI. This thesis considers the SUPI and IMSI to be equivalent

without loss of generality.

14 3. PRIVATE IDENTIFICATION FOR MOBILE NETWORKS

Figure 3.2 visualizes the structure of the SUPI. The Mobile Country Code (MCC) in-

dicates the geographic region, and Mobile Network Code (MNC) identifies an operator.

Together, they uniquely identify a mobile network operator. The operator uses the Mobile

Subscription Identification Number (MSIN) to identify a subscriber within its own network

uniquely.

Subscriber Key

A cryptographic key on the USIM and in the HN. Upon UE establishing a connection with

HN, the HN will use the received IMSI to lookup the subscriber key. This key is then used

for further authentication and subsequent secure communication.

3GPP

Third Generation Partnership Project (3GPP) is an umbrella term that unites 7 telecom-

munication standard development organizations. They are responsible for releasing all

mobile network-related standard specifications.

3.1.2 Subscriber Identification preceding 5G

This subsection describes how identification was accomplished before 5G, for which

private identification was insecure. 4G LTE is used as an example without loss of generality,

as this problem persists until 5G.

TMSI/GUTI

The Temporary Mobile Subscriber Identity (TMSI) is used as a temporary identifier in

mobile networks such that it can be sent instead of the IMSI when connecting to a network.

This identifier is periodically refreshed and is impossible to link back to the subscriber’s

IMSI. This allows the subscriber to initialize communications without compromising its

identity. The TMSI is contained within a Globally Unique Temporary Identifier (GUTI)

in LTE. This is simply a wrapper with some extra signaling information. The 5G mobile

network uses 5G-GUTI as the temporary identifier.

Initial Request

Upon first connecting to any mobile network, the UE has not been provisioned with a

TMSI. Hence, it must transmit its IMSI in the clear over the radio access link. This would

allow any passive eavesdropper to capture the IMSI.

IMSI Catcher

IMSI catching is a viable attack against all mobile networks preceding 5G [MO17a]. It

works by utilizing two base stations. For instance, two affordable SDR devices. One base

3.1. PRELIMINARIES 15

MCC MNC
HNI

Routing
Indicator

Protection
Scheme

Home Network
Public Key

Scheme
Output

SUPI
Type

SUbscription Concealed Identifier (SUCI) for IMSI

3 bits
000: IMSI

24 bits
5-6 digits

16 bits
1-4 digits

4 bits
value 0-15

256 bits x bits

303 + x bits

Figure 3.3: SUCI structure.

station jams a real serving network’s signal in the vicinity, while another base station

masquerades as the jammed serving network. In effect, any subscriber in the area will

attempt to connect to the fake base station instead of the real one. However, this base

station does not have a valid TMSI for the subscriber. This causes the subscriber to send

its IMSI in plaintext to the fake base station, "catching" the IMSI. If the subscriber has

its UE set to roaming mode, it will greatly simplify this attack to just requiring one base

station.

3.1.3 5G-AKA

This subsection describes the relevant parts of the 5G-AKA. It was initially specified in

release 15 of the 5G Security Specifications by 3GPP, June 2018, which will henceforth be

referred to as TS 33.501 [rGPP18]. Clause 6.1.3 details the two different authentication

procedures: EAP-AKA and 5G-AKA. For this problem, we focus on 5G-AKA without loss of

generality.

SUCI

IMSI catchers do not work in 5G because instead of the UE sending a SUPI in clear upon

request, it will be encrypted and sent in a SUbscription Concealed Identifier (SUCI).

The structure is visualized in Figure 3.3. SUPI type refers to either IMSI or NAI. The

Home Network Indicator (HNI) is composed of the MCC and MNC, uniquely identifying

the subscriber’s network operator. This credential also resides within the USIM of every

subscriber. The routing indicator is used for signaling purposes within the home network

and is not relevant to the problem. The Scheme Output contains the encrypted SUPI and

additional output necessary for other security requirements. The Protection Scheme deter-

mines which scheme should be used to produce the scheme output. The Home Network

Public Key is contained within the USIM and is the public key used for communication

with the home network.

16 3. PRIVATE IDENTIFICATION FOR MOBILE NETWORKS

SNUE HN
(K, SQN, SUPI) (K, SQN, SUPI)

1. Registration Request /
 Identifier Response

(SUCI or 5G-GUTI) 2. Authenticate Request

(SUCI or SUPI, SN Name)

5. Generate 5G AV
6. Store XRES*
7. Calculate HXRES*

3b. Invalid
 SUPI

8. Authenticate Response

(5G AV)
9. Auth-Req.

(RAND, AUTN)

10. Calculate Auth-Resp (RES*)

11. Auth-Resp.

(RES*)

12. Calculate HRES* and
compare to HXRES*

13. Authentication Confirmation

(RES*, SUCI or SUPI, SN Name)

14. RES* Verification

15. Authentication Response

(Result, [SUPI], KSEAF)

Identification
 Phase

Authentication
 Phase

3a. SUCI to SUPI de-concealment

4. Authentication Method Selection

Figure 3.4: 5G AKA with identification. Figure adapted from sequence diagram in TS
33.501 [rGPP18].

Identification Phase

Figure 3.4 visualizes the entire 5G-AKA process for a UE when it initiates a new connection

to a serving network. The Identification Phase is of main concern in this thesis.

The goal of the identification phase is to acquire the SUPI of a subscriber without

compromising the subscriber’s privacy. The SUPI needs to be encrypted and sent to the

HN. The process is described below:

1. The UE sends a Registration Request to the SN. If the UE is already allocated a

temporary identifier 5G-GUTI, then it will send that to the SN. Otherwise, it needs

to produce a valid SUCI with one of the 5G protection schemes and send that.

2. Check HNI and redirect message to the HN, along with unique id for the sending

SN. If SN receives 5G-GUTI, it will be mapped to the SUPI.

3. HN utilizes a Subscription Identifier De-concealing Function (SIDF) to decrypt the

SUCI scheme output to its SUPI. This is known as de-concealing the SUCI. If the

result is invalid, it gets discarded, and authentication halts.

3.1. PRELIMINARIES 17

Authentication Phase

The goal of the authentication phase is to establish secure communications with the

UE and HN and mutually authenticate them. The necessary prerequisites for starting

this phase are all of the subscriber’s credentials acquired by using the SUPI from the

identification phase as a lookup tag. This thesis will not go in-depth on the details of this

phase without much loss of generality.

Protection Schemes

The generation of the SUCI using different protection schemes allows the identification

phase of the 5G-AKA protocol to be decoupled from the authentication phase. This

distinction enables cryptographic flexibility by accomodating different cryptographic

profiles to be used to encrypt the SUPI. Currently, only three profiles are in use:

– NULL Scheme, no protection. Used only for emergency calls when there is no

established connection.

– ECIES Profile A

– ECIES Profile B

3.1.4 PID Protocol 5G Adaption

This subsection describes the necessary adaptions to the standard PID protocol necessary

for mobile networking, specifically for 5G. A 5G PID protocol should be a sufficient slot-in

for a protection scheme in 5G-AKA.

3GPP have identified the following essential requirements related to user privacy in

TS 33.102 clause 5.1.1 [rGPP20]:

– User Identity Confidentiality: The property that the permanent user identity (IMSI)

of a user to whom a service is delivered cannot eavesdrop on the radio access link

– User Location Confidentiality: The property that the presence or arrival of a user

in a certain area cannot be determined by eavesdropping on the radio access link.

– User Untraceability: The property that an intruder cannot deduce whether differ-

ent services are delivered to the same user by eavesdropping on the radio access

link.

The Standard PID protocol and the informal security requirements are stated in Chap-

ter 2. The first two requirements overlap with the existing PID Protocol requirements on

18 3. PRIVATE IDENTIFICATION FOR MOBILE NETWORKS

subscriber confidentiality and location tracking. User untraceability is not considered in

this problem, as it is inherent with 5G-AKA by provisioning pseudonyms periodically.

This thesis suggests adding the following requirements to a suitable 5G PID Protocol:

– SUCI Unlinkability. Two or more SUCI messages can not be linked together, as

this could be used to deduce the presence of a subscriber and allow for location

tracking.

– SUCI Integrity Protection. The SUCI scheme output should be integrity protected,

preferably by a MAC also to allow authentication.

– SUCI Replay Protection. It should not be possible to replay a previously transmitted

SUCI and go through the identification phase. This could be used to deduce the

presence of a subscriber.

– Proper SUCI Format. The PID protocol should produce the scheme output con-

tained in the SUCI, not the SUCI itself. See Figure 3.3.

– Resistant to de-synchronization. If the PID protocol relies on synchronization, it

should minimize de-synchronization and provide a re-synchronization mechanism.

Some additional security requirements that could be considered depends on whether

or not the 5G PID Protocol is contained within a new AKA protocol meant as a replacement

for 5G-AKA:

The underlying AKA protocol should satisfy the following requirements to enable a

secure 5G PID Protocol.

– Mutual Authentication. It should mutually authenticate the HN and Subscriber.

– MiTM Protection. It should not be possible to impersonate the serving network.

– Decoupled Identification. It should be possible to apply different PID protocols for

the identification phase by allowing different protection schemes to produce the

SUCI scheme output.

3.2 5G ECIES

This section describes the standard protection scheme used in 5G-AKA to produce the

SUCI scheme output. 5G-AKA uses the Elliptic Curve Integrated Encryption Scheme

(ECIES) for this purpose. ECIES utilizes both asymmetric and symmetric cryptography.

Asymmetric cryptography is used to establish a shared secret. Symmetric cryptography is

3.2. 5G ECIES 19

Table 3.1
5G ECIES Profiles

Profile A and Profile B

ECIES Profile Parameters Cryptographic Arguments

Elliptic Curve A: Curve25519 B: secp256r1 (NIST P-256)

KDF ANSI-X9.63-KDF

Hash SHA-256

MAC HMAC-SHA-256

Symmetric Cipher AES-128 in CTR Mode

then used with that shared secret as a key to establishing communications. 5G ECIES is

described in Annex C of TS.33.501 [rGPP18].

5G-ECIES uses two different profiles referred to as profile A and profile B, both techni-

cally qualifying as two distinct protection schemes. The specifications for these profiles

can be seen in Table 3.1. The only significant difference between them is their choice and

use of elliptic curves.

3.2.1 Asymmetric Cryptography Components

ECC

Elliptic-Curve Cryptography (ECC) generates public and private key pairs for use in

public-key cryptocraphy. ECC keys have a substantially smaller memory footprint than

RSA, with the equivalent of a 256-bit public key offering the same security as a 128-bit

symmetric key, which would be a 3072-bit public key in RSA. [Bar20]. ECC relies on the

intractability of the Elliptic Curve Discrete Logarithm Problem (ECDLP) [Mil86, Kob87]. It

is computationally infeasible to derive the discrete logarithm of a random element on

the curve based on a publicly known base point. The security is based on the ability to

perform point multiplications on the curve but the inability to derive the multiplicand

given the original point and resulting point. This practically makes it a one-way function.

The curves used are standardized to maximize efficiency and security.

ECDH

Elliptic-curve Diffie-Hellman (ECDH) is the key agreement protocol used in ECIES that

allows two parties, say, Alice and Bob, each with their own ECC key pair, to establish a

shared secret over an insecure channel [BCR+18]. The public keys represent two different

base points on a curve, say A and B . While the private keys, when converted to integers,

represent scalar values a and b. Alice and Bob then exchange public keys and keeps

20 3. PRIVATE IDENTIFICATION FOR MOBILE NETWORKS

their private keys secret. Alice then uses Bob’s public key B and performs the scalar

multiplication a ×B . Bob does the same with Alice’s public key and computes b × A. Both

parties will arrive at the same point C . This new point C is called the ECDH key of the two

parties.

