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Abstract

Recommender systems are one of the biggest commercial success stories of arti-
ficial intelligence in practice. They are used to generate large amounts of wealth
for the organizations that operate them. Netflix has estimated that their recom-
mender system saves the company $1 billion every year, and has disclosed that
about 75% of what the customers of Netflix watch is from some sort of recom-
mendation. However, recommender systems are dependent on large datasets to
be able to generate accurate recommendations for their users. This incentivizes
organizations to collect massive amounts of data on their users. This is not nec-
essarily in the best interest of the user. Data breaches are not uncommon occur-
rences, and some might not be comfortable with letting these organizations have
large amounts of data on them and their behavior.

With the introduction of data protection laws, such as the GDPR in the EU, peo-
ple’s right to have control over their own data has been reaffirmed. This opens up
for a new paradigm for Artificial Intelligence where a person’s ownership of their
own data is emphasized. This paradigm will be referred to as Decentralized Arti-
ficial Intelligence, and will describe a pattern where data collection, training, and
inference is all performed locally on the device of the user. Using this paradigm,
the user has complete control over how their data is used.

This thesis will explore the many challenges associated with Decentralized Artifi-
cial Intelligence. Two approaches were considered at first: decentralized ensemble
methods, and collaborative learning methods like Federated Learning. Following
experiments comparing these methods on the MNIST handwritten digit dataset,
collaborative learning is selected as the most promising method.

Two collaborative learning methods, Federated Learning and Gossip Learning, are
then compared for several movie-recommendation datasets. By performing multi-
ple analyses of the training process of Gossip Learning, several areas of improve-
ment in the previous work is identified. Multiple strategies to increase perfor-
mance are developed, which are also applicable to Federated Learning.

Lastly a new paradigm which will be referred to as semi-decentralized learning
is introduced. This paradigm has the advantage of offering better performance
compared to a fully decentralized technique like Gossip Learning, but it comes at
the cost of increasing centralization.

iii





Sammendrag

Anbefalingssystemer er blant de største kommersielle suksesshistoriene innen kun-
stig intelligens i praksis. Anbefalingssystemer brukes til å skape store inntekter for
organisasjonene som tar dem i bruk. Netflix har estimert at deres anbefalingssys-
tem sparer selskapet for 1 milliard dollar hvert år, og har avslørt at omtrent 75% av
det kundene deres ser på er anbefalt. Anbefalingssystemer er imidlertid avhengige
av store datasett for å kunne gi nøyaktige anbefalinger til brukerne. Dette gir or-
ganisasjoner insentiv til å samle enorme mengder data om brukerne sine. Dette er
ikke nødvendigvis i brukerens interesse. Databrudd er ikke en uvanlig hendelse,
og noen personer er kanskje ikke komfortable med å la disse organisasjonene ha
store mengder data om seg selv og sin oppførsel.

Med innføringen av databeskyttelseslover, som GDPR i EU, er folks rett til å ha
kontroll over sin egen data blitt styrket. Dette åpner for et nytt paradigme in-
nen kunstig intelligens der en persons eierskap til sin egen data blir vektlagt.
Dette paradigmet vil bli referert til som desentralisert kunstig intelligens, og vil
beskrive et mønster der datainnsamling og trening og bruk av maskinlæringsmod-
eller gjøres lokalt på brukerens enhet. Ved å bruke dette paradigmet har brukerene
full kontroll over hvordan dataen deres brukes.

Denne oppgaven vil utforske de mange utfordringene knyttet til desentralisert
kunstig intelligens. To tilnærminger ble først vurdert: desentraliserte ensembleme-
toder og samarbeidende læringsmetoder, som føderert læring. Etter eksperimenter
som sammenligner disse metodene på MNIST-datasettet for håndskrevne siffer,
blir samarbeidslæring valgt som den mest lovende metoden.

To samarbeidende læringsmetoder, føderert læring og sladderlæring, sammen-
lignes deretter for flere datasett for filmanbefaling. Ved å utføre flere analyser av
treningsprosessen til sladderlæring, identifiseres flere områder som kan forbedres
hos tidligere arbeid innen dette området. Flere strategier utvikles for å øke ytelsen.
Disse strategiene kan også brukes til å forbedre føderert læring.

Til slutt introduseres et nytt paradigme som vil bli referert til som semi-desentralisert
læring. Dette paradigmet har fordelen av å tilby bedre ytelse sammenlignet med
en helt desentralisert teknikk som sladderlæring, på kostnad av økt sentralisering.
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Chapter 1

Introduction

1.1 Motivation

Data has become one of the most valuable resources of the 21st century. It can be
used to present solutions to problems that many face today, and can be used to
provide valuable insights about topics that are important to society at large. De-
spite its significance to society, data processing is dominated by a handful of large
tech-companies that managed to collect vast amounts of data on their users. Due
to the potential that data can open up for businesses, there are growing concerns
regarding large tech companies processing their users’ data without their consent
[1].

Recommender systems are one application of Artificial Intelligence (AI) that can
be used to open up a lot of potential for a businesses. A recommender system
is a system used to generate recommendations for a user. They are present on
just about any e-commerce site and is a key feature for any distributor of digi-
tal content, whether that is video, film, or music. Netflix has estimated that their
recommender system saves the company $1 billion every year [2], and has dis-
closed that about 75% of what their customers watch is from some sort of rec-
ommendation [3]. A challenge with recommender system is, however, that they
require large amounts of data on users and their behavior for them to be able
to generate accurate recommendations. This incentivizes organizations to collect
massive amounts of data on their users. This is often not in the best interest of
the user and it is the user themselves that may suffer from the negative impacts
of large data collection. Data breaches are not uncommon occurrences [4], and
some companies also share user data with third-parties without the consent of the
users [5]. Sharing data with an organization therefore increases the probability
that the users data is accessed by an unauthorized party. Some users may also
simply be uncomfortable with letting these organizations have large amounts of
data on them and their behavior.

With the introduction of data protection laws, such as the GDPR [6] in the EU,
people’s right to have control over their own data has been reaffirmed. This opens

1



2 E. Dymbe: DzAI for Image Classification and Rating Prediction

up for a new paradigm for AI, where a person’s ownership of their own data is
emphasized. This paradigm is referred to as Decentralized Artificial Intelligence
(DzAI), and describes a pattern where data collection, training, and inference is
all performed locally on the device of the user. This means that no raw user data
will ever have to leave the device of the user. Using this paradigm, the user has
complete control who has access to their data, and how it is processed. Using the
DzAI-paradigm allows for the creation of a decentralized recommender system
where the privacy of the users is maintained.

The DzAI-paradigm also offers solutions to other problems of centralized AI. When
a company designs a centralized Machine Learning (ML) model, the interests of
the user are often secondary. The user rarely has any influence over the design
of the model, even when the users’ data is used to train it. For example, when
Amazon decides to promote their own products on their website [7], there is little
the users can do to get recommendations that are less biased towards Amazon’s
products, even if this might be in the interest of the user. Likewise, video rec-
ommendations are not necessarily given on the basis of how much the user will
benefit from watching the video, but rather to maintain user engagement on the
site [8]. Videos that make the user spend as much time as possible on the platform
increases the ad-revenue generated for the company. Decentralization can give the
users more leverage when deciding what the ML-model should be trained to do. If
the users disagree with the goals of the organization regarding what the ML-model
should be trained to do, they can modify how their local model is trained.

1.2 Research Questions

1.2.1 RQ1 - What are the challenges associated with machine learn-
ing that do not violate privacy?

The goal of this thesis is to explore the possibilities of privacy-preserving Machine
Learning. However, doing so is not trivial. How does one train a machine learning
model if one do not have access to the data needed to train it, and how does this
lack of access affect the final performance of the model? Chapter 3 will be used for
exploring different ways to do machine learning while preserving privacy, which
will be used to answer this question.

1.2.2 RQ2 - What are the advantages and disadvantages of a fully
decentralized user-to-user recommender system?

Decentralized algorithms can be used to preserve the privacy of users. They could
therefore be used with great utility for recommender systems. A decentralized
technique like Federated Learning depends on having a central aggregation-server
however, and can therefore not be considered fully decentralized. The users are
dependent on an organization to maintain the recommender system. Another ap-
proach is a fully decentralized user-to-user technique like Gossip Learning. This
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technique allows for a recommendation system that can operate completely inde-
pendent of an organization, which offers the user more leverage when deciding
how the recommendation system should be designed. The advantages and disad-
vantages of fully decentralized algorithms should therefore be examined. Chapter
4 will compare Federated Learning to Gossip Learning, while Chapter 5 will ex-
plore new ways to improve the performance of Gossip Learning. This will then be
used to answer this question.

1.2.3 RQ3 - What are the benefits of semi-decentralized learning?

Centralized approaches offers simpler and more efficient training. Decentralized
methods offers privacy, and gives the user more leverage when deciding how a
model is trained. Can a semi-decentralized approach offers some of the benefits
of both approaches? A semi-decentralized approach can be regarded as a com-
promise between the centralized and the decentralized approach. It should be
examined if there are any benefits to a semi-decentralized approach. Chapter 6
will investigate whether a semi-decentralized approach can achieve similar per-
formance to the centralized approach while keeping some of the benefits of de-
centralization. This will be used to answer this question.

1.3 Contribution

This thesis explores the many challenges associated with Machine Learning that
does not violate privacy. Machine Learning that does not violate privacy is, in this
thesis, considered as Machine Learning were no raw user data ever has to leave
the device of the user. Several techniques was tested, which can be divided into
two larger categories: ensemble methods and collaborative learning methods. The
results of these initial experiments highlights the several advantages and disad-
vantages associated with both decentralized approaches, and provides a starting
point for further experiments.

Based on this starting point, collaborative learning techniques was chosen as the
preferred approach for a decentralized recommender system. Previous work was
built upon to compare two collaborative learning techniques: Federated Learn-
ing and Gossip Learning. Federated Learning depends on having a centralized
aggregation-server, while GL does not. This thesis examines and presents the ad-
vantages and disadvantages of both approaches.

Several analyses of the training process of Gossip Learning was performed to iden-
tify areas of improvement and create a deeper understanding of the Gossip Learn-
ing algorithm. This lead to techniques that improved upon the results achieved in
the original paper. Applying these techniques to Federated Learning also improved
the results of this method.

Finally, a new paradigm referred to as semi-decentralized learning was intro-
duced. The advantage of this paradigm is that it can produce better results than a
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fully decentralized technique like Gossip Learning, although it comes at the cost
of increasing centralization.

1.4 Outline of the thesis

Chapter 2 will present the background and the related work for the thesis.

Chapter 3 will be used for exploring different ways to do Machine Learning while
preserving privacy. This will be used to answer RQ1.

Chapter 4 will compare Federated Learning to Gossip Learning. This will be used
to help answer RQ2.

Chapter 5 will explore new ways to improve the performance of Gossip Learning.
This will be used to help answer RQ2.

Chapter 6 will investigate whether a semi-decentralized approach can achieve
similar performance to the centralized approach while keeping some of the ben-
efits of decentralization. This will answer RQ3.

Chapter 7 will discuss the results and present ideas for future work.



Chapter 2

Background and related work

2.1 Centralized Machine Learning

Traditionally Machine Learning (ML) is done by a central entity collecting data
and then training a model on either a single machine or a cluster of centrally
coordinated machines. An example of this is a parameter server with multiple
worker nodes [9]. An advantage of centralized ML is its simplicity and efficiency.
Having all data available at one location enables a straightforward and efficient
training process.

2.1.1 Deep Learning

Deep Learning refers [10] to a family of ML-methods based on Artificial Neural
Networks (ANNs) that try to imitate some properties of the neural networks in
biological brains.

An ANN consists of several interconnected artificial neurons. An artificial neuron
is loosely analogous to the neurons in biological brains. An artificial neuron can
have one or more inputs and calculates its output by first taking the weighted sum
of its inputs and applies an activation function to this weighted sum.

The neurons are typically organized in layers, where the output signals of artificial
neurons in one layer feeds into the input of neurons in the following layer.

Multilayer Perceptron

A Multilayer Perceptron (MLP) [10] is an ANN with an input layer, one or more
hidden layers, and an output layer. MLPs also use a non-linear activation function.

ReLU

Rectified Linear Unit (ReLU) [10] is a non-linear activation function frequently
used for ANNs. It is defined as:

5
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f (x) =max(0, x) (2.1)

where x is the input to a neuron in the ANN.

