
applied  
sciences

Article

Multiclass Skin Cancer Classification Using Ensemble of
Fine-Tuned Deep Learning Models

Nabeela Kausar 1 , Abdul Hameed 1, Mohsin Sattar 2, Ramiza Ashraf 3, Ali Shariq Imran 4,* ,
Muhammad Zain ul Abidin 1 and Ammara Ali 5

����������
�������

Citation: Kausar, N.; Hameed, A.;

Sattar, M.; Asharf, R.; Imran, A.S.;

Abidin, M.Z.u.; Ali, A. Multiclass

Skin Cancer Classification Using

Ensemble of Fine-Tuned Deep

Learning Models. Appl. Sci. 2021, 11,

10593. https://doi.org/10.3390/

app112210593

Academic Editor: Soo Hyung Kim

Received: 6 October 2021

Accepted: 5 November 2021

Published: 11 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Computing and Technology, Iqra University, Islamabad 44000, Pakistan;
nabeela.kausar@iqraisb.edu.pk (N.K.); hameed@iqraisb.edu.pk (A.H.);
zainamjad23354@gmail.com (M.Z.u.A.)

2 MIS Division, Pakistan Institute of Nuclear Science and Technology (PINSTECH), Islamabad 44000, Pakistan;
mohsin08@gmail.com

3 School of Informatics and Applied Mathematics, Universiti Malaysia Terengganu (UMT),
Terengganu 21030, Malaysia; ramizaashraf2010@gmail.com

4 The Norwegian Colour and Visual Computing Laboratory (ColorLab), Department of Computer Science,
Norwegian University of Science and Technology (NTNU), 2815 Gjøvik, Norway

5 Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences,
Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway;
ammaraa@stud.ntnu.no

* Correspondence: ali.imran@ntnu.no

Abstract: Skin cancer is a widespread disease associated with eight diagnostic classes. The diagnosis
of multiple types of skin cancer is a challenging task for dermatologists due to the similarity of skin
cancer classes in phenotype. The average accuracy of multiclass skin cancer diagnosis is 62% to 80%.
Therefore, the classification of skin cancer using machine learning can be beneficial in the diagnosis
and treatment of the patients. Several researchers developed skin cancer classification models for
binary class but could not extend the research to multiclass classification with better performance
ratios. We have developed deep learning-based ensemble classification models for multiclass skin
cancer classification. Experimental results proved that the individual deep learners perform better
for skin cancer classification, but still the development of ensemble is a meaningful approach since it
enhances the classification accuracy. Results show that the accuracy of individual learners of ResNet,
InceptionV3, DenseNet, InceptionResNetV2, and VGG-19 are 72%, 91%, 91.4%, 91.7% and 91.8%,
respectively. The accuracy of proposed majority voting and weighted majority voting ensemble
models are 98% and 98.6%, respectively. The accuracy of proposed ensemble models is higher than
the individual deep learners and the dermatologists’ diagnosis accuracy. The proposed ensemble
models are compared with the recently developed skin cancer classification approaches. The results
show that the proposed ensemble models outperform recently developed multiclass skin cancer
classification models.

Keywords: skin cancer; deep learning; ensemble classifier; multiclass skin cancer; classification
model; ensemble models

1. Introduction

Cancer can cause death if not diagnosed and treated in a timely fashion and can
start almost anywhere in the human body. Skin cancer is a common type of cancer, as
more than three million Americans are diagnosed with skin cancer each year (https://
www.skincancer.org/skin-cancer-information/skin-cancer-facts, accessed on: 24 October
2021). If skin cancer is diagnosed early, it can usually be treated. There are eight categories
of skin cancers: melanoma (MEL), melanocytic nevi (NV), basal cell carcinoma (BCC),
benign keratosis lesions (BKL), actinic keratosis (AK), dermatofibroma (DF), squamous
cell carcinoma (SCC), and vascularl Lesions (VASC) [1]. MEL is the most dangerous type
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of cancer, as it spreads to other organs very rapidly. It develops in body cells called
melanocytes. MEL is not common as compared to other categories of skin cancer. NV are
pigmented moles and vary in different colors of skin tones. It mostly develops during
childhood and early adult life as the number of moles increases up to the age of 30 to 40.
Thereafter, the number of naevi tends to decrease. BCC develops in cells of the skin called
basal cells. The basal cell performs the functionality of producing new skin cells as old ones
die off. AK is a pre-cancer that develops on skin affected by chronic exposure to ultraviolet
(UV) rays. BKL is one of the common benign neoplasms of the skin. DF occur at all ages
and in people of every ethnicity. It is not clear if DF is a reactive process or a neoplasm [2].
The lesions are made up of proliferating fibroblasts. Vascular lesions are relatively common
abnormalities of the skin and underlying tissues. SCC is the most accruing form of skin
cancer after melanoma and usually results from exposure to UV rays.