3.2.2 Symmetric Cryptography Components

Key Derivation

The ECDH key is not directly used as a shared secret key for symmetric communication.

Instead, the ECDH key is fed through a key derivation function (KDF) to produce the final

shared secret key. This is to even out the entropy of the ECDH key.

Symmetric Encryption, Authentication and Integrity

A block cipher like AES then uses the shared secret key to encrypt any message to be

transmitted between the two parties. The message’s authentication and integrity can also

be achieved by using the KDF with the ECDH key, producing an additional key used to

create a Message Authentication Code (MAC).

ECDH Key-reuse

ECDH allows one party to reuse their generated keys, as long as the other party will always

use new ephemeral ECC key pairs. This is done in 5G-AKA. The home network generates

a static ECC key pair and keeps its private key secret within the core network. The Home

Network Public Key is put into the USIM card of the subscriber during registration. It is

the UE’s responsibility to always use ephemeral key pairs when initiating identification.

3.2.3 ECIES at UE

This subsection describes how the UE utilizes ECIES to encrypt the MSIN. This process is

visualized in Figure 3.5.

1. Ephemeral Key Pair Generation

The UE uses ECC key generation to generate the Ephemeral UE public key and Ephemeral

UE private key. The public key is part of the scheme output. This is either using Curve25519

or NIST P-256.

2. Key Agreement

The ephemeral private key and the static HN public key are fed into the Key Agreement

function. This converts the ephemeral key into a scalar. A scalar multiplication with the

public key over one of the two curves in either Profile A or B produces the Ephemeral

Shared Key.

3.2. 5G ECIES 21

3. Key
derivation

1. Eph. key pair
generation

2. Key
agreement

5. MAC
function

4. Symmetric
encryption

Plaintext
block

(MSIN)

Eph.
UE public key

Eph.
UE private key

Public key
of HN

Eph.
shared key

Ciphertext
value

(Enc. MSIN)

MAC-tag
value

Eph.
mac key

Eph. enc.
key, ICB

Final output = Eph. public key || Ciphertext || MAC tag [|| any other parameter]

 Scheme output

 Scheme input

Cryptographic function

Cryptographic function output

Figure 3.5: ECIES encryption process for UE. Figure adapted from Annex C in TS 55.301
[rGPP18].

3. Key Derivation

The Ephemeral shared key is fed into the chosen key derivation function. ANSI-X9.63-KDF

using SHA256 as base hashing function derives an ephemeral encryption key and an

ephemeral MAC key.

4. Symmetric Encryption

The ephemeral encryption key is fed into the chosen symmetric encryption function.

AES-128 in Counter mode is used with the ephemeral encryption key to encrypt the MSIN

of the subscriber.

5. MAC Function

The encrypted MSIN, along with the ephemeral MAC key, is fed into the MAC function.

The MSIN is integrity protected by producing a MAC tag with the encrypted MSIN as input

using HMAC-SHA256. The ephemeral MAC key is used as the key.

Final Output

The final output of the scheme is visualized in Figure 3.6. It is the concatenation of the

Ephemeral public key, the encrypted MSIN, and the MAC tag ensuring MSIN integrity.

22 3. PRIVATE IDENTIFICATION FOR MOBILE NETWORKS

256 bits 40 bits 64 bits

UE Ephemeral Public Key Encrypted
MSIN

MAC Tag

5G ECIES Scheme Output

360 bits
 45 bytes

Figure 3.6: ECIES Scheme output for UE. Figure adapted from Annex C in TS 33.501
[rGPP18]

2. Key
derivation

1. Key
agreement

4. MAC
function

(verification)

3. Symmetric
decryption

Plaintext
block

(MSIN)

Eph.
UE public key

Private key
of HN

Eph.
shared key

Ciphertext
value

(Enc. MSIN)

MAC-tag
value

Eph.
mac key

Eph. dec.
key, ICB

 Scheme output

 Scheme input

Cryptographic function

Cryptographic function output

Discard SUCI

Proceed with
Authentication

Invalid MAC

Valid MAC

Figure 3.7: ECIES decryption process for HN

This is put into the Scheme Output field of the SUCI, seen in Figure 3.3. The protection

scheme bits are set to 0x1 for Profile A and 0x2 for profile B of ECIES. The SUCI is then

filled with the other parameters corresponding to the credentials stored on the USIM

and sent to the nearest serving network. The SN will then redirect the SUCI to the home

network.

3.2.4 ECIES at HN

This section describes the decryption process for ECIES done by the HN to retrieve the

MSIN from the SUCI. The cryptographic primitives used by the UE at each step will be the

same for the HN and are decided by the protection scheme field of the SUCI. This process

is visualized in Figure 3.7.

1. Key Agreement

The HN skips key generation as it always keeps a static ECC key pair. The received SUCI

contains the UE ephemeral public key and is fed into the key agreement function along

3.3. 5G-AKA ECIES PID PROTOCOL COMPATIBILITY 23

with the private key of the HN. This produces an Ephemeral shared key identical to the

key produced by the UE.

2. Key Derivation

The Ephemeral shared key is fed into the chosen key derivation function. It will use the

same KDF as the UE to derive identical encryption and integrity keys.

3. Symmetric Decryption

The encrypted MSIN is decrypted by the symmetric decryption function, which will also

be AES-128 in counter mode.

4. MAC Function

The MAC tag sent by the UE is fed into the MAC function’s verification function to ensure

the integrity and authenticity of the MSIN.

Completion

If the MAC tag is invalid, the request is aborted. Now that the HN has a valid MSIN, it

has successfully identified the subscriber. The HN can now proceed with the authenti-

cation phase of 5G-AKA. Once this is accomplished, the UE is assigned a 5G-GUTI as a

pseudonym to the SUPI. This will prevent any subsequent SUCI identification phases

with the same serving network.

3.3 5G-AKA ECIES PID Protocol compatibility

This section describes the viability of ECIES and, by extension, the 5G-AKA identification

phase and its compatibility with what would be considered a sufficient PID Protocol.

3.3.1 ECIES Security

5G ECIES guarantees sufficient 128 bits of classical security to conceal the SUPI. The

provider is also authenticated in the process, and the subscriber, by extension, is authenti-

cated in 5G-AKA.

Post-Quantum threat

ECC is unfortunately susceptible to quantum computers, and by extension, ECIES. ECDLP

is intractable to classical computers because there is no conventional algorithm for effi-

ciently figuring out the discrete logarithm, i.e., anything less than exponential time per

bit.

24 3. PRIVATE IDENTIFICATION FOR MOBILE NETWORKS

This changes for quantum computers, where algorithms exist that can accomplish this

task in polynomial time. [Sho94]. Global Risk institute released a quantum threat timeline

report in 2020, wherein they asked 44 quantum computing experts from both industry and

academia key questions to predict when quantum computers become powerful enough

to pose a threat to cybersecurity. [Ins] Approximately 86% (36/44) think it’s 50% likely to

happen within 20 years, with 12 of them feeling that it is actually between 95%-99% in

that timeframe. This suggests that the common consensus for quantum computers to

become a viable threat to classic security is within 20 years.

Chosen SUCI Attacks

An adversary can capture previously sent SUCIs from other subscribers and replay this

SUCI [KDM18]. The timing of the response back from the HN could be used to infer

whether or not that subscriber is in the vicinity.

This is possible because the computed MAC does not account for any temporal pa-

rameters also sent in the SUCI, which allows for SUCI replay attacks.

3.3.2 SUCI Overhead

The SUCI overhaed is inferred from using Figure 3.3 and related Figure 3.6 to total the bit

size of a SUCI set to use ECIES. In total, 663 bits are sent in the identification phase from

the UE.

3.3.3 Performance

This issue is related to onboarding IoT devices to the 5G network, a topic expanded in the

next chapter. ECIES is actually computationally slow for lightweight constrained devices.

This is due to PKC just being computationally heavy in general. The supported hardware

is not there to do point multiplication and scalar multiplication efficiently for many IoT

devices.

Chapter4Onboarding IoT and Proposed Schemes

This chapter introduces the relevant IoT requirements and adapts the 5G PID protocol to

cover IoT devices. The proposed schemes are then introduced, and security analysis is

performed using the adapted PID protocol.

4.1 Massive and Critical IoT

This thesis will consider two main segments of the IoT application domain: Massive IoT

and Critical IoT.

4.1.1 Critical IoT

Critical IoT covers all use cases that require low latency and high uptime. Typically

anything that requires a constant, data-rich connection to function. Instances of use

cases could be telemedicine, First Responder Technology, and factory automation. This

thesis will specifically cover the latency requirements. Schulz et al. document the latency

requirements for several Critical IoT use cases [SMK+17]. The latency thresholds vary

greatly between each use case. But the average mobility of the use case is of specific

concern to this thesis. This is because most identification phases should be followed by a

change of serving networks or de-synchronization caused by mobility. The use cases with

high mobility typically demand a latency threshold of around 10-100 milliseconds, but

some even as low as 0.5 microseconds to 10 milliseconds.

4.1.2 Massive IoT

Massive IoT covers all use cases that require high scalability of devices, low cost, and low

power consumption. Typical use cases include smart cities, Industrial IoT, and smart

homes. It is essentially driven by scale and cost rather than speed. The communication

overhead should therefore be minimized, and the performance overhead of any scheme

should be small to maximize battery life.

25

26 4. ONBOARDING IOT AND PROPOSED SCHEMES

4.2 Revised Threat Model

The Dolev-Yao threat model is frequently applied by the schemes looked at in this thesis.

This allows an active adversary to eavesdrop, forge, replay, delay and mess with the order of

the exchanged messages. A passive adversary can only eavesdrop. This is a natural choice

accounting for both passive and active adversaries over an unsecured communication

channel [Cer01]. This is a sound threat model for amobile network that only accounts for

commodity mobile devices.

However, for IoT devices, the threat of side-channel attacks is a significant concern

that this threat model does not account for. And depending on how the scheme works,

compromising the subscriber credentials of just one subscriber in the network could

compromise the privacy of a significant number of other subscribers. This is exemplified

in the HashXOR section. It must be assumed it is trivial for an adversary to be physically

close to the device. It has been shown that secrets have been extracted from USIM with

these means, albeit this is due to them being unprotected, which is a straightforward

weakness [ZYSQ13] [LYS+15]. A more concerning result is shown by Udvarhelyi Et al.

[UvWBS21]. Their results show that side-channel attacks could be performed on 32-bit

embedded devices without sufficient knowledge of the underlying hardware architecture.

Another issue is that it is much easier for an active adversary with physical access to

the device to cause a de-synchronization attack. The adversary could force the device to

crash. If a rogue base station facilitates the registration procedure again with the UE, the

SUCI will always be generated. As IoT devices are usually not equipped with the best tools

for RNG, it could be likely that some numbers are re-used, compromising the security of

any schemes hiding long-term secrets with RNG.

4.2.1 PID Protocol 5G IoT Adaption

This subsection describes the necessary adaptions to the 5G PID Protocol necessary to

onboard IoT devices for mobile networking. It inherits the PID requirements specified in

the subsection3.1.4.

– Minimal SUCI. The length of the transmitted SUCI should be minimized by reduc-

ing the PID Protocol output size.

– No shared subscriber credentials. Due to the increased probability of compro-

mised subscriber credentials in an IoT device due to side-channel attacks, a PID

protocol should not have shared credentials between two or more subscribers that

may impact the privacy of other subscribers if leaked.

– Lightweight Cryptography. This is specifically important for Critical IoT appli-

cations to minimize latency but could be ceded for most Massive IoT use cases.

