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 I 

Abstract 

User modelling technologies play an important role in the success of many online 
applications such as recommender systems. However, it is far from enough to solve the 
cold-start issue and data sparsity problem commonly existing in the real-world dataset 
purely relying on user-item interactions. To this end, the objective of this doctoral thesis is 
to develop effective user modelling approaches to build high-quality user profiles for better 
mining users’ intrinsic and potential interests while alleviating cold-start and data sparsity 
issues raised from traditional collaborative filtering methods. Specifically, we focus on 
analyzing and exploiting user/item related attributes and auxiliary information knowledge 
from online data streams to obtain users’ needs or preferences. 

To leverage attributes of users/items, such as time, location, news title and article content, 
we first proposed a neural time series forecasting model (NTSF) to draw users’ interest 
patterns over time on Twitter which takes emerging topics, users’ intrinsic interests, users’ 
recent behaviors and cyclic patterns of users into consideration. To jointly capture 
sequential patterns in streams of clicks and various item semantic features, we further 
devise a Deep Joint Neural Network (DeepJoNN) which consists of two parts of deep 
neural networks (CNN and RNN) coupled together in a hierarchical way. Considering the 
uncertainty of user behaviors in textual data streams, we propose a dynamic attention-
integrated neural network to integrate spatial-temporal, semantic, inter- and intra-session 
features in a unified framework for modelling complex dynamic user interests. 

We also study the auxiliary information, especially knowledge bases or knowledge graph 
(KG), in the user of improving user profiles for effective recommendations. Specifically, 
we firstly investigate the recent research progress about recommending on graphs. To 
explore the influence of semantic features inferenced from KGs on user modelling and 
multiple relations in KGs in revealing user intents, we then propose a novel Relational 
Knowledge-aware Heterogeneous Graph Attention Network, ReKaH_GAT, which fuses 
item sequential information within sessions and path connectivity with relations in KGs to 
understand user intents and improve the interpretability of recommender systems. 

Through extensive evaluation, we show that our proposed user-modelling approaches 
perform better than traditional methods in user behavior prediction and recommendation 
tasks. 
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Chapter 1  

Introduction 
This chapter presents an overview of research work conducted during my PhD study. In 
Section 1.1, we present the motivation behind our research, while Section 1.2 briefly 
explains the research context. In Section 1.3, the research goals and questions are discussed, 
followed by our research contributions and approaches presented in Section 1.4 and 1.5 
respectively. Then Section 1.6 summarizes our publications included in this thesis. Finally, 
we describe the structure of the rest of the thesis. 

1.1 Motivation  

With the proliferation of online user activities, users are generating a large volume of 
streams every day. Consequently, such an information-rich online world raises new 
opportunities in various applications and areas. One major research domain is how to 
customize or adapt systems according to users’ specific needs, which falls into the category 
of user modelling discipline. As a subdivision of human-computer interaction research, the 
fundamental goal of user modelling is to provide users with experiences fitting their 
specific background knowledge and objectives [1], which is intuitively desirable and have 
significant implications for both individuals for improving the online experience as well as 
satisfaction, and industrial companies for increasing profits, improving societal reputation 
as well as developing potential customers. However, facing the information overload, 
where users are provided with a variety of information varied from forms and topics before 
they can isolate what they really need, challenges lie in saying the “right” thing at the 
“right” time in the “right” way [1] taking into account different aspects of objective and 
subjective factors.  

Research effort has been undertaken to model users’ preferences to help users find their 
interested items by analyzing their historical behaviors with barely user-item interactions 
using collaborative filtering. However, for some online platforms with textual data streams, 
collaborative filtering often suffers from cold-start and data-sparsity issues faced with 
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newly registered users, inactive users, anonymous users, or items with few historical 
interaction records available, which may render the generation procedure of user 
personalization not necessarily indicating the users’ intrinsic interests. As such, attributes 
of users/items can be a beneficial supplementary material for modelling user preferences 
while alleviating cold-start and data-sparsity issues when there are countable user-item 
interactions. Attribute features can be relevant information appended to each interaction 
the user towards an item [2]. For instance, some datasets contain time and location 
accompanied by a user’s interaction with a certain item. Content-aware attributes such as 
news title and article content can be acquired together with user clicking events. Such 
interaction-relevant attributes not only provide a context for user interaction, but also 
affects user interaction decision to some extent, and may even determine the user’s current 
tendency toward an item. Other terms may be used to indicate attributes interchangeably 
such as features, taxonomy, entities, contextual information, etc.  

Based on their inherited characteristics, different attributes related to building user profiles 
for better-personalized systems and services in this thesis can be categorized into explicit 
and implicit attributes. Explicit attributes refer to attributes related to users/items that can 
be extracted by experts, such as category, entities, keywords of articles, or directly attached 
to user/item like timestamp, location etc.  Implicit attributes are latent features that cannot 
be acquired directly but should be inferred through analyzing data streams such as topics, 
intra- and inter-session properties, or discovered in the form of representations learned by 
models e.g. from article content or user-generated tweets. 

To incorporate explicit and implicit attributes for better modelling user preferences, several 
challenges need to be considered: (1) Different types of attributes. Attributes usually appear 
in different forms. For instance, categorical features and locations can be expressed using 
predefined proper nouns in text, the timestamp is usually a string of numbers, article titles 
and contents are written with formal expressions, while user-generated tweets are in the 
form of free texts full of abbreviations and misspellings. Then how to process such 
attributes presented in different forms and turn them into a machine-readable language need 
to be seriously considered. (2) Different effects of attributes on user profiling process. 
Obviously, different attributes normally play different roles in influencing a user’s next 
decision. For instance, some people prefer to read news with different topics or categories 
at  different time of the day. They may tend to learn about current affairs during the day 
but prefer to read some entertainment gossip during the night break. These users can be 
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seen as time-driven which time factor probably plays a more important role in affecting 
user preferences than other factors. (3) Latent/implicit attributes distillation. There is no 
doubt that the content of a news article or a tweet is the key to whether a user wants to 
continue reading. However, implicit signals from content cannot be clearly depicted or 
explicitly expressed. Furthermore, reading or clicking of an item cannot fully reveal the 
personal interest or need of the users. They may click on an article they do not want to read 
due to mistakes or randomness. Thus how to effectively extract and mine such information 
from news articles or tweets that affect the user’s decision needs to be carefully considered.  

Apart from the user/item attributes that can be exploited to capture and mine user’s 
preferences in different scenarios, auxiliary information especially knowledge bases or 
knowledge graph (KG) can also be valuable external resources to enrich the user profiles. 
It is generally regarded as an effective means to uncover the item relationships by providing 
heterogeneous information related to items, such as different entities and relations. 
Meanwhile, items and their relations with entities can be naturally formed into graphs that 
intuitively reveal the potential correlations among items via indirect intertwined links. 
Furthermore, graph architecture makes it easier for users to understand the recommendation 
results to some extent. To effectively integrate KG  into recommender systems for better 
understanding and mining user interests, we need to consider the following challenges and 
issues: (1) How to model the heterogeneity of the KG? Compared with homogeneous 
networks where there are only one type of nodes and links, KGs consist of multi-typed 

nodes and links, such as Pep Guardiola
!"#$%
*⎯⎯,Football Player, Pep Guardiola

&'&('$)*
*⎯⎯⎯⎯⎯⎯⎯,FC 

Barcelona. As can be seen that “Football Player” (occupation) and “FC Barcelona” 
(football team) connect “Pep Guardiola” with different relations, namely “sport” and 
“memberOf”. Such heterogeneity usually carries various semantic information and can be 
beneficial for inferencing the subtle item relationships from different perspectives. Thence 
to encode such heterogeneous information in KG is a widely acknowledged yet non-trivial 
task for better user modelling. (2) How to design a novel data-driven user modelling 
approach that can capture the semantics of graphs and meanwhile take into account the 
different contributions of different nodes/paths related to a specific item?  The candidate 
item contains entities being reached through one hop, two hops or more hops from starting 
node, resulting in different paths in KG. In other cases, different routes can lead to different 
end nodes from the same starting point within the same number of hops. These paths 
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generally convey distinct semantic relations and typically are of different importance in 
characterizing user preferences over items or nodes. It is very likely that certain paths can 
better describe a user’s inclination than others. Moreover, users may have different intents 
which drive users to consume different items. Relations in KG can be modelled as an 

intermedium to describe user intents. In the case of Pep Guardiola
&'&('$)*
*⎯⎯⎯⎯⎯⎯⎯,FC Barcelona, 

the user may emphasize the organization (football team in this case) more, while in the case 

of Bernabé Martí
+,-.//01,2345
*⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯,Opera singer, the user may emphasize occupation  (e.g. opera 

singer) and related activities (e.g. opera) more than others.  Therefore, how to fully exploit 
the differences of importance and contributions of related nodes, and mine user intent in-
depth, is a desirable research problem for better understanding and extravagating user’s 
preferences. (3) How to effectively train a recommendation model on the constructed large-
scale graph with millions even billions of nodes and links? In such a big-data era, real 
graphs can easily have millions or billions of nodes and links, such as some well-known 
social networks and e-commerce networks [3], which leads to high costs in terms of both 
time and space for user modelling and recommendation. To this end, it is necessary to study 
more efficient and meanwhile accurate user modelling techniques that enable large-scale 
computations on graphs. 

To sum up, the motivation of this thesis comes from the demands on exploring effective 
and efficient user modelling techniques to build high-quality user profiles for better mining 
users’ intrinsic and potential interests, support decision-making systems while alleviating 
cold-start and data sparsity issues raised from traditional collaborative filtering methods. 
In this direction, the thesis especially focuses on analyzing and exploiting user/item related 
attributes and auxiliary information knowledge from online data streams to obtain users’ 
needs or preferences. Furthermore, the research preliminarily investigates the 
explainability of deep user profiling methods in recommender systems. 

1.2 Research Context 

The research work in this PhD thesis has been carried out as a part of a four-year PhD 
program at the Department of Computer Science at Norwegian University of Science and 
Technology within the project Recommendation Technologies (RecTech). The RecTech 
project is funded by the Research Council of Norway under the BIA innovation research 
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program with project number 245469. RecTech is performed in cooperation with 
Adresseavisen/ Polaris Media, Cxense in Oslo, NTNU in Trondheim and VTT in Finland.  

The main objective of the RecTech project is to research and develop the next generation 
recommender systems for news as well as other social media streams. User profiling and 
deep content analysis are two main tasks, of which key technologies including 
computational linguistics, machine learning and big data mining play a central role in 
RecTech. 

1.3 Research Questions 

The general goal of this thesis can be summarized as understanding and modelling 
complex dynamic user interests from multiple aspects in textual data streams. 
Specifically, we focus on two kinds of significant contextual resources, called attributes of 
users/items and auxiliary information, for efficient user modelling. To drive our research, 
we identified the following two main research questions: 

• [RQ1] – How can attribute features of users and items be learned and integrated for 
effective user modelling and recommendation? 

In the first research question, we aim to explore the influence of users/items' explicit 
and implicit attribute features for dynamic user modelling, especially for cold-start 
scenarios. Furthermore, we also want to investigate a unified framework combining 
explicit and implicit attribute features to model complex dynamic user interests.  

This general research question can be divided into three concretized sub-questions: 

RQ1.1 What kinds of temporal patterns can be leveraged to predict dynamic user 
interests in textual data streams? 

RQ1.2 How can item-level semantic features (e.g. categories, keywords, titles) be 
applied to alleviate the cold start issue in session-based recommendation?  

RQ1.3 How can the spatial-temporal, semantic, inter- and intra-session features be 
integrated into a unified framework for modelling complex dynamic user interests and 
effective recommendations?  
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• [RQ2] – How can auxiliary feature from knowledge graph be employed to understand 
user intents and improve the explainability of recommender systems? 

In the second research question, we want to find the recent research progress about 
recommending on graphs which has attracted considerable interests in both research 
and industry communities, and meanwhile provide in-depth insights on graph-learning 
based recommendation approaches through systematically taxonomic analysis. Based 
on this, we would like to understand the influence of the knowledge graph on 
recommendation performances and how to integrate the knowledge graph into user 
modelling procedures. 

This general research question can be divided into two concretized sub-questions: 

RQ2.1 How to understand data-driven mechanisms behind graph-learning based 
recommendation approaches through taxonomic assessment on recent advances? 

RQ2.2 Does explicitly modelling of relations in KG help capture user intents for 
improving session-based recommendation performance and explainability? 

1.4 Research Contributions 

This section summarises five main research contributions in the thesis, in accordance with 
the research questions presented in Section 1.3. 

A novel neural time series forecasting model for personalized time-aware 
user interests prediction [C1] 

User's interests present dynamic time-aware patterns. To explore the interaction among 
these patterns in affecting the evolution of user's personalized interests, we propose a neural 
time series forecasting model which takes emerging topics, user's intrinsic interests, user's 
recent behaviors and cyclic patterns of users into consideration. Furthermore, Long Short-
Term Memory Recurrent Neural Network (LSTM-RNN) is employed to differentiate and 
quantify various types of user's interest patterns automatically. Unlike existing research 
that only discusses a certain attribute of time presentation, we discuss the multi-
dimensional time characteristics of users in Twitter. Our empirical analysis is performed 
on real-world Twitter datasets. 

An efficient deep joint network for session-based recommendations with 
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contextual augmentation [C2] 

To alleviate the cold start issue, we have proposed a Deep Joint Neural Network 
(DeepJoNN) which could jointly model the sequential pattern of session clicks and various 
item features such as ID, category, keywords and entities for session-based 
recommendation. DeepJoNN consists of two parts of deep neural networks (CNN and 
RNN) coupled together in a hierarchical way and thus could extract contextual patterns and 
process long and short-term dependencies simultaneously. At the same time, character-
level embedding over input features is adopted to allow integrating different types of data 
and reduce engineering computation. The effectiveness of our proposed tensor-based CNN 
module is verified through experimental results on two real-world datasets. 

A novel dynamic attention-integrated neural network to model user's 
interests over time in a unified framework for session-based recommendation 
[C3] 

We propose a novel neural network framework, dynamic attention-integrated neural 
network to model user's dynamic interests over time in a unified framework for 
personalized session-based recommendation. The proposed model can jointly exploit 
users’ long-term interests, user behavior sequence patterns, users’ main purpose in the 
current session, as well as public behavior mining to model users’ preferences. In order to 
improve the recommendation accuracy, dynamic topic modelling and convolutional neural 
network (CNN) sentence model are adopted to effectively learn the item semantic 
embedding. More importantly, to handle diverse variance of users’ clicking behavior, we 
introduce a novel attention scheme that would dynamically assign influence factors on 
recent models based on the users’ spatio-temporal reading characteristics. The fusion of 
various side information and the effectiveness of different fusion strategies in session-based 
news recommendation have been verified through empirical analysis with real-world 
datasets. 

A taxonomic assessment on graph learning-based recommender system 
approaches [C4] 

We propose a novel taxonomy to categorize various graphs in the Graph Learning-based 
Recommender Systems (GLRSs) and analyze their characteristics from a data-driven 
perspective. Then, we propose a novel taxonomy to classify existing graph-learning based 
recommendation approaches, which clearly demonstrates the evolution process of recent 
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studies. Furthermore, the resources regarding GLRSs, including benchmark datasets and 
open-source knowledge graphs, are systematically summarized. Finally, we analyze the 
limitations of existing works and suggest a few future research directions of GLRSs such 
as dynamicity, interpretability, fairness and so on. 

A relational knowledge-aware heterogeneous graph attention network for 
user intents modeling and session-based recommendation [C5] 

We propose a novel Relational Knowledge-aware Heterogeneous Graph Attention 
Network (ReKaH_GAT) to model entity-relation interactions and user intents explicitly for 
session-based news recommendation. In ReKaH_GAT, we design an original 
transformation schema from traditional KG to Entity-Relation Interaction (ERI) graph 
where the complex graph structure, entity and relation semantics are embedded in a unified 
way. A novel heterogeneous graph attention network with a self-attentive layer is applied 
subsequently to learn the context and intent embeddings from a session-specific ERI. 
Meanwhile, the semantic session embedding learned from pre-trained multi-lingual BERT 
is combined with contextual and intentional session embeddings to achieve a robust news 
recommendation. 

1.5 Publications 

In this section, we present the list of scientific papers published during the PhD studies that 
cover the above contributions. For each paper, we refer to the corresponding chapter in 
which the content of the paper is included and point out the relevance of the aforementioned 
research questions. 

P1. Zhang, Lemei, Peng Liu, and Jon Atle Gulla. A neural time series forecasting model 
for user interests prediction on Twitter. In Proceedings of the 25th Conference on User 
Modeling, Adaptation and Personalization, pp. 397-398. 2017. 

Summary: The content of this paper is included in Chapter 3 and is aimed at answering the 
research question RQ1.1. 

P2. Zhang, Lemei, Peng Liu, and Jon Atle Gulla. A deep joint network for session-based 
news recommendations with contextual augmentation. In Proceedings of the 29th on 
Hypertext and Social Media, pp. 201-209. 2018. 

Summary: The content of this paper is included in Chapter 4 and is aimed at answering the  
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Table 1.1: Relations between contributions and publications. 

Papers C1 C2 C3 C4 C5 

P1 •     

P2  •    

P3  •    

P4   •   

P5    •  

P6     • 

research question RQ1.2. 

P3. Gulla, Jon Atle, Lemei Zhang, Peng Liu, Özlem Özgöbek, and Xiaomeng Su. The 
adressa dataset for news recommendation. In Proceedings of the International Conference 
on Web Intelligence, pp. 1042-1048. 2017. 

Summary: The content of this paper is included in Chapter 4 and is aimed at answering the 
research question RQ1.2. 

P4. Zhang, Lemei, Peng Liu, and Jon Atle Gulla. Dynamic attention-integrated neural 
network for session-based news recommendation. Machine Learning 108, no. 10 (2019): 
1851-1875. 

Summary: The content of this paper is included in Chapter 5 and is aimed at answering the 
research question RQ1.3. 

P5. Zhang, Lemei, Peng Liu, and Jon Atle Gulla. Recommending on graphs: a new 
perspective for recommender systems. User Modeling and User-Adapted Interaction, 2nd 
round review. 

Summary: The content of this paper is included in Chapter 6 and is aimed at answering the 
research question RQ2.1. 

P6. Zhang, Lemei, Peng Liu, and Jon Atle Gulla. Demystifying Knowledge-aware User 
Intents for Session-based News Recommendation. In review with International Conference 
on Advanced Information Systems Engineeringing (CAiSE) 2022. 

Summary: The content of this paper is included in Chapter 7 and is aimed at answering the 
research question RQ2.2. 
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As a summary, Table 1.1 presents the relations between the papers and our research 
contributions listed in section 1.4. 

Additional Publications. In the course of this PhD, I also contributed to the following 
publications, but they are not included in this thesis because they are not directly connected 
to its research topic. 

A1. Jon Atle Gulla, Rolf Dyrnes Svendsen, Lemei Zhang, Agnes Stenbom, Jørgen Frøland. 
Recommender Systems in Online News Personalization. Accepted by AI Magazine. 

A2. Liu, Peng, Lemei Zhang, and Jon Atle Gulla. Multilingual Review-aware Deep 
Recommender System via Aspect-based Sentiment Analysis. ACM Transactions on 
Information Systems (TOIS) 39, no. 2 (2021): 1-33. 

A3. Liu, Peng, Lemei Zhang, and Jon Atle Gulla. Dynamic attention-based explainable 
recommendation with textual and visual fusion. Information Processing & Management 57, 
no. 6 (2020): 102099. 

A4. Liu, Peng, Lemei Zhang, and Jon Atle Gulla. Real-time social recommendation based 
on graph embedding and temporal context. International Journal of Human-Computer 
Studies 121 (2019): 58-72. 

A5. Liu, Peng, Lemei Zhang, and Jon Atle Gulla. Learning Multi-granularity Dynamic 
Network Representations for Social Recommendation. In Joint European Conference on 
Machine Learning and Knowledge Discovery in Databases, pp. 691-708. 2018. 

A6. Liu, Peng, Jon Atle Gulla, and Lemei Zhang. Dynamic topic-based sentiment analysis 
of large-scale online news. In International Conference on Web Information Systems 
Engineering, pp. 3-18. 2016. 

1.6 Thesis Structure 

The thesis is divided into four main parts. Part I gives an introduction to the main topics of 
the thesis and summarises the technical background in these areas. Then, Part II and Part 
III present our research on complex dynamic user interests modelling from multiple 
aspects. In particular, Part II focuses on exploiting attribute information of users/items, Part 
III focuses on the integration of auxiliary features from graph-structured data. Finally, we 
conclude the thesis and give an overview of future work in Part IV. A more detailed outline 
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of the contents is given as follows: 

Part I  Introduction and Literature Review 

       Chapter 1 introduces the motivation and context of our research,  presents the research 
questions studied and summarizes the contributions of the thesis. 

       Chapter 2 overviews the background knowledge and some state-of-the-art approaches 
related to this thesis. 

Part II  Mining Attribute Information for User Modelling 

       Chapter 3 investigates temporal attributes that affecting user’s preference from 
multiple perspecitives. 

       Chapter 4 studies the problem of extracting and modelling semantic features for better 
understanding users’ preferences in session settings. 

       Chapter 5 presents a framework for integrating the explicit and implicit user/item 
related attributes for session-based news recommendation, and provides the 
evaluation results of our proposed method. 

Part III  Exploring Graph Structured Data for User Modelling 

       Chapter 6 describes the recent advances and challenges of graph learning-based 
recommender systems. 

       Chapter 7 presents and evaluates a graph learning-based approach for predicting next 
item interacted by the user by modelling large-scale knowledge graph, and 
provides explaniations based on recommendation results. 

Part IV  Conclusions and  Future Work 

       Chapter 8 concludes our research by recisiting the research questions addressed in 
this thesis, and provides an outlook on future research directions. 
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Chapter 2  

Literature Review 
In this chapter, we briefly describe fundamental knowledge in the research area of user 
modelling that can facilitate the understanding of the content of this thesis. We start with 
describing the preliminaries related to acquiring and constructing user profiles and 
modelling temporal features in Section 2.1. Then in Section 2.2, we review the modern 
applications and techniques for user modelling, followed by evaluation procedure and 
benchmark dataset used in our thesis in Section 2.3. 
2.1 Technological Background 

2.1.1 User Profile Acquisition and Construction 

User profiling is an attempt to deal with information about internet users. It is a crucial and 
fundamental part of the rest user modelling process. In this section, we briefly introduce 
several methodologies attempting to build user profiles related to this thesis. 

Term Frequence-Inverse Document Frequency (TF-IDF) [4]. Term Frequence (TF) is 
the number of occurrences of the word 𝑤 in a document 𝑑, denoted as 𝑇𝐹(𝑤, 𝑑). The 
higher the value of 𝑇𝐹(𝑤, 𝑑) is, the more the word 𝑤 is representative of document 𝑑. 
Accorddingly, Document Frequence (DF) is the number of documents in which the word 
𝑤 occurs, denoted as 𝐷𝐹(𝑤). The Inverse Document Frequence (IDF) of the word 𝑤 is 
given as follows: 

𝐼𝐷𝐹(𝑤) = 1 + log <
|𝐷|

𝐷𝐹(𝑤)
> 

Where |𝐷| is the number of documents. Therefore, when |𝐷| is fixed, the more documents 
the word 𝑤 occurs, the lower the value of the 𝐼𝐷𝐹(𝑤) is, which means that the term 𝑤 is 
less representative of the document with lower 𝐼𝐷𝐹(𝑤) score. On the other hand, the higher 
𝐼𝐷𝐹(𝑤) socre normally indicates the term 𝑤 has a better ability to distinguish documents. 
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It is truly that we prefer higher TF and higher IDF to find the more representative and 
higher discriminative ability terms to build user profiles. Hence, incorporating such 
requirements into a single formula can be expressed as: 

𝑇𝐹 − 𝐼𝐷𝐹(𝑤, 𝑑) = 𝑇𝐹(𝑤, 𝑑) × 𝐼𝐷𝐹(𝑤) 

Higher TF-IDF score is desired for terms to be selected as representative features for 
constructing user profiles. 

Topic model. The simplest topic model, known as Latent Dirichlet Allocation (LDA) [5] 
assumes that documents exhibit multiple topics, where a topic is defined to be a distribution 
over a fixed vocabulary of terms. It is a Bayesian network that generates a document using 
a mixture of topics. In its generative process, for each document 𝑑 , a multinomial 
distribution 𝜃6  over topics is randomly sampled from a Dirichlet with parameter 𝛼. To 
generate each word, a topic 𝑧6,8 is chosen from this topic distribution, and a word 𝑤6,8 is 
generated by randomly sampling from a topic-specific multinomial distribution 𝛽9!,# 
parameterized by 𝜂. This can be illustrated as a directed graphical model in Figure 2.1. 
LDA assumes that words are exchangeable within each document, and documents are 
exchangeable within the corpus. However, for many corpora like news articles, the latter 
assumption is inappropriate since the documents reflect evolving content and topics change 
over time. Thus, a variant of LDA, Dynamic Topic Model (DTM) [6], which captures the 
evolution of topics in a sequentially organized corpus of documents, is more suitable for 
scenarios where topics change dynamically.  

Specifically, in DTM, the documents are firstly divided by time slice, e.g., by week. 
Assuming there are 𝐾 topics in a corpus, the documents of each slice can be modeled with 
a 𝐾-component topic model, where the topics associated with slice 𝑡 evolve from the topics 
associated with slice 𝑡 − 1. The generative process is given as follows: 

1. Draw topics 𝜋%|𝜋%:;~𝒩(𝜋%:;, 𝜎<𝐼) 
2. For each document: 

a. Draw 𝜃6~𝐷𝑖𝑟(𝛼) 
b. For each word: 

i. Draw 𝑍~𝑀𝑢𝑙𝑡𝑖(𝜃6) 

ii. Draw 𝑊%,6,8~𝑀𝑢𝑙𝑡𝑖 S𝑓U𝜋%,9VW 
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Where 𝒩(⋅) is Gaussian distribution and 𝜋%,=  denotes a multivariate Gaussian random 
variable for topic 𝑘  in slice 𝑡 . 𝐷𝑖𝑟(∙)  denotes Dirichlet distribution, 𝑀𝑢𝑙𝑡𝑖(∙)  denotes 

Multinomial distribution, and 𝑓U𝜋%,9V =
>?1@A$,%,&B

∑ >?1	(A$,%,&)&
 is the function that maps the real-

vector 𝜋%,9 to the simplex. As illustrated with graphical represnetations of DTA in Figure 
2.2, different from LDA, the topics are drawn from logistic normal rather than a Dirichlet. 
Besides, each time slice is a separate LDA model, where the 𝑘-th topic at slice 𝑡  has 
smoothly evolved from the 𝑘-th topic at slice 𝑡 − 1. Rather than a single distribution over 
words generated by LDA, in DTA, a topic is a sequence of distributions over words 
representing the underlying changes of the theme of the corpus over time. 

Fast Fourier Transform (FFT). Fourier Transform is a mathematical operation that 
changes the domain of a signal from time to frequency. It is a method for expressing a 
function as a sum of periodic components, and for recovering the signal from those 
components. When both functions and its Fourier Transform are replaced with discretized 
counterparts, it is called the discrete Fourier Transform (DTF). The reason why DFTs can 
be widely spread and applied in many domains is that they have a fast and effective 
computing algorithm, called the Fast Fourier Transform (FFT), which is known to Gauss 
as early as 1805 [7] and was brought to light in its current form by Cooley and Tukey [8]. 
Through FFT, the periodicities in input data and as well as the relative strengths of any 
periodic components and be revealed. Specifically, assuming the input sequence can be 
represented as a vector 𝑓8 in time domain, Then the FFT transformation process could be 
defined as 

𝐹= =[ 𝑓8𝑒
:G<A=8H

H:;

8I;
 

Where 𝐹= is the representation of 𝑓8 in frequency domain, 𝑁 is the dimension of  𝑓8. Then 
the peak values in 𝐹=  can be viewed as the cycles. One time series can probably have 
multiple cycles since the orginal input can be a combination of multile signals. In this 
thesis, FFT is leveraged to detect the periodic features in user preferences.  
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Figure 2.1: A graphical representation of LDA, where nodes represent random variables and 
edges represent dependence between random variables. Shaded node denotes observed 
variable otherwise is unobserved variables. The rectangular boxes denote replication. 

 

Figure 2.2: A graphical model representation of DTM, where each topic’s parameter 𝜷𝒕,𝒌 
evolve over time. 

2.1.2 Temporal Feature Modelling 

As is well-known that user interests are changing over time, temporal aspects play a crucial 
role in modelling user preferences. Two widely spread approaches for modelling user 
dynamic properties in conventional recommender systems include sliding window and time 
decay function. 

Sliding Window. The sliding window method is adopted for sequences where order 
matters. For time-series data, the sliding window approach takes a series of data from 
previous time steps within a predefined window size as input and output the next time 
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step(s) as prediction(s). Before modelling the dynamics of users’ interests, the user 
interaction data or interested topics need to be arranged in chronological order, which is 
then divided according to the predefined window size. Then modelling operation can be 
performed on the data in the time window in turn. The window size can be defined by a 
fixed number of items, e.g. the recent 200 clicked items, or a period of time, e.g. one day 
or one week. For instance,  the authors of [9] capture the dynamic level of user interests by 
building user profiles daily over the extracted topics from Twitter. Then weekly historical 
user profiles are adopted to learn user interests properties. Yin et al. [10] define a multi-
granularity of time intervals to capture user-oriented and time-oriented topics from 
different levels, followed by a unified probabilistic model to model user behaviors for 
efficient recommendation. 

Decay function. A time decay function is often leveraged on temporal and streaming data 
analysis to reduce the importance of older data, without eliminating their influence, on the 
results of the analysis, among which exponential time decay is commonly used in practice, 
compared with other decay functions e.g. polynomial decay. Different from sliding window 
methods that choose to consider within a limited range of historical data, the decay function 
tends to keep the whole historical records but assign fewer weights on the older ones 
compared with more recent user behaviors. The intuition behind the decay functions for 
modelling user interests is that recent interests should contribute more than old ones. A 
general time decay function can be defined as  

𝑦 = 𝐴J𝑥:K(%:%') 

Where 𝐴J  denotes the value at time zero, 𝜆  is a positive constant that determines the 
rate/percentage of decay.   𝑡J represents the time zero and 𝑡 represents the current time.  

Many researches adopt the decay function in the process of modelling user preferences 
with respect to historical user-generated content i.e. on long-term user interest profiles. For 
instance, Abel et al. [11][12] have observed that a user’s interests change over time and 
have modelled user interests in specific time frames as a set of weighted topics. The weights 
are calculated based on a proposed time-sensitive interest decay function according to the 
temporal distance between the topics occurrence time and current time. Similarly, Amr et 
al. [13] have leveraged an exponential time decay function to weigh user historical 
behaviours to provide a more complete picture of user interests and more accurate profiles. 
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2.2 Applications for User Modelling 

2.2.1 User Interest Prediction 

User behavior has been widely studied directly and indirectly in many areas according to 
time [14, 15, 16, 17, 18]. In [14], the authors introduce TUMS, a Twitter-based User 
Modeling Service to infer semantic user profiles from the messages people post on Twitter. 
Other researches such as [15] model tie-strength between two users to do recommendations 
for social streams. Recently, many researches have been conducted using time series 
technologies to forecast some aspects of users’ online behavior, especially in 
recommendation systems. Radinsky et al. [16] proposed a dynamics model learner (DML) 
which is based on a space-state model and considers trend, periodicity, noise, surprise and 
seasonality detection extracted from a user searching logs on the web. Preum et al. [17] 
explored the activity patterns of temporal user behavior using a multi-scale adaptive 
personalized (MAPer) model to forecast user activity linearly. Besides, the Fourier-assisted 
Auto-Regressive Integrated Moving Average (FARIMA) process is proposed by [18] to 
tackle the year-long seasonal period of purchasing data to help product recommendation. 
However, some of the aforementioned models do not consider personalized multi-features 
modelling, and others do not take into account the dynamic changes of users’ interests in 
the online environment. 

2.2.2 News Recommendations 

News recommendation aims to recommend to users the news that matches their personal 
interests best [19]. As a popular service and an important way to retain users, the industry 
puts much effort into news recommendation researches [20]. Several adaptive news 
recommending systems, such as Google News and Yahoo! News provide personalized 
news recommendation services for a substantial amount of online users. Conventional news 
recommendations can be roughly categorized into three groups: collaborative filtering, 
content-based filtering and hybrid methods. The first one makes use of news ratings by 
users to provide recommendation services, and they are content-free. In practice, most 
collaborative filtering systems are constructed based on users’ past rating behaviors, either 
using a group of users "similar" to the given user to predict news ratings [21] or modelling 
users’ behaviors in a probabilistic way [22]. However, collaborative filtering is ineffective 
for the cold-start problem. Content-based methods try to sequentially find newly-published 
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articles similar to the user’s reading history in terms of content. Generally speaking, news 
content is often represented using vector space model (e.g., TF-IDF) [23], or topic 
distributions obtained by language models (e.g., PLSI and LDA), and specific similarity 
measurements are adopted to evaluate the relatedness between news articles. However, in 
some scenarios, simply representing the user’s profile information by a bag of words is 
insufficient to capture the exact reading interest of the user. Hybrid solutions combine two 
or more recommendation methods to gain better performance. Representative examples 
include Rao et al. [24], in which the inability of collaborative filtering to recommend news 
items is alleviated by combining it with content-based filtering.  