In literature, machine learning approaches such as support vector machine (SVM) [2],
neural networks [3], naïve Bayes classifier [4], and decision trees [5] have been used for skin
cancer classification. The problem with machine learning approaches is the requirement of
human-engineered features. In the last decade, deep learning approaches, such as convolu-
tional neural networks (CNN) became popular due to their ability with regard to automatic
feature extraction [6–9], and have been extensively used in research [10–13]. Dorj et al. [14]
worked on skin cancer classification using deep CNN. Romero et al. in [15] performed
melanoma cancer classification with the dermoscopy images using CNN. The technique
has an accuracy of 81.3% on the International Skin Imaging Cancer (ISIC) archive dataset.
Jinnai et al. [16] carried out pigmented skin lesion classification using the clinical images
and faster region-based CNN. The classification accuracy of the method was compared
with the ten-board certified dermatologist diagnosis accuracy. Esteva et al. [11] performed
multiclass skin cancer classification using dermoscopy images with the different variants
of CNN. Adegun et al. in [17] developed a probabilistic model to achieve the better perfor-
mance of a fully convolutional network-based deep learning system for the analysis and
segmentation of skin lesion images. The probabilistic model achieved an accuracy of 98%.

Recently, researchers have proposed ensemble methods to enhance classification
performance [18–20]. Bajwa et al. in [21] developed ensemble model using ResNet-152 [22],
DenseNet-161 [22], SE-ResNeXt-101 [23], and NASNet [23] for the classification of seven
classes of skin cancer using the ISIC dataset and achieved an accuracy of 93%. The ensemble
is a machine learning method that combines the decision of several individual learners
to increase classification accuracy [24]. The ensemble model exploits the diversity of
individual models to make a combined decision; therefore, it is expected that the ensemble
model increases classification accuracy [25,26]. The binary class skin cancer classification
has been performed in [15,27–29], but many researchers could not address multiclass
classification with better results. The recent approaches developed in [11,19,30–32] for
multiclass skin cancer classification also failed to achieve higher accuracy. In this research,
improved performance heterogeneous ensemble models are developed for multiclass skin
cancer classification using majority voting and weighted majority voting. The ensemble
models are developed using diverse types of learners with various properties to capture
the morphological, structural, and textural variations present in the skin cancer images
for better classification. The proposed ensemble methods perform better than both the
individual deep learning models and deep learning-based ensemble models proposed in
the literature for multiclass skin cancer classification.

The following contributions are made in this research work:

• Five pre-trained models are developed, and their decision is combined using majority
weighting and weighted majority voting for the classification of eight different classes
of skin cancer.

• The pre-trained models with different structural properties are trained to capture
the morphological, structural, and textural variations present in the skin cancer im-
ages with the following idea: residual learning, extraction of more complex features,
improvement in the declined accuracy caused by the vanishing gradient, feature
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invariance through the residual learning, and extraction of the fine detail present into
the image.

• The proposed ensemble methods perform better than the expert dermatologists and
previously proposed deep learning-based ensemble models for multiclass skin can-
cer classification.

• A comparative study is conducted for the performance analysis of five fine-tuned
deep learning models and their ensemble models on the ISIC dataset to determine the
model with better performance.

• In our proposed method, no extensive pre-processing has been performed on the
images, and no lesion segmentation has been carried out to make the work more
generic and reliable.

The rest of the paper is organized as follows: Section 2 presents related work. Section 3
describes the proposed method. Ensemble methods are discussed in Section 4, whereas
Section 5 discusses different deep neural network models followed by individual models
in Section 6. The quality measures used to measure the performance of the proposed study
are presented in Section 7. Section 8 discusses the results, followed by the conclusion.

2. Related Work

Skin cancer is usually diagnosed with the physical examination of the skin or with the
help of biopsy. The detection of skin cancer through the physical examination requires a
great degree of experience and expertise, and biopsy-based examination is a tedious and
time consuming task as it also requires expert pathologists. Currently, the macroscopic
and dermoscopy images are used by the dermatologist during the detection procedure
of skin cancer. But even with the dermoscopy images, accurate skin cancer detection
is a challenging task, as multiple skin cancers may appear similar in initial appearance.
Furthermore, even the expert dermatologists have limited studies and exposure experience
to different types of skin cancer through their lifetimes. Expert dermatologists have a skin
cancer detection accuracy of 62% to 80% [33,34]. The reports on diagnostic accuracy of
clinical dermatologists have shown 62% accuracy with the clinical experience of three to
five years. However, the dermatologists with more than 10 years of experiernce have a
diagnostic accuracy of 80%, and diagnostic performance falls even more for dermatologists
with the less experience [34]. Therefore, dermoscopy in the hands of an inexperienced
dermatologist may reduce diagnostic accuracy [33,35,36].

In early 1980s computer-aided diagnosis (CAD) systems were developed to assist the
dermatologist to meet the challenges faced during the process of diagnosis [37]. Initially,
CADs were developed using a dermoscopy image for binary classification of melanoma
and benign [37]. Since then, much research has been carried out to solve this challenging
problem. Several studies [37–39] have been performed using the manual evaluation meth-
ods developed using the ABCD method proposed by Nachbar et al. in [40]. Moreover,
machine learning classifiers have been developed with handcrafted features. These classi-
fiers include support vector machine (SVM) [2], naïve Bayes [4], k-nearest neighbor [41],
logistic regression [42], and artificial neural networks [3]. But the existence of high intra-
class and low interclass variations in MEL have caused the unsatisfactory performance of
handcrafted features-based cancer detection [43].

With the advent of deep learning, CNN caused a breakthrough for the solution of many
problems, including skin cancer classification. CNN gave higher detection accuracy and
it also reduced the burden of hand-crafted feature extraction by automatically extracting
the feature [44]. As CNNs require huge datasets for better feature leaning at abstract
levels [45], transfer learning has been introduced to meet the limitation of huge dataset
requirements [20,32], where a model trained for a task is reused for another task. Khalid et
al. proposed a skin lesion detection technique by developing a transfer learning- based
AlexNet model for the classification of three skin lesions in [46]. To develop the proposed
method, data augmentation is applied to enhance the dataset to achieve an accuracy
of 98.61%. Kawahara et al. developed a skin cancer detection technique using dataset
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consisting of 1300 images to construct a linear classifier using the features extracted by the
CNN in [47]. The technique does not require preprocessing or skin lesion segmentation.
They carried out classifications of five and 10 classes and achieved an accuracy of 85.8%
and 81.9%, respectively. In [32], a novel CNN architecture has been developed. The
architecture relies on multiple tracts to perform the skin lesion classification. The authors
used a pretrained CNN for single resolution and retained it for multi-resolution on publicly
available datasets and obtained an accuracy of 79.15% for the ten classes. In [48], Ali et al.
developed a skin lesion classification approach using deep convolutional neural networks
(DCNN) to classify benign and malignant skin lesions. To develop the proposed method,
the authors carried out the preprocessing consisting of noise removal by applying the filter,
input normalization, and data augmentation steps and achieved an accuracy of 91.93%.

Ensemble methods are developed to enhance classification performance. Ensemble
methods exploit the diversity in individual models to obtain their higher accuracy. Recently,
multiclass skin cancer classification techniques have been developed in the literature using
ensemble approaches. Harangi et al. [18] proposed how an ensemble of CNNs models
can be developed for enhancement of skin cancer classification accuracy and developed
an ensemble model for three classes of skin cancer and achieved an accuracy of 84.2%,
84.8%, 82.8%, and 81.4% for the models of GoogleNet, AlexNet, ResNet, and VGGNet,
respectively. The authors enhanced the accuracy of 83.8% with the ensemble model of
GoogleNet, AlexNet, and VGGNet. In [20], Nyiri and Kiss developed different ensemble
methods using CNNs. To develop the proposed technique, the authors performed the
preprocessing on ISIC2017 and ISIC2018 datasets using different preprocessing methods
and got an accuracy of 93.8%. In [49] Shahin et al. carried out skin lesion classification
using ensemble of deep learners and developed an ensemble by aggregating the decision
of ResNet50 and Inception V3 models to carry out the classification of seven skin cancer
classes with an accuracy of 89.9%. In [19], Majtner et al. developed the ensemble of
VGG16 and GoogleNet architectures using the ISIC 2018 dataset. To develop the proposed
ensemble methods, the authors carried out the data augmentation and colour normalization
on the dataset. The proposed method achieved an accuracy of 80.1%. [50] Rahman et al.
developed a multiclass skin cancer classification approach using a weighted averaging
ensemble of deep learning approaches using ResNeXt, SeResNeXt, ResNet, Xception, and
DenseNet as individual models to develop the ensemble for the classification of seven
classes of skin cancer with an accuracy of 81.8%.

Previous work for skin cancer classification based on dermoscopy images not only
lacks the generality but also has lower accuracy for multiclass classification [11,19,32]. In
this paper, we propose a multiclass skin cancer classification using diverse types of learners
with various properties to capture the morphological, structural, and textural variations
present in the skin cancer images for better classification. The proposed ensemble models
perform better than both the individual deep learning models and deep learning-based
ensemble models proposed in the literature for multiclass skin cancer classification.

3. Proposed Methodology

The proposed work is performed in two stages. In the first stage, we have developed
five diverse deep learning-based models of ResNet, Inception V3, DenseNet, InceptionRes-
Net V2, and VGG-19 using transfer learning with the ISIC 2019 dataset. The selection of
five pre-trained models with different structural properties is made to capture the mor-
phological, structural, and textural variations present in the skin cancer images with the
following idea: residual learning, extraction of more complex features, improvement in
the declined accuracy caused by the vanishing gradient, feature invariance through the
residual learning, and extraction of the fine detail present into the image. At the second
stage, two ensemble models have been developed. For ensemble model development,
the decisions of deep learners have been combined using majority voting and weighted
majority voting to classify the eight different categories of skin cancer. Figures 1 and 2
shows the overall block diagram of the proposed system.



Appl. Sci. 2021, 11, 10593 5 of 20

Figure 1. Block diagram of individual models.

ISIC developed an international repository of dermoscopy images known as the ISIC
Archive (https://www.isic-archive.com, accessed on 24 October 2021) for technical research.
The ISIC 2019 repository contains a training dataset consisting of 25,331 dermoscopy images
across eight different categories. Details of dataset and the distribution of data samples
for each class have been shown in Table 1. It is observed from Table 1 that distribution of
data samples across different classes varies. For example, the melanocytic nevi(NV) class
consists of 12,875 images. Similarly, the melanoma class consists of 4522 images, and basal
cell carcinoma(BCC) consists of 3323 images. To prepare the dataset for the development
of the proposed ensemble models, 1500 images have been randomly selected from each of
the NV, BCC, Melanoma, and BKL classes. From the rest of the four classes, all available
images in the ISIC repository have been added into the dataset. Thus, the dataset has been
formed with 7487 images. Then it has been splitted into two parts: training and test dataset.
The training dataset consists of 5690 images and the test dataset has been formed by taking
25% of the total dataset. Thus, the test dataset consists of 1797 images. Figure 3 shows the
sample images of eight different classes of skin cancer. In the proposed approach, images
have been resized to 224 × 224 × 3.

https://www.isic-archive.com
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Figure 2. Block diagram of ensemble model.

Figure 3. Sample images of eight skin diseases from the ISIC-2019 dataset.



Appl. Sci. 2021, 11, 10593 7 of 20

Table 1. Detail of distribution of images across different classes in ISIC 2019 training dataset.

Class Label Abbreviation Class Number of Images

1 AK Actinic keratosis 867
2 BCC Basal Cell Carcinoma 3323
3 BKL Benign keratosis 2624
4 DF Dermatofibroma 239
5 MEL Melanoma 4522
6 NV Melanocytic Nevi 12,875
7 SCC Squamous cell carcinoma 628
8 VASC Vascular Lesions 253

Total 25,331

4. Ensemble Methods

The motivation behind the development of ensemble models with diverse leaner
is to deal with the complexity of multiclass problem by utilizing the pattern extraction
capabilities of CNNs and improving the generalization of multiclass problems with the help
of ensemble systems. In the machine learning model, as the number of classes increase,
the complexity of the model increases, resulting in a decrease in accuracy. Ensemble
methods combine the results of individual learners to enhance accuracy by exploiting their
diversity and improving the generalization of the learning system. Machine Learning
models are bounded by their hypothetical spaces due to some bias and variance. Ensemble
techniques aggregate the decision of individual learners to overcome the limitation of
a single learner that may have a limited capacity to capture the distribution (variance)
of data. Therefore, making a decision by aggregating the multiple diverse learners may
improve the robustness as well as reduce the bias and variance. Ensemble learning employs
various techniques to generate a robust and accurate combined model by aggregating the
base learners. The combining strategies may consist of voting, averaging, cascading or
stacking. Voting strategies consist of majority voting and weighted majority voting whereas,
averaging strategy consists of averaging and weighted averaging. In this work, we have
developed an ensemble model using majority voting, weighted majority voting, and
weighted averaging strategies. The basis of ensemble learning is diversity. The ensemble
model may fail to achieve better performance if there is no diversity in base learners [51].
There are various methods to incorporate the diversity, such as (1) the exploitation of
features spaces, (2) taking subsamples from the training dataset, and (3) the selection of
diverse base/individual learners [52]. In the proposed ensemble systems, the diversity is
incorporated by combing the individual learners with various properties to capture the
morphological, structural, and textural variations present in the skin cancer images for
better classification.

5. Deep Neural Network Models

To develop the proposed ensemble models, five deep neural network models, namely
ResNet, InceptionV3, DenseNet, ResNetInceptionV2, and VGG-19, have been developed
by fine-tuning the model parameters. Short details of the models are described below.

5.1. ResNet

In this deep neural network model, residual learning is introduced and was chosen as
a component model of the ensemble. It constructs a deep network with a large number of
layers that keep learning residuals to match the predicted labels with the actual labels. The
essential components of the model are the convolution and pooling layers that are fully
connected and stacked one over the other. The identity connection among the layers of the
residual network differentiates between the normal network and the residual network. The
residual block of the ResNet is shown in Figure 4. To skip one or more layers in the ResNet,
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it introduces the “skip connection” and “identity shortcut connection” in the model. The
residual block F(X) of the ResNet model can be represented mathematically by Equation (1).

Y = F(X, {Wi}) + X (1)

where X and Y are the input and output, respectively, and F is the function applied on the
input given to the residual block.

Figure 4. Residual block of deep Residual Network.

5.2. Inception V3

The motivation for choosing the inception neural network as a component model of the
ensemble is the inception module that consists of 1× 1 filters followed by the convolutional
layers of different sizes. Due to this, the inception neural network is able to extract more
complex features. Inception V3 is inspired by GoogleNet. It is the third edition of Google
Inception built from symmetric and asymmetric blocks, including convolution, average
pooling, max pooling, dropouts, and fully connected layers. The batch normalization is
used extensively throughout the model architecture.