4.3. HASHXOR 27

This is because a pseudonym will circumvent the identification phase in most

cases, and the usage of the PID protocol is only necessary for initial connection and

re-synchronization.

– High Scalability. The device density for massive IoT is unprecedented, and the

scalability of the PID protocol becomes a crucial factor to handle when SUCI’s are

processed by the home network.

The rest of chapter will now detail the proposed lightweight schemes, and an analysis

using the 5G PID Protocol derived in this section.

4.3 HashXOR

HashXOR is a lightweight private identification scheme proposed as an alternative to

ECIES in 5G-AKA by Choudhury [Cho21]. This is achieved by the UE only doing two

random number generations, three hashing operations, and three XOR operations. Most

of the computational work is left to be done by the home network through key search.

4.3.1 Scheme Description

HashXOR requires the USIM to be registered with two new subscriber credentials, the

Cluster Identity (CI) at 128-bit and Imsi Position (IP) at 24-bit. This is because the IMSIs

on the home network are grouped into clusters (root nodes), organized into binary trees

for efficient searching for a leaf node. These leaf nodes contain linked lists of IMSIs.

Hence, the CI is used to select the appropriate root node, and the IP is used to select

the appropriate leaf node containing a linked list where one of the IMSIs will be the

subscriber’s IMSI.

The identification phase starts with the UE generating two random 128-bit numbers,

R1 and R2. Two distinct hashing functions, H1 and H2, are used. The CI is used as a

shared secret key, as it is used to conceal the R1 number under transmission for all the

subscribers in that cluster. R1 is hashed, and the result is used to conceal the IP. The IMSI

is concealed by XOR — denoted by
⊕

— with a random number, acting as a one-time pad.

An adversary can’t attain the IMSI itself of a subscriber through either passive or active

attacks.

The UE sends the following 6 parameters as the SUCI for identification to the SN,

which will redirect the message in its entirety to the HN, stepwise doing this to recover the

IMSI:

1. Home Network Identifier (HNI), used by SN to redirect the SUCI to the HN.

28 4. ONBOARDING IOT AND PROPOSED SCHEMES

2. C 1 = H2(R1)
⊕

I P . Conceal IP with hashed R1 value.

3. B1 = H1(R1). Conceals R1 and is used for key search in cluster list.

4. A1 = R1
⊕

C I . Conceals CI. The HN recovers both R1 and CI by iterating through

the HN’s list of CIs and checking if the equality B1 == H1(A1
⊕

C I) is true. The

recovered R1 is used to recover IP as well. the CI and IP are used to navigate to the

leaf node containing subscriber IMSI. (
⊕= XOR)

5. B2 = H1(R2). Conceals R2 and is used for key-search in the linked list contained in

the leaf node.

6. A2 = R2
⊕

I MSI . Conceals IMSI. The HN recovers IMSI by iterating through the

linked list and checking if B2 == H1(A2
⊕

I MSI) is true.

256 clusters are enough to account for all the possible IMSIs in the network. And

16777216 leaf nodes in total are contained in them. Assuming that the IMSI database is

fully congested and all IMSIs are uniformly distributed across each leaf node, there will be

256 IMSIs contained in each leaf node. An average number for a typical home network

must be assumed to be significantly lower. As such, these two subscriber credentials would,

in most scenarios, uniquely identify a subscriber in a location if they got compromised.

4.3.2 SUCI Linkability Attack

This thesis proposes the following attack on SUCI unlinkability requirement.

This attack assumes that the adversary has one or more CIs for a network. It is assumed

that the CI could be obtained by side-channel attacks on any device in the network. Since

the SUCI is computed on the UE, it will actually be trivial for an adversary with full access

to a device to recover its CI. Moving the SUCI computation to the USIM is one mitigation to

this. Still, the USIM has to accommodate two distinct hashing functions and the memory

to store the results.

Normally a side-channel attack would obviously only compromise the security of that

device, but this is not the case for this scheme. One out of every 256th device participating

in the network could have its privacy compromised if an adversary obtains a single CI.

The attack is performed in the following manner:

– The adversary has known CI in the HN and is either eavesdropping on the network

or actively disrupting it by acting as a fake base station, provoking subscribers to

send their SUCIs.

4.3. HASHXOR 29

– the subscriber with the same CI starts identification procedure with the SN, sending

the scheme’s SUCI.

– The adversary captures the SUCI and checks if it possesses the CI with the following

equality check: B1 == H1(C I
⊕

A1).

– The adversary also obtains IP with i p =C 1
⊕

H2(R1).

– The adversary possesses both IP and CI for a subscriber, which is highly likely to

identify the device uniquely.

SUCI unlinkability is compromised from this attack because any two different SUCIs

sent by the same device can be linked.

4.3.3 Chosen SUCI Attack

This is possible because the transmitted SUCI is not integrity protected. This allows any

adversary to re-use the parameters in the SUCI with a new SQN and, depending on the

network response and timing, insinuate whether the subscriber is located on the network

or not.

4.3.4 DDoS Attack

A Distributed Denial-of-Service (DDoS) attack is possible because the scheme is reliant on

5G-AKA authentication and replay protection. As such, the UE is authenticated in the 10th

step of the AKA process. If an adversary replays a SUCI, the HN still has to search for the

correct IMSI in the binary tree and linked list. As stated in the scheme paper, the average

execution time to map SUPI from SUCI on the HN is TH N = 514txor +512thash +280ttr

Where hash are the two hashing functions, and ttr represents node traversal time. This

attack can be scaled up to be launched by several devices at once against the HN, which

could impede mobile services.

4.3.5 PID Protocol Compatibility

This subsection highlights the incompatibility of the scheme per the desired traits of a

Private Identification Protocol for 5G.

The sent SUCI is only partially in the proper format, as the IMSI is encrypted instead

of the MSIN.

Architectural Changes

The scheme requires changes in both the USIM and the HN by accomodating two new

subscriber credentials, CI and IP. The HN also has to re-structure the IMSI database

30 4. ONBOARDING IOT AND PROPOSED SCHEMES

to binary search trees and linked lists. The proposal paper includes some details on

the implementation where SHA256 is used. However, the scheme requires two distinct

hashing functions. This requires an additional cryptographic hashing function to be

introduced as well.

4.3.6 Scalability

HN searching for IMSI is improved from the usual linear key search to logarithmic key

search using binary trees. However, the HN still has to do some computational work on

average, as highlighted in the preceding section.

4.3.7 SUCI Overhead

For this computation, it is assumed that the hashing operations output 256 bits, as their

work uses SHA-256 as an example and does not make any mention of truncating the hash

output.

The assembled SUCI consists of the concealed CI (128 bits), hashed R1 (256 bits),

hashed R2 (256 bits), concealed IMSI (64 bits in their work), and concealed IP (24 bits). A

24-bit HNI is also needed to redirect the SUCI. In total, the SUCI consists of 752 bits.

4.4 PPSE-AKA

The Privacy Preservation and Security Efficient (PPSE-AKA) protocol is proposed by Parne

et al. as an alternative for 5G-AKA [PGGM20]. They claim that it preserves the user’s

identity and protects the shared secret key. This is accomplished using only symmetric

primitives. It relies on a lookup tag to compute the SUPI from the SUCI. The SUCI is

integrity protected by MAC and is also ensured non-repudiation and non-reusability.

4.4.1 Scheme Description

This thesis will describe parts of the first phase of this protocol, which ensures identifica-

tion for a UE initially connecting to a network or when synchronization is lost.

The USIM is provisioned with a randomly generated parameter Si mcoder and , times-

tamp/sequence number TU E , and cryptographic key Ki . The HN also stores all these

parameters for each subscriber. The random parameter is used as a lookup tag to the

cryptographic key Ki , which is used to derive a delegation key DKi used to de-conceal the

SUPI.

In very brief details, the UE and HN perform the following steps for identification:

– UE derives the delegation key DKi using TU E and K I with HMAC-SHA256.

4.4. PPSE-AKA 31

– UE computes a one-time activation code

Actcoder and = LC Sn(TU E
⊕

Si mcoder and). Where LC Sn is left circular shift by n,

and n is the value of the first eight-digit of the SUCI converted to decimal.

– UE computes SUCI with a reversible symmetric function, say, AES in counter mode.

Using ephemeral key DKi . The SUPI is thus encrypted, and TU E is used as a nonce

such that SUCI is unique. MAC is also computed.

– SUCI, Actcoder and , TU E , HNI, and MAC parameters are sent to SN, which checks

HNI and redirects the message to the correct HN.

– HN checks if TU E is within a threshold value for replay attack protection and discards

the message if that is the case.

– HN recovers Si mcoder and by using right circular shift,

– HN uses Si mcoder and to lookup cryptographic key Ki associated with that sub-

scriber. HN then derives the ephemeral key DKi using TU E sent by the UE.

– The SUPI is de-concealed using the reversible symmetric function, TU E and DKi by

decrypting the SUCI.

Phase 2 deals with ensuring authentication for n connections with the same SN and is

not relevant to the identification.

4.4.2 SUCI Linkability Rttack

This thesis proposes an attack on the SUCI unlinkability requirement.

It is trivial for even a passive adversary to associate any SUCI with any other SUCI sent

from the same device when the first phase is executed. This is because the Si mcoder and

parameter uniquely identifies a subscriber, and it is easy for an adversary to acquire

it simply by collecting SUCI, TU E , and Actcoder and from the identification phase of a

subscriber. The adversary simply computes Si mcoder and = RC Sn(TU E
⊕

Actcoder and).

This issue is exacerbated by an active attacker that can cause this identification phase

at will with a fake base station that drowns out the SN. This would be categorized as a

SUCI catcher and would collect SUCIs and check if they can be linked with the derived

Si mcoder and parameter. If any two SUCis share Si mcoder and , then a unique subscriber

would be located in that physical area. This allows for simple location tracking.

4.4.3 PID Protocol Compatability

This protocol is intended to replace 5G-AKA and does not properly differentiate between

the identification phase and authentication phase. There are no multiple protection

schemes available to generate the SUCI like in the original 5G-AKA.

32 4. ONBOARDING IOT AND PROPOSED SCHEMES

The protocol requires the USIM to be equipped with an additional new parameter

Si mcoder and .

In this publication, the SUCI is regarded as an encrypted SUPI. This doesn’t seem right

for several reasons:

– The SUCI format is specified by TS 33.501. The encrypted MSIN and any additional

security-related parameters should be the scheme output seen in Figure 3.3.

– Only the MSIN should part of the SUPI should be encrypted. The MCC and MNC

parameters are sent as the HNI of SUCI to identify the correct home network.

– In subsequent authentications with the same serving network, the SUCI is treated

as a pseudonym.

4.4.4 SUCI Overhead

The publication contains details on how large in bits the first message is, which could be

regarded as the actual SUCI of the protocol. However, this message lacks HNI (≥ 24bi t s)

to route the SUCI to the HN. In total, the SUCI is then 576 + 24 = 600 bits.

4.5 Braeken’s Scheme

In Braeken’s paper, they propose an alternative to the 5G-AKA protocol as a whole, not

just the identification phase [Bra20].

Security is maintained through synchronization by sequence number N between the

UE and HN. This synchronized state is provisioned with the USIM, where the USIM will

contain two new identity-related parameters compared to the original 5G-AKA protocol,

which will, in conjunction, act as a replacement for the temporary identifier 5G-GUTI.

Synchronization is maintained if the UE’s N value does not pass a certain threshold value

set by the operator.

4.5.1 MiTM Attack

A Man-in-The-Middle Attack is possible. As pointed out by other papers, this scheme

oversimplifies the communication with the HN by completely removing the SN as a

middleman [Cho21] [PGGM20]. This allows an active adversary to perform a MiTM attack

on subscribers using a fake base station.