With the surge of deep learning techniques, neural network-based recommender systems 
have attracted increasing attention and achieved superior performance than previous 
models due to their ability to capture complex nonlinear user-item relationships [25]–[28]. 
For instance, in [28], the authors adopt reinforcement learning to model future rewards and 
consider user feedback as a supplement. A duelling bandit gradient decent strategy is 
incorporated to explore new attractive news for users. More recently, the attention 
mechanism is introduced from the machine translation domain to capture the important 
parts from candidates [29]–[31]. The work of [29] adopt multi-head self-attention to 
capture the relatedness between the news, and additive attention to learn important words. 
Another attention mechanism is proposed to learn the importance of user profiles from 
different views in [30]. To enrich user/item profiles with extra sources, recent studies begin 
to incorporate KGs into news recommendations. DKN proposed in [32], attempts to learn 
entity embeddings with CNNs in KGs while using an attention module to match candidate 
news articles. 

Other important factors related to news recommendations include news recency issues and 
data sparsity problems. Many online users read limited news stories compared with the 
entire repository, and hence the access matrix is very sparse. Cold start problems caused 
by newly registered users will also lead to a sparse problem. To address this problem, 
model-based collaborative (i.e. matrix factorization, probabilistic matrix factorization) is 
most commonly adopted to reduce dimensions and consequently reduce the level of 
sparsity [33, 34]. To alleviate the recency issue in news recommendation, Amr et al. [35] 
report take a list of articles as input, which have been selected in advance by several criteria 
including recency. Das et al. [20] choose to re-build the recommender models every hour 
in order to present the freshest information to the users. In our work, we adopt the time-
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decay function to reduce the weight of the historical news articles, and character-level 
encoding to alleviate the sparsity problem. 

2.2.3 Session-based Recommendations 

Classical content-based methods and collaborative filtering do not work well in the session-
based setting when no user profile can be constructed from past user behavior. A natural 
solution to this problem is the item-to-item recommendation approach [21], in which two 
items are deemed to be similar if they are frequently clicked together in the same sessions. 
It is a simple but effective method. However, a drawback of the item-to-item 
recommendation is that it does not consider click order and generates predictions based 
only on the last click. Figueiredo et al. [36] propose a Bayesian generative model to model 
click sequences. Shani et al. [37] present a Markov decision process (MDP), which 
incorporates the transition probability between items, to provide recommendations in a 
session-based manner. Learning item embeddings is another approach suitable for session-
based recommendations. The authors of [38] leverage item metadata to regularize item 
embeddings, which makes it relevant to content-based approaches.  

Recently, several studies have been done to use neural network-based models including 
deep learning techniques for recommendation tasks. Hidasi et al. [39] propose to use 
recurrent neural networks (RNN) with Gated Recurrent Units (GRU) for session-based 
recommendation. The model considers the first item clicked by a user as the initial input of 
RNN, and generates recommendations based on it. Then the user might click one of the 
recommendations, which is fed into RNN next, and the successive recommendations are 
produced based on the whole previous clicks. Tan et al. [40] further improve this RNN-
based model by utilizing two crucial techniques, i.e., a method to account for shifts in the 
input data distribution and data augmentation. In a later work, Hidasi et al. [41] extend their 
previous work by combining rich features of clicked items such as item IDs, textual 
descriptions, and images. They use different RNNs to represent different types of features 
and train those networks in a parallel fashion. Jannach and Ludewig [42] combine KNN 
with a session-based RNN [39] demonstrating further performance gains. However, the 
combination scheme is a fixed weighting hyperparameter and lacks a nonlinear interaction 
to capture more complex relations. Li et al. [43] explored a hybrid encoder with an attention 
model to capture both the user’s sequential behavior and main purpose in the current 
session. Liu et al. [44] propose a short-term attention/memory priority model for session-
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based recommendation, which is capable of capturing users’ general interests from the 
long-term memory of a session context, whilst taking into account users’ current interests 
from the short-term memory of the last-clicks. To incorporate the user's long-term 
preference, Quadrana et al. [45] provide a seamless way of transferring the knowledge 
acquired on the long-term dynamics of the user interest to session-level and devise a 
Hierarchical RNN to model the user activity across and within sessions. Specifically, they 
involved an item-level attention mechanism that allows the decoder to dynamically select 
and linearly combine different parts of the input sequence.  

Nowadays, Graph Neural Network (GNN) which learns the representation of graph-
structured data, is broadly applied for session-based recommendation. Wu et al. [46] 
propose a novel session-based recommendation with GNN to model separated session 
sequences into graph-structured data and use GNN to capture complex item transitions. Xu 
et al. [47] propose a graph contextualized self-attention model, which utilizes both GNN 
and self-attention mechanisms to learn local dependencies and long-range dependencies 
respectively, for session-based recommendation. Yu et al. [48] propose a novel target 
attentive graph neural network (TAGNN) model for session-based recommendation. By 
incorporating graph modelling and a target-aware attention module, TAGNN jointly 
considers user interests given a certain target item as well as complex item transitions in 
sessions.  

2.2.4 Knowledge Graph-based Recommendations 

Recent studies [49, 50] have witnessed the successes of knowledge graph (KG) in 
mitigating data sparsity and cold start problems in recommendation due to the rich semantic 
information related to entities and entity relations encoded in the KG. A knowledge graph 
is a type of directed heterogeneous graph, typically consisting of entity-relation-entity 
triples (h, r, t). There are a lot of graph-based methods proposed to make use of KG in the 
recommendation. László et al. [49] introduce an adaptive rating estimation method, which 
is capable to incorporate heterogeneous information sources and improving the 
recommendation quality. By applying the spreading activation technique [50] on KG, this 
approach could provide lower rating estimation error and higher coverage for 
recommendation compared to those collaborative filtering methods only using user-item 
interactions. Later, Catherine et al. [51] propose a recommendation approach based on a 
general-purpose probabilistic logic system called ProPPR (Programming with Personalized 
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PageRank), to perform knowledge graph-based recommendations. The authors leverage 
the link structure of the knowledge graph as well as type information about the entities to 
improve predictions. Chaudhair et al. [52] present the Relation of Entities Recommendation 
Agent (RERA), a new content-based system that adopts a novel normalized version of 
Personalized Page Rank to rank candidate items for recommendation. Nevertheless, these 
graph-based methods only make use of the topological structure of KG without considering 
to model the semantics carried by KG. 

In order to take advantage of the semantics of entities and entity relations in KG, state-of-
the-art recommendation methods adopt meta path, which predefines the specific format and 
length of the paths connecting two entities in KG, to build feature space and then manually 
extract features from KG for a better recommendation. Yu et al. [53] propose a 
recommendation model (HeteRec) with meta-path-based latent features to capture the 
different types of relationships between entities and learn the importance of each 
relationship type in KG. Luo et al. [54] investigate a social network based recommendation 
algorithm on KG named HeteCF to model the relationships of user-item, user-user and 
item-item by meta-path based similarity and propose a leveraging method to evaluate the 
weight of different relations. Despite their success for recommendations, all existing path-
based methods heavily depend on the handcrafted features. 

While embedding-based approaches learn entity and relation embeddings in the same space 
such that items sharing similar contextual knowledge should be projected closer in 
embedding space. Zhang et al. [55] propose a unified framework, called Collaborative 
Knowledge Base Embedding (CKE), to jointly learn the item latent representations in 
collaborative filtering as well as items’ semantic representations from the knowledge base. 
The empirical study demonstrates the superiority of CKE against graph and meta path-
based methods. After that, Huang et al. [56] propose a Knowledge-enhanced Sequential 
Recommender (KSR) method which integrates the RNN-based networks with the Key-
Value Memory Network (KV-MN) and incorporate KG information to enhance the 
semantic representation of KV-MN. Wang et al. [32] propose a deep knowledge-aware 
network (DKN) that incorporates knowledge graph representation into news 
recommendation. DKN utilizes TransE to generate the entity embedding and context 
embedding, then feeds them into a CNN framework to recommend. However, they sacrifice 
the intuitiveness and effectiveness in characterizing inter-item relations and lack the 
reasoning ability for recommendation results, especially when multi-hop relations occur in 



2.3 Evaluation 

 

 

25 

KG. Recent works try to combine path-based and embedding-based methods for 
recommendation[57]-[59]. In the work of [57], KPRN extract paths with a predefined max 
length and then entities, entity properties as well as relations embeddings are learned 
through LSTM layer. Finally, candidate items are generated according to the predicted 
score on a set of paths. However, KPRN requires enumerating all the possible paths 
between user-item pairs, which can be impractical for large-scale KGs. Besides, it fails to 
give explanations on interlinks of the path or show the discriminative properties within the 
path. Besides, none of the aforementioned studies tries to model KG to explain user intent 
in a finer-grained way. Recently, Wang et al. [60] explore intents of a user by modelling 
different aggregations of KG relations for better recommendations and interpretability, but 
they fail to model entity-relation correlations and take into account the sequential patterns. 

2.3 Evaluation  

2.3.1 Evaluation Metrics 

As the fundamental aspect of user modelling, evaluation of the quality of the inferred user 
interest models can be generally from two perspectives, namely qualitative analysis and 
quantitative analysis. Different evaluation metrics are adopted according to different 
evaluation manners (e.g., either from qualitative or from quantitative perspective) as well 
as different applications or tasks, e.g., recommendation. In this thesis, we mainly focus on 
two application scenarios, user interest prediction and recommendation.  

Qualitative analysis is a way to measure the quality of proposed user modelling techniques 
from the subjective aspect. A common way of evaluating the quality of the inferred user 
interest is by user study, which is performed by analyzing the collected explicit feedbacks 
from target users on the inferred interests. A good user study needs to set clear objectives 
and recruit the right participants from the target audience. Another way for qualitative 
analysis is a case study which is to perform an in-depth and detailed examination of a 
particular case. Compared with user study which may have difficulty enrolling real target 
users and set comprehensive and targeted questionnaires, a case study does not necessarily 
require the participation of real users according to different needs. For instance, a case 
study on error samples aims to analyze the causes and reasons behind the model output. 
The case study of some samples aims to give examples to explain the ability of the proposed 
model for specific tasks or additional tasks. Therefore, a case study will be one of the main 
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qualitative analysis methods running through our experiments and explaining the final 
representation of model capabilities. 

Quantitative analysis focuses on quantifying the collection and analysis of data. To evaluate 
the quality of the inferred user interests in a quantitative way, the user interests are 
considered as inputs, and the differences between the model output and the groud-truth 
annotation can be used to measure the performance of the user modelling techniques. In 
different studies, the evaluation criteria used by different applications may differ. For 
recommendation purposes, the evaluation can be performed in either an online or offline 
environment. Online evaluations require interaction with real users which is not always 
applicable for most researchers. Thus, offline evaluation in which the participation of the 
target users is not usually required has become a universally applicable evaluation method.  

In this thesis, the evaluation of the quality of the user modelling process will be based on 
the effectiveness of the recommendation and user interest prediction tasks in offline mode. 
Specifically, the following evaluation metrics are adopted: 

Pearson Correlation Coefficient. It is the covariance of the two variables divided by the 
product of their standard deviations. In our thesis, pearson correlation metric is adopted to 
measure the differences between the predicted user interest topics and the ground-truth user 
interests. Given the input variables of 𝑋 and 𝑌 represent the predicted and groud-truth user 
interest, pearson correlation can be calculated as: 

𝜌 =
𝑐𝑜𝑣(𝑋, 𝑌)
𝜎L𝜎M

=
𝔼[(𝑋 − 𝜇L)(𝑌 − 𝜇M)]

𝜎L𝜎M
 

Where 𝔼(⋅)  is the expectation, 𝜎L = l𝔼[(𝑋 − 𝔼[𝑋])<]  is the standard diviation of 𝑋 . 
Similarly, 𝜎M = l𝔼[(𝑋 − 𝔼[𝑋])<]  is the standard diviatio of 𝑌 . Lower value of 𝜌  is 
required for better prediction performance. 

Mean Square Error (MSE). MSE is among the most widely used evaluation metrics for 
assessing the quality of a predictor or an estimator. Given vectors 𝑋 and 𝑌 representing the 
predicted output and ground-truth data, the MSE is computed as 

𝑀𝑆𝐸 =
1
𝑛
[ (𝑌G − 𝑋G)<

8

GI;
 

Where 𝑛 is the number of dimension of 𝑋 and 𝑌. Lower value of MSE is desired for the 
better performance of the proposed model.  
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Precision and Recall [61]. They are widely used for evaluating the recommendation 
performance on the ranked list of top k items output from the recommendation model, 
which are denoted as Precision@k and Recall@k. Precision@k is the proportion of 
recommended items in the top-k set that are relevant: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@𝑘 =
𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡	𝑟𝑒𝑐𝑜𝑚𝑒𝑚𝑛𝑑𝑒𝑑	𝑖𝑡𝑒𝑚𝑠
𝑡𝑜𝑡𝑎𝑙	𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑟𝑒𝑐𝑜𝑚𝑚𝑒𝑛𝑑𝑒𝑑	𝑖𝑡𝑒𝑚𝑠

 

Recall@k is the proportion of relevant items found in the top-k recommendations: 

𝑅𝑒𝑐𝑎𝑙𝑙@𝑘 =
𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑟𝑒𝑐𝑜𝑚𝑚𝑒𝑛𝑑	𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡	𝑖𝑡𝑒𝑚𝑠

𝑡𝑜𝑡𝑎𝑙	𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡	𝑖𝑡𝑒𝑚𝑠
 

F1 Score. It is the harmonic mean between recall and precision values and can be denoted 
as 

𝐹1 =
2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@𝑘 × 𝑅𝑒𝑐𝑎𝑙𝑙@𝑘
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@𝑘 + 𝑅𝑒𝑐𝑎𝑙𝑙@𝑘

 

The abovementioned metrics are used for evaluating the accuracy of the recommendation 
results. To evaluate the ranking quality of the recommendation list generated by 
recommender system, one can adopt Mean Reciprocal Rank. 

Mean Reciprocal Rank (MRR) [62]. It is defined as the average of the reciprocal ranks 
of the desired items. The rank is set to zero if it is above k. MRR@k can be defined as 

𝑀𝑅𝑅@𝑘 =
1
𝑁
[

1
𝑟𝑎𝑛𝑘G

H

GI;
 

Where 𝑟𝑎𝑛𝑘G refers to the rank position of the first relevant item for the target user. 

2.3.2 Benchmark Datasets 

The investigation and diffusion of user modelling can benefit from the publicly available 
datasets with real users, which empower the evaluation of user modelling by enabling the 
researchers to perform experiments on the same benchmark datasets. Many real user data, 
due to privacy issues, are accessible to a restricted number of researchers. Despite these 
limitations, efforts were still made by some institutes and organizations to create and 
publish benchmark datasets for academic use. Though some companies cannot provide 
published datasets due to privacy or commercial reasons, they provide researchers with 
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APIs used to obtain user data under certain conditions, such as Twitter and Last.fm. Next, 
we will introduce the datasets we employ in our study. 

Twitter Dataset.  The first dataset was acquired from Twitter official API. Twitter is 
clearly one of the most popular services on the Social Web. People could post their feelings, 
ideas and topics of interest with a limit of 140 characters before 2017. With millions of 
active users generating micro posts, user-generated content on Twitter can be used for 
analyzing users’ preferences and exploring temporal user modelling. To obtain the data, 
we first selected a few users as “seeds”. Then we crawled the friends of the seed users and 
the friends of their friends by requesting Twitter API. It is like a water ripple with the seed 
users as the centre, diverging to the surroundings to find more users. After generating 
enough users, we crawled the users’ posts in the past year. Meanwhile, we performed a 
preliminary screen of users by filtering users with less than 100 posts. The users’ initial 
posts were a series of free-form texts, which could contain noise, e.g., in the form of typos 
or repeated characters. As such, standard NLP-based preprocessing techniques were 
employed. Specifically, we removed stopwords, repeated characters, emoticons, special 
characters and punctuations. Finally, the dataset spans from July 2015 to July 2016 
containing 2,834,910 tweets posted by 1948 users after filtering. The number of Twitter 
messages posted per user follows a power-law distribution. The majority of users published 
less than 100 messages during our observation period while only a small fraction of users 
wrote more than 10,000 Twitter messages and one user-produced even slightly more than 
20,000 tweets (no spam). 

Adressa Dataset [63]. The second dataset was provided by Adresseavisen, a local 
newspaper company in Norway. The Cxense platform for news recommendation and 
monitoring was used to extract the dataset. The Adressa dataset was prepared as part of the 
RecTech project on recommendation technology. After removing the users’ sensitive 
information, we released two versions of the datasets, containing one week of user 
interactions from 1 January to 7 January 2017, and ten weeks of user interaction data 
spanning from 1 January to 31 March 2017, respectively. The datasets are publically 
available on the website. The article contents are not directly available online but can be 
achieved by request due to some articles behind paywall which cannot be freely available 
online. Article content is saved separately in files and the files are named using the article 
id which can be aligned with ids in the datasets. All news articles in Adressa dataset are in 
Norwegian. Basic statistics on 10 weeks dataset are listed in Table 2.2. More statistics on 
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the dataset can be found in [63]. We explored different attributes of Adressa dataset in our 
studies, which were proven to have different effects on users’ clicking behavior. 
Specifically, we especially explored the article title, category, keywords in Chapter 4. User 
location, clicking timestamp and topics were studied in Chapter 5. In Chapter 6, we focused 
on the article content and entities for alleviating cold-start and data sparsity issues. Due to 
the low ratio of subscribers, our researches mainly focus on modelling user behaviors and 
providing recommendations based on the characteristics of users’ clicking patterns in the 
same session. SessionStart and SessionStop attributes can be used in combination to 
identify the session information. The number of news articles interacted per user follows a 
power-law distribution as seen in Figure 2.3.  

Last.fm Dataset [64]. Last.fm is an online radio station and music recommender service 
that recommends tracks to users based on their listening habits. It collects implicit feedback 
about the tracks played by a user and released datasets with more than one billion listening 
events, intended to be used for music retrieval and recommendation purpose. The dataset 
used for our study called LFM-1b contains 8 GB of data including artists, albums, tracks, 
users, and listening events spanning from 1 January 2013 to 11 March 2013 10 weeks. 
Last.fm also provides extensive tools and APIs which can be used by researchers and 
developers to download user or item related information with limits. Therefore, to achieve 
more detailed information on artists, we leveraged artist.getInfo API to download artists 
descriptions to enrich user profiles for recommendation purposes. As data preprocessing, 
several standard NLP-based steps were adopted. First, we filtered out punctuation, 
numbers, special characters and stopwords. Then stemmer was adopted to unify word 
forms. Finally, the preprocessed vocabulary can be used as input for user modelling. 

Weibo-Net-Tweet Dataset. This dataset is provided by Jing et al. [65]. It was collected 
from Weibo.com, a popular social network in China including in total 1.7 million users and 
300 thousand microblogs by 2017. Just like Twitter, Weibo enables users to share their 
feelings, ideas in the form of tweets, and leave comments to the public. Therefore, the user-
generated content includes user interested topics contributing to the mining of user 
interests. The dataset was originally used for studying social influence locality. It contains 
six parts mainly including friends network, tweets and rewets, user profiles, and tweet 
content. In our study, we mainly used its user profiles, tweet and retweet content for user 
modelling. Since the tweets and retweets were written with free-form texts,  several 
preprocessing steps need to perform. Specifically, we first deleted non-textual information  
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Table 2.1: Some attributes in Adressa dataset. 

 
Table 2.2: Basic statistics of Adressa dataset 
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Figure 2.3: Number of article views per article. 

such as messy codes, emoticons and tags by scanning the content of the original 
microblogs. Then we performed words segmentation using the words segmentation tool 
“jieba”. After that, stopwords based on the stop words list we’ve collected were removed 
as a necessary step. Finally, we dropped the tweets less than 5 words. 

ClefNewsReel Dataset. It is also a news dataset released by Plista GmbH and TU Berlin 
[66], which contains user logs from eight German news publisher in February 2016. This 
dataset is originally published for offline evaluation of an online news recommendation 
campaign. The dataset includes many types of events caused by readers’ actions. For 
instance, readers may access news articles or click on recommendations. In this thesis, we 
select session sequences in which the articles were clicked by the users for our experimental 
dataset. We also leveraged news content as auxiliary information for user modelling. We 
also extract named entities (NEs) from news titles and content using Spacy, a natural 
language processing tool for multi-lingual texts. The extracted NEs can then be aligned 
with an external knowledge graph for further use. 
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Chapter 3  

Temporal User Interest in Social Media 
Time series forecasting methods have been used for many areas, such as foreign exchange 
rate and stock price. However, they are rarely used for predicting user behavior in social 
networks. One important reason is the sparsely distributed feature matrics which make it 
difficult to model a personalized time pattern. In this chapter, we make use of a large 
volume of tweets on Twitter with the help of Mediawiki api to extract and enrich the feature 
matrices, and thus solve the sparsity problem. Then according to the existing researches, 
which show that users’ interests on social networks are mainly affected by two factors, 
short-term and long-term influence, a neural time series forecasting model (NTSF) is 
introduced to fit and predict user preference trend. In this model, we integrate emerging/hot 
topic detection to deal with the short-term aspects, and use Fast Fourier Transformation 
(FFT) to differentiate cyclic behavior of users. Considering the nonstationary and nonlinear 
characteristics appearing through user interest patterns, Long Short-Term Memory 
Recurrent Neural Network (LSTM-RNN) is employed to balance the influence of short and 
long term aspects, as well as adjust model parameters according to historical results. Our 
experimental results with extensive Twitter datasets verify the effectiveness of our 
approach. 

3.1 Introduction 

With the frequently changing of user preferences on social networks, quantifying and 
modelling user interests have become more and more important in many aspects, such as 
user interesting topics recommendation and target population advertising. Time plays a 
crucial role in influencing and understanding users’ changeable preferences among various 
factors which directly or indirectly result in users’ interesting behavior, like geo-location, 
celebrity effect and social circle. 

Fortunately, extensive current work has been done to study temporal user behavior patterns 
and model their time-aware properties. Because it not only facilitates tracking the evolution 
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of user preferences [67], but also is a key input for many context-aware recommender 
systems [68, 69], which may lead to significant improvements on recommending accuracy 
[33]. According to the observation, user preference patterns are influenced mainly by two 
aspects, users’ intrinsic interests and the attention of the general public, also called users’ 
long-term and short-term interests separately. 

Users’ long-term interests are relatively stable compared with constantly varied public 
attention. Considering this characteristic, a lot of efforts have been made in building and 
predicting users’ behavior. Michelson at el. use topic profile to discover the main topics of 
interest for users in microblogs [70]. Stoyanovich at el. model users’ interest in terms of 
the tags which are used to annotate content [71]. Social neighbours analysis is also 
leveraged in prediction in [72]. Based on the abovementioned studies, many articles make 
a step further, they combine tendency of the public and users’ intrinsic preference by using 
random walk-based methods, machine learning algorithms, matrix factorization and topic 
model-based algorithms, Bayesian inference and so on [73-77]. However, time series 
prediction is seldom used in temporal personalized prediction. One of the most important 
reasons is that the feature matrix is too sparse to be presented within time dimension [18]. 
In this chapter, we screen active users from Twitter, and automatically extract valuable 
topics with the help of Mediawiki api from their tweets, retweets and comments. Then we 
use Neural Time Series to do prediction.  

Time series forecasting means the use of a model to predict future values based on past 
records. It has been widely used in many areas for dynamic system modelling, such as 
engineering, science, sociology and economics [78]. Users’ interests present dynamic time-
aware patterns. In Figure 3.1, we illustrate the interest tendencies of three topics from daily 
tweets of a specific user within November 2012 and November 2013. As shown in this 
figure, users’ attentions of some specific topics are comparatively stable and could be 
considered as the static interests, such as umemployment in our example. In addition, it 
also illustrates that some topics the user interested in have certain lags which can be 
regarded as the recent interests, for instance congress which the user often posted for 
several consecutive days. Besides, some users’ interest topics show with certain time 
intervals which can be seen as cyclic patterns as economy in this instance. Many present 
approaches only consider users’ static interests or recent interests but ignoring cyclic 
interests of the users. Furthermore, according to [79], users are easily attracted by emerging  
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Figure 3.1: Illustration of three topics trends from November 2012 to November 2013 of a 
specific Twitter user. X axis denotes time and y axis denotes the topic words frequency from 
the user’s daily tweets. 

/hot news in social network (e.g. Twitter). Thus in this work, our proposed model 
incorporates the aforementioned four aspects from users, and for the first time, we explore 
the interaction among these patterns in affecting the evolution of users’ personalized 
interests. Considering nonstationary and nonlinear characteristcs appearing through users’ 
preference trends, a time series mixed with LSTM-RNN algorithm, which incorporates a 
five-layer network with nonlinear recurrent projection in each layer is proposed to model 
these multiple temporal features.  

The key contributions described in this chapter are:  

1) We enrich the topic-based feature matrics with the help of Mediawiki api related with 
users’ tweets content. 

2) We proposed a neural time series forecasting model to draw users’ interest patterns over 
time on Twitter which takes emerging topics, users’ intrinsic interests, users’ recent 
behaviors and cyclic patterns of users into consideration. 

3) We use LSTM-RNN model to differentiate and quantify various types (lag, seasonal, 
cyclic, random pattern etc.) of users’ interests automatically. 

4) We conduct extensive experiments from Twitter datasets to evaluate the performance of 
the proposed model. 
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The rest of this chapter is organized as follows: we abstract our problem in Section 3.2. In 
Section 3.3, we briefly introduce our NTSF model for personalized user prediction. Our 
experimental setup and results are shown in Section 3.4. Finally, we present the conclusions 
in Section 3.5. 

3.2 Problem Definition 

Nowadays, social networks become more and more popular since they are available in 
multiple languages and enable users to connect with friends or people no matter where they 
are. Among this, Twitter is one of the most popular applications for users connecting 
around which has 100 million users login daily1, and thus is a good way for researches 
study users’ behavior through their active logs.  

For a specific user 𝜇G, the input feature series is ℱ% = y𝑓N 	z	𝑗 ∈ 𝑍} at time epoch 𝑡 based on 
tweets from Twitter and related information from Wikipedia. Supposing in time epoch 𝑡 +
1 , user 𝜇G ’s interests output could be represented as 𝑦%O; . Then we need to find the 
appropriate learning function 𝑋(·) which could get the output of next time epoch by giving 
previous feature series from previous epochs. So we have: 

                                             𝑦%O; = 𝑋(ℱ%:8)	, 𝑛 = 0, 1, 2, …																				                          (1) 

The input features series ℱ% is composed with multiple feature matrix, including user recent 
features 𝑆%, emerging topic extraction 𝜀%, user cyclic features 	𝐶%, and user static features 
𝐵%. 

3.3 Neural Time Series Forecasting Model 

In this section we present incrementally the formation of our NTSF model. Since our model 
includes multiple features as input, we will first describe how we extract various features 
from users’ historical tweets. 

3.3.1 Multi-Scale Feature Extraction 

We extract various kinds of features including historical static features, cyclical features, 
recent features as well as emerging/hot topics. Before we begin extracting features, we 
should first sort tweets according to users’ incremental time stamps. 

 
1 https://dev.twitter.com/streaming/overview 
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User Recent Feature Extraction. For the purpose of predicting users’ recent interests, the 
best way is to extract from users’ recent activity records. A most common way is only to 
get topic words from their tweets. In this chapter, after we extract topics from users’ daily 
words, we get more information with the help of Mediawiki api, and enrich the users’ 
interest matrix by adding useful topics from Wikipedia. At time epoch 𝑡, user’s recent 
features matrix 𝑆%  could be presented as 𝑆% = y𝑠G,N� , where 𝑖 ∈ [0, 𝑡 − 1], 𝑗 > 0 . Each 
factor 𝑠G,N represents the frequency of topic 𝑗 at time epoch 𝑖. 

Emerging/Hot Topics Feature Extraction. To extract emerging/hot topics from tweets, we 
adapt the twevent mentioned in [80]. The process can be separated as three components: 
tweet segmentation, event segment detection and event segment clustering. 

Given a tweet 𝑑 ∈ 𝒥 , where 𝒥 denotes Twitter dataset, and split 𝑑 into non-overlapping 
segments as words or phrase, 𝑑 =< 𝑠;, 𝑠<, … , 𝑠& >, 𝑠G represent each segment. In this 
chapter, we use NLTK Toolkit2 to extract tokens instead of 𝑛-gram method used in original 
segmentation component in Twevent. 

In a certain period of time 𝑡, bursty segments in terms of frequency will be potentially 
related to some hot topics talked and shared by Twitter users. Let 𝑁% be the number of 
tweets within 𝑡 , 𝑓!,%  be the number of tweets within 𝑡  containing segment 𝑠 . Then the 
probability of observing frequency 𝑓!,% can be modeled by a binomial distribution. 

                                             PU𝑓!,%V = SH$*(,$W 𝑝!
*(,$(1 − 𝑝!)H$:*(,$ 															                          (2) 

where 𝑝! is the expected probability of segment 𝑠 within time period 𝑡. Given a large 𝑁%, 
this binomial distribution can be approximated with Gaussian distribution. 

                                             PU𝑓!,%V~𝒩U𝑁%𝑝!, 𝑁%𝑝!(1 − 𝑝!)V																	                          (3) 

Thus, the expected number of segment 𝑠 within time period 𝑡 can be represent as 𝐸[𝑠|𝑡] =
	𝑁%𝑝! . The more the number of 𝑠  within 𝑡  is, the burstier the segment 𝑠  will be. The 
standard deviation could be represented as 𝜎[𝑠|𝑡] = l𝑁%𝑝!(1 − 𝑝!). Then, we use the 
following equation to calculate bursy probability of segment 𝑠. 

                                             𝑃((s, t) = δ Sα *(,$:(P(𝑠|𝑡)OR[𝑠|𝑡])
R[𝑠|𝑡] W																                         (4) 

 
2 http://www.nltk.org/ 
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where 𝛿(·) is the sigmoid function and 𝛼 is the parameter learned through experiment. In 
our case, we set 𝛼	 = 	10. We also take users’ influence into consideration. Let 𝑢!,% be the 
user frequency, the number of tweets which contain segment 𝑠 within 𝑡. Then we give each 
segment 𝑠  a weight 𝑤((𝑠, 𝑡) = 𝑃((𝑠, 𝑡) logU𝑢!,%Vas the measure of their emerging/hot 
segment probability. After ordering all segments according to their weights, we take top-𝐾 
bursty segments with biggest weights as most potential emerging/hot events related topics. 
In our case, we set 𝐾	 = l𝑁%	. 

After extracting all emerging/hot topics, we form feature matrix as 𝜀% = y𝑒G,N�, where 𝑖	 ∈
[0, 𝑡	 − 1], 𝑗	 > 	0. Each 𝑒G,N represents the bursty probability of topic 𝑗 at time epoch 𝑖. 

User Cyclic Feature Extraction. Users’ interesting topics sometimes show cyclic patterns, 
such as president election in the US, the cycle is nearly every four years. In order to capture 
such kind of cyclic features through user historical records. In this chapter, we user Fast 
Fourier Transform (FFT) to find the most likely cycles from discrete sampling points from 
user behavior. Assuming that the feature sampling vector are 𝑓8 in time domain, then the 
transformation process could be represented as 

                                                       𝐹= = ∑ 𝑓8𝑒
:&)*+#,H:;

8I; 																								                             (5) 

where 𝐹= is the representation of 𝑓8 in frequency domain, 𝑒:
&)*+#
,  is an 𝑁-th primitive root 

of unity, 𝑁 is the total sampling number, and ;
H

 could be seen as sampling frequency, 𝑛 in 

this equation is every sampling point. In this way, in frequency domain we could choose 
the highest 𝑁U’s frequencies as cycle features. 

After FFT transformation of the original feature vectors, we could get users’ cyclic matrix 
as 𝐶% = {𝑐G,N}, where 𝑖 ∈ [0, 𝑡 − 1], 𝑗 > 0. Each factor 𝑐G,N represents if there exists cyclic 
patterns of topic 𝑗 at time epoch 𝑖. 

User Static Feature Extraction. If we have unlimited memory, then we could save the 
whole history patterns of the user. But it is impossible to set the model training batch size 
as long as users’ log in days in Twitter. Then the model can only take the most recent few 
days to learn the user patterns. However, users’ long-term patterns are relatively stable, 
which means they are unlikely to change in a short period of time. In such case, we extract 
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users’ static features by averaging the frequency of user daily reading topics 𝑓G,N. 

                                                       𝑏G,N = ∑ 𝑓G,N‖𝑇‖
‖W‖:;
GI; 																								                             (6) 

where factor 𝑏G,N represents the static property of topic	𝑗 at time epoch 𝑖. ‖𝑇‖ denotes the 
length of the total time period in our datasets. Due to the stable properties of this kind of 
feature, in a small period of time 𝑡, the static feature matrics 𝐵% should be consisted of 
identical vectors 𝑏G,N, where 𝑖 ∈ [0, 𝑡	 − 	1], 𝑗 > 0. 

User Feature Input Formation. After extracting users’ static, cyclic, emerging features 
and recent features, the input of our model should be the series connection of these four 
features. 

                                                       𝐹% = [𝑆%; 	𝜀%; 	𝐶%; 	𝐵%]																								                             (7) 

3.3.2 LSTM-based Recurrent Neural Network 

Since neural network has drawn more and more attention recent years, especially in the 
areas of language modelling and generating text, machine translation, sentence legitimacy 
check, POS tagging etc. In this chapter, we present out continuous LSTM-based RNN 
model and how it works to deal with users’ interest topics forecasting problems. 

