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Abstract 17 

Electromagnetic forward modeling is the cornerstone of geophysical 18 
electromagnetic inversion. During the last 50 years, numerical simulation methods 19 
have been rapidly developed and widely used in geophysical area as the 20 
computational capacity continued to increase, such as from single-core to the most 21 
modern multi-core processing cards. This paper reviews the literature of 22 
electromagnetic fields simulation, particularly focusing on the forward modeling 23 
methods include finite difference method, finite element method, integral equation 24 
method, and several hybrid methods. We also discuss the possibility of deep learning 25 
methods for EM modeling. By sorting out the work done by the predecessors, this 26 
review briefly introduces the basic principles and traces back the development of 27 
these methods. We propose a Qualitative Evaluation Model named STAMP Model 28 
and some criteria of qualitative evaluation on these methods will be discussed in this 29 
model.  30 

31 
Keywords: electromagnetic modeling; finite difference method; finite element 32 

method; integral equation method 33 

1 Introduction 34 

Geophysical electromagnetic (EM) methods are effectively and widely applied in 35 
geophysical researches, applied geophysics and engineering. They mainly reflect the 36 
contrast of the electrical conductivity and the magnetic permeability between the 37 
targets and surrounding rocks. Accurate simulation of the EM fields distribution has 38 
become the primary goal for the EM exploration. Since it is impossible to obtain the 39 
analytical solutions of multi-dimensional Maxwell’s equations in real complex 40 
medium underground, geophysicists devote to find out the numerically approximate 41 
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solutions for EM fields modeling. EM inversion estimates the realistic subsurface 42 
electromagnetic fields distribution, which depends on the precise solution of EM 43 
forward modeling problem.  44 

During the past 50 years, the development of the modeling has experienced from 45 
low to high dimension (generally from one-dimensional (1D) to two-dimensional 46 
(2D), three-dimensional (3D) and two-and-half-dimensional (2.5D) problems), from 47 
simple to complex geometry, and from isotropic to anisotropic structure. Application 48 
of EM fields modeling has been used in the EM exploration with onshore, offshore, 49 
airborne, and borehole environments. With the rapid development of computers and 50 
numerical methods, the complexity of the problems to be solved has gradually 51 
increased, which has caused a enormous calculational burden. In order to improve 52 
computing efficiency, modern computer distributed platforms provide good technical 53 
supports for parallel computing. 54 

Geophysical EM forward modeling is sometimes regarded as an engine for EM 55 
inversion and commonly used to obtain the verification of conductivity models or 56 
conduct various related feasibility studies (Avdeev, 2005). Virieux et al. (2011) 57 
mentioned that the key indicators for choosing the forward modeling method mainly 58 
included the accuracy, the efficiency, the practicality of the method and the gradient of 59 
the misfit function in an inversion algorithm. Researchers committed to advance the 60 
forward modeling to higher accuracy and faster computational speed (Kosloff and 61 
Baysal, 1982; Zhang et al., 1995; Heagy et al., 2019). 62 

There are some review articles on the EM forward modeling methods. Some 63 
articles are focusing on some specific problems, such as EM applications in 64 
hydrocarbon exploration and monitoring, partly mentioned the modeling problems 65 
(Kaikkonen, 1986; Sheard et al., 2005; Siemon et al., 2009; Strack, 2014; Streich, 66 
2016). Avdeev (2005) mentioned numerical methods from theory to application 67 
focusing on the 3D problem. Zhdanov (2010) discussed the EM methods exhaustively, 68 
including the developments of data acquisition, modeling, inversion and interpretation, 69 
as well as a new approach to EM-field characterization. Börner (2010) considered the 70 
numerical solution of the 3D time-domain and frequency-domain EM induction 71 
problems, restricted to finite difference method (FD) and finite element method (FEM) 72 
and consciously ignoring integral equation method (IE). From the perspective of 73 
numerical calculations, Miensopust et al. (2013) compared different algorithms from 74 
the two aspects of forward and inversion methods and discussed the applicability of 75 
these different algorithms to the two Dublin models. Newman (2014) reviewed high 76 
performance computational (HPC) strategies for large-scale 3D EM modeling and 77 
imaging and discussed the future of HPC applied to EM modeling.  78 

Differently from the above reviews, in this paper we mainly review the three 79 
most widely applied methods for EM modeling, including FD, FEM and IE, and 80 
several hybrid methods derived from them. We will intentionally not elaborate on 81 
some details of numerical calculation and parallel computing. Our aim is to catch the 82 
recent development of the EM forward modeling methods. In order to give readers a 83 
clearer understanding of the EM forward modeling, we stand at the point of the 84 
development history and the improvement of these methods.  85 
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In Section 2, we first review FD, FEM, IE respectively and divide some key 86
technologies of them more carefully according to their respective characteristics. Then 87 
we also mention several hybrid methods derived from the above three methods. The 88 
hybrid methods generally combine advantages of at least two of these conventional 89 
methods to make up for the shortcomings of single methods. Additionally, we discuss 90 
the possibility of the application of the deep learning (DL) method in EM modeling. 91 

In Section 3, we discuss on the basis of the traditional EM modeling methods 92 
reviewed in the previous part and build up an evaluation model, called STAMP Model, 93 
to qualitatively describe the advantages and disadvantages of the forward modeling 94 
methods. In the last, we make a conclusion for this review paper.  95 

The statistics for the years and quantities of major references cited are given in 96 
Figure 1. What we can find interesting is that after 2000, researchers began to study 97 
FEM gradually, and in the past five years, deep learning began to become the focus of 98 
researchers’ attention. 99 

 100 

 101 

Figure 1. The statistics for the years (a) and quantities (b) of major references cited. 102 
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2. Commonly use numerical approaches 103 

2.1 Finite difference method 104 

Finite difference (FD) method is an approximate numerical solution for 105 
differential equations (DE), which discretizes the derivative in the governing 106 
equations mainly by Taylor series expansion. With it, the algebraic equation with 107 
unknown variables on the grid can be established and then the differential equation 108 
system is directly turned into an algebraic problem. 109 

Finite difference method is one of the earliest methods used in computer 110 
numerical simulation. In the 1960s, Yee (1966) first adopted FD to solve the initial 111 
boundary problem of time-domain Maxwell’s equations in the isotropic medium, and 112 
proposed the staggered-grid finite-difference method (SFD). According to the 113 
different solution domain, it can be divided into finite-difference time-domain method 114 
(FDTD) and finite-difference frequency-domain method (FDFD). SFD as the most 115 
commonly used difference format can solve for the EM fields in both the time and 116 
frequency domain. 117 

2.1.1 SFD in EM modeling 118 

The staggered-grid finite-difference method (SFD) is a method meshing in space. 119 
In the conventional staggered grids (SG), the scalar is stored and calculated on the 120 
normal grid node, and the components of the vector are stored and calculated on the 121 
dislocated grid. The center of the dislocated grid is located on the interface of the 122 
original control volume. And the purpose of using SG is to solve the discontinuity 123 
problem caused by the discrete governing equations on ordinary grids. In view of this 124 
advantage, Yee (1966) proposed SFD suitable for EM modeling. 125 

Yee grids 126 

Yee’s SFD defines the discrete electric field components at the midpoint of the 127 
edges of the discrete elements, while the discrete magnetic field components are 128 
defined at the centers of each side facet of the discrete elements. The defined position 129 
of the EM fields can be exchanged. On the one hand, Yee’s SFD naturally expresses 130 
Faraday’s right-handed spiral law of electromagnetic induction. On the other hand, it 131 
solves the problem of the discontinuity of the tangential components of the electric 132 
field caused by the electric field definition at the nodes of the elements in the 133 
conventional grids. Figure 2 shows the staggered grid (Yee, 1966) and the 134 
conventional grid for the FD method on the EM modeling. Unless otherwise specified, 135 
the "SFD" used below is Yee's SFD.  136 
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 137 

Figure 2. The staggered grid (a) and the conventional grid (b) for the FD method. 138 
The red arrows represent the electric field components E' and the blue arrows 139 

represent the magnetic field components H' (the electric field components E' and the 140 
magnetic field components H' are coincident in b). (Modified from Weiss and 141 

Newman, 2002) 142 
Due to the limitations of computer development, the SFD algorithm was not 143 

widely used until the 1990s. Newman and Alumbaugh (1995) employed SFD method 144 
to the 3D frequency-domain AEM response and Alumbaugh et al. (1996) applied it 145 
for solving the 3D earth wideband EM response. Smith (1996a) developed the SFD 146 
for 3D electromagnetic induction directly on the inhomogeneous rectangular grid and 147 
discussed the derivation process of SFD equation. The solution was compared with 148 
the 2D quasi-analytical solution and the accuracy of the method was proved. Smith 149 
also pointed out that the various differential relationships between different field 150 
components must be completely maintained in the SFD form, which was the most 151 
important feature of the SFD. In another article, Smith (1996b) applied the Schur 152 
complement introduced by Haynsworth (1968) to divide the computational domain 153 
into some smaller subdomains. 154 