Softmax

The Softmax-function [10] is an activation function that takes a vector z of K real
numbers and outputs K real valued numbers in the interval (0,1), where all the
components sum up to one. It is defined as:

σ(z)i =
ezi

∑K
j=1 ez j

(2.2)

The output vector of the Softmax-function sums up to 1. For classification tasks
it is therefore often used as the activation function of the output layer of an ANN
such that the outputs can be interpreted as probabilities for each class.

2.1.2 Ensemble Methods

Ensemble methods is the practice of combining the output of multiple ML-models
in an attempt to produce better performance than any of the models would be
able to produce on their own.

Majority Voting

Majority Voting can be used to combine the outputs of multiple models. For a clas-
sification problem one can use Majority Voting to combine the outputs of multiple
classification models. Every model votes for the most likely class according to that
model. With Majority Voting the class with the most votes is set as the output of
the whole ensemble.

Weighted Majority Voting

Weighted Majority Voting (WMV) has similarities to regular Majority Voting, ex-
cept that with WMV the vote of each model also has a weight. This means that
the vote of some models can be more important for deciding the output of the
ensemble. WMV is identical to Majority Voting if all weights are equal.

Weighted Majority Algorithm

The Weighted Majority Algorithm (WMA) [11] is a meta-learning algorithm that
utilizes WMV to create a compound model out of a pool of models in an online
learning context. WMA initializes the weights of all models to the same value.
For every round of the algorithm the WMA will first use WMV on the outputs of
the models in its pool to generate a compund prediction. If this prediction does
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not equal the ground truth, every model that did not vote for the ground truth is
punished by having their weight reduced by a ratio β , where 0< β < 1.

It can be shown that the upper bound on the number of mistakes WMA will make
for a given sequence of prediction is:

O(log |A|+m) (2.3)

where |A| is the number of models in the model pool and m is the least amount of
mistakes made by a single model in A [11].

2.2 Decentralized Artificial Intelligence

In this thesis Decentralized Artificial Intelligence (DzAI) will refer to a new paradigm
in AI where the data collection, model training, and inference is done at the device
where the data was collected. In this paradigm private data will remain private.

2.2.1 Decentralized Ensemble Methods

The ensemble methods described in Section 2.1.2 can be decentralized. Other
users can share models that have been trained locally. This way, they do not share
their own raw data directly. It is important to note that in some cases, it might be
possible to extract information from a model if countermeasures are not taken.
Differential privacy is therefore important to protect against this, more about this
can be found in Section 2.2.5.

2.2.2 Federated Learning

Federated Learning (FL) [12] is a collaborative learning technique that can be
used to train an ML-model without private data being directly shared to a central
server. The technique bears some resemblance to the more common parameter
server architecture. However, with FL the training is not performed on the server
or a server cluster, but rather on the devices that collected the private data, for
example a mobile device. This is done by the server sending the device a model to
train which the device then tries to improve by using local data. The changes to the
model, i.e. the calculated gradients to the model, are then sent back to the server
and averaged with the gradients calculated by the other devices also participating
in that iteration of the training process. Testing a model can be performed in a
similar manner.

FL provides multiple benefits. First of all, not directly sharing raw private data
during training is a big improvement to doing so using the traditional centralized
approach. It should however be noted that sharing gradients does reveal some
information about the data that was used to train it, although there are ways to
mitigate this. More about this can be found in Section 2.2.4.
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Not having to store private data centrally not only provides some benefit to the
user, but it might also be beneficial for an organization as they do not have to
worry as much about data breaches and complying with privacy regulations. Or-
ganizations can also save data storage space, since all of their users’ data will be
stored on their device. Lastly, since the models can be trained locally, they can also
be used locally. If network speed and usage is a bigger constraint than computa-
tional power, one can expect a local model to offer better performance compared
to having the model in the cloud. This also saves resources for the organization
that would otherwise have to host that model in the cloud.

2.2.3 Gossip Learning

Gossip Learning (GL) [13] is a collaborative learning technique for training an ML-
model without private data being shared directly. It shares some similarities to FL.
For both collaborative learning techniques the training is performed on the device
that collected the data. Private user data therefore does not need to be shared.
However, contrary to FL, GL is not dependent on a central server aggregating the
gradients. Instead of sharing gradients with a server, a network of devices using
GL shares the locally trained models with other devices in the network. When a
device receives a model, it merges the received model with its own locally trained
model. This process is repeated until a satisfactory model has been trained.

Hegedűs et al. introduces two methods of merging models. The first simply dis-
cards the local model in favour of the received model. The other produces a new
model by taking a weighted average of the parameters of the received model
and the local model, where the model being updated the most times is weighted
higher. The intuition behind model merging is that in certain linear hypothesis
spaces, voting-based prediction is equivalent to a single prediction by the average
of the models that participate in the voting [14]. While, generally, this does not
hold true in a strict sense, it is often true that averaging models produces a better
model that is better than any of the single models that was averaged [15]. For
neural networks it is important that the networks have the same initialization of
the weights and biases for this to hold true.

GL provides much of the same benefits as FL with the added benefit of requiring
no central aggregation server. GL therefore provides much cheaper scalability, and
since it does not have a single point of failure, it is arguably also more robust.
Sharing a locally trained model might however reveal some information about
the data used to train it, but there are methods that improves upon this. More on
this in Section 2.2.4.

2.2.4 Secure Aggregation

A vulnerability of FL is the shared gradients. Gradients can reveal information
about the private data that was used to calculate the gradients. Zhu et al. shows
that a close reconstruction of the training data can often be extracted quite easily
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from gradients [16]. Increasing the amount of private data that was used to calcu-
late the gradient did however make the extraction harder. Increasing the amount
of data that went into a gradient therefore increases the difficulty of extracting
data from that gradient.

Bonawitz et al. developed a protocol for FL that allows the server to securely cal-
culate the average of all of the users gradients without ever seeing the gradients
submitted by any individual user [17]. This average gradient can then be applied
to the federated model. Since the server and any other malicious agents can only
know about the average gradient, and not any individual gradient, it is a lot harder
for them to learn any information about any individual user. Increasing the num-
ber of participants increases the difficulty of extracting information about any
individual user. The protocol is built on top of Shamir’s t-out-of-n Secret Sharing
[18].

GL has a similar weakness. It is trivial to extract the gradients if one has access to
both the original and updated model, but due to GL lacking any centralized co-
ordination, it is harder for an attacker to have access to both, as long as the peer
selection algorithm is secure. This still leaves GL vulnerable to multiple agents col-
luding. If agent A sends a model to agent B who then updates and sends the model
to agent C, it is trivial for agent A and C to calculate the gradients calculated by
agent B. This is why Danner et al. developed a fully distributed mini-batch algo-
rithm that, in a completely decentralized manner, computes a sum gradient for a
subset of agents in the network without it being possible to gain any information
about the gradients of any individual. The algorithm is built upon the additively
homomorphic Paillier cryptosystem [20]. None of these secure aggregation meth-
ods are used in the experiments in this paper.

2.2.5 Differential Privacy

For an ML-model to provide any useful information it has to reveal some infor-
mation about the dataset it was trained on [21]. Differential privacy is a strong,
mathematical definition of privacy in the context of statistical and machine learn-
ing analysis [22]. It provides a system for sharing information about a dataset
while minimizing the information revealed about any individual in the dataset.
Generally, an algorithm is differentially private if an observer would not be able
to tell if an specific individuals data was used to create the output of the algorithm.

The goal when training ML-models is to create a model that generalizes, but it
is not unheard of that a model will memorize some of the training data instead,
especially if that training data is rare or unique. An ML-model with a high degree
of memorization is not differentially private as it risks leaking information about
the memorized training data. Carlini et al. shows that it is possible to extract highly
sensitive information like social security numbers and credit card numbers from a
generative text model trained on the Enron Email Dataset [23]. The authors also
developed a methodology for measuring model memorization.
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Although differential privacy is important for centralized AI, it is especially im-
portant for DzAI as privacy is a big part of its value proposition. Models are also
distributed to multiple agents, some of which might be malicious. Since these ma-
licious agents have direct access to the models, there should be limits to how much
information they can extract from the models. A DzAI algorithm should therefore
utilize strategies for increasing differential privacy. A simple way to mitigate risks
related to model memorization is to remove rare or sensitive information from
the training data. More sophisticated techniques are described in [24]. None of
these will be implemented in this thesis.

2.3 Recommender systems

A recommender system is a system used for recommending items to a user, whether
the items are movies, music, articles of clothing or something completely different.
Recommender systems has a wide range of commercial applications. Netflix, Spo-
tify, and YouTube uses recommender systems for recommending digital content,
while e-commerce companies like Amazon uses them for recommending users
items to buy.

These recommender systems are of the traditional centralized variant. These or-
ganizations therefore need to collect a massive amount of data about their users
to make the recommender systems as accurate as possible. This puts the users at
risk of having their data leaked through a data breach. The users might also be
uncomfortable with these organizations having extensive knowledge about them
and their behaviour.

A centralized recommender system also does not let its users influence how the
recommendations are made. When Amazon decides to promote their own prod-
ucts on their website [7], there is little the users can do to get less biased recom-
mendations. If the recommender system is decentralized the users can decide to
use a different model.

2.3.1 Content-based filtering

Content-based filtering is an approach for recommender systems where the system
recommends items that are similar to items the user has previously liked [25].
Whether or not a user like an item can be derived from implicit activity like clicking
on an item, or from explicit activity like rating the item highly.

Content-based filtering is especially useful when there is a full description avail-
able for each item, but little available information about each user. Content-based
filtering therefore does not suffer from the cold-start problem. A recommender
system that suffers from the cold-start problem is unable to produce accurate rec-
ommendation until it has collected enough information about its users activity.

A problem with content-based filtering is that only recommending items similar
to items the user has previously interacted favorably with might in some cases not
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be ideal. A user that just bought a fridge is most likely not going to buy another
fridge anytime soon. Similarly, a user might grow tired of recommendations for
movies similar to movies the user just watched.

As content-based filtering is dependent on detailed descriptions for each item, it
is not ideal for DzAI. The user has direct access to its own data, but users will
typically not have access to detailed descriptions for each item without relying on
a centralized source for that information.

2.3.2 Collaborative filtering

Collaborative filtering is another approach to recommender systems where the
system recommends items that other similar users has liked [25]. This way the
recommender system is able to recommend a more diverse selection of items that
are not necessarily similar to other items the user has liked.

Collaborative filtering works well even if there is minimal information available
for each item. Collaborative filtering is however more dependent on the user-item
interaction history than content-based filtering is. Collaborative filtering there-
fore suffers more from the aforementioned cold-start problem than content-based
filtering.

Since collaborative filtering can be effective when having nothing else than a his-
tory of user-item interactions, which can be easily collected by the user, it is more
suited for decentralized learning than content-based filtering.

Memory-based

Memory-based collaborative filtering algorithms operate over the entire user database
to make predictions [26]. A recommendation for an item could for example be
based on what users with a similar rating history rated that item.

Memory-based collaborative filtering algorithms are unsuited for decentralized
privacy-preserving recommender systems. This is because when using memory-
based collaborative filtering algorithms a user has to have access to similar users’
data to be able to make any predictions, which compromises the privacy of the
participating users.

Model-based

Model-based collaborative filtering algorithms use the user database to estimate
or learn a model which is then used for recommendation [26]. User data is needed
to construct the model, but once the model is constructed one does not need user
data to create recommendations. Model-based collaborative filtering algorithms
are therefore better suited for privacy-preserving decentralized recommender sys-
tems.
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Figure 2.1: Illustration of Matrix Factorization. X and Y is a factorization of the
rating matrix R using two latent factors. Notice that some values in R are unknown
since the user has not rated that item. The model can estimate these value by using
Equation 2.4.