Basic RNN. RNN (Recurrent Neural Network) is a kind of Neural Network that could 
process sequences of inputs. It can potentially learn from the past data and predict the new 
one. Figure 3.2 shows the structure of basic RNN. Let 𝑥 be the input sequence of the 
network and 𝑦 be the output of the prediction value of next time epoch, 𝑎 denotes the 
hidden layer processing. We also assume that 𝑤G8 , 𝑤#X%	and 𝑤Y  denote input matrix, 
output matrix and transit matrix linking to the next layer respectively. Supposing we have 
three states at time 𝑡 − 1, 𝑡 and 𝑡 + 1. 𝑎G 	(𝑡	 − 	1	 ≤ 	𝑖	 ≤ 	𝑡	 + 	1) is the value of hidden 
layer at states 𝑖 which could be represented based on previous value 𝑎G:; 

                                                       𝑎G = f(𝑤G8𝑥G +𝑤Y𝑎G:;)																		                             (8) 

where 𝑓  is a non-linear learning function. In our case, various kinds of features have 
different impacts on determining the next stage of predicting state, which is the probability 
of specific topics. Thus, in order to model such elements into learning procedure, the 
representation of transition matrics can be calculated as 
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                                                   𝑎G = fU∑ 𝑤*&𝑥G*&∈[ +𝑤Y𝑎G:;V							                                 (9) 

The output could be represented as 

                                                            𝑦#X% = g(𝑤#X%𝑎G)							                                          (10) 

where 𝑔 is the output gate to adjust and map the value into different areas. 

 

Figure 3.2: Recurrent Neutral Network. 

LSTM-based RNN. Though RNN could connect previous information to the present tasks. 
However, if we want to predict next state based on not just the last few states, but more 
previous states or patterns, as the information we need extend, basic RNN become unable 
to learn to connect the information. In such case, the LSTM memory block instead of 
traditional hidden layer are introduced which could learn more previous, long-term 
dependencies, for instance users’ previous behaviour representation sequences could lead 
to users’ next move. Furthermore, “forget gate” are also introduced into traditional LSTM 
memory cells, which could automatically reset memory blocks once their contents are out 
of date and become useless. 

The structure of LSTM memory block with one cell is shown in Figure 3.3. In this figure, 
𝑦%G and 𝑦%# denote the input and output of the memory cell. 𝑤G, 𝑤G8, 𝑤* and 𝑤#X% represent 
the weight matrices of the input cell, input gate, forget gate and output gate of forward 
process. 𝑢G , 𝑢G8, 𝑢*  and 𝑢#X%  represent the weight matrices of the input cell, input gate, 
forget gate and output gate of backward process. 𝑏G8, 𝑏* and 𝑏#X%represent the bias of the 
input gate, forget gate and output gate. 
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Figure 3.3: LSTM memory block with one cell. 

3.3.3 Neural Time Series Forecasting Model 

The architecture of NTSF is shown in Figure 3.4. We use LSTM-based RNN to read the 
input sequence, one time stamp at a time, to obtain users’ historical features. Though LSTM 
could handle long-term and short-term dependencies, when the long-term dependencies are 
separated by too many intervals or the lags are too long, LSTM needs to keep the useful 
features for a quite long period of time. Some important features could be lost in 
transmission process. As the result of this concern, we introduce cyclic and static features 
of the users by analyzing historical traces. The key difference with previous time series 
model is that we aim at modelling users’ interests by adopting various features. Thus in our 
case, given the input sequence 𝑥G8,%  at time slide 𝑡 , the objective of our model is to 
minimize the distance between the predicted output 𝑦�#X%,% and the actual output 𝑦#X%,%. The 
distance can be defined as: 

                                         cosU𝑦#X%,% , 𝑦�#X%,%V =
∑ \-.$,$,&\]-.$,$.&&

^∑ \-.$,$,&
)

& ^∑ \]-.$,$,&
)

&

		                               (11) 

However, in order to calculate the users’ attention score (Section 3.4.3), we need to map 
this output into range of [0, 1]. Therefore, the posterior probability of a predicted output 
given the user’s historical features and public’s attention as input is estimated as: 

                                          P(𝑦#X%|𝑥G8, t) = g(cos	(𝑦#X%,% , 𝑦�#X%,%))		                               (12) 

where 𝑦�#X%,%  is the function of 𝑥 , and 𝑔(∙)  is a softmax function which is selected as 
𝑔(𝑥	) 	= 	1/(1	 +	𝑒:_	). Through training process, the model parameters are estimated to 
maximize the likelihood of the actual interesting texts given the historical and public inputs, 
which could be incorporated in the objective function: 
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Figure 3.4: The architecture of the proposed NTSF model. 

                                         𝐽 = −∑ ln𝑃U𝑦#X%,%z𝑥G8,%V +
K
<
‖𝜃‖<                                       (13) 

                                          		= −∑ ln(1 + 𝑒:/4-@\-.$,$,\]-.$,$B) + K
<
‖𝜃‖<                         (14) 

where 𝜃 = {𝑤G8, 𝑤#X% , 𝑤* , 𝑏#X% , 𝑏G8, 𝑏*}  denotes all the parameters that need to be 
estimated, 𝜆  is the coefficient of regularization term. The partial derivatives of 𝐽  with 
respect to all the parameters that need to be estimated could be learnt using Stochastic 
Gradient Decent (SGD) with Back Propagation Through Time (BPTT) algorithm [81]. To 
accelerate training, we use full-batch training during BPTT due to only thousands of 
datasets for each users. In Algorithm 1, we sketch the training process from high level of 
NTSF model. 

3.4 Experiments  

In this section, we conduct extensive experiments to compare the performance of our model 
with the state-of-art predicting methods and evaluate the influence of various features 
extraction, as well as personalized users’ interest topics prediction. We also test the 
performance of convergence rate with different settings of NTFS model and RNN only 
model. 
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3.4.1 Experimental Setup 

In this paper, we use Twitter dataset collected from July 2015 to July 2016 by using Twitter 
api 3 . We filter users who login Twitter nearly every day and post tweets especially 
containing long stories, news articles (post behavior includes post, repost and comments). 
The dataset covers all the reviews of a whole year. These reviews were first stemmed and 
split into unigram features, then we filtered stopwords and performed feature dimension 
reduction to keep only the most promising features according to TF-IDF score. The dataset 
consists of 185,071 users in total and more than 20 million time-stamped tweets. However, 
it does not include any follow relationships. We sample the dataset to obtain the users who 
posted more than 1000 tweets a year, and who have Twitter posts spanning over at least 
300 days. In total we obtain 2,834,910 tweets from 1948 users for evaluating our NTSF 
model. We compare the probabilities of interested topics predicted from our NTSF model 
with that from actual tweets for the next time stamp of a specific user. The default settings 
of the NTSF model are listed in Table 3.1. During training process, some of those 
parameters may be updated to achieve a better performance. 

 

 
3 https://dev.twitter.com/docs 
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Table 3.1: Experiment Settings 

 

3.4.2 Baseline Methods 

We compare our proposed NTSF model with several other state-of-art predicting 
algorithms to make the results more convincing. These include the classic time series 
prediction model incorporating seasonal factors which is Seasonal Time Series 
Autoregressive Integrated Moving Average (SARIMA), and other representative machine 
learning algorithm Support Vector Regression (SVR), and basic RNN. In addition, the most 
hot topics in the training set as prediction for each users (Popular-based) are also as the 
comparison in our experiments. 

For the SARIMA model, we use a function that conducts a search over all possible models 
and returns the best results according to Akaike Information Criterion (AIC) value. We 
update parameters according to monthly training datasets by using sliding window 
approach, which is better than daily and weekly updates cycle. For instance, if we want to 
predict the tendency at 𝑡	epoch, our training datasets will be within (𝑡 − 𝑚) ∼ (𝑡 − 1) time 
period, where 𝑚 represents the length of the sliding window. Then we use the model with 
these parameters to predict various interests. 

For SVR method, we tried three different kinds of kernels to test the model, including 
linear, polynomial and Radial Basis Function (RBF). We found that the RBF kernel 
performed the best with the lowest train and test MSE, which is 𝑘(𝑥G , 𝑥N) 	=

	𝑒𝑥𝑝(−�𝑥G − 𝑥N�
</2𝛾<) , where𝛾  is the parameter of RBF kernel and can be selected 

through cross-validation. The weights of the features are initialised using uniform 
distribution. 

The RNN model is the NTSF model without LSTM memory cells, and initialization of 
other parameters and training process are the same as NTSF. 
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3.4.3 Evaluation Metrics 

In this chapter, we adopt 3 kinds of methodologies to evaluate the performance of our 
model. The collected datasets 𝑇X for a specific user 𝑢 are divided into two parts. The first 
10 months datasets are used for model training, and the rest 2 months datasets are used for 
prediction. First, we define Normalized Attention Score (NAS) to quantify the focus of the 
user to a certain topic. Assuming topic 𝑖 contains a series of representative topic words, 
𝑇G = 𝑤G,;, 𝑤G,<, … , 𝑤G,`, where 𝑀 is the number of topic words. Let 𝑇𝐹X,%,a&,0 be the term 
frequency of the topic word 𝑗 in topic 𝑖 for user 𝑢 at time epoch 𝑡 , which is the number of 
word 𝑗  appearing in user’s daily documents. Then 𝑁𝐴𝑆X,%,G  which represents the focus 
towards topic 𝑖 of user 𝑢 at time epoch 𝑡, can be defined as 

                                          𝑁𝐴𝑆X,%,G =
∑ W[.,$,1&,01&,0∈3&

∑ W[.,$,1&,01&,0∈3& O∑ W[.,$,1&,01&,0∉3&
		                           (15) 

𝑁𝐴𝑆X,%,G can be interpreted as the proportion of the targeted topic 𝑖 in reading documents 
of user 𝑢 at 𝑡 time period. Besides, we also employed the widely accepted metrics for 
evaluation of the model performance in regression settings, and these include two standard 
evaluation metrics: mean square error (MSE) and Pearson correlation (rho) between the 
actual 𝑦#X%,% and the predicted output 𝑦�#X%,% at each testing time epoch 𝑡. Their calculation 
can be defined as: 

                                                    MSE = ;
H
∑ (𝑦�X,%,G − 𝑦X,%,G)<H
GI; 		                                  (16) 

                                  𝜌\],\ =
∑ (\].,$,&:bc.,$)∙(\.,$,&:b.,$)&∈56.,$∩5.,$

^∑ (\].,$,&:bc.,$))&∈56.,$∩5.,$ ∙^∑ (\.,$,&:b.,$))&∈56.,$∩5.,$

		                (17) 

3.4.4 Experimental Results 

In this section, we conducted empirical experiments to demonstrate the effectiveness of 
NTSF model. For twitter dataset, we adopt the training set for model learning based on 
Algorithm 1, and predict the tendency of time series with the fellowing 20% in testing set. 

Comparing with Baseline Methods. We evaluate the performance of NTSF comparing 
with other three baseline methods (Section 3.4.2). Referring to Figure 3.5, NTSF 
outperforms all baseline methods in terms of MSE and Pearson Correlation. We see that 
the popular-only baseline performs very poorly which confirms that user may not be 
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interested in hot/popular topic, and many users tend to have their own interest patterns. It 
is also shown that RNN model without LSTM cells is not good enough for this task due to 
the error explosion or vanishing problems. The SVR model performs only a little better 
than popular-only baseline which shows that the prediction ability of SVR related to that 
whether the patterns of data appear the similar distribution as their kernel function. 
SARIMA model performs less effective than RNN and NTSF model for that users’ 
behavior patterns in Twitter datasets show both habitual and dynamic, and NTSF is 
designed to capture this kind of dynamics as well as habitual behavior according to 
temporal contexts. 

 
Figure 3.5: Comparing different baseline methods in terms of mean MSE and mean Pearson 
Correlation. NTSF outperforms all baseline methods with Twitter datasets. 

Effect of Different Kinds of Features. We measure the effectiveness of using multiple 
adaptive features by adopting control variable method. Specifically, we compare 
performance of NTSF model with the performance of NTSF without hot/emerging features 
(NTSF-E), NTSF model without recent tweets histories (NTSF-S), NTSF model without 
cyclic features (NTSF-C) and NTSF model without users’ static interests extractions 
(NTSF-B). The results are shown in Figure 3.6. Sub-figures (a) and (b) represent the 
performance of different models in terms of mean MSE and mean Pearson Correlation. 
NTSF model results in better performance than the others as it has lower MSE value and 
higher Pearson Correlation value. It is shown from both figures that users’ static interests 
plays the most important role in influencing users’ daily interests trends for that both MSE 
and Pearson Correlation value drop the most among the others. This importance of features 
are followed by users’ recent behaviors for the drop value is ranked in the second place. 
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Though users’ cyclic patterns are also crucial, but the importance is not as much as the 
other features through the analysis of our Twitter datasets. 

 
Figure 3.6: Comparing the influence factors of various features in terms of mean MSE and 
mean Pearson Correlation. 

Personalized Prediction of interests topics. We illustrate how NAS can be used as a 
metrics for tendency prediction of users’ interests in Figure 3.7 in term of emerging topics. 
After getting the prediction vector, we order the output dimensions according to their 
values. Then we take out the top-5 values to calculate NAS and draw the plot according to 
the daily NAS values for specific user. Figure 3.7 shows that our NTSF model can capture 
the tendency of users’ interests variations as the real situation but existing a tolerable time 
delay. 

 

Figure 3.7: An example of personalized prediction of users’ interested topics in terms of NAS 
metrics. 
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Convergence Rate. We also evaluate the convergence rate with different parameter settings 
between NTSF model and RNN only model and the result is shown as a boxplot in Figure 
3.8. According to Figure 3.8, we can conclude that NTSF model converges faster than RNN 
only model under the same parameter settings generally. Besides, model with 0.05 initial 
learning rate converges slowest whereas model with 0.2 initial learning rate convergence 
fastest. 

 

Figure 3.8: Comparing convergence rate with different initial learning rate (lr) of NTSF model 
and RNN only model. Boxes show the 25th and the 75th percentile of the data, while the 
whiskers indicate the whole range of the convergence time. The red dots represent mean 
values, and the lines in the boxes represent median values. The cross marks denote the outliers. 

3.5 Discussion 

Our experimental results with Twitter datasets suggest that by combination of multiple 
input features: static features, cyclic features, recent features and extracting hot/emerging 
topics as features, NTSF improves the prediction performance compared with baseline 
algorithms. We also verify the different effectiveness of various input features on the final 
performance of our model. From an extensive convergence analysis, we discovered that 1) 
the convergence rate of LSTM-RNN is much higher than that of RNN only because LSTM-
RNN could deal with error explosion and vanishing problems during training process. 2) 
Convergence rate is mainly correlated with the learning rate in both RNN model and NTSF 
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model, but it is not directly proportional to the initial learning rate. 3) Larger learning rate 
normally causes less learning time when the model reaches convergence. However, model 
will not converge with too large learning rate. In addition, the precision of NTSF model 
have a great relationship with parameter selection and optimization. Though training with 
full-batch dataset will usually get better performance, the learning process will need more 
memory from the server for caching and loading the datasets and results during training 
procedure with the increasing number of datasets. Thus, when dealing with gigantic amount 
of training data, we need to use other optimization methods, such as mini-batch and 
distributed system to improve the training process as well as prediction performance. 

3.6 Conclusion 

In this chapter, we propose to use Recurrent Neural Network for personalized time aware 
user interests prediction based on Twitter datasets. To overcome the data sparsity problem, 
we enrich our user behavior matrices with the help of Mediawiki api, and we also leverage 
multiple aspects of users’ activities, including tweets, retweets and comments. For the first 
time, our Neural Time Series Forecasting Model (NTSF) extracts the common interests 
patterns and predicts their interested topics for a specific user by introducing various 
features.  

Compared with existing work, the uniqueness of our approach is that we have explored the 
multi-dimensional attributes of time, applied distinct methods to model the variable 
preferences and temporal characteristics of users, and devised an algorithm to infuse all 
features from multiple aspects of time. In this way, the designed framework can capture 
the evolutional trends of users’ interested topics with tolerable time decay. 

Experimental results on real datasets show that NTSF outperforms the classic and state-of-
art methods on prediction problems. The different MSE and Pearson Correlation decay on 
the variations of the NTSF model with respect to removing different time modelling 
modules give us a good indication of the significance of all the components. The illustration 
of an arbitrary user’s interests prediction instance shows that this approach has good 
potential in modelling users’ dynamic preferences in Twitter. 
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Chapter 4  

Semantic Feature Mining for Session-based 
Recommendations 
Session-based recommendations have drawn more and more attention in many 
recommendation settings of modern online services. Unlike many other domains such as 
books and music, news recommendations suffer from new challenges of fast updating rate 
and recency issues of news articles and lack of user profiles. In this chapter, we proposed 
a method that combines user click events within session and news contextual features to 
predict the next click behavior of a user. The model consists of two different kinds of 
hierarchical neural networks to learn article contextual properties and temporal sequential 
patterns in streams of clicks. Character-level embedding over input features is adopted to 
allow integrating different types of data and reduce engineering computation. Besides, we 
also introduced a time-decay method to compute the freshness of news articles within a 
time slide. Experimental results on two real-world datasets show significant improvements 
over several baselines and state-of-the-art methods on session-based neural networks. 

4.1 Introduction 

News recommender systems have become popular and are employed by many multimedia 
companies in recent years, as a natural consequence of the increasing complexity and scale 
of web services and e-commerce platforms. They are able to cope with the information 
overload and to assist users in finding information matching their individual preferences. 
Unlike other recommender system domains like books, music and movies, news 
recommender systems must address additional challenges [82]. For example, large 
publishers release hundreds of news daily, implying that they must deal with fast-growing 
numbers of items that get quickly outdated and irrelevant to most readers. User interests 
change much faster compared with other domains. News articles have recency issues which 
make users tend to read recent news, not the old ones. In addition, the news domains suffer 
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from extreme levels of sparsity. 

Generally, traditional news recommender systems always produce relevant items based on 
news content and user input profiles [82]. However, problems arise when it goes to 
unregistered users, since there are no profiles for them, while on the other hand unregistered 
users occupy a large proportion of the total news readers. According to the statistics 
performed on Cxense platform4, the subscribers only take up about 20% of all users in 
Adresseavisen company5, a news portal in Norway. Providing accurate recommendations 
to non-subscribers is also very necessary in real-life applications. 

Under such a situation, a typical solution is to base recommendations on session data, e.g. 
session clicks. These data have two important characteristics. First, session clicks are 
sequential in nature and the order of clicks may contain information of user intent. Second, 
clicked items are often associated with metadata such as names, categories, and 
descriptions, which provide additional information about user taste. Most recent works 
have focused on exploiting these two characteristics to draw more information from data 
when designing recommendation strategies. Hidasi et al. for the first time investigated the 
use of recurrent neural networks (RNN) for session-based next-item recommendation [39]. 
RNNs are a natural choice for this problem and have been successfully explored for other 
sequence-based prediction problems in the past [83, 84]. An experimental evaluation on 
two datasets indicated that their GRU4REC method significantly outperforms item-based 
k-nearest-neighbor (kNN) methods by 15% to 30% in terms of ranking metrics. Massimo 
et al. further improved the work in [39] by proposing a model based Hierarchical RNN, 
that extends previous RNN-based session modelling with one additional GRU level that 
models the user activity across sessions and the evolution of his interests over time [45]. 
Despite these positive results, some questions regarding the effectiveness of the session-
based recommendation method remain open. First, from our exploratory analysis using 
standard recurrent architectures for session modelling, we find that they model sequential 
patterns in streams of clicks and consider all past events to improve recommendation 
performance. But they fail to integrate different feature types and jointly model their 
interactions. Second, in the news domain, recency issues of news articles is another 
predominant challenge that they ignore. Third, the lack of scalable models applicable to 

 
4 https://www.cxense.com/ 
5 http://www.adressa.no/ 
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deal with the large amounts of noisy data seriously restrains the application of 
recommendation services in the real world. 

In this chapter, we propose a neural network (NN) based model, named Deep Joint Neural 
Networks (DeepJoNN), to address these three problems. The proposed model uses a 
recurrent neural network (RNN) to capture sequential patterns in streams of clicks and 
associated features. A convolutional neural network (CNN) is exploited to consider item 
IDs and all content features including hierarchical categories, keywords and entities as texts 
and represent the resulting textual data with a character-level model [85]. DeepJoNN 
provides an effective way to jointly model temporal and content patterns that are indicative 
of readers’ intention with two types of hierarchical neural networks (CNN and RNN). At 
the same time, representing all features at the character level frees us from the need for 
time-consuming feature engineering and can be applied for different types of features. We 
applied our model to several real data sets and the experimental results demonstrate the 
promising and reasonable performance of our approach. 

In summary, our contributions are as follows: 

1) The proposed Deep Joint Neural Networks (DeepJoNN) jointly model sequential 
patterns of session clicks and different content features of items for session-based 
recommendation. To the best of our knowledge, DeepJoNN is the first one that jointly 
models both user and item from news streams using two different kinds of hierarchical 
neural networks. 

2) We propose to use character-level representation for all types of features, which frees us 
from feature engineering steps and reduces the number of model parameters. Experiments 
demonstrate the effectiveness of the proposed method. 

3) We extend the traditional Convolutional Neural Network to multi-dimensional level 
processing by integrating tensor-based feature representation method. 

4) We conduct extensive experiments to evaluate the performance and generality of our 
model on two real large-scale datasets. The results show the advantages of our method for 
session-based recommendation in comparison with state-of-the-art techniques. 

The remainder of the chapter is organized as follows. In section 4.2, we present our 
DeepJoNN model in detail. We describe the data sets, experimental settings and the state-
of-the-art methods we use in section 4.3, as well as experimental results and analysis. 
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Finally, we present the conclusions in Section 4.4. 

4.2 The DeepJoNN Model 

In this section, we describe the proposed Deep Joint Neural Networks (DeepJoNN) for 
session-based news recommendation. 

In the session-based recommender system, there is a set of items that a user can interact 
with; note that the term “item” is used in a broad sense here. We experiment with the 
proposed models using two different datasets, where the possible recommendations are 
news articles and artists respectively. The datasets are described in Section 4.3. 

Let 𝑀 be the set of items in the system, and 𝑀e ∈ ℝ&8×8 is the embedding representation 
of item 𝑣. The embedding representation approach will be introduced in the next section. 
Let 𝑆 = [𝑆;, 𝑆<, . . . , 𝑆8( 	] be a set of sessions, and 𝑆G = [𝑈G,;, 𝑈G,<, … , 𝑈G,8.] be the set of 
events grouped by users and then ordered by timestamp within session 𝑆G, where 𝑛! and 𝑛X 
denote the number of sessions in training data and the number of users within a session 
respectively. 𝑈G,X = [𝑠G,X,;, 𝑠G,X,<, … , 𝑠G,X,g] where 𝑠G,X,g  denotes the 𝑞-th interaction event 
of user 𝑢 within session 𝑖. Our DeepJoNN model retrieves the corresponding embedding 
representation of 𝑠G,X,g for each interaction event 𝑞 of user 𝑢 in session 𝑖, and feed those 
into the CNN layer of the model. The common task for all the recommendation models we 
experiment with is to predict each consecutive item for user 𝑢 in a session 𝑆G. That is, for a 
sub-session [𝑠G,X,;, 𝑠G,X,<, … , 𝑠G,X,N] for user 𝑢  of 𝑆G , the system is to predict 𝑠G,X,NO; . A 
recommendation 𝐶G, is an ordered list of 𝑘 recommended items, where we would want to 
see the next item as close to the top as possible. 

4.2.1 Character-level Representation 

Character-level representation as input for especially Convolutional Neutral Network 
(CNN) has been widely used in NLP domain, and presents competitive results compared 
with traditional models with fewer parameters and computational cost [85, 86]. The only 
problem appears when processing misspelling and informal words, which seldom happens 
in news domain. Inspired by this idea, we encode the input features such as keywords, 
categories and entities into character-level but still different from the existing approaches, 
which will be described in this section. 

Let 𝛹 denote the vocabulary of characters of size |𝛹|. Suppose an item feature 𝑓 is given 
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as a sequence of characters [𝜓;, 𝜓<, . . . , 𝜓"], where 𝑝 is the length of 𝑓. Then the character-
level encoding of feature 𝑓 is given by vector 𝑒* ∈ 𝑅h9, where 𝐿* is the length of feature 
𝑓 in the dataset, and the 𝑖-th element will be set as the index number of the 𝑖-th character 
in 𝛹, and set as 0 otherwise. Note that the index number of character in 𝛹 starts from 1. In 
this work, we use vocabulary 𝛹 of 74, including all lower case characters and upper case 
characters from Norwegian alphabet, 10 digit characters, and several other characters, 
which are shown below: 

ABCDEFGHIJKLMNOPQRSTUVWXYZÆØÅabcdefghijklmnopqrstuvwxyzæøå12345
67890 .-/|:@ 

For each clicked event, we represent the associated features as follows: 

• Item ID and User ID. A sequence of hash code is encoded according to their digits 
and alphabets and represented as vectors. 

• Keywords and Entities. Each word or phrase such as “været” and “Anne-Grete”, in 
keywords and entities is encoded as one vector, and all encoded words and phrases 
are stacked vertically to form as a matrix 𝐾&+×8+, where 𝑚= is the maximum number 
of words and phrases in keywords and entities which is set as 408 in our case, and 𝑛= 
is the maximum length of characters in each unit which is set as 100 in our experiment. 

• Category. Categories are usually organized in a hierarchy by the website owner. To 
utilize the information encoded in the hierarchy, we concatenate the current category 
with all its ancestors up to the root and use the resulting sequence of characters as 
category feature, for instance “nyheter|moreromsdal”. Category is encoded as vector. 

Given character-level encoded vectors and matrices for each type of features, we stack the 
vector and matrices on top of each other to form to the final matrix of 𝑀!,N

X ∈ ℝ&×8 for the 
𝑗-th event in session 𝑠 of user 𝑢, where 𝑚 = 𝑚= + 3 and 𝑛 is the longest features which is 
the same as 𝑛= in our experiments. If the length of the feature is shorter than its maximum 
length, then we fill empty positions with all zeros to get a matrix with equal size for each 
event within the dataset. 

4.2.2 DeepJoNN Architecture 

In this section, we describe the proposed Deep Joint Neural Networks (DeepJoNN) for 
session-based recommendation. The architecture of our model, shown in Figure 4.1 is 
straightforward. After character-level embedding into matrix as input, a 2-layer 
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convolutional neural network is deployed to learn the input feature patterns, and then its 
output will be transferred as input to RNN layer. 

 

Figure 4.1: The architecture of the proposed model. 

CNN with Multiple Dimensional Input. Many researchers have found that CNNs are 
useful in extracting information from raw data, ranging from computer vision to speech 
recognition and several NLP tasks. By applying convolution operations at different level 
of granularity, a CNN can extract features that are useful for learning tasks and reduce the 
need of manual feature engineering [87]. This characteristic is adopted in our task to extract 
useful patterns of separate features or their combinations, from streams of click events 
within sessions. 

Recall that 𝑆 = [𝑆;, 𝑆<, … , 𝑆8(] is a set of sessions, and 𝑆G = [𝑈G,;, 𝑈G,<, … , 𝑈G,8.] denotes 
the set of events within session 𝑆G. 𝑠G,X,g in 𝑈G,X = [𝑠G,X,;, 𝑠G,X,<, … , 𝑠G,X,g] denotes the 𝑞-th 
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interaction event of user 𝑢 within session 𝑖. For the sake of efficiency in training, we adopt 
the session-parallel mini-batch mechanism described in [41] to consider user identifiers 
during training as shown in Figure 4.2. To begin with, the first events of the first session of 
the first mini-batch with size 𝑏 of users constitute as input matrix 𝑀 ∈ ℝ&×8×(  to the 
model. Meanwhile the next items of the first session of the same users mentioned above 
form as the target output from the model. Then the next events of the first session of the 
same users used as the input for the next iteration, and so on. When a mini-batch end, if 
there are other users in the first session that haven’t been trained, then these users will be 
regarded as input for next mini-batches. With session-parallel mini-batch integrated into 
the training process, the model can be trained efficiently over different users having 
different number of sessions and different number of events within sessions. 

 
Figure 4.2: User-parallel mini-batches for mini-batch size 3. 

Inspired by the work [88] which uses low-rank n-gram tensors to directly exploit 
interactions between words already at the convolution stage, we extend it to learn tensor 
based feature mapping from multi-dimensional contextual input features. Recall that 𝑀 ∈
ℝ&×8×(  represents the character-level input matrix with 𝑚  number of features, 𝑛  of 
character embedding length and 𝑏 of minibatch size. For each matrix 𝑀!,N

X ∈ ℝ&×8 within 
batch, 𝑒G ∈ ℝ8 is a vector denoting the 𝑖-th feature. The consecutive 𝑐 vectors ending at 
position 𝑗 is obtained by concatenating the corresponding vectors 

                                                    𝑣N = [𝑒N:UO;; 𝑒N:UO<; … ; 𝑒N]		                                         (1) 

which can be seen as the combination of consecutive features, e.g. category and keywords, 
or different keywords. Out-of-index position are simply set to all zeros. 
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Thus, the filter for 𝑣N  can be denoted as 𝐾N ∈ ℝU8×i  which can be thought as 𝑐 smaller 
filter applied to each vector in 𝑣N. The operator maps each 𝑣N in the input matrix to 𝐾NW𝑣N ∈
ℝi  so that the input features is transformed into a sequence of combined feature 
representation, 

                                                   𝑉N = [𝐾NW𝑣;, … , 𝐾NW𝑣h] ∈ ℝh×i		                                     (2) 

In order to capture relevant information in the combined features in a more direct way, the 
outer product is conducted for 𝑣N = [𝑒N:UO;; 𝑒N:UO<; … ; 𝑒N]. Suppose for 𝑐 = 3, the value 
of result from outer product at position (𝑖, 𝑗, 𝑘) can be denoted as 

                                                   (𝑒;⨂𝑒<⨂𝑒j)GN= = 𝑒;G ∙ 𝑒<N ∙ 𝑒j=                                    (3) 

Therefore, the filters for the concatenate matrix should also be maintained as high-order 
tensors. In other words, the filters are linear mappings over the higher dimensional 
interaction terms and can be denoted as 𝑇. Let 𝑧 ∈ ℝi denotes the resulting ℎ-dimensional 
feature representation for 𝑐 = 3 combined feature vectors, and it can be achieved through 
multiplying the filter 𝑇 and the combined features vectors. The 𝑙-th coordinate of 𝑧 is given 
by 

                                                   𝑧k = ∑ 𝑇GN=k ∙ (𝑒;⨂𝑒<⨂𝑒j)GN=G,N,=                                    
                                                   					= ∑ 𝑇GN=k ∙ 𝑒;G ∙ 𝑒<N ∙ 𝑒j=G,N,=                                        (4) 

However, directly maintaining the filter 𝑇 as full tensor can lead to parametric explosion. 
To solve this problem, a low-rank-factorization of the tensor 𝑇 is introduced. Specifically, 
𝑇 is decomposed into a sum of ℎ rank-1 tensors 

                                                         𝑇 = ∑ 𝑃G⨂𝑄G⨂𝑅G⨂𝑂Gi
GI;                                          (5) 

where 𝑃, 𝑄, 𝑅 ∈ ℝi×U and 𝑂 ∈ ℝi×i  are four smaller parameter matrices. For simplicity, 
we assume that the number of rank-1 components in the decomposition is equal to the 
feature dimension ℎ. Plugging the low-rank factorization into Eq.(1), the feature mapping 
can be rewritten in a vector form as 

                                                         𝑧 = 𝑂W(𝑃𝑒;⨀𝑄𝑒<⨀𝑅𝑒j)                                         (6) 

where ⊙ is the element-wise product. Note that while 𝑃𝑒; is a linear mapping from each 
feature 𝑒G into a ℎ dimensional feature space, higher order terms arise from the element-
wise products (the same as 𝑄𝑒< and 𝑅𝑒j). 
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After 𝑧 has been derived, we put 𝑧 into an activation function 𝑓	(·). In the proposed model, 
we use Rectified Linear Units (ReLUs). Deep convolutional neural networks with ReLUs 
train several times faster than their equivalents with tanh units. Then we apply Eq. 7, a 
mean pooling operation, over the feature map and take the average value as the feature 
corresponding to this particular filter. 

                                                 𝑓N = 𝑚𝑒𝑎𝑛{𝑓(𝑧;), 𝑓(𝑧<), … , 𝑓(𝑧h)}                                 (7) 

We have described the process by which one feature is extracted from one filter. The model 
uses multiple filters to obtain various features and the output vector of the convolutional 
layer is as Eq. 8. 

                                                          𝐹 = {𝑓;, 𝑓<, … , 𝑓l}                                                      (8) 

where 𝐽 denotes the number of filters in the convolutional layer. The results from the mean 
pooling layer are passed to a fully connected layer with weight matrix 𝑊. As shown bellow: 

                                                        𝑥G = 𝑓(𝑊 × 𝐹 + 𝑏)                                                   (9) 

The output of the fully connected layer 𝑥G ∈ ℝ8)×( is considered as the feature for input 
events, where 𝑛< represents the number of neutrons of the last CNN layer. 

Session-based Recurrent Neutral Network. A recurrent neutral network is a type of neutral 
network particularly suited for modelling sequential data. The main difference between 
RNNs and conventional feedforward deep models is the existence of an internal hidden 
state in the units that compose the network. Such hidden state summarizes all historical 
information up to current training timestamp , and meanwhile an additional memory cell is 
designed to alleviate gradients vanishing/exploding issues. Thus, RNN is suitable for our 
tasks to learn inter-session and intra-session patterns. In session 𝑠G, an RNN takes the input 
matrix 𝑥G ∈ ℝ8)×(  which is the output from CNN layers, and the hidden state vector 
ℎG:; ∈ ℝ8-×( and produce the next hidden state ℎG by applying the following recursive 
operation 

                                                    ℎG = 𝑓(𝑊 ∙ 𝑥G + 𝑈 ∙ ℎG:; + 𝑏)                                    (10) 

Here 𝑊 ∈ ℝ8-×8), 𝑈 ∈ ℝ8-×8:, 𝑏 ∈ ℝ8- are parameters of an affine transformation and 
𝑓 is an element-wise nonlinearity. 𝑛# and 𝑛< represent the number of items and the number 
of output units from CNN layer. Long short-term memory (LSTM) optimizes the traditional 
RNN by integrating a memory cell vector 𝑐G ∈ ℝ8)×8- during each session in our tasks and 
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thus addresses the problem of exploding/vanishing gradient when learning long-term 
dependencies. Concretely, one step of an LSTM takes as input 𝑥G, ℎG:;, 𝑐G:; and produces 
ℎG, 𝑐G via the following intermediate calculations 

                         (11) 

Where 𝜎	(·) and tanh(·) are the element-wise sigmoid and hyperbolic tangent functions, ⊙ 
is the element-wise multiplication operator, and 𝑖G , 𝑓G , 𝑜G are referred to as input, forget and 
output gate. For the first session with subscript 𝑖 = 1, ℎJ  and 𝑐J  are initialized to zero 
matrix. Parameters that need to be tuned for LSTM are 𝑊", 𝑈", 𝑏"  for 𝑝	 ∈ 	 {𝑖, 𝑓, 𝑜, 𝑔}. 
However, in our experiments, sometimes gradient exploding is still an issue, but can be 
alleviated by using optimization strategies such as gradient clipping. 

Ranking Loss Design. Ranking is the core of a Recommender System, and it consists 
pointwise, pairwise and listwise ways. Pointwise ranking estimates the score or the rank of 
items independently of each other, whereas pairwise ranking compares the score or the rank 
of pairs of a positive and a negative one. Listwise ranking uses the scores and ranks of all 
items and compares them to the perfect ordering. However, listwise ranking is not used so 
often because of the expensive computational cost for sorting. As a part of our model 
training procedure, we adopt both pointwise ranking (BPR) and pairwise ranking (TOP1). 
Their definitions are defined as follows: 

• BPR: Byesian Personalized Ranking [89] is a matrix factorization method that uses 
pairwise ranking loss. It compares the score of a positive and a sampled negative item. 
In our experiment, we compare the score of the positive item with several sampled  
items and use their average as the loss. The loss at a given point in one session is 
defined as 

                                        𝐿G = −1/𝑁G ∙ ∑ log	(𝜎(�̂�G,= − �̂�G,N))
H&
NI;                            (12) 
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where 𝑁G is the item size, �̂�G,g is the score on item 𝑞 at a given point of session 𝑖, 𝑘 is 
the target item and 𝑗 are items with score less then 0.5. 

• TOP1: This ranking loss criteria proposed by [39] is defined as the regularized 
approximation of the relative rank of the relevant item. In our task, the TOP1 loss can 
be defined as 

                                      𝐿G = 1/𝑁G ∙ ∑ 𝜎U�̂�G,N − �̂�G,=V + 𝜎(�̂�G,N< )
H&
NI;                           (13) 

The square part in this equation is the regularization term to avoid exploding score 
when certain positive items act as negative examples. 

• CROSS ENTROPY: Besides, cross entropy is also a widely used loss function in 
recommendation area which can be formulated in our tasks as 

                           𝐿G = −1/𝑁G ∙ ∑ 𝑟G,N log �̂�G,N + (1 − 𝑟G,N)log	(1 − �̂�G,N)
H&
NI;              (14) 

where 𝑁G is the item size, �̂�G,g is the score on item 𝑞 at a given point of session 𝑖, 𝑘 is 
the target item and 𝑗 are items with score less then 0.5. 

Recency Issues of News. News articles always suffer from recency issues which describes 
the phenomenon that the freshness of a newly published article in news domain to users 
can only lasts 2 to 3 days on average. Beyond this time period, this news article will hardly 
intrigue interests for users. To solve this problem, we integrate a time-decay function into 
our model which is defined as below. 

                                                        𝑅6'UY\ = 𝑒:K∙(%:%')                                                 (15) 

where 𝜆 is the parameter that needs to be tuned during training, and controls the decay rate 
for the news. 𝑡 and 𝑡J represent the predicated time at one point within session and the 
publication time of the news. The decay rates are multiplied by the output values from 
LSTM RNN layer to form the final outputs. 

4.3 Experiments 

4.3.1 Datasets 

We used two datasets for our experiments. The first is the Adressa 16G dataset6 which 
contains 93,948 news articles, 398,545 readers, and about 113 million events over a 90-
 
6 https://www.ntnu.no/wiki/display/smartmedia/SmartMedia+Program 
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days period [63]. Each of these events represent that a user read a particular news article. 
As preprocessing, we filtered top 50 active users and keeped sessions with more than 2 
events for a user. Besides, we removed the records that users visited the news front page 
for there are no articles related information within the events. In order to evaluate our 
model’s generality, we adopted Last.fm provided by Schedl [64], which contains 10 weeks 
of log data between 1/1/2013 and 11/3/2013. To enrich the content information for the 
dataset, we also used Last.fm API 7  to collect artist information to improve the 
recommendation accuracy. The characteristics of the datasets are summarized in Table 4.1. 

Table 4.1: Main properties of the experimental datasets. 

 

To split users’ historical logs into sessions, for both datasets, following Zheleva et al. [90] 
and Baur et al.[91], we use the time gap approach to generate sessions. If the gap between 
two reading/play items is less than 30 minutes for user u, they belong to the same session. 
Otherwise, they will be separated into two sessions. However, especially for Addressa 
dataset, users only read one articles for most of the time when setting time gap as 30 
minutes, which may not have enough samples for training. Thus, we also test different time 
gaps that influence recommendation performance. 

The testing set is build with the last session of each user. The remaining sessions form the 
training set. Besides, we also leave the last session of each user from training set as a 
validation set, which is used for hyper-parameter selection during each iteration in training 
procedure. To help the reproducibility of our experiments, we report the hyper-parameters 
of our model in Table 4.2. 

 

 
7 https://www.last.fm/api/show/artist.getInfo 
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Table 4.2: Main hyper-parameters of DeepJoNN. 

 

4.3.2 Evaluation Metrics 

Based on temporally ordered lists of read/played items, our objective is to correctly predict 
the next item a target user will likely read/play. The ground truth at a particular time step 
is therefore represented by a single user-item tuple. To present the user with adequate 
recommendations, the target item should be among the top few recommended items. Since 
we are interested in measuring top-𝑘  recommendation instead of rating prediction, we 
measure the quality by looking at the 𝑅𝑒𝑐𝑎𝑙𝑙@𝐾 and 𝑀𝑅𝑅@𝐾, which are widely used for 
evaluating top-𝑘 recommender systems. 

• 𝑀𝑅𝑅@𝑘 (Mean Reciprocal Rank) is defined as the average of the reciprocal ranks of 
the desired items [62]. The rank is set to zero if it is above 𝑘. 

• 𝑅𝑒𝑐𝑎𝑙𝑙@𝑘 is defined as the fraction of cases where the item actually consumed in the 
next event is among the top 𝑘 items recommended [61]. 

We set 𝑘 = 20, as it appears desirable from a user’s perspective to expect the target among 
the first 20 items [39]. 

4.3.3 Baselines 

To validate the effectiveness of DeepJoNN, we compared our model with the following 
session-based recommendation methods. 

• Popular-based Method (POP): This method recommends items with the largest 
number of interactions by the users. 

• Item KNN: Item KNN is a simple, yet effective method, which is widely deployed in 
practice. In this method, two item are considered similar if they co-occur frequently 
in different sessions. In our situation, we recommend items based on cosine similarity 
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between different sessions. 
• BPR-MF8: It is one of the commonly used matrix factorization methods, but cannot 

directly apply to session-based recommendations for the new session do not have 
feature vectors precomputed. Instead, we use the average value of item feature 
vectors that had occurred in the session before the predicting point, as the user 
feature vector [89]. 

• Hierarchical RNN (HRNN)9: Proposed by [45], the model is a personalized RNN 
model with cross-session information transfer in a seamless way. HRNN relays end 
evolveds latent hidden states of the RNNs across user sessions. 

4.3.4 Performance Evaluation 

The performance of DeepJoNN and the baselines are reported in terms of 𝑅𝑒𝑐𝑎𝑙𝑙@𝑘 and 
𝑀𝑅𝑅@𝑘 on two kinds of datasets in Figure 4.3. In addition to the baseline models, we also 
compare our DeepJoNN model with and without integrating time-decay factors, which are 
represented as DeepJoNN and DeepJoNN − t respectively. 

The figure shows that all models perform better on Last.fm dataset than Adressa. It is 
mainly because the sparsity and unbalance characteristics appearing in Adressa dataset. As 
described in [63], only small amount of news are read by a lot of users, and thus, in our 
experiments, these kinds of news have a better chance to get higher scores than the others. 
The deep learning models consistently outperform the other models on both datasets in 
terms of Recall and MRR, despite the fact that Item KNN is a very competitive baseline. 
Beside, all DeepJoNN models outperform HRNN model on both evaluation metrics which 
we believe is mainly because the integration of contextual features. Furthermore, the 
integration of tensor-based feature mapping method in CNN can also be a possible reason 
that explain the higher performance. The DeepJoNN model using time-decay factors 
consistently outperforms other experimented models in terms of all evaluation metrics, on 
both datasets. 

4.3.5 Model Parameter Analysis 

In this section, we analyse the influence of the gap length of the session and the value of ℎ 

 
8 https://github.com/bbc/theano-bpr 
9 https://github.com/mquad/hgru4rec 



4.3 Experiments 

  

 

67 

parameters in CNN filters to the performance of our model. In our experiments, parameter  

 
Figure 4.3: Performance comparison w.r.t. top@k rank scores in terms of 𝑹𝒆𝒄𝒂𝒍𝒍@𝒌 and 
𝑴𝑹𝑹@𝒌  on Adressa and Last.fm datasets. k ranges from 5 to 20 and h fixed at 3 for 
DeepJoNN and DeepJoNN-t. 

ℎ is varied from 1 to 4, and session length is set to 0.5, 1, 3, 6, 9 hour(s). The results are 
shown in Figure 4.4. Just as we expected, the performance continually goes up along with 
the higher value setting to ℎ for that the intra-relationships between features, especially 
between words and phrases, for one event are also important for recommendation 
performance. However, when ℎ is more than 3, more computational resources are needed 
to process more parameters and tensor operations without recommendation performance 
obviously increasing. Thus, we believe 3 is a suitable order for balance the computational 
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cost and model performance in our tasks. Besides, with smaller gap length of sessions, there 
are fewer users and events within a session and thus little diversities are incorporated in our 
dataset for one session. Furthermore, frequently switchings of users during training may 
also cause fluctuation effect of the parameter tuning and will lead to slow convergence. 

 

Figure 4.4: Performance of DeepJoNN on recommendation tasks with varied session lengths 
and 𝒉 values. 

4.3.6 Comparison of Loss Functions 

In this section, we measure the performance gain of the proposed improvements over the 3 
different loss functions, TOP1, Bayesian Personalized Ranking(BPR) [89] and Cross 
Entropy. In our tasks, we conducted 2 groups of experiments with 300 hidden units (2-
layers CNN with 100 units in each layer, and 1-layer RNN with 100 units in each layer), 
and 600 hidden units (2-layers CNN with 200 units in each layer, and 2-layer RNN with 
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100 units in each layer) respectively. Within each group of experiments, we run 10 times 
with different random seeds for each loss function in order to get different performance in 
terms of Recall and MRR value. Our results are shown in Table 4.3, and the numbers in 
brackets represent the fluctuation towards positive direction. 

Table 4.3: Recall@10 and MRR@10 for different types of configuration of DeepJoNN with 
different losses. Best results per dataset are highlighted. 

 

From the listed results, it can be observed that cross entropy achieved better than the other 
two functions in terms of Last.fm, whereas TOP1 scheme get the best result for Adressa 
dataset with 300 hidden units. Therefore, for different recommendation tasks, different loss 
functions may result in slightly different recommendation performance. However, cross 
entropy is relatively unstable compared with other schemes for the number in brackets are 
slightly bigger under the same settings, which from another side proves the observation in 
research [39], that pointwise ranking based losses were usually unstable, even with 
regularization. Additionally, it does not always happen that deep networks with bigger and 
deeper configuration can achieve better performance which makes parameter tuning an 
important task in training deep networks. 

4.3.7 Cold-Start Problem 

Additionally, we also conducted experiments to study the effectiveness of different 
recommendation algorithms in addressing cold-start issues on the two kinds of datasets. 
Cold-start is normally refered to cold-start users and cold-start items two perspectives. The 
former indicates users with few historical interactions could be used, while the latter 
indicates items with few interactions with users. In this chapter, we only focus on cold-start 
users and leave the cold-start item issue to the future research direction. As preprocession, 
we removed users who have less then 3 events during sessions and less than 2 sessions in 
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training set. The users who have more than 20 sessions are also removed from dataset. 
Besides, we also filtered users in testing set who were not contained in training dataset. 

The experimental results are shown in Figure 4.5, from which we have the following 
observations: 1) our proposed DeepJoNN and DeepJoNN-t still performs best consistently 
in recommending coldstart cases; 2) by comparing the recommendation results in Figure 
4.3, the Recall and MRR value of all recommendation algorithms kept nearly the same 
effectiveness. For instance, the Recall value of HRNN in cold-start settings is 13.90%, 
MRR values is 5.36%, and meanwhile it achieved nearly the same performance with value 
of 16.56% and 6.22% of Recall and MRR when set 𝑘 to 20 on Adressa dataset. Similar 
phenomenon can also be found from Last.fm dataset. From training process, we also 
discovered that our DeepJoNN and HRNN converged faster than traditional RNN with 
better performance. 

 
Figure 4.5: Recommendations for Cold-start Cases. 

4.4 Conclusion  

In this chapter, we presented a Deep Joint Network (DeepJoNN) for session-based 
recommendations. The proposed model allows combining various item features such as ID, 
category, keywords and entities, which then are transformed into character-level input 
matrix to the model. DeepJoNN consists of two parts of deep neural networks coupled 
together in a hierarchical way and thus could extract contextual patterns and process long 
and short-term dependencies simultaneously. In the comparison of the state-of-the-art 
baselines, DeepJoNN achieved nearly 11% and 12% improvements on datasets of Adressa 
and Last.fm respectively w.r.t. Recall value. Additionally, we also explored the influence 
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of different parameter settings and conducted experiments on different loss functions. Our 
model also performed competitively on cold start users without user profiles. 

Compared with existing methods, the innovation of our proposed approach lies in the way 
we integrated the tensor-based feature representation method into traditional convolutional 
operation and successfully applied it to encoding textual content for session-based 
recommendation purposes. The use of the outer product is conducted to explore the 
potential impact of combined features before convolution operation such that the explicit 
information can further be processed by CNN module. The improvements of 
recommendation accuracy verify the potential value of our approach in mining the content 
efficacy in affecting user preferences in session settings.  
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Chapter 5  

Session-based Recommendations with Multi-
level Side Information 
Online news recommendation aims to continuously select a pool of candidate articles that 
meet the temporal dynamics of user preferences. Most of the existing methods assume that 
all user-item interactions are equally important for recommendations, which is not always 
applied in real-world scenarios since the user-item interactions are sometimes full of 
stochasticity and contingency. In addition, previous work on session-based algorithms only 
considers user sequence behaviors within the current session without incorporating users’ 
historical interests or pointing out users’ main purposes within such session. In this chapter, 
we propose a novel neural network framework, a dynamic attention-integrated neural 
network, to tackle the problems. Specifically, we propose a dynamic neural network to 
model users’ dynamic interests over time in a unified framework for personalized news 
recommendations. News article semantic embedding, user interests modelling, session-
based public behavior mining and an attention scheme that is used to learn the attention 
score of user and item interaction within sessions are four key factors for online sequences 
mining and recommendation strategy. Experimental results on three real-world datasets 
show significant improvements over several baselines and state-of-the-art methods on 
session-based neural networks. 

5.1 Introduction 

With the rapid development of web services and e-commerce platforms, news 
recommender systems have become popular and are employed by many multimedia 
companies in recent years. They are able to cope with the information overload and to assist 
users in finding information matching their individual profiles learned from historical user-
item interactions. However, in many real-life recommendation settings, user profiles and 
past activities are not available, which renders traditional recommendation methods [33，
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92, 93, 94] less useful. To a large extent, unprofiled users occupy a greater proportion of 
the total news readers, because many news websites allow users to read articles without 
authentication (not registered). To tackle this problem, session-based recommendation [95] 
is proposed to predict the next item that the user is probably interested in based solely on 
implicit feedback, i.e., user clicks, in the current session. 

To have a better understanding of user interests modelling in the session-based 
recommendation, we show the user clicking patterns on three topics: winter sports 
(vintersport), culture (kultur) and local news (nordtrondelag) over three months in the 
experimental dataset in Figure 5.1. As can be seen from the sessions within the hour of 10 
and 19 in two small graphs with the x-axis representing item id that the user clicked and 
the y-axis representing user id, the clicked item sets of different users are extremely similar 
in their respective sessions within a time period (1 min in our paper). It means that different 
users across different sessions (we refer to neighbourhood sessions in the following parts) 
have similar interests, and they tend to focus on the most popular/emerging topics within 
some time period. In two small graphs, the user id and item id are consistent. Thus, we can 
also find that the clicked item sets of the same user across different sessions at different 
time slices change over time, meaning that the user interests drift at different times in a day 
or on different days. Besides, from the line chart in Figure 5.1, we can find from the long-
term click frequency of different topics that, there exist a number of periodic user interests 
e.g. culture topic, and continuous user interests e.g. local news and seasonal user interests 
e.g. winter sport, which can be valuable to recommend items. Therefore, it is critical to 
incorporate the aforementioned factors when modelling user interest for session-based 
news recommendation. 

Recently, Hidasi et al. [39] apply recurrent neural networks (RNN) with Gated Recurrent 
Units (GRU) for session-based recommendation. The model considers the first item clicked 
by a user as the initial input of RNN, and generates recommendations based on it. Then the 
user might click one of the recommendations, which is fed into RNN next, and the 
successive recommendations are produced based on the whole previous clicks. Tan et al. 
[40] further improve this RNN-based model by utilizing two crucial techniques, i.e., a  
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Figure 5.1: User clicking patterns over three months on different topics and user clicking 
patterns in the neighbourhood sessions of different users within 1 min. 

method to account for shifts in the input data distribution and data augmentation. Despite 
these positive results, some problems regarding the effectiveness of the session-based 
recommendation method remain open: (1) they only take into account the user’s sequential 
behavior in the current session, whereas the user’s main purpose within that session is not 
emphasized. In other words, these methods cannot automatically select important 
interaction records in the user-item interaction history when recommending items. This 
greatly limits their application in real-world scenarios where a user accidentally clicks on 
wrong items or s/he is attracted by some unrelated items due to curiosity. (2) they do not 
incorporate the knowledge acquired on the long-term dynamics of the user interest in the 
session-based algorithm when user profiles are available. In such cases, it is reasonable to 
assume that the user behavior in past sessions might provide valuable information for 
providing recommendations in the next session. 

In this chapter, we propose a novel dynamic attention-integrated neural network (DAINN) 
to tackle the aforementioned problems for the personalized recommendation task. 
Specifically, DAINN models the users’ dynamic interests over time by jointly 
incorporating users’ long-term interests, user behavior sequence patterns, users’ main 
purpose in the current session, as well as public behavior mining into a unified framework. 
In order to improve the recommendation accuracy, dynamic topic modelling [6] and 



5.2 Methodology 

  

 

76 

convolutional neural network (CNN) sentence model [96] are adopted to effectively learn 
the item semantic embedding. More importantly, to handle diverse variance of users’ 
clicking behavior, we introduce a novel attention scheme that would dynamically assign 
influence factors on recent models based on the users’ spatio-temporal reading 
characteristics. We applied our model to several real data sets and the experimental results 
demonstrate the promising and reasonable performance of our approach. 

In summary, our contributions are as follows: 

1) We propose a dynamic attention-integrated neural network (DAINN) to model users’ 
dynamic interests over time in a unified framework for personalized session-based news 
recommendation. 

2) The proposed model can jointly exploit users’ long-term interests, user behavior 
sequence patterns, users’ main purpose in the current session, as well as public behavior 
mining to model users’ preferences. In addition, item semantic embedding learned from 
CNN sentence model is adopted to further improve the recommendation accuracy. 

3) To handle the diverse variance of users’ clicking behavior, a novel attention scheme is 
proposed, which considers the spatio-temporal reading characteristics of users. 

4) We apply DAINN to three real-world datasets with extensive experiments. The results 
show that DAINN achieves substantive gains over state-of-the-art deep learning-based 
methods for recommendation. Specifically, DAINN outperforms baselines by 3 to 5% on 
F1 score and 2 to 5% on MRR. 

The remainder of this chapter is organized as follows. In Section 5.2, we formally define 
our problem and present DAINN model. We describe the data sets, experiment settings and 
the prior information we use in Section 5.3. Section 5.4 shows a comprehensive experiment 
evaluation. Finally, we present the conclusions in Section 5.5. 

5.2 Methodology 

In this section, we propose a novel dynamic attention-integrated neural network (DAINN) 
for session-based news recommendation. Firstly, the problem is defined, including the 
relevant general terms and notations. Then we give the details about the unified 
recommendation framework, which includes user long-term interest modelling, temporal 
context mining, session-based public behavior mining, dynamic attention learning. As 
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shown in Figure 5.2, the proposed DAINN model can be regarded as an interest network 
by considering the four factors jointly for learning users’ dynamic preferences. 

 
Figure 5.2: The unified framework for the personalized news recommendation via dynamic 
attention-integrated neural network. 

5.2.1 Problem Definition 

Notation. Throughout this paper, all vectors are column vectors and are denoted by bold 
lower case letters (e.g., 𝒙 and 𝒚), while matrices are represented by bold upper case letters 



5.2 Methodology 

  

 

78 

(e.g., 𝑿 and 𝑴). The 𝑖th row of a matrix 𝑿 is given by 𝑿𝒊∙, while 𝑿∙𝒋  represents the 𝑗th 
column. We use calligraphic letters to represent sets (e.g., 𝒱 and ℇ). Table 5.1 summarizes 
the notations of frequently used variables. 

Table 5.1: Notations used in this chapter. 

 

Session-based recommendation. Session-based recommendation is the task of predicting 
what a user would like to click next when his/her current sequential transaction data is 
given. Here we give a formulation of the session-based recommendation problem. 

Let [𝒙;, 𝒙<, … , 𝒙8(:;, 𝒙8(] be a click session, where 𝒙G ∈ 𝐼	(1 ≤ 𝑖 ≤ 𝑛!	) is the 
representation of one clicked item out of a total number of 𝑚 candidate items. We build a 
model 𝓕  so that for any given prefix of the click sequence in the session, 𝑿 =
[𝒙;, 𝒙<, … , 𝒙%:;, 𝒙%] , 1 ≤ 𝑡 ≤ 𝑛! , we get the output 𝒚 = 𝓕(𝑿) , where 𝒚 =
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[𝑦;, 𝑦<, … , 𝑦&:;, 𝑦&]. We view 𝒚 as a ranking list over all the next items that can occur in 
that session, where 𝑦N 	(1 ≤ 𝑗 ≤ 𝑚) corresponds to the recommendation score of item 𝑗. 
Since a recommender typically needs to make more than one recommendations for the user, 
thus the top-𝑘 (1 ≤ 𝑘 ≤ 	𝑚) items in 𝒚 are recommended. 

5.2.2 Dynamic Attention-integrated Neural Network 

Overview. To improve the recommendation performance in news domain and address 
session-based recommendation problems, we proposed a novel dynamic attention-
integrated neural network (DAINN). The basic idea of our model is to build a unified 
represent- ation of the current user, and then generate predictions on the user’s next possible 
event with it. The representation should take into account various potential factors that 
influence user’s next decision. As shown in Figure 5.2, the input of GRU is a joint output 
from three components, namely session-based public behavior mining, dynamic attention 
learning and user long-term interest modelling represented as (a), (b) and (c) respectively. 
The basic input is the sequence 𝑿 = [𝒙;, 𝒙<, … , 𝒙8]  where 𝒙G  denotes the word-level 
representation of item 𝑖. Component (a) transfers the input sequence 𝑿" = [𝒙;, 𝒙<, … , 𝒙8;] 
collected from users within a predefined sliding window 𝜔 except current user 𝑢, into the 
representation 𝒔 of public behavior pattern. Component (c) learns from user 𝑢’s historical 
records and outputs the representation 𝒆¼  of user’s long-term interest pattern. Meanwhile 
component (b) converts the input sequence 𝑿! = [𝒙;, 𝒙<, … , 𝒙8(]  of user 𝑢 ’s current 
session into the high dimensional representation 𝒖¾ with user’s current purpose, along with 
the attention weight at time 𝑡 (represented as 𝑠%). Finally, the concatenation of the three 
representations is fed into GRU to generate top-𝑘 items with the highest possibilities that 
user 𝑢 will click next. One should be clarified that CNN for semantic embedding models, 
denoted as CNN-S in Figure 5.2, share parameters in three components. CNN-S is adopted 
to extract semantic information from simple word-level representations of inputs, and its 
output is denoted as 𝒄 in our paper. 

In the following part of this section, we first describe the CNN-S model for semantic 
embedding used in each component. Then we introduce the session-based public behavior 
mining which is used to extract neibourhood session patterns from public users of 
component (a), user’s long-term interest modelling of component (c) and dynamic attention 
learning which is used to extract user’s main purpose within current session of component 
(b). The learning objective is introduced next, and finally, the top-𝑘  items generation 
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process is explained. 

CNN for semantic embedding. To model the textual content of the document, traditional 
methods including bag-of-words features [97, 98], e.g. TF-IDF feature or Naive Bayes and 
unsupervised learning objective [99, 100], e.g. topic models, are based on counting 
statistics which ignore word orders and suffer from sparsity and poor generalization 
performance. A more effective way to model the text is to represent each sentence in a 
given corpus as a distributed low-dimensional vector. Recently, inspired by the success of 
applying convolutional neural networks (CNN) in the field of computer vision [101], 
researchers have proposed many CNN-based models for semantic embedding [85, 96]10. In 
this subsection, we introduce a typical type of CNN architecture, namely Kim CNN [96]. 

 

Figure 5.3: A typical architecture of CNN for semantic embedding (Kim 2014). 

Figure 5.3 illustrates the architecture of Kim CNN. In Figure 5.2, Kim CNN are denoted 
as CNN-S. Let 𝑊;:8 be the raw input of a sentence of length 𝑛, and 𝒙	 = 	 [𝑥;, 𝑥<	, . . . , 𝑥8] ∈
	ℝ;×8 be the word-level representation vector of the input sentence, where 𝑥G ∈ ℝ is the 
index of the 𝑖th word in vocabulary 𝒱 in the sentence. We can get the word embedding of 
the 𝑖th word through word2vec pre-trained model 𝒘G = 𝓗(𝑥G; 	𝒱),𝒘G ∈ ℝ6×;, where 𝑑 is 

 
10 Researchers have also proposed other types of neural network models for semantic embedding 
such as recurrent neural networks [102], recursive neural networks [103], and hybrid models [104]. 
However, CNN-based models are empirically proven to be superior than others [105] since they can 
detect and extract specific local patterns from sentences due to the convolution operation. To keep 
our presentation focused, we only discuss CNN-based models in this paper. 
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the dimension of word embeddings. Thus, we can get 𝑾;:8 	= 	 [𝒘;, 𝒘<, . . . , 𝒘8] ∈ ℝ6×8, 
the word embedding matrix of the input sentence. A convolution operation with filter 𝒉	 ∈
		ℝ6×k is then applied to the word embedding matrix 𝑾;:8, where 𝑙	(𝑙 ≤ 𝑛) is the window 
size of the filter. Specifically, a feature 𝒅G is generated from a sub-matrix 𝑾G∶GOk:; by 

                                                      𝒅G = 𝑓(𝒉 ∗𝑾G∶GOk:; + 𝑏)                                           (1) 

where 𝑓 is a non-linear transformation function such as the hyperbolic tangent (tanh) f (z) 
= (exp(z)−exp(−z))/(exp(z)+exp(−z)), ∗ is the convolution operator, and 𝑏 ∈ ℝ is a bias. 
After applying the filter to every possible position in the word embedding matrix, a feature 
map 

                                                      𝑫 = [𝒅;, 𝒅<, … , 𝒅8:kO;]                                              (2) 

is obtained, then a max-over-time pooling operation is used on feature map 𝑫 to identify 
the most significant feature: 

                                        𝒄 = max	{𝑫} = 𝑚𝑎𝑥[𝒅;, 𝒅<, … , 𝒅8:kO;]                                 (3) 

One can use multiple filters (with varying window sizes) to obtain multiple features, and 
these features are concatenated together to form the representation of the textual content. 

Session-based public behavior mining. As described in Figure 5.1, user clicking patterns 
across neighbourhood sessions with different users within some time periods are extremely 
similar. Besides, many recent works [39, 106] have proved the efficiency of adopting 
session-based methods on especially non-profile users. According to the statistics on our 
experimental dataset, users with historical records (also known as subscribers) take up less 
than 20% of total number of users. Thus, inter- and intra-session information is essential 
for recommendations. 

Assuming that 𝑿" = [𝒙;, 𝒙<, … , 𝒙8;]  is a sequence of events that clicked within a 
predefined sliding window 𝜔 which is the time period before the current time 𝑡. 𝑛" denotes 
the number of items within window 𝜔 . Each 𝒙G  represents the word-level item 
representation of the user excluding the current user 𝑢. As illustrated in Figure 5.2a, 𝑿" is 
firstly put into CNN-S model to obtain the textual semantic embedding of these items 
according to Eq. (3) denoted as 𝑪 = [𝒄;, 𝒄<, … , 𝒄8;]. Then we use mean-pooling through 
horizontal axis as user 𝑢’s session representations 

                                                                   𝒔 = ;
8
∑ 𝒄N8
NI;                                                   (4) 
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If we do not consider the attention network and user 𝑢 is a newly arrived user which has 
no historical record, we only consider item 𝒙% that user 𝑢 clicks at current time 𝑡. Then the 
semantic representation denoted as 𝒄;, of 𝒙% can be acquired through CNN-S model. After 
that, the concatenation of embedded session-based representation 𝒔	 and semantic 
representation 𝒄;, 𝒔⊕ 𝒄;, is sent through one or multiple layers of the Gated Recurrent 
Unit (GRU) [107] which is the simplified version of Long Short-Term Memory (LSTM) 
networks but still maintains all their properties. In GRU unit, the activation ℎ% at time 𝑡 is 
a linear interpolation between the previous activation ℎ%:; and the candidate activation ℎÊ%: 

                                                          𝒉% = (1 − 𝑧%)𝒉%:; + 𝑧%𝒉Ë%                                      (5) 

where an update gate 𝑧% decides how much the unit updates its activation, or content. The 
update gate is computed by 

                                                          𝑧% = 𝜎(𝑾9𝒙¾% +𝑼9𝒉%:;)                                        (6) 

This procedure of taking a linear sum between the existing state and the newly computed 
state is similar to the LSTM unit. The GRU, however, does not have any mechanism to 
control the degree to which its state is exposed, but exposes the whole state each time. The 
candidate activation ℎÊ% is computed similarly to that of the traditional recurrent unit but 
slightly different from Cho et al. [107] 

                                                   𝒉Ë% = 𝑡𝑎𝑛ℎ(𝑾𝒙¾% +𝑼(𝒓%⨀𝒉%:;))                                 (7) 

where 𝒓% is a set of reset gate and ⨀ is an element-wise multiplication, and 𝒙¾ is the output 
from previous layer or 𝒔⊕ 𝒄. We experimented on both formulations to compute 𝒉Ë% and 
they performed as well as each other. When 𝒓% is close to 0, the reset gate effectively makes 
the unit act as if it is reading the first symbol of an input sequence, allowing it to forget the 
previously computed state. The reset gate can be computed as 

                                                            𝒓% = 𝜎(𝑾𝒙¾% +𝑼$𝒉%:;)                                       (8) 

The output of GRU at timestamp 𝑡	can be denoted as 𝒐% = 𝒉%. Inspired by the work of Pan 
et al. [108], we formulate our recommendation problem as a coherence loss, where the log 
probability of the recommendation is given by the sum of log probabilities over the clicked 
items as shown below 

               ℒ$'U(𝑿, 𝒗) = − log𝑃(𝒗|𝑿) = ∑ − log𝑃(𝒗%|𝒙¾;, 𝒙¾<, … , 𝒙¾%:;; 𝜃)
8(
%I;                  (9) 

where {𝒙¾;, 𝒙¾<, … , 𝒙¾8(} is the sequentially predicted items. Here, 𝒙¾G is corresponding to the 
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representation of item 𝑖 . 𝒗%  is the words distribution of next possible item. 𝜃  are the 
parameters of our framework, including parameters of CNN-S model and GRU model. By 
minimizing the above loss, the user’s interests within and across sessions can be described 
dynamically. Here, a softmax layer is applied after GRU layer to produce a probability 
distribution over all the 𝑁a words in the vocabulary as 

                                           𝑃(𝒗%|𝒙¾;, 𝒙¾<, … , 𝒙¾%:;; 𝜃) =
>?1	{𝑻;𝒉$}

∑ >?1	{𝑻;𝒉0}
,1
0<=

                            (10) 

where 𝑻" is the parameter matrix of the softmax layer in GRU. 

User long-term interest modelling. Although texts have semantic information, they cannot 
reflect users’ broad interest directly [109]. To represent texts and users’ interest in a 
common space, as shown in Figure 5.2c, we jointly learn the relevance between text 
semantic embedding and user interested topics. Specifically, we first conduct some online 
topic modelling approach on all the users’ historical behavior streams (e.g., news clicking 
streams or song listening streams) to build a shared user topic space and learn the topical 
distribution for each user. Then we aggregate the topic distributions of each user’s real-
time behavior streams to derive the representation of user interested topics at the current 
time, where a time decay [110] is used to weight the behavior streams. Therefore, the user’s 
interested topics can be defined as in Eq. (11). 

                                                    𝒖 = ;
H.
∑ 𝒎G ∙ 𝑒:K|%:%&|G∈ℬ.                                          (11) 

where 𝒎G denotes representation of a user’s interested topics of the 𝑖th behavior, ℬX is the 
user’s historical behaviors, |𝑡 − 𝑡G| indicates the time difference between the current time 
and the post time of user behavior 𝑖. 𝑁X is the number of user’s historical interested topics 
and 𝜆 is the time decay parameter. In this chapter, topics are extracted by Dynamic Topic 
Model introduced in Greene and Cross [111] and 𝒎G is the word-level representation of 
topic 𝑖. 

To project the textual semantic embedding and user interested topics into a common space, 
we adopt two transformation matrices, 𝑻𝒄 ∈ ℝw>×w? and 𝑻𝒖 ∈ ℝw>×w., where 𝐷X and 𝐷U 
is the dimensionality of the learned user topics representation and textual embedding 
respectively. To measure the relevance between textual semantic embedding and the user 
interested topics, one direct way is to calculate the distance between them. We integrate 
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the textual semantic embedding of a user’s clicking list in Eq. (12), and the distance loss is 
defined in Eq. (13): 

                                                       𝒖¾ = ;
H?
∑ 𝒄 ∙ 𝑒:K|%:%?|U∈𝒯.                                          (12) 

                                        ℒk#8zU𝓤,𝓤ËV = ∑ ‖𝑻𝒖 ∙ 𝒖 − 𝑻𝒄 ∙ 𝒖¾‖[<𝒖∈𝓤,𝒖|∈𝓤}                          (13) 

where 𝒯X is the textual semantic embedding vectors of the clicked news for user 𝑢. |𝑡 − 𝑡U| 
indicates the time difference between the current time and the post time when the user 
clicks the specific news/song. 𝑁U is a normalization parameter. One need to be noticed that, 
if user long-term interests can be achieved, for personalized recommendation tasks, CNN-
S model in Figure 2a–c parts will share parameters for user 𝑢. 

Dynamic attention learning. Given user 𝑢 with clicked items {𝑖;, 𝑖<, … , 𝑖8(} within session 
𝑠 , and his/her learned contextual representation after CNN-S can be defined as 
{𝒄;, 𝒄<, … , 𝒄8(}. To represent user 𝑢’s attention at timestamp 𝑡, one can simply average all 
the embeddings of his/her clicked items: 

                                                              𝒄¼% =
;
8(
∑ 𝒄=
8(
=I;                                                  (14) 

However, user’s interests are full of stochasticity and contingency, and user’s clicked items 
supposed to have different impacts on the next possible clicking item. Specifically, our 
attention measurement scheme is mainly constructed based on threefold factors: 

• Day of Week: Users read different topics of news at different week days, for example, 
during a working day or at the weekend, while relaxing. 

• Hour of day: As illustrated in Fig. 1, user’s interested topics may vary over time 
across day. For instance, a user may tend to read more financial news in the morning 
than in the afternoon, while s/he reads more sports or entertainment news at night. 

• Location: According to the analysis of address a dataset, we find that users incline to 
read news happening around them. For example, a user from Oslo reads more news 
occurred in Oslo than news occurred in other regions. 

In order to incorporate these three aspects, we first use the one-hot representation to denote 
the three factors. Specifically, we take binary vectors 𝒓6 ∈ 𝑅w!, 𝒓i ∈ 𝑅w@ and 𝒓k ∈ 𝑅wA, 
where only the value of the column corresponding to the presented day, hour and location 
are set as 1 and the values for other columns are 0. 𝐷6, 𝐷i and 𝐷k represent the number of 
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days in a week, the number of hours in a day and the number of locations in dataset 
respectively. Then, the three vectors are concatenated as 𝒓% = [𝒓6; 𝒓i; 𝒓k]. To learn the 
three factors and item’s representation 𝒄G  together, one ordinary way is the simple 
concatenation strategy as 𝒆% = [𝒄%; 𝒓%]. However, we argue that factor embedding and item 
embedding are learned by different methods, which means they are in different 
representation space. Thus, we introduce the transformed embeddings 

                                                                  𝒓¼% = 𝑔(𝒓%)                                                     (15) 

where 𝑔(·) is the transformation function, and can be either linear 

                                                                 𝑔(𝒓%) = 𝑻𝒓%                                                   (16) 

or non-linear 

                                                     𝑔(𝒓%) = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑻𝒓% + 𝒃)                                      (17) 

where 𝑻 ∈ 𝑅wBC×wB  is the trainable transformation matrix and 𝒃 ∈ 𝑅wBC×;  is the trainable 
bias. Since the transformation is continuous, it can map factor embeddings to item space 
while preserving their original spacial relationship. We therefore can concatenate these two 
embeddings as 𝒆% = [𝒄%; 𝒓¼%] at timestamp 𝑡. 

Inspired by the work in Wang et al. [32], we use an attention network to model the different 
impacts of user’s clicked news 𝒄%. The attention network is illustrated in the bottom part of 
Figure 5.2. Different from Wang et al. [32], we not only consider the clicking patterns 
within current session, but also integrate various influential factors into the attention model. 
Specifically, for user 𝑢 ’s clicked news representation 𝒄%  at timestamp 𝑡  and factor 
representation 𝒓¼% , after concatenation of their embeddings, we apply a DNN 𝓖  as the 
attention network and the softmax function to calculate the normalized impact weight: 

                                           𝑠%G = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥	 S𝓖U𝒆%GVW =
>?1	(𝓖(𝒆$

&))
∑ >?1	(𝓖(𝒆$+))
,.
+<=

                           (18) 

The attention network 𝓖  receives concatenation embeddings as input and outputs the 
impact weight. Then the embedding of user 𝑢  at timestamp 𝑡  can be calculated as the 
weighted sum of his clicked news embeddings: 

                                                              𝒆¼𝒕 = ∑ 𝑠%G
𝑵𝒖
𝒊I𝟏 𝒆%G                                                   (16) 

We will demonstrate the efficacy of the attention network in the experiment section. 
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Unified recommendation framework. Recall that in Sect. 5.2.2.1, we formulate our 
recommendation problem as a coherence loss in Eq. (9) with respect to the input item 
representation and the output words distribution. If we also consider user’s historical 
records as described in Sect. 5.2.2.3, given a user’s current interested topics u, we can 
formulate our recommendation problem as 

            ℒ$'U(𝒖, 𝒗) = − log𝑃(𝒗|𝒖, 𝑿) = ∑ − log𝑃(𝒗%|𝒖, 𝒙;, … , 𝒙%:;; 𝜃)
8(
%I;                 (20) 

where 𝜃  represents not only the parameters of GRU and session-based CNN sentence 
network, but also 𝑻𝒖, 𝑻𝒄 of user long-term interest model. The input of GRU layer is the 
concatenation of session-based representation 𝑠, output of attention model 𝒆¼ and the user 
long-term interest embedding 𝒖¾, denoted as 𝒔⊕ 𝒆¼ ⊕ 𝒖¾. By minimizing the above loss, the 
user interest evolvement can be described dynamically, which makes the recommendation 
more coherent and reasonable. Finally, we can obtain the objective function below 

                                  ℒ = ∑ ℒ$'U(𝒖, 𝒗) + 𝜆;ℒk#8zU𝓤,𝓤ËV + 𝜆<‖𝜃‖<<X∈𝒰                       (21) 

where 𝜆; is the trade-off parameter for these objectives, and 𝜆< is the coefficient of the 
weight decay term. By optimizing the above overall loss function in a unified framework, 
our proposed method achieves dynamic news recommendation with considering inter- and 
intra-session modelling, user interest modelling, as well as dynamic attention learning. 

Recommending top-K items. Given a target user 𝑢 with the request time 𝑡, in order to 
recommend top-𝐾	items that user 𝑢 would like to choose, we compute the ranking score 
with respect to the predicting words distribution and item word-level distribution as in Eq. 
(22) 

                                               𝑆U𝒗G , 𝒗N , 𝑡V = 𝒗G ∙ 𝒗N = ∑ 𝑣G= ∙ 𝑣N=
H1
=I;                               (22) 

where 𝒗G = [𝑣G;, … , 𝑣GH1], 𝑁a  is the number of vocabulary. Since the effectiveness of 
news articles are very short (usually less than 7 days), the candidate items are limited for 
target users when performing Eq. (22). In other words, we can filter candidate items 
according to their publication time before calculate items’ ranking score, and thus avoiding 
computing all possible items in database. 

5.3 Experimental Setup 

5.3.1 Datasets 
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We used three datasets from different areas for our experiments, namely Adressa, Last.fm 
and Weibo-Net-Tweet. The first is the Adressa 16G dataset11 which contains 93,948 news 
articles, 398,545 readers, and about 113 million events over a 90-days period [96]. Each of 
these events represent that a user read a particular news article. As preprocessing, we 
filtered sessions with less than 3 events for a user. Besides, we removed the records that 
users visited the news front page for there are no articles related information within the 
events. In order to evaluate our model’s generality, we adopted Last.fm provided by Schedl 
[64], which contains 10 weeks of log data between 1/1/2013 and 11/3/201312. To enrich the 
content information for the dataset,we also used Last.fm API13 to collect artist information 
to improve the recommendation accuracy. The third dataset is provided by Jing et al. [112] 
from Sina Weibo.com 14 , which includes in total 1.7 million users and 300 thousand 
microblogs. We perform the similar preprocessing procedure on the other two types of 
datasets, including getting rid of the session with less than 3 events and removing the 
duplicate records. The characteristics of the datasets are summarized in Table 5.2. 

To split users’ historical logs into sessions, for Adressa dataset, it contains tags to represent 
the start and end of a session. As for Last.fm and Weibo-Net-Tweet datasets, following 
Zheleva et al. [90] and Baur et al. [91], we use the time gap approach to generate sessions. 
If the gap between two post items is less than 30 min for user 𝑢, they belong to the same 
session. Otherwise, they will be separated into two sessions.  

The testing set is build with the last event of each session of each user. The remaining 
events form the training set. Besides, we also leave the last event of each session of each 
user from training set as a validation set, which is used for hyper-parameter selection during 
each iteration in training procedure. In order to test the user’s long-term interests influence 
on our recommendation approach, we also selected users with historical records, namely 
user profile, from these three datasets to do the evaluation. The rest users without user 
profile are experimented as cold start problem in the following section. 

 
 

 
11 http://reclab.idi.ntnu.no/dataset/ 
12 http://www.cp.jku.at/datasets/LFM-1b/ 
13 https://www.last.fm/api/show/artist.getInfo 
14 https://www.aminer.cn/influencelocality 
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Table 5.2: Some statistics of the datasets. 

 

5.3.2 Evaluation metrics 

Based on temporally ordered lists of read/played items, our objective is to correctly predict 
the next item a target user will likely read/play. The ground truth at a particular time step 
is therefore represented by a single user-item tuple. To present the user with adequate 
recommendations, the target item should be among the top few recommended items. Since 
we are interested in measuring top-𝑘  recommendation instead of rating prediction, we 
measure the performance by looking at the Recall@𝑘 , Precision@𝑘 , F1 score and 
MRR@𝑘, which are widely used for evaluating top-𝑘 recommender systems. 

• MRR@𝑘 (Mean Reciprocal Rank) is defined as the average of the reciprocal ranks 
of the desired items [62]. The rank is set to zero if it is above 𝑘. 

• Precision@𝑘 is defined as the proportion of recommended items in the top-𝑘 set that 
are actually consumed in the next event. 

• Recall@𝑘 is defined as the proportion of the items actually consumed in the next 
event among the top 𝑘 items recommended. 

• F1 score is the harmonic mean between recall and precision values and can be denoted 
as F1 = 2 ∗ Precision@k ∗ Recall@k/(Precision@k + Recall@k) [61]. 

In recommendation performance experiment, we vary 𝑘  to 5, 10, 20 to test top- 𝑘 
recommendation efficiency. In other experiments, we set 𝑘 = 20, as it appears desirable 
from a user’s perspective to expect the target among the first 20 items [39]. 

5.3.3 Baselines 

To validate the effectiveness of DAINN, we compared our model with the following 
session-based recommendation methods. 
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• Popular-based	Method	(POP):	This	method	recommends	items	with	the	largest	
number	of	interactions	by	the	users.	

• Item KNN: Item KNN is a simple, yet effective method, which is widely deployed in 
practice. In this method, two item are considered similar if they co-occur frequently 
in different sessions. In our situation, we recommend items based on cosine similarity 
between different sessions.	

• BPR-MF15: It is one of the commonly used matrix factorization methods, but cannot 
directly apply to session-based recommendations for the new session do not have 
feature vectors precomputed. Instead, we use the average value of item feature vectors 
that had occurred in the session before the predicting point, as the user feature vector 
[89].	

• Hierarchical RNN (HRNN)16 : Proposed by Quadrana et al. [45], the model is a 
personalized RNN model with cross-session information transfer in a seamless way. 
HRNN relays end evolveds latent hidden states of the RNNs across user sessions.	

• Neural Attentive Recommendation Machine (NARM)17: The model incorporates an 
itemlevel attention mechanism into RNN for capturing both the user’s sequential 
behavior and main purpose in the current session [43]. 

5.3.4 Parameter Settings 

For user long-term interest modelling, we resort to the standard perplexity [5] and choose 
the topic number that leads to small perplexity and fast convergence. Therefore, we obtain 
the topic numbers 𝑁X� = 70, 𝑁Xh = 100 and 𝑁X�100 for Adressa, Last.fm and Weibo-Net-
Tweet, respectively. The embedding dimension 𝐷' is set to 300. For time decay rate 𝜆, we 
set it to 0.2 for Adressa dataset, but a relatively slow decay 𝜆 = 0.1 for the other two 
datasets. The sliding window size 𝑤 is set as 150 in our experiments for the simplicity, 
which means we adopt 150 neighbourhood events of other users in public behavior mining 
procedure. In model training phase, the trad-off parameter λ; is set to 0.4 by grid-search 
over {0.2, 0.4, 0.6, 0.8} and cross validation. The coefficient λ< of weight decayterm is set 
to 1𝑒 − 4. We leverage stochastic gradient descent to optimize our model, and the learning 
rate is set to 0.001. Besides, we adopt one GRU layer with 100 hidden units in our model. 
 
15 https://github.com/bbc/theano-bpr 
16 https://github.com/mquad/hgru4rec 
17 https://github.com/lijingsdu/sessionRec_NARM 
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The model is defined and trained in Theano. 

5.4 Experiments 

In this section, we evaluate the performances of our proposed models with four 
experiments. In the first experiment, we compare our DAINN model with state-of-the-art 
methods. The second experiment evaluates the influence of session length on the 
recommendation performance. In the third experiment, we evaluate the significance of 
different components of our model on recommendation performance. The last experiment 
explores the effectiveness of different recommendation algorithms in addressing cold-start 
issues. 

5.4.1 Comparison against baselines 

In this section, we present the experimental results of all baselines and our DAINN model 
with well-tuned parameters. To test the effectiveness of our proposed attention mechanism 
with various side information, we concatenate the representations of day of week, hour of 
day and location, with high-dimensional representation learned from GRU in NARM 
model, to learn the final attention score α. The NARM with spatio-temporal enrichment is 
denoted as NARM+E. As shown in Table 5.3, it can be observed that our method can 
achieve superior performance than all the other baselines on all datasets. We also can obtain 
other observations: (1) the recommendation performance increase with the increasing 
number of k on all baselines. (2) all models perform better on Weibo and Adressa. It is 
mainly because the sparsity and unbalance characteristics appearing in Adressa dataset, and 
many meaningless words and noise can be found in Weibo dataset. (3) Among these 
competitors, Popular-based method get extremely bad results. The reason is that the method 
only provide user with random (if there are ties with items) or the same popular items, 
which fails to satisfy users’ personalized demands. (4) The deep learning models including 
HRNN,NARM, NARM+E and DAINN, consistently outperform the other models on both 
datasets in terms of all evaluation metrics, despite the fact that Item KNN is a very 
competitive baseline. It is because the latter one cannot generalize the learned 
representations to new data. (5) Although HRNN considers the dynamics of user behaviors 
and achieves favorable results on datasets, it still does not adopt the contextual and 
semantic features and users’ long-term interest. (6) NARM and NARM + E performs better 
than HRNN which can be attributed to the attentionmechanism. However, compared with  
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Table 5.3: Performance comparison of DAINN with baseline over three datasets. 
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NARM model, NARM+E only improves little in Adressa dataset and appears unstable 
performance in Last.fm andWeibo dataset.We argue that this is because our attention 
mechanism performs better on experimental datasets and side information need to be 
integrated and modelled properly. Otherwise, it may cause counterproductive 
effect.Besides, similar asHRNN,NARMandNARM+E do not consider users’ historical 
records and relationship between sessions with other users. As a result, our proposed 
method outperforms NARM + E by (2.0%, 4.6%, 3.6%) with F1-score (k = 20) and (3.5%, 
4.5%, 1.1%) with MRR@20 on Adressa, Last.fm andWeibo-Net-Tweet datasets, which 
also validates the effectiveness of the joint user long-term interest embedding and 
neighbourhood session embedding. 

5.4.2 Evaluation on different session lengths 

In this section, we study the impact of different session lengths on the recommendation 
performance. The attention scheme in our framework is based on the assumption that when 
a user browsing online, his/her click/play/post behavior frequently revolves his/her main 
purpose in the current session. However, if the user only clicks a few items, we can hardly 
capture the user’s main purpose. Besides, we also need to make sure that the longer length 
of session, the better recommendation performance we can achieve for our DAINN model. 

The experimental results on Adressa dataset are shown in Figure 5.4. We can learn that: (1) 
In general, the recommendation performance of our model increases with the increasing 
number of session length, which indicates that DAINN model can capture user’s main 
purpose more accurately on relatively long sessions. In other words, it needs a process to 
learn from the existing sequential behaviour features to make a better prediction. (2) 
However, when the session is too long, namely more than 18 in our experiments, the 
recommendation accuracy will decline. The reason we consider is that long session will 
bring more noise so that it increase the uncertainty and randomness of the user’s behavior 
in the current session, which is to say that the user is very likely to click some items 
aimlessly, and thus it is hard for DAINN to capture the user’s main purpose in the current 
session in this case. 
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Figure 5.4: The performance among different session lengths on Adressa dataset. 

5.4.3 Model component analysis 

From Figure 5.2, we can see that our method has four essential components including 
sessionbased public behavior mining in part (a), item semantic embedding in part (b), user 
long-term interest modelling in part (c) and attention network. To verify the contribution 
of each component, we implement four variants of our approach: DAINN-S, DAINN-A, 
DAINN-U represent DAINN model without session-based public behavior mining, 
attention network and user long-term interest modelling in our framework. We cannot 
abandon item semantic embedding part since it is the base for other part. 

The comparison results are shown in Figure 5.5. The results showall the components 
contribute more or less to the final recommendation performance. Several observation can 
be found: (1) DAINN-A method results in inferior performance with, for instance F1-Score 
19.6%, 28.3% and 24.7% of Adressa, Last.fm and Weibo datasets respectively. The results 
show that the attention scheme can capture the users’ main purpose within and across 
session, and it can adaptively and smartly takes previous knowledge into consideration to 
capture the users’ preference. Besides, the successful utilization of three key factors within 
attention network brings advantages when recommending items. (2) User long-term 
interest modelling is also essential in our framework. Compared with DAINN-U model, 
DAINN model get, for instance 3.6% promotion in terms of F1-score on Adressa dataset. 
The results demonstrate that users long-term interest modelling can capture users’ broad 
interests and improves the recommendation performance significantly. (3) Our model also 
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can benefit from sessionbased public behavior mining for DAINN gets a promotion from 
DAINN-S. 

 
Figure 5.5: Recommendation performance with different components of DAINN model. 

5.4.4 Cold-start problem 

Additionally, we also conducted experiments to study the effectiveness of different 
recommendation algorithms in addressing cold-start issues on three kinds of datasets. As 
preprocessing, we removed users who have less than 5 events during sessions and more 
than 2 sessions in training sets. Beside, we also filtered users in testing set who were not 
contained in training sets. Then, we randomly select 10,000 users among them to conduct 
the experiments. 

The experimental results are shown in Figure 5.6, from which we have the following 
observations: (1) our proposed DAINN model and NARM, NARM + E model still 
performs better consistently than other methods in recommending cold-start cases, which 
verifies the effectiveness of attention scheme used in session-based recommendation 
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scenario; (2) by comparing the recommendation results in Table 3, the evaluation metrics 
of nearly all recommendation algorithms decreases, to different degrees, except Popular-
based method. It is  because the latter two methods consider less historical events than other 
methods. The recommendation performance of our DAINN model deteriorates more 
quickly than NARM and NARM + E, which is because the lack of user long-term interests 
makes DAINN consider only short-term interests of users when recommending items. (3) 
The recommendation performance of Item-KNN and BPR-MF drop drastically, which 
from another aspect proves the ineffectiveness of collaborative filtering methods in 
handling cold-start cases. (4) OurDAINN model still performs better than NARM and 
NARM + E model especially on Adressa and Last.fm datasets, since DAINN also considers 
different factors in attention scheme properly: hour of day, day of week and location. 
Besides, neighbourhood session information also brings positive influence for 
recommendation tasks. 

 

Figure 5.6: Recommendation for cold-start users. 
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5.5 Conclusion 

In this chapter, a novel dynamic attention-integrated neural network (DAINN) is proposed 
to address the problem of personalized session-based recommendation. In order to capture 
users’ interests, we consider item semantic embedding, user long-term interest modelling 
and session-based public behavior mining in a unified framework, which can be trained 
end-to-end. By incorporating an attention mechanism into DAINN, our proposed approach 
can deal with the diverse variance of users’ clicking behavior and capture the users’ main 
purpose in the current session. DAINN can effectively learn users’ real-time preferences 
and conduct personalized recommendations.  

Though a growing number of publications on session-based recommendation focus on deep 
learning-based methods, unlike existing studies, our approach can simultaneously model 
the user’s historical interest, the main purpose of the current session and public attention, 
Which to the best of our knowledge, is not considered by existing researches. 

Recently, the attention model has been used in recommender systems and achieves better 
performance in many recommendation scenarios. Compared with existing related works, 
the novelty lies in the idea of incorporating users’ spatio-temporal reading characteristics 
into the dynamic attention model for the session-based news recommendation. As far as 
we know this is the first attempt to capture the diverse variance of users’ clicking behavior 
with a dynamic hybrid attention scheme. 

Evaluation on three different real-world datasets demonstrated the effectiveness of the 
proposed approach. For baseline methods, we select from both deep learning-based 
methods and attention integrated approaches to verify the effectiveness of our model. 
Especially, DAINN outperforms NARM with similar attributes integrated setting which 
verifies the significance of rational and strategic integration of various attributes. 
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Part III  

Exploring Graph Structured Data for       
User Modelling 
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Chapter 6  

Taxonomic Analyses on Graph Learning- 
based Recommender Systems 
Recent advances in graph-based learning approaches have demonstrated their effectiveness 
in modelling users’ preferences and items’ characteristics for Recommender Systems 
(RSs). Most of the data in RSs can be organized into graphs where various objects (e.g., 
users, items, and attributes) are explicitly or implicitly connected and influence each other 
via various relations. Such a graph-based organization brings benefits to exploiting 
potential properties in graph learning (e.g., random walk and network embedding) 
techniques to enrich the representations of the user and item nodes, which is an essential 
factor for successful recommendations. In this chapter, we provide a comprehensive 
analysis of the Graph Learning-based Recommender Systems (GLRSs). Specifically, we 
start from a data-driven perspective to systematically categorize various graphs in GLRSs 
and analyze their characteristics. Then, we discuss the state-of-the-art frameworks with a 
focus on the graph learning module and how they address practical recommendation 
challenges such as scalability, fairness, diversity, explainability and so on. Finally, we share 
some potential research directions in this rapidly growing area. 

6.1 Introduction 

In the last few decades, the rapid development of Web 2.0 and smart mobile devices has 
resulted in the dramatic proliferation of online unstructured data, such as news articles. 
They are explicitly or implicitly connected with each other and can naturally be formed 
into graphs representing objects and their relationships in varied domains, including e-
commerce, social networks, and so on. On the one hand, the interconnection of objects 
shows a direct or indirect interactive relationship, which provides a more intuitive and 
effective way for the recommendation systems to explore the hidden relationships between 
the target user and the recommended items. On the other hand, the data structure of graphs 
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breaks the independent interaction assumption by linking users or items with their 
associated attributes such that the recommender systems are able to capture not only the 
user-item interactions but also the rich underlying connections by mining item-item/user-
user relations to make more accurate recommendations. Moreover, most recommendation 
models work as black-boxes that only provide predictive results rather than exhibiting the 
reasons behind a recommendation, such as collaborative signals in collaborative filtering 
or knowledge-aware reasoning in knowledge graph-based recommendation. Such black-
box nature makes the decision-making process opaque to understand and hampers their 
further applications. Graph-based recommender systems provide new opportunities in 
improving the explainability of the recommender systems by using explicit connections 
between objects in graphs to reveal the recommendation results. Therefore, it is of crucial 
significance to fully explore the semantic connections and potential relations of the graphs 
to improve the performance on both the explainability and accuracy of recommendations. 
Graphs in this chapter can be referred to as anything with an underlying graph structure 
relevant to recommendation purposes. 

However, there exist some problems and challenges in how recommender systems (RSs) 
can make full use of these data: 

• Heterogeneous Objects: The unstructured data can be organized into a graph 
including different-typed objects and links. Modelling and abstracting such a space 
of information have been a challenging task encountered in RSs. 

• Large-scale Volume: Real graphs, such as social networks, can easily have millions 
even billions of nodes and edges, which renders most traditional recommendation 
algorithms computationally infeasible. 

• Dynamic Contents: Most real-world graphs are intrinsically dynamic with the 
addition/deletion of edges and nodes. Meanwhile, similar to graph structure, node 
attributes also change naturally such that new content patterns may emerge and 
outdated content patterns will fade. 

Recently, graph learning (GL) has exhibited the potential to obtain knowledge embedded 
in different kinds of graphs. Many GL techniques, such as random walk, graph embedding 
and graph neural networks, have been developed to learn the complex relations modelled 
on graphs and achieve great improvement on recommendation performance. An emerging 
RS paradigm built on GL, namely Graph Learning-based Recommender Systems (GLRSs), 
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has attracted growing attention in both research and industry communities. For example, 
researchers leverage random walk to propagate users' preference scores from historical item 
nodes and output a preference distribution over unobserved items, such as ItemRank [113] 
over item-item correlation graph, RecWalk [114] over the user-item bipartite graph, and 
TriRank [115] over the user-item-aspect tripartite graph. Moreover, various graph 
embedding techniques and graph neural networks have been proposed and incorporated 
into the representation learning of RSs, using direct or multi-hop connections within graphs 
to enrich the representations of the user and item nodes. These methods further improve 
the recommendation performance. 

To date, there is only a handful of related work devoted to Graph Learning-based 
Recommender Systems (GLRSs) from multiple perspectives, including data-driven and 
technology-driven. Wang et al. [116] have analyzed several graph challenges and 
summarized the recommender systems utilizing graph learning techniques. Although it is 
the first review on GLRSs, their survey covers a limited number of references and does not 
go into the technical details on graph learning modules in GLRS and how they address 
those challenges. Furthermore, they did not give a systematic summarization on existing 
datasets adopted by graph-learning based recommendation researches. In this chapter, we 
contribute the most comprehensive overview of state-of-the-art GLRSs. We systematically 
analyze the benchmark datasets in GLRSs, provide detailed descriptions on representative 
models, make the necessary comparison, and discuss their solution to practical 
recommendation issues such as scalability, fairness, diversity, explainability, etc. 

Contributions. This chapter aims to provide a thorough analysis of the approaches of 
graph-learning based recommender systems. It is intended to help both academic 
researchers and industrial practitioners who are interested in GLRSs and are willing to gain 
an in-depth understanding of how graphs can help to improve recommendation 
performance with the help of graph-learning technologies. To this end, the main 
contributions of this work are summarized as follows: 

1) We propose a novel taxonomy to categorize various graphs in GLRSs and analyze their 
characteristics from a data-driven perspective. We further summarize the corresponding 
benchmark datasets based on the proposed taxonomy. 

2) We conduct a comprehensive taxonomic analysis on existing graph-learning based 
recommendation approaches and provide a thorough literature review of state-of-the-art 
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researches through comparison and analysis on different types of graphs associated with 
model technologies for recommendation purposes. We then analyze the limitations of 
existing works and suggest future research directions of GLRSs such as dynamicity, 
interpretability, and fairness. 

Organization. The rest of the chapter is organized as follows. In Section 6.2, we review 
our research methodology on how we collected the related papers and provide an initial 
analysis on datasets adopted by reference papers. In Section 6.3, we introduce the 
definitions of the basic concepts required to understand the graph-learning based 
recommendation problem, followed by a formal problem definition of graph-learning based 
recommendation. Section 6.4 provides a new taxonomy on graphs that are related to 
specific datasets. Section 6.5 provides an overview of state-of-the-art GLRSs methods. 
Section 6.6 discusses the current challenges and suggests future directions, followed by the 
conclusions in Section 6.7. 

6.2 Research Methodology 

6.2.1 Paper collection 

To achieve a systematical structure of existing researches on graph-based recommendation, 
this study was performed based on a bibliographic review method in the graph-based 
recommendation domain. Specifically, we first conducted a comprehensive review of 
previously published papers concerning GLRSs by searching with the following keywords: 
“graph learning recommendation”, “graph based recommendation”, “graph neural network 
recommender system”. We also searched for references with additional keywords such as 
“social recommendations”, “representation learning based recommender system”, 
“knowledge graph recommendation”, considering that some articles do not explicitly have 
“graph” in their titles. Google Scholar was the primary digital library to find relevant papers 
while other academic search engines such as ACM Digital Library18 , IEEE Xplore19 , 
Springer20, Rearch-Gate21 and Web of Science22, were also consulted. To ensure the quality 

 
18 https://dl.acm.org 
19 https://ieeexplore.ieee.org 
20 https://www.springer.com 
21 https://www.researchgate.net/ 
22 https://www.webofknowledge.com 
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of the references, we selected papers published in prestigious and top-tier international 
conferences and journals including NIPS, ICML, RecSys, CIKM, ICLR, AAAI, IJCAI, 
WWW, WSDM, KDD, and TOIS, TKDE, UMUAI, etc. Given our interest, we manually 
checked the keywords, the titles, the abstracts, the conclusions, the tables and figures of the 
collected papers. In the end, we obtained a collection of 99 papers that meet the mentioned 
criteria and then are summarized in Section 6.3 and 6.4. Among these selected papers, 9 
papers were related to recommender systems on the tree-based graph, 8 papers on 
recommendations on homogeneous graphs, 15 papers on recommendations on bipartite 
graphs, 67 papers on recommendations on heterogeneous graphs; 9 papers were related to 
traditional RSs, 23 papers concentrate on path-based methods, 14 papers on graph 
embedding based approaches, 51 articles were related to deep learning-based methods for 
GL-based recommendations. Besides, 5 papers were analyzed to assess open issues for 
GLRSs and potential directions for future work. Figure 6.1 gives some the statistics of the 
collected papers with the publication time and venue. 

 

Figure 6.1: Statistics of publications related to GLRSs grouped by the publication year and 
venue. 

6.2.2 Data analysis 

Analyzing the collected papers, we made two observations on the utilized datasets: (1) They 
were across different domains, such as e-commercial and entertainment domains; (2) Some 
datasets could be used to construct multiple types of graphs for different recommendation 
purposes, while some were only used to construct one type of graph. For instance, we found 
nearly all classified graph types were utilized for the Amazon dataset, while only multi-
source graph could be found for the Epinions dataset. To clearly make comparisons and 
show the difference of these datasets in terms of both domains and graph types, we made a 
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detailed comparison of all datasets in Table 6.2. 

6.3 Problem Formalization 

In this section, we first introduce the definition of the basic concepts in graph-based 
recommendations and then provide a formal definition of the graph-based recommendation 
problem. 

6.3.1 Basic definitions 

The definitions related to GLRSs are as follows. 

Definition 1 Graph: A graph is 𝐺 = (𝑉, 𝐸), where 𝑣 ∈ 𝑉 is a node and 𝑒 ∈ 𝐸 is an edge. 
Each edge 𝑒GN is a pair between vertex 𝑣G and 𝑣N. 𝐺 is associated with a node type mapping 
function 𝑓e:	𝑉 → 𝐴 and an edge type mapping function 𝑓':	𝐸 → 𝑅. 𝐴 and 𝑅 denote the set 
of node types and edge types respectively. Each node 𝑣G ∈ 𝑉 belongs to one particular type, 
i.e., 𝑓e(𝑣G) ∈ 	𝐴 . Similarly, for 𝑒GN ∈ 𝐸 , 𝑓'U𝑒GNV ∈ 	𝑅 . When a graph has 𝑒GN ≢	𝑒NG  and 
𝑓'(𝑒GN) ≢ 𝑓'(𝑒NG), it is a directed graph. Otherwise, the graph is undirected. 

Definition 2 Network Schema: The network schema, denoted as 𝑇� = (𝐴, 𝑅), is a meta 
template for a heterogeneous network 𝐺 = (𝑉, 𝐸) with the node type mapping 𝑓e and the 
edge mapping 𝑓', which is a directed graph defined over node type set 𝐴 with edges as 
relations from 𝑅. 

Definition 3 Homogeneous Graph: A homogeneous graph 𝐺i#&# = (𝑉, 𝐸),  is a graph in 
which |𝐴| = |𝑅| = 1. This is to say that all nodes in 𝐺i#&# belong to a single type and all 
edge to one single type. 

Definition 4 Tree Graph: A tree graph 𝐺%$'' = (𝑉, 𝐸),   is a graph in which all nodes are 
connected with each other and there is no cycles in 𝐺%$''. The leaf node in a tree graph has 
degree 1, where degree of a vertex 𝑣, denoted as 𝑑(𝑣), is defined as the number of vertices 
that are adjacent to 𝑣. 

Definition 5 Heterogeneous Graph: A heterogeneous graph 𝐺i'%'$ = (𝑉, 𝐸)  can be 
defined as a graph in which 𝐴 > 1 and/or 𝑅 > 1. 

Definition 6 Bipartite Graph: A bipartite graph 𝐺(G"Y$ = (𝑉, 𝐸) is a graph in which 
nodes are partitioned in two sets 𝐴; and 𝐴< where 𝐴 = 𝐴; ∪ 𝐴< and 𝐴; ∩ 𝐴< = ∅. Each 
edge 𝑒GN ∈ 𝐸 of 𝐺(G"Y$ connects a node 𝑣G with a node 𝑣N where 𝑓e(𝑣G) ∈ 𝐴;, 𝑓eU𝑣NV ∈ 𝐴< 
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and 𝑣G , 𝑣N ∈ 𝑉. A bipartite graph is a special type of heterogeneous graph. 

Definition 7 Knowledge Graph: A knowledge graph 𝐺=8#a = (𝑉, 𝐸) is a directed graph 
whose nodes are entities and edges are subject-property-object triple facts. Each edge of 
the form (head entity, relation, tail entity), denoted as < ℎ, 𝑟, 𝑡 >, indicates a relationship 
of r𝑟 from entity ℎ to entity 𝑡. ℎ, 𝑡 ∈ 𝑉 are entities and 𝑟 ∈ 𝐸 is the relation. Entities and 
relations in a knowledge graph are usually of different types, such that 𝐴 ∩ 𝑅 = ∅ . 
Knowledge graphs can be viewed as another type of heterogeneous graphs. 

The network schema of a heterogeneous graph specifies type constrains on graph 
objects/nodes and relationships of links/edges between the objects/nodes. The constraints 
make the heterogeneous graph semi-structured data, guiding the exploration of the 
semantics of the graph. 

6.3.2 Problem definition 

Given a user set 𝑈 and an item set 𝐼, for each user 𝑢 ∈ 𝑈 who has interacted with an item 
set 𝐼XO ∈ 𝐼, the recommendation problem can generally be seen as a mapping function 𝑌 =
𝑎𝑟𝑔𝑚𝑎𝑥X	𝑓(𝑈, 𝐼)generating the corresponding recommendation results from 𝐼X: that are of 
interests to the user. 

However, there is no formal definition of GLRSs to date due to different implementations 
of various models on different datasets with specific characteristics. Graphs in GLRSs can 
be built upon user-item interactions as well as other auxiliary information. For instance, 
considering the graph 𝐺 = (𝑉, 𝐸), where nodes in 𝑉 can represent e.g. users, items and 
other named entities, while edges in 𝐸 can represent e.g. purchase, clicks, social relations 
as well as other relationships among entities. In this chapter, we formulate the GLRS 
problem in a general perspective using 𝑈, 𝐼 and 𝐺 as inputs to generate the corresponding 
recommendation results 𝑌  by modelling graph properties, as well as other user/item 
characteristics out of graphs: 

                                                   𝑌 = 𝑎𝑟𝑔𝑚𝑎𝑥X𝑓(𝑈, 𝐼, 𝐺)                                                (1) 

where 𝐺 can be of different types, e.g. homogeneous, heterogeneous, bipartite, tree-based 
etc, based on specific recommendation scenarios, while 𝑌 can be of different forms, e.g. 
rating scores, possible links, classifications, or ranked lists. 
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Figure 6.2: Tree-based graph illustration. 

6.4 Data-driven graph taxonomy 

Generally, most of the objects in GLRSs, e.g., users, items, attributes, and contexts, are 
explicitly or implicitly connected with and influence each other through various relations, 
e.g., social friendship, category hierarchies and user-to-item relationships. These relations 
essentially result in natural graphs and contribute significantly to the performance of 
GLRSs. To achieve a systematic understanding, we propose a new taxonomy to categorize 
the graphs by the presence of their intrinsic data characteristics, including tree-based 
graphs, homogeneous graphs, bipartite graphs and heterogeneous graphs. The taxonomy is 
shown in Table 6.3 (Appendix B). 

6.4.1 Tree-based graphs 

A tree-based graph where the items are organized with a hierarchy by a certain attribute of 
them (e.g., the category), is a natural yet powerful structure for human knowledge. It 
provides a machine- and human-readable description of a set of items and their parallel or 
hierarchical relationships like affiliatedTo, subClass and isAPartOf relations. Such 
hierarchy relations between items have been widely studied and proven to be effective in 
generating high-quality recommendations [117-123]. Typical domains of tree-based graphs 
in GLRSs consist of online products (e.g., the Amazon web store [124]), foods (e.g., 
Gowalla [125]), movies (e.g., IMDB) and music (e.g., Last.fm). Figure 6.2 illustrates an 
example of tree-based graphs in Amazon and Last.fm to organize electronics or music by 
categories/genres. If a user buys a Monitor, she may possibly prefer Power Strips to match 
her Monitor instead of Aviation Electronics. This is due to both Monitor and Power Strips 
belonging to a higher layer category – Computers according to their inherit electrical 
characteristics. If a user prefers one song under a certain genre, she is more likely to favor  
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Figure 6.3: Non-/attributed homogeneous graph illustration. 

other songs under this genre. By considering the affiliatedTo relations among items in tree-
based graphs, recommendations can be generated in a more accurate and diverse manner. 

6.4.2 Homogeneous graphs 

A homogeneous graph is a graph with a single type of objects and links in GLRSs. Typical 
examples are user graphs in social networks, which include online or offline social relations 
between users. Two connected users in a user graph usually share similar preferences and 
influence each other by recommending items. Therefore, it is necessary to take user 
relations into account when making recommendations, especially for cold-start users. 
Besides, the co-occurrence of items in a user behaviour sequence connects all the items 
together and thus results in a homogeneous item graph. The co-occurrence relations in item 
graphs not only reflect certain latent relations between items, but also reveal some 
behaviour patterns of users. It has been proven that the fusion of co-occurrence relations 
between items can yield significant performance enhancements [126]. The nodes of these 
homogeneous graphs are without attribute information, which are referred to as non-
attributed homogeneous graphs. In practice, many real-world networks usually have 
attributes with their nodes that are also important for making sense of modelling network 
topological as well as contextual information for recommendation purpose. Such networks 
with node attributes and a single type of nodes as well as edges are named attributed 
homogeneous graphs 23 . An example can be found in a friend network where edges 

 
23 Some articles also categorize graphs into directed and undirected graphs. In our point of view, the 
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represent friendship (e.g. follow, like) between two users, and nodes represent users with 
attributes e.g. demographic information, or a sequence of items the user interacted with 
[127]. In such a case, both social influence and user attributes can help to learn user 
preferences and thus affect the recommendation performance. Figure 6.3 illustrates 
examples of non-/attributed homogeneous graphs to help resolve the cold start issue of 
recommender systems. 

6.4.3 Bipartite graphs 

As an extension of network theory, the bipartite graph has attracted significant attention in 
areas like social network analysis [128]. It divides network nodes into two types and edges 
exist only between different types of nodes. User-item interactions are basic requirements 
for recommender systems and can be naturally considered a bipartite graph, where the 
nodes represent users and items, and user nodes are linked with those interacted item nodes. 
The edges of the bipartite graph can either be a single type or multiple types of interactions, 
e.g. click, like, purchase or view. Considering this multi-typed property of nodes and edges, 
the bipartite graph can be viewed as a special case of the heterogeneous graph. Figure 6.4 
shows examples of two kinds of bipartite graphs in the GLRS scenario.  

 

Figure 6.4: Bipartite graph illustration. 

In addition to user-item interactions, auxiliary information of user/item can also be 
constructed as a bipartite graph. For instance, users and their correlated activities performed 
 
undirected graph can be readily converted into a directed graph by replacing each edge with two 
oppositely directed edges. Thus in this chapter, without loss of generality, we assume that all graphs 
are directed graphs. 
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in a given location are considered as two types of nodes which can be formed as a location- 

 

Figure 6.5: Heterogeneous graph illustration. 

activity graph. Items and their attributes (e.g., pin-boards for Pinterest dataset [129]) can 
also be seen as two types of nodes in forming an item-entity bipartite graph. 

6.4.4 Heterogeneous graphs 

Different from widely used homogeneous graphs which include only same-typed objects 
or links, heterogeneous graphs (also referred to as heterogeneous information networks 
(HINs)) consider multi-typed interacting components that fuse more information and 
contain richer semantics in nodes and links [130]. The heterogeneous graph can be 
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converted into a homogeneous graph through network projection or ignoring graph 
heterogeneity, while it will make significant information loss [131]. Although the 
heterogeneous graph is ubiquitous in the real world, it is non-trivial to model the 
heterogeneity of the links and objects with the large-scale properties from both topological 
and contextual perspectives, let alone the dynamic properties for some evolving networks. 
The recent development of artificial intelligence sheds light on the possibility of processing 
more complicated networks than before, and thus the study of heterogeneous networks 
ushered in a breakthrough. Heterogeneous graphs can further be categorized as follows: 

Attributed/Non-attributed HINs. To enrich its information content, objects in a HIN are 
typically associated with diverse attributes. For instance, a “user” object on Facebook is 
related with demographic attributes like age, gender, workplace, school, while a “photo” 
object has contextual attributes like date/time, tag, album. Such HIN can be categorized as 
Attributed HIN or AHIN [132]. Otherwise heterogeneous graphs that are not affiliated with 
additional attributes are categorized as Non-attributed HIN or NAHIN for short. Figure 
6.5(a) is an example of AHIN which contains multiple types of objects including group, 
user, item, that are associated with attributes of group topic, demographics (e.g. age, area, 
gender and job), visual information. Many recent studies regard node attributes as a new 
kind of nodes that convert an AHIN to a NAHIN, as shown in Figure 6.5(b). 

Multi-source graphs. To address the data sparsity and cold start problems suffered by 
recommender systems, a great number of recommendation algorithms have proposed to 
leverage side information of users or items from multiple sources. For instance, user 
profiles across different networks connected through anchor links (e.g. the link which 
connects the same entity from different platforms is call an anchor link), item profiles from 
different communities, user social relationships through information sharing platforms, are 
leveraged to improve both recommendation accuracy and diversify recommendation 
output. Accordingly, multiple heterogeneous subgraphs are built upon various sources 
which are then jointly learned for recommendation tasks. Apart from user-item interactions 
which provide the basic but crucial information for recommendation strategies, user social 
networks provide auxiliary information for modelling user preferences through discovering 
social relationships and other users with similar interest patterns; item auxiliary information 
and co-occurrence in user interaction records provide more comprehensive and detailed 
knowledge revealing fine-grained user behaviour. Figure 6.5(c) illustrate a multi-source 
graph with social relations and user-item interaction information. Though it is generally 
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considered that the more information we can obtain for user interest analysis and modelling 
learning process, the more diversified and accurate recommendation results as well as 
better recommendation experience the user will get, we still face challenges from multiple 
perspectives. For instance, how to apply anchor links to provide recommendations on one 
or more platforms with available data sources while reducing noisy and inconsistent 
information from these multiple data sources. Besides, different side information of 
users/items from multiple data sources can come in various forms, e.g. multi-modalities. 
Then how to integrate such multi-source multi-model data into one recommendation 
framework in a mutually-consistent fashion is still an open research problem. 

Table 6.1: A collection of commonly used knowledge graphs. 

 

Knowledge graphs. Knowledge graphs (KGs) is a multi-relational graph composed of 
entities as nodes and relations as different types of edges as illustrated in Figure 6.5(d). 
Each edge of KG represents a triple of the form (head entity, relation, tail entity), also 
called a fact, indicating that two entities are connected by a specific relation. Recent years 
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have witnessed a rapid growth in KG application of recommendation, resulting in 
promising improvements in both recommendation accuracy and explainability due to the 
rich structured information that KG provides about the items. Existing KGs, e.g. Yago 
[133], DBPedia [134], provide auxiliary message apart from user-item interactions. The 
relational properties in KGs break down the independent interaction assumption by linking 
items with their attributes. Meanwhile, the introduction of KGs alleviates the data sparsity 
and cold-start issues raised in recommender systems [221,247,203,204]. However, the 
various types of entities and relations in KGs also pose the challenge of capturing 
semantically interconnected information for effective recommendations. In addition, how 
to reasonably and vividly provide recommendation results through KG internal reasoning 
and the linkage among user-item interactions, deserves more concerns. For instance, how 
to impartially and convincingly explain the reasoning process of the recommendation list 
to the target user. The resources of all KGs used for GLRSs have been collected and 
displayed in Table 6.1. 

Hypergraphs. Hypergraphs are defined as a generalization of graphs in which the edges 
are arbitrary non-empty subsets of the vertex set [135]. Instead of having edges between 
pairs of vertices, hypergraphs have edges that connect sets of two or more vertices. 
Correspondingly, such edges of hypergraphs are called hyperedge. The motivation for 
introducing hypergraphs is two-fold [136]: first, the data correlations can be more complex 
than the pairwise relationship, which is difficult to modell with traditional graph structures; 
second, the data representations can be multi-model, which means that data can be 
connected through e.g. text information, visual information, or social connections, which 
is difficult to capture with the traditional graphs. Thus, hypergraph is a way to model a 
more general data structure. An example of hypergraph is illustrated in Figure 6.5(e), in 
which the hypergraph consists of three nodes with one hyperedge in September 2017, and 
four nodes with two hyperedges in September 2019. 

6.4.5 Graph comparison 

Graphs, ranging from flat tree-based structure to complex network structure, from 
homogeneous network to heterogeneous ones, evolve from both structural and contextual 
sides. As summarized in Table 6.3, though many different datasets are overlapped across 
various graphs and recommendation tasks, it is undeniable that there is no perfect graph 
type that can embrace all types of data or solve all problems of recommender system. 
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However, we can still have several observations. First, tree-based graphs are mainly 
derived from such as e-commerce datasets (e.g. Amazon and JD) in which types of 
commodities can be broken down by the category's level of granularity. Such kind of tree 
structure provides recommender systems a paradigm which can be further refined from a 
``top-down" manner. Second, homogeneous graph can be formed by leveraging user social 
networks (user graph) or interlink of items (item graph). Session graph is kind of directed 
item graph with nodes of items that are clicked by the user and links of relations that are 
according to clicked order. Homogeneous graphs can be used to mine the relationships 
between a single type of nodes (e.g., users/items/sessions) to make targeted modelling for 
recommendations. Third, most bipartite graphs are constructed based on user-item 
interactions, which is the preliminary requirements for RS and can be naturally formed into 
a graph with user and item two groups of nodes. Heterogeneous graphs are suitable for 
most cases while can be subdivided into various categories according to specific scenarios. 
For instance, multi-source graphs, as the name suggests, are established upon data collected 
from multiple websites or cross-domain sources, and they are all associated with users' 
social connections like friend, chat, follow etc. KGs are generally leveraged in the domains 
of movie, music, books or news, where named entities are highly recognizable and have 
been witnessed, and most of which can be found in the corresponding entries in e.g. 
Wikipedia, DBpedia, Yago, etc. Hypergraphs have recently been introduced to represent 
the connections between sample groups such as user groups according to social 
relationships, or item groups according to user's co-purchase history, which breaks the 
traditional node-to-node pattern, pursuing a higher-level representation of data structure.  

With its diversity, heterogeneous graphs with various aspects of information can be used 
to model more complex situations than other types of graphs so as to better solve the cold-
start and data sparsity issues of recommender systems. However, such complexity of both 
graph structure and content leads to a more complicated modelling process and brings 
challenges that cannot be ignored. With the development of technology, the types of graphs 
that computers can process tend to be more and more complex and fine-grained, which 
suggests that RS can handle more sophisticated and multi-dimensional problems and 
scenarios. 

6.5 Graph-based models for GLRS 

In this section, we will go through various models adopted in GLRS and analyze them from 
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the technical perspective, as shown in Figure 6.6. 

 

Figure 6.6: A categorization of GLRS methods from the technical perspective. 

6.5.1 Traditional methodologies 

Traditional recommender systems mainly aim to learn an effective prediction function 
based on user-item interactions and are generally classified into Collaborative filtering 
(CF)-based, content-based and hybrid approaches. Content-based recommendations use 
user/item side information in addition to user-item interactions for recommendation. 
However, it suffers from the cold-start issue and inefficiency because of the high time 
complexity. CF-based methods are one of the most popular algorithms in RSs, where 
Memory-based approaches, also referred to as neighborhood-based CF, are among the 
earliest techniques which aggregate the interests of neighbors for recommendation. 
Specifically, they calculate user-user or item-item similarity derived from the user-item 
interaction matrix for recommendation. In fact, the user-item interaction matrix can be 
regarded as the adjacency matrix of the bipartite graph with user and item two types of 
nodes, the recommendation algorithms based on which can thus be regarded as GLRS. For 
simplicity and clarity, this chapter only refers to those that explicitly indicate to exploit the 
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graph as input or part of the input of the RSs. For instance, [148] calculates user-based 
similarity followed by k-nearest neighbors for recommendation. In addition to being 
convenient to implement and maintain, such memory-based CF is not applicable for large-
scale data for their inefficiency in searching among large-scale database pool. Other 
traditional graph-based RSs build predictive models on user-item matrices to uncover the 
implicit user behaviour patterns. Such model-based GLRSs are originally introduced for 
processing large-scale datasets and meanwhile improving the recommendation 
performance compared with memory-based GLRSs, representatives among which can be 
latent factor models (LFMs). LFM has shown its effectiveness and efficiency in RSs by 
factorizing user-item interaction matrix into two low-rank user-specific and item-specific 
matrices which are then utilized to make further predictions on user's future behaviour 
[149]. To overcome the cold-start problem which LFMs usually suffer from, many works 
attempt to leverage additional information to improve the recommendation performance. 
For instance, [150] also model social network information namely user social relationships, 
as regularization term into LFM. Traditional GL-based recommenders strive to model user 
preferences on the basis of explicit or implicit interactions with the assumption that all user-
item interactions in the historical sequences are equally important, which is not always true 
in real-world scenarios. The user's next behaviour depends not only on the static long-term 
preferences but also on the current intent to a large extent. Despite the limited 
improvements on recommendation performance, the investigation into how to efficiently 
and fully exploiting nodes as well as relations on graphs has not reached its full potential. 

6.5.2 Path-based methods 

For heterogeneous graphs with multiple types of nodes and relations, the basic idea for 
earlier recommendation strategies is to leverage path-based semantic relatedness between 
users and items over the constructed heterogeneous graphs [151-157]. Different from 
similarity-based methods based upon the item/user attributes, path-based methods 
especially emphasize on the essential role of links in graphs, and links between start node 
and end node can form a path serving recommendation purpose. In this case, the underlying 
relationships via network propagation show particularly importance for indirectly 
connected objects. Earlier studies leverage a series of predefined rules to generate path on 
the constructed graphs followed by different similarity measurements for ranking the  
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Figure 6.7: Bibliographic network schema and meta paths [164]. 

candidate items for recommendation [51,158]. Another graph tracing algorithm initially 
designed for homogeneous networks are random walk-based algorithms [159]. It starts at 
a node and follows outgoing edges, uniformly at random or according to predefined 
transition probability, until the stop condition is reached. The output paths indicate the 
context of connected vertices. The randomness of walks gives the ability to explore the 
graph with considering both the global and local structural information by walking through 
neighboring vertices. Random walk mechanism enables to capture complex, high-order and 
indirect relations between nodes for recommendations. Due to this advantages, random 
walk and its various variants are favored for a long period in GLRS domain generating 
paths in homogeneous as well as heterogeneous graphs [160-163]. 

To integrate different types of objects and links in heterogeneous networks, the work of 
[164] proposed the concept of meta-path, which are learned by many later researches 
[152,154]. Specifically, a meta-path [164] is a path defined on the graph of network schema 

𝑇_𝐺 = (𝐴, 𝑅) , and normally denoted in the form of 𝐴; 	
�=*, 𝐴< 	

�)*,	𝐴j. . .
�A→	𝐴kO; , which 

defines a composite relation 𝑅 = 𝑅; ∘ 𝑅< ∘	. . .∘ 𝑅k  between types 𝐴;  and 𝐴kO; , where → 
explicitly shows the direction of a relation from graph 𝐺 , ∘  denotes the composition 
operator on relations. Figure 6.7 illustrates two examples of meta-paths 6.7(b) and 6.7(c) 
derived from network schema 6.7(a). When a user-specific meta-path e.g. 𝑃 =
(𝐴;𝐴<. . . 𝐴k)	has been given, several similarity measures can be defined for pair-wise nodes 
comparison, namely to compare 𝑣G ∈ 𝐴;	and 𝑣N ∈ 𝐴k according to a series of paths derived 
based on 𝑃, referred to path instances. Random walk is one representative to generate paths 
instances 𝑝 ∈ 𝑃 following the predefined meta-path schema [152]. To further learn the  
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Figure 6.8: A toy example of embedding a graph into 2D space with different granularities 
[165]. 𝑮𝟏,𝟐,𝟑 denotes the substructure containing node 𝒗𝟏, 𝒗𝟐, 𝒗𝟑. 

attributed HIN for better recommendations, later studies attempt to combine meta-paths 
with traditional latent model, e.g. FM [37], MF [166,154]. Though random-walk based 
similarity measures require less domain knowledge compared with meta-path based 
measures, the latter one turns out to be more meaningful and interpretable in most GLRSs 
[164].  

Despite that path-based similarity strategies have achieved initial success in improving RS 
accuracy to some extent, challenges still exist. First, meta-path based similarities rely on 
explicit path reachability and would be affected by the sparse and noisy input data on 
recommendation performance, especially for links that are accidentally formed but do not 
convey meaningful information for recommendations. Second, the explicit path relatedness 
derived from the path-based similarity methods does not necessarily have a positive impact 
on recommendation performance. For instance, the work of [153] learns a linear weighting 
mechanism to integrate the extracted meta-paths for the subsequent recommendations, 
ignoring the complicated mapping mechanism of HIN. Third, path-based similarity 
strategies need to generate similarity scores for all candidate items at each step for every 
user which reduce the effectiveness of the system and thus difficult to be applied to the 
large-scale scenario. 

6.5.3 Graph embedding-based methods 

The motivation of applying graph embedding (GE) strategies lie in that they can provide 
an effective yet efficient way to solve the graph analytics problem. Specifically, graph 
embedding converts a graph into a low dimensional space in which the graph information 
can be retained as much as possible. By representing graph as a (or a set of) low-
dimensional vector(s), graph algorithms can be applied efficiently. Figure 6.8 illustrates 
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how graph embedding projects a graph into the vector space in different granularities, e.g. 
w.r.t. node/edge/substructure/whole graph [165]. Some researches differentiate graph 
representation learning and graph embedding by comparing the dimension of the output 
embedding vectors with the dimension of the inputs [165]. Graph embedding focuses on 
learning the low-dimensional representations, while graph representation learning doesn't 
require the learned representations to be low dimensional. Though they have slight 
differences, we do not make a special distinction in this analysis. Essentially, the two 
methods aim to project graph into the vector space while preserving the graph structure and 
capturing the connectivity information within graph to serve the recommendation task. The 
mapping can be defined as: 

                                                         𝑓: 𝑣G → 𝒙G ∈ 𝑅6                                                        (2) 

where 𝑑 ≫ |𝑉|, and 𝒙G = {𝑥;, 𝑥<, . . . , 𝑥6} is the embedded or learned vector that captures 
the structural properties of node 𝑣G. 

Different from path-based methods, GE-based methodologies can capture more complex 
and higher-order relationships among nodes and provide more efficient computation for 
various recommendation tasks by automatically discovering and mapping a network's 
structural properties into a latent space. After that, the output node representations can be 
leveraged to various recommendation tasks, e.g. link prediction, rating prediction. The 
recent advances on GE-based GLRSs have been largely influenced by the skip-gram model 
[167], which learns word representation in latent vector space according to its context in a 
sentence. Later works, e.g. DeepWalk [168], LINE [169], and Node2vec [170] are inspired 
by skip-gram and have achieved encouraging success in GLRSs [171-176]. For instance, 
the authors of [175] apply DeepWalk which aims to maximize the average logarithmic 
probability of all vertex context pairs in random walk sequence, to learn user and item 
representations on a multi-source graph to consider item structure, textual content and tag 
information simultaneously which are then used for collaborative filtering. In [172] the 
authors generate user and item representations with Node2vec, an extension of DeepWalk 
by leveraging a biased random walk to navigate the neighborhood nodes, on heterogeneous 
knowledge graph, which are then used to compute property-specific relatedness scores 
between users and items as the input for the learning to rank approach, resulting in 
optimizing top-N item recommendations. 

Another research line of GE-based method adopts translation-based embedding models 
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inspired by [177], e.g. TransE [178]. Different from DeepWalk related methods, TransE 
explicitly models entities and relationships among entities into the same space or different 
spaces while preserving certain information of the graph, which is later generalized into 
hyperplane translation(TransH [179]) and translation in separate entity space and relation 
spaces (TransR [180]). The basic idea behind TransE is that, the relationship between two 
entities corresponds to a translation between the embeddings of entities, that is, 𝒉	 + 	𝒓	 =
	𝒕 where 𝒉, 𝒕, and 𝒓 represents head entity, tail entity and relation between 𝒉 and 𝒕 in triplet 
(ℎ, 𝑟, 𝑡)  in a graph. Researchers attempted to adopt such translation-based models for 
knowledge graph embedding for recommendation [181,126,183]. For example, Wang et 
al.  [164] assign a basic representation and various relational ones for each item via TransE, 
which are then combined dynamically by temporal kernel functions, providing both 
recommendations and explanations. Chen et al. [182] adopt TransH to embed the objects' 
social relationships into a shared lower-dimensional space and learn user's dynamic 
preference via probabilistic model. Finally, the recommendation list is generated with item-
based collaborative filtering. 

6.5.4 Deep learning-based methods 

Deep learning (DL) has driven a remarkable revolution in recommender applications as can 
be seen that the number of research publications on deep learning-based recommendation 
methods has increased exponentially recently. To draw an overall concept of this field, we 
further classify the existing DL-based methods into RNN, CNN, auto-encoder, attention 
mechanism, reinforcement learning, graph neural network, transformer-based methods and 
deep hybrid models as shown in Figure 6.6. 

Recurrent Neural Network (RNN). Recurrent neural networks (RNNs) and their variations 
e.g. gated recurrent units (GRU) [107], long and short-term memory (LSTM) [183], are 
proposed to model the temporal dynamics and sequential evolution of content information. 
The original superiority of RNNs can well capture the dependencies among items in time-
sensitive user-item interaction sequences or in session-based recommendation settings. 
However, the limitations lie in that it is difficult to model dependencies in a longer 
sequence, and training is burdened with high cost, especially with the increase of sequence 
length. Thus, some works combine RNN with other mechanisms to balance this 
disadvantage of RNN. For instance, Huang et al. [184] design a memory-module to extract 
user's fine-grained preference on taxonomy together with a GRU layer to learn the 
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sequential pattern. Wang et al. [57] make it different by adopting an LSTM layer to model 
the sequential dependencies of entities and relations on KG, generating path representations 
followed by a pooling operation to obtain prediction signal for user-item pairs. 

Besides, using RNN for long sequence modelling also suffer from the vanishing and 
exploding gradient problem which is a common problem in many types of neural networks, 
e.g. feed-forward neural network, CNN. Despite its limitations, the RNN-based approach 
still dominates in sequential recommendations due to its recurrent nature that matches the 
natural way of our brain to read one after another in sequence mode. 

Convolutional Neural Network (CNN). Convolutional neural networks (CNNs) [185] are 
capable of extracting local and global representations from heterogeneous data sources 
such as textual and visual information. It performs well in processing data with grid-like 
topology and capturing spatial relationships of the inputs, such as the relations between 
different parts of the image, or dependence between words. Besides, the parameter sharing 
mechanism of CNN filters applied across different parts of inputs to produce a feature map 
can help reduce the complexity of the model and avoid model overfitting. The typical 
structure of CNN consists of convolution layers, pooling layers and feed-forward full-
connected layers. CNN and its variants are mostly utilized for the feature extraction process 
in GLRSs as well as other recommendation tasks. For instance, Wang et al. [32] leverage 
a multi-channel CNN to learn news embeddings w.r.t. words and entities extracted from 
news titles and knowledge graph.  

However, CNN also suffers from gradient vanishing and exploding problems with deep 
architecture. Furthermore, CNN does not encode the position and orientation of the input 
object, and it lacks the ability to deal with the spatial variants of input data. Therefore, a 
large amount of training set containing various cases is required to achieve a certain 
performance. 

Auto-Encoder. Basic auto-encoder (AE) contains an encoder which encodes (projects) 
high-dimensional inputs 𝑿 to low dimensional hidden representations 𝒁, and a decoder 
which decodes (re-projects) hidden representations 𝒁 to the output 𝑿ô that looks like the 
original input 𝑿. The objective is designed to minimize the reconstruction error, and find 
the most efficient and informative compact representations for the inputs. To apply AE to 
graph-structured data for recommendation purpose, Zhang et al. [55] first use TransE to  
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Figure 6.9: Illustration of the graph auto-encoder framework in GLRS [186]. 

learn graph topological information from the knowledge base. Then a stacked denoising 
auto-encoders and stacked convolutional auto-encoders are adopted to learn textual and 
visual representations of items, which are as input for collaborative filtering framework. 
Later, Berg et al. [186] consider recommender system as a matrix completion task, and 
propose to apply a graph auto-encoder to produce latent features of user and item nodes 
through a form of message passing on the bipartite user-item interaction graph. The learned 
latent user and item representations are used to reconstruct the rating links through a 
bilinear decoder. Generally speaking, graph auto-encoder takes node feature embedding 𝑿 
and adjacency matrix 𝐴 as inputs, generating latent variable 𝒁 as output through encoder 
(inference model). To reconstruct the graph structure data, the decoder (generative model) 
takes 𝒁 as input and output a reconstructed adjacency matrix 𝑿ô. Based on [186], Zhang et 
al. [187] take a step further by proposing a new stacked and reconstructed graph 
convolutional networks, which takes low-dimensional user and item embeddings as the 
input to the model and solve the cold start problem by reconstructing the masked node 
embeddings with a block of graph encoder-decoder in the training phase. Figure 6.9 
illustrates how auto-encoder operates on graph-structured data for recommendation 
purpose. The problem of auto-encoder framework might be that it usually leads to a local 
optimum due to the back-propagation algorithm it employs [188], which may also be the 
common problem of most deep learning-based methods that adopt back-propagation for 
training procedure. Besides, the encoder-decoder architecture requires that the complete 
sequence of information must be captured by a single vector, which poses problems in 
holding on to information at the beginning of the sequence and encoding long-range 
dependencies. 

Attention mechanism. Attention mechanism [188] is motivated by human visual attention. 
For example, people only need to focus on specific parts of visual inputs to understand or  
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Figure 6.10: Different attention mechanisms (vanilla attention, self-attention, co-attention and 
multi-head attention) in GLRS. 

recognize them. Attention mechanism is proposed to filter out the uninformative features 
from raw inputs and reduce the side effects of noisy data. The effectiveness of the attention-
based methods in RSs has been verified and aroused considerable attention over recent 
years. In attention-based GLRSs, inputs are weighted with attention scores and outputs are 
normally vectors that combine different importance of the inputs. Attention mechanism can 
be used to allow the learning process to focus on parts of a graph that are more relevant to 
a specific task. Generally, it can be used in conjunction with MLP, CNN, RNN and other 
deep learning-based architectures. Thus the heart of the attention-based methods is how to 
obtain and calculate the attention weights of each input parts. 

There are three attention mechanisms commonly used in recent studies: (1) vanilla 
attention mechanism learns the attention scores for the input data by transforming the 
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representations of input data via fully-connected layers, and then adopting a softmax layer 
to normalize the scores [190,191,32]. Han et al. [190] propose to use multi-layer MLP to 
learn user/item aspect-level representation based on extracted meta-paths. Then an 
attention mechanism is adopted to weigh the contribution of different aspect-level latent 
factors to user/item final representations. Wang et al. [32] combined the vanilla attention 
layer with CNN layer to match candidate news to each piece of clicked news and aggregate 
the user's history with different weights. (2) Self-attention mechanism [192] is proposed to 
gain exposure recently as it can replace RNN and CNN in the sequence learning, achieving 
better accuracy with lower computation complexity. It focuses on the self-matching of a 
sequence whereby the attention weights are calculated by the multiplication between key 
and query vectors transformed from the input sequence. For instance, Cen et al. [193] adopt 
self-attention to capture the influential factors between different edge types of the neighbors 
of a specific node on the multiplex heterogeneous graph. (3) Co-attention mechanism 
focuses on co-learning and co-matching of two sequences whereby the attention weights 
of one sequence are conditioned on the other sequence, and vice verse. Some studies prefer 
to classify co-attention and self-attention as one category [194,195], but for clarity, in this 
analysis we describe them separately. In [196], the authors design a parallel co-attention 
mechanism to dynamically infer the primary reasons of the user purchase decision, 
assigning higher attention weights to more relevant meta-paths extracted on the graph. 
Other studies adopt attention variations based on these three categories. For instance, in 
[171] the authors adapt skip-gram to a merged heterogeneous user-item interaction and use 
social networks followed by a multi-layer and multi-head attention [192] mechanism to 
learn different importance of entities. Multi-head attention makes an improvement of self-
attention mechanisms to draw global dependencies between inputs and outputs by 
eschewing the use of recurrence in neural network and running through an attention 
mechanism several times in parallel. In [197] the authors adopt Sentence-BERT [198], a 
language model that based on multi-head attention and bidirectional training procedure, to 
explore the potential links between item based on reviews. The learned item representations 
from BERT are then used to generate item subgraph according to the cosine similarities 
between all items. 