In the 1990s, the use of FD for EM researches on anisotropy of EM field still 155 
stayed in 2D. Pek and Verner (1997) proposed a FD algorithm of MT fields in 2D 156 
generally anisotropic block structures. At that time, the solution to the 2D anisotropy 157 
problem was still limited by computer performance. At the beginning of the 21st 158 
century, the study of the anisotropy problem of FD began to consider 3D models. 159 
Wang and Fang (2001) developed the SFD to simulate the multicomponent EM 160 
response in 3D inhomogeneous medium with arbitrary anisotropy. By using the 161 
coupled Maxwell’s equation, the computation time of anisotropy was approximately 162 
equal to the isotropic calculation time. From another perspective, for simulation of 163 
EM induction in 3D anisotropic medium, Weiss and Newman (2002) proposed a new 164 
SFD algorithm which accurately simulated the effect of the geological structures on 165 
induction tool response. The new work extended the previous isotropic work by 166 
Newman and Alumbaugh (1995) to anisotropy and also effectively controlled the 167 
calculation cost of anisotropy to be similar to that of isotropy.  168 
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Gradually, the SFD has been widely applied in induction logging, borehole, 169 
airbone and marine modeling. Followed the work by Newman and Alumbaugh (1995) 170 
and Alumbaugh et al. (1996), Newman and Alumbaugh (2002) developed the SFD 171 
approach for simulating the 3D induction logging response with quasi-static limit and 172 
transverse anisotropy. The approach used the decoupled vector potential and dc scalar 173 
potential functions. The new developed preconditioner significantly sped up the 174 
solution of low induction numbers (LINs) and low frequency. Differently from 175 
Newman and Alumbaugh (2002), Hou et al. (2006) proposed a new SFD algorithm 176 
using coupled scalar-vector potential formulas. Averaged conductivities and potential 177 
components not defined on the same points were calculated by the similar methods 178 
used by Wang and Fang (2001) and Weiss and Newman (2002). The proposed 179 
algorithm could efficiently and accurately simulate various types of the frequency and 180 
arbitrary electrical anisotropy in the complex 3D borehole EM modeling. Applying 181 
the SFD algorithm to the AEM system, Liu and Yin (2014) obtained the solution of 182 
the coupled the partial differential equations (PDEs) for the scattered electrical fields. 183 
They adopted the specifically designed divergence correction technique for the 3D 184 
anisotropic model to accelerate the process of the simulation. The technique greatly 185 
improved the calculation efficiency and the convergence speed of the solution. By 186 
using the SFD method, Li et al. (2018) applied the complex frequency-shifted 187 
perfectly matched layer (CFS-PML) boundary (Kuzuoglu & Mittra, 1996) to 3D 188 
marine CSEM modeling. Compared to using the Dirichlet boundary condition, the 189 
algorithm using the CFS-PML saved more computing time and memory and could be 190 
more efficient.  191 

Lebedev grids 192 

The above mentioned SFDs are mostly based on Yee’s SFD variants. Actually 193 
before Yee (1966), Lebedev (1964) presented a different SG scheme. Davydycheva 194 
and Druskin (1999) introduced Lebedev grids to solve the Maxwell’s equation. 195 
Differently from Yee grids, Lebedev grids places all components of the electric fields 196 
at one set of nodes, and all components of the magnetic fields at another set of nodes. 197 
This maintains the current conservation property in the grid cells and addressed the 198 
modeling with anisotropy in the physical properties. Figure 3 shows the difference 199 
between Lebedev grids and Yee grids. Lebedev grids can be split in four uncoupled 200 
standard Yee grids but four times the computational cost is needed compared to the 201 
similar isotropic problem in the standard Yee grids (Wang and Fang, 2001; Weiss and 202 
Newman, 2002). In order to reduce the cost of computation in the Lebedev grids, 203 
Davydycheva et al. (2003) employed a proper averaging of the sources, solutions, and 204 
error elimination and a spectrally optimal grid refinement scheme to calculate the 205 
electromagnetic field of the 3D anisotropic inhomogeneous media in the EM 206 
induction logging. The grid size was significantly reduced and the 3D calculation was 207 
greatly accelerated without sacrificing accuracy. Jaysaval et al. (2016) also presented 208 
an algorithm based on the Lebedev grid with a multigrid preconditioner for the 209 
numerical simulation of 3D CSEM general electrical anisotropic conductive medium. 210 
They accurately simulated layered and 3D tilted transverse isotropic (TTI) typical 211 
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marine CSEM model and proved the importance of considering the fully anisotropy of 212 
the conductivity tensor for the inversion. And a rule was observed that the solution 213 
time of a linear system increases linearly with the increase of unknowns.  214 

 215 
Figure 3. (a) Lebedev grid cell used to define the collocated electric and 216 

magnetic field components. (b) Standard Yee grid, and the complementary 217 
Yee grids constructed by shifting the components of E and H by half a cell in the (c) 218 

x-, (d) y- and (e) z-directions. (Jaysaval et al., 2016) 219 
 220 

2.1.2 FDTD 221 

Finite-difference time-domain method (FDTD) has been widely applied into the 222 
simulation of the time-domain EM fields. It directly solves the Maxwell’s equation in 223 
the time domain without requiring any form of derived equation. The prominent 224 
advantage of FDTD is that it can simulate various complex structures only by 225 
assigning the components of the EM fields contained by the difference format to each 226 
grid. Due to adopting the stepping method for calculation, FDTD can easily realize 227 
the simulation of various complex time-domain wideband signals, and it is very 228 
convenient to obtain the time-domain signal waveform at a certain point in space.  229 

Goldman and Stoyer (1983) used the FDTD of a coaxial loop or wire loop 230 
transient electromagnetic (TEM) detection system to simulate the EM fields generated 231 
by a 2D buried cylindrical conductor. Based on the Du Fort-Frankel FD scheme (Du 232 
Fort and Frankel, 1953), Oristaglio and Hohmann (1984) applied FDTD to solve the 233 
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time-stepping Maxwell’s equations in a 2D conductive earth. Wang and Hohmann 234 
(1993) applied this method to the 3D TEM model. And in order to solve the boundary 235 
conditions, Berenger (1994) first proposed the concept of FDTD perfectly matched 236 
layer (PML) absorbing boundary conditions to calculate the boundary condition 237 
problems in 2D time domain. Subsequently Katz et al. (1994) and Chew and Weedon 238 
(1994) extended the FDTD PML to 3D time-domain calculations, and Debroux (1996) 239 
applied the FDTD code to the 3D modeling of the EM response. 240 

For reducing the computational time of 3D modeling, Commer and Newman 241 
(2004) presented a parallel FDTD approach for 3D TEM modeling. By combining a 242 
modified Du Fort-Frankel method with the FD scheme presented by Wang and 243 
Hohmann (1993), Maxwell’s equations were stepped in time. For simulating a real 244 
large-scale earth model economically, the approach was parallelized to save the large 245 
consumption of computational time. Maaø (2007) improved the FDTD based on 246 
mathematical transformation rather than physical approximation (Oristaglio and 247 
Hohmann, 1984) for marine-subsurface EM problem. The improvement significantly 248 
reduced the frequency dependence of the propagation velocities and cur down the 249 
computational time. Continuation of this mathematical transformation improvement, 250 
Mittet (2010) presented a numerically cost-efficient high-order FDTD scheme, which 251 
used a correspondence principle of wave and diffusion fields, for efficiently 252 
simulating marine CSEM data. And de la Kethulle de Ryhove and Mittet (2014) 253 
developed it to solve Maxwell’s equations for marine MT 3D modeling. They pointed 254 
out that the FDTD method completely avoided solving the linear system of equations. 255 
It allowed the calculation of the unknowns of EM fields at all frequencies in only one 256 
simulation, with very low computation complexity and low memory. 257 

2.1.3 FDFD 258 

Frequency-domain finite-difference method (FDFD) based on Maxwell’s 259 
equation is simple and intuitive in both principle and formulas, and can be used to 260 
deal with various EM problems. However, the classic FDFD needs to discretize the 261 
entire calculation area, and a difference equation must be established at each grid 262 
node. In spite of the final matrix equation is sparse, the scale of the matrix will 263 
increase rapidly as the computational domain increases, resulting in a huge burden of 264 
calculation and storage. Therefore, FDFD is usually combined with some other 265 
techniques to reduce the computational cost. 266 

The most common combination of FDFD is the use of Yee grid to discretize the 267 
EM fields. Mackie et al. (1994) combined the SFD algorithm with the minimum 268 
residual relaxation method to calculate the MT response of general 3D models in the 269 
frequency domain. Frequency-domain SFD has been used successfully to solve EM 270 
fields in isotropic medium (Newman and Alumbaugh, 1995; Alumbaugh et al., 1996; 271 
Smith, 1996a) and then has been developed into anisotropy (Wang and Fang, 2001; 272 
Weiss and Newman, 2002; Hou et al., 2006). Even this method has been applied to 273 
the forward modeling of the EM inversion problem (Egbert and Kelbert, 2012; 274 
Grayver et al., 2013). It is worth noting that Egbert and Kelbert (2012) developed a 275 
module system of computer codes, ModEM, for EM inversion. ModEM has already 276 
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been widely applied into 3D MT and CSEM problems (Kelbert et al., 2014). 277 
FDFD is relatively simple and suitable for CSEM surveys which extracting only 278 

a few discrete frequencies from data (Streich, 2009). Streich (2009) discussed the 279 
iterative and direct solvers for solving the system of equations and used a massively 280 
parallel sparse direct solver (MUMPS) (Amestoy et al., 2000) to solve the system of 281 
equations from FDFD. The staggered scheme with electric-field components located 282 
on the cell faces and the magnetic-field components on the edges was better for the 283 
CSEM surveys than the more commonly used SG. Similarly, using the same scheme 284 
described by Streich (2009), Grayver et al. (2013) applied FDFD and MUMPS in the 285 
forward algorithm for 3D CSEM data inversion. Modern distributed-memory 286 
platforms solved the high memory demand of the direct solver. In order to obtain a 287 
stable system at low frequencies using a direct solver, a static divergence correction 288 
(Smith, 1996b) was enforced for the static limit in the low-conductivity air layer. 289 
However, it is not necessary for typical CSEM frequencies (~0.1-10Hz) (Streich, 290 
2009; Jaysaval et al., 2014). And Jaysaval et al. (2014) applied a Schur complement 291 
scheme (Haynsworth, 1968; Smith, 1996b) to FDFD with the commonly used 292 
staggered scheme for fast multi-model 3D CSEM modeling. The Schur complement 293 
system was solved by using MUMPS and the scheme overcame the shortcoming of 294 
standard FDFD method, which required repeated forward modeling of the whole earth 295 
model at each iteration, so that reducing the computation complexity greatly. The 296 
efficiency of the FDFD code was validated against the FDTD code developed by 297 
Maaø (2007) and Mittet (2010). 298 

In addition, there are some other optimization schemes. Yavich and Zhdanov 299 
(2016) developed a new efficient frequency-domain SFD method for calculating 300 
discrete 1D layered background conductivity, based on introducing a contraction 301 
operator (CO) to construct an effective FD EM-modeling preconditioner. The 302 
contraction preconditioner can significantly accelerate the convergence of the FD 303 
iterative solver and save the memory storage of the computation. Considering that 304 
there is no need for fine grids in deep underground, Cherevatova et al. (2018) 305 
presented a multi-resolution (MR) FD approach for frequency-domain 3D MT 306 
forward modeling. The MR staggered-grid (SG) scheme was implemented to decrease 307 
the horizontal resolution with depth. Three ways of handling the interface layers were 308 
considered and the best one retained the symmetry of the coefficient matrix with a 309 
similar accuracy result as the SG solution. Compared with the basic SG, MR scheme 310 
improved the computation efficiency without the loss of the solution accuracy. 311 
Varilsuha and Candansayar (2018) studied different EM formulation approaches, 312 
including direct EM formulation, ungauged and gauged (Lorenz, Coulomb, and axial) 313 
vector and scalar potential formulations, to solve the problems of 3D MT modeling. 314 
Comparing the accuracy and the speed of the FD solution for each method, the 315 
ungauged method provided faster simulation with the same precision. Furthermore, 316 
the axial specification system forward modeling also had a faster speed of CSEM 317 
field simulation than other methods. 318 

2.1.4 2.5D problem 319 
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Although the use of high-performance computing can achieve 3D forward 320 
modeling, the cost of discretizing the computation domain of fully 3D models is 321 
extremely expensive. To avoid direct 3D solution, there is a reasonably assumption 322 
that the geological structure with topography within a certain range is a 2D model 323 
with uniform electromagnetic characteristics in the strike direction. It should be noted 324 
that such an assumption is not suitable for discussing fully anisotropy. The coordinate 325 
in the strike axis is transformed into the wavenumbers by Fourier transforms. For each 326 
of a number of wavenumbers, only a 2D problem need to be solved (Stoyer and 327 
Greenfield, 1976) and the response is still that of a 3D model with the properties 328 
invariant along one of the axes. Such 2D problem is described as 2.5D problem and it 329 
simplifies the 3D solution and significantly reduces the number of unknowns and 330 
computational cost. The 2.5D problem also applies to FEM and IE that will be 331 
reviewed in the corresponding section later.  332 

The 2.5D FD method was first proposed by Stoyer and Greenfield (1976). 333 
Abubakar et al. (2006a) put forward a 2.5D SFD forward algorithm for marine CSEM. 334 
The algorithm solved all source-receiver configurations simultaneously, which greatly 335 
improved the calculation efficiency and helped the realization of fast inversion 336 
algorithms. Based on Abubakar et al. (2006a), Abubakar et al. (2008) presented 337 
efficient 2.5D forward and inversion algorithms for the interpretation of 338 
low-frequency EM measurement. And the forward algorithm used a multifrontal LU 339 
decomposition (Davis and Duff, 1997) to invert the stiffness matrix. Chen et al. (2011) 340 
developed a 2.5D SFD code for simulating the responses of logging-while-drilling 341 
(LWD) deep directional EM tools and wireline tensor induction tools in high angle 342 
and horizontal (HA/HZ) wells. The code was applied for 2D formation conductivity 343 
distributions and 3D well trajectories. Zeng et al. (2018) proposed a 2.5D FD method 344 
based on Yee’s grid using the weighted average method (Weiss and Newman, 2002) 345 
to simulate the anisotropy of 2D resistivity logging. The Fourier transform was 346 
performed by adopting the Gauss-Legendre quadrature rule and the inverse Fourier 347 
transform was accelerated by employing the Gaussian quadrature method (Quarteroni 348 
et al., 2010), which greatly reduced the calculation time and improved the 349 
computation efficiency. This made the 2.5D FD has a better applicability than 3D 350 
scheme.  351 

Above all, FD is a simple and practical numerical simulation method for solving 352 
PDEs by approximating the derivative with a difference. Because of the approximate 353 
solution obtained by differential approximation and interpolation, FD has the 354 
advantage for the general model. Due to the own characteristics of the SG, the SFD 355 
method can largely solve the problems of EM fields discontinuity caused by the 356 
difference in electromagnetic properties of the medium. FDTD and FDFD have 357 
different applicability and whether in the time or frequency domain, the whole 358 
domain needs to be discretized so that FD is not suitable for solving more complex 359 
domains. In addition, since the interpolation calculation is in the whole domain, 360 
different discretized grid sizes will get different solution results. 361 
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2.2 Finite element method 362 

Finite element method (FEM) is based on the variational method and the 363 
weighted equivalent integral method. According to the principle of variation or the 364 
principle of orthogonalization between the remainder of the equation and the weight 365 
function, an integral expression equivalent to the initial boundary value problem of 366 
the differential equation is established. Although both belong to the DE method, FEM 367 
is very different from FD. In the process of solving, an interpolation function is used 368 
to connect all the discrete units, and the PDEs group becomes a total stiffness matrix 369 
to be solved. No matter how complicated the calculation domain is, it can be 370 
discretized into finite elements and these elements are connected through interpolation 371 
functions to realize the solution of the complex domain. 372 

Originally FEM was applied to solve the elastic and structural analysis problems 373 
(Hrennikoff, 1941; Courant and Robbins, 1942). Until the 1970s, Coggon (1971) 374 
firstly employed it to calculate EM fields. Rodi (1976) proposed the FEM for a 375 
numerical simulation of MT data on 2D conductivity model with a new rectangular 376 
grid. Rijo (1977) put forward a single-module FEM algorithm which can deal with 2D 377 
symmetry problems in electromagnetic methods. This algorithm greatly improved the 378 
accuracy and the speed of 2D EM simulation. Wannamaker et al. (1986) employed 379 
this method to simulate the 2D MT response with terrain. These methods can be used 380 
to simulate both the MT and the CSEM data. In 3D space, the computational cost of 381 
FEM for simulating 3D EM response increased dramatically. The limitation of 382 
computer operation speed and physical memories hindered the usage of FEM. Since 383 
1980s, 3D EM modeling methods have been gradually proposed with the 384 
development of computational resources (Pridmore et al., 1981; Mur, 1991). 385 
Considering the huge computational burden of 3D EM modeling, Zyserman and 386 
Santos et al. (2000) applied parallel FEM 3D EM modeling. 387 

2.2.1 Mesh generation technology 388 

Since mesh generation is a very important step in FEM numerical analysis, and it 389 
directly affects the accuracy of the subsequent numerical calculation and analysis 390 
results, the predecessors have fully studied this technology. 391 

The structure mesh is generated fast with high quality and it can be easily applied 392 
to simulate curves or surfaces only by parameterized methods or interpolation 393 
(Wannamaker et al., 1987). However, this also limits its scope of application, making 394 
it inadequate for calculations in complex domains. In order to overcome limitations of 395 
computational complexity and the inherent constraints of EM fields, structured-grid 396 
FEM were proposed in some reviews (Sugeng, 1998; Yoshimura and Oshiman, 2002).  397 

Compared to structured grid, unstructured gird can accurately segment curved 398 
boundaries of complex geological structures such as terrain or seafloor topography 399 
because of the flexibility of meshing and reduce the size of the system of linear 400 
equations arising from the forward problem (Bö rner et al., 2008; Schwarzbach and 401 
Haber, 2013).  402 
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Unstructured grid generation technology solves the discretization of complex 403 
calculation domains while the speed and quality of mesh generation will decrease and 404 
the difficulties in boundary recovery will also be introduced. In order to prevent 405 
excessive meshing and find the optimal meshes, adaptive mesh refinement technology 406 
is an effective method to solve this problem. 407 

2.2.2 Adaptive FEM. 408 

The adaptive FEM is a numerical method that can automatically adjust the 409 
algorithm through adaptive analysis to improve the solution process. It is based on the 410 
conventional FEM, with a posteriori error estimation and adaptive mesh improvement 411 
technology. The method can successfully save physical memories and significantly 412 
improve the computational efficiency and accuracy.  413 

Key and Weiss (2006) applied the adaptive FEM for 2D MT modeling. They 414 
replaced the rectangular grids with irregular triangular grids since it was easier to 415 
simulate complex structural boundaries. The adaptive refinement method based on the 416 
dual-error weighting approach (DEW) (Ovall 2006) refined the mesh with insufficient 417 
precision through iteration in order to ensure the accuracy. Li and Key (2007) applied 418 
the DEW approach into 2.5D marine CSEM, enabling the unstructured grids to adjust 419 
themself automatically to calculate EM fields effectively. Since the analytical solution 420 
is used to calculate the primary field, it was the most accurate solution during that 421 
time. Li and Pek (2008) presented a similar goal-oriented self-adaptive FEM with 422 
DEW as a guide. The algorithm improved the quality of numerical solutions in a 423 
general 2D MT anisotropic conductivity media. For 3D case, Ren and Tang (2010) 424 
presented an adaptive FEM for direct current (DC) resistivity modeling. It started with 425 
the initial coarse mesh and then based on a gradient recovery scheme. The mesh 426 
refined adaptively according to the indication of a recursive error estimator. The 427 
whole process of adaptation is shown in Figure 4. Where CFEM is the abbreviation of 428 

conventional finite element method, e is the average element error percentage, and 429 

η* is the given error criterion. Schwarzbach et al. (2011) proposed a 3D adaptive 430 
higher order FEM for modeling a realistic marine CSEM scenario. The adaptive mesh 431 
refinement strategy and the higher-order polynomial (HOP) FEM improved the 432 
accuracy of the solution.  433 
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 434 

Figure 4. The whole process of the adaptive FEM scheme. (Modified from Ren 435 
and Tang, 2010) 436 

Actually, according to the posterior error estimation method, the adaptive mesh 437 
refinement technology can be divided into two types. One is based on the 438 
super-convergence characteristic of the variant of the EM field (Key and Weiss, 2006; 439 
Ren and Tang, 2010; Schwarzbach et al., 2011). The other is based on the continuity 440 
of the EM field or the current density (Yin et al., 2016). Ren et al. (2013) applied the 441 
continuity-condition-based adaptive FEM for plane wave 3D EM modeling based on 442 
electric field differential equations. And then, Yin et al. (2016) presented a 443 
goal-oriented, continuity-condition-based adaptive FEM for 3D scattered AEM 444 
modeling in the frequency domain. In addition, Zhang et al. (2018) employed the 445 
method with the backward Euler scheme to perform time-domain 3D airborne 446 
full-wave EM field simulation. The random grid-selection technique improved the 447 
stability of the forward modeling and controlled the number of meshes in the adaptive 448 
process, thereby the efficiency of EM simulation was improved. 449 

In fact, Ovall (2006) also proposed another called the dual weight residual 450 
(DWR) method. Compared to the DEW method, the DWR method calculated the 451 
weight of residual instead of the gradient recovery. In other words, DWR replaced the 452 
absolute error of DEW with the relative error. Such a goal-oriented refinement 453 
strategy could dramatically reduce the density of adaptive refinement grids to a 454 
greater extent and save more a large number of computational resources while keep 455 
high numerical accuracy. Therefore, Key and Ovall (2011) developed a parallel 456 
goal-oriented adaptive meshing technique based on the DWR method and 457 
implemented this technique into a parallel Fortran code named Modeling with 458 
Adaptively Refined Elements for 2D EM (MARE2DEM). Figure 5 shows a typical 459 
synthetic marine CSEM model for hydrocarbon exploration on the continental shelves. 460 
The technique was tested and proved on this model. The optimal distribution of mesh 461 
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density was discovered and the accuracy of 2.5D EM numerical simulation was 462 
improved. The MARE2DEM software, Key (2016) published, also applied the 463 
method to automatically generate and refine an unstructured triangular element mesh 464 
for forward modeling and inversion. It ensured the accurate model response with 465 
various conductivity parameters. Liu et al. (2018b) put forward a goal-oriented 466 
adaptive FEM algorithm for 3D MT modeling in generally anisotropic conductivity 467 
media. A global residual based posterior error estimator was employed to guide the 468 
refinement of unstructured tetrahedral meshes. The algorithm realized the modeling of 469 
arbitrary bathymetries and structural boundaries. 470 

 471 

Figure 5. Complex marine conductivity model including typical features that are 472 
difficult to discretize on a rectangular grid: a large bathymetric slope, tilted regional 473 
strata and closely spaced thin and dipping reservoir intervals. The three panels show 474 
the model (top panel), a close-up of the stacked reservoir layers (middle panel, note 475 

the vertical exaggeration) and the unstructured grid used as the starting mesh (bottom 476 
panel). Inverted white triangles show the location of the seafloor EM receivers. Only 477 

the central portion of the model is shown (Key and Ovall, 2011). 478 
The unstructured grid solves the complexity of the solution area, and the 479 

adaptive scheme solves the problem of grid division, so that they have improved the 480 
calculation accuracy and calculation efficiency of the finite element solution process 481 
to a certain extent. However, due to the diffusion of the EM field itself, the 482 
convergence rate of the solution has not been resolved. 483 

2.2.3 More optimization solutions 484 

Divergence correction 485 
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Due to the characteristics of electric field diffusion, the speed of convergence, 486 
especially at low frequencies, was very slow with the low convergence rate. 487 
Farquharson et al. (2011) proposed a divergence correction method applied in the 488 
FEM based on Smith (1996b) on divergence correction. This correction method 489 
promoted the process that the discontinuous conductivity in the approximate electric 490 
field generated the discontinuous normal component. The convergence speed of the 491 
equations was accelerated and the computation efficiency was improved. Kordy et al. 492 
(2016) described the divergence correction as the typical procedure for removing 493 
spurious curl-free fields caused by current divergences over the discretized model 494 
domain during the iterative solution process. 495 

Edge-based or Vector FEM  496 

The conventional FEM has an obstacle that the node-based FEM cannot handle 497 
the discontinuity of the normal electric field component. One solution is to use the 498 
electromagnetic potential formulation (Badea et al., 2001). Because the electric field 499 
can be decomposed into vector and scalar potential in Helmholtz equation and the 500 
charge conservation equation, Mitsuhata and Uchida (2004) proposed a FEM method 501 
for 3D MT conductivity response based on the T-Ω Helmholtz decomposition. In 502 
particular, the vector field T is approximated by the twelve components assigned at 503 
the centers of edges of each element and the scalar field Ω is approximated by the 504 
eight components at the vertices of each element. Mukherjee and Everett (2011) put 505 
forward an edge-based tetrahedral mesh FEM algorithm based on an ungauged 506 
potential formulation to simulate near-surface 3D CSEM induction response, which 507 
addressed local inhomogeneities in the electrical conductivity and magnetic 508 
permeability distribution near the surface. 509 

However, potential formulation may introduce more numerical instability 510 
(Puzyrev et al., 2013). Ansari and Farquharson (2014) proposed an unstructured 511 
tetrahedral mesh vector FEM solution for frequency domain 3D EM modeling. The 512 
discretization of the edge element and node element were used to approximate the 513 
vector potential and the scalar potential, respectively. The scheme adopted the 514 
Galerkin method (Jin, 2002) variant of the weighted residual method to discretize the 515 
equations of the sparse linear system, and applied the generalized minimum residual 516 
solver with incomplete LU preprocessor (Saad, 2003) to solve the system iteratively. 517 
Based on this scheme, Ansari et al. (2017) proposed a new gauged finite-element 518 
potential formulation for 3D EM modeling. The block diagonal preprocessing scheme 519 
based on the Schur complement of the potential system stabilized the iterative 520 
solution of the estimation system. Both the iterative solution and the direct solver had 521 
the same response to the potential, which proved the uniqueness of the potential 522 
solution. And then Dunham et al. (2018) employed the 3D finite element code 523 
provided by Ansari and Farquharson (2014) to the real exploration prospects of the 524 
Flemish Pass basin offshore Newfoundland, Canada, and extended the application of 525 
FEM for the 3D marine CSEM. Models were discretized with unstructured tetrahedral 526 
meshes. The edge length constraints as an optimization reduced the total number of 527 
tetrahedral elements and refined specific areas of the mesh. It accurately simulated the 528 
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complex structures in the model, simultaneously minimizing the numbers of model 529 
unknowns.  530 

Another solution is using edge-based FEM (Nédélec, 1980; Jin, 2002). The use 531 
of edge elements can ensure the continuity across different medium of the vector basis 532 
function, while ensuring zero curl and non-zero divergence, and can ideally express 533 
electromagnetic physical characteristics such as current density. Edge-based FEM is 534 
also known as vector FEM. Since the vector FEM could satisfy the discontinuity of 535 
the normal component of the electric field, the advantage of retaining the calculation 536 
accuracy and high computation efficiency is to avoid the divergence correction. Nam 537 
et al. (2007) used vector FEM to realize 3D MT forward modeling. Liu et al. (2008) 538 
applied the unstructured grid to improve the method which used the vector FEM to 539 
efficiently simulate the 3D MT response and it further improved the forward 540 
modeling accuracy.  541 

In order to increase modeling efficiency while ensuring accuracy of 3D CSEM 542 
modeling, da Silva et al. (2012) introduced MUMPS into the edge-based FEM for 543 
solving the linear system of equations. The scheme of non-uniform Cartesian 544 
conforming hexahedra made the grid generation more convenient. And it was 545 
demonstrated that the presented approach was robust for indefinite and ill-conditioned 546 
linear systems. Chung et al. (2014) used edge-based FEM based on a hexahedral mesh 547 
with a direct solver PARDISO (Schenk and Gärtner, 2004) for 3D CSEM modeling. 548 
The results of a series of comparative experiments verified the effectiveness of the 549 
edge-based FEM and the advantages of the direct over iterative solver. However, both 550 
da Silva et al. (2012) and Chung et al. (2014) indicated that there was a limitation in 551 
the hexahedral mesh when the model complexity increased and maybe a tetrahedral 552 
mesh could be adopted. Li et al. (2016) combined the total-field algorithm, local 553 
refinement of unstructured tetrahedral mesh and vector FEM for EM modeling. The 554 
MUMPS was used to solve the linear equations. And differently from the unnecessary 555 
large distances to the truncation boundaries as Chung et al. (2014) set, appropriate 556 
truncation boundaries for the computational domain was determined by numerical 557 
experiments which reduced the waste of calculations to a certain extent. 558 

Utilizing the computation power of modern distributed-memory platforms, Ren 559 
et al. (2014a) developed a new parallel vector FEM code combined with unstructured 560 
meshes for plane wave 3D EM modeling. Based on a domain-decomposition 561 
approach, the code recombined the unknowns. Parallel implementation used the 562 
robust direct solver PARDISO. Compared with the traditional FEM, the code could 563 
solve more complicated large-scale models. Grayver and Bürg (2014) also studied a 564 
robust and scalable approach for large-scale 3D EM modeling in the frequency 565 
domain. They applied the flexible generalized minimal residual (FGMRES) iterative 566 
Krylov subspace method (Saad, 2003), which significantly reduced the computational 567 
time and memory. However, both Ren et al. (2014a) and Grayver and Bürg (2014) 568 
only employed the lowest order N d lec elements (Nédélec, 1980). Grayver and 569 
Kolev (2015) extended the Grayver and Bürg (2014) approach to the arbitrary order. 570 
Combining the high-order FEM with the relationship of target local mesh, the 571 
computation time was saved and at the same time, the multi-degree of freedom 572 
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calculation was also reduced. Based on these works, Grayver (2015) employed 573 
adaptive FEM on parallel 3D MT modelling and inversion. The adaptive mesh 574 
refinement technology avoided over-parameterization and accurately calculated the 575 
EM response based on goal-oriented error estimator. The computation effort was 576 
significantly saved by a locally refined decoupling grid and the calculation of the 577 
electromagnetic field at each frequency using an independent grid further improved 578 
the computation efficiency. Then, Grayver et al. (2019) applied it combined with 579 
high-order meshes to calculate the high-resolution solution of 3D MT modelling in 580 
spherical earth. 581 

The above papers are all discussions on isotropic media. Some differently, Cai et 582 
al. (2014) presented a linear edge-based FEM for the numerical simulation of the 3D 583 
CSEM data in anisotropic conductive medium. The scheme used a non-uniform 584 
rectangular mesh to capture the rapid changes of the diffused electromagnetic field in 585 
the abnormal conductivity region and around the source, which also can be 586 
transformed to hexahedral mesh to simulate the effect of sounding. Later, based on the 587 
previous work, Cai et al. (2017a) employed total field formulation and unstructured 588 
tetrahedral mesh. A new hybrid boundary condition was used to reduce the 589 
computation domain while improve the accuracy of forward modeling. The MUMPS 590 
was used to speed up the solution of the system of equations. 591 

Castillo et al. (2016) developed an edge-based FEM parallel code for the 592 
isotropy of 3D marine CSEM forward modeling. The scalability testing and the 593 
evaluation of the error norm of the different size meshes verified that the method still 594 
maintained high accuracy with good parallel efficiency. And then, Castillo et al. (2018) 595 
developed a Parallel Edge-based Tool for Geophysical Electromagnetic modeling 596 
(PETGEM), which is the first open-source modeling toolbox for 3D marine CSEM 597 
problems, to study the 3D CSEM problem of an infinitesimal dipole arbitrary 598 
isotropic medium with low frequency approximation. They provided an adaptive 599 
scheme for frequency and specific source locations, and developed a scalable study of 600 
HPC architecture based on basic metrics. However, PETGEM only support first-order 601 
polynomials, isotropy and cannot process the multiple horizontal electric dipoles 602 
without surface topography. Therefore, Rochlitz et al. (2018) developed an 603 
open-source toolbox custEM (customizable electromagnetic modeling) for complex 604 
3D CSEM modeling. The custEM is similar to the PETGEM but support HOP, 605 
anisotropy and multiprocessing.  606 

Time-domain finite-element method 607 

For simulating transient EM fields in 3D diffusive earth media, Um et al. (2010, 608 
2012) put forward a time-domain finite-element method (FETD). An unstructured 609 
grid and adaptive time-stepping doubling (ATSD) scheme was used to simulate the 610 
diffusion of 3D electromagnetic waves. Compared with the analytical method and the 611 
3D FDTD, the algorithm was demonstrated. Although the FETD with unstructured 612 
grid and ATSD have a potential to reduce the number of unknowns and time steps, the 613 
FETD method was often difficult to extend with available parallel computing 614 
resources, due to each step required solving a large-scale unstructured sparse matrix. 615 
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Fu et al. (2015) designed a parallel FETD method for improving modelling speed. 616 
Multi-threading sped up the key steps of solving large sparse matrices and the 617 
convergence, and greatly reduced computation time while ensuring accuracy. Cai et al. 618 
(2017b) implemented FETD with a hybrid boundary condition to simulate CSEM data. 619 
They employed the unstructured tetrahedral mesh to discretize the model domain and 620 
adopted the ATSD to keep the same step size. Then, the semi-adaptive method was 621 
also adopted to discrete the model domain. The new hybrid boundary condition used 622 
the primary field corresponding to the layered background model to approximate the 623 
total field on the boundary. Additionally, based on the unstructured tetrahedral mesh 624 
and the ATSD scheme, Cai et al. (2017c) also developed an adaptive Pad  series 625 
method (Baker and Graves-Morris, 1996) to approximate the Cole-Cole model. The 626 
method improved the accuracy of the Pad  approximation over a wide time range to 627 
enhance the simulation accuracy. Applying the edge-based FEM for the spatial 628 
discretization and the second-order of backward Euler scheme for the time 629 
discretization (Um et al., 2010), Liu et al. (2019) adopted the direct solver MUMPS to 630 
factorize the large sparse matrices obtained by FEM and utilized the iteration scheme 631 
from an initial field for all time channels to solve the TEM forward modeling with 632 
topography using unstructured tetrahedral grids efficiently.   633 

2.2.4 2.5D problem 634 

As early as 1985, Lee and Morrison (1985) have already used 2.5D FEM for the 635 
electromagnetic scattering by a 2D inhomogeneity. Everett and Edwards (1992), 636 
Unsworth et al. (1993), and Mitsuhata (2000) applied 2.5D FEM to obtain the EM 637 
induction over a 2D earth. The previously mentioned papers, such as Li and Key 638 
(2007), Key and Ovall (2011) and Key (2016) applied the 2.5D FEM into the 639 
simulation of the marine EM. Kong et al. (2008) also presented a 2.5D FEM 640 
difference method for marine CSEM in stratified anisotropic media. Kang et al. (2012) 641 
used a 2.5D FEM to calculate the secondary field caused by a subsurface anomalous 642 
for marine CSEM response. 643 

In general, FEM is an effective forward modeling method with high precision of 644 
simulation. More degrees of freedom for meshing enables FEM to solve the problem 645 
that the FD method cannot cope with complex solution domains. However, the 646 
property of the mesh will sacrifice some simulation speed to some extent. With the 647 
development of unstructured grids, adaptive schemes and parallel computing, the 648 
simulation speed of FEM has been solved partially, which makes the precision 649 
advantage of FEM more obvious than other forward methods. This is why researchers 650 
are gradually interested in the study of FEM after 2000, what we have mentioned in 651 
Section 1. At present, geophysicists have tried to combine the FEM with other 652 
methods for more efficient forward modeling with high precision and high speed. 653 

2.3 Integral equation method 654 

Integral equation method (IE) is a method for solving the unknowns of the model 655 
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using integral equations. Usually, the Maxwell’s equations in the form of differential 656 
equations are converted into integral equations, and then applied the Green’s function 657 
(Wait, 1962) to obtained the scattering equations (SE). The linear system is generated 658 
by the discretization of the SE and the solution to the forward modelling is the 659 
solution to the linear system. However, differently from the discretizations of the DE 660 
method (FD and FEM), IE only meshes the scattering area, that is the anomalous 661 
bodies, instead of the whole computational domain. The efficiency advantage of IE is 662 
critical to save the computation time of EM modeling, especially for simple 3D 663 
models. 664 

Integral equation method (IE) was first proposed by Hohmann (1971) for solving 665 
2D inhomogenious EM response. And then, Hohmann (1975) developed a volume 666 
integral equation method (VIE) based on a hexahedral mesh in order to calculate the 667 
3D induced polarization and EM responses.  668 

2.3.1 VIE 669 

Volume integral equations method (VIE) is a very useful method for simulating 670 
3D EM models. On the basis of the works done by Hohmann (1975), a series of 671 
studies about the VIE had been conducted. Ting and Hohmann (1981) used a 672 
structured grid to perform 3D MT forward modeling. And then, Hohmann (1983) 673 
improved the general 3D IE solution by using the vector-scalar potential method and 674 
introducing symmetry through a series of theories. Wannamaker et al. (1984) used IE 675 
to simulate 3D EM response in a layered structure. SanFilipo and Hohmann (1985) 676 
established a time-domain integral equation for TEM response in a restricted region of 677 
half-space electrical conductors with anomalous conductivity.  678 

Because of the limitation of the computation condition at that time, some 679 
improved methods were developed. Wannamaker (1991) abandoned the original 680 
charge estimation formula (Wannamaker et al., 1986) and utilized the real surface 681 
charge with the potential difference. The improvement maintained the internal 682 
consistency of the pulse basis function, meanwhile obtained a good approximation 683 
result. So that the IE forward modeling of the 3D MT response could further deal with 684 
the complex model structure. Differently from SanFilipo and Hohmann (1985), 685 
Walker and West (1991) proposed an IE solution that could stably simulate the EM 686 
scattering of thin plates. It was suitable for scattering models in fully resistive or 687 
conductive medium. The uncertainty of the solution was eliminated by the robustness 688 
of the IE solution, so this method had a strong applicability to simulate broadband EM 689 
response. 690 

In order to overcome the limitation of discretization cells number caused by the 691 
restriction of the computer memory, Xiong (1992) developed a new IE for the 692 
simulation of 3D earth conductivity structure. The scattering matrix was divided into 693 
multiple sub-matrices, and the block iteration method was used to solve the whole 694 
system, which greatly reduced the calculation time of solving matrix equations. 695 
Because each sub-matrix was independent of each other, the method also had a 696 
potential for parallelization. And then, continued the works of Xiong (1992), Xiong 697 
and Tripp (1993) used the spatial homogeneity and the symmetry relationship of the 698 
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Green’s tensor (Wannamaker et al., 1984) to greatly reduce the computing time.    699 
Actually, due to computer memory level restrictions in the 1980s, Singer & 700 

Fainberg (1985) have already proposed an iterative dissipative method (IDM) applied 701 
into integral equation based on a contraction operator, which was introduced by 702 
Fainberg & Zinger (1980). The IDM was mostly adopted at that time; however, the 703 
convergence of the method was slow. Then, Singer (1995) improved it and put 704 
forward a modified iterative dissipative method (MIDM). On this basis, Singer (2008) 705 
developed a new complex 3D EM fields modeling code, and employed the iterative 706 
perturbation approach to generate a series of convergence solutions. The solution 707 
optimization in the Krylov subspace significantly reduced the number of iterations, 708 
meanwhile weakened the dependence on the lateral contrast of the model, so that the 709 
accuracy, robustness and efficiency of the code was ensured. 710 

In addition, combining the MIDM proposed by Singer (1995) and the Krylov 711 
subspace iterative solution scheme (Krylov, 1931), Avdeev et al. (1997, 1998, 2002) 712 
applied a 3D frequency-domain solution based on the VIE to simulate the response of 713 
MT, CSEM, AEM and induction logging. Following these works, Avdeev and 714 
Knizhnik (2009) improved the solution for modeling 3D EM fields by using its 715 
inherent 3×3 dyadic Green’s tensor (Avdeev et al., 1997) separability. The linear 716 
dependence on all three dimensions overcame the quadratic dependence of the 717 
traditional IE on the size of the model, not requiring the calculation or storage of the 718 
entire Green’s matrix. Thereby, the improvement significantly reduced the 719 
computation load and improved the computation efficiency. 720 

From another perspective of improvement, Farquharson and Oldenburg (2002) 721 
studied the application of edge element basis vectors in the IE solution of 3D 722 
electromagnetic simulation, and realized the edge-element basis function in the 723 
numerical solution of the electric field integral equation. The system of equations was 724 
solved by using the Galerkin approach. Later, Farquharson et al. (2006) employed the 725 
electric-field VIE to calculate the numerical results of EM response, and implemented 726 
the agreement of the numerical modeling and physical scale modeling results. 727 

2.3.2 IE based on a contraction operator 728 

The contraction operator mentioned earlier is from Banach theorem. The theorem 729 
allows bounded linear operators defined on a certain vector space to expand to the 730 
entire space, and states that there are "sufficient" continuous linear functions. That 731 
means if operator is a contraction operator, successive iterations converge. Therefore, 732 
the contraction operator will accelerate the convergence of the solution of the integral 733 
equation.  734 

