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Abstract. This Master’s thesis deals with confidence distributions for the differ-
ence between the means of two samples from normal distributions with unknown
variances. Distribution estimators and confidence distributions as their special
type are introduced. Linear combinations of confidence variables are considered.
A tentative proof that the linear combination of means of a symmetric a sym-
metric unimodal confidence variables are confidence variables for corresponding
linear combinations of parameters is presented. The latter statement is illustrated
numerically with examples. Various tests and related confidence densities from
these tests for the Behrens-Fisher problem are studied via numerical simulations.
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Sammendrag. Denne masteroppgaven dreier seg om konfidensfordelinger for
differansen mellom middelverdiene av to normalfordelte utvalg, n̊ar begge vari-
anser er ukjente. Fordelingsestimatorer og konfidensfordelinger som deres spesiell
type er introdusert. Lineære kombinasjoner av konfidensvariabler er betraktet.
Det presenteres et tentativt bevis for at en lineær kombinasjon av en symmetrisk
og en symmetrisk unimodal konfidensvariabler er ogs̊a en konfidensvariabel for
tilsvarende lineære kombinasjoner av parametere. Denne p̊astanden er illustr-
ert med eksempler. Forskjellige tester for Behrens-Fisher problem og relaterte
konfidensfordelinger er studert ved numeriske simuleringer.
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Notation

CD – confidence distribution,
Φ(x) – distribution function for standard normal distribution,
φ(x) – probability density for standard normal distribution,
Ψ(x, n) – distribution function for student t-distribution with n degrees of free-
dom,
ψ(x, n) – probability density for for student t-distribution with n degrees of free-
dom,
fχ2

f
– probability density for the chi-square distribution with f degrees of free-

dom,
N(µ, σ2) – the normal distribution with mean µ and variance σ2,
χ2
f – the chi-square distribution with f degrees of freedom.

For the random sample Y = {Y1, ..YnY } which is not directly involved in the
Behrens-Fisher problem:

Y =
∑nY
i=1 Yi
nY

– the sample average,

S2
Y =

∑nY
i=1(Yi−Y )2

nY −1 -the sample variance.

For the random samples Yi = (Yi,1..Yi,ni), involved in the Behrens-Fisher
problem:

Xi = Yi =
∑ni
j=1 Yi,j

ni
,

S2
i = S2

Yi
=

∑ni
j=1(Yi,j−Yi)2

ni−1 .
In our terminology:

An open interval (a, b), where a, b ∈ {R ∪ {−∞} ∪ {∞}}, is a subset of R:
{x : a < x < b}.
A half-open interval [a, b) or (a, b], where a, b ∈ {R∪{−∞}∪{∞}}, is a subset
of R, such that for [a, b), {x : a ≤ x < b}, and for (a, b], {x : a < x ≤ b}.
A closed interval [a, b], where a, b ∈ R, is a subset of R: {x : a ≤ x ≤ b}.

We denote as B the minimal sigma-algebra generated by open sets.
We denote w1V1 : w2V2 a mixture distribution, such that its distribution

function is w1FV 1 +w2FV 2, where FV 1 and FV 2 are distribution functions for V1

and V2 respectively.

xiii





CHAPTER 1

Introduction

In its original form (Kim & Cohen, 1998), the Behrens–Fisher problem deals
with testing the hypothesis on the equality of the means in two normal distri-
butions. Many approaches to the problem have been designed, including the
Behrens–Fisher test, the Welch–Satterthwaite test, the likelihood ratio test, the
Welch–Aspin test, the Scheffé test and the Fraser test. A more general problem,
however, involves considering all the uncertainty in the estimate of the difference
between the means. International measurement standards require that this un-
certainty be stated (JCGM et al., 2008). This work focuses on a particularly
important type of such estimators: confidence distributions, which we abbreviate
’CDs’ (Taraldsen, 2021).

The Behrens-Fisher problem is a special case of a more general problem:
whether the linear combination of randomised parameter estimators provides a
CD for the linear combination of the parameters. Numerous numerical simula-
tions (e.g. Duong & Shorrock, 1996; Wang, 1971) indicate that this conjecture
is true for R.A. Fisher’s solution to this problem Fisher (1930). However, even
for this case the analytical proof seems to be missing from the literature. In this
thesis we present a preliminary proof for the linear combination of means of a
symmetric CD and a symmetric unimodal CD. If this proof is correct, it will be
an important new result.

The Behrens-Fisher problem may be extended in many ways. A usual gen-
eralisation deals with m normally distributed samples (Casella & Berger, 2002,
p.409). An even more general problem is constructing a confidence distribution
for another function of parameters than a linