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Abstract— We propose to estimate steady and turbulent

wind velocities and aerodynamic coefficients of a fixed-wing

Unmanned Aerial Vehicle (UAV) by using frequency separation

as well as kinematic, aerodynamic and wind models combined

in an Extended Kalman Filter (EKF). With these estimates it is

possible to calculate the angle of attack and the magnitude of

the airspeed. Avoiding the need for prior knowledge of UAV pa-

rameters, the proposed method utilizes only sensor information

that is part of a standard sensor suite, which consists of a Global

Navigation Satellite System (GNSS), an Inertial Measurement

Unit (IMU) and a pitot-static tube, and attitude information

obtained from these sensors. An observability analysis shows

that attitude changes are necessary during the initialization

phase and from time to time during the flight. Simulation results

indicate that, with typical sensor accuracy, the estimates are

close to the reference values of the aerodynamic coefficients

and wind velocities and is capable of estimating the Angle of

Attack with an Root Mean Square Error (RMSE) of 0.33

�
, the

Sideslip Angle with an RMSE of 3.21

�
and the airspeed with an

RMSE of 0.23 m/s.

I. INTRODUCTION

For a fixed-wing aircraft the angle of attack (↵), the side
slip angle (�) and the airspeed (V

a

) are useful variables to
characterize flight performance and safety in both normal and
abnormal conditions, such as stall and strong and turbulent
winds. Large aircraft are usually equipped with vanes or
multi hole pitot-static tubes which are able to deliver an
accurate and redundant estimate of these variables. However
on small unmanned aerial vehicles (UAVs) the constraints on
size, weight and costs are considerably stronger and sensors
solely designated to measure ↵,� and V

a

are typically not
practical with using current technology. One might therefore
apply aerodynamic models assuming the knowledge of aero-
dynamic coefficients, such as the lift and drag coefficients
(see e.g. [2]). In practice this can be quite difficult, since
these coefficients might change from one mission to another,
due to different payloads or due to individual differences
in UAV configurations within a fleet of supposedly equal
UAVs. Changes might even occur during one mission due to
structural changes such as icing. In this paper the estimation
of airflow variables ↵,� and V

a

and the simultaneous esti-
mation of the aerodynamic coefficients will be studied. For
this only a standard sensor suite, containing a GNSS (Global
Navigation Satellite System), an IMU (Inertial Measurement
Unit) and a pitot-static tube will be utilized. The method
fuses these data sources with kinematic, aerodynamic and
stochastic wind models in an EKF.

Several methods have been recently proposed to estimate the
airflow variables and aerodynamic coefficients. One popular
methods is the EKF, which has been used in [4] , [10], [12],
and the Unscented Kalman Filter which has been applied to
the problem in [13], [5]. Tian et.al [16] compare the use of
an EKF, Output Error Minimization and a Complimentary
Filter to improve measurements of the airflow variables
obtained from a multi-hole probe. [3] uses a detailed aircraft
model and a nonlinear observer for wind estimation. In
[11] kinematic vehicle models are used together with IMU,
GNSS and multi-directional airspeed sensors to estimate
the wind field. [14] propose a method using optical flow
measurements. A hybrid system approach using Bayesian
estimation is presented in [15], and achieving promising
results. However in the described method a detailed model of
the aerodynamics is used and the parameters for this might
not always be available.
This paper builds up on [7], where the information from
the above mentioned sensor suite was used together with
kinematic relationships to estimate wind velocities and from
these calculate the aerodynamic variables in a Kalman Filter.
The underlying wind model assumed steady slowly changing
wind. It is worth mentioning that the method does not rely
on knowledge of any parameters of the UAV, what makes it
easy to implement without the need to adapt to any platform
and payload changes.
The main contribution of this paper is the extension of the
above described method by combining the measurements of
the pitot tube with those of an accelerometer to separately
estimate steady and turbulent wind velocities in inertial
frame using frequency separation and a Dryden model [1].
We will show how this can be achieved without needing
prior knowledge of the aircraft and only using kinematic
and simplified aerodynamic relationships within an Extended
Kalman Filter. In contrast to previous work, the needed
aerodynamic parameters will be estimated online together
with a scaling factor which automatically calibrates the mea-
surements of the pitot-static tube. Eventually the estimator
will be tested using simulation results from a fixed wing
UAV simulator.



II. MODELING

A. Kinematics

The UAV’s kinematics are given by (see Beard and
McLain [2, p.36]):

ab

= v̇b

+ !b

b/i

⇥ vb (1)

where vb

= (u, v, w)

T is the velocity vector of the aircraft
relative to the earth decomposed in Body frame, !b

b/i

is the
vector of the angular velocities between the inertial frame
and the body frame decomposed in the body frame, and ab is
a vector with the UAV’s accelerations measured in the Body
frame by it’s accelerometers. The so called ”wind triangle”
denotes the relationship between velocity over ground vn,
relative velocity of the aircraft to the surrounding airmass
vn

r

and wind velocity vn

w

relative to the earth in the inertial
frame.
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To convert this to the Body frame, this equation is multiplied
with the rotation matrix Rb
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Knowing vb

r

allows the calculation of the angle of attack
(AoA) ↵, the sideslip angle (SSA) � and the airspeed V

a

:
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B. Aerodynamics

Following Beard and McLain [2, p.49] the total z-
acceleration decomposed in the Body z- axis f

z

of a fixed-
wing UAV is given by
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where ⇢ is the density of the air, S is the surface area of
the wing and m is the mass of the UAV. C

L

(↵) and C

D

(↵)

are the lift and drag coefficients, which have a non-linear
dependency on ↵. For small angles of attack this can be
linearized as follows:
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Inserting (9) and (9) into equation (8) and applying a second
order approximation yields:
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Fixed wing aircrafts are designed in a way that minimizes
drag and maximizes lift forces. Therefore drag coefficients
are significantly lower than lift coefficients (often one order

of magnitude or more, see i.e. [2, pp.278]) and their influence
is negligible here. Since we are considering normal flight
with low angles of attack (|↵| < 10

�) and C

L,0 is normally
much smaller than C

L,↵

, the quadratic term �CL,0

2 ↵

2 can be
omitted here as well. We then get the simpler approximate
aerodynamic lift model:

f
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= �KV

2
a

(C

L,0 + ↵C

L,↵

) (12)

Solving this equation for ↵ provides an alternative method
to estimate the angle of attack compared to using (3) - (4),
since f

z

is measured by an accelerometer.

C. Wind

In the following we use a time-discrete model where
k denotes the current time index and �x

k

the difference
between x

k

and x

k�1. The wind velocity vn

w

is assumed to
be the sum of a low frequency part vn

s

and a high frequency
turbulent part vn

t

[2, pp.55].
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The turbulent wind velocity is modeled by the Dryden wind
model [1]
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where �T is the sampling period and the ⌘
i

are independent
Gaussian white noise processes. The spectral wavelengths L

i

are given by:

L
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=

h

k

(0.177 + 0.000823 ⇤ h
k

)

1.2
(16)
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where h

k

is the current altitude. The noise amplitudes �
i

are
given by:

�
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�

w

= 0.1 · V
w,G

(19)

where V

w,G

is the wind speed measured 6 meters above
ground.

III. SENSORS AND ESTIMATION STRUCTURE

Assume the UAV is equipped with the following basic
sensor suite:

• GNSS providing velocity over ground measurements
• IMU measuring total accelerations as well as angu-

lar rates to the attitude and heading reference system
(AHRS) for attitude estimation.

• Pitot-static tube providing measurements of the relative
airspeed in longitudinal direction u

m

r

.
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Fig. 1: System Layout

The cascaded estimator structure is similar to [7] and is
depicted in Figure 1. As in [7] it’s stability properties are
inherited from the individual modules, which are:

• AHRS estimates the attitude (roll, pitch and yaw angles
�, ✓, ) and also compensates for the gyroscope and
accelerometers biases resulting in ! and a. A popular
approach here is the EKF and non-linear observers [2],
[9], [6].

• The ”wind velocity and aerodynamic parameter esti-
mator” estimates the steady wind velocity vn

s

and the
turbulent wind velocity vn

t

as well as the lift coefficients
C

L,0.CL,↵

using the kinematic model in section II-A,
the aerodynamic model in section II-B and the wind
model described in section II-C.

• In the ”AoA, SSA and V

a

computation” module the
airflow variables are calculated using the estimated
relative airspeed vector and (4) - (6). Note that the
computation of ↵ can also be done using the estimated
lift coefficients and the z-acceleration and (12).

IV. WIND VELOCITY AND LIFT COEFFICIENT ESTIMATOR

In section II-C the wind velocity was modeled as the
sum of a low frequency part and a high frequency part. To
estimate the steady wind velocity we will use a similar idea
as in [7] and combine the kinematic model derived in section
II-A with the measurements from the pitot-static tube um

r

and
the x-component of the GNSS velocity rotated to the body
frame u

b.
For the turbulent wind velocity we will combine the Dryden
model with the aerodynamic model which will allow us to
estimate the lift coefficients C

L,0 and C

L,↵

. These couple the
vertical acceleration to the angle of attack ↵ via (12) and the
airspeed V

a

. Unfortunately in both ↵ and V

a

the sum of the
turbulent and the steady wind velocity appears and makes it
challenging to observe them separately. However in practice
a fast change in acceleration can be interpreted in (12) to
be due to a change in angle of attack, which has higher
frequency components, than the steadier airspeed. Therefore
we can introduce a frequency separation, by defining v̄b

r

and ¯

V

a

as low frequency versions of vb

r

and V

a

which are
independent of vn

t

.
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Replacing V
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by ¯

V
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in (12) results in the approximation
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This simplifies the aerodynamic model (12) with respect to
vn

t

and also, as we will show later, provides different gra-
dients when differentiating (22) with respect to vn

s

and vn

t

.
This allows the distinction between the two wind velocities
within the estimator. Because of the non-linear nature of the
used models, an Extended Kalman Filter (EKF) [8] is applied
here . The EKF has a predictor - corrector structure, where
the state equation is used for predicting the state x

k|k�1 at
the time step k based on the previous state x

k�1|k�1 and
the input u

k

. The estimated state x
k|k is then obtained by

correcting predicted state with the measurement z
k

.

A. State equations

The states to be estimated are the steady and the turbulent
wind velocities in the inertial frame, the two lift coefficients
and a scaling factor governing pitot-static tube calibration.
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All wind velocities are decomposed in inertial frame and
all relative and ground velocities are decomposed in body
frame, in order to simplify the notation the identifier of the
frame will be omitted from now on (e.g. v

s

= vn

s

, v

r

= v

b

r

).
Inputs to the observer are the velocity over ground in the
body frame, the Euler angles, the measurement of the pitot
tube and the altitude.
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The steady wind velocities, the lift coefficients and the
scaling factor are assumed to be slowly time varying
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Which results in the following state transition function:
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For the EKF the Jacobian of the state transition function is
needed, which is given by:

F
k�1 =

�f(x,u)

�x

����
uk�1
xk�1|k�1

=

2

4
I[3] 0[3,3] 0[3,3]
�f

�vs

�f

�vt
03,3

0[3,3] 0[3,3] I[3]

3

5

(25)

where I[m]is an identity matrix with dimension m and 0[n,m]

is a matrix filled with zeros of dimensions (n,m). During
one prediction step of the Dryden model, the airspeed is
assumed to be slowly changing compared to the turbulent
wind velocity. Therefore the definition of the slowly time
varying airspeed (21) is used.
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Hence the sub-Jacobians are calculated from (23) as follows:
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The derivatives with respect to v

s

and w

s

are calculated
similarly.
As can be seen in equation (15) the turbulence is modeled by
colored noise, whose amplitude is changing with the altitude
and the ground wind speed. This leads to a time varying

covariance matrix:
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where the a

i

are tuning factors.

B. Measurement Equations

The measurement vector is given by the total body z-
acceleration and the body velocity in x-direction, which are
affected by some measurement noise ⌫. The measurement
noise is modeled as zero-mean Gaussian white noise:
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The output function is obtained by using the wind triangle
(3), the linearized aerodynamics (22) and (21).
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where K =
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The observation matrix is given by the Jacobian of the output
function:
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Since h2 is linear the calculation of the Jacobian is straight-
forward. For h1 some additional steps are necessary:
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where R

b

n(i,j)
denotes the element (i, j) of the rotation

matrix. The other derivatives are calculated in the same
manner:
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2 = [0, 1, 0] and dT
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For the derivatives with respect to v
t
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and in the same manner:
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This results in the following observation matrix:
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The second row of the observation matrix corresponds to
the measurement equation in [7]. In that paper it was
shown analytically that the wind velocity is observable when
sufficient changes in the pitch and yaw angles of the UAV
occur. Simulations will show that in this approach attitude
changes are also necessary during the initialization phase of
the EKF. When accurate estimates of the lift coefficients are
obtained periodical attitude changes are only needed to avoid
drift in these coefficients or to detect changes in them.

V. SIMULATION SETUP

A. UAV Simulation

All simulations were performed using a simulation of the
X8 flying wing and a simulated autopilot. The simulator
and the autopilot are based on Beard and McLain [2, Chap.
4 and 6] and implemented in Matlab / Simulink. In the
aircraft simulation a more complex non-linear model of

the aerodynamics is used ( for details see [2, pp.44]). The
aerodynamic forces are thus given by:
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where M and ↵0 are positive constants, c is the mean
aerodynamic chord of the wing, q is the pitch-rate and �

e

is the elevator deflection and C

L,q

, C

L,�e , CD,q

, C

D,�e are
their respective lift and drag coefficients.
Wind velocity is simulated following Beard and McLain [2,
pp.55] as the sum of a steady and a turbulent wind velocity
component, where the turbulence is generated by passing
white noise through a low pass filter. The filter is designed
in the way described in section II-C according to the Dryden
model. The steady wind velocity and the wind velocity at 6m
above ground, needed for the turbulence generation, were set
to 6m/s, the wind direction was set to 90

�.

B. Initial Conditions and Tuning

The initial condition for the state vector was set to:

x0 =

⇥
0 0 0 0 0 0 0 1 1

⇤
T (53)

The inital condition for the state covariance matrix was set
to:

P0 = diag

⇥
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�2
10

�2
10

�4
10
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10
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10
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10
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10
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10

�8
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The tuning factors of the process noise covariance matrix Q
were set to:

a =

⇥
10

�7
10

�7
10

�10
5 · 102 5 · 102

2 · 102 10

�6
10

�10
10

�15
⇤ (55)

The covariance matrix of the measurement noise was chosen
to:

R = diag(1, 0.6) (56)

This covariance matrix is important in tuning the EKF. It
quantifies the expected uncertainties in the measurement
equation induced by noise in the sensors and errors within
the attitude estimation. The measurement noise ⌫ is modeled
as band limited white noise with the following variances:

�

⌫

=


0.1

0.1

�
(57)



For the measurement of the pitot-static tube the measurement
noise was model as Gaussian white noise with a variance
of 0.1. It was assumed in the simulation that the AHRS
system supplies the estimator with accurate attitude angles
with negligible noise levels.

C. Inputs

Here we simulate a normal take off and some circles,
which are often performed by UAV pilots before handing
control over to an autopilot. The UAV performs one circle
per minute. The UAV is commanded to fly at an altitude of
150m, with a course angle of 60

�. Later the UAV changes
altitude to 250m and course 90

� at two different time
instants. The input signals can be seen in Figure 2 and Figure
3.
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Fig. 2: Commanded and resulting altitude of the UAV

0.00 200.00 400.00 600.00 800.00 1,000.00
�200.00

�100.00

0.00

100.00

200.00

Time in Seconds

C
ou

rs
e

A
ng

le
in

D
eg

re
e

Course Angle

Commanded Course Angle

Fig. 3: Commanded and resulting course angle of the UAV

VI. SIMULATION RESULTS

A. Wind Velocities and Airspeed

Figure 4 show the wind velocity estimates in x, y and z
direction in NED frame and their respective references. As
can be seen, the wind velocity estimation is very accurate for
the z-velocity. This results from the very tight coupling to the
z-acceleration through ↵. The velocities in x and y direction
rely more on the measurement of the pitot-static tube, since
the coupling to the z-acceleration is fairly weak through the
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Fig. 4: Wind velocity estimates (blue ) in NED frame and
true values (red)

denominator in (4). Therefore change in yaw angle is needed
to provide measurement updates in both directions. This can
be seen in Figure 4: In the intermediate part of the flight the
UAV is moving in north east direction (course 60

�) during
this part the estimates for wind in east direction are fairly
good where as in north direction have a larger error. This
error increased even more when the aircraft is moving in
east direction during the second part (time  660s) of the
flight. Notable is that the steady wind velocity estimate in
north direction is still reasonably accurate.
Using the wind velocity estimates and the GNSS velocity,
the airspeed V

a

can be calculated using equation (6). The
result is shown in Figure 5. The estimated airspeed is also
compared to an estimate from previous work [7], which



only uses pitot tube and GNSS measurements and not the
accelerometers. The root mean square error (RMSE) for
the wind estimator proposed here is 0.23m/s, which is an
improvement compared to the pitot - tube only estimator
which has a RMSE of 0.72m/s.
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Fig. 5: Airspeed estimate (blue), reference (red) and estimate
of pitot-static tube only estimator of [7] (green), RMSE =

0.23m/s,RMSE

pitot

= 0.72m/s

B. Lift coefficients and Angle of Attack

Figure 6 shows the estimates of the lift coefficients. The
dynamic lift coefficient estimate C

L,↵

remains at a small
offset from its true value, but this is reasonably small. The
static lift coefficient estimate C

L,0 shows some larger relative
errors. This could be due to modeling errors induced by the
linearization done in section II-B. However, as will be shown
later, the influence of these errors on the angle of attack es-
timate is minor. The black dashed lines show the confidence
intervals of the estimate (3�). For both coefficients these
intervals are quite narrow and indicates a high confidence
in the estimates of the EKF. Notice that C

L,↵

and C

L,0

are drifting slowly over time. This occurs because due to
the constant pitch angle no information from the pitot tube
over the wind velocity in down direction is available. This
increases the uncertainty in the lift coefficients and the wind
velocity in z-direction over time. To resolve this one could
either perform periodic changes in altitude, choose lower
process noise covariance values or freeze the lift coefficients.
This also depends whether the coefficient is likely to change
or not.
As mentioned in section III the angle of attack can be
calculated in two ways either by using the lift coefficients, the
z- acceleration and V

a

solving equation (12) or by using the
airspeed vector vb

r

using (4). Figure 7 shows a comparison
of these two methods. The calculation via the first method
yields better results compared to the second method, which
might be due to the fact that the tuning was aiming on
slowly drifting lift coefficients, which leads to higher drift on
the steady wind velocities when no attitude changes occur.
Note that although the are some errors in the lift coefficient
estimates, these only induce small errors in the angle of
attack estimate.
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Fig. 6: Estimates of static and dynamic lift coefficient, dashed
black lines indicate 3 � intervall

Figure 8 shows the estimated angle of attack, calculated by
solving equation (12) for ↵, the estimate obtained by only
using pitot-static tube data and GNSS data as well as the true
value from the simulation. The RMSE for the wind estimator
proposed here is 0.33

�, which is an significant improvement
compared to the pitot - tube only estimator which has a
RMSE of 2.31�.

C. Scaling Factor

Figure 9 shows the estimate of the pitot tube scaling
factor �. The scaling factor rises quickly to a region around
to its reference value and remains there for the whole
simulation run. Some small changes occur, which are due
to measurement noise and uncertainty in the other state
estimates.

D. Sideslip Angle

For completeness also the estimated Sideslip Angle is
shown in Figure 10. It is calculated from equation (5).
Compared to [7] there are only slight improvements in the
estimation performance. This was expected since the lateral
acceleration is not included in the estimation, and additional
information within the estimator can only be obtained from
the wind model regarding the lateral wind velocity in body
frame. This could be improved by including a model of the
lateral aerodynamics and using f

y

accelerometer measure-
ments.
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VII. CONCLUSION

This paper studies the estimation of wind velocity, in
order to compute angle of attack, sideslip angle and wind
velocity, using kinematic and aerodynamic relationships as
well as a model of turbulent winds. The wind is modeled as
a sum of steady, slowly changing wind and turbulent wind,
for which the Dryden model was applied. As sensors only
standard sensors typical of a UAV, consisting of GNSS,
IMU and a pitot-static tube, are used. The models and
measurement data were combined in an Extended Kalman
Filter.
The estimator was tested using a fixed wing UAV simulator
and an autopilot model. Simulation results showed generally
good performance in estimation of the wind velocities and
the lift coefficients. This leads to significant improvements
of the angle of attack and airspeed estimates compared
to [7]. The estimate of the sideslip angle shows also
improvements, but these are limited since no information
about the lateral aerodynamics and lateral accelerometer
measurements were used within the estimator.

0.000 200.000 400.000 600.000 800.000 1,000.000
0.999

1.000

1.000

1.001

1.001

Time in Seconds

Sc
al

e
Fa

ct
or

� estimate

� reference

Fig. 9: Estimate of the pitot tube scaling factor �

0.00 200.00 400.00 600.00 800.00 1,000.00

�20.00

�10.00

0.00

10.00

20.00

Time in Seconds

Si
de

sl
ip

A
ng

le
in

D
eg

re
es

� estimate pitot only

� estimate

� reference

Fig. 10: Sideslip angle estimation (blue), reference (red) and
estimate of pitot-static tube only estimator of [7] (green),
RMSE = 3.21

�
, RMSE

pitot

= 3.67

�

VIII. ACKNOWLEDGMENTS

This project has received funding from the European
Unions Horizon 2020 research and innovation programme
under the Marie Sklodowska-Curie grant agreement No
642153. The research was also funded by the Research Coun-
cil of Norway through the Centres of Excellence funding
scheme, grant number 223254 NTNU AMOS.
We would like to thank Kristoffer Gryte for the development
of the UAV simulator.