By using IE based on a contraction operator, Zhdanov and Fang (1996) presented 735 
a new approach called quasi-linear (QL) approximation to solve the EM induction 736 
problem. The QL approximation was able to accurately estimate the broadband EM 737 
response and had the potential to be applied into the fast 3D EM inversion. Similarly, 738 
Zhdanov et al. (2000) proposed a quasi-analytical (QA) approximation method for 739 
electromagnetic forward modeling based on the IE of scattering current. The 740 
approximate solution was proposed by constructing the quasi-analytical expressions 741 
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of the anomalous EM fields for 2D and 3D models. The new method adopted iterative 742 
methods to extend the quasi-analytic method and developed the approximation into 743 
high order, which improved the accuracy. As a result, quasi-analytic series were 744 
obtained. The stability and efficiency of the method were guaranteed by the improved 745 
accuracy of the simulation and the greatly accelerated convergence speed of the 746 
calculation. Hursan and Zhdanov (2002) presented a contraction integral equation 747 
(CIE) technique, which replaced the original IE with the modified Green’s operator 748 
equation. The CIE technique significantly improved the convergence of the iterative 749 
method. Later, it was developed into parallel by Čuma et al. (2017), and the fast 750 
forward modeling has been implemented to a large extent. In order to improve the 751 
validity of IE method for complex model calculation, Zhdanov et al. (2006) developed 752 
a new IE method for 3D EM modeling in the complex structures with inhomogeneous 753 
background conductivity. The new method overcame the limitation of traditional IE 754 
which only used to simulate horizontal layered backgrounds, and improved the 755 
calculation accuracy by iterative methods.  756 

2.3.3 Effective 3D numerical solvers 757 

Three-dimensional interpretation of EM data from different sources and scales 758 
was increasingly becoming the key to 3D EM data analysis. However, in terms of the 759 
computation complexity, accuracy and actual level of spatial detail, 3D EM numerical 760 
simulation still existed challenge.  761 

In view of this, using an effective 3D numerical solver was a good solution. Sun 762 
and Kuvshinov (2014) proposed a method of Green’s function matrix compression 763 
based on singular value decomposition (SVD), which was used to accelerate the 764 
solution of global geomagnetic induction by the electromagnetic IE forward solver. 765 
The method significantly reduced the memory usage and Central Processing Unit 766 
(CPU) time of the Krylov subspace iterative solution scheme under the premise of 767 
less precision sacrifice. Similarly, Kruglyakov had done some work committing to the 768 
optimization of IE forward solver for 3D modeling. Kruglyakov et al. (2016) 769 
developed a new open-source 3D MT forward solver based on the CIE method. The 770 
solver could accurately calculate the Green’s function (Ting and Hohmann, 1981) and 771 
its integral, at the same time it could solve high-contrast complex models and support 772 
massive parallelization. Furthermore, Kruglyakov and Bloshanskaya (2017) 773 
developed a new parallel VIE solver. The Galerkin method was used to ensure the 774 
convergence of numerical solutions with high precision, stability and high 775 
parallelization. Memory usage was eight times lower than other VIE solvers (Avdeev 776 
et al., 1997; Hursan and Zhdanov, 2002). The solver had no additional restrictions on 777 
the background media, so that it could achieve non-uniform discretization in any 778 
layered background and vertical direction. On this basis, Kruglyakov and Kuvshinov 779 
(2018) cooperatively proposed a new 3D numerical solver, which used HOP to 780 
improve computation efficiency and greatly reduced the number of unknowns under 781 
the premise of ensuring accuracy. The solver sped up the calculation and saved the 782 
computing memory significantly. 783 
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2.3.4 2.5D problem 784 

Several 2.5D EM forward modeling studies have been mentioned (Li and Key, 785 
2007; Key and Ovall, 2011; Zeng et al., 2018). Something different for IE is that after 786 
Fourier transformation in the invariant direction, for each Fourier parameter, the 787 
problem is reduced to the problem of solving 2D integral equations (Abubakar et al., 788 
2006b). 789 

Abubakar et al. (2006b) proposed an IE forward algorithm for the solution of 790 
2.5D low-frequency electromagnetic response over the scattering domain. The 791 
algorithm employed a standard conjugate gradient normal residual method (CGNR) to 792 
solve the linear system of equations and simplified the 3D problem by Fourier 793 
transform into solving multiple 2D integral equations, which greatly reduced the 794 
computation complexity. Dyatlov et al. (2015) developed and successfully validated a 795 
boundary integral equation algorithm based on the four tangential components of the 796 
electric field and magnetic field for simulating the response of the LWD EM tool in 797 
complex 2D and 3D structures. The Fourier transform simplified the high dimension 798 
problems into a series of 1D frequency-independent integral equation, and 799 
simultaneously calculated the whole set of measurement points with the same matrix, 800 
which greatly shortened the calculation time. The boundary integral equation method 801 
avoided the so-called near-offset problem of 2.5D FD simulation with singular 802 
sources and had a potential for parallelization. Then, Dyatlov et al. (2017) improved 803 
this method in a 2D model with plane boundaries, and calculated the solution of the 804 
two-layer model (TLM) corresponding to the nearest boundary by explicit formula. 805 
The solutions of the TLM improved the computation accuracy while maintaining the 806 
original computation efficiency when the transmitter and the boundary were close. 807 
However, when the transmitter was close to the boundary endpoints, the efficiency 808 
was very poor. And the anisotropy couldn’t be solved. These two points had yet to be 809 
further studied. 810 

On the whole, IE is very useful for 3D EM fields simulation. Although its 811 
applicability is not as extensive as FEM and FD, it only meshes the scattering 812 
anomaly region, which greatly reduces the number of meshes compared with FEM 813 
and FD meshing in the whole half space. It reduces the calculation of the unknowns, 814 
so that there is a clear advantage in the calculation speed. In addition, since converting 815 
the Maxwell’s differential equations into the form of the integral equations, in 816 
principle, IE has a characteristic of semi-analytical solution, and the solution accuracy 817 
is not affected too much by the meshing. However, IE is difficult to handle the 818 
complex anisotropy and non-horizontal layered background media but FEM and FD 819 
are more suitable for such issues. Moreover, due to the heavy limitation to the 820 
accuracy of solving linear equations, most EM software developers avoid using the IE 821 
method (Avdeev, 2005). Therefore, taking advantages and drawbacks of these, 822 
coupling IE and FEM or FD to form a new hybrid scheme, it can better achieve a 823 
relatively balance between the accuracy and the efficiency of forward modeling. 824 
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2.4 Hybrid methods 825 

With the further development of FEM, FD and IE, for more complex models and 826 
a larger amount of data, a single forward modeling method is not enough for more 827 
accurate and efficient simulation. Some hybrid schemes which combined the 828 
characteristics and advantages of several methods has been developed. 829 

2.4.1 The solutions to calculate the field boundary 830 

It is well-known that edge-based FEM (or vector FEM) is widely used to solve 831 
the Maxwell’s differential equations about the secondary electric fields, however, the 832 
approximation on the field boundaries is limited to computational domain. In order to 833 
resolve such boundary restriction, Ren et al. (2014b) proposed a hybrid 834 
boundary-element finite-element method (BEM-FEM) for goal-oriented adaptive 835 
multi-level fast algorithm to simulate the 3D EM induction response of plane waves. 836 
This method, which coupled the Galerkin vector FEM (Jin, 2002) method with the 837 
point collocation boundary-element method, had the ability to simulate the problems 838 
of the large-scale complex earth EM induction, and it was better than the conventional 839 
FEM method at high frequency. Differently from the method combined FEM and 840 
BEM, Liu et al. (2018a) applied IE method to calculate the boundary values by 841 
solving the Green’s functions. They developed a hybrid solver based on IE and 842 
boundary-based vector FEM to simulate 3D CSEM model. They applied the vector 843 
FEM to solve Maxwell’s differential equation, and calculated the secondary electric 844 
field at the receivers by IE, as Figure 6 showed. A more accurate and efficient solution 845 
for high conductivity contrast medium was obtained compared to the traditional 846 
method. 847 

 848 

Figure 6. Plane view of the evolution process of the hybrid grid, from the vector FEM 849 
and IE grids. (a) The vector FEM grid with electric fields (black arrow lines) defined 850 

on grid edges; (b) IE grid with scattering currents (red arrow lines) defined at the 851 
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center of inner cells (green color), and boundary electric fields (blue arrow lines) 852 
located at the edges of boundary cells (white color); and (c) in the hybrid scheme, the 853 
boundary electric fields are given in terms of scattering currents by IE; the scattering 854 

current within each cell in turn can be represented by electric fields (black arrow lines) 855 
within the cell using the edge-shape function of vector FEM (Liu et al. 2018a). 856 
Nowadays, a coupling method of FEM and infinite element method (IFEM) is 857 

still in a research stage in the field of geophysical EM method. IFEM was first 858 
proposed by Bettess (1977a) mainly applied in the research of acoustics, 859 
electromagnetism, geotechnical mechanics engineering, etc. In the same year, Bettess 860 
(1977b) proposed the coupling method of FEM and IFEM. Fu and Wu (2000) 861 
introduced IFEM into the geophysical field to deal with the boundary conditions of 862 
absorbing elastic waves. IFEM overcame some of the difficulties encountered in 863 
conventional absorption techniques, so that it took up less memory space and reduced 864 
more computation time. The coupling between FEM and IFEM was achieved by 865 
adding an infinite element outside the boundary of the finite element splitting unit and 866 
then mapping it to infinity through coordinate mapping to achieve integration of 867 
infinity and neglect the boundary condition. Although this hybrid scheme is not very 868 
mature in the study of geophysical EM method, it has a good application prospect. 869 

