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Abstract This paper presents a non-contact measurement

of the realistic catenary geometry deviation in the Nor-

wegian railway network through a laser rangefinder. The

random geometry deviation is included in the catenary

model to investigate its effect on the pantograph–catenary

interaction. The dispersion of the longitudinal deviation is

assumed to follow a Gaussian distribution. A power spec-

trum density represents the vertical deviation in the contact

wire. Based on the Monte Carlo method, several geometry

deviation samples are generated and included in the cate-

nary model. A lumped mass pantograph with flexible col-

lectors is employed to reproduce the high-frequency

behaviours. The stochastic analysis results indicate that the

catenary geometry deviation causes a significant dispersion

of the pantograph–catenary interaction response. The

contact force standard deviations measured by the inspec-

tion vehicle are within the scope of the simulation results.

A critical cut-off frequency that covers 1/16 of the dropper

interval is suggested to fully describe the effect of the

catenary geometry deviation on the contact force. The

statistical minimum contact force is recommended to be

modified according to the tolerant contact loss rate at high

frequency. An unpleasant interaction performance of the

pantograph–catenary can be expected at the catenary top

speed when the random catenary geometry deviation is

included.

Keywords Railway � Pantograph � Catenary � Geometry

deviation � Non-contact measurement � Contact force

1 Introduction

In electrified railway systems, the catenary constructed

along the railroad is used to power the electric train. The

electric current is transmitted to the train through a sliding

contact with a pantograph mounted on the vehicle roof, as

illustrated in Fig. 1. The catenary’s contact wire serves

mechanically as the electrical path for the pantograph and

the electrical current. The current collection quality is

dominated by the mechanical interaction performance

between the contact wire and the pantograph collectors.

Usually, the contact wire is hanged by several droppers

to keep it as flat as possible or to have a certain amount of

pre-sag, which has been proven beneficial to keep a

stable contact with pantographs [1]. However, the instal-

lation error, temperature variance, insufficient maintenance

and multiple impacts in long-term operation may result in

the deviation of the catenary geometry with respect to its

design position [2, 3], which affects the sliding contact of

the pantograph–catenary. As shown in Fig. 2, the deviation

happens in longitudinal and vertical directions, which have

been proven by the measurement data in our previous work

[4]. Similar to the track irregularity [5], the catenary

geometry deviation also has a stochastic nature, resulting in
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an indeterministic response of pantograph–catenary inter-

action. Therefore, the realistic geometry deviation is

desired to be measured and properly included in the

numerical tools to evaluate the dispersion of pantograph–

catenary behaviour, which is the main topic of this paper.

As the most vulnerable part of the traction power sys-

tem, the pantograph–catenary system has been a common

research objective that attracts ever-increasing attention of

scholars from the scientific community and the industry

[6]. Due to the high cost and limited access of field tests,

numerical modelling has been a mainstream approach to

study the pantograph–catenary dynamics and has experi-

enced an advanced development in the last several decades

[7]. In the early stage of research, the catenary is normally

assumed to be a mass-spring system [8], in which only the

stiffness and mass distributions are considered without the

contribution of wave propagation. With the increase of

train speed, the catenary nonlinearity significantly affects

the response [9]. That is why the finite element method has

been the most popular approach to model the catenary. To

achieve convincing numerical results, the measurement

data from field tests are utilised to modify and validate

numerical models, which has prompted new measurement

and identification techniques [10, 11]. Another state of the

art is to digitalise the external disturbance from vehicle-

track [12, 13], wind load [14] and other experimental

factors and adequately include them in the numerical

model. In order to improve the numerical efficiency, some

scholars have devoted their attention to developing fast

simulation techniques, such as the moving mesh [15],

moving window [16] and offline integration method [17].

Commonly, the numerical models are used in the design

phase to check the acceptance of the design strategy.

Recently, the modelling of degradation has been an

emerging technique to utilise the numerical model to pre-

dict service performance [18]. Based on this idea, the

defective droppers [19, 20], irregularity [21], contact wire

wear [22] and the tension variation [23] are correctly

modelled and included in the assessment of pantograph–

catenary interaction. It is worthwhile to mention the works

of Van et al. [24] and Gregori et al. [25]. The geometry

deviation is considered in these two works when modelling

the catenary, and the results indicate that the geometry

deviation leads to a particular dispersion of the response.

The geometry data from measurement can further support

and validate the main conclusion of these two works.

From the above literature review, it is seen that most

numerical simulations of pantograph–catenary interaction

are performed based on design data without any geometry

imperfections. Some works that attempt to include a ran-

dom geometry deviation in the catenary model lack the

support of measured geometry data. This paper presents a

filed measurement of the catenary geometry based on a

laser rangefinder, which can provide realistic contact wire

geometry for the numerical simulation. Based on the Monte

Carlo method, many contact wire geometry samples are

generated, with the same distribution and frequency char-

acteristics as the measurement data. The random geometry

deviation is included in a catenary model built by the finite

element method (FEM). In combination with a pantograph

model with flexible collectors, the dispersion of response

caused by the random geometry deviation is investigated

with different cut-off frequencies and operating speeds.

The rest of this paper is organised as follows: Sect. 2

describes the measurement of catenary geometry. The

catenary model with geometry deviation is built in Sect. 3.

The stochastic analysis of the contact force is performed in

Sect. 4, and Sect. 5 states the conclusions.

2 Measurement of catenary geometry

To provide a realistic catenary geometry data for the

numerical simulation, the geometry of an existing catenary

on the Gardemobanen line from the Norwegian railway

network was measured. The main purpose of this paper is

to find out the effect of geometrical deviations on the

interaction performance of the pantograph–catenary sys-

tem, namely the vertical contact quality. Therefore, only

the geometrical deviations in vertical and longitudinal

directions were measured. Obviously, the former directly

impacts the sliding contact between the pantograph strip

Fig. 1 Schematics of pantograph–catenary system

Original catenary

Deviated catenary

Fig. 2 Illustration of geometry deviation
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and contact wire. The latter may affect the frequency

characteristics of the contact force. A laser rangefinder

(Leica DISTOTM D8) was used to measure the height of

critical points, including upper and lower joints of drop-

pers, steady arm points and joints of stitch wires. The

height was measured as the relative vertical height with

respect to the rail. The vertical measurement is illustrated

in Fig. 3, and the height H of the catenary wires can be

estimated by

H ¼ Hr þ Hw ¼ Lr � sin aþ Lw � sin b; ð1Þ

where Hw is the vertical height between the critical point

and the laser rangefinder, and Hr is the vertical height

between the rail and the laser rangefinder; Lw and b are

respectively the distance and the corresponding pitch angle

from the laser rangefinder to the contact wire; Lr and a are

respectively the distance and the corresponding pitch angle

of the rail.

The longitudinal distance Dl of each critical point was

also measured using the method illustrated in Fig. 4. To

estimate the longitudinal distance Dl, the yaw angle c
between the pole and rail is necessary. However, due to the

limitation of the 6-axis inertial measurement unit (IMU)

installed in the laser rangefinder, the yaw angle c is not

convenient to measure. An alternative method is to mea-

sure the distances from the laser rangefinder to the pole Lp
and to the rail Lhr and the pole-rail distance Lpr. Then, the

yaw angle c and the longitudinal distance Dl can be esti-

mated by

c ¼ arccos ðLhr � LprÞ=Lp
� �

;

D1 ¼ Lp � sin c ¼ Lp � sin arccos ðLhr � LprÞ=Lp
� �� �

:
ð2Þ

Therefore, seven parameters Lr, Lw, a, b, Lp, Lhr and Lpr
need to be measured using the laser rangefinder. The

accuracy of measurement in the range of 10–30 m can be

controlled within 0.1 mm. Moreover, the measurement

accuracy of the pitch angles a and b is controlled within

0.1�. Hence, the effect of any measurement errors for these

two parameters on the measurement accuracy is small

enough to be neglected.