2.3.3 Matrix factorization

An illustration of matrix factorization can be seen on Figure 2.1. The matrix fac-
torization model is a model that tries to explain the ratings a user has given to a
movie based on k latent factors [27]. The latent factors are factors that can be used
to define items, inferred from the ratings patterns of the users. For movies, the fac-
tors might measure dimensions like comedy versus drama, amount of action, or
possibly some uninterpretable dimension. The factors describing each item can be
stored in a matrix Y ∈Rn×k, where n is the number of items and k is the number
of latent factors the model uses. The preferences each user has for each factor can
be stored in a matrix X ∈ Rm×k, where m is the number of users. Given these
matrices X and Y one can estimate what user i will rate item j:

r̂i j = x i · y j (2.4)

Let R ∈Rm×n be a sparse matrix of all ratings. To learn the user matrix X and item
matrix Y the system minimizes the regularized squared error on the set of known
ratings in R:

min
X ,Y

∑

(i, j)∈K

(ri j − x i · y j)
2 +λ (||x i||2 + ||y j||2) (2.5)

where K is the set of (i, j)-pairs for which ri j ∈ R is known, and λ is the regulariza-
tion parameter. Regularization is necessary to prevent the model from overfitting
to the known ratings in R.
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Figure 2.2: The matrix factorization model in Figure 2.1 distributed on the device
of user 1 and user 2. Each user holds a copy of the full item matrix Y , while only
holding their own vector in the user matrix X . They also only have access to the
row in R with their own data.

Adding biases

Some users tends to rate items higher than others, and some items are generally
rated higher than others. Some models therefore use biases to account for these
variations which are independent of the latent factors. When using biases, r̂i j is
defined as:

r̂i j = x i · y j + bi + c j (2.6)

where b is the vector of user biases for all users and c is the vector of item biases
for all items. To learn the user matrix X , item matrix Y , the user bias vector b and
the item bias c the system minimizes the regularized squared error on the set of
known ratings in R:

min
X ,Y,b,c

∑

ri j∈R

(ri j − bi − c j − x i · y j)
2 +λ(||x i||2 + ||y j||2) (2.7)

2.3.4 Decentralized matrix factorization

The naive way to distribute a matrix factorization model across multiple devices
is to distribute a copy of X and Y to every device. Distributing the full user matrix
X to every device is however both unnecessary and a privacy violation. A user
does not need the user vectors of other users to predict its own ratings. The user
vector can also be considered private information as it can be used to learn about
the preferences of a user. Instead of distributing the full user matrix, each user i
should only have access its own user vector x i .

An illustration of a decentralized matrix factorization model can be seen on Figure
2.2. The decentralized matrix factorization model consists of the full item matrix
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Y and the personal user vector x i of the user. If biases are used each user also
needs a copy of the full item bias vector c, as well as their personal user bias bi .

This decentralized matrix factorization architecture is used in several papers [28–
30] with minor modifications. Read more about these papers in Section 2.4.

2.3.5 Alternating Least Squares

Alternating Least Squares (ALS) is a method used for optimizing X and Y [27].
ALS alternates between calculating the optimal value for X using Ordinary Least
Squares (OLS) when holding Y fixed, and calculating the optimal value for Y
using OLS while holding X fixed. This is repeated until convergence.

For decentralized matrix factorization it is possible for the users to independently
calculate their optimal user vector x i [28], since this calculation is only dependent
on ri and Y , both of which are locally available. Calculating the optimal value of
Y is however impossible to do locally for decentralized matrix factorization. This
is because the optimal calculation of Y is dependent on all values in X and R.
The optimal solution of Y per iteration can therefore only be found if all devices
participates in this calculation for each step. This would make the calculation
vulnerable to participants dropping out due to failures, or simply because the
user turned off their device.

2.3.6 Stochastic Gradient Descent

Stochastic Gradient Descent (SGD) [31] is an optimization algorithm that can be
used for matrix factorization [27]. The algorithm loops through each algorithm
in the training dataset and calculates the error:

ei j = ri j − r̂i j (2.8)

where r̂i j is calculated using either Equation 2.4 or Equation 2.6 depending on if
biases are used or not. It then updates the appropriate user and item vectors in X
and Y respectively:

x i ← x i +η (ei j y j −λ x i) (2.9)

yi ← yi +η (ei j x j −λ yi) (2.10)

where η is the step size, or learning rate used. If biases are used they are updated
using:

bi ← bi +η ei j (2.11)

ci ← ci +η ei j (2.12)

SGD is simpler and more robust to participants dropping out than ALS. It is there-
fore more ideal when optimizing Y in a decentralized fashion.
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2.3.7 RMSE

Root Mean Square Error (RMSE) is a frequently used statistical metric to measure
model performance for various domains [32], including recommender systems.
The RMSE of a matrix factorization model for a testset T is defined as:

√

√

√

1
|T |

∑

i, j∈T

(ri j − r̂i j)2 (2.13)

where r̂i j is calculated using either Equation 2.4 or Equation 2.6 depending on if
a matrix factorization with or without biases is used.

2.4 Related work

Pouwelse et al. introduces a social peer-to-peer file-sharing paradigm in [33],
which includes a fully decentralized recommender system. This recommender
system uses memory-based collaborative filtering, where the users select which
users to share their preferences with. The recommendations are then made based
on these exchanged lists of preferences. A problem with this approach is that the
users have to compromise their privacy for the recommender system to work, as
is explained in Section 2.3.2.

There are numerous preceding approaches to distributed model-based collabo-
rative filtering, typically using matrix factorization [34–37]. Most of these ap-
proaches are however meant for a server cluster architecture, and do not take
privacy into account. However, recently several approaches which do have been
proposed.

Ammad-ud-din et al. introduces a federated collaborative filtering method based
on matrix factorization and FL [28]. The authors describe a method inspired by
ALS and SGD that is used to update the recommendation model. The server hosts
the item matrix Y , which each user participating in the training process downloads
at the start of every epoch. Each user i then use OLS to calculate the optimal values
for their own x i based on their local data while holding Y fixed. Each user then
calculates the gradients for Y using their local data and the newly calculated x i .
The gradients are then sent to the server where they are aggregated and applied
to Y .

This algorithm is improved upon in a subsequent paper [29]. This paper improves
upon the previous paper by integrating additional data sources into the recom-
mendation model other than just user-item interactions. The authors demonstrate
this method for movie recommendation where the additional data sources is in-
formation about a users (age, gender, location) and information about the item
(genre, actors, director). This leads to increased performance, especially in the
cold-start scenario where limited user-item interaction data is available.

These are examples of promising privacy-by-design solutions to recommender sys-
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tems, but both examples use a centralized FL-architecture. They can therefore not
be considered fully decentralized. Users are still dependent on an organization
maintaining this aggregation server.

Hegedűs et al. presents a fully decentralized user-to-user approach in [30]. This
paper might help answer RQ2, i.e. "What are the trade-offs for a fully decentralized
user-to-user recommender system". In the paper they use both FL and GL to train a
rating prediction model using matrix factorization with biases. They then compare
the performance of FL and GL when taking into account network constraints. They
also simulated users dropping out and coming online during the training process
by using a real cellphone availability trace dataset.

Both the FL-implementation and the GL-implementation used the decentralized
matrix factorization model described in Section 2.3.4. Each user holds a private
user vector, a private user bias, a public item matrix and a public item bias vec-
tor. For each iteration of both FL and GL the user updates the local model using
its local data. The FL-variant then sends the gradients of the public model to the
aggregation-server where an average of all the participating agents gradients are
applied to the public model. The public model is then distributed to the users
again, and the network is then ready for the next iteration of the collaborative
training process. GL does not send their gradients to an aggregation server. In-
stead, it chooses a random user and sends the public model to that user. That
receiving user then merges the received public model with its own public model.
This is then repeated in parallel for all users.

Hegedűs et al. also explores ways to increase the model transfer speed. They do
this for FL by compressing the model gradients, and for GL by compressing the
transmitted models. This way more iterations of the algorithm can be performed
given the same network constraints.

The main focus of the paper is to compare FL and GL. They conclude that FL does
not have a clear performance advantage to GL, which their data also suggests. This
is despite GL not requiring any central server. However, the focus of the paper was
to compare the results of both approaches. The performance of both the FL- and
GL-algorithm was not very competitive to centralized methods. It could therefore
be interesting to see if it is possible to improve their model.



Chapter 3

Comparing centralized and
decentralized learning for
handwritten digit recognition

To be able to give an answer to RQ1, i.e. "What are the challenges associated with
Machine Learning that does not violate privacy?", this chapter will be used for
exploring different ways to do machine learning while preserving privacy. This
will give some insights into the challenges associated with privacy-preserving ML.
The MNIST dataset [38] will be used as a simple benchmark dataset to test out
different ideas on. Comparisons to a fully centralized model that does not preserve
privacy will be done.

Hypothesis: It is expected that methods that preserve privacy will perform worse,
as not having direct access to the data makes creating a useful model harder.

3.1 Baseline for comparison

To be able to compare decentralized methods to a centralized method a central-
ized baseline is needed. For simplicity, a fairly uncomplicated Multilayer Percep-
tron (MLP) is chosen for this. See Figure 3.1 for the structure of the network. The
strong model is trained for 5 epochs using SGD on 12 000 images sampled from
the MNIST training dataset. Retraining the model ten times with randomly initial-
ized weights each time achieves an average accuracy of 94.01% (0.12 standard
deviation) on the whole MNIST testset consisting of 10 000 images.

3.2 Majority Voting

An alternative to having one strong centralized model that produce a single pre-
diction, is to use Majority Voting to aggregate the output from all the weak models
into a single prediction.

17
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Figure 3.1: The architecture of a simple MLP

(a) (b)

Figure 3.2: Two example voting results when the 375 models vote for which label
to assign each image. On Figure 3.2a the image was correctly classified as a six
due to that label receiving the highest share of the votes, while on Figure 3.2b the
image was incorrectly classified as a three due to that label receiving the highest
share of the votes.

To compare Majority Voting on multiple weak models to the baseline, a collec-
tion of models must be trained. Both the dataset, the MLP-architecture, and the
number of training epochs (see Figure 3.1) must be the same as in the baseline
experiment to make the comparison fair. With 12 000 data points in the training
dataset, and if each weak model got 32 data points each, a total of 375 models
are trained.

Training each model for 5 epochs on a training dataset of 32 data points achieves
an average accuracy of 25.23% (0.27 standard deviation) when repeating this
10 times on the whole MNIST test dataset. This is indeed a very weak model,
especially considering an accuracy of 10% can be achieved by blindly guessing.
This is however to be expected with such a small training dataset. Considering the
MNIST classification task has 10 different output classes, each individual model
will on average only have approximately 3 data points for each class.

This accuracy is dramatically improved upon by using Majority Voting. Using Ma-
jority Voting to aggregate the 375 outputs into a single prediction for each data
point in the test dataset yields an accuracy of 72.41% (1.22 standard deviation)
when running 10 times with randomly initialized models. See Figure 3.2 for the
result of two example votes. This is a dramatic improvement in accuracy com-
pared to the accuracy of each individual model. The accuracy is however still
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Figure 3.3: Two examples of the output from a model aggregated from 375 mod-
els (in blue), together with the mean output of those 375 models (in orange).
Notice that the aggregated model has a very similar output to the mean output
of the models it is aggregated from. "Probability" represents the output of the
softmax-layer (see Section 2.1.1) of the models, and can be interpreted as how
confident a model is about a classification.

significantly lower than the baseline model. It is also worth noting that the Ma-
jority Voting method has to calculate the output of all the 375 models and then
aggregate it, while the baseline method only has to calculate the output of a single
model. The strong centralized model has the same architecture as any of the weak
models, the computational complexity of calculating the output of the centralized
model is therefore identical to the computational complexity of calculating the
output of a weak model. Majority Voting does not scale as well as the central-
ized approach, and might therefore be unsuited for applications where speed or
resource use is critical.

3.3 Model aggregation

Calculating the output of every model to do Majority Voting can be very inefficient.
A possible solution could be instead of calculating the output of every single weak
model, one could aggregate the models into a single model before calculating the
output of the aggregate model. One way of producing an aggregated MLP is to
average the parameters of all of the models. Model aggregation is a technique
often used with Gossip Learning, and is further described in Section 2.2.3. To test
this method 375 models were trained in the same way as in Section 3.2, only this
time they were all given the same initialization, as recommended in Section 2.2.3.
An aggregated model is then produced by averaging their parameters.

This experiment is run 10 times. Looking at the outputs of the aggregated model
one can immediately see that it is very similar to the mean output of the indi-
vidual models that the aggregated model was made from. See Figure 3.3 for two
examples of this. The average accuracy for the aggregated model is 32.98% (2.94
standard deviation) for all of the 10 runs. This is an improvement to the average
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Figure 3.4: The moving average of the accuracy of the centralized baseline, WMA,
and Majority Voting, plotted in blue, orange and green respectively. The moving
average has a width of 500 samples, which is why the graph starts at sample 500.

accuracy of the individual models, which was 26.44% (1.44 standard deviation).
This is far less than the accuracy achieved in Section 3.2. Interestingly enough,
when using Majority Voting on the models trained with the same initialization
one only achieves an accuracy of 36.51% (4.17 standard deviation). It therefore
seems like a diverse initialization is beneficial when using MV, however this is
not beneficial when using model aggregation. When differently initialized mod-
els were used, then only an accuracy of 16.89% (4.80% standard deviation) was
achieved.