2.4.2 The improvements of the computing accuracy and efficiency 870 

According to the foregoing, the linear system of IE is independent from grid 871 
meshing but difficult to settle down the anisotropy. However, FD has the advantage of 872 
high-discretization to make up for this deficiency. Based on this thinking, Zaslavsky 873 
et al. (2011) proposed a hybrid finite-difference integral equation method (FDIE) for 874 
CSEM, single-well and crosswell EM modeling, along with the complex structure and 875 
anisotropy. The FDIE overcame the large condition number of the system of the 876 
traditional FD and decreased size of the computation domain. The optimization 877 
formed from combining with FD homogenization and optimal meshing algorithms 878 
was suitable for discretization. In the same idea, Yoon et al. (2016) developed a new 879 
hybrid 3D marine CSEM modeling method combining the advantages of FD and IE. 880 
Something different from Zaslavsky et al. (2011), the precondition operator for FD 881 
solver was replaced with the MUMPS direct solver. And SFD was used to solve the 882 
Maxwell’s equations in the electric field. The Green’s tensor of the corresponding 883 
background conductivity model was calculated by IE. The hybrid solution overcame 884 
the problem of marine CSEM consuming a lot of time and memory in the case of 885 
multiple transmitters and receivers.  886 

As a conclusion, the hybrid scheme is more efficient and accurate than the 887 
traditional single method. Compared with the traditional method, the hybrid scheme 888 
can save more computation time and memory, and get a faster and more accurate 889 
solution. However, there remains many difficulties in the technology of matching 890 
hybrid scheme. Although the hybrid scheme is still in the research stage, considering 891 
the wide applicability, the high efficiency and the value of these schemes, it will 892 
become a main development trend of future EM forward modeling. 893 
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2.5 Deep learning 894 

Artificial neural network (ANN) is a research hot spot that has emerged in the 895 
field of artificial intelligence since the 1980s. ANN refers to a complex network 896 
structure formed by a large number of processing units (neurons) connected to each 897 
other. It is a certain abstraction, simplification and simulation of the human brain 898 
tissue structure and operating mechanism and it has a strong ability to approximate 899 
nonlinear functions. ANN has been applied in geophysical EM problems (Poulton et 900 
al., 1992a, 1992b; Poulton & Birken 1998), such as well-log (Huang et al., 1996; 901 
Zhang et al., 2002; Maiti and Tiwari, 2010), MT (Zhang and Paulson, 1997; Spichak 902 
and Popova, 2000; Manoj and Nagarajan, 2003) and AEM (Seiberl, 1998; Ahl, 2003; 903 
Andersen et al., 2016).  904 

Deep learning (DL) can be simply understood as the development of ANN. The 905 
concept of DL comes from the research of ANN. Through multi-layer processing, 906 
after the initial low-level feature representation is gradually transformed into the 907 
high-level feature representation with the high-dimensional data transforming into 908 
low-dimensional, the simple models can be used to complete complex classification 909 
and other learning tasks (Hinton and Salakhutdinov, 2006). The "deep" of deep 910 
learning not only represents the depth of the multilayer neural network structure, but 911 
also represents the deep extraction of feature information (LeCun et al., 2015).  912 

The most typical deep learning model is convolutional neural network (CNN) 913 
(LeCun et al., 1989) and CNN has been applied in geophysics EM imaging or 914 
inversion due to the rapid development nowadays. Puzyrev (2019) used the DL 915 
method for EM inversion based on fully CNN for 2.5D inversion and this is the first 916 
application of deep CNN to EM inverse problems as we know. Inspired by this, 917 
Moghadas (2020) proposed a new method of DL inversion based on CNN, which can 918 
estimate the subsurface electrical conductivity layering from electromagnetic 919 
induction data. Oh et al. (2019) successfully identified salt bodies from towed 920 
streamer EM data with a CNN, and the prediction results demonstrated the 921 
applicability of CNN for imaging resistivity from EM data. Haber et al. (2019) trained 922 
a VNet CNN architecture to interpret 3D AEM inversions. For imaging subsurface 923 
resistivity inversion from 1D AEM data in the frequency domain, Noh et al. (2020) 924 
applied the deep neural network (DNN) method and the potential of DNNs for AEM 925 
inversion interpretation was validated by comparison with the conventional 926 
Gauss-Newton inversion algorithm. Similarly, Li et al. (2020) developed a new fast 927 
imaging method of 1D AEM data in the time domain using a long short-term memory 928 
(LSTM) DNN (Hochreiter and Schmidhuber, 1997). DL can also eliminate 929 
multi-source noise of AEM data (Wu et al., 2020). 930 

In addition, the training synthetic data generation process of the above deep 931 
learning is still inseparable from the traditional forward modeling method to solve the 932 
PDEs. Puzyrev (2019) used the parallel 3D SFD code based on the curl-curl electric 933 
field formulation and Oh et al. (2019) adopted the 2.5D FEM method in the frequency 934 
domain proposed by Kang et al. (2012). An efficient and accurate forward algorithm 935 
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will provide DL with more reliable training data to get more credible prediction 936 
results. 937 

Above all, since the method of establishing a nonlinear relationship and solving 938 
the gradient is adopted, in a sense, the DL method is similar to inversion in a broad 939 
sense. Compared with the iteration of traditional inversion, deep learning uses a 940 
multi-layer feature extraction method to maximize the extraction of useful 941 
information in the original data, without causing too much accuracy loss under the 942 
interference of random noise. Unlike traditional inversion, which requires re-iterative 943 
calculations for each inversion, a neural network model trained based on certain 944 
research data has a certain degree of commonality for similar survey. 945 

In fact, DL technology also has the potential to simulate the EM field not going 946 
through the complex solution of Maxwell’s equations. Tang et al. (2017) made an 947 
investigation on it. They applied CNN into the simulation of 2D electrostatic problem 948 
and the results of the study demonstrated the possibility and by building up a fast FD 949 
solver the computing complexity was exactly reduced. In addition, Khan et al. (2019) 950 
efficiently estimated the distribution of the magnetic field by using the DL field 951 
estimator model learning from the finite-element analysis. Although there is still room 952 
for improvement in the structure of the network, the study has reduced calculation 953 
time cost and has the advantage of parallelization. Shahriari et al. (2020) examined 954 
the potential of DNN that can replace the traditional PDE solution method for forward 955 
simulation of borehole resistivity measurements. However, the paper also pointed out 956 
that it requires a sufficiently large data set to produce a reasonably accurate forward 957 
function and the application still faces many difficulties and challenges.  958 

At present, there are very few related researches, exclusively in the exploratory 959 
research stage. The existing data-driven DL forward modeling requires the use of 960 
traditional forward solvers, such as FD (Tang et al., 2017; Shahriari et al., 2020) or FE 961 
(Khan et al., 2019), to make a training data set. The difference from DL “inversion” is 962 
that DL “forward modeling” uses the EM models as the input of the neural network, 963 
and the output is the responses. Therefore, for DL, there is no distinction between 964 
forward and inverse problems, only training, validation and testing, and the 965 
intermediate processes are similar. For neural networks, there is only the difference 966 
between input and output, or known and unknown. In other words, it depends on what 967 
kind of task we want to accomplish in order to achieve what kind of goal.  968 

However, there are still two problems to be solved. One is that the essential 969 
feature of DL is data-driven. The realization of DL is based on training with a large 970 
amount of data. To a certain extent, the more training data, the more adequate the 971 
training of the neural network, and then the more accurate prediction results will be. 972 
How to obtain adequate training data or how to deal with the problem of insufficient 973 
training due to inadequate sample size? The other is the applicability of network 974 
model to EM modeling. What kind of network structure is more conducive to learning 975 
and predicting the realistic EM field distribution? And for EM modeling, the 976 
aforementioned DL methods for PDEs are all solutions to 1D or 2D problems, how to 977 
achieve 3D modeling? Although DL methods seem to have become a hot spot for 978 
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geophysical applications in the past five years mentioned in Section 1, these issues 979
need to be further studied in the future. 980 

3. Discussions 981 

Based on the collation and summary of all corresponding references involved, 982 
we put forward a Qualitative Evaluation Model named STAMP Model, which is 983 
shown in Figure 7. Storage, time, accuracy, model complexity and parallelization 984 
these five criteria are used to evaluate the advantages and disadvantages of the 985 
forward modeling methods. We divided the five key criteria into five levels from 1 to 986 
5. When the value of level is higher, they respectively represent less computing 987 
memory, shorter computing time, higher calculation accuracy, higher model 988 
complexity and higher degree of parallelization.  989 

 990 
Figure 7. STAMP Model for modeling evaluation. 991 

FD is an efficient tool to solve the EM modeling with simple implementation 992 
(Streich, 2009; Yavich and Zhdanov, 2016). It can handle the discontinuity of the 993 
magnetic field and electric field caused by the electromagnetic difference in the 994 
internal medium very well, because of the characteristics of the staggered grid (Yee, 995 
1966; Smith, 1996a). However, the regular structure mesh of the model restricts the 996 
application of FD in complex geophysical models, which also affects its calculation 997 
accuracy (Key and Weiss, 2006; Key and Ovall, 2011). 998 

FEM is the most flexible for simulating complex and large-scale geometry 999 
models with high computation accuracy (Avdeev, 2005; Börner, 2010). However, The 1000 
number of unknowns is often on the order of millions and it performs with higher 1001 
computer memory and computational cost (Puzyrev et al., 2013; Ren et al., 2014a). 1002 
The flexibility of unstructured grids, such as tetrahedral or hexahedral grid, improves 1003 
the calculation accuracy of complex geoelectric structures to a certain extent. The 1004 
accuracy of the finite element depends on the size of the element and the order of the 1005 
shape function (Jin, 2002). Unfortunately, it still lacks the analytic solutions to 3D 1006 
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problems (Smith, 1996a). 1007 
IE is suitable for simple 3D models in a layered earth, which only needs to 1008 

discretize the computational area within the range of the scattering anomaly resulting 1009 
in small system metrices, so that it takes up less computing memory and has higher 1010 
efficiency (Hohmann, 1971; Avdeev et al., 2002). Due to the numerical results of IE 1011 
have the accuracy of a semi-analytical solution, IE is often used to test the accuracy of 1012 
newly developed algorithms (Ren and Tang, 2010). However, as the size of the model 1013 
becomes larger and the complexity increases, the computational efficiency of IE will 1014 
be greatly reduced (Mackie et al., 1994). And the accuracy of the solution is heavily 1015 
dependent on the accuracy of the complicated and time-consuming system matrix 1016 
which is an extremely tedious and nontrivial problem itself (Avdeev, 2005). These 1017 
drawbacks limit the solution of IE to solve complex EM models, especially the 1018 
complex, high-contrast inhomogeneous anisotropic medium (Zaslavsky et al., 2011). 1019 