Figure 5 shows the comparison of contact wire geome-

try within one span between the measurement and design

data. The sag between two critical points is calculated

based on the tension and gravity in the contact wire. It is

seen that the measured geometry has a significant differ-

ence from the designed one. Especially in the vertical

direction, the measured geometry shows a significant

irregularity. The dropper points also show distinct devia-

tion in the longitudinal direction. The following two

approaches are utilised to describe the stochastics of

deviations in each direction.

As illustrated in Fig. 6, the standard deviation of the

critical point deviation against the design data is calculated

for the longitudinal direction. The Gaussian distribution is

employed to characterise the dispersion of longitudinal

deviation, of which the probability density function (PDF)

can be written as follows:

f xð Þ ¼ 1

rg
ffiffiffiffiffiffi
2p

p exp � 1

2

x� lg
rg

� �2
" #

; ð3Þ

where rg is the longitudinal standard deviation of critical

points, which takes the value of 0.23 m; lg is the corre-

sponding mean value, which is close to zero. Following the

Gaussian distribution, many samples of random longitudi-

nal deviations are generated for all the critical points. Then,

the longitudinal coordinate of each critical point can be

obtained by the summation of the original position and the

longitudinal deviation.

For the vertical direction, a smoothing spline is used to

connect all the critical points, of which the PSD is esti-

mated using the Yule–Walker AR method. Then, the

inverse Fourier transform is implemented to generate manyFig. 3 The measurement of vertical geometry with the aid of a laser

rangefinder

Fig. 4 The measurement of longitudinal geometry
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samples of vertical deviation from the measured PSD

(Fig. 7a). The generated PSDs show good agreement with

the measured one (Fig. 7b). The vertical deviations of all

critical points can be obtained by the interpolation

according to their longitudinal coordinates. The vertical

and longitudinal coordinates of critical points are input in

the catenary model to compute the initial configuration.

The details of the shape-finding method are described in

the next section.

3 Modelling of pantograph–catenary system
with geometry deviation

The absolute nodal coordinate formulation (ANCF) is uti-

lised to model the catenary in this paper, which has been

proven capable of accurately describing the initial config-

uration [26] and addressing the geometrical nonlinearity

[27]. The pantograph is represented by a developed lumped

mass model with two flexible collectors to reproduce the

high-frequency modes.

Fig. 5 Comparison of contact wire geometry between measurements and design data

Fig. 6 Procedure to characterise stochastics of catenary geometry deviations
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3.1 ANCF beam and cable elements

The catenary comprises a number of complex components,

but its dynamic behaviour with a pantograph is normally

determined by five main components: the contact wire, the

messenger wire, the dropper, the stitch wire and the steady

arm, as illustrated in Fig. 8. The ANCF beam element is

employed here to describe the geometrical nonlinearity of

messenger, contact and stitch wires. The dropper is mod-

elled by an ANCF cable element with a nonlinear stiffness

to describe different working conditions in tension and

compression. The steady arm is modelled by a linear truss

element, which can rotate around the support point. The

claws on clamps are assumed as lumped masses.