4.5.2 PID Protocol Compatibility

The scheme does not take into account serving networks or visited serving networks. This

scheme acts as a replacement for the 5G-AKA protocol itself. Still, it offers no means

4.6. SEL-AKA 33

of cryptographic flexibility like the current 5G-AKA protocol, which is done through

specifying protection schemes to construct SUCIs. This scheme is also not backward-

compatible with older generations of mobile networks, relying on TMSI not used in this

scheme.

4.5.3 SUCI Overhead

It is impossible to derive the specific SUCI overhead for this scheme, as no specific

mentions of bit size are given for the temporary identifiers and certain cryptographic

functions.

4.6 SEL-AKA

Gharsallah et al. propose the SEL-AKA protocol as an alternative to the current 5G-AKA

protocol [GSZ19]. It uses only symmetric primitives to achieve this, and there is no shared

state between the UE and HN, so synchronization errors are not an issue.

This thesis will not delve into the implementation details of this scheme due to it

being both imagined as a 5g-AKA protocol replacement and having a fatal security flaw

associated with identification.

4.6.1 SUCI Linkability Attack

A significant flaw with this protocol is that the SUCI is sent with a Ref parameter used to

de-conceal the SUPI. However, as Choudhury and Parne et al. noticed, this ref parameter

is unique to each subscriber and is sent in clear [Cho21] [PGGM20]. This allows a passive

adversary to easily link all SUCIs produced by this protocol to one device. Hence SUCI

unlinkability is not achieved.

4.6.2 PID Protocol Compatability

It is designed as an alternative to 5G-AKA and not as a slot-in for a protection scheme.

The identification phase and authentication phase are not distinctly separated like in the

current 5G-AKA, which allows for additional protection schemes to produce the SUCI.

The SUCI is also in the wrong format by assuming that the SUCI is the same as

encrypted SUPI.

4.6.3 SUCI Overhead

The SUCI in this protocol is the first message sent by the UE. It consists of the ref (64 bits),

encrypted SUPI (60 bits), nonce (32 bits), and MAC (64 bits), and HNI (24 bits). In total,

this amounts to 248 bits.

34 4. ONBOARDING IOT AND PROPOSED SCHEMES

4.7 Khan et al. Scheme

The symmetric scheme Post Quantum IDentification (PQID) is proposed by Khan et al. as

a post-quantum protection scheme alternative to ECIES used in 5G-AKA. This scheme

uses only the cryptographic algorithms that are already available on the USIM and in the

HN [KDM18].

4.7.1 Scheme Description

A brief overview of how the scheme works is provided in this thesis.

This stateful symmetric scheme relies on synchronization between the UE and HN

with a shared sequence number. Two new temporary identification parameters, A and B,

are embedded into the USIM of the UE. The HN creates these parameters with a single

master key. A is used to construct a Confidentiality key CKID. B is used to check the

integrity of the SUCI.

The scheme consists of an identification phase and an update phase. The identifica-

tion phase produces a SUCI, which contains the concealed SUPI and a MAC to ensure

integrity and replay protection of the scheme output. The HN uses the master key to

de-conceal the SUPI. After identification, a shared secret key is established between UE

and HN, using the subscriber key and a random number sent to the UE. This allows the

update phase to begin. In this phase, the HN produces the new A and B parameters for

the UE by using the master key. They are encrypted with the new shared secret key and

sent to the UE. This allows the UE to be ready for a new identification phase. 5G-AKA

proceeds as usual after this, and the UE is assigned a 5G-GUTI.

4.7.2 Scheme Flaws

Choudhury points out the following flaws of the scheme [Cho21].

– A single master key KH N is used for concealing the SUPI of every registered sub-

scriber, but there is no mechanism to update this master key.

– A nonce N is used twice with KH N in a XOR and hash operation to produce parame-

ters A and B : A = KH N
⊕

N and B = h(KH N , N). These parameters, along with the

nonce, are transmitted in the clear with every SUCI transmission by any UE. An

adversary could exploit this to compromise the master key KH N .

– Two sequence numbers SQNI DU E and SQNI DH N are introduced to the HN and UE

to guard against replay attack. However, this opens up for inherent issues like loss

of synchronization during mobile resets and system crashes.

4.8. NEWHOPE 35

– IF the UE and HN’s sequence numbers vary too much, de-synchronization happens.

There is no mechanism in the scheme to re-synchronize.

4.7.3 PID Protocol Compatability

This scheme requires two additional temporary parameters to be instantiated on the

USIM and HN. IT also requires the 5G-AKA identification response to be sent with an

additional parameter.

4.7.4 SUCI Overhead

The SUCI is in the proper format and amounts to 303 bits without the scheme output. The

scheme output consists of a MAC, encrypted MSIN, a concealed confidentiality key, and a

concealed Sequence number. These parameters are respectively 64, 40, 128, and 48 bits.

In total, this creates a SUCI message with 583 bits.

4.8 NewHope

A section on the post-quantum key exchange protocol NewHope is included to highlight

the issues of public key post-quantum cryptography. It is not designed or supposed to be

used as a standalone private identification scheme. However, as a cryptographic primitive,

it could be extended to achieve that purpose.

NewHope is a post-quantum key exchange protocol proposed by Alkim et al. in late

2016 [ADPS15]. It is based on a mathematical problem known as Ring Learning With

Errors, assumed to be hard to solve even for quantum computers. It was selected as a

round-two contestant in the NIST Post-Quantum Cryptography Standardization Program

but did not make the third round [CSD17b].

The protocol only offers unauthenticated key exchange, as the authors believe the

key exchange protocol should be decoupled from authentication for better cryptographic

flexibility. To achieve authentication, the authors assume that proven pre-quantum

signatures could be used in the foreseeable future. This could then be used to authenticate

a NewHope public key.

Unfortunately, keys can not be reused or cached. Therefore, both parties need to

generate and use ephemeral key pairs for each exchange. The AKA process of Newhope

has different parties doing distinct operations, the server and the client. The server is

responsible for generating a public and private key. The public key is then sent to a client,

using it as a seed to create a shared secret and client public key, which it sends back to

the server. The server then uses its private key and the client public key to derive the

shared secret. The following steps explain how provider authentication and shared secret

derivation could happen in 5G-AKA using NewHope:

36 4. ONBOARDING IOT AND PROPOSED SCHEMES

– The UE sends a SUCI with no scheme output and the protection scheme tag set to

use NewHope.

– The HN generates a NewHope key pair and signs the NewHope public key using the

Home Network Public Key. The NewHope public key is sent back, along with the

digital signature.

– The UE authenticates the NewHope Public key as originated from its home network

and uses it as input to derive a shared secret and its own public key. The UE does

not need to store a private key, as the NewHope client function to derive a shared

secret does so ephemerally.

– The UE uses the shared secret and a symmetric function to encrypt the MSIN.

– The SUCI scheme output is then finally made by concatenating the encrypted MSIN

and UE NewHope public key. the SUCI is then sent again to the HN.

– The HN derives the shared secret using the UE’s public key and decrypts the MSIN.

4.8.1 SUCI Overhead

A SUCI message, excluding the scheme output, contains 303 bits. The NewHope client

public key consists of 2048 bytes, and the encrypted SUPI is 40 bits. In total, the final SUCI

message sent contains 16727 bits.

However, this assumes the usage of a classic digital signature. In reality, it would

only make sense to use NewHope with a post-quantum digital signature. This requires

modifying the Home Network public key to accommodate that. Hence, the SUCI size

would be significantly larger.

This protocol also requires two communication rounds. First, get the HN to generate

its ephemeral key pair, then for the UE to use those keys. This adds significant latency.

Chapter5Experimental Setup

This chapter covers the selected hardware used in the experiment and the selected soft-

ware to create the experimental framework and do the experimentation.

5.1 Hardware Selection

32-bit embedded devices with varying computational capability and memory are the

main target for this thesis. The devices reflect what would constitute mid to high end of

performance for IoT at a cheap entry point. Jimenez Et al. evaluated the performance of

the ECIES scheme on a handful of Android devices that reflect the average device on the

market [JNNN17]. This study seeks a similar baseline for the average 32-bit constrained

embedded device while also looking at performance for proposed symmetric solutions.

Evaluation of the schemes following the proposals use 8-bit embedded devices with

clock speed as low as 16Mhz, for instance, the Arduino Uno device [Cho21]. This device is

a reasonable estimate for use in low-end IoT. This experiment’s relevant cryptographic

libraries implement standard cryptographic primitives that optimize for 8-bit platforms

and include measured execution times in their documentation [WW]. Those results are

used as an alternative for testing against 8-bit devices in this experiment.

Table 5.1 details the IoT devices used for evaluation and their specifications.

All the devices support the Arduino Platform, simplifying the development time of

the experimental framework with broad library support and extensive documentation.

All devices use their distinct development framework, and as such, device flexibility and

choice were kept in mind when designing the experimental framework in this study.

The laptop was used for serial communication with the embedded devices, both for

uploading code to the devices and acquiring experimental results. Any device suitable for

development work could be substituted for this purpose.

37

38 5. EXPERIMENTAL SETUP

Table 5.1

Device Specifications

Specifications ESP32 ESP8266 Nano 33 IoT

Development Board Adafruit HUZ-
ZAH ESP32
Feather

Adafruit HUZ-
ZAH ESP8266
Feather

Arduino Nano 33
IoT

Micro Processor Xtensa LX6 Dual-
core

Xtensa L106
Single-core

SAMD21 Cortex-
M0+

Clock Speed 240 MHz 80 MHz 48 MHz

Flash Memory 4 MiB 4 MiB 256 KiB

SRAM 520 KiB 64 KiB 32 KiB

Figure 5.1: The development boards used in the experiment, from left to right: Huzzah
ESP32, Huzzah ESP8266, and Arduino Nano 33 IoT.

5.2. SOFTWARE 39

5.2 Software

This section describes everything used to develop the experimental framework, carry out

experimentation, and process the results.

PlatformIO in Visual Studio Code

PlatformIO is an embedded development platform with an extensive embedded plat-

form, framework, board, and library support [Pla]. It has a multi-platform and multi-

architecture build system that enables easy development and management over several

boards that may differ in architecture, framework, and platform choice.

PlatformIO IDE is an extension in VScode was used for this project. It integrates nicely

to provide a rich IDE for flexible embedded development.

C++

C++ code is written, compiled, and uploaded to the devices. The code includes both the

setup of the experimental framework and all evaluated cryptographic functions.

Python

The Python programming language (v.3.9) [Pyt] allowed scripts to be made for serial

communications with the embedded devices and treatment of the results from that serial

communication.

Arduino platform

Using this platform as a foundation for library and code support allows the experimental

framework to be used on as many devices as possible [WW]. It has extensive library

support, particularly for cryptographic libraries that implement standard cryptographic

primitives. It was also the only common platform for the hardware.

YAML

The experimental framework uses YAML headers to serialize meta information in each

experimental session between the host computer and device.

5.3 Experimental Framework

The experimental framework was designed with these goals in mind:

– Simplify and streamline evaluation and testing of cryptographic functions on em-

bedded devices.

40 5. EXPERIMENTAL SETUP

– Create interfaces that allow for simple testing and evaluation of execution time of

cryptographic functions.

– Allow for easy board management, with extensive configuration options, library,

debugging, and tool support.

– Simplify serial communication and data manipulation.

– Allow for both simple and advanced logging of results.

Two design cycles were necessary for creating the experimental framework:

– The first design cycle had all necessary code set up for the pipeline of testing cryp-

tographic functions, serialization-deserialization of results and meta-information

from the device to the host computer, and data manipulation to prepare the results.