Model aggregation managed to lift the performance slightly above the average
performance of the individual models. Although it is much cheaper computation-
ally to use this model compared to Majority Voting, it failed to give accurate re-
sults. It is therefore not a viable solution on its own.

3.4 Weighted Majority Voting

Some models might be more accurate than others, Majority Voting might there-
fore not be the best choice as it weighs all the models predictions equally. Using
Weighted Majority Voting could help better reflect this. The Weighted Majority
Algorithm (WMA) was therefore tested using the same models as in the MV ex-
periment in Section 3.2. WMA is an online algorithm, the ground truth is therefore
revealed after each compound prediction the algorithm makes. This information
is used to adjust the weights of the models (see Section 2.1.2).

Running WMA 10 times using the same models as in Section 3.2 produced positive
results. When using the dicount factor β = 0.05, an average accuracy of 82.24%
(0.78 standard deviation) was achieved, which is a decent improvement to the
accuracy achieved in Section 3.2.

See Figure 3.4 for a comparison of the centralized model, WMA, and Majority Vot-
ing. Although WMA did outperform Majority Voting, it did not manage to achieve
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a similar performance to the centralized model, while also being a lot more com-
putationally expensive.

3.5 Non-static test distribution

In previous experiments the test data was drawn from the same distribution through-
out the whole experiment. It could be of interest to see if WMA outperforms the
centralized baseline if the test distribution changes over time. Since WMA is an
online algorithm it has the ability to adapt to changes over time by relying more
on models that has performed well recently. The centralized strong model lacks
this kind of flexibility.

This hypothesis was tested by testing the centralized strong model, WMA, and
Majority Voting on a segmented test set. Each segment of the test set was set up
to be biased towards a specific digit in the MNIST-dataset. WMA will be used with
both β = 0.05 and β = 0.2 as the discount factor in two separate experiments.

In the first version of this experiment each segment will be 50% biased towards a
specific digit. The results of this experiment can be seen on Figure 3.5. Majority
Voting was pretty sensitive to shifts in test-bias, most likely due to some classes
being harder than other for the weak models, but interestingly WMA was pretty
robust towards these shifts, although the centralized strong model performed bet-
ter throughout the whole experiment. The performance did not change much be-
tween the two tested discount factors β .

In a second experiment each segment was 100% biased, meaning every sample
inside each segment will be of the same class. The results can be seen on Figure
3.6. Majority Voting was even more sensitive to the shifts in test-bias in this ex-
periment. The centralized strong model was slightly more sensitive in this experi-
ment. WMA performed very differently in this experiment. The accuracy of WMA
plummeted as soon as the test-bias changed, but it quickly managed to adapt to
the new bias. Higher value for the discount factor β made it adapt faster, which
proved very beneficial in this scenario.

Note that the performance of Majority Voting and the centralized strong model
was the same as in previous experiments, as only the order of the test data changed
in this experiment. The overall performance of WMA for the different scenarios
and discount factors can be seen on Table 3.1. As can be seen on the table, WMA
managed to outperform the centralized baseline for the 100% bias scenario. This
is not a fair comparison, as the centralized model is not an online algorithm and
the setup of the experiment did not allow the model to learn anything while test-
ing was going on. 100% bias scenarios are arguably also very unlikely. But it is
still interesting to find that the predictions of several very weak models can be
combined to produce comparable results to a centralized strong model, and in
some scenarios even outperform it.
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Figure 3.5: The moving average of the accuracy of the centralized baseline, WMA,
and Majority Voting for a changing test-distribution. For each colored segment of
the graph, the test distribution is 50% biased toward a specific digit, meaning
every sample inside each segment will be of the same class. The moving average
has a width of 500 samples, which is why the graph starts at sample 500.

Figure 3.6: The moving average of the accuracy of the centralized baseline, WMA,
and Majority Voting for a changing test-distribution. For each colored segment of
the graph, the test distribution is 100% biased toward a specific digit, meaning
every sample inside each segment will be of the same class. The moving average
has a width of 500 samples, which is why the graph starts at sample 500.

β = 0.05 β = 0.20
50% bias 84.68% (0.57) 81.32% (0.65)
100% bias 92.50% (0.30) 96.57% (0.25)

Table 3.1: The accuracy of WMA for non-static test distribution where each seg-
ment of the test distribution has a bias towards a specific label for two discount
factors β .
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C Accuracy (standard deviation)
1

375 93.90% (0.19)
1

125 92.75% (0.20)
1
75 91.43% (0.33)
1
25 89.35% (0.16)
1
15 87.28% (0.41)
1
5 68.80% (4.01)
1
3 56.05% (6.23)

1 32.63% (2.33)

Table 3.2: The final accuracy of FL for different values of C

3.6 Federated Learning

Although WMA was able to compete with the centralized strong model in some
scenarios, it did not manage to do this in general. When using WMA one also has
to compute the output of every single model, which is not very computationally
efficient, and would not scale well with more users.

A new approach could therefore be tested out. Instead of finding better ways to
combine the outputs of several decentralized and weak models one could instead
try to find a way to train a centralized strong model in a decentralized fashion.
Federated Learning (FL) offers a way of doing this (see Section 2.2.2)

An experiment using Federated Learning was made by dividing the training data
set consisting of 12 000 images between 375 agents like in earlier experiments.
(see Section 3.2) For each iteration of the algorithm a fraction C of the agents was
randomly selected to receive the federated model. Each agent then calculated the
gradients for the model by training the model for one epoch using their local
training data. All gradients calculated by every randomly selected agent was then
averaged and applied to the federated model. For each epoch, this process was
repeated until all agents have been selected exactly once. Five epoch was used to
make it more comparable to earlier experiments.

The performance of the federated model was tested against the whole test set each
time the federated model was updated. Different values for C was also tested out.
See Table 3.2 for the results of the experiment. A graph of the accuracy of the
federated model when using different values for C can be seen on Figure 3.7.

From the results it is clear the the lower the value of C is, the better the perfor-
mance of the final federated model. When C = 1

375 the accuracy is almost identical
to the performance of the completely centralized method.

When C = 1
375 only one agent is asked to calculate the gradients for each iteration.

This makes the training process of the centralized model almost identical to the
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Figure 3.7: Accuracy of FL for different values of C

federated training process. In both processes the model is updated by calculating
the gradients using 32 training images. The main difference is only the fact that in
the centralized training process each data point in the training batch is randomly
selected for each update, but when using federated learning all of the training
batches are essentially segmented at the start when the data is divided among the
agents.

Increasing the fraction of agents calculating gradients is analogous to increasing
the size of the batch. Making the batch size significantly higher than 32 might not
be beneficial in this scenario. Increasing the amount of agents calculating gradi-
ents at the same time therefore decreases the rate of which the model improves
per epoch.

Computational efficiency is however not the only metric to consider in a real-
world scenario. If only one agent calculates the gradients for the model for each
iteration, the training process is going to take a lot more time as that agent has
to first receive the model, finish calculate the gradients for the model, and finally
transmit them to the server before the next agent can continue the process. The
time required to finish an epoch of training is halved if the amount of agents
calculate gradients at the same time is doubled. This makes the time to finish an
epoch inversely proportional to C .

Having a lower value for C also makes it easier for the server to recreate each
agents data. The server will have an easier time recreating the data of a user
if less data went into the aggregated gradient. More can be found about this in
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Section 2.2.4 and 2.2.5

Federated Learning is however more communication efficient than the previously
tested ensemble methods in most scenarios. When using the model described in
Figure 3.1 a transfer of a set of gradients is roughly equivalent to a transfer of a full
model since one gradient has to be calculated for every parameter in the model.
In the previous experiment with Federated Learning each agent has to transfer
gradients one time per epoch, and the central server has to send the model one
time for each agent per epoch. In the previous experiments using ensemble meth-
ods each agent had to transfer its model to every other agent in the network. The
amount of data transferred is therefore roughly linear with regards to the amount
of agents for federated learning, but quadratic when using ensemble methods.

3.7 Conclusion

This chapter explored different ways of doing machine learning while also pre-
serving privacy. Two main approaches were tested: ensemble methods and Feder-
ated Learning. In the end FL performed better overall. The hypothesis was correct
in general, as the centralized model performed better for all cases except when
compared to WMA on a non-static test-distribution with a high bias.





Chapter 4

Federated Learning and Gossip
Learning for rating prediction

In the previous chapter, it was concluded that FL provided better performance
in general when compared to ensemble methods. This chapter will be used to
compare FL to GL to answer RQ2, i.e. "What are the advantages and disadvantages
of a fully decentralized user-to-user recommender system?"

GL is not dependent on a central aggregation-server, and is therefore fully decen-
tralized, in contrast to FL. This chapter will therefore examine the advantages and
disadvantages of using a fully decentralized user-to-user learning algorithm like
GL.

Hegedűs et al. has already performed an experiment that compares the perfor-
mance of GL to FL. They concluded that FL does not seem to have a clear perfor-
mance advantage, GL might even have an advantage in certain scenarios. To see
how well this generalizes, this experiment will be reproduced for other datasets
as well in this chapter.

Hypothesis: It is expected that FL performs better than GL, as the aggregation-
server makes it easier for the users to coordinate a useful factorization of the rating
matrix.

4.1 Experiment setup

Both GL and FL will be tested in the experiment. Two variants of GL will be tested.
In the first variant, any received model overwrites the local model, while in the
second variant the received and local model is merged by a weighted average as
described in Section 2.2.3.

The implementation of both the FL-algorithm and the GL-algorithm will be based
on the pseudocode described in [30]. In the simulation used to simulate a net-
work of agents using either FL or GL, the agents communicates synchronously in
rounds. In [30] it was assumed that the transfer time of a model is 1 728 sec-

27
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ond, regardless of model size. The same assumption was therefore used in this
experiment. For each iteration of the GL-algorithm, every agent sends a model
to a randomly selected agent in the network. One iteration of the GL-algorithm
therefore takes the time of one model transfer, i.e. 1 728 seconds. For each iter-
ation of the FL-algorithm, the aggregation-server first distributes the federated
model to every agent in the network. Every agent then calulates the gradients for
that model using local data, which they then send to the aggregation-server. One
iteration of the FL-algorithm therefore takes the time of two model transfers, i.e.
3 456 seconds.

The network structure used in the experiment in this thesis was a complete graph,
meaning that every agent could communicate with any other agent in the network.
This is different from the experiment by Hegedűs et al., where a fixed random 20-
out graph was used. It was also assumed that all agents are online throughout the
entire experiment, as described in the churn-free scenario in [30]. The number of
agents will equal the number of users in the given dataset. The algorithms will be
evaluated by their RMSE compared to the time passed in the simulation.

4.1.1 Test set

As described in [30], the test set consists of 10 randomly picked ratings from each
user. The exception to this is the Yahoo R3 dataset, where only 5 ratings per user
was used due to some users only having 10 ratings in total. These ratings are not
used when training. Each experiment is performed on 10 such train/test splits and
then averaged.

4.1.2 Hyperparameters

These experiment uses the same hyperparameters as in [30], i.e. the regularization
parameter λ = 0.1, the learning rate η = 0.01 and the number of latent factors
k = 5.

4.2 Datasets

4.2.1 MovieLens 100K

The MovieLens 100K dataset1 consists of 100 000 movie ratings that 943 users
gave to 1 682 movies. Each rating is an integer from 1 to 5. Every user has rated
at least 20 movies. The distribution of ratings can be seen on Figure 4.1. The
density of the dataset is 6.24%.

1The MovieLens 100K dataset can be found at https://grouplens.org/datasets/movielens/100k/

https://grouplens.org/datasets/movielens/100k/
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Figure 4.1: The distribution of ratings for the MovieLens 100K dataset

4.2.2 MovieLens 1M

The MovieLens 1M dataset2 consists of 1 000 209 movie ratings that 6 040 users
gave to 3 706 movies. Each rating is an integer from 1 to 5. Every user has rated at
least 20 movies. The distribution of ratings can be seen on Figure 4.2. The density
of the dataset is 4.47%.