In this work, the ANCF beam with 12 degrees of free-

dom (DOFs) is adopted to discretise the contact, messen-

ger, and stitch wires. The elastic force vector Qe for each

element can be expressed as the product of the secant

stiffness matrix Ke and the DOF vector e as follows:

Qe ¼ Kee; ð4Þ

where the derivation of the secant stiffness matrix Ke can

be found in [26]. In the shape-finding procedure, the

tangent stiffness matrices are primarily used to calculate

the incremental DOF vector De and the incremental

unstrained length DL0. The corresponding tangent

stiffness matrices KT and KL can be obtained by taking

partial of Eq. (4) against e and L0 as follows:

DF ¼ oQ

oe
Deþ oQ

oL0
DL0 ¼ KTDeþ KLDL0; ð5Þ

where F is the internal force vector. A similar derivation

can also be used to derive the tangent stiffness matrices of

the ANCF cable element. It should be noted that when the

dropper works in slackness, the axial stiffness changes to

zero. Assembling the stiffness matrix of each element

yields the global incremental equilibrium equation for the

whole catenary as follows:

DFG ¼ KG
TDUC þ KG

LDL0; ð6Þ

where DFG is the global unbalanced force vector. KG
T and

KG
L are the global stiffness matrices related to the incre-

mental nodal displacement vector DUC and the incremental

unstrained length vector DL0, respectively. The initial

Fig. 7 a Generated deviation signal from the measured PSD; b comparison of generated and measured PSD

Fig. 8 The catenary model with ANCF beam and cable elements
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configuration of the catenary can be calculated by solving

Eq. (6). The details of the initialisation procedure are dis-

cussed in the following section.

3.2 Computation of initial configuration

with contact line height variability

It can be seen that Eq. (6) cannot be solved directly

because KG
T KG

L

� �
is not a square matrix. The total

number of unknowns exceeds the total number of equa-

tions, which leads to undetermined solutions. Therefore,

additional constraint conditions should be provided to

reduce the number of unknowns and ensures that Eq. (6)

has unique solutions. These additional constraint condi-

tions are determined by the design specification and the

measurement geometry data. In this work, three types of

additional constraints are defined, illustrated in Fig. 9.

• The vertical positions of all dropper points in the

contact wire are restricted according to the geometry

data.

• The longitudinal direction of each node is restricted to

suppress the longitudinal movement.

• The designing tensions are imposed on the endpoints of

messenger, contact and stitch lines.

These constraint conditions reduce KG
T KG

L

� �
in

Eq. (6) to be a square matrix, which ensures the equality

between the numbers of equations and unknowns. The

steady arm points are fixed tentatively in the iterative

procedure to place the steady arm points at their correct

positions. The inclination of each steady arm can be cal-

culated by the resistance forces in the fixed point, which is

replaced by a rigid truss element without rotation DOFs to

reproduce the realistic behaviour of a steady arm. It should

be noted that these additional constraints are only used in

the shape-finding procedure. They are removed after the

equilibrium state is achieved.

An example is presented here using the parameters of

the measured catenary in Sect. 2. The main property

parameters of the catenary are collected in Table 1. Firstly,

each dropper’s longitudinal position and steady arm point

are modified by the random longitudinal deviation gener-

ated from N ug; d
2
g

� �
. Using one sample of vertical devia-

tion in Fig. 8a, the dropper’s heights and steady arm point

can be extracted by interpolation according to their longi-

tudinal positions. The convergence condition is defined as

follows:

max
DUC

DL0

	 
����

����

� �
\10�9m: ð7Þ

The maximum absolute residual versus the cycle index

is presented in Fig. 10. It is seen that the convergence

condition can be satisfied after 18 cycles of iteration. The

results of catenary geometry are presented in Fig. 11. It is

seen that the deviated configuration has a distinct

difference from the original one. In the next section, a

pantograph model is included to investigate the contact

force’s dispersion with the effect of geometry deviation.

The central nine spans are chosen as the contact force

analysis range to eliminate the boundary effect

interference.

Fig. 9 Illustration of additional constraints in the shape-finding of catenary

Table 1 Catenary property parameters

Parameter Value

Total length (km) 1.012

Contact wire tension (kN) 15

Messenger wire tension (kN) 15

Stitch wire tension (kN) 2.8

Contact wire area (mm2) 120

Messenger wire area (mm2) 65.8

Stitch wire area (mm2) 3.44

Contact wire linear density (kg/m) 1.07

Messenger wire linear density (kg/m) 0.596

Number of spans in contact with the pantograph 18

Geometry deviation effects of railway catenaries on pantograph–catenary interaction: a case… 355

123Rail. Eng. Science (2021) 29(4):350–361



3.3 Pantographs–catenary interaction formulation

To evaluate the response at high frequencies, the pan-

tograph is assumed to be a lumped mass model with flex-

ible collectors, as shown in Fig. 12. Each collector is

discretised into a few 2D beam elements. The stiffness

matrix can be written as follows:

kpe ¼
EIpe
l3pe

12 6lpe �12 6lpe

6lpe 4l2pe �6lpe 2l2pe
�12 �6lpe 12 �6lpe

6lpe 2l2pe �6lpe 4l2pe

2

6664

3

7775
; ð8Þ

where lpe is the element length and EIpe is the bending

stiffness of the collector. Usually, the collector is made of

two types of materials, namely graphite and aluminium.

The bending stiffness of the collector is calculated by the

mixture theory [28]. As the flexibility of the pantograph

framework is very low [29], it is treated as a rigid lumped

mass here. A penalty function method is employed to

couple the contact wire and the collector. Therefore, the

contact force fc can be calculated by

fc ¼
ksðzp � zcÞ if zp � zc [ 0

0 if zp � zc � 0

�
; ð9Þ

in which zp is the pantograph head uplift, and zc is the

vertical displacement of the contact wire in the contact

Fig. 10 Absolute residual in shape-finding procedure

Fig. 11 Results of catenary geometry: a full geometry; b locally enlarged view of one span
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point. Using Eq. (9), the equation of motion for the

pantograph–catenary system is written as

MG
€U tð ÞþCG

_U tð ÞþKG tð ÞU tð Þ¼ FG tð Þ; ð10Þ

where MG, CG and KG tð Þ are the mass, damping and

stiffness matrices for the whole system, respectively; FG tð Þ
is the external force vector. A Newmark integration

scheme is adopted to solve Eq. (10). The stiffness matrix

KG tð Þ is updated according to the catenary deformation in

each time step to describe the geometrical nonlinearity and

dropper slackness [15].

4 Effect of geometry deviation on contact forces

This section investigates the effect of catenary geometry

deviation on the contact force through a series of numerical

simulations. The measured contact forces collected by an

inspection vehicle regularly running in the Norwegian

network are compared with the simulation results. Then,

the effect of the cut-off frequency on the simulation results

is investigated. Finally, probabilistic analyses are per-

formed on the simulated data to assess the interaction

performance of the pantograph–catenary system. In

Sect. 4.1, the train speed is set as 160 km/h, consistent with

the inspection vehicle’s speed. In Sects. 4.2 and 4.3, the

train speed changes from 160 to 280 km/h to investigate

the dynamic performance at different speeds. It should be

noted that 280 km/h is the catenary top speed, which is

defined as 0.7 times the wave propagation speed according

to En 50119 [30].

4.1 Comparison with measurement data

Based on the idea of the Monte Carlos method, 400

numerical simulations are performed to describe the dis-

persion of dynamic responses. According to En 50367 [31],

the contact force standard deviation filtered within

0–20 Hz is the most critical assessment indicator to

describe the comprehensive current collection quality.

Therefore, the histogram of the contact force standard

deviation obtained by 400 simulations is presented in

Fig. 13. The standard deviation of the simulated contact

force generally follows a symmetric distribution with a

standard deviation of 0.59 N and a mean of 11.82 N. The

measured contact force standard deviations from five

independent field tests are denoted by dash lines in Fig. 13.

The measured contact forces are obtained by the inspection

Fig. 12 Lumped mass model of pantograph with flexible collectors

Fig. 13 Histogram of simulated contact force standard deviation.

Dash lines denote the measured contact force standard deviations

from five times of field tests

Fig. 14 RMS of contact force standard deviation with different cut-

off frequencies
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vehicle regularly running in the Norwegian network. The

average time interval between two adjacent measurements

is six months. All these measured contact force standard

deviations are within the scope of the simulation results.

However, all the measurement results are in the ‘left part’

of the distribution, which can be explained from two

aspects. The first one is that the bad performance in the

right part is not likely to happen in the field test due to the

appropriate maintenance of the railway operator. The sec-

ond explanation is that the average of the simulation results

cannot accurately represent the actual condition, and the

simulation results are expected to be calibrated according

to the measurement data. However, both explanations

cannot be fully verified at present because only a very

limited amount of measurement data are available. The

actual distribution of contact force statistics deserves to be

revealed with abundant measurement data in the future.

4.2 Analysis with different cut-off frequencies

The current standard En 50367 specifies a frequency range

of interest within 0–20 Hz. This low-frequency range is

expected to be improved to capture more high-frequency

behaviour of the pantograph–catenary interaction. It should

be noted that the high-frequency measurement data cannot

be provided to validate the simulation results, which is

beyond the frequency range of the current measurement

equipment. The work in this section only conducts a

qualitative analysis to point out the expected impact of the

geometry deviation on the contact force when the cut-off

frequency moves up to 200 Hz. In this numerical simula-

tion, a small element size of the contact wire and a pan-

tograph model with flexible collectors are adopted to

ensure numerical accuracy at high frequencies. The train

Fig. 15 Boxplots of contact force standard deviation with different cut-off frequencies at a 160 km/h and b 280 km/h

Fig. 16 Boxplots of statistical minimum contact force at different operating speeds with cut-off frequencies of a 20 Hz and b 200 Hz

Fig. 17 Boxplots of modified statistical minimum contact force at

different operating speeds with 200 Hz cut-off frequency

358 Y. Song et al.

123 Rail. Eng. Science (2021) 29(4):350–361



speed is chosen from 160 to 280 km/h with an interval of

40 km/h. For each speed, 400 simulations are performed to

ensure that the dispersion can be reflected. Figure 14 shows

the root mean square (RMS) of the contact force standard

deviation with different cut-off frequencies. It is seen that

the RMS undergoes a significant increase with the cut-off

frequency increasing and then becomes stable after the cut-

off frequency reaches a critical value. Generally, the crit-

ical value increases with the improvement of the speed. At

160 km/h, the RMS becomes stable after the cut-off fre-

quency is larger than 90 Hz. The critical cut-off frequen-

cies are about 105, 125 and 150 Hz at the speed of 200, 240

and 280 km/h, respectively. The corresponding spatial

wavelength is around 0.5 m, about 1/16 of the interval

between two adjacent droppers. According to the analysis

in [26], the cut-off frequency should cover the 1/4 of

dropper interval to fully describe the catenary’s geometry

effect in the contact force. However, the geometry devia-

tion is not considered in [26]. Thus, this critical cut-off

frequency should be improved to cover the 1/16 of the

dropper interval to describe the effect of the catenary

geometry deviation fully. The boxplots of contact force

standard deviation with different cut-off frequencies at 160

and 280 km/h are presented in Fig. 15. It is seen that the

fluctuating range of the contact force standard deviation

does not show a significant change when the cut-off fre-

quency increases over the critical value.