Figure 6.10 illustrates the abovementioned attention mechanism architectures for GLRSs. 
The core of the attention mechanism of focusing on the most relevant parts of the input by 
providing a direct path to the input helps to alleviate the bottleneck problem of the 
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vanishing gradient and resolve the disadvantage of encoder-decoder architecture that has 
the problem of remembering long sequence dependencies. However, one believes that the 
attention mechanism adds more weight parameters to the model, which increase training 
time, especially for long input sequences. 

Deep Reinforcement Learning (DRL). Reinforcement learning (RL) uses trial-and-error 
experience with an agent that learns a good behavior by modifying or acquiring new 
behaviors and skills incrementally. During such a learning process, the agent interacts with 
the environment and must make value judgements so as to select good actions over bad. 
Actions that get them to the target outcome are rewarded (reinforced). Deep reinforcement 
learning [199] goes a step further by incorporating deep neural networks to represent 
knowledge acquisition progress. 

 

Figure 6.11: Deep reinforcement learning based GLRS with knowledge graph [202]. 

In GLRSs, one can take path generation procedure as a decision-making process for 
training with RL, so that the optimal recommendation results as well as the interpretation 
of the results can be generated at the same time [200-203]. For instance, Xian et al. [201] 
propose to use RL approach where an agent starts from a given user, and learn to navigate 
to the potential items of interest on the knowledge graph. After that, the reasoning path 
history can serve as a genuine explanation for the recommendation results. Similarly, Song 
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et al. [200] formulate the generation of user-to-item paths as a sequential decision process. 
Specifically, it defines the target user as the initial state and the walks on the constructed 
heterogeneous user-item-entity graph as actions. In the work of [204], the authors adopt 
KG to improve the sample efficiency as well as interactive recommendation performance 
by applying a deep Q-network to fit on samples from the local graph of KG rather than the 
whole graph. Interestingly, we can find that most DRL-based recommendation approaches 
utilize KG as an important medium to learn user-to-item inference. Figure 6.11 illustrates 
a typical example of adopting KG with DRL for recommendation purpose. It is probably 
due to the explicit association between the target user and items that can reveal the user’s 
potential interests, and meanwhile, the semantic space of KG can also helpful in extracting 
user’s preference while learning. 

DRL-based approaches have great potential in decision-making and long-term planning in 
dynamic environment [205]. However, the ideal way to train a DRL model to learn the 
optimal recommendation policy is to train the agent online, which cannot be always 
satisfied. One commonly used training strategy is to make use of offline logged data 
directly, but it will suffer from the estimation bias problem under the real-time interaction 
setting [293]. Besides, similar to other deep learning-based methods, DRL-based 
approaches also lack of interpretability. More importantly, few appropriate platforms or 
resources for developing and testing DRL-based methods in academia [207]. 

Graph Neural Networks (GNN). Graph neural network (GNN) enjoys a massive hype as 
recent works have witnessed a boost of performance in RSs. It motivated from CNN and 
graph embedding and designed specifically on graph-structured data in the non-Euclidean 
domain. GNN can be applied from simple homogeneous graphs to complex heterogeneous 
ones with attributes, and achieves improvements in recommendation results by capturing 
the higher-order interaction in user-item relationships through iterative propagation 
resulting in better user/item representations. Specifically, GNN aims to iteratively 
aggregate feature information from neighbors and integrate the aggregated information 
with the current node representation [208]. Further, it can simultaneously model the 
diffusion process on the graph with the RNN kernel. Following the existing work of [209], 
we categorize GNN as spectral [210,211,146] and non-spectral methods [46,47,212,187 
,129,196,197,122-127], as illustrated in Figure 6.12(a)(b). The spectral GNN based on 
spectral graph theory [208] which studies connections between combinatorial properties of 
a graph and the eigenvalues of matrices associated with the graph, e.g. laplacian matrix. It  
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Figure 6.12: Graph neural network based GLRS. 

focuses on the connectivity of the graph rather than geometrical proximity. For instance, 
[147] performs spectral clustering to form user community w.r.t. user side information e.g. 
geographical regions, user's active timestamp, which are then considered to sort all 
candidate items to generate ranked list for recommendation. Zhang et al. [210] propose to 
use spectral convolution operation in the spectral domain of the bipartite user-item graph 
to alleviate the cold-start problem of RS. 

The non-spectral methods mainly include aggregator and updater to learn multi-layer 
graph. The aggregator is responsible for collecting information from neighborhood nodes 
and related edges, while the updater aims to merge the propagation information around the 
central node and collected through aggregator. Normally, GNN is utilized to learn the 
representations of nodes and links of the graphs, which are then used for the following 
recommendation strategies, e.g. rating prediction and link prediction etc. For instance, 
Monti et al. [265] propose a GCN-based method for recommender systems for the first 
time, in which GCN is a variant of GNN and used to aggregate information from two 
auxiliary user-user and item-item graphs with the convolutional operation. The latent 
factors of users and items were updated after each aggregation step, and a combined 
objective function of GCN and MF is used to train the model. Ying et al. [129] propose to 
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use GCN to generate item embeddings from both graph structure as well as item feature 
information with random walks for recommendations. It can be applied to very large-scale 
web recommenders and has been deployed in Pinterest to address a variety of real-world 
recommendation tasks. In [230] the authors adopt a GNN layer for modelling both local 
and global influence of user social relations on constructed user social graph. Graph 
attention networks (GATs) [231] is an enhanced version of GNN which utilize masked 
self-attention layers to limit the shortcomings of prior graph convolutional based methods. 
An attention weight 𝛼G ∈ [0,1] is assigned to the neighborhood nodes of a target node 𝑛%, 
where ∑ 𝛼GG∈H(%) = 1	and 𝑁(𝑡) denotes the set of neighboring nodes of 𝑛%. One advantage 
of applying attention to graphs is to avoid the noisy part of a graph so as to increase the 
signal-to-noise ratio in information processing. Specifically, GAT aims to compute the 
attention coefficients 

                                            𝛼GN =
>?1	(h'Y=\�'h�(Y�⃗ 3[�i��⃗ &||�i��⃗ 0]))

∑ >?1	(h'Y=\�'h�(Y�⃗ 3[�i��⃗ &||�i��⃗ +]))+∈,&
                              (2) 

where 𝑎 and 𝑊 is the weight matrix. ℎ=  is neighbor node embedding of node 𝑛G  whose 
node embedding is ℎG . Figure 6.12(c) illustrates the schematic diagram of the attention 
operation of GAT. 

Despite their verified effectiveness in the community of graph-based recommendations, 
they suffer from the expensive computation overhead with the exponential growth of the 
neighborhood size as the layers stacked up [129]. Besides, researchers empirically show 
that the performance of GNN quickly degenerates when the number of layers is deep owing 
to that the informative neighbours will diminish in large amount irrelevant neighbors [232]. 
To solve this, Xu et al. [196] design a relation-aware GNN with attention mechanism to 
prioritize neighbors based on their importance. Then a meta-path defined receptive field 
sampler is integrated to derive the node embeddings as well as address the rapid growth of 
the multiple-hop neighborhood of each node, which is followed by a co-attention 
mechanism for differentiating purchase motivations. In [187], the authors also point out 
that training GCN-based models for rating prediction faces the label leakage issue, which 
results in the overfitting problem and significantly degrades the final performance, which 
can be improved by removing the sampled edges. 

Although some problems have been proposed by researchers for improvement or solutions, 
other challenges still exist and deserve more attention from both academia and industry. 
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First, compared with traditional deep neural networks which can stack tens or hundreds of 
layers to achieve better performance, most GNN-based architectures are usually no more 
than three layers. Despite the possible problem proposed by [232,233] shows empirically 
that stacking multiple GNN layers will result in over-smoothing, we believe that a deeper 
GNN can capture more significant information benefiting recommendation purpose for 
some larger-scale complex networks. Second, current GNN is mainly applied for static 
graph, but how to apply GNN for dynamic graphs with changing structures is still an open 
challenge. 

Deep Hybrid Models. Graph In order to deal with more complicated and diverse problems, 
as well as process more complex graphs, many graph-based recommendation models 
utilize more than one deep learning techniques. The flexibility of neural blocks in deep 
neural networks makes it possible to combine several neural components to complement 
one another and form a more powerful hybrid model. The use of a variety of different DL-
based components can also maximize the strengths and improve the defects of a single 
technology to a certain extent. In [58] the authors employ a batch of bi-directional recurrent 
networks [234] to learn the semantic representations of each path. Then an attention gated 
hidden layer is applied to learn the different importance of the derived paths between two 
entities followed by a pooling operation and a fully-connected layer for rating prediction. 
Zhang et al. [187] propose to leverage multi-link GCN as an encoder and two-layer 
feedforward neural network as a decoder to learn the user and item (users and items are 
denoted as nodes) representations, considering both node's content information as well as 
structural information. Some studies leverage different techniques to learn various graph 
features, such as node attributes and graph structure. Zhang et al. [55] construct a 
knowledge base to learn user potential preferences, where the item nodes associate with 
textual and visual features as their attributes. To model such multi-modal information, the 
authors first apply a network embedding (TransR) approach to extract item's structural 
representations by considering the heterogeneity of both nodes and relationships, followed 
by a stacked denoising auto-encoder and stacked convolutional auto-encoder to extract 
items' textual and visual representations respectively. Finally, the pair-wise ranking 
between items is considered to learn the CF architecture. 

Deep hybrid approaches have become a trend in solving complex recommendation 
problems, facing the complicated and changeable network structure for modelling dynamic 
user preferences. 
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6.5.5 Discussion of Graph-based Recommendation Models 

In this section, we present the main idea and the basic technical details of each class of 
graph-learning based recommendation approaches. From the descriptions above, we make 
several observations: (1) conventional graph-learning based approaches may suffer from 
information loss, e.g. rule-based or nearest neighbor based approaches. Some of them 
ignore long-term or high-order dependencies such as the latent factor model. (2) For path-
based methods, they either rely on domain knowledge which may not always be applicable 
e.g. meta-path based similarities, and/or require explicit path reachability which may 
incorporate noisy, meaningless paths and thus do not always have a positive impact on 
recommendation results. Besides, recommendations that rely on similarity measures cannot 
be easily applied to large-scale networks. (3) Graph embedding based methods pave the 
way for more complex and high-order features among nodes and links modelling. More 
and more state-of-the-art GLRSs leverage GE combined with deep learning approaches 
such as attention network for more efficient recommendation tasks. (4) Compared with 
other approaches, deep learning-based methods have been a well-deserved dominance in 
the current GLRS research field. They can be applied to more complicated graphs with 
multi-type nodes and links, as well as additional attributes associated with graphs. 
Meanwhile, they generally obtain better performance in terms of accuracy than traditional 
GLRSs. Besides, deep learning-based methods are more robust to sparse data and can adapt 
to the varied magnitude of the input (with the help of e.g. attention mechanism). However, 
interpretability and efficiency are still the main concerns for most GE-based and deep 
learning-based GLRSs which need to be further studied in the future. (5) From Table 6.3, 
by relating graph types to their associated modelling technologies, we observe that tree 
graphs are modelled mainly by traditional methods, while other types of graphs are 
modelled and learned mainly through deep-learning and graph embedding based methods. 
Besides, attention mechanisms become especially prevalent which are adopted to nearly all 
types of graphs for selecting branches, filtering noisy nodes, and learning better nodes and 
edges representations for recommendation purposes. 

6.6 Challenges and open issues in GLRS 

Graph-based recommendation algorithm is an exciting and rapidly growing research area 
that attracts attention from both industrial and academic domains. While existing works 
have established a solid foundation for GLRSs research, this section reveals several 
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challenges and promising prospective research directions. Specifically, there are two types 
of challenges: (1) Challenges still unsolved by graphs, which includes diversity, 
adaptability, explainability, and fairness  issues; (2) Challenges caused by graphs and their 
limitations, including scalability, dynamic graph, and complex heterogeneity learning 
issues. We will explain separately on these issues. 

6.6.1 Diversity 

Diversity has been acknowledged to help increase user's satisfaction more than accuracy 
for state-of-the-art recommender system, while probably is detrimental to average 
accuracy. McNee et al. [235] observed that ignoring the diversity of the recommended list 
leads to sub-optimal performance. Such a phenomenon seems more obvious on active users 
since they exhibit some ``tendency" from their historical interaction records. However, 
there is never a shortage of researches on improving the accuracy of recommendation, but 
only a handful of works focus on optimizing the diversity of recommendations. Ziegler et 
al. [236] present a topic diversification method to balance and diversify recommendation 
lists to reflect the user's complete spectrum of interests. Later, Sun et al. [237] design a new 
training framework based on bayesian GNN by incorporating a random graph generative 
model based on node-copying  [238]. The proposed framework is based on the observation 
that GNN-based models for recommendation usually aggregating neighborhood nodes to 
learn the node embeddings may lead to recommending similar items to the previous items 
interacted by the user. Isufi et al. [239] point out that the nearest neighbor graph connects 
entities based on their similarities and is responsible for improving accuracy, while the 
furthest neighbor graph connects entities based on their dissimilarities and is responsible 
for diversifying recommendations. Based on this observation, they develop a model that 
learns joint convolutional representations from a nearest neighbor and a furthest neighbor 
graph to establish an accuracy-diversity trade-off for recommendation purpose. Since state-
of-the-art research has reached the point where going beyond pure accuracy and the 
consideration of real user experience becomes indispensable for further advances, we 
believe that studies on fairness will become an inevitable and essential research direction 
in the community of GLRSs. 

6.6.2 Adaptability 

Real networks are constantly evolving, and thus new applications should not require 
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repeating the learning process all over again. This is a challenging task since even on the 
same information space, different types of entities and relations among them may play 
different roles for different purposes. For instance, one can recommend a hotel to a traveler 
group or a flight-hotel-package to a traveler, a user to each other in social network or a user 
to a game corporation for targeted advertising. Because of such distinct recommendation 
scenarios, the parameters need to be optimized accordingly even for the same model 
architecture, which is called fine-tuning. The optimization is generally extremely 
challenging, and it usually requires more training data for complex networks for a specific 
purpose. GPT-3 [240] is a general language model that can be applied without any gradient 
updates or fine-tuning for language generation tasks. However, it is not specific for graph 
processing or for recommendation tasks, which destined involve redundant parameters and 
structures considering the 175 billion parameters. In addition, due to the huge amount of 
training set and cost, people cannot perform low-cost retraining or fine-tuning for different 
purposes. Therefore, considering the increasingly complex heterogeneous networks, we 
believe that a highly adaptable model structure and training algorithm is urgent in the 
community of recommendations and has extremely high research value. 

6.6.3 Explanability and persuasiveness 

A good explanation for recommendation results can help to improve the transparency, 
persuasiveness, effectiveness, trustworthiness and satisfaction of recommender systems. It 
can also facilitate system designer for better system debugging.  Earlier studies leverage 
top aspect/topic words as an explanation for the recommended items [115]. With the surge 
of deep learning-based approaches in GLRSs, it is even harder to provide convincing 
explanations and calibrate why the recommendation models are effective and thus to yield 
a robust model for varied scenarios. Ma et al. [247] provide recommendation explanations 
according to the learned reasoning rules on heterogeneous graph with ground-truth item 
associations in the knowledge graph. The emerging of attention mechanisms has more or 
less eased the non-interpretable concerns of deep learning-based recommendation on 
graphs. The learned attention weights can tell which parts of the input graph contribute 
more than others with higher attention scores to the recommendation results. However, it 
only shows part of the transparency of the model rather than the entire architecture. In 
addition, the current explanation on graphs is presented by highlighting certain branches of 
the graph with target user and recommended item to form a path, which we argue lacks 
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reliable evaluation metrics the explainability and persuasiveness for target users, such as 
GLUE [242] for language understanding. Besides, we need to make sure the target 
population who we provide explanations for. They can be the end-users or researchers. For 
both groups, whether they are satisfied with this explanation and whether this explanation 
is sufficient still requires further empirical verification. Such verification cannot just stay 
on a small-scale user study or case study. It requires more target audience participation and 
different situations should also be taken into account. 

6.6.4 Fairness 

Fairness has attracted growing attention recently, especially in the context of intelligent 
decision making systems, e.g. recommender systems. Current RSs discriminate unfairly 
among the users in terms of recommendation performance, and further, the systems may 
discriminate between users in terms of explanation diversity [243]. One reason is probably 
related to the issue of data imbalance, such as inactive users who are disinclined to make 
sufficient interactions for recommendation basis. The imbalanced data can easily lead to 
bias observation on graphs where paths inference from user-to-item usually participate in 
the process of graph learning and meanwhile provide recommendation explanations. 
Research works delving into this data disparity issue include that  Fu et al. [243] propose 
to solve the fairness on the user side from both individual- and group-level for KG 
enhanced explainable RSs. Specifically, they reveal that the unfairness issue is due to data 
imbalance through an empirical study on the e-commercial dataset, namely Amazon. Then 
they propose fairness metrics in term of path diversity as well as recommendation 
performance disparity based on KG. Another possible reason lies in the incomplete 
evaluation metrics, which renders the inclination of the learning objectives on accuracy 
driven for recommendation purpose. 

Despite some studies considering the influence of fairness in GLRSs, related research is 
still quite limited with many issues remaining to be focused on. For instance, whether the 
construction and learning process of the graphs affects the fairness and discrimination of 
the ranking of recommendation results, whether there exists algorithmic bias among 
various graph-learning technologies, and whether fairness, bias and discrimination conflict 
with the accuracy of graph-based recommendations. 
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6.6.5 Scalability 

Scalability is an essential factor that affects the applicable of recommendation models in 
real-world scenarios. To deal with large-scale graphs, most existing models choose to adopt 
a sampling scheme to construct subgraphs following the sampling strategy proposed in 
GraphSage [244]. Some use random walk strategy to get the neighborhood nodes and links, 
while others consider using the shortest path algorithm for subgraph construction. Another 
algorithm to increase model scalability is to use clustering scheme. Whether using sampling 
or clustering, a model will lose part of the graph information. The scalability is gained at 
the price of corrupting graph completeness. A node may miss its influential neighbors with 
a bad sampling strategy, and a graph may be deprived of a distinct structural pattern by 
clustering. Though subgraph strategy makes GNN-based algorithms applicable no matter 
how large-scale the whole graph is, the shortcoming is that the node representation should 
be recalculated for each propagation layer. Thus, how to tradeoff the algorithm scalability 
and graph integrity could be one of the further research directions. More researches can be 
studied on the sampling strategy in integrating more informative information from 
neighborhood nodes and link while minimizing the harm to the graph integrity. Recently, 
Kyriakidi et al. [58] propose to adopt graph databases as base to improve the data scalability 
and meanwhile build recommendation models on top. Different from other graph-based 
recommender systems which focus on model complexity when considering the efficiency 
problem, the work of [248] resort recommendation problem to the result of path traversal 
computations from start node to the end node, which shed light on a new perspective of 
improving the scalability of GL-based recommendations. 

6.6.6 Recommendation on Dynamic Graph 

Most current GLRSs are able to model stable static graphs, while fail to model dynamic 
graphs with changing structures. When nodes and edges appear or disappear from time to 
time, existing GL-based recommendation models cannot change adaptively. Recommender 
systems based upon static graph processing technologies are unable to capture the changing 
attributes of the graph resulting in the detention of modelling user's dynamic interest, which 
will affect the display of recommendation results and finally influence the user's 
experience. Solutions for this research question have been actively researched on and we 
believe it is an important research direction for future work. Besides, changes in user 
preferences or item attributes (e.g. co-interacted by users) revealed by dynamic properties 
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of the graph may span multiple platforms and involve different fields. How to transfer such 
dynamic characteristic to the cross-platform or cross-fields, and how to jointly learning its 
impact on recommendation performance is also one of the future trends. 

6.6.7 Complex Heterogeneity Learning 

Apart from the user-item bipartite graph, most heterogeneity of graphs is reflected in the 
integration of different side information. Side information has been demonstrated a high 
degree of effectiveness in improving recommendation performance, especially for the data 
sparsity and cold-start issues. It can appear in different forms: textual, visual, or audio 
information; structure or non-structure. In current studies of graph-based 
recommendations,  side information are extensively involved either as extra attributes of 
nodes or edges, or as sources being learned to constructed heterogeneous graphs, or as 
external resources outside the graph, which are learned in parallel with the graph and then 
integrated at a high level. Despite the variety of utilizing side information, no study can 
indicate which fusion strategy is better in general cases, or suitable for which 
recommendation scenarios. These we believe are extremely significant references and 
guidance for future researcher and technology users. Besides, some side information are 
from multi-sources such as user social relationships pointing out user-user interlinks 
directly, while item-item relations may from co-interaction pattern from specific user or 
user group. To integrate multi-sourced side information for recommendation purpose, some 
works learn representations from different graphs separately and combine the vectors from 
different sources. Some works combine different graphs into a large-scale heterogeneous 
graph which is then learned in a unified way. These two kinds of integration strategy can 
both contribute to the improvement of recommendations, but there is no evidence showing 
that which one is better. This is thus another research question for further study. 

6.7 Conclusion 

The study systematically investigated the graph learning-based recommendation. 
Compared with the conventional RSs, the recommendation algorithms based on graph-
structured data have an advantage in solving the sparsity and cold-start problems with 
improved accuracy by mining and leveraging the explicit as well as implicit relations 
revealed on graphs. In GLRSs, the core is how to process graph-structured data, how to 
learn and obtain adequate information from the graph to fulfil the final recommendation 
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purpose, and how to adapt the graph operation process to more complex and diverse graph 
structures as well as large-scale node and edges in real-world. Looking at the changes of 
GLRSs in recent years, the graph structure is from homogeneous to heterogeneous, the 
graph attribute from zero to multiplex, the technology used from the traditional 
recommendation algorithm to deep learning-based models that have been popular recently, 
the evaluation of recommendation performance shifted from focusing only on accuracy and 
click-through rate to increasingly multidimensional development. Such development sheds 
light on a new perspective for the community of recommendations and practitioners. We 
argue that the current graph-based recommendation algorithms are far from being fully 
developed, and further research investment and empirical studies are still needed. 
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Chapter 7  

Demystifying Knowledge-aware User Intents 
for Session-based News Recommendation 
Knowledge Graph (KG) has shown significant success in recommendation tasks due to its 
ability to expose the implicit connections between entities. Although it has been widely 
recognized that relationships between entities have indispensable value while modelling 
KG, existing studies overlook the co-effects caused by entity-relation interactions and the 
semantics carried by relation connectivities, which is non-trivial in news recommendation 
with diverse user intents and perplexed relations among news entities. In this paper, we 
propose a novel Relational Knowledge-aware Heterogeneous Graph Attention Network 
(ReKaH_GAT) to model entity-relation interactions and user intents explicitly for session-
based news recommendation. Specifically, we design an original transformation schema 
from traditional KG to Entity-Relation Interaction (ERI) graph where the complex graph 
structure, entity and relation semantics are embedded in a unified way. A novel 
heterogeneous graph attention network with a self-attentive layer is applied subsequently 
to learn the context and intent embeddings from a session-specific ERI. Meanwhile, the 
semantic session embedding learned from pre-trained multi-lingual BERT is combined 
with contextual and intentional session embeddings to achieve a robust news 
recommendation. Extensive experiments are conducted on two real-world news datasets, 
demonstrating the effectiveness and explainability of our approach on recommendation 
tasks. 

7.1 Introduction 

Knowledge graph (KG), which can provide fruitful and structured side information for 
user-item interactions, has attracted increasing attention in improving the accuracy and 
explainability of recommender systems. KG appears as a type of directed heterogeneous 
graph in which nodes correspond to entities with different properties, and edges correspond 
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to relations. They can provide semantic connectivity information among user/item via the 
different types of edges and nodes in between. Besides, the extra connectivity information 
derived from KGs endows the recommender systems with reasoning and interpretable 
capabilities [57]. 

Due to the highly practical value, many kinds of approaches for knowledge-aware 
recommendations have been proposed and can roughly fall into two categories, path-based 
[149,175] and embedding-based methods [55,222,221]. The advantages of path-based 
methods lie in the ability to provide explanations by searching in the connectivity 
information of users and items in KGs with pre-defined meta-paths. However, many 
relations excluded from meta-paths can hardly be captured accurately and specified the 
holistic semantics of paths. Besides, meta-paths are always selected requiring domain 
knowledge, and thus cannot be automatically uncovered the unseen connectivity patterns. 
Though embedding-based approaches can automatically fuse semantical information via 
entities from KGs to user/item embeddings and closely project similar users/items in the 
embedding space [55], they lack the reasoning ability for recommendation results, 
especially when multi-hop relations occur in KG. Recent works combine these two 
methods for recommendations and meanwhile provide explanations [57-59], while none of 
them is designed for the news domain. 

Different from other domains, e.g., music and e-commerce, recommending news articles 
to online users has been recognized as a challenging problem because of several remarkable 
characteristics [299]: short shelf lives, continuous, anonymous users with few user profiles 
available, large-scale and complex relations among news entities. Although some recent 
studies on session-based news recommendations [217, 218] preliminary model internal 
relationships among a sequence of news articles with KG, they overlook the co-effects 
caused by entity-relation interactions and the semantics carried by relation connectivities. 
Moreover, user intent, which is also an important influential factor beyond user preference, 
is the lack of consideration. In fact, a user usually has multiple intents, driving him/her to 
consume different items. For example, the user may click a football news article 
highlighting the football player or specific football team while focusing on another music 
news article emphasizing a specific singer, reflecting different user intents on either 
football player/team or music singer. Thus, how to accurately mine user intents based on 
limited interaction records within each session while providing effective recommendations 
is the key to modern news recommender systems. 
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To this end, we propose a novel Relational Knowledge-aware Heterogeneous Graph 
Attention Network (ReKaH_GAT) to model entity-relation interactions and diverse user 
intents explicitly for session-based news recommendation. Specifically, we firstly construct 
an original entity-relation interaction (ERI) graph for each session where the complex graph 
structure, entity and relation semantics are embedded in a unified way. Then, a novel 
heterogeneous graph attention network (HGAT) is proposed to attentive aggregate 
information from different kinds of neighbouring nodes and capture the co-effects of entity-
relation interactions. Afterwards, we adopt self-attention mechanisms to distil useful 
contextual information and user intents for session representation learning and 
explainability. Meanwhile, based on the purely attention-based sequence-to-sequence 
model, Transformer [192], sequential semantics of news articles within sessions are 
considered during the training procedure to enhance representation learning as well. To the 
best of our knowledge, we are the first to explicitly model user intents behind the complex 
interactions among knowledge entities and relations for better session representation 
learning and explanations. Experimental results on real-world benchmark datasets 
demonstrate the effectiveness and explainability of our approach. 

7.2 Our Approach 

In this section, we elaborate our proposed method in detail. Firstly, we formulate the 
problem, then explain how to learn session semantic embedding. After that, we introduce 
the knowledge-aware heterogeneous graph embedding module for session contextual 
embeddings and session intentional embedding. Finally, we explain model training process. 

7.2.1 Problem Formulation 

This Chapter focuses on session-based news recommendation, which aims to predict 
possible item a user will click next without user profiles or clicked history out of the current 
session. In this scenario, let ℐ = {𝑖;, 𝑖<, … , 𝑖|ℐ|}  denotes a set of items (news articles) 
involved in all sessions. For any anonymous session 𝑠, it can be denoted as a list 𝑠 =
[𝑖;, 𝑖<, … , 𝑖!] of articles clicked by the user ordered by timestamp. ℰ! = {𝑒;, 𝑒<, … , 𝑒8} and 
ℛ! = {𝑟;, 𝑟<, … , 𝑟&} denote a set of entities and relations extracted from 𝑠 and knowledge 
graph.  

The goal of our model is to take 𝑠, ℰ! and ℛ! as input, and output probability distribution  
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Figure 7.1: The proposed ReKaH_GAT framework. ERI is constructed for each session. 
Entity and relation nodes are explicitly learned with the proposed HGAT and their influences 
are captured with self-attention layer. Session representations are learned from semantic, 
contextual and intentional embeddings for the next clicked article recommendation. 

𝑦� for all possible items in ℐ. The items with top-K values in 𝑦� will be candidate items for 
recommendation.  

7.2.2 The ReKaH_GAT Architecture 

The model framework is shown in Figure 7.1. ReKaH_GAT consists of semantic encoding 
module, knowledge-aware heterogeneous graph embedding (KHGE) module and 
recommendation, which will be introduced in detail in the following parts.  

Semantic Encoding. As BERT has been proved to be very beneficial for various 
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downstream Natural Language Processing (NLP), we leveraged multi-lingual BERT 24 
model [291] which is trained based on multi-lingual corpora and fine-tuned with news 
article classification objectives to initialize the item embeddings in separate mode. 
Specifically, given the current session 𝑠, we first learn item representations with multi-
lingual BERT followed by a fully connected layer, represented as 𝑺 = [𝒊;, 𝒊<, … , 𝒊!], 𝑺 ∈
ℝ!×6. Then a self-attention layer is leveraged to merge all article information into one 
single output vector with respect to the different importance of different clicked articles in 
the current session. Following the work of [192], in order to take into account different 
positions of a clicked article in the whole session sequence, we introduce positional 
encoding before the self-attention layer. 

                                                                  𝑺� = 𝑺 + 𝑷                                                       (1) 

                                    𝑬 = 𝑆𝐴(𝑺�) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(@𝑺
E𝑾FB@𝑺E𝑾GB3

√6
)(𝑺�𝑾e)                         (2) 

where 𝑷 ∈ ℝ!×6 is the positional encoding matrix. 𝑾∗ ∈ ℝ6×6 is trainable weight matrix 
converting article embeddings to key, value, query matrices where ∗	∈ {𝑄, 𝑉, 𝐾}. Similar 
to previous work [300], to endow the non-linearity to each layer while considering the 
interactions between different latent dimensions, a two feed-forward network (FFN) is 
applied:  

                                              𝐹𝐹𝑁(𝑬) = 𝑅𝑒𝐿𝑈(𝑾;𝑬 + 𝒃;)𝑾< + 𝑏<                              (3) 

However, a deeper network may cause overfitting or vanishing gradients in model training. 
Meanwhile, to reduce the transmission loss caused by matrix operations and propagate the 
last visited article's embedding to the final layer for enhancing the key role of the last visited 
article [301, 302], following the work of [192, 300], we leverage dropout, layer 
normalization and a residual connection after the FFN layer: 

                             𝑭N = 𝐹𝐹𝑁U𝑬NV + 𝐷𝑟𝑜𝑝𝑜𝑢𝑡(𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝐹𝐹𝑁(𝑬N)))                       (4) 

Here we get the article embedding 𝑭N ∈ ℝ6 . 𝑬N  is the 𝑗-th article embedding after self-
attention layer. To achieve a better article embeddings, one may need multiple self-
attention block for more complex article transitions based on 𝑭.  For simplicity, we define 
 
24  We choose multi-lingual BERT instead of ordinary BERT model because our experimental 
datasets include Norwegian and German news, which are both covered by multi-lingual BERT. 
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the above whole self-attention machanism as: 

                                                               𝑭 = 𝑆𝐴𝑁(𝑺�)                                                      (5) 

Thus, for multiple stacks of self-attention blocks, the 𝑘-th block is defined as: 𝑭(=) =
𝑆𝐴𝑁(𝑭(=:;)), where 𝑭(J) = 𝑺�	and 𝑭(=) = 𝑿. To get the final semantic session embedding 
𝒖! , we leverage the average pooling layer: 𝒖! = 1/𝑠∑ 𝑿N!

NI; . Other pooling operation 
such as max pooling, summation or attention pooling can be used, but average pooling lead 
to best results in our cases. 

KHGE Module. Despite their well recognized importance in affecting user-item 
interactions, relations in KGs are normally ignored [52] or modelled with entities in triplets 
[55, 56] while neglecting the rich information contained in relation correlations [180]. 
Hence, we define an ERI graph in each session,  and model user intentional properties by 
learning the distribution of the relations in ERI. In this way, we can avoid the noise brought 
by too many irrelevant relations, and simultaneously concentrate the user's intents to a 
reasonable domain. Specifically, for a set of entities ℰ! extracted from news articles and 
their direct neighbours in the KG, we define two types of nodes and three types of edges in 
the ERI graph. Two types of nodes represent entity and relation, respectively. Three types 
of edges are: 1) entity node 𝑒G and relation node 𝑟G are connected if 𝑟G is incident upon 𝑒G in 
the original KG. 2) Two entity nodes 𝑒G and 𝑒N are linked if there is an edge between them 
in the original KG. 3) Two relation nodes 𝑟G and 𝑟N are connected if they are incident upon 
the same entity node in the original KG. In this way, ERI graph can simultaneously 
maintain graph topological structure, node (entity) and edge (relation) semantics and 
contextual information, transformed from the original KG. 