– The second design cycle streamlines this process by abstracting the code into

independent classes that each performs one of the aforementioned tasks. The

code was structured sequentially in a Jupyter notebook to provide step-by-step

instructions to quickly get started with benchmarking and data manipulation of the

results. All functions were also documented.

The code for the experimental framework is on github and contains 2 branches

[Gab21].

– Master. Contains code used in this thesis for experimentation, which uses the first

design cycle of the framework. It also includes step-by-step instructions for how the

experimental results were derived.

– Skeleton. Contains the barebones experimental framework synthesized from the

second design cycle, along with a few examples of cryptographic primitives being

evaluated.

It has the following functionality:

– Able to quickly change between evaluating different boards on the fly seamlessly.

– Setting up unit tests of any code, which could, for instance, be test vectors for

cryptographic primitives to ensure that the cryptographic functions produce the

desired output.

5.3. EXPERIMENTAL FRAMEWORK 41

Figure 5.2: A session of benchmarking and resulting output

– Benchmarking of multiple cryptographic functions at once. This could also be

configured to only output the average execution time of the benchmarked functions.

– Ability to extend the logging functionality to include additional meta-information

or new results through additional columns.

– Serialization of both results and meta-information about the experiment in log files.

– De-serialization on the host computer using Python and subsequent data manipu-

lation in a step-by-step process in a Jupyter Notebook.

– Easy data presentation and comparisons of the evaluated cryptographic functions,

as all cryptographic functions logged under one device are dynamically put into a

comparison table.

– Ability to estimate a scheme’s execution time based on benchmarked cryptographic

primitives used in the scheme.

42 5. EXPERIMENTAL SETUP

Figure 5.2 shows to the left the host PC capturing the serialized benchmark results

for several cryptographic primitives against one device. This is done dynamically after

setting some variables. To the right, one of those log files can be seen. It also includes

meta-information contained in a YAML header. The meta-information is used to specify

the CSV log file format and include some additional information necessary when working

with the data.

Appendix A contains a walkthrough of how to set up the experimental framework and

use it.

5.4 Experimentation

This section describes how the experimental framework was set up to test the schemes

and primitives for this thesis.

Two additional Arduino libraries were necessary for the project:

– Arduino Crypto Library [WW]. It contains a Random Number Generator (RNG), all

the symmetric primitives, and the NewHope code.

– micro-ecc [Mac21]. Contains fast ECDH implementation with NIST P-256 as one of

the supported curves.

5.4.1 Experimental Methodology

This is roughly the step-by-step process that was followed to gather experimental results

on a cryptographic primitive or scheme:

1. Implement the cryptographic function will be benchmarked. If it is a cryptographic

primitive, this is simply done by importing the implementations by aforementioned

libraries.

2. Create and use unit test for the cryptographic function. Usually consisting of input

and correct output, to ensure correctness of the function.

3. Create wrapper function(s) necessary for timing one iteration of the cryptographic

function. These wrapper functions do necessary setup and teardown for each

benchmark sample.

4. Use the benchmarking function and wrapper functions to time the cryptographic

function with 100 samples.

5. Serialize meta-information (number of samples, device and primitive being bench-

marked) along with benchmark results of all 100 samples.

5.4. EXPERIMENTATION 43

6. Deserialize and parse meta information with python script and store the results as a

log file.

The log files are written sequentially with a sentinel value for starting and stopping, so

several cryptographic functions can be benchmarked at one run of the python script.

5.4.2 Cryptographic Scheme Implementations

The experiment’s goal was to acquire insight into the execution time of ECIES encryption

and the proposed symmetric solutions encryption on selected 32-bit embedded devices.

The experimental framework was developed to enable this. Due to time constraints

and technical problems, only the ECIES, Newhope, and HashXOR schemes could be

implemented fully on the devices. However, most of the standard cryptographic primitives

used by the other proposed schemes were tested for validity, and their execution time

was evaluated. Those results can be used to create estimates for the execution time of the

schemes.

ECIES Implementation

This experiment’s implementation profile of ECIES differs from the two profiles used in

5G-AKA but guarantees the same or higher security at a similar execution time.

secp256pr1, also known as NIST P-256, is the elliptic curve used, similar to 5G ECIES

profile B. AES is also used, albeit AES-256 in Galois Counter Mode simplifies integrity

protection. This also removes the need for a distinct H MAC computation. SHA256 is used

for key derivation, not ANSI X9.63 Key Derivation Function (KDF) with SHA256.

HashXOR Implementation

HashXOR was implemented using SHA256 and SHA3-256 cryptographic hash functions.

This differs slightly from the proposal’s own experimental results, which only used SHA256.

This is because the scheme creators state that two distinct hashing functions should

be used in the encryption, but how this is done is not explicitly stated in their own

experimental results, as it lacks implementation details.

Chapter6Experimental Results

This chapter details all the experimental results derived from using the experimental

framework. How these results were derived can be seen in a step-by-step process in

Appendix B.

6.1 Primitives

The tested primitives’ average execution time can be seen in Table 6.1. Keys are also set so

they can be referred to in computing estimates for other schemes.

Table 6.1
Average Primitive Execution Time

Seconds

Primitive Device

Key Name ESP32 ESP8266 Nano IoT

tXOR XOR 3.00×10−6 7.00×10−6 1.10×10−5

tRNG RNG 3.10×10−5 9.20×10−5 1.70×10−4

tBL AK E2s BLAKE2s 1.90×10−5 8.30×10−5 1.44×10−4

tSH A2 SHA256 2.80×10−5 1.07×10−4 2.61×10−4

tSH A3 SHA3-256 1.90×10−4 5.50×10−4 1.34×10−3

ts ym.enc AES256 Enc. 1.50×10−5 1.79×10−4 3.24×10−4

ts ym.dec AES256 Dec. 9.00×10−6 2.44×10−4 5.25×10−4

tGC M AES-256-GCM 1.53×10−4 1.03×10−3 2.57×10−3

tEC D H NIST P-256 ECC-DH 0.17 0.978* 0.781

The ESP8266 device has one abnormal result, NIST P-256 ECC+DH (both key genera-

tion on the IoT device and shared secret derivation). It seems to have a higher execution

time than the supposedly weaker Nano IoT device. This can be explained by the fact

45

46 6. EXPERIMENTAL RESULTS

that the ESP8266 has an inbuilt hardware watchdog timer. This timer will periodically

interrupt the main code such that system maintenance code can be run, which takes

roughly 500 milliseconds. This will halt the ECC+DH function because it simply takes too

long. This is an issue in the implemented ECIES scheme as well.

6.2 Implemented Schemes

The schemes implemented on the device for testing were limited to HashXOR using SHA3

+ SHA256, ECIES, and NewHope. The NewHope implementation is contained in the

Arduino Crypto Library and is based on the cited GitHub repository [SN18].

Table 6.2
Average Implemented Scheme Execution Time

Seconds

Device

Scheme ESP32 ESP8266 Nano IoT

HashXOR SHA3 3.11×10−4 8.56×10−4 2.18×10−3

NewHope 1.12×10−2 NaN 7.73×10−2

ECIES 1.70×10−1 9.79×10−1 7.84×10−1

The average execution time is listed in Table 6.2. Execution time for NewHope on

ESP8266 could not be derived because of the significant stack size required, causing

issues when attempting to run the code. Arduino Crypto Library minimized the necessary

memory requirements, but it still requires 10.2KB of memory to run NewHope on a client

device [WW].

6.3 Estimated Schemes

This section describes the process of estimating a scheme execution time based on its

cryptographic primitives. In this case, the schemes are estimated using table 6.1. PPSE is

not estimated due to its inherent handling of SUCI as a pseudonym and concealed initial

identifier. This makes it difficult to assess which phases should be included and omitted

partly due to time constraints with the thesis.

Table 6.3 is based on similar work done by Choudhury et al., although adapted to the

cryptographic primitives used in this thesis [Cho21]. The keys in this table are used to

look up the average execution time in Table 6.1.

6.3. ESTIMATED SCHEMES 47

Table 6.3

Scheme Cost Using Primitives

Scheme Primitive computations

Khan tRNG +3 · tSH A2 + ts ym.dec

Braeken 7 · tSH A2

SEL-AKA TRNG +3 · tSH A2 + ts ym.enc

HashXOR BLAKE2S 2 · tRNG +3 · tXOR +2 · tBL AK E2s

HashXOR SHA3 2 · tRNG +3 · tXOR +2 · tSH A3

ECIES TEC D H +TSH A2 +TGC M

Table 6.4
Average Estimated Scheme Execution Time

Seconds

Device

Scheme ESP32 ESP8266 Nano IoT

Khan 1.61×10−4 7.85×10−4 1.77×10−3

Braeken 1.96×10−4 7.49×10−4 1.83×10−3

SEL-AKA 1.30×10−4 5.92×10−4 1.28×10−3

HashXOR BlAKE2s 1.18×10−4 3.95×10−4 7.78×10−4

HashXOR SHA3 2.89×10−4 8.62×10−4 1.98×10−3

ECIES 1.70×10−1 9.79×10−1 7.84×10−1

HashXOR blake2S is included to see the effect of using a more performant hashing

function compared to SHA3. ECIES and HashXOR using SHA3 are also estimated theoreti-

cally to see the difference between the theoretical and actual implementations.

Finally, we use Table 6.3 and Table 6.1 to derive Table 6.4

Chapter7Discussion

This chapter summarises the informal scheme analysis using the final 5G PID Protocol

specifications synthesized in Chapter 4. This information is organized into Table 7.1.

Observations about the performance of the schemes are also made using the experimen-

tal results from Chapter 6. Finally, these observations are used to answer the research

questions specified in Chapter 1.

7.1 Observations

This section will detail observations made from the informal scheme analysis and then

detail performance evaluations using the experimental results.

7.1.1 Scheme Analysis

See Table 7.1 for an overview of how the different schemes vary regarding 5G PID Protocol

requirements. This table was derived from Chapter 4 and the proposed scheme subsec-

tions. Further explanation on how this table is derived is also explained throughout this

section.

Symmetric Scheme Weaknesses

PPSE-AKA and SEL-AKA were vulnerable to passive eavesdropping due to their fixed

reference parameters. By default, this problem is exacerbated by an active adversary

that can, for instance, jam devices and force devices to perform the identification phase.

Hence, they do not possess User Location Confidentiality.

In a similar vein, HashXOR has a Linkability attack that limits the unlinkability of the

SUCI. In most instances, the SUCI’s will easily be linked. However, the prerequisites of

this attack might be a strong assumption, wherein the adversary gets access to subscriber

credentials.

49

50 7. DISCUSSION

Table 7.1

Analysis of Proposed Schemes Overview

Asymmetric Symmetric

Proposals:
Year of publication: 2018 2016

HashXORNewHopeECIES (5G) PPSE-AKA Braeken SEL-AKA Khan

2020 2021 2020 2019 2018

Security
Yes No Yes Yes Yes Yes Yes

Yes No No No Yes No Yes

User Untraceability Yes No Yes Yes Yes Yes Yes

SUCI Integrity Protection Yes No No Yes Yes Yes Yes

SUCI Replay Protection No No No Yes Yes Yes Yes

SUCI Unlinkability Yes Yes No No Yes No Yes

Mutual Authentication Yes No Yes Yes No Yes Yes

MiTM Protection Yes No Yes Yes No Yes Yes

Attacks/weaknesses:
Linkability Attack No No Yes Yes No Yes No

De-synchronization No No No No No No Yes

Chosen SUCI Attack Yes Yes Yes No No No No

Other (comment)

Vulnerable to
Passive Adversary No

DDOS
Attack

No

Nonce
Reuse

Yes No Yes No

Active Adversary No

No

Yes Yes Yes Yes Yes No

Decoupled Identification
PID Protocol Compatibility

Yes

Unauth.
 Auth.