Figure 4.2: The distribution of ratings for the MovieLens 1M dataset

4.2.3 Netflix prize dataset

The full Netflix prize dataset3 consists of 100 480 507 movie ratings that 480 189
users gave to 17 770 movies. Each rating is an integer from 1 to 5. Working with
a dataset of this size is unpractical. A subset of this dataset is therefore used.

The subset is made by first selecting ratings belonging to the first 4 499 movies.
This subset is further reduced by removing all ratings belonging to users that has
rated less than 20 of these movies. Finally, random users are selected until the
total amount of their ratings are above 1 000 000

2The MovieLens 1M dataset can be found at https://grouplens.org/datasets/movielens/1m/
3Netflix prize dataset can be found at https://www.kaggle.com/netflix-inc/netflix-prize-data

https://grouplens.org/datasets/movielens/1m/
https://www.kaggle.com/netflix-inc/netflix-prize-data
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The final subset consists of 1 000 043 movie ratings that 11 656 users gave to 4 478
movies. The distribution of ratings can be seen on Figure 4.3. The density of the
dataset is 1.92%.

Figure 4.3: The distribution of ratings for the Netflix dataset subset

4.2.4 Yahoo R3

"R3 - Yahoo! Music ratings for User Selected and Randomly Selected songs"4 is
a dataset of music ratings collected from two sources. The first source is ratings
collected when users interact with the Yahoo! Music services, while the second
source is ratings for randomly selected songs collected from an online survey. The
first source is used. This source contains 311 704 ratings that 15 400 users gave
to 1 000 songs. Each rating is an integer from 1 to 5. The distribution of ratings
can be seen on Figure 4.4

Figure 4.4: The distribution of ratings for the Yahoo R3 dataset

4The Yahoo R3 dataset can be found at https://webscope.sandbox.yahoo.com/

https://webscope.sandbox.yahoo.com/
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Figure 4.5: The results when comparing GL without merge, GL with linear merge,
and FL, in blue, orange, and green respectively. The comparison was performed
on four different datasets.

4.3 Results

The results of the experiment can be found on Figure 4.5. As can be seen on the
Figures, all of the algorithms did converge to more or less the same value in all the
experiments, but GL with merge seemed to perform the best in general. There was
some inconsistencies in the results of this experiment compared to the original.
The Federated Learning-algorithm was slightly worse than reported in [30], while
both variations of GL performed slightly better in this experiment. GL did also not
have any spike in the beginning.

4.4 Explanation of results

4.4.1 Difference in network topology

At first, it was assumed that the difference in results was due to the difference in
network topology. In the original experiment a fixed random 20-out graph was
used as the overlay network [30], while in this experiment a complete graph was
used. The reasoning was that since each agent could only directly communicate
with its 20 immediate neighbours in the original experiment, local updates would



32 E. Dymbe: DzAI for Image Classification and Rating Prediction

Figure 4.6: A comparison of a complete graph and a random 20-out graph as
network topology. Tested on GL without merge, GL with linear merge, and FL for
the MovieLens 100K dataset. Notice that the difference in performance is insignif-
icant.

need more time to propagate throughout the network, compared to this experi-
ment where every agent can communicate directly with every other agent.

To test this theory the previous experiment was repeated with a fixed random 20-
out graph as the network structure instead of a complete graph. As can be seen on
Figure 4.6, the difference in performance when using a fixed random 20-out graph
was negligible. This is consistent with the findings of Giaretta and Girdzijauskas
in [39]. They found that topologies based on graphs with a low diameter and
a high link redundancy match the performance of a complete graph topology. A
fixed random 20-out graph has both a high redundancy and a low diameter, which
explains why the difference in performance was negligible.

4.4.2 Difference in implementation

After correspondence with one of authors of the paper, Dr. I. Hegedűs, it became
apparent that the main reason for the inconsistencies was due to a difference in
the implementation of the evaluation and initialization of the network.

In the Gossip Learning pseudocode in [30], the local models are described as
being initialized by all agents in the beginning of the experiment. However, after
correspondence with Dr. Hegedűs, it became clear that this was not used in their
implementation. In their implementation, a row in X or Y was only initialized
when that specific row was updated locally by an agent. Agents therefore do not
have a model that can be used for inference at the start of the experiment. The
authors solved this by making an agent predict the middle value if the agent has
not received or initialized a model. The middle value is 3 if ratings are between
1 and 5. The mean rating of the datasets Hegedűs et al. tested on, among them
MovieLens 100K and MovieLens 1M, lies between 3.5 and 3.6. Predicting 3 is
therefore not a bad guess, which explains why the RMSE-score of Hegedűs et al.
starts off low at the start of their experiment.
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(a) (b)

Figure 4.7: A comparison of the results from the original experiment by Hegedűs
et al. and the results achieved in the experiment in this thesis. Figure 4.7a is from
[30], while Figure 4.7b was created for this thesis. "Gossip Learning" and "Gos-
sip Learning Merge" on Figure 4.7a is "Gossip Learning (no merge)" and "Gossip
Learning (linear merge)" on Figure 4.7b respectively.

Another problem is when an agent has initialized its own latent user vector and
user bias, but has not yet received the latent vector and bias of an item it would
like to predict a rating for. Hegedűs et al. solved this by predicting the user’s bias
for these situations. The user bias is initialized to 0.5, which is a really bad guess
for ratings between 1 and 5. This explains why the RMSE of GL had a big spike
in the beginning of the experiment of Hegedűs et al. Every agent that initialized
their own latent user vector and user bias will start guessing 0.5, which is a lot
worse than guessing 3.

Since no rating in the training set is present in the test set, each agent will only
stop guessing these bad predictions when it has received the latent vectors and bi-
ases for the items in its testset from other agents in the network. This explains why
the implementation of Hegedűs et al. seems to converge slower than the imple-
mentation made for this thesis. This holds especially true for the Gossip Learning
implementation without merge, as item vectors and biases are not propagated
throughout the network as quickly with this method.

An experiment was performed to see if these changes in implementation was the
main reason for the differences in results. In this experiment the previous exper-
iment was modified to make agents predict the middle value when no vectors or
biases were available. However, if the agent had initialized the user bias, but not
the latent vector and bias of the item it wants to predict a rating for, it will predict
the user bias. As can be seen on Figure 4.7, these changes made the results almost
identical.

According to Dr. Hegedűs, the reason for implementing Gossip Learning this way
was due to framework restrictions, as well as due to the fact that they did not want
an agent to perform well only because of a lucky initialization. This design choice
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also made it easier for them to follow the spread of information throughout the
network.

This implementation will not be used for the the rest of this paper. The latent
vectors for the items are initialized randomly at the start of the experiment when
using FL. The comparison is therefore more fair if the latent vectors for the items
are initialized the same way at the start of the experiment for GL. It is especially
unfair to GL to make the agents predict the user bias when they have not received
the latent vector and bias of an item yet, as this guess will in the majority of cases
be a really bad guess, even worse than just guessing the middle value, as explained
in earlier paragraphs.

4.5 Evaluation of results

The results achieved in both this experiment and in the experiment performed by
Hegedűs et al. are not very competitive when compared to centralized solutions.
For example, using the Surprise library for Python [40], one can easily train a
baseline predictor that produces better results5. This baseline method produces
prediction using only the mean rating, a user bias, and an item bias. This is without
any hyperparameter tuning.

A recommender system based on this baseline predictor does not offer any per-
sonalization, it will simply recommend items that are generally rated highly, i.e.
the items with the highest item bias. A recommender system should therefore
preferably be better than this baseline.

4.6 Conclusion

In this chapter FL and GL was compared for several datasets. GL performed better
than FL when using the algorithms described by Hegedűs et al. in [30]. The result
from [30] was recreated for GL if a different evaluation and initialization was
used, but the result for FL were worse than the results achieved by Hegedűs et al.
in [30]. From these results one can conclude that the hypothesis was wrong. GL
achieved a better performance than FL.

5http://surpriselib.com#benchmarks

http://surpriselib.com#benchmarks


Chapter 5

Improving Gossip Learning
Matrix Factorization

GL performed better than FL in the experiments performed in Chapter 4. GL is also
a fully decentralized user-to-user algorithm, as opposed to FL which is dependent
on a central aggregation-server. This lack of dependency can be considered an
advantage in itself.

As mentioned in Chapter 4, the results of both GL and FL were not particularly
competitive when compared to centralized methods. Methods to improve GL even
further for recommender systems is therefore explored in this chapter.

Hypothesis: Several aspects of the GL-algorithm described by Hegedűs et al. can
be improved. Different strategies for merging models can improve the quality of
the merged models, and different initialization of the latent vectors and biases
can improve convergence speed.

5.1 Strategies for model merging

5.1.1 Keep oldest

A problem with the no merge variant is that the incoming model overwrites the
entire local model regardless of if the parameters of the local model, i.e. the latent
factors and biases, have been updated more times. An "older" parameter will in
this thesis refer to the parameter that has been updated the most times when
compared to another less updated, i.e. "younger", parameter.

A possible improvement to the no merge strategy could be to only overwrite a
local parameter if the corresponding parameter in the incoming model is older.
This way a younger parameter will never overwrite an older parameter. For the
pseudocode of the algorithm see Algorithm 1.

An experiment was ran on the MovieLens 100K dataset comparing this merge
strategy to the previously tested merge strategies. The result of this experiment

35
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Algorithm 1 Keep Oldest Merge

1: procedure KEEPOLDESTMERGE(Y, c, t, Ỹ , c̃, t̃)
2: for j← 1 . . . n do . n: number of items
3: if t̃ j > t j then . t j , t̃ j: age of the parameters of item j
4: t j ← t̃ j
5: Yj ← Ỹj
6: c j ← c̃ j
7: end if
8: end for
9: end procedure

Figure 5.1: A comparison of the no merge, linear merge, and keep oldest merge
variants, in blue, orange, and green respectively. Notice that keep oldest merge
converges slower than linear merge, but keep oldest merge achieves the same
RMSE at the end of the experiment.

can be seen on Figure 5.1. As can be seen on the figure, the keep oldest variant
converged faster than the no merge variant, but slower than the linear merge vari-
ant. It is however also worth noticing that the keep oldest merge variant achieved
the same RMSE at the end of the experiment. This could suggest that averaging
model parameters speeds up convergence, but keeping the oldest parameter can
be beneficial if given enough time.

5.1.2 Polynomially weighted average merge

The weighted average used in earlier experiments is a linearly weighted merge.
This means that a parameter that has been updated twice the amount of times
compared to another parameter, is weighed twice as heavily as the younger pa-
rameter in the weighted average performed when merging. It is not necessarily
the case that this is beneficial. It is possible that a non-linear merge might prove
more effective.

In the previous experiment it was shown that keeping the oldest parameter pro-
duced a good RMSE if given enough time. Keeping the oldest parameter is essen-
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Figure 5.2: A comparison of polynomial merge types of different degrees. Linear,
quadratic, and cubic merge was compared, shown on the graph in blue, orange,
and green respectively. Notice that the performance of each merge was almost
identical, but the graph suggests that a higher degree polynomial merge performs
slightly better than a lower degree polynomial merge.

tially the same as the oldest parameter having an infinitely heavier weight than
the younger parameter in a weighted average. It would be of interest to explore
if a less extreme weighting would prove beneficial for long term performance,
while still converging more or less as fast as when using linear merge. The next
experiment should therefore see if a polynomially weighted merge improves the
performance of GL. For the pseudocode of the algorithm see Algorithm 2. Note
that the polynomially weighted average merge of degree one is identical to the
linear merge variant used in the experiment of Hegedűs et al.

Algorithm 2 Polynomially Weighted Average Merge

1: procedure POLYAVGMERGE(Y, c, t, Ỹ , c̃, t̃, d) . d: degree of the polynomial
2: for j← 1 . . . n do . n: number of items
3: if t̃ j 6= 0 then . t j , t̃ j: age of the parameters of item j

4: w←
t̃d

j

td
j + t̃d

j
. w: weight of the incoming parameter

5: t j ←max(t j , t̃ j)
6: Yj ← (1−w)Yj +wỸj
7: c j ← (1−w)c j +wc̃ j
8: end if
9: end for

10: end procedure

Two new variants of polynomial merge is considered: quadratic merge and cubic
merge. When using these merge strategies, a parameter that has been updated
twice the number of times compared to another parameter will be weighted 4 (22)
and 8 (23) times heavier than the other parameter respectively. The performance
increase of this merge strategy was only slight, as can be seen on Figure 5.2.
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5.1.3 Exponentially weighted average merge

When using a polynomially weighted merge, small differences in parameter age
will matter less as the age of this parameter increases for all agents in the network.
Consider a parameter of age x . Consider an older version of this parameter with
age x + k where k is a constant. If the degree d of the polynomial merge is also
constant, then the weight of the older parameter will go towards the weight of
the younger parameter as x increases:

lim
x→∞

(x + k)d

xd
= 1

If the weight of the older parameter is equal to the weight of the younger parame-
ter, the older and the younger parameter will be weighed equally in the weighted
average when merging. This might not be beneficial in some cases.