5.3. DenseNet

DenseNet is chosen as a component model of the ensemble due to improvement in the
declined accuracy caused by the vanishing gradient. In neural networks, the information
may vanish before it reaches the last layer due to the longer path between the input and
output layers. In the DenseNet model, every layer receives additional information from the
preceding layers and then passes its feature maps to all subsequent layers. Concatenation
of information is performed in the model and each layer gets a “collective knowledge”
from all preceding layers.

5.4. ResNetInception V2

This is a variant of the Inception V3 model developed on the basis of the main idea
taken from the ResNet model. It has simplified the ResNet block, which facilitates the
development of the deeper network. The study in [53] shows that the residual connections
play an essential role in accelerating the training of the inception network.

5.5. VGG-19

VGG-19 was developed by the Visual Geometry Group, and the number 19 stands for
the number of layers with trainable weights. It is a simple network, as the model is made
up of sixteen convolutional layers and three fully connected layers. VGG uses very small
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size filters (2 × 2 and 3 × 3). It uses max pooling for downsampling. The VGG-19 model
has approximately 143 million parameters learned from the ImageNet dataset.

6. Development of Individual Models

The brief architecture of the five deep learning models is given in Section 5. In
this section, the training and fine-tuning details of the individual models are provided.

First, the training dataset Str =
{
< Z(i), t(i) >

}i = n
i = 1

has been used to train and optimize

the parameters of the individual models, where Z represents the image. The training
dataset consists of n = 5690 images. It is used to develop the classifiers of ResNet,
InceptionV3, ResNetInceptionV2, DenseNet, and VGG-19. To train and fine-tune the
ResNet model, global average pooling (GlobalAvgPool2D) is applied to downsample the
feature maps so that all the spatial regions may contribute to the output. Moreover, a fully
connected layer containing eight neurons with the SoftMax activation function are added
to classify eight different classes. The ResNet model is trained with 50 epochs, adaptive
moment estimation (Adam) optimizer for the quick optimization of the model, learning
rate of 1e-4, and categorical cross-entropy loss function. Inception V3 is fine-tuned by
applying GlobalAvgPool2D to downsample the feature maps, adding two dense layers at
the end containing 1028 and eight neurons with a rectified linear unit (ReLU) and SoftMax
activation functions, respectively. The model is trained using 50 epochs, a learning rate
of 0.001, and an RMSprop optimizer, as it uses plain momentum. Additionally, RMSprop
maintains a moving average of the gradients and uses that average to estimate the variance.

DenseNet is fine-tuned by adding a fully connected layer containing eight neurons
with SoftMax activation function to classify the eight classes of skin cancer. It is trained
using 50 epochs, an Adam Optimizer, and a learning rate of 1e-4. InceptionResNetV2
is fine-tuned by adding two dense layers containing 512 and eight neurons with ReLU
and SoftMax activation functions, respectively. GlobalAvgPool2D pooling is applied to
downsample the feature map. Moreover, the model is trained with 50 epochs, a stochastic
gradient descent (SGD) optimizer, and a learning rate of 0.001 with a batch size of 25.
VGG-19 is fine-tuned by applying GlobalAvgPool2D to downsample the feature maps
and adding two dense layers containing 512 and eight neurons with ReLU and SoftMax
activation functions, respectively. The model is trained with 50 epochs, a learning rate of
1e-4, an SGD optimizer, and a categorical cross-entropy loss function. After retraining and

fine-tuning individual models, the test dataset Sts =
{
< Z(i), t(i) >

}i = m
i = 1

, (m = 1797) is

used to validate the trained component models.

Development of Ensemble Models for Skin Cancer Classification

In this stage, individual models trained using different parameters are combined using
different combination rules. The details of different combination rules can be found in [54].
Many empirical studies show that simple combination rules, such as majority voting
and weighted majority voting, show remarkably improved performance. These rules
are effective for the construction of ensemble decisions based on class labels. Therefore,
for the current multiclass classification, majority voting, weighted-majority voting, and
weighted averaging rules are applied to combine the decision of individual models. For the
weighted averaging ensemble, the same weights are assigned to every single model. The
final softmax-based results from all the learners are averaged by ∑ pi

N , where N is number
of learners. For weighted-majority voting weights of each model can be set proportional
to the classification accuracy of each learner on the training/test dataset [55]. Therefore,
for the weighted majority-based ensemble, weights are empirically estimated for each
learner (WResNet, WInception, WDenseNet, WInceptionResNet, WVGG) with respect to their average
accuracy on the test dataset. The obtained weights Wk; k = 1, . . . , 5 are normalized so that
they add up to 1. This normalization process will not affect the decision of the weighted
majoring-based ensemble.
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The ensemble decision map is constructed by stacking the decision values of the indi-
vidual learners for each image Z in the test dataset, i.e., d(i)ResNet = ResNet(Z(i)), d(i)Inception =

Inception(Z(i)), d(i)DenseNet = DenseNet(Z(i)), d(i)InceptionResNet = InceptionResNet(Z(i)) and

d(i)VGG = VGG(Z(i)). The ensemble decision values are obtained for two well-known en-
semble methods of majority voting and weighted majority voting. For each image the
vote given to the jth class is computed using indicator function ∆(d(i)k , cj); which matches
the predicted value of the kth individual model with the corresponding class label as in
Equation (2).

∆(d(i)k , cj) =



1 i f d(i)k εc1

2 d(i)k εc2

3 d(i)k εc3

4 d(i)k εc4

5 d(i)k εc5

6 d(i)k εc6

7 d(i)k εc7

8 Otherwise

(2)

The total votes votesj(i) received from individual models for jth class are obtained
using majority voting as in Equation (3).

votes(i)j =
8

∑
k=1

∆(d(i)k , c(i)j ), f or j = 1 to 8 (3)

However, with the weighted majority voting rule the votes for jth class are obtained
for the learners k = 1 to 5 as in Equation (4).

votes′′(i)j =
5

∑
k=1

k = dk(i) = cj(i) wk , f or j = 1 to 5 (4)

The ensemble decision class values, ĺ(i)Ens ε ḾEns and l′′(i)Ens ε M′′Ens are obtained using
majority voting and weighted majority voting rules as in Equations (5) and (6).

ĺ(i)Ens = max(votes(j)
j ) (5)

l′′(i)Ens = max(votes′′(i)j ) (6)

The image is assigned to the class that receives the maximum votes.

7. Performance Measures

The classification performance of the five deep learners and proposed ensemble
models has been evaluated using the following quality measures.

7.1. Accuracy

Accuracy is a performance measure that indicates the overall performance of classifier
as the number of correct predictions divided by the total number of predictions. It shows
the ability of the learning models to correctly classify the images data samples. It is
computed as in Equation (7).

TP + FP
TP + FP + TN + FN

(7)

where TP is true positive, FP is false positive, TN is true negative, and FN is false negative.
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7.2. Precision

Precision is a performance measure that shows how accurately a classification model
predicts the same result when a single sample is tested repeatedly. It evaluates the ability
of the classifier to predict the positive class data samples. It is calculated as in Equation (8).

TP
(TP + FP)

(8)

7.3. Recall

Recall is a classification measure that shows how many truly relevant results are
returned. It reflects the ratio of all positive class data samples predicted as positive by the
learner. It is calculated as in Equation (9).

TP
(TP + FN)

(9)

7.4. F1 Score

F1 score is calculated based on precision and recall. It can be considered as the
weighted average of precision and recall. Its value range between [0, 1]. The best value of
F1 score is 1 and the worst is 0. It is computed as in Equation (10).

F1 − Score = 2 ∗ Precision ∗ Recall
Precision + Recall

(10)

8. Results and Discussion

The performance of the proposed models have been evaluated using the measures
of accuracy, precision, recall, f1-score, and support. Tables 2 and 3 show the comparative
classification performance of individual deep learners of ResNet, InceptionV3, DenseNet,
InceptionResnetV2, VGG-19, and the proposed ensemble model. It is observed from the
table that the ensemble model outperforms the individual models in terms of precision,
recall, f1 score, and accuracy. The accuracy of individual learners of ResNet, InceptionV3,
DenseNet, InceptionResnetV2, VGG-19 is 92%, 72%, 92%, 91%, and 91%, respectively.

However, the accuracy measures of the majority voting, weighted averaging based
ensemble, and weighted majority voting-based ensemble models are 98%, 98.2%, and
98.6%, respectively. Figure 5 shows that the accuracy of the ensemble approach is much
higher than the individual models.

Figure 5. Accuracy comparison of individual learners and their ensemble decision.
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Table 2. Performance comparison of individual learners with the ensemble approach.

Classification Report of ResNet

Skin Cancer Type Precision Recall F1-Score Support

AK 0.85 0.95 0.89 261
BCC 0.91 0.94 0.93 292
BKL 0.95 0.92 0.93 306
DF 0.95 0.84 0.89 63

MEL 0.90 0.90 0.90 325
NV 0.93 0.94 0.93 305
SCC 0.96 0.82 0.88 173

VASC 0.93 0.97 0.95 72
Accuracy 0.92 1797

Macro Avg. 0.92 0.91 0.91 1797
Weighted Avg. 0.92 0.92 0.92 1797

Classification Report of DenseNet

Skin Cancer Type Precision Recall F1-Score Support

AK 0.95 0.88 0.91 261
BCC 0.89 0.94 0.91 292
BKL 0.92 0.95 0.93 306
DF 0.95 0.89 0.92 63

MEL 0.91 0.90 0.90 325
NV 0.92 0.95 0.94 305
SCC 0.89 0.86 0.87 173

VASC 0.99 0.96 0.97 172
Accuracy 0.92 1797

Macro Avg. 0.93 0.91 0.92 1797
Weighted Avg. 0.92 0.92 0.92 1797

Classification Report of VGG-19

Skin Cancer Type Precision Recall F1-Score Support

AK 0.95 0.87 0.91 261
BCC 0.88 0.92 0.90 292
BKL 0.96 0.87 0.92 306
DF 0.90 0.90 0.90 63

MEL 0.87 0.91 0.89 325
NV 0.92 0.95 0.94 305
SCC 0.87 0.94 0.90 173

VASC 0.95 0.96 0.95 72
Accuracy 0.91 1797

Macro. Avg 0.91 0.92 0.91 1797
Weighted Avg. 0.91 0.91 0.91 1797

Classification Report of Inception V3

Skin Cancer Type Precision Recall F1-Score Support

AK 0.65 0.80 0.72 261
BCC 0.87 0.72 0.79 292
BKL 0.87 0.72 0.79 306
DF 0.69 0.43 0.53 63

MEL 0.73 0.72 0.73 325
NV 0.59 0.98 0.73 305
SCC 0.90 0.42 0.57 173

VASC 1 0.40 0.57 72
Accuracy 0.72 1797

Macro Avg. 0.79 0.65 0.68 1797
Weighted Avg. 0.77 0.72 0.72 1797

Classification Report of Inception ResNet V2

Skin Cancer Type Precision Recall F1-Score Support

AK 0.98 0.93 0.91 261
BCC 0.92 0.93 0.93 292
BKL 0.91 0.93 0.92 306
DF 0.98 0.90 0.89 63

MEL 0.89 0.90 0.89 325
NV 0.96 0.93 0.95 305
SCC 0.87 0.84 0.86 173

VASC 0.99 0.92 0.95 72
Accuracy 0.91 1797

Macro Avg. 0.93 0.91 0.92 1797
Weighted Avg. 0.91 0.91 0.91 1797
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Table 3. Performance of proposed ensemble models.

Classification Report of Majority Voting Ensemble

Skin Cancer Type Precision Recall F1-Score Support

AK 0.96 0.99 0.97 261
BCC 0.98 0.99 0.98 292
BKL 0.99 0.99 0.99 306
DF 1.00 0.97 0.98 63

MEL 0.98 0.97 0.97 325
NV 0.97 0.99 0.96 305
SCC 1.00 0.93 0.96 173

VASC 1.00 0.99 0.99 72
Accuracy 0.98 1797

Macro Avg. 0.98 0.98 0.98 1797
Weighted Avg. 0.98 0.98 0.98 1797

Classification Report of Weighted Averaging Ensemble

Skin Cancer Type Precision Recall F1-Score Support

AK 0.96 0.99 0.97 261
BCC 0.98 0.98 0.98 292
BKL 0.99 0.99 0.99 306
DF 1.00 0.97 0.98 63

MEL 0.97 0.97 0.97 325
NV 0.97 0.99 0.96 305
SCC 1.00 0.94 0.96 173

VASC 1.00 0.99 0.99 72
Accuracy 0.982 1797

Macro Avg. 0.98 0.98 0.98 1797
Weighted Avg. 0.98 0.98 0.98 1797

Classification Report of Weighted Majority Ensemble

Skin Cancer Type Precision Recall F1-Score Support

AK 0.96 0.99 0.98 261
BCC 0.98 0.99 0.99 292
BKL 0.99 0.99 0.99 306
DF 1.00 0.98 0.98 63

MEL 0.98 0.98 0.98 325
NV 0.97 0.99 0.98 305
SCC 1.00 0.95 0.97 173

VASC 1.00 0.99 0.99 72
Accuracy 0.986 1797

Macro Avg. 0.99 0.99 0.99 1797
Weighted Avg. 0.99 0.99 0.99 1797

Table 4 shows the performance comparison of the individual deep learning models
developed in [10–12,19,31,32,47,56,57] and the deep learning models developed in the
proposed work for eight classes of skin cancer. It is observed from the table that the
individual fine-tuned deep learning models perform better than the individual deep
learning models developed in [13,32,47,57]. Table 4 shows classification results with
different numbers of classes. Usually, in machine learning models, as the number of classes
increases the classification accuracy decreases due the increased model complexity. It
is shown in the Table 4 that the individual models developed for the eight classes can
perform in comparison to the models developed for the lesser number of classes. The
comparison has been made with the classification model that uses the ISIC or HAM
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dataset that has been used in the ISIC 2018 challenge (Task 3) and is available on (https:
//challenge2018.isic-archive.com/, accessed on: 10 October 2021).

Table 4. Performance comparison with other deep learning-based models.