REFERENCES

[1] MIL-STD-1797A: Flying Qualities of Piloted Aircraft. Technical
report, 2004.

[2] Randal W. Beard and Timothy W. McLain. Small Unmanned Aircraft:

Theory and Practice. Princeton University Press, 2012.
[3] K. T. Borup, T. I. Fossen, and T. A. Johansen. A Nonlinear Model-

Based Wind Velocity Observer for Unmanned Aerial Vehicles. In 10th

IFAC Symp. Nonlinear Control Syst., Monterrey, CA, USA, 2016.
[4] Am Cho, Jihoon Kim, Sanghyo Lee, and Changdon Kee. Wind

estimation and airspeed calibration using a UAV with a single-antenna
GPS receiver and pitot tube. IEEE Trans. Aerosp. Electron. Syst.,
47(1):109–117, 2011.

[5] Jean-philippe Condomines, Murat Bronz, and Gautier Hattenberger.
Experimental Wind Field Estimation and Aircraft Identification Ex-
perimental Wind Field Estimation and Aircraft Identification. In IMAV

2015 Int. Micro Air Veh. Conf. Flight Compet., 2015.



[6] Havard Fjær Grip, Thor I. Fossen, Tor A. Johansen, and Ali
Saberi. Nonlinear observer for GNSS-aided inertial navigation with
quaternion-based attitude estimation. In Am. Control Conf., pages
272–279, jun 2013.

[7] Tor A Johansen, Andrea Cristofaro, Kim Sørensen, Jakob M Hansen,
and Thor I Fossen. On estimation of wind velocity , angle-of-attack
and sideslip angle of small UAVs using standard sensors. In Int. Conf.

Unmanned Aircr. Syst., Denver, 2015.
[8] R. E. Kalman and R. S. Bucy. New results in linear filtering and

prediction theory. J. Basic Eng., 83(1):95–108, 1961.
[9] Derek B Kingston and Randal W. Beard. Real-time Attitude and

Position Estimation for Small UAVs using Low-cost Sensors. Proc.

AIAA Unmanned Unltd. Tech. Conf. Work. Exhib., pages 2004–6488,
2004.

[10] Makoto Kumon, Ikuro Mizumoto, Zenta Iwai, and Masanobu Nagata.
Wind estimation by unmanned air vehicle with delta wing. In Proc. -

IEEE Int. Conf. Robot. Autom., volume 2005, pages 1896–1901. IEEE,
2005.

[11] Jack W Langelaan, Nicholas Alley, and James Neidhoefer. Wind Field
Estimation for Small Unmanned Aerial Vehicles. J. Guid. Control

Dyn., 34:1016–1030, 2011.
[12] Hao Long and Shujie Song. Method of Estimating Angle-of-Attack

and Sideslip Angel Based on Data Fusion. In 2009 Second Int. Conf.

Intell. Comput. Technol. Autom., volume 1, pages 641–644. IEEE,
2009.

[13] Matthew B. Rhudy, Trenton Larrabee, Haiyang Chao, Yu Gu, and
Marcello Napolitano. UAV Attitude, Heading, and Wind Estimation
Using GPS/INS and an Air Data System. In AIAA Guid. Navig.

Control Conf., number 5201, pages 1–11, 2013.
[14] Andres Rodriguez, Evan Andersen, Justin Bradley, and Clark Taylor.

Wind Estimation Using an Optical Flow Sensor on a Miniature
Air Vehicle. In AIAA Guid. Navig. Control Conf. Exhib., volume
6614, pages 1–8, Reston, Virigina, aug 2007. American Institute of
Aeronautics and Astronautics.

[15] Mohammad Shaqura and Christian Claudel. A hybrid system approach
to airspeed, angle of attack and sideslip estimation in Unmanned Aerial
Vehicles. In Int. Conf. Unmanned Aircr. Syst. ICUAS 2015, pages 723–
732, 2015.

[16] Pengzhi Tian and Haiyang Chao. UAV Flight Test Evaluation of
Fusion Algorithms for Angle of Attack and Sideslip Angle. In AIAA

Guid. Navig. Control Conf., number 0645, 2016.