Consider an exponentially weighted average merge instead:

lim
x→∞

ex+k

ex
= ek

When using a exponentially weighted merge, even as x goes towards infinity, the
oldest parameter will always be weighed significantly higher than the youngest
parameter. An experiment was ran when using exponentially weighted merge on
the MovieLens 100K dataset to find out if this property is useful. See Algorithm 3
for the pseudocode for this merge strategy.

Algorithm 3 Exponentially Weighted Average Merge

1: procedure EXPAVGMERGE(Y, c, t, Ỹ , c̃, t̃)
2: for j← 1 . . . n do . n: number of items
3: if t̃ j 6= 0 then

4: w← e t̃ j

et j+e t̃ j
. w: weight of the incoming parameter

5: t j ←max(t j , t̃ j)
6: Yj ← (1−w)Yj +w Ỹj
7: c j ← (1−w) c j +w c̃ j
8: end if
9: end for

10: end procedure

As can be seen on Figure 5.3, the exponential merge improved slightly slower than
linear merge in the beginning, but as linear merge converged exponential merge
kept on improving, much like keep oldest merge. In this scenario it does seem like
the properties of exponential merge proves useful.
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Figure 5.3: A comparison of linear merge, exponential merge, and keep oldest
merge, shown on the graph in blue, orange, and green respectively.

Figure 5.4: The agent-average absolute value for each of the components of r̂i j
plotted over the whole training process. Gossip Learning with linear merge on
the MovieLens 100K dataset.

5.2 Analysis of prediction components

A prediction for what user i would rate item j, referred to as r̂i j , is made using
Equation 2.6. The prediction r̂i j can be divided into three components:

1. x i · y j - The dot product of the user feature vector for user i and item feature
vector for item j.

2. bi - The user bias for user i.
3. c j - The item bias for user j.

To make further improvements to the algorithm it could be useful to try to better
understand the importance of the different components of the prediction model.
This is done by recording the agent-average absolute value of each of these com-
ponents on the test set for each training epoch.

Figure 5.4 shows how the the components of the prediction r̂i j evolves during the
training process for Gossip Learning with linear merge on the MovieLens 100K
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Figure 5.5: A comparison of GL with and without latent vectors, in blue and
orange respectively. The version without latent vectors, the only bias variant,
achieved an identical score to the version with with latent vectors.

dataset. On Figure 5.4 one can see that the user bias tends to quickly dominate
the other components. While the item bias very slightly increases, the dot product
actually decreases.

When using the model update rule described in Section 2.3.6, the user bias of an
agent is adjusted one time for every rating that the agent holds every time that the
update rule is applied. Since an agent holds the ratings given by a single user it
will never have more than one rating for a given item. An item bias will therefore
be adjusted at most a single time for every application of the update rule. This
means that the user bias will be adjusted significantly faster than the item bias.
This leads to the user bias capturing a significant part of the output.

Due to the importance of the biases in the previous experiments, it could be in-
teresting to see how well a model using only biases would compare to the one
described by Hegedűs et al. This model will calculate the predicted rating r̂i j us-
ing Equation 5.1:

r̂i j = bi + c j (5.1)

An average prediction closer to the true average rating will in general yield a better
score. The models should therefore predict the same rating on average at the start
of the experiment to make the comparison fair. The models using only biases will
be initialized with all user and item biases set to one, such that the expected rating
prediction of both models will be two at the start of the experiment.

A comparison of these models can be seen on Figure 5.5. Surprisingly the model
using only biases achieves an identical score to the original model at the end of the
training. The original model has a slightly better performance at the start of the
experiment, but this seems to be mainly due to the fact that the original version
increased its average rating prediction to match the true average rating slightly
faster due to it being able to increase the output of both the dot product of the
latent vectors and biases at the same time. The bias-only model catches up to the
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model of Hegedűs et al. at about the same time that the average value of the dot
product goes back to its starting value of one, as can be seen on Figure 5.4.

5.3 Data-based Bias Initialization

To try to further improve the bias-only model, the local data of an agent was
utilized to initialize the biases. Each user bias is set to the average of all ratings
made by that user. For each item that the user has rated, the corresponding item
bias is set to the difference between that rating and user bias. The item bias for
unrated items are set to zero. See Algorithm 4 for the algorithm used to initialize
the biases of a user i.

Algorithm 4 Data-based Bias Initialization

1: procedure INIT(i) . i: the index of the user
2: D← { j ∈ {1, . . . , n}|ri j is defined in training set}
3: bi ←

1
|D|
∑

j∈D ri j
4: for j← 1 . . . n do
5: if j ∈ D then
6: c j = ri j − bi
7: t j = 1
8: else
9: c j = 0

10: t j = 0
11: end if
12: end for
13: return (t, bi , c)
14: end procedure

This initialization improved the test-RMSE quite significantly as can be seen on
Figure 5.6. This is without using the latent vectors for prediction. As the latent
vectors for the items would not have to be transferred when using this model one
could also drastically decrease the model transfer time. The original model needs
to send six values per item, five of which is the latent factors for that item, and the
sixth value being the item bias. The bias-only variants only needs to send the item
biases, shrinking the model size to a sixth of the original size, which in practice
would enable much faster training. This was however not taken into account in
the previous experiments.

Interestingly the bias-only model with data-based bias initialization did not work
that well if exponential merging was used. The reason for this will be further
investigated in Section 5.4.

It is worrying that bias-only version of the GL-algorithm can achieve comparable or
even better performance to the GL-algorithm introduced in [30]. A recommender
system built on top of a model that only uses biases to predict a rating will as



42 E. Dymbe: DzAI for Image Classification and Rating Prediction

Figure 5.6: A comparison of GL with latent vectors and linear merge, GL with-
out latent vectors with data-based initialization and exponential merge, and GL
without latent vectors with data-based initialization and linear merge, shown in
blue, orange, and green respectively. The variant using data-based initialization
and linear merge merge outperformed the other variants, without using latent
vectors. Notice that GL without latent vectors with data-based initialization and
exponential merge performed worse the the linear variant.

mentioned in Section 4.5 recommend the same items for every user, i.e. the items
with the highest average rating.

5.4 Analysis of item bias evolution

To better understand the impact of different merge strategies on different models
it could be useful to try to track how item biases change over time. This is done by
simply recording the value of the item biases throughout the training process. The
evolution of five item biases when using the original initialization used by Hegedűs
et al. can be seen on Figure 5.7. Each line represents the agent-average value of
an item bias over the entire training process, with the fill-area representing the
standard deviation.

It becomes apparent that each merge strategy significantly affects how the item bi-
ases evolve over the training period. When using linear merge the biases changed
slightly in the beginning, but the agents in the network quickly achieved a fairly
consistent consensus and the biases did not change a lot after this. On the opposite
extreme there was the keep oldest merge strategy. When using this strategy the
biases changed a lot over time, and the value for each bias deviated significantly
from agent to agent. In the middle of these extremes was the exponential merge
strategy. The values of the biases changed significantly over time, but for most of
the biases there seemed to be a higher degree of consensus than with the keep
oldest merge strategy.

The evolution of the item biases when using data-based bias initialization can be
seen on Figure 5.8. There are some similarities to the results in Figure 5.7. Linear
merge achieved consensus, "keep oldest"-merge changed a lot, and exponential
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Figure 5.7: The evolution of item biases when using the original initialization.
Three merge types are used: linear merge, exponential merge, and keep oldest
merge.
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Figure 5.8: The evolution of item biases when using data-based initialization.
Three merge types are used: linear merge, exponential merge, and keep oldest
merge.
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Figure 5.9: The evolution of item biases when using data-based initialization and
linear merge. Item biases that are initialized to zero due to not having a rating
for that item locally are not included in the calculation of the mean and standard
deviation for that item until they receive that item bias from another agent.

merge is somewhere in between. One of the differences when using data-based
initialization is that the biases had a much higher degree of variation from agent
to agent, especially right after the beginning of the experiment.

When using data-based initialization an item bias is not set to zero during initial-
ization by an agent if that agent holds a rating for that item. This leads to some
variation at the very start of the training process, especially for items rated by a
lot of users. This can be seen on Figure 5.8 where the item bias c1, the item bias
for Toy Story (1995), has the highest amount of deviation at the very start of the
experiment, which makes sense considering how popular the movie is.

Right after initialization the deviation for all of the item biases start to increase
even more as non-zero biases are sent to agents that previously set them to zero
due to not having a local rating for that item. The deviation tends to decrease after
this, some merge methods decreasing it more than others. Linear merge seems
especially suited for achieving a consensus across the network, quickly reducing
the deviation from agent to agent.

So why is linear merge especially good when using data-based bias initialization?
When comparing the results in Figure 5.7 to the results in Figure 5.8 it seems that
when using data-based bias initialization the network is a lot more flexible, being
able to find fairly distinct values for the biases pretty quickly, while when not us-
ing it the biases do not deviate too much from their initial value. This comparison
can be fairly misleading. The mean of an item bias is calculated from all agents,
including agents that has put that item bias to zero during the initialization be-
cause they hold no rating for that item. The first time an agent receives an item
bias for an item they hold no rating for, they will simply replace that zero-valued
item bias with the received item bias. See Algorithm 2 for more information about
this. Note that linear merge is a polynomial merge of degree one.

Only calculating the mean from the non-zero values for the item biases produces
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Figure 5.10: The agent-average absolute value for each of the components of
predictions r̂i j made when testing on the testset. These values are plotted for the
whole training process when using GL with linear merge and data-based initial-
ization on the MovieLens 100K dataset. The average rating of the used MovieLens
100K testset is 3.59, the predictions are therefore almost equal to the mean from
the start.

the results that can be seen in Figure 5.9. Here it becomes clear that linear merge
is not somehow more dynamic when using data-based bias initialization. The av-
erage value of the item biases arguably change even less in Figure 5.9 than the
linear merge variant in Figure 5.7. The strength of linear merge seems to be that
it quickly achieves a consensus that tends to be close to the average value of the
initial values. In the special case of data-bases bias initialization this proved to be
quite useful, simply because the item biases are initialized to the initial item bias.
Each item bias will therefor converge to an estimate of the average deviation from
the user bias for that specific item for each user, which is not a terrible item bias.

The reason for exponential and keep oldest merge outperforming linear merge in
the first experiment seems to mainly because they are more dynamic and flexible
than linear merge. Linear merge did not manage to deviate a lot from the initial
values it was assigned and was therefore unable to fit the data in a particularly
useful way. Exponential and keep oldest merge managed to change the item biases
quite significantly. This might have been especially important in the first experi-
ment since the value of the biases has to increase quickly for the predictions to
come closer to the mean rating.

5.5 Reintroducing user and item vectors

The user and item vectors are necessary to achieve any real personalization. They
should therefore be reintroduced. The initialization introduced in Section 5.3 was
an improvement compared to the original implementation, it will therefore be
used when the vectors are reintroduced. When using this initialization the mean
prediction starts at the mean rating of the testset. This can be seen on Figure
5.10. The expected value of x i · y j should therefore be zero to prevent the average
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Figure 5.11: The performance of GL with data-based initialization without user
and item vectors, compared to the performance of GL with data-based initializa-
tion and user and item vectors. As can be seen on the Figure, the reintroduced
user and item vectors did not make a noticeable difference in performance.

prediction from becoming either too high or too low. The vectors will therefore be
randomly initialized by picking values from a normal distribution N (µ = 0,σ =
0.1)

The results when reintroducing the item and user vectors can be seen on Figure
5.11. Reintroducing the user and item vectors did not change the performance
significantly. This was disappointing as the latent vectors are necessary for any
real personalization. This could be due to the agents requiring more iterations to
be able to produce useful latent vectors. A simple experiment was therefore run
where a ten times faster model transfer speed was assumed. This is not unrea-
sonable, considering that the original experiment by Hegedűs et al. assumes an
extremely low-bandwidth scenario having a bandwidth of only 0.35 kbps for the
MovieLens 100K dataset [30]. A performance comparison between this experi-
ment and the original experiment is however no longer valid, but this is not the
goal of the experiment. The goal is to see if a fully decentralized matrix factoriza-
tion can provide useful personalization.