Hybrid method has the advantage to solve some special problems, because it 1020 
combines the advantages from different modeling methods. Hybrid methods are 1021 
indeed effective strategies for improvements (Zaslavsky et al., 2011; Ren et al., 2014b; 1022 
Yoon et al., 2016; Liu et al., 2018a). Given that, in our STAMP Model, the hybrid 1023 
method maybe has a balance between accuracy and efficiency. 1024 

It is important to point out that for the criteria of parallelization, the specific 1025 
situation requires specific analysis, such as utilizing a direct solver or iterative solver 1026 
and computing by single-core or multi-core processing cards. It depends on the 1027 
models of parallelization such as shared memory or distributed memory and 1028 
multithreading or multiprocessing. So, it is very difficult to quantitatively analyze the 1029 
degree of parallelization of FD, FEM and IE. However, from the perspective of the 1030 
algorithm itself, FEM is suitable for complex and large-scale models and has the 1031 
characteristics of high accuracy but large memory usage and time-consuming 1032 
calculations. In this case, the parallelization scheme is more conducive to the balance 1033 
of high precision and high efficiency. In addition, according to the literature citations 1034 
in this review, researchers indeed have more research on parallel FEM than FD or IE. 1035 
Therefore, a qualitative comparison was given that the degree of the parallelization of 1036 
FEM is higher than FD and IE. 1037 

DL is not included in the STAMP model for comparison with other methods, 1038 
because the current researches are not enough to explain its advantages and 1039 
disadvantages with traditional forward modeling methods in geophysical EM. As far 1040 
as we know, in modern deep learning, the number of parameters is increasing, and the 1041 
data sets are getting larger, so that it is difficult to load all the data sets into the 1042 
memory. To train a complex deep learning model on a larger data set, machine 1043 
learning on a single node takes too long, and multi-node parallel computing has to be 1044 
used. Furthermore, according to the current research situation, the introduced DL 1045 
method may provide high speed to compute the model. The complexity of the training 1046 
model and the accuracy of the prediction model need to be improved.  1047 
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4. Conclusions 1048 

In this paper, we review the mainly simulation method in EM field modeling. 1049 
Three most widely employed methods in EM modeling include FEM, FD and IE 1050 
method. Based on the published 195 papers, we summarized the advantages and 1051 
disadvantages of these modeling methods. It is complex to judge which is the best 1052 
modeling method, due to different applications. So, we proposed the STAMP Model 1053 
for qualitative evaluations of FD, FEM, IE, and hybrid methods. We also reviewed 1054 
and discussed the application of DL in geophysical EM forward and inversion 1055 
problems. 1056 

Above all, the EM field simulation methods have been developed to solve the 1057 
different problems in high-dimensional, complex geometry model, high accuracy, 1058 
high computational speed. And in the future, the EM modeling research will focus on 1059 
the high accuracy and low computational cost solutions in large-scale, 1060 
high-dimensional and anisotropic medium combining HPC and artificial intelligence.  1061 
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Appendix A  1075 

Finite difference solution of Maxwell equations: taking the MT for the isotropic 1076 
media as an example 1077 

First, we discrete the research area. A series of parallel planes are used to divide 1078 
the research area into several small rectangular cells at different distances along the X, 1079 
Y, and Z axis directions. Assuming that they are divided into Nx, Ny, and Nz segments 1080 
along the X, Y, and Z axis directions, respectively. 1081 
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 1082 

Figure 8. The staggered grid. 1083 
We use the staggered grid in Figure 2 (a). Figure 8 shows the grid element 1084 

numbered (i, j, k). The value of resistivity is ρ (i, j, k). Its length, width and height are 1085 
respectively Δxi (i = 1, 2, ..., Nx), Δyj (j = 1, 2, ..., Ny) and Δz (k = 1, 2, ..., Nz). And we 1086 

define '
xE , '

yE , '
zE as the average value of the electric field at the central point of 1087 

the edge of the grid cell; '
xH , '

yH , '
zH  respectively represent the average value of 1088 

the magnetic field at the central point of the plane of the grid cell. 1089 
According to the theory of the MT method, under the quasi-static condition, the 1090 

integral form of Maxwell’s equations in the frequency domain is as follows. 1091 
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(1) 1092 

Where E is the electric field strength, H is the magnetic field strength, σ is the 1093 
conductivity, i is the imaginary unit, ω is the circular frequency, μ is the permeability 1094 
of underground media, dl is the enclosure line of the enclosed integration, and dS is 1095 
the area contained in the enclosure line. 1096 

Discretization of equation (1) can be obtained as follows. μ is approximated to μ0 1097 

( = 4  × 10-7 H/m), which is the magnetic permeability for free space. 1098 
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Where σx, σy, σz are respectively the conductivities in X, Y and Z directions. The 1101 
expressions are as follows. 1102 
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(4) 1103 

After simultaneous polynomials and elimination, the system of linear equations 1104 
for the electric field component or the magnetic field component can be obtained as 1105 
follows. 1106 

bAx  1107 
Then, we can solve the system of linear equations by using various methods, 1108 

including direct solver, LU decomposition, the Krylov subspace iterative solution and 1109 
so on. 1110 

Appendix B 1111 

Finite element solution of Maxwell equations: taking the the electric field of MT for 1112 
the isotropic media as an example 1113 

According to the theory of the MT method, under the quasi-static condition, the 1114 
differential form of Maxwell’s equations in the frequency domain is as follows. 1115 
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,0
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,
,

E
H

EH
HΕ i

(5) 1116 

Where E is the electric field strength, H is the magnetic field strength, σ is the 1117 
conductivity, i is the imaginary unit, ω is the circular frequency, and μ is the 1118 
permeability of underground media. 1119 

We simultaneously calculate the curl of both sides of the first formula in the 1120 
system of equation (5), and combining the second formula, the solution can be 1121 
obtained as follows. 1122 

00 EE i (6) 1123 

We use Galerkin method (Jin, 2002) to derive the system of equation (6). 1124 
And we use the simple Dirichlet boundary conditions (Nam et al., 2007).  1125 

nEnE o (7) 1126 

Where n is the outer unit normal vector of the outer boundary, Eo is the given 1127 
known electric field strength on the outer boundary 1128 

Equations (6) and (7) are the boundary value problems for MT forward modeling. 1129 

Using the vector formula BABAAB )(  and Green’s integral 1130 

equation (Nam et al., 2007), we obtain the corresponding variation expression by 1131 
combing equation (6) and (7). 1132 

curlHfb VVVE ,, (8) 1133 

Where ,,|| 2 oLcurlH VnnVVV 2L is the second-order 1134 

derivative continuous function space, n is the unit normal vector on outer boundary, b 1135 
and f are expressed as: 1136 

dib VEVE (9) 1137 

dEVf o (10) 1138 

We use the vector FEM to solve the electric field distribution represented by 1139 
equation (6) and use unstructured tetrahedral element grid for spatial discretization. 1140 
The numbering rules of the edges of the tetrahedral elements are shown in the Figure  1141 
9.  1142 
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 1143 
Figure 9. Edge defination of tetrahedal element. 1144 

For any tetrahedral element e, approximate expression of the electric field in this 1145 
element is as follows. 1146 

n

i

e
i

e
i

e E
1

NE (11) 1147 

Where n=6, which is the numbers of edge in each element, Ei is the tangential 1148 
electric field on the ith edge of the ith element, and Ni is the vector shape function on 1149 
the ith edge of the ith element (Jin, 2002). We designate the ith edge vector shape 1150 
function as: 1151 

e
i

e
i

e
i

e
i

e
i

e
i LLLLlN 1221 (12) 1152 

where e
il is the length of ith edge. e

iL 1 and e
iL 2 are the origin node shape functions 1153 

defined at each node of the ith edge. 1154 
Then, substituting the equation (11) and (12) into the equation (9), we can get a 1155 

large complex linear matrix equation 1156 
FKU  1157 

Where K is a stiffness matrix, which reflects the topological relationship 1158 
between grid nodes, U is a matrix of electric field vectors to be calculate at all nodes 1159 
and F is a mass matrix and only the edge on the outer Dirichlet boundary is not zero. 1160 
K and F can be: 1161 

dENF

dNNiNNK
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e
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ij
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ij

(13) 1162 

Appendix C 1163 

Integral equation solution of Maxwell equations: taking the the electric field of MT 1164 
for the isotropic media as an example 1165 
 1166 
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According to the EM theory, the EM field at any point in the model can be 1167 
expressed as the superposition of the incident fields Ei (Hi) and scattered fields Es 1168 
(Hs) 1169 

si

si

HHH
EΕE

(14) 1170 

The incident field is generated by the incident source in the layered ground, 1171 

while the scattered field is caused by the difference in conductivity sb  1172 

between the anomalous body and the layered ground. 1173 

 According to the Green’s Function Theory (Ting and Hohmann, 1981; 1174 
Wannamaker et al., 1984), the scattering field Es can be written as 1175 

dVr ''', rErrrGE JE
s (10) 1176 

Where GJE is the Green’s Function of the electric field, Ω is the area where the 1177 
anomaly is located. Substituting the equation (10) into the the first formula in the 1178 
system of equation (9), we can obtain 1179 

dVi r'Er'GrErE JE  1180 

We discretized the anomalous body into several small volume units Ωi (i = 1, 1181 
2, ..., N). Assuming that the electric field and conductivity in each cell are constant 1182 
and equal to the value of the cell center ri, we can get a discretized matrix equation 1183 

iEEA (11) 1184 

Where T
M21 rE,...,rE,rEE and T

iiii M21 rE,...,rE,rEE are 1185 

respectively the 3M order vectors consisting of the unknown electric field and the 1186 
incident electric field at the midpoint of each discrete unit. A is a 3M×3M square 1187 
matrix, whose elements are composed of the following series of 3×3 sub-matrices 1188 

dvrrGrIA JE '.  1189 

Where α, β = 1, 2, ..., M and 
0
1

. Solving the equation (11) can get the 1190 

electric field on each discrete element of the anomaly and then substituting the  1191 
solution into equation (10), the scattered field distribution at any position in space can 1192 
be obtained.  1193 
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