Ref Method Number of Classes Accuracy Precision% Recall%

[18] VGGNet Two 81.3 79.74 78.66

[47] Fully Convolutional Network Five 85.8 N/A N/A
Ten 81.8

[32] Multi-tract CNN Ten 79.15 NA N/A

[11] CNN Three 69.14 N/A N/A
CNN-PA Nine 72.1

CNN 48.9
CNN-PA 55.4

[20] VGG16 Seven 75.6 N/A N/A
ResNet50 86.6

DenseNet121 89.2
Xception 90.1

Inception V3 74.3
DenseNet161 88.7

[19] VGG16 Seven 80.1 N/A N/A
GoogleNet 79.7

[49] ResNet50 Seven 87.1 78.6 77.0
InceptionV3 89.7 84.9 80.0

[56] MObileNet Seven 83.1 89.0 83.0

[19] InceptionResNetV2 Seven 70.0 N/A N/A
PNASNet-5-Large 76.0

SENet154 74.0
InceptionV4 67.0

[57] Triple-Net+CAM-BP Two 82.0 N/A N/A

[13] Dilated VGG 16 Seven 87.42 87.0 87.0
Dilated VGG 19 85.02 85.0 85.0

Dilated MobileNet 88.22 89.0 88.0
Dilated InceptionV3 89.81 89.0 89.0

[10] IRRCNN Seven 87.0 N/A N/A

[12] CNN Seven 77.0 N/a N/A
CNN (one vs All) 92.90

[31] InceptionV3 Seven 91.56 89.0 89.0
ResNetXt101 93.20 88.0 88.0

InceptionResNEtV2 93.20 87.0 88.0
Xception 91.47 89.0 88.0

NASNetLarg 91.11 86.0 86.0

Proposed ResNet Eight 92.0 0.92 0.92
InceptionV3 72.0 0.79 0.65

DenseNet 92.0 0.93 0.91
InceptionResNetV2 91.0 0.93 0.92

VGG 19 91.0 0.91 0.92

https://challenge2018.isic-archive.com/
https://challenge2018.isic-archive.com/
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Table 5 shows the performance comparison of the proposed ensemble model with the
recent deep learning-based ensemble models proposed in [18,19,21,31,49]. It is observed
from the table that the majority voting, weighted averaging, and weighted majority ensem-
ble models have an accuracy of 98%, 98.2%, and 98.6%, respectively, which is much higher
than the ensemble models proposed in [18,19,21,31,49]. It is observed from the literature
that in classification, as the number of classes increases, the classification accuracy de-
creases. The previous works carried out in [18,19,31,49] have lower accuracy as compared
to the proposed ensemble models. Our ensemble models have outperformed both the
dermatologists and the recently developed deep learning-based models for multiclass skin
cancer classification without extensive pre-processing. Figure 6 shows the training accu-
racy of individual deep learning models. Confusion matrices of individual and ensemble
models are shown in Figure 7. The motivation for adopting the ensemble learning models
is that they improve the generalization of the learning systems. Machine learning models
are bounded by the hypothetical spaces that have bias and variance. The ensemble models
combine the decision of individual weak learners to overcome the problem of the single
learner that may have a limited capacity to capture the distribution (causing variance error)
present in the data. Our results show that making a final decision by consulting multiple
diverse learners may help in improving the robustness as well as reducing the bias and
variance error.

Table 5. Performance comparison with other deep learning-based ensemble models.

Ref. Ensemble No. of Classes Accuracy% Weighted Average

Precision% Recall% F1-Score%

[18] AlexNet + VGGNet Three 79.9 - - -
GoogleNet + AlexNet 80.7 - - -
GoogleNet + VGGNet 81.2 - - -

GoogleNet + AlexNet + GoogleNet 83.8 - - -

[19] VGG16+GoogleNet Seven 81.5 - - -

[49] ResNet50 + InceptionV3 Seven 89.9 - - -

[31] InceptionV3 + Xception 91.56 82 84 83
Inception ResNetv2+ ResNetTx101 88.66 80 82 81
Inception RESnETv2+ ResNetTx101 92.83 83 84 84

InceptionResNetV2+ ResNetTx101+ ResNetTx101 89.66 83 85 84

[21] ResNet-152, +DenseNet-161, SE-ResNeXt-101, and NASNet Seven 93 - - -
Proposed Ensemble Majority Voting Eight 98 98 98 98

Proposed Weighted Averaging Ensemble 98.2 98 98 98
Proposed Weighted Majority Voting 98.6 99 99 99



Appl. Sci. 2021, 11, 10593 16 of 20

Figure 6. Training and validation accuracy vs. loss.
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Figure 7. Confusion matrix-based performance of individual and proposed ensemble model.

9. Conclusions

Various research has been performed for the classification of skin cancer, but most of
them could not extend their study for the classification of multiple classes of skin cancer
with high performance. In this work, better-performing heterogeneous ensemble models
were developed for multiclass skin cancer classification using majority voting and weighted
majority voting. The ensemble models were developed using diverse types of learners
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with various properties to capture the morphological, structural, and textural variations
present in the skin cancer images for better classification. It is observed from the results that
the proposed ensemble models have outperformed both dermatologists and the recently
developed deep learning methods for multiclass skin cancer classification. The study
shows that the performance of convolutional neural networks for the classification of
skin cancer is promising, but the accuracy of individual classifiers can still be enhanced
through the ensemble approach. The accuracy of the ensemble models is 98% and 98.6%,
which shows that the ensemble approach classifies the eight different classes of skin cancer
more accurately than the individual deep learners. Moreover, the proposed ensemble
models perform better than recently developed deep learning approaches for multiclass
skin cancer classification.
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MEL melonama
NV melanocytic nevi
BCC basal cell carcinoma
BKL benign keratosis lesions
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SCC squamous cell carcinoma
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SVM support vector machine
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