No Yes No No No Yes

Yes No Yes No No No Yes

5G-AKA Replacement

SUCI Protection Scheme

No No No Yes Yes Yes No

Proper SUCI Format Yes No No No No No Yes

Scalability

User Identity Confidentiality

Constant Constant Log. Constant Constant Constant Constant

SUCI Size (bits)

*Vulnerable to attacks

User Location Confidentiality

663 16727 752 600 Unknown 248 583

The Braeken scheme did not model the serving network into their 5G-AKA protocol

and is inherently vulnerable to MiTM attacks.

The Khan Et al. scheme has no re-synchronization method and is inherently vulnera-

ble to forced de-synchronization attacks. This could limit the reliability of the scheme.

SUCI Format Compatibility

Only one of the proposed schemes had a proper format for the SUCI. There seems to be an

insufficient understanding of the protection scheme paradigm that 5G-AKA uses. Hence,

the schemes did not properly account for how it fits with 5G-AKA by assuming that the

SUCI is just the encrypted SUPI, thus accounting for no additional signaling information.

7.1. OBSERVATIONS 51

Decoupled Identification

Of all the proposed alternatives to the 5G-AKA protocol as a whole, none of them properly

accounted for having a distinct identification phase that could be easily replaced. This

is done in 5G-AKA using the protection scheme. This issue is also reflected in the SUCI

format compatibility. These protocols, therefore, lack the cryptographic flexibility that

5G-AKA has with the protection schemes.

7.1.2 Performance

The performance results are based on the average execution time of both implemented

and estimated schemes in Table 6.2 and Table 6.4. The scalability and SUCI size in Table 7

is also considered.

5G ECIES Execution Time

The average execution time for 5G ECIES on these devices may be sufficiently low for some

massive IoT use-cases where identification will only rarely occur. The ESP32 device took

"only" 0.17 seconds to create the SUCI necessary for identification. The Nano IoT device

took 0.78 seconds. Unfortunately, the results from the ESP8266 were unreliable for ECIES,

but should in general, be somewhere between the ESP32 device and Nano IoT device.

For critical IoT applications, ECIES would incur too high latency to be used. To satisfy

some of the use cases in this category, it would require ECIES to have an average execution

time of fewer than 5 milliseconds.

NewHope

At first glance, the execution time of NewHope is favorable, with the ESP32 device creating

a shared secret in only 11.2 milliseconds and the Nano IoT device in 77.3 milliseconds.

But this does not account for the added latency of two communication rounds, which

is only when the scheme is unauthenticated. For this to be made authenticated, it would

require additional cryptographic operations where the NewHope key is signed using a

post-quantum signature scheme. This would significantly increase the average execution

time.

Furthermore, the memory requirements of NewHope are extremely significant. With

just NewHope, the SUCI size is 16727 bits. The scheme also requires significant memory

on the device, as 10.2KB of memory was required to use NewHope properly. And this does

not even account for adding authentication with post-quantum signatures.

52 7. DISCUSSION

Symmetric Scheme Performance

All the symmetric schemes had favorable execution times and were quite similar. The

only significant difference comes from which cryptographic hashing operation was used.

The impact of using SHA3 on the ESP8266 and Nano IoT were remarkably high.

All the schemes except HashXOR also had favorable scalability. This is due to HashXOR

having a very high average amount of cryptographic primitives used in every key search

on the HN, which exacerbates DDoS attacks.

In terms of SUCI size, all symmetric schemes and ECIES were also similar. SEL-AKA

does stand out with a smaller SUCI size, but the consequence is insufficient security.

7.2 Answers to Research Questions

This section will answer the research questions highlighted in Section 1.2.1.

RQ1. To what degree is the current 5G Identity privacy scheme suitable for IoT de-
vices?

Based on observations made about ECIES, it seems suitable for use in Massive IoT

applications that rarely need additional identification phases using SUCI. These identifi-

cation phases could happen because of mobility and de-synchronization with the serving

network. In normal cases, the SUCI identification phase should happen once, and a

pseudonym with no performance impact is used in subsequent identification.

A 32-bit embedded device with the equivalent power of the ESP32 device or more could

be used as a gateway device, where more constrained devices communicate efficiently

with this device to relay information to the 5G Network.

RQ2. To what degree do the lightweight alternatives substitute the current solution
in regards to security and performance?

Based on the observations made about the symmetric schemes, the performance is

favorable for both Massive IoT and critical IoT in terms of execution time and scalability.

However, the security is still insufficient, where all of the schemes are vulnerable to an

active adversary.

RQ3. What are the possible trade-offs and differences between these lightweight
solutions?

The symmetric schemes all accomplish their performance and security goals in differ-

ent ways. However, they all end up having some form of inherent weakness.

7.2. ANSWERS TO RESEARCH QUESTIONS 53

Both PPSE-AKA and SEL-AKA do a security-performance tradeoff by using reference

parameters that could be used to identify the subscriber.

HashXOR seems to trade security for more efficient performance by introducing a

shared cluster identity parameter as a new subscriber credential, but this opens up to a

new attack that compromises the SUCI unlinkability of the scheme.

Braeken and Khan et al.’s scheme could be said to trade security and reliability for

more efficient performance due to their synchronized parameters.

Only Khan et al. scheme accounted for the existing 5G architecture by minimizing the

introduction of new cryptographic primitives and having the proper SUCI format.

In general, it seems that all of the 5G-AKA schemes only prioritized performance

instead of user privacy and reliability.

RQ4. Do the proposed solutions minimally interfere with current 5G security spec-
ifications and architecture?

None of the proposed 5G-AKA alternatives decoupled the identification phase from

the authentication phase. Hence, there are no mechanisms for cryptographic flexibility

where a different protection scheme could be used to construct the SUCI.

Similarly, none of the schemes barring Khan et al. had a proper SUCI format, which

would make it an incompatible protection scheme for 5G-AKA. SUCI was, for instance,

made to be equivalent to an encrypted SUPI.

All solutions also introduced additional subscriber credentials to be stored in the

USIM and HN.

In general, it seems that the main issue stems from a lack of understanding of what a

protection scheme in 5G-AKA should accomplish.

Chapter8Conclusion

This chapter concludes the thesis by summarizing the work done and what research was

accomplished. Finally, some future work is recommended.

8.1 Summary of Thesis

5G identity privacy is now more crucial than ever, as this mobile network is set to support

IoT devices. However, the identity privacy scheme used in 5G is new and relies on public-

key cryptography. This made it uncertain how reliable identification would be on IoT

devices. Hence, several lightweight symmetric alternatives were proposed.

This thesis takes root in the Private Identification problem for 5G mobile networking

and specifies requirements for a 5G PID Protocol. The current 5G solution and pro-

posed alternatives are then evaluated according to these requirements. An experimental

framework was made to simplify the evaluation and was promptly used in this thesis.

This framework went through two design cycles, and the result is a sequential and

well-documented process for benchmarking cryptographic primitives and schemes. The

experimentation used the framework to benchmark actual scheme implementations and

estimate scheme performance from evaluated cryptographic primitives.

The results from all the analyzed schemes and the associated experimental results

were then used to create observations used to answer the research questions. The answers

indicate that the current 5G solution for identity privacy, ECIES, is manageable for massive

IoT use cases where concealed identification will rarely happen. However, the symmetric

schemes either had insufficient identity pricacy or insufficient reliability. Furthermore,

due to an insufficient understanding of identification in 5G-AKA, they suffer from a lack

of cryptographic flexibility.

55

56 8. CONCLUSION

8.2 Future Work

The experimental framework created in this thesis could be used to evaluate the proposed

primitives in the NIST Lightweight weight cryptography contest on commodity IoT devices

[CSD17a]. It could also be used in the NIST Post-quantum contest [CSD17c].

The evaluations of the proposed schemes could be used to avoid pitifalls for designing

a new Private Identification Protocol suitable for 5G.

The specifications for a 5G PID Protocol could be adapted and extended to cover other

use cases.

References

[ADPS15] Erdem Alkim, Léo Ducas, Thomas Pöppelmann, and Peter Schwabe. Post-quantum
key exchange - a new hope, 2015.

[Bar20] Elaine Barker. Recommendation for key management:: Part 1 - general. Technical
Report NIST SP 800-57pt1r5, National Institute of Standards and Technology, Gaithers-
burg, MD, May 2020.

[BCR+18] Elaine Barker, Lily Chen, Allen Roginsky, Apostol Vassilev, and Richard Davis. Rec-
ommendation for Pair-Wise Key-Establishment Schemes Using Discrete Logarithm
Cryptography. Technical Report NIST Special Publication (SP) 800-56A Rev. 3, National
Institute of Standards and Technology, April 2018.

[BGG+20] F. Boudot, P. Gaudry, A. Guillevic, N. Heninger, E. Thomé, and P. Zimmermann. Com-
paring the difficulty of factorization and discrete logarithm: A 240-digit experiment,
2020.

[Bra20] An Braeken. Symmetric key based 5G AKA authentication protocol satisfying
anonymity and unlinkability. Computer Networks, 181:107424, 2020.

[Cer01] Iliano Cervesato. The Dolev-Yao Intruder is the Most Powerful Attacker. In Proceedings
of the Sixteenth Annual Symposium on Logic in Computer Science | LICS’01, pages
16–19. IEEE Computer Society Press. Short, 2001.

[Cho21] Hiten Choudhury. HashXor: A lightweight scheme for identity privacy of IoT devices
in 5G mobile network. Computer Networks, 186:107753, 2021.

[CSD17a] Information Technology Laboratory Computer Security Division. Lightweight Cryptog-
raphy | CSRC | CSRC. https://csrc.nist.gov/projects/lightweight-cryptography, January
2017.

[CSD17b] Information Technology Laboratory Computer Security Division. Round 3 Submissions
- Post-Quantum Cryptography | CSRC | CSRC. https://csrc.nist.gov/Projects/post-
quantum-cryptography/round-3-submissions, January 2017.

[CSD17c] Information Technology Laboratory Computer Security Division. Round 3 Submissions
- Post-Quantum Cryptography | CSRC | CSRC. https://csrc.nist.gov/Projects/post-
quantum-cryptography/round-3-submissions, January 2017.

57

58 REFERENCES

[Gab21] Kenneth Gabrielsen. Kennethgab/Experimental-Framework. https://github.com/
Kennethgab/Experimental-Framework, July 2021.

[GSZ19] Ikram Gharsallah, Salima Smaoui, and Faouzi Zarai. A Secure Efficient and Lightweight
authentication protocol for 5G cellular networks: SEL-AKA. In 2019 15th International
Wireless Communications Mobile Computing Conference (IWCMC), pages 1311–1316,
2019.

[Ins] Global Risk Institute. Quantum Threat Timeline Report 2020.
https://globalriskinstitute.org/publications/quantum-threat-timeline-report-2020/.

[JNNN17] Enrique Cobo Jimenez, Prajwol Kumar Nakarmi, Mats Naslund, and Karl Norrman.
Subscription identifier privacy in 5G systems. In 2017 International Conference on
Selected Topics in Mobile and Wireless Networking (MoWNeT), pages 1–8. IEEE, 2017.

[KDM18] Haibat Khan, Benjamin Dowling, and Keith M Martin. Identity Confidentiality in 5G
Mobile Telephony Systems. Security Standardisation Research, page 23, 2018.

[Kob87] Neal Koblitz. Elliptic curve cryptosystems. Mathematics of Computation, 48(177):203–
209, 1987.