Corresponding to different types of nodes and edges with different semantics, we define 
two adjacency matrices 𝑨!

(G8) ∈ ℝ(8O&)×(8O&) and 𝑨!
(#X%) ∈ ℝ(8O&)×(8O&) representing 

incoming and outgoing connections between nodes respectively. For simplicity, we use 
𝑨!represent either 𝑨!

(G8)  or 𝑨!
(#X%)for they have same propagation rule but do not share 

parameters. Then we adopt Graph Convolutional Network (GCN) [303] to learn node 
embeddings due to its simplicity and effectiveness in learning and aggregating semantic 
influence and connections from neighbour nodes. For each ERI graph 𝒢!, the layer-wise 
propagation rule is as follows: 

                                             𝑯(kO;) = 𝜎(𝑴:=)(𝑨! + 𝑰)𝑴
:=)(𝐻)(k)𝑾(k))                          (6) 

where 𝑰 is an identity matrix added self-connections and 𝑴is the degree matrix. 𝑾(k) is a 



7.2 Our Approach 

  

 

143 

layer-specific trainable transformation matrix and 𝑯(k) ∈ ℝ(8O&)×6  denotes the hidden 
representations of nodes in  𝒢! in the 𝑙-th layer. 𝑯(J) is randomly initialized with uniform 
distribution. Unfortunately, GCN cannot be directly applied to the ERI graph due to the 
node and edge heterogeneity issue. To this end, we propose a heterogeneous graph attention 
network with respect to different types of neighbours and their different impact on the 
central node. Specifically, given a central node 𝑜 ∈ ℰ ∪ ℛ  with type 𝜏 ∈
{𝑒𝑛𝑡𝑖𝑡𝑦, 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛}, we define a type vector as 𝒉� = ∑ (𝐴!,##E + 𝐼)ℎ#E#E∈� , which is the 
sum of neighbour node embeddings with type 𝜏. Then the attention score of different types 
of 𝜏 can be calculated as: 

                                               𝛼� = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝜎(𝒘�(𝒉# ⊕𝒉�)))                                    (7) 

where 𝒘� is the attention vector for the node type 𝜏. After that, we also need to consider 
different types of edges related to the central node 𝑜. Particularly, there are four types of 
edges 𝜇 ∈ {𝑒G → 𝑒N , 𝑒G → 𝑟G , 𝑟G → 𝑟N , 𝑟G → 𝑒N} in which → is edge direction from head node 
to tail node, 𝑒G , 𝑒N ∈ ℰ!  and 𝑟G , 𝑟N ∈ ℛ! . Similarly, we define edge vector as 𝒉b =
∑ (𝐴!,##E + 𝐼)ℎ#E##E∈b . The attention weights with respect to different edge types can be 
calculated as: 

                                             𝛼�,b = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝜎(𝒘b𝛼�(𝒉# ⊕𝒉b)))                              (8) 

where 𝒘b is the attention vector for the edge type 𝜇. Then, we incorporate the hierarchical 
attention mechanism into GCN as: 
                                                    𝑯(kO;) = 𝜎(∑ 𝐴�,b��,b 𝐻�,b

(k)𝑊�,b
(k))                                    (9) 

where 𝐴�,b�  is the attention matrix, whose element represents the hierarchical attention 
score 𝛼�,b with respect to 𝜏	type of node and 𝜇 type of edge. The output of HGAT are entity 
embeddings 𝐻' = {ℎ' , 𝑒 ∈ ℰ!}  and relation embeddings 𝐻$ = {ℎ$ , 𝑟 ∈ ℛ!} . To learn 
different importances of entities/relations affecting the user's next article decision, we adopt 
a self-attention layer with FFN, followed by an average pooling layer to learn session 
contextual embeddings with respect to entities and session intentional embeddings with 
respect to relations: 

                    𝝁U =
;
8
∑ 𝑆𝐴𝑁(𝑯',=)8
=I;        ,       𝝁G =

;
&
∑ 𝑆𝐴𝑁(𝑯$,=E)
8
=EI;                     (10) 

Different from the self-attention layer in learning session semantic embedding, we do not 
adopt residual connection here since there is no sequential order w.r.t. entities and relations. 
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Finally, we compute the hybrid session embedding 𝒗 by taking feed-forward layer over the 
concatenation of the semantic, contextual and intentional session embedding vectors as 
𝑣 = 𝐹𝐹𝑁(𝝁!⊕ 𝝁U ⊕ 𝝁G). 

Model Learning. After obtaining the session embedding, we compute the prediction score 
of each candidate news article 𝑖N ∈ ℐ as �̂�N = 𝒗W𝒊N. Then we apply a softmax layer to get 
the probability distribution of the items appearing to be the next in 𝑠, 𝑦� = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(�̂�). To 
train the model, we define the loss function as the cross-entropy of the prediction 𝒚% and the 
ground truth 𝑦 with L2-norm. 

                      ℒ(	𝒚%) = −∑ 𝑦= log(𝑦�=) + (1 − 𝑦=) log(1 − 𝑦�=) + 𝜂||Θ||<
|ℐ|
=I;                (11) 

where	𝜂 is regularization factor and Θ is model parameters. Finally, the Back-Propagation 
Through Time (BPTT) algorithm is adopted to train the whole model. 

Time Complexity. The time cost of ReKaH_GAT mainly comes from the self-attention 
layer, the feed-forward network and the heterogeneous graph attention network. The 
computational complexity of self-attention layer is 𝒪((𝑠< + 𝑛< +𝑚<)𝑑), where 𝑠, 𝑛,𝑚  
represent the input length, number of entities and number of relations of ERI graph, and 𝑑 
is the embedding size. Correspondingly, the time complexity of the feed-forward network 
is 𝒪U(𝑠 + 𝑛 +𝑚)𝑑<V. For HGAT, the time cost is mainly from the attention computing 
and aggregation scheme. The computational complexity of HGAT with 𝐿  layers is 
𝒪(𝐿((𝑛 +𝑚)𝑑< + |ℰ�|𝑑) where |ℰ�| denotes the number of edges in ERI graph. Thus, in 
total, the time complexity of the whole training epoch is 𝒪(|𝑆|U(𝑠< + 𝑛< +𝑚<)𝑑V +
(𝑠 + 𝑛 +𝑚)𝑑< + 𝐿((𝑛 +𝑚)𝑑< + |ℰ�|𝑑))), where |𝑆|	is the total number of sessions. 

7.3 Experiments and Results 

7.3.1 Experimental Settings 

Datasets. We perform experiments on two real-word datasets which are publicly accessible 
and vary in terms of language and size. The details of them are shown in Table 7.1. 

Table 7.1: Statistics of the two datasets. 
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1) Adressa Dataset25. This is a Norwegian news dataset published in [227] which contains 
about 113 million events over a 90-day period from 1 January to 31 January 2017. Each 
event represents that a user read a particular news article. The entities from each news 
article have been included in the dataset. 

2) CLEF Newsreel Dataset (CLEF for short) [293]. This dataset is originally published for 
offline evaluation of an online news recommendation campaign. The dataset contains 
interactions between users and news articles from 8 different publishing sites in February 
2016. In our experiments, we select session sequences in which the articles were clicked 
by the users for our experimental dataset.  

In Adressa dataset, the entities from each news article have been included in the dataset 
extracted by Adressa company. For CLEF dataset, we extract news entities with spaCy26, 
and select session sequences in which the articles were clicked by the users for our 
experimental dataset. For both datasets, we discard the sessions with events less than 3. It 
should be noted that each benchmark dataset constitutes a respective knowledge graph with 
entities and relations crawled from YAGO 4 [63], a large-scale multi-lingual knowledge 
graph built upon Wikipedia. We choose YAGO since it contains entities and relations in 
under-resourced language e.g., Norwegian. Following the work of [201], there is no 
constraint on possible path patterns, and thus any path between a user and the recommended 
item should be considered27. The testing set is built with the last event of each session. The 
remaining events form the training set. 

Baselines. In this subsection, we compare ReKaH_GAT with four groups of 
recommendation baselines. 1) Session-based or sequencial recommendation framework 
GRU4Rec [41], NARM [43] and SR-GNN [46]. 2) News recommendation framework 
NPA [31] and DKN [32]. 3) Recommendation with considering both KG entities and 
relations: KGAT [222] and KGIN [60]. 

1) GRU4Rec. It is a session-based recommendation model that utilizes session-parallel 
mini-batch training process and also employ RNNs to model sequences. 

 
25 https://www.ntnu.no/wiki/display/smartmedia/SmartMedia+Program. 

26 https://spacy.io/. 
27 The experimental KGs can be available at https://www.dropbox.com/sh/i0akwet3cw5o9jx/ 
AAAHtU8nS76FMxvx1YUQXBk5a?dl=0. 



7.3 Experiments and Results 

  

 

146 

2) NARM. It employs RNNs with attention mechanism to capture the user's main purpose 
and sequential patterns.  

3) SR-GNN. It is a session-based recommendation framework which our work is mainly 
based on. It models each session sequence as a directed graph and a GNN followed by an 
LSTM layer is employed to learn item embeddings. 

4) NPA. It is a deep neural news recommendation approach with personalized attention. 
CNN network is used to learn the hidden representations of the news based on news titles. 

5) DKN. It employs CNN to learn entity as well as relation embeddings. A news-level 
attention network is adopted to capture user intentions when providing recommendations. 

6) KGAT. It employs TransR to learn entity and relation embeddings of KG and adopt an 
attention mechanism to capture the connectivity importance within paths. KGAT can thus 
provide explanations upon the learned attention weights. 

7) KGIN. It considers user-item relationships at the finer granularity of intents and long-
range semantics of relational paths under the GNN paradigm. 

Evaluation Metrics. We evaluate all the methods by the following two metrics: 

1) Recall@K. It is defined as the fraction of cases where the article actually clicked in the 
next timestamp in current session is among the top 𝐾 articles recommended [61].  

2) MRR@K. Mean Reciprocal Rank (MRR) is defined as the average of the reciprocal 
ranks of the desired items [62]. The rank is set to zero if it is above 𝐾.  

We show the performance when 𝐾 = {5,10,20} , as a larger value of 𝐾 is usually ignored 
for a typical top-K recommendation [39]. 

Parameter Settings. We implement our ReKaH_GAT in Tensorflow. The embedding size 
𝑑 is set to 64 and 128 for Adressa and CLEF datasets, respectively. The number of self-
attention blocks is set to 2. We initialize all parameters using a Gaussian distribution with 
a mean of 0 and a standard deviation of 0.1. The mini-batch Adam optimizer is exerted to 
optimize the parameters with an initial learning rate set to 0.001 and will decay by 0.1 after 
every 3 epochs. Note that the size of neighbours of an entity may vary significantly over 
the KG. To keep the computation more efficient, we uniformly sample a fixed number ℎ 
of neighbours when the number of neighbours is more than ℎ. We set ℎ to 8 and 16 for 
Adressa and CLEF datasets, respectively. The hop number 𝐿 is set to 2 and 3 for Adressa  
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Table 7.2: Overall recommendation performance w.r.t. Recall@K and MRR@K for Adressa 
and CLEF datasets. The best results are highlighted in boldface. “*" indicates the 
improvements are statistically significant for p-value < 0.01 with paired t-test. 

 

and CLEF datasets, respectively by grid search. For all the baselines, we used the 
implementation provided by their respective authors to avoid unfair comparison due to 
faulty implementation. The parameters of the baselines are tuned to achieve the best 
performance in our problem. Experiments are conducted on GPU machines of Nvidia 
GeForce GTX TITAN X.  The final performances are reported after 5 runs with the average 
test results. 

7.3.2 Experimental Results 

Recommendation Performance. Table 7.2 presents the recommendation performance of 
our ReKaH_GAT as well as other baselines on both datasets, and we can make the 
following observations. (1) Most methods with contextual information for user/item 
modelling (e.g., KGAT, KGIN and NPA) outperform methods only leveraging user-item 
interactions (e.g., SR-GNN, NARM and GRU4Rec). This is because contextual 
information can bring more informative knowledge for learning latent factors of user 
preferences. However, DKN slightly underperforms SR-GNN in both datasets, which is 
probably because the latter one considers the sequential patterns and capture the transitions 
among nodes with constructed graph of each session which is crucial in modelling news 
recommendation tasks. (2) Among ID-based methods (SR-GNN, NARM and GRU4Rec), 
the methods using attention mechanism during user/item modelling (SR-GNN and NARM) 
outperform the method without attention mechanism such as GRU4Rec, which probably 
because different parts of news and contexts contribute differently for recommendations. It 
is beneficial to select important features when modelling user preferences for better 
recommendation performance. SR-GNN performs better than NARM, which shows the 
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importance of modelling item transitions in session settings and sequential patterns when 
only few user-item interactions are available. (3) NPA achieves better performance than 
DKN while underperforms KGAT in two datasets, indicating the effectiveness of the 
attention mechanism which can be used to learn the explicit information among words and 
interactions. Meanwhile, high-order connectivity in graph structured data has the positive 
effect of modelling user/item profiles for recommendations. Though DKN incorporates KG 
when modelling user preferences, it probably cannot effectively utilize the word orders and 
semantic meanings in between. ReKaH_GAT and KGIN outperform KGAT in both 
datasets, which is probably benefit from relational modelling in uncovering user intents, 
resulting in more powerful representations of sessions. (4) ReKaH_GAT consistently 
outperforms all baselines across two datasets in terms of all evaluation metrics. More 
specifically, it achieves improvements over the strongest baseline with respect to recall@20 
by 2.28%, 1.56% and mrr@20 by 1.06%, 2.21% in Adressa and CLEF datasets, 
respectively. Although KGIN also explores the hidden user intents by relational modelling 
on KG, the differences lie in the way we model entities and relations w.r.t. entity-relation 
interactions and entity/relation semantic information in each session, while KGIN model 
entity/relation separately without considering the mutual influence between them. Besides, 
ReKaH_GAT model sequential patterns in each session by leveraging self-attention with 
residual connection to learn the transitional information among articles in each session. 
Finally, we find out that all methods achieve better performance in CLEF than Adressa. 
One possible reason is that more entities can be aligned with YAGO in CLEF than Adressa, 
and there are more noises from KG in the latter dataset, which shows the importance of the 
quality of KG. 

Ablation Study. To verify the impact of KG relations and HGAT in affecting 
recommendation performance, we make two variants by 1) discarding all KG relations and 
learn entity embeddings with GAT, termed -w/o RE, and 2) removing HGAT scheme and 
using random initialization for entity and relation embeddings, termed -w/o HGAT. The 
results are summarized in Table 7.2. We can observe that compared with ReKaH_GAT, 
removing relations results in a consistent performance drop, which shows the importance 
of relation embedding. Although entities are incorporated, it lacks modelling the internal 
relationships among entities in a finer-grained way. Without HGAT, as expected, the 
recommendation performance drops significantly, since the co-effects of entity-relation 
interactions and the complex node transitions cannot be well-captured. 
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Figure 7.2: Effect of embedding size d on ReKaH_GAT. 

 

Figure 7.3: Effect of different hops L on performance of ReKaH_GAT. 

Parameter Sensitivity. ReKaH_GAT involves a number of hyper-parameters which may 
affect the final recommendations. Here we examine how different choices of embedding 
size 𝑑 and the number of hops 𝐿 affect the performance of ReKaH_GAT. 

We first investigate how the embedding size 𝑑 influences the recommendation results by 
varying 𝑑 in set {16, 32, 64, 128, 256}. The results are shown in Figure 7.2, from which 
we can observe that performance initially improves with the increasing number of 𝑑. This 
is probably attributed to more useful semantic information encoded in node embeddings. 
However, the performance drops when 𝑑 further increases, as a too large 𝑑, e.g., larger than  
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Figure 7.4: Explanation of user intents with respect to KG entities and relations in real case. 
Best viewed in color. 

 

64 or 128 for different datasets, may introduce noises which mislead the subsequent 
prediction. 

Then we further investigate the influence of hop number 𝐿 to recommendations by varying 
the maximal hop number of 𝐿 in {1, 2, 3, 4}. The results are shown in Figure 7.3, from 
which we can observe that the best performance is achieved when 𝐿 is set to 2 or 3. We 
result the consequence to the trade-off between the positive messages from long-distance 
dependency and negative signals from noises. 

Case Study (Q4). To give an intuitive impression of the explainability of ReKaH_GAT, 
we present an example to show how user intents can be expressed through KG entities and 
relations. For the predicted piece of news, we backtrack through the adjacency matrix to 
get the connection between the predicted article and one of the user clicked articles with 
high attentive scores on relations and entities. As demonstrated in Figure 7.4, we can have 
the following observations: 1) The learned attention weight distribution on KG relations 
reflect the importance to influence the user next clicked article. In our case, 𝑚𝑒𝑚𝑏𝑒𝑟𝑂𝑓 
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and ℎ𝑎𝑠𝑂𝑐𝑐𝑢𝑝𝑎𝑡𝑖𝑜𝑛 have the highest score among other relations appearing in the current 
session, which shows the user may pay more attention to some organizations (e.g. football 
teams) and a specific group of occupations (e.g. football player in this case). 2) However, 
merely providing the distribution of the relation can only provide part of the user's 
intentions, and the combination of relation and entity can more effectively reflect what 
users want. For instance, from path “𝐽𝑒𝑟𝑜𝑚𝑒	𝐵𝑜𝑎𝑡𝑒𝑛𝑔”	
&'&('$)*
*⎯⎯⎯⎯⎯⎯⎯, 	"𝐺𝑒𝑟𝑚𝑎𝑛𝑦	𝑛𝑎𝑡𝑖𝑜𝑛𝑎𝑙	𝑓𝑜𝑜𝑡𝑏𝑎𝑙𝑙	𝑡𝑒𝑎𝑚", we can see that by connecting entity 

with relation, the model will focus on the specific domain, e.g. football in this case, leading 
to a more reasonable prediction result by one of the paths "𝑆𝑎𝑚𝑚𝑒𝑟"	
&'&('$)*
*⎯⎯⎯⎯⎯⎯⎯, 	"𝐺𝑒𝑟𝑚𝑎𝑛𝑦	𝑛𝑎𝑡𝑖𝑜𝑛𝑎𝑙	𝑓𝑜𝑜𝑡𝑏𝑎𝑙𝑙	𝑡𝑒𝑎𝑚" . In most cases, we also find that 

relations with high attention weights tend to be in correlation with entities with high 
attention weights as well, which we believe is due to the joint modelling of entities and 
relations as well as their internal correlations. 

7.4 Conclusion 

In this paper, we have proposed a novel method named Relational Knowledge-aware 
Heterogeneous Graph Attention Network (ReKaH_GAT) to model complex entity-relation 
interactions and diverse user intents explicitly for session-based news recommendation. An 
original Entity-Relation Interaction (ERI) graph is designed to integrate the complex 
knowledge graph structure, entity and relation semantics in a unified way. Furthermore, we 
propose a novel heterogeneous graph attention network with a self-attention mechanism to 
extract user intents for enhancing the session representation learning. Extensive 
experiments on two real-world news datasets demonstrate the effectiveness and 
explainability of ReKaH_GAT.  

Compared with existing work, we are the first that explicitly model KG relations for better 
expressing user intents with learned relation distributions from the ERI graph in each 
session. Though KGIN has also explored the user intents w.r.t. aggregation of KG relations, 
it does not consider entity-relation correlations. In contrast, we design a hierarchical 
attention mechanism considering different importance of neighbour nodes and edges to the 
central node, to learn better entity/relation embeddings. 
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Chapter 8  

Conclusions 

In this chapter, we briefly summarizes the thesis by presenting our contributions, reflections 
of our work and potential future research directions. 

8.1 Contributions 

Online platforms create a unique environment for content creation, sharing and 
consumption, which open new possibilities for new applications. One critical factor that 
affects the success of online applications is mining user interests from user behavior data. 
By analyzing user data, service providers can retain original users, develop potential 
customers, and generate revenue through customized advertising delivery. The challenge 
of accurately and efficiently identifying user interests has been studied for many years. Due 
to the complexity, variability and randomness, many questions regarding them remain 
open. 

To this end, the main contributions of this thesis specifically related to model user interests 
from streaming data are twofold. First, we investigated the dynamic nature of user interests 
and studied in-depth attribute features affecting and shaping user behaviors. Second, we 
identified the significance of auxiliary features from knowledge graphs which are then used 
for recommendation purposes. Specifically, our contributions of this thesis can be 
summarized as follows. 

8.1.1 Mining Attribute Information for User Modelling 

We propose to use Recurrent Neural Network for personalized time aware user interests 
prediction based on Twitter datasets. To overcome the data sparsity problem, we enrich our 
user behavior matrix with the help of Mediawiki api, and we also leverage multiple aspects 
of users’ activities, including tweets, retweets and comments. For the first time, our Neural 
Time Series Forecasting Model (NTSF) extracts the common interests patterns and predicts 
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their interested topics for a specific user by introducing various features. Experimental 
results on real datasets show that NTSF outperforms the classic and state-of-art methods 
on prediction problems. 

Then we presented a Deep Joint Network (DeepJoNN) for session-based recommendations. 
The proposed model allows combining various item features such as ID, category, 
keywords and entities, which then are transformed into character-level input matrix to the 
model. DeepJoNN consists of two parts of deep neural networks coupled together in a 
hierarchical way and thus could extract contextual patterns and process long and short-term 
dependencies simultaneously. In the comparison of the state-of-the-art baselines, 
DeepJoNN achieved nearly 11% and 12% improvements on datasets of Adressa and 
Last.fm respectively w.r.t. Recall value. Additionally, we also explored the influence of 
different parameter settings and conducted experiments on different loss functions. Our 
model also performed competitively on cold start users without user profiles. 

Further, different from existing works assuming that all user-item interactions are equally 
important, a novel dynamic attention-integrated neural network (DAINN) is proposed to 
address the problem of personalized session-based recommendation in Chapter 5. In order 
to capture users’ interests, we consider item semantic embedding, user long-term interest 
modelling and session-based public behavior mining in a unified framework, which can be 
trained end-to-end. By incorporating an attention mechanism into DAINN, our proposed 
approach can deal with the diverse variance of users’ clicking behavior and capture the 
users’ main purpose in the current session. DAINN can effectively learn users’ real-time 
preferences and conduct personalized recommendations. Evaluation on three different real-
world datasets demonstrated the effectiveness of the proposed approach. 

8.1.2 Exploring Graph Structured Data for User Modelling 

We proposed a novel method named Relational Knowledge-aware Heterogeneous Graph 
Attention Network (ReKaH_GAT) to model complex entity-relation interactions and 
diverse user intents explicitly for session-based news recommendation. An original Entity-
Relation Interaction (ERI) graph is designed to integrate the complex knowledge graph 
structure, entity and relation semantics in a unified way. Furthermore, we propose a novel 
heterogeneous graph attention network with a self-attention mechanism to extract user 
intents for enhancing the session representation learning. Extensive experiments on two 
real-world news datasets demonstrate the effectiveness and explainability of ReKaH_GAT. 
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In the future, we will further explore the evolution of user intents and the integration of 
long-term user preference. 

8.2 Answers to research questions 

Here, we elaborates on the methods and our findings by answering the research questions 
raised in Section 1.3. 

RQ1: How can attribute features of users and items can be learned and integrated for 
effective user modelling and recommendation? 

To answer this research question, we discussed different attribute features in influencing 
user modelling and established different ways of modelling these features in different tasks. 
Specifically, this research question can be answered through the following three sub-
questions. 

RQ1.1: What kinds of temporal patterns can be leveraged to predict dynamic user 
interests in textual data streams?  

In Chapter 3, we propose a neural time series forecasting model (NTSF) to fit and predict 
user preference trends according to time. In this model, we integrate emerging/hot topic 
detection to deal with the short-term aspects and use Fast Fourier Transformation (FFT) to 
differentiate the cyclic behavior of users. Considering the nonstationary and nonlinear 
characteristics appearing through user interest patterns, Long Short-Term Memory 
Recurrent Neural Network (LSTM-RNN) is employed to balance the influence of short and 
long term aspects, as well as adjust the model parameters according to historical results. 
Our experimental results with extensive Twitter datasets verify the effectiveness of our 
approach by outperforming the best baseline by 11.98% and 29.58% on average on the 
Pearson Correlation score and MSE respectively on predicting user interested topics. 

RQ1.2: How item-level semantic features can be applied to alleviate the cold start 
issue in session-based recommendation?  

In Chapter 4, we proposed a method that combines user click events within-session and 
news contextual features to predict the next click behavior of a user. The model consists of 
two different kinds of hierarchical neural networks to learn article contextual properties 
and temporal sequential patterns in streams of clicks. Character-level embedding over input 
features is adopted to allow integrating different types of data and reduce engineering 
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computation. Besides, we also introduced a time-decay method to compute the freshness 
of news articles within a time slide. Experimental results show that our model outperforms 
the best baseline by 65.58%, 44.61% and 86.49%, 27.04% on average on recall and MRR 
score on Adressa and Last.fm datasets, respectively on session-based recommendation 
tasks. 

RQ1.3: How the spatial-temporal, semantic, inter- and intra-session features can be 
integrated into a unified framework for modelling complex dynamic user interests 
and effective recommendations?  

In Chapter 5, we propose a novel neural network framework, a dynamic attention-
integrated neural network, to tackle the problems. Specifically, we propose a dynamic 
neural network to model users’ dynamic interests over time in a unified framework for 
personalized news recommendations. News article semantic embedding, user interests 
modelling, session-based public behavior mining and an attention scheme used to learn the 
attention score of user and item interaction within sessions are four key factors for online 
sequences mining and recommendation strategy. Experimental results on three real-world 
datasets show significant improvements over several baselines and state-of-the-art methods 
on session-based recommendations. Specifically, our model outperforms the best baseline 
by 34.65%, 21.63%, 5.76%, and 7.78%, 13.69%, 11.61% on average on MRR and F1-score 
on Adressa, last.fm and Weibo datasets.  

RQ2: How auxiliary feature from knowledge graph can be employed to understand 
user intents and improve the explainability of recommender systems? 

After a systematic analysis of the existing graph-learning-based recommender systems, we 
integrated the knowledge graph into the process of user modelling for better discovering 
the potential associations among users and items. Specifically, the answer to this research 
question is on the basis of the decomposition and answers of the following two sub-research 
questions. 

RQ2.1: How to understand data-driven mechanisms behind graph-learning based 
recommendation approaches through taxonomic assessment on recent advances?  

Through a systematically study on the graph learning-based recommendation, we proposed 
a novel taxonomy from the data-oriented perspective and conducted a comprehensive 
taxonomic analysis from the technology-oriented perspective that gives a more systematic 
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and in-depth understanding of existing GLRSs. Moreover, we summarized our 
observations in Chapter 6. Compared with the conventional RSs, the recommendation 
algorithms based on graph-structured data have an advantage in solving the sparsity and 
cold-start problems with improved accuracy by mining and leveraging the explicit as well 
as implicit relations revealed on graphs. In graph learning-based recommender systems, the 
core is how to process graph-structured data, how to learn and obtain adequate information 
from the graph to fulfil the final recommendation purpose, and how to adapt the graph 
operation process to more complex and diverse graph structures as well as large-scale node 
and edges in real-world. Looking at the changes of GLRSs in recent years, the graph 
structure is from homogeneous to heterogeneous, the graph attribute from zero to multiplex, 
the technology used from the traditional recommendation algorithm to deep learning-based 
models that have been popular recently, the evaluation of recommendation performance 
shifted from focusing only on accuracy and click-through rate to increasingly 
multidimensional development. Such development sheds light on a new perspective for the 
community of recommendations and practitioners. We argue that the current graph-based 
recommendation algorithms are far from being fully developed, and further research 
investment and empirical studies are still needed. 

RQ2.2: Does explicitly modelling of relations in KG help capture user intents for 
improving session-based recommendation performance and explainability?  

In Chapter 7, we propose a novel Relational Knowledge-aware Heterogeneous Graph 
Attention Network (ReKaH_GAT)) for session-based news recommendation. To achieve 
this goal, we innovatively design a transformation schema from traditional KG to Entity-
Relation Interaction (ERI) graph to simultaneously consider the complex graph structure, 
entity and relation semantics. A novel heterogeneous hierarchical graph attention network 
is proposed to learn the different importance of different types of nodes and edges in an 
ERI graph. Meanwhile, user intents are captured through a probability distribution on 
relations in KG for better mining the user behaviors. Parallelly, the semantic session 
embedding learned from pre-trained multi-lingual BERT is combined with contextual and 
intentional session embeddings to achieve a robust news recommendation. Extensive 
experiments on two real-world news datasets demonstrate the effectiveness and 
explainability of ReKaH_GAT. More specifically, it achieves improvements over the 
strongest baseline with respect to recall@20 by 2.28%, 1.56% and mrr@20 by 1.06%, 
2.21% in Adressa and CLEF datasets, respectively. 
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8.3 Reflections and Future Directions 

This section presents limitations and possible future work related to the methods propsed 
in this thesis. 

8.3.1 Reflections 

Despite the effectiveness of our proposed methods in modelling user preferences in 
different scenarios, some limitations need to be discussed below: 

First, in all of our proposed frameworks, the outputs are from the softmax layer that 
indicates the probability distributions of the next items that the target user will interact with. 
Meanwhile, the training set should include all candidate items. Such model architect and 
training strategy degrade the efficiency of the model. When a new item appears, the model 
needs to be retained to learn new item profiles and adjust model parameters. In the scenarios 
with high timeliness requirements, such as the news recommendation field, retraining will 
reduce the efficiency of recommendation, resulting in bad user experience due to the 
inability to provide users with timely recommendations. Apart from this, our DAINN 
model outputs word distributions instead of item distributions which alleviates the retaining 
problem to some extent. However, the output distributions may be too scattered, resulting 
in a small probability for each word when facing a large-scale vocabulary. Therefore, the 
words in the vocabulary need to be selected in the preprocessing stage.  

Besides, all attributes and auxiliary features we exploited in this thesis are information with 
text as a carrier, whereas the factors that affect users’ behavior in the online environment 
also exist in other different forms such as images and videos. Today, when the fast-moving 
era has arrived, people are very likely to be attracted by images and short videos rather than 
pure text messages. As such, exploiting multi-modal fusion techniques for user behavior 
modelling should also be taken into consideration. 

Furthermore, due to different datasets and task objectives, the evaluation criteria are 
different, especially comparing chapter 3 with the later chapters. In chapter 3, we targeted 
the collection of active users’ clicking records for 1 year in Twitter whereas the Adressa 
dataset spans 3 months and basically an unbiased collection of all online users’ clicking 
events during the targeted period. Compared with Twitter dataset, most Adressa users are 
anonymous and thus only contain the clicking records of the current session, which makes 
it difficult to mine the users’ periodic interest in such a short period of time. In contrast, 
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later user modelling approaches for recommendation purposes can be evaluated 
systematically and all performed on Adressa dataset. 

In addition in chapter 5, although we initially explored the influence of some attribute 
combinations in affecting recommendation performance, we did not consider all attributes 
in a unified framework. Theoretically, we can integrate all factors into the same model, but 
that will increase training costs. Besides, which attributes are more important in 
determining user interests needs to be taken into account, especially for different users, for 
the same user in different time periods, the determining factor may be different. 
Unreasonable integration may reduce the recommended performance and increase the 
computational cost. In the future, it will be a good research direction to explore how to 
effectively integrate the complex and diverse factors in a unified framework. 

8.3.2 Future Directions 

We believe the Reflections on mining users’ interest from online streams will continue to 
remain an important research area. In the following, we present several potential directions 
related to user modelling for future work. 

First, in chapter 7, we provide a case study on the explainability of our proposed model on 
the testing dataset. However, the actual impact and the acceptance of these explanations on 
real users haven’t been tested and explored. Therefore, one possible future direction is to 
see what the real-world users think of our proposed recommendation method and the 
provided explanations. We also would like to integrate KG into our DAINN model to see 
how the KG can affect the recommendation performance and how different parts can be 
influenced on the overall recommendation results. 

Besides, most current graph-based recommenders are able to model stable static graphs, 
while failing to model dynamic graphs with changing structures. When nodes and edges 
appear or disappear from time to time, existing graph learning-based recommendation 
models cannot change adaptively. Recommender systems based upon static graph 
processing technologies are unable to capture the changing attributes of the graph resulting 
in the detention of modelling user’s dynamic interest, which will affect the display of 
recommendation results and finally influence the user’s experience. Solutions for this 
research question have been actively researched on and we believe it is an important 
research direction for future work. Besides, changes in user preferences or item attributes 
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(e.g. co-interacted by users) revealed by dynamic properties of the graph may span multiple 
platforms and involve different fields. How to transfer such dynamic characteristics to the 
cross-platform or cross-fields, and how to jointly learn its impact on recommendation 
performance is also one of the future trends. 

Another potential research direction in the future is how to adapt the existing user 
modelling framework to new research fields or new applications. Real networks are 
constantly evolving, and thus new applications should not require repeating the learning 
process all over again. This is a challenging task since even in the same information space, 
different types of entities and relations among them may play different roles for different 
purposes. For instance, one can recommend a hotel to a traveller group or a flight-hotel-
package to a traveller, a user to each other in a social network or a user to a game 
corporation for targeted advertising. Because of such distinct recommendation scenarios, 
the parameters need to be optimized accordingly even for the same model architecture, 
which is called finetuning. The optimization is generally extremely challenging, and it 
usually requires more training data for complex networks for a specific purpose. In 
addition, due to the huge amount of training set and cost, people cannot perform low-cost 
retraining or fine-tuning for different purposes. Therefore, considering the increasingly 
complex heterogeneous networks, we believe that a highly adaptable model structure and 
training algorithm is urgent in the community of user modelling and has extremely high 
research value. 
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Appendix A: Statistics of datasets commonly 
used in GLRS 
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