4.3 Probability analysis

In assessing current collection quality, the statistical min-

imum contact force is a critical index and should be posi-

tive to restrict the occurrence of contact loss, which is

calculated by

Fsmin ¼ Fmean � 3d; ð11Þ

where Fmean is the mean contact force and d is the contact

force standard deviation. The coefficient ‘3’ is determined

by the 99.73% confidence level. In this section, the

statistical minimum contact force at each speed is

calculated to check the interaction performance with

random geometry deviation of catenary. Figure 16a, b

presents the boxplots of statistical minimum contact force

at different operating speeds with the cut-off frequencies of

20 and 200 Hz, respectively. At 200 km/h, the statistical

minimum contact forces are always positive with 20 and

200 Hz cut-off frequencies, which satisfies the assessment

standard. Actually, 200 km/h is the operating speed for the

analysed catenary system. When the speed moves up to

240 km/h, some negative statistical minimum contact

forces can be observed with the 200 Hz cut-off

frequency. At 280 km/h, the negative statistical minimum

contact force can be observed with the 20 Hz cut-off

frequency. Almost all statistical minimum contact forces

are smaller than 0 N with 200 Hz cut-off frequency at

280 km/h. According to En 50119 [30], 280 km/h is very

close to the catenary’s top speed, which is defined as 0.7

times the wave propagation speed. When the train speed is

close to the top speed, unsatisfactory current collection

quality can be expected. But it should be noted that not all

the contact loss at 200 Hz cut-off frequency is

unacceptable. According to the experience of railway

operators, a certain amount of contact loss is tolerant at

high frequency. Thus, the definition of the statistical

minimum contact force should be modified. Assuming that

1% contact loss is acceptable at 200 Hz, the modified

statistical minimum contact force can be calculated by

Fsmin ¼ Fmean � 2:326d; ð12Þ

where the coefficient ‘2.326’ is determined by the 98%

confidence level, which means that 1% negative contact

force can be tolerant. The boxplots of modified statistical

minimum contact force at different operating speeds with

200 Hz cut-off frequency are presented in Fig. 17. It is

seen that all the modified statistical minimum contact

forces are above zero at speeds of 200 and 240 km/h. At

280 km/h, most results are no longer acceptable.

Fig. 18 Probability density of statistical minimum contact force at

different operating speeds with 20 Hz cut-off frequency

Fig. 19 Probability density of modified statistical minimum contact

force at different operating speeds with 200 Hz cut-off frequency
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Figure 18 presents the probability densities of statistical

minimum contact force at different operating speeds with

the cut-off frequencies of 20 Hz. The statistical minimum

contact forces with 20 Hz cut-off frequency are always

larger than the threshold 0 N at 200 and 240 km/h. At

280 km/h, the statistical minimum contact force has a

0.68% possibility to be negative. When the cut-off fre-

quency moves up to 200 Hz, the probability densities of

modified statistical minimum contact force at different

operating speeds are presented in Fig. 19. It is seen that the

modified statistical minimum contact force has an 85.58%

possibility to be negative at 280 km/h. If fewer contact

losses are preferred, the pantograph has to be uplifted to

have a higher mean contact force. It should be noted that

the threshold of 1% for the contact loss is just an example

here to demonstrate the probability analysis. The railway

operator should give a more reasonable value according to

actual conditions.

5 Conclusions

This paper presents a field measurement of the catenary

geometry from the Norwegian railway network, providing

realistic catenary geometry data for the numerical simula-

tion. Based on the Monte Carlo method, many contact wire

geometry samples are generated and included in the cate-

nary model. Employing a pantograph model with flexible

collectors, the effect of random geometry deviation on the

contact force is investigated. The main conclusions are

drawn as follows:

(1) The catenary geometry deviation causes a significant

dispersion of the response of pantograph–catenary

interaction. The measured contact forces by the

inspection vehicle from the field tests are within the

scope of the simulation results.

(2) The critical cut-off frequency should be improved to

cover 1/16 of the dropper interval, which can fully

describe the effect of the catenary’s geometry devi-

ation on the contact force.

(3) The statistical minimum contact force can be mod-

ified according to the tolerant contact loss rate at high

frequency. The probability analysis indicates that

modified statistical minimum contact force has an

85.58% possibility to be negative at 280 km/h. The

pantograph–catenary system has an unpleasant inter-

action performance at the catenary top speed when

the random catenary geometry deviation is included.
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