[LYS+15] Junrong Liu, Yu Yu, François-Xavier Standaert, Zheng Guo, Dawu Gu, Wei Sun, Yijie Ge,
and Xinjun Xie. Small Tweaks Do Not Help: Differential Power Analysis of MILENAGE
Implementations in 3G/4G USIM Cards. In Günther Pernul, Peter Y A Ryan, and
Edgar Weippl, editors, Computer Security – ESORICS 2015, Lecture Notes in Computer
Science, pages 468–480. Springer International Publishing, 2015.

[Mac21] Ken MacKay. Kmackay/micro-ecc, June 2021.

[Mil86] Victor S. Miller. Use of Elliptic Curves in Cryptography. In Hugh C. Williams, editor,
Advances in Cryptology — CRYPTO ’85 Proceedings, Lecture Notes in Computer Science,
pages 417–426, Berlin, Heidelberg, 1986. Springer.

[MO17a] Stig Frode Mjølsnes and Ruxandra-Florentina Olimid. Easy 4G/LTE IMSI Catchers for
Non-Programmers. 235-246, 2017.

[MO17b] Stig Frode Mjølsnes and Ruxandra Florentina Olimid. The Challenge of Private Identi-
fication. iNetSec, page 16, 2017.

[MO19] Stig F. Mjolsnes and Ruxandra F. Olimid. Private Identification of Subscribers in Mobile
Networks: Status and Challenges. IEEE Communications Magazine, 57(9):138–144,
2019.

[OF18] Edward J. Oughton and Zoraida Frias. The cost, coverage and rollout implications of
5G infrastructure in Britain. Telecommunications Policy, 42(8):636–652, September
2018.

[PGGM20] Balu L. Parne, Shubham Gupta, Kaneesha Gandhi, and Shubhangi Meena. PPSE: Pri-
vacy Preservation and Security Efficient AKA Protocol for 5G Communication Networks.
In 2020 IEEE International Conference on Advanced Networks and Telecommunications
Systems (ANTS), pages 1–6. IEEE, 2020.

https://github.com/Kennethgab/Experimental-Framework
https://github.com/Kennethgab/Experimental-Framework

REFERENCES 59

[Pla] PlatformIO. PlatformIO is a professional collaborative platform for embedded devel-
opment. https://platformio.org.

[Pol75] J. M. Pollard. A monte carlo method for factorization. BIT Numerical Mathematics,
15(3):331–334, September 1975.

[Pyt] Python. Welcome to Python.org. https://www.python.org/.

[rGPP18] 3rd Generation Partnership Project. Security architecture and procedures for 5g sys-
tems (ts 33.501 version 15.0.0 release 15). 3GPP, 2018.

[rGPP20] 3rd Generation Partnership Project. 3g security security architecture (ts 33.102 version
16.0.0 release 16). 3GPP, 2020.

[RSA78] R. L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signatures and
public-key cryptosystems. Communications of the ACM, 21(2):120–126, February 1978.

[Sho94] P.W. Shor. Algorithms for quantum computation: Discrete logarithms and factoring.
In Proceedings 35th Annual Symposium on Foundations of Computer Science, pages
124–134, 1994.

[SMBE17] Bardia Safaei, Amir Mahdi Monazzah, Milad Bafroei, and Alireza Ejlali. Reliability
Side-Effects in Internet of Things Application Layer Protocols, December 2017.

[SMK+17] Philipp Schulz, Maximilian Matthe, Henrik Klessig, Meryem Simsek, Gerhard Fettweis,
Junaid Ansari, Shehzad Ali Ashraf, Bjoern Almeroth, Jens Voigt, Ines Riedel, Andre
Puschmann, Andreas Mitschele-Thiel, Michael Muller, Thomas Elste, and Marcus
Windisch. Latency Critical IoT Applications in 5G: Perspective on the Design of Radio
Interface and Network Architecture. IEEE Communications Magazine, 55(2):70–78,
February 2017.

[SN18] Peter Schwabe and Michael Naehrig. Newhopecrypto/newhope-usenix. https://
github.com/newhopecrypto/newhope-usenix, December 2018.

[Sta] Statista. Number of IoT devices 2015-2025. https://www.statista.com/statistics/471264/iot-
number-of-connected-devices-worldwide/.

[UvWBS21] Balazs Udvarhelyi, Antoine van Wassenhove, Olivier Bronchain, and François-Xavier
Standaert. On the Security of Off-the-Shelf Microcontrollers: Hardware Is Not Enough.
In Pierre-Yvan Liardet and Nele Mentens, editors, Smart Card Research and Advanced
Applications, volume 12609 of Lecture Notes in Computer Science, pages 103–118.
Springer International Publishing, 2021.

[WW] Rhys Weatherley and Brandon Wiley. Arduino Cryptography Library: Arduino Cryptog-
raphy Library. https://rweather.github.io/arduinolibs/crypto.html.

[ZYSQ13] Yuanyuan Zhou, Yu Yu, François-Xavier Standaert, and Jean-Jacques Quisquater.
On the Need of Physical Security for Small Embedded Devices: A Case Study with
COMP128-1 Implementations in SIM Cards. In Ahmad-Reza Sadeghi, editor, Financial
Cryptography and Data Security, Lecture Notes in Computer Science, pages 230–238.
Springer, 2013.

https://github.com/newhopecrypto/newhope-usenix
https://github.com/newhopecrypto/newhope-usenix

AppendixASetting up and using the framework

prerequisites:

– USB driver(s) for development board(s)

– Visual Studio Code

– Python v3.6+

The development board’s USB driver is required for the host computer to detect it over

USB. For an Arduino device, the driver can easily be installed using the Boards Manager

utility in the Arduino IDE. Windows 10 may also automatically recommend installing the

associated USB driver when you first connect the board.

The PlatformIO IDE is integrated into Visual Studio Code as an extension. It can be

installed through the extension marketplace. Once installed and VSCode is reloaded, the

IDE will be available through both the status bar and command palette. See Figure A.1 for

an example view of the IDE and details of the project. it contains the following numbered

elements:

1. The home button that opens up PlatformIO home overview, where you can create

and open projects, add new boards, libraries, etc..

2. The build button that builds selected code for the chosen environment in 5.

3. The upload button that uploads the last build to the device.

4. A serial monitor that will display what the device prints.

5. The current environment/board chosen to develop and deploy code will be the

current device connected over USB to your host computer.

6. The common environment for all devices.

61

62 A. SETTING UP AND USING THE FRAMEWORK

Figure A.1: PlatformIO project in VScode

7. The specific environment for a device.

8. A BOARDTYPE variable being set in the environment that can be used for logging.

Click the home icon in VSCode’s status bar to open PlatformIO’s overview. From this

overview, create a simple new project, find your development board, and select it. This

will install the necessary toolchain for compiling code and create a configuration file

necessary for your device. This project can remain unused.

The experimental framework will be opened as a new project in PlatformIO from the

home overview in VSCode.

Get the experimental framework from Github. Here is the link to the skeleton branch,

containing only the experimental framework:

https://github.com/Kennethgab/Experimental-Framework/tree/skeleton

This could be downloaded and unzipped, or use git clone and change the branch to

skeleton.

https://github.com/Kennethgab/Experimental-Framework/tree/skeleton

63

The platformio.ini file contains the necessary configuration details for compiling code

to your board. The previous project created for your device also has a platformio.ini

file. Take the content from this file, the specific configuration details for your board, and

append it to the experimental framework’s platormio.ini. Your device can now be selected

as an environment to build and connect towards from VScode’s status bar.

TO uniquely identify your device in code, you need to define the BOARDTYPE variable

with a unique name representing your board. Do so like it is done for the other device

environments by adding a build flag with -D BOARDTYPE="Your device"

Unit tests can also be made, and the logic for that is put up in the tests folder. To run

unit tests against a device, the command palette must be opened (CTRL+SHIFT+P), and

the "PlatformIO: Run Test.." command must be executed.

Everything you need to do on the host computer is sequentially ordered in a Jupyter

notebook. This is an environment where you can execute python code in cells and get

output for each cell. The data_treatment.ipynb file is a notebook that contains step-by-

step instructions for going through the framework. A print of this file is added at the end

of this appendix.

The python libraries used on the host computer, installed either through the notebook

or through the requirements.txt file:

– pandas. used to manipulate data extracted from devices

– pyserial. Used to communicate with the device over USB using Python.

– pyyaml. Used for loading and writing YAML files, which reads the log headers for

meta-information.

The src/main.cpp file is the entry point for writing code on the development board.

this contains some example code for benchmarking primitives, notably including a class

SimpleBenchmarker that simplifies the process. Using this class can be seen in Figure A.1,

where it will evaluate an XOR and RNG function through two different interfaces.

Several functions could be initialized to start testing a new cryptographic primitive or

scheme, but only one is mandatory for the SimpleBenchmarker class to work.

– A setup function. This runs once in the benchmark to set up any necessary prelimi-

naries like static buffers that the primitive function could use.

– A loop setup function. This function runs before every new benchmark sample and

could be used to re-initialize the input for the benchmarked primitive function.

64 A. SETTING UP AND USING THE FRAMEWORK

– A primitive function. This is the code that will be benchmarked and is mandatory

to include.

– a teardown function. Runs at the end of the benchmarking session once.

Once a primitive is set up and ready to be benchmarked, the data_treatment notebook

file can be followed step-by-step to capture the results.

Python walkthrough

The next pages of this appendix will contain the printout of the data_treatment note-

book in the skeleton branch. For a detailed insight into what each function does, check

the relevant python files contained in the repository. All functions in the framework are

documented.

data_treatment_theoretical

June 22, 2021

[1]: import sys

make sure all relevant libraries are installed
!{sys.executable} -m pip install pandas pyserial pyyaml

Requirement already satisfied: pandas in c:\users\kenne\appdata\local\packages\p
ythonsoftwarefoundation.python.3.9_qbz5n2kfra8p0\localcache\local-
packages\python39\site-packages (1.2.4)
Requirement already satisfied: pyserial in c:\users\kenne\appdata\local\packages
\pythonsoftwarefoundation.python.3.9_qbz5n2kfra8p0\localcache\local-
packages\python39\site-packages (3.5)
Requirement already satisfied: pyyaml in c:\users\kenne\appdata\local\packages\p
ythonsoftwarefoundation.python.3.9_qbz5n2kfra8p0\localcache\local-
packages\python39\site-packages (5.4.1)
Requirement already satisfied: pytz>=2017.3 in c:\users\kenne\appdata\local\pack
ages\pythonsoftwarefoundation.python.3.9_qbz5n2kfra8p0\localcache\local-
packages\python39\site-packages (from pandas) (2021.1)
Requirement already satisfied: numpy>=1.16.5 in c:\users\kenne\appdata\local\pac
kages\pythonsoftwarefoundation.python.3.9_qbz5n2kfra8p0\localcache\local-
packages\python39\site-packages (from pandas) (1.20.3)
Requirement already satisfied: python-dateutil>=2.7.3 in c:\users\kenne\appdata\
local\packages\pythonsoftwarefoundation.python.3.9_qbz5n2kfra8p0\localcache\loca
l-packages\python39\site-packages (from pandas) (2.8.1)
Requirement already satisfied: six>=1.5 in c:\users\kenne\appdata\local\packages
\pythonsoftwarefoundation.python.3.9_qbz5n2kfra8p0\localcache\local-
packages\python39\site-packages (from python-dateutil>=2.7.3->pandas) (1.16.0)
WARNING: You are using pip version 21.1.1; however, version 21.1.2 is available.
You should consider upgrading via the 'C:\Users\kenne\AppData\Local\Microsoft\Wi
ndowsApps\PythonSoftwareFoundation.Python.3.9_qbz5n2kfra8p0\python.exe -m pip
install --upgrade pip' command.

[2]: # import all functions used for processing data
import pandas as pd
from SerialLogger import write_logs
from Analyzelogs import load_log, categorize_logfiles, calculate_all, \
calculate_cost, extract_avg

display values in dataframe table setting to 2 significant digit

1

pd.set_option('display.float_format', '{:.2E}'.format)

[]: # run this cell each time you log primitive(s) to write the .log files
from serial communication
write_logs("./test_results/")

[]: # categorize device name here, do multiple if multiple devices.
#

root_dir = "./test_results" # TODO set to your workspace root or use relative␣
↪→path

device_dir = "your_device_folder" # TODO set to the folder containing logfiles

device_dict = categorize_logfiles(f"{root_dir}/{device_dir})

[]: # create index, the full name of each primitive being benchmarked
#TODO fill in with your primitives

index = ["XOR" , "RNG"]

create corresponding list to the index that contains the raw log name of␣
↪→primitive

#TODO fill in with your own primitive log_type names matching index, add more␣
↪→primitives

primitives = ["xor_256", "rng_256"]

for each primitive in the list, calculate the avg
for each primitive and store in a a list/column by the order given in␣
↪→primitives

so devices_avgs[0] = xor avg, devices_avg[1] = rng avg
device_avgs = extract_avg(device_dict, primitives)

create primitive execution time table, column for each device
TODO put in more devices if you want

primitives_avg = pd.DataFrame({"DEVICE" : device_avgs},
index=index
)
print(primitives_avg)

store result in .file ./tables/primitives_avg.tex
primitives_avg.to_latex("./tables/primitives_avg.tex")

2

[]: #calculate implemented scheme avg execution time
just like primitive avg execution time

implemented_schemes_index = ["ECIES"]
implemented_schemes = ["ecies"]

device_avg_schemes = extract_avg(device_dict, implemented_schemes)

assemble dataframe again, can also do this in previous cell
all in one go instead.

implemented_schemes_avg = pd.DataFrame({"DEVICE" : device_avg_schemes},
index = implemented_schemes_index)
print(implemented_schemes_avg)

store result in a .tex file
implemented_schemes_avg.to_latex('./tables/implented_schemes_avg.tex')

[]: # calcualte theoretical scheme avg

index to use in assembled dataframe
scheme_index = ["Scheme1", "Scheme2"
]

primitives and amounts they're used for each scheme
stored as tuples in a list

scheme1_cost = [["SHA256",3], ["XOR", 2]]
scheme2_cost = [["SHA3-256", 7], ["RNG"], 3]
put these in a list for iteration
schemes = [scheme1_cost, scheme2_cost]

calculate cost series using AVG execution time dataframe
to lookup primitive execution time

device_theoretical_schemes = calculate_all(primitives_avg, schemes, "DEVICE")

assemble dataframe/table by using columns as costs
for each device, and scheme names as index

schemes_theoretical = pd.DataFrame({"DEVICE" : device_theoretical_schemes},
index=scheme_index)
print(schemes_theoretical)
store result
schemes_theoretical.to_latex("./tables/theoretical_schemes_avg.tex")

3

AppendixBStep-by-step derivation of experimental
results

This appendix shows the python notebook for how the experimental results were derived.

the code for this is from the master branch contained in the repo:

https://github.com/Kennethgab/Experimental-Framework

For detailed information into implementing all primitives, schemes, and functions,

check the Github repository.

69

https://github.com/Kennethgab/Experimental-Framework

data_treatment_actual

June 22, 2021

[]: import sys# make sure all relevant libraries are installed
!{sys.executable} -m pip install pandas pyserial pyyaml

[5]: # import all functions used for processing data
import pandas as pd
from SerialLogger import write_logs
from Analyzelogs import load_log, categorize_logfiles, calculate_all, \
calculate_cost, extract_avg

Reading content in progress, this may take some time..
Writing log xor_256 for device Arduino Nano 33 IoT
Writing log rng_256 for device Arduino Nano 33 IoT
Done!

[]: # run this cell each time you log primitive(s) to write the .log files
from serial communication. store in test_results folder.
write_logs("test_results/")

[5]: # Categorizing all the expermimental results on cryptographic primitives
for ESP32 into pandas dataframes. stored in dicts.

root_dir = "./test_results"
esp32_dir = "Adafruit_Feather"
esp8266_dir = "Adafruit_Huzzah"
nano_dir = "Arduino_Nano_33_IoT"

put all logfiles into dicts by each device, each logfile a pandas dataframe
with columnssample and time [microseconds]
esp32 = categorize_logfiles(f"{root_dir}/{esp32_dir}")
esp8266 = categorize_logfiles(f"{root_dir}/{esp8266_dir}")
nano_iot = categorize_logfiles(f"{root_dir}/{nano_dir}")

time_col = "time [microseconds]"
esp32_xor = esp32["xor_256"][time_col]

1

print(round(esp32_xor.mean()))

3

[6]: # Constructing the measured primitive table using the mean execution time in␣
↪→microseconds

index = ["XOR", "RNG", "BLAKE2s", "SHA256", "SHA3-256","AES256 Enc.",
"AES256 Dec.", "AES-256-GCM", "NIST P-256 ECC+DH"]

primitives = ['xor_256', 'rng_256','blake2s','sha2_256', 'sha3_256'
,'aes256_enc','aes256_dec','aes256_gcm', 'secp256r1_ecc_dh']

for each primitive in the list, calculate the avg execution time and put that␣
↪→in a list.

returns a column of average execution time for each device
esp32_avgs = extract_avg(esp32, primitives)
esp8266_avgs = extract_avg(esp8266, primitives)
nano_avgs = extract_avg(nano_iot, primitives)

display values in dataframe table setting to 2 significant digit
pd.set_option('display.float_format', '{:.2E}'.format)

create primitive execution time table, columns for each device average␣
↪→execution time.

primitives_avg = pd.DataFrame({"ESP32" : esp32_avgs,
"ESP8266" : esp8266_avgs, "Nano IoT" : nano_avgs}, index=index)
print(primitives_avg)

store in file ./tables/primitives_avg.tex
primitives_avg.to_latex('./tables/primitives_avg.tex')

ESP32 ESP8266 Nano IoT
XOR 3.00E-06 7.00E-06 1.10E-05
RNG 3.10E-05 9.20E-05 1.70E-04
BLAKE2s 1.90E-05 8.30E-05 1.44E-04
SHA256 2.80E-05 1.07E-04 2.61E-04
SHA3-256 1.90E-04 5.50E-04 1.34E-03
AES256 Enc. 1.50E-05 1.79E-04 3.24E-04
AES256 Dec. 9.00E-06 2.44E-04 5.25E-04
AES-256-GCM 1.53E-04 1.03E-03 2.57E-03
NIST P-256 ECC+DH 1.70E-01 9.78E-01 7.81E-01

[7]: # implemented scheme average execution time

index for dataframe/table implemented scheme average excution time
implemented_schemes_index = ["HashXOR SHA3", "NewHope", "ECIES"]
keys to use in dictionary to get right dataframe

2

implemented_schemes = ["hashxor", "newhope_client", "ecies"]

create 3 lists containing avg execution time of lists for each device
in form [hashxor_avg, newhope_avg, ecies_avg]
esp32_avg_schemes = extract_avg(esp32, implemented_schemes)
esp8266_avg_schemes = extract_avg(esp8266, implemented_schemes)
nano_avg_schemes = extract_avg(nano_iot, implemented_schemes)

assemble dataframe where primitive is index and columns are avg execution␣
↪→time of schemes by device.

implemented_schemes_avg = pd.DataFrame({ "ESP32" : esp32_avg_schemes,
"ESP8266" : esp8266_avg_schemes, "Nano IoT" : nano_avg_schemes},
index=implemented_schemes_index)

print(implemented_schemes_avg)

store processed data in file
implemented_schemes_avg.to_latex('./tables/implemented_schemes_avg.tex')

ESP32 ESP8266 Nano IoT
HashXOR SHA3 3.11E-04 8.56E-04 2.18E-03
NewHope 1.12E-02 NaN 7.73E-02
ECIES 1.70E-01 9.79E-01 7.84E-01

[13]: # theoretical scheme average execution time
khan: rand, 3 xor, 4 hash, 1 sc.dc
braeken: 7 hash
SEL-AKA: rand, 3 hash, sc.en
ecies: 1 hash, 1 ecc+dh, 1 aes256/gcm
hashxor: 2 rng, 3 xor, 2 distinct hashing functions

index to use in assembled dataframe of theoretical scheme avg execution time
scheme_index = ['Khan', "Braeken", "SEL-AKA", "HashXOR BlAKE2s",
"HashXOR SHA3", "ECIES"]

primitives and amounts they're used for each scheme, used to calculate scheme
cost by table lookup in avg
primitive execution time table
braeken_prims = [["SHA256", 7]]
sel_aka_prims = [["RNG", 1], ["SHA256",3], ["AES256 Enc.", 1]]
khan_prims = [["RNG", 1], ["XOR", 3], ["AES256 Dec.", 1], ["SHA256", 4]]
hashxor_2 = [["RNG", 2], ["XOR", 3], ["SHA256", 1], ["BLAKE2s", 1]]
ecies_prims = [["SHA256", 1], ["NIST P-256 ECC+DH", 1], ["AES-256-GCM", 1]]
hashxor_prims = [["RNG", 2], ["XOR",3], ["SHA256", 1], ["SHA3-256", 1]]

scheme costs put in a list so they can be iterated through,

3

same order as index so they're matching
schemes = [khan_prims, braeken_prims, sel_aka_prims,

hashxor_2, hashxor_prims, ecies_prims]

use scheme costs and goes through all of them, returns
list of avg theoretical execution time for the schemes in the same order as␣
↪→index.

esp32_schemes = calculate_all(primitives_avg, schemes, "ESP32")
esp8266_schemes = calculate_all(primitives_avg, schemes, "ESP8266")
nano_schemes = calculate_all(primitives_avg, schemes, "Nano IoT")

assemble dataframe/table by using columns as costs
for each device, and scheme names as index.
schemes_theoretical = pd.DataFrame({"ESP32" : esp32_schemes,
"ESP8266" : esp8266_schemes, "Nano IoT" : nano_schemes}, index=scheme_index)
schemes_theoretical.to_latex("./tables/theoretical_schemes_avg.tex")
print(schemes_theoretical)

ESP32 ESP8266 Nano IoT
Khan 1.61E-04 7.85E-04 1.77E-03
Braeken 1.96E-04 7.49E-04 1.83E-03
SEL-AKA 1.30E-04 5.92E-04 1.28E-03
HashXOR BlAKE2s 1.18E-04 3.95E-04 7.78E-04
HashXOR SHA3 2.89E-04 8.62E-04 1.98E-03
ECIES 1.70E-01 9.79E-01 7.84E-01

[73]: # calculate percentage error between theoretical schemes and implemented schemes

def percentage_difference(a,b):
delta = abs(a - b);
return round((delta/(a+b))*100,2)

def percentage_error(a, b):
delta = abs(a - b)
return round((delta/abs(b))*100,2)

def percentage_change(a,b):
delta = a -b
return round((delta/abs(b))*100, 2)

look at error differences between scheme theoretical and implemented

theoretical = schemes_theoretical.at["ECIES", "ESP32"]*1e6
implemented = implemented_schemes_avg.at["ECIES", "ESP32"]*1e6

4

print("theoretical: ",theoretical)
print("implemented: ",implemented)
error = percentage_error(theoretical, implemented)
difference = percentage_difference(theoretical, implemented);
change = percentage_change(implemented, theoretical)
print(f"error: {error}%\ndifference: {difference}%\nchange: {change}%")

theoretical: 170006.0
implemented: 170049.0
error: 0.03%
difference: 0.01%
change: 0.03%

[]:

5