The results of this experiment can be seen on Figure 5.12. Even with ten times
higher bandwidth, leading to ten times more iterations, the agents did not manage
to create latent vectors that improved upon the performance.

An interesting observation is that the numerical value of the gradients for each
latent factor is generally much lower than for example the gradients for the biases.
This is because the gradient of the latent factors in X is dependent on the values
of the latent factors in Y and vice-versa, see Equation 2.9 and Equation 2.10. The
latent factors are picked from a normal distribution N (µ = 0,σ = 0.1) during
initialization, and are therefore close to zero on average. Perhaps the agent will
learn useful latent vectors faster if a higher learning rate is used for the latent
factors? Let ηv denote the learning rate for the vectors, while ηb denotes the
learning rate for the biases. An experiment was run using a higher learning rate
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Figure 5.12: The performance of GL with data-based initialization without user
and item vectors, compared to the performance of GL with data-based initializa-
tion and user and item vectors. The bandwidth in this experiment is ten times
higher than in the experiment that can be seen on Figure 5.11. As can be seen
on the Figure, the reintroduced user and item vectors did not make a noticeable
difference in performance.

for the latent vectors, while keeping the same learning rate for the biases, i.e.
ηv = 0.1 and ηb = 0.01.

The results of this experiment on all datasets can be seen on Figure 5.13. A higher
learning rate for the latent vectors improved the performance of the model for all
datasets except the Yahoo! dataset. Useful latent vectors was therefore produced
for all datasets except the Yahoo! dataset. The latent vectors produced for the
Yahoo! dataset decreased the performance of the model. The Yahoo! dataset has a
very high amount of users, but a very low amount of ratings per user. This shows
that collaborative filtering is challenging with little data per users, which lead to
the algorithm overfitting to the small amount of data in the training set.

5.6 Conclusion

Throughout this chapter it was attempted to improve upon the results achieved
in Chapter 4. Multiple techniques that improved the performance was developed
and analysed. It was also discovered that the latent vectors did not provide useful
personalization in the original experiment. A method that increased their useful-
ness again was discovered. From this chapter one can conclude that it is possible
to create personalized recommendation in a fully decentralized way.
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Figure 5.13: Results with data-based initialization, ten times higher bandwidth,
and ηv = 0.1





Chapter 6

Semi-decentralized
recommendation

In the previous chapter it was shown that a fully decentralized algorithm was able
to create useful personalization. However, it is important to see how this algorithm
compares to a similar centralized algorithm. It is expected that the centralized al-
gorithm will have a performance edge over the decentralized algorithm. It would
however be interesting to see if a compromise between centralization and decen-
tralization can be made that achieves comparable performance to the centralized
algorithm, while also keeping several benefits associated with decentralized algo-
rithms.

Hypothesis: The centralized algorithm will have a performance edge over the
decentralized algorithm. Increasing centralization gradually will increase perfor-
mance gradually as well.

6.1 Comparison to centralized model

The first goal of this chapter is to see how a centralized algorithm compares to
a decentralized algorithm. A centralized version of the decentralized algorithm
developed in Section 5.5 is considered. A centralized data-based initialization is
used. This initialization sets the user biases to the mean of their ratings. Each item
bias is then set as the mean rating of the corresponding item minus the mean user
bias of the users who has rated that item. The same learning rates are used as
in the final decentralized algorithm in Section 5.5, i.e. ηv = 0.1 and ηb = 0.01.
Since there is no other agents when training the centralized model, there will be
no sending and merging of models. To make the centralized and decentralized
algorithms comparable, the centralized model will only perform one epoch of
training for each round of the decentralized algorithm.

The result of the experiment on all datasets can be seen on Figure 6.1. In the
figure the centralized model converges a lot faster than the decentralized algo-
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Figure 6.1: A comparison of the centralized algorithm to the decentralized algo-
rithm. In this experiment both algorithms uses ηv = 0.1.
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Figure 6.2: A comparison of the centralized algorithm to the decentralized al-
gorithm. In this experiment the centralized algorithm uses ηv = 0.01, and the
decentralized algorithm uses ηv = 0.1.

rithm. This is to its detriment for the Yahoo! dataset, as it overfits faster than the
decentralized algorithm. The centralized algorithm did, in general, get a better
score than the decentralized algorithm for the rest of the datasets. The decentral-
ized algorithm did however get comparable results, and Figure 6.1 suggests that
the decentralized algorithm could have gotten even closer in performance to the
centralized algorithm if allowed more rounds of training.

One could argue that this comparison is not fair to the centralized model. The
hyperparameters used for the centralized algorithm in the previous experiment
was tuned for the decentralised algorithm. The fact that the centralized model
achieves its best performance in the very beginning when training on the Movie-
Lens 100K dataset before the loss increases again hints at the hyperparameters
not being optimal. The centralized algorithm is therefore run again with the same
parameters, except with η= 0.01.

The results of this experiment on all dataset can be seen on Figure 6.2. The per-
formance of the centralized algorithm increased for all datasets except the Yahoo!
dataset. This shows that the performance of the centralized algorithm can be im-
proved by optimizing its hyperparameters. The hyperparameters that were good
for the decentralized algorithm were not necessarily the best hyperparameters for
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the centralized model. It is also worth noting that the hyperparameters of the
centralized algorithm can most likely be improved even more.

6.2 Shared-data clusters

The second goal of this chapter is to see if there is any merit to the idea of making
a compromise between centralization and decentralization.

A semi-decentralized algorithm is therefore considered. In this algorithm, all users
are divided into "shared-data clusters". In a shared-data cluster, all users in the
cluster share their private data with an agent responsible for training the model,
referred to as the updating agent. A prerequisite for this scenario is that the users
trusts the updating agent. This could be because they belong to a close-knit com-
munity where trust is high. Another scenario that is arguable more likely is a
scenario where the users in the cluster share their data with an organization. This
organization then takes on the role of an updating agent.

6.2.1 Experiment setup

In this experiment, the users were divided as evenly as possible across several
clusters. The amount of users per cluster, as well as the amount of clusters is
determined by the maximum cluster size parameter together with the amount of
users in total. The amount of clusters is the minimum amount of clusters needed
to keep the size of the biggest cluster less than or equal to the maximum cluster
size. The users are then as evenly divided between the clusters as possible. The
amount of ratings per user was not taken into account, the total amount of ratings
per cluster therefore varied.

The training process was very similar to the training process for regular Gossip
Learning, see Section 4.1. The main difference is that the user agents do not di-
rectly participate in the training process. Instead, the designated updating agents
for each cluster are the only agents who are directly participating. The updating
agents have access to the data of all users in its cluster. Linear merge was be used
in-between clusters, and the models were initialized using the centralized version
of the data-based initialization on the rating data for users in the cluster. The cen-
tralized version of this initialization algorithm was introduced in Section 6.1. The
learning rates used are ηv = 0.1 and ηb = 0.01.

6.2.2 Results

The results of the experiment can be seen on Figure 6.3. From the figure one can
get the impression that a relatively small cluster size, i.e. a max cluster size of five
or ten, is to be preferred, due to these sizes performing better than or equal to
most other sizes for every dataset except for the Yahoo! dataset. However, the hy-
perparameters were optimized for the fully decentralized scenario, it is therefore
not unlikely that algorithms with a higher degree of decentralization will be more
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Figure 6.3: The RMSE over time for shared-data clusters with different maximum
cluster sizes with ηv = 0.1 and ηb = 0.01. Please note that a cluster size of one is
identical to fully decentralized GL, and a cluster size equal to all users is identical
to the centralized model. The decentralized and centralized algorithm are shown
in blue and pink respectively.
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Figure 6.4: The RMSE over time for shared-data clusters with different maximum
cluster sizes with ηv = 0.01 and ηb = 0.01. Please note that a cluster size of one is
identical to fully decentralized GL, and a cluster size equal to all users is identical
to the centralized model. The decentralized and centralized algorithm are shown
in blue and pink respectively.

optimal with these hyperparameters. In Section 6.1 we learned that an ηv = 0.01
improved the performance of the centralized model. The previous experiment is
therefore repeated using this learning rate for the latent vectors instead.

A lower ηv did lead to better performance in general when having bigger clus-
ter sizes, except for the Yahoo! dataset. It is possible that these results can be
improved even more by hyperparameter-tuning. Based on the results in this sec-
tion it seems like an increase of centralization also increases the performance in
general, as long as the correct hyperparameters are selected. The goal of these
experiments are therefore fulfilled by showing that gradually increasing central-
ization can gradually increase performance.

6.3 Federated clusters

In the previous experiment, it was shown that users can make a privacy-related
compromise to get better recommendations. This is not ideal – it would be better
if there was a way for the users to get better recommendations without having to
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Figure 6.5: The RMSE over time for federated clusters with different maximum
cluster sizes with ηv = 0.1 and ηb = 0.01.

give up their data. An algorithm inspired by both FL and GL is considered. The
algorithm uses FL inside the cluster, while clusters exchange models like in GL.

The FL-experiment in Chapter 4 assumed that the federated learning master node
is able to receive the gradients of all agents in the same amount of time needed
for a full model transfer. A similar assumption has to be made in this experiment.
One iteration of the algorithm is therefore equal to the time needed for two model
transfers. The experiments in this chapter assume that one model transfer takes
172.8 seconds.

6.3.1 Experiment setup

The algorithm described uses a federated version of data-based initialization. Ev-
ery user sets their user bias to the mean of their ratings. Each item bias is then
calculated. Each user i calculates ri j − bi for every rating they have. These values
are then aggregated for all agents using the secure aggregation protocol for FL
(see Section 2.2.4). The algorithm uses ηv = 0.1 and ηb = 0.01.
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6.3.2 Results

See Figure 6.5 for the results of the experiment. The performance of the optimized
fully decentralized algorithm introduced in Section 5.5 is included for comparison.
The federated clusters performed worse than the shared data cluster in overall,
especially if the hyperparameters of the shared data clusters is optimized.

Using federated clusters provided some benefit when comparing to the fully de-
centralized algorithm. The fully decentralized algorithm performs worse than the
federated clusters for all cluster sizes for MovieLens 1M and Netflix. It performs
slightly better for the smaller datasets MovieLens 100K and the Yahoo! dataset.
Using FL gave better performance overall. The higher cluster sizes were generally
better for MovieLens 1M and Netflix. For MovieLens 100K and the Yahoo! dataset
it was the other way around, although very slightly for MovieLens 100K.

Using federated clusters with a cluster size equal to the number of users in the
dataset is equal to using regular FL. An interesting observation is that the feder-
ated clusters consisting of all users in the dataset, shown in pink on Figure 6.5,
outperforms GL for most datasets. This shows that FL can outperform GL when
using the improvements developed for GL in Chapter 5.

6.4 Conclusion

In this chapter a fully decentralized algorithm was compared to a centralized ver-
sion of the algorithm. The centralized version performed better, especially when
the hyperparameters were tuned. A semi-decentralized version of the algorithm
was also examined. A higher degree of centralization did in general give better
performance. The performance was however sensitive to the hyperparameters,
just like the fully centralized version.

An attempt at privacy-preservation was made for the semi-decentralized version of
the algorithm. The introduction of privacy-preservation decreased performance,
although, the semi-decentralized version with privacy preservation did seem to
have some benefit over the fully decentralized algorithm for some scenarios.



Chapter 7

Discussion and future work

This chapter will answer the research questions asked in Section 1.2, and discuss
what aspects could have been done differently.

7.1 Answers to research questions

7.1.1 RQ1 - What are the challenges associated with machine learn-
ing that do not violate privacy?

Machine Learning that does not violate privacy is Machine Learning where the
information an agent can gain about the data of an individual user is minimal.
Sending raw private data to any other agent is therefore out of the question, and
as a result, traditional centralized methods can no longer be utilized, as they de-
pend on having the full dataset available when training the model. In light of this,
coming up with other methods was necessary in order to determine methods that
are not dependent on having direct access to user data. In Chapter 3 two main
approaches were tested.

The first approach tested exchanging locally trained models instead of raw data,
and then aggregating the results of all of these weak models using ensemble meth-
ods. Regular Majority Voting and WMA was used. Although the individual weak
models were extremely inaccurate, it was possible to achieve a significantly higher
accuracy by using ensemble methods to aggregate the results of the models. WMA
achieved the best results. The achieved accuracy was however lower than the cen-
tralized strong model in most scenarios, although WMA did achieve a better test-
accuracy than the centralized strong model when the test-distribution changed
dramatically over time.

Other than accuracy, both Majority Voting and WMA had some other challenges.
The first major challenge is that the output of all models have to be computed
before the compound prediction can be made. This is inefficient compared to the
centralized model, and it scales poorly when the number of participants increases.
It would have been interesting if methods to alleviate this problem was investi-
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gated. For example, one could choose to only calculate the output of the top k
models with the highest weight. This could be especially useful for changing test
distributions.

Another challenge is that an agent was dependent on receiving the models trained
by all other agents. The amount of model transfers therefore increased quadrati-
cally with the size of the network. A solution would be to make every agent only
send a fixed amount of models to a random selection of agents. The performance
of the ensemble of each user would however most likely decrease as it would be
smaller, but it would have been interesting to see by how much.

The other approach that was tested in Chapter 3 was Federated Learning (FL).
When using this approach a strong model is trained in a collaborative fashion
by each agent exchanging gradients with a federated aggregation-server. This ap-
proach did manage to achieve comparable performance to the traditional cen-
tralized model if not too many users send gradients to the federated aggregation
server at a time. Only one user sending gradients at the same time will render
secure aggregation (see Section 2.2.4) useless as there would be no other users
to securely aggregate gradients with. Having a higher amount of users participate
in each iteration of the algorithm did lead to a lower accuracy of the model given
the same amount of training epochs performed by each user. Having a smaller
amount of users involved in each iteration of the algorithm also makes the overall
training process take more time, as each update is then less optimal, and more
iterations are needed.

FL does however suffer from another problem that was not examined in this chap-
ter. The training data used for FL is typically not Independent and Identically
Distributed (IID) across the devices. This is due to all data on one device being
generated from the same source, i.e. the behavior of one user. Data being non-IID
can decrease performance by a significant margin [41]. The data was however
non-IID in Chapter 4, but a comparison was not made to a scenario were the data
was IID across the devices.

7.1.2 RQ2 - What are the advantages and disadvantages of a fully
decentralized user-to-user recommender system?

FL is dependent on having a central coordinator, and can therefore not be consid-
ered fully decentralized. The users are dependent on an organization to maintain
the recommender system. GL on the other hand is fully decentralized. A com-
parison of FL and GL was therefore made in Chapter 4. In this comparison GL
came out on top when performing a similar experiment to the experiment made
by Hegedűs et al. in [30]. The GL results of Hegedűs et al. were recreated, but the
results for FL were worse than in their experiment.

Some possible areas of improvement were identified in the GL-algorithm described
in the original experiment. Chapter 5 was therefore used to explore ways to im-
prove the performance of GL. Several strategies were found that improved the
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results of the algorithm compared to the original experiment.

The first type of developed strategies focused on different ways of merging models.
Several types were tested, but merging models by exponentially weighting them
based on parameter age improved the results of the original experiment the most.
Euler’s number was used as the base number for the exponential, but it would have
been interesting to try a different base number. A combination of a polynomial and
an exponential would also have been an interesting experiment.

The second strategy developed was an initialization strategy that used the local
data to calculate initial values for the biases. This strategy significantly improved
the performance of the algorithm compared to the original experiment. Interest-
ingly the exponential merge strategy did not work well together with the initial-
ization strategy developed. Other strategies that could have been looked into was
model-compression techniques, as these did improve the performance of signifi-
cantly in the original experiment.

After some analysis it was also discovered that the algorithm used in the original
experiment did not offer any useful personalization. However, by letting the al-
gorithm train for longer, and by increasing the learning rate of the latent vectors,
the latent vectors learned useful personalization. This lead to another significant
performance increase.

In Chapter 6 these methods were also applied to FL, which significantly increased
the performance. With these algorithms applied, the performance of FL surpassed
GL (see Section 6.3).

The disadvantage of GL therefore seem to be that a better RMSE can be achieved
when using FL, given that a more optimal implementation of FL is used, like the
one described in Section 6.5. However, all experiments using FL did assume that
FL aggregation sever had an infinitely high download speed, i.e. it would never
be the bottleneck of the algorithm. This is an assumption that favours FL, and this
might not be true in real world applications. The advantage of GL therefore seems
to be that it is not dependent on having on any central entity. It is therefore more
robust and offers a cheaper scalability. Not being dependent on an organization
maintaining this central server is also an advantage for the users, as they then have
more leverage in deciding how their recommender system should be designed.

7.1.3 RQ3 - What are the benefits of semi-decentralized learning?

The performance of the decentralized algorithm tested in Chapter 5 was compared
to a centralized version of the algorithm. After some hyperparameter-tuning, it
became apparent that centralized learning still has a significant performance edge
compared to decentralized learning.

Semi-decentralized learning was therefore investigated to see if making a gradual
centralization-compromise could increase performance. The first version of the
semi-decentralized learning algorithm also required a privacy-compromise. The
experiments indicated that increasing centralization improved performance, as
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long as hyperparameters were tuned properly. The graphs suggested that further
hyperparameter tuning could have increased the performance even more, it would
therefore be interesting to tune the hyperparameters more thoroughly to test this.

An approach were users would not have to make a compromise on privacy was
also investigated. This approach did however significantly decrease the perfor-
mance when comparing to methods without data privacy. It did however seem like
higher centralization provided slightly increased performance when compared to
the fully decentralized method.

The benefit of semi-decentralized learning is an increase in performance when
comparing to GL. Higher centralization increases performance in general, espe-
cially if privacy is not maintained. Semi-decentralized learning also offers a higher
degree of decentralization than a centralized solution. However, semi-decentralized
is less decentralized than a fully decentralized solution, and it has a lower perfor-
mance than a centralized solution. It should therefore only be considered when a
compromise between decentralization and performance is desired.

7.2 Future work

The different decentralized and semi-decentralized algorithms show promise, but
there is room for improvement. The following section suggests ideas that are
worth examining further.

7.2.1 Try different recommender system models

Only one recommender system model was tried, i.e. matrix factorization with
biases. Other models might be more optimal and could therefore help provide
better recommendations. A Factorization Machine [42] is an example of a model
that would be interesting to look further into. It can be trained using SGD and is
also able to take into account other sources of information about the item and the
user. The model size is however bigger than matrix factorization with biases, how
much depends on the amount of extra information about the user and the item it
should take into account

7.2.2 Combination of ensemble methods and GL

Ensemble methods could be combined with GL. Each agent could save a fixed
amount of models that performed well on local data. WMA could then be used
for inference. Periodically these models can be recombined and updated. Good
models are transmitted to the rest of the network. This approach would automat-
ically filters out bad models, and could be employed as a defense against spam by
malicious agents.
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7.2.3 Try different optimization algorithm than plain SGD

The model was very sensitive to changes in the learning rate. It is therefore likely
that a different optimization algorithm than plain SGD would provide some ben-
efit. Adam [43] is an example of an optimization algorithm that could have been
useful, as it performs well on sparse models.

7.2.4 Implement compression techniques

The compression techniques described by Hegedűs et al. in [30] improves perfor-
mance. Implementing compression as well as the techniques introduced in this
thesis could therefore potentially achieve an even better performance.

7.2.5 Implement differential privacy

Differential privacy is paramount for any of the decentralized algorithms pre-
sented in this thesis to not pose a privacy risk. It should therefore be further in-
vestigated if differential privacy measures, like the measures described in [24],
could lead to decreased performance.

7.2.6 Implement secure aggregation

Secure aggregation is necessary for the privacy of the decentralized algorithms
to be preserved. The protocol described in [17] can be used for FL, while the
protocol described in [19] can be used for GL. It is important to further investigate
if implementing these techniques decreases the performance of the algorithms.





Bibliography

[1] D. Shepardson, “U.s. senate panel to seek answers from facebook about
data access report,” Reuters, Jun. 2018. [Online]. Available: https://www.
reuters.com/article/us-facebook-privacy-idUSKCN1J01HV.

[2] C. A. Gomez-Uribe and N. Hunt, “The netflix recommender system: Al-
gorithms, business value, and innovation,” ACM Trans. Manage. Inf. Syst.,
vol. 6, no. 4, Dec. 2016, ISSN: 2158-656X. DOI: 10.1145/2843948. [Online].
Available: https://doi.org/10.1145/2843948.

[3] X. Amatriain and J. Basilico, Netflix recommendations: Beyond the 5 stars
(part 1), Apr. 2012. [Online]. Available: https://netflixtechblog.com/
netflix-recommendations-beyond-the-5-stars-part-1-55838468f429.

[4] “Facebook faces mass legal action over data leak,” BBC News, Apr. 2021.
[Online]. Available: https://www.bbc.com/news/technology-56772772.

[5] G. J. Dance, M. LaForgia, and N. Confessore, As Facebook Raised a Privacy
Wall, It Carved an Opening for Tech Giants, Dec. 2018. [Online]. Avail-
able: https://www.nytimes.com/2018/12/18/technology/facebook-
privacy.html.

[6] European Parliament and Council of the European Union. (Apr. 27, 2016).
“Regulation (eu) 2016/679 of the european parliament and of the council
of 27 april 2016 on the protection of natural persons with regard to the pro-
cessing of personal data and on the free movement of such data, and repeal-
ing directive 95/46/ec (general data protection regulation) (text with EEA
relevance),” [Online]. Available: https://eur-lex.europa.eu/legal-
content/EN/TXT/PDF/?uri=CELEX:32016R0679&from=EN (visited on
06/29/2021).

[7] J. Creswell, “How amazon steers shoppers to its own products,” The New
York Times, Jun. 2018. [Online]. Available: https://www.nytimes.com/
2018/06/23/business/amazon-the-brand-buster.html.

[8] J. D’Urso, “Why are politicians getting ’schooled’ and ’destroyed’?” BBC
News, Aug. 2019. [Online]. Available: https : / / www . bbc . com / news /
49165846.

65

https://www.reuters.com/article/us-facebook-privacy-idUSKCN1J01HV
https://www.reuters.com/article/us-facebook-privacy-idUSKCN1J01HV
https://doi.org/10.1145/2843948
https://doi.org/10.1145/2843948
https://netflixtechblog.com/netflix-recommendations-beyond-the-5-stars-part-1-55838468f429
https://netflixtechblog.com/netflix-recommendations-beyond-the-5-stars-part-1-55838468f429
https://www.bbc.com/news/technology-56772772
https://www.nytimes.com/2018/12/18/technology/facebook-privacy.html
https://www.nytimes.com/2018/12/18/technology/facebook-privacy.html
https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32016R0679&from=EN
https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32016R0679&from=EN
https://www.nytimes.com/2018/06/23/business/amazon-the-brand-buster.html
https://www.nytimes.com/2018/06/23/business/amazon-the-brand-buster.html
https://www.bbc.com/news/49165846
https://www.bbc.com/news/49165846


66 E. Dymbe: DzAI for Image Classification and Rating Prediction

[9] J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, Q. Le, M. Mao, A. Ran-
zato, A. Senior, P. Tucker, K. Yang, and A. Ng, “Large scale distributed deep
networks,” Advances in neural information processing systems, Oct. 2012.

[10] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. MIT press, 2016.

[11] N. Littlestone and M. Warmuth, “The weighted majority algorithm,” Infor-
mation and Computation, vol. 108, no. 2, pp. 212–261, 1994, ISSN: 0890-
5401. DOI: https : / / doi . org / 10 . 1006 / inco . 1994 . 1009. [Online].
Available: https://www.sciencedirect.com/science/article/pii/
S0890540184710091.

[12] H. B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
Communication-efficient learning of deep networks from decentralized data,
2016. arXiv: 1602.05629 [cs.LG].

[13] I. Hegedűs, G. Danner, and M. Jelasity, “Gossip learning as a decentralized
alternative to federated learning,” in Distributed Applications and Interop-
erable Systems, J. Pereira and L. Ricci, Eds., Cham: Springer International
Publishing, 2019, pp. 74–90, ISBN: 978-3-030-22496-7.

[14] R. Ormándi, I. Hegedűs, and M. Jelasity, “Gossip learning with linear mod-
els on fully distributed data,” Concurrency and Computation: Practice and
Experience, vol. 25, no. 4, pp. 556–571, May 2012, ISSN: 1532-0626. DOI:
10.1002/cpe.2858. [Online]. Available: http://dx.doi.org/10.1002/
cpe.2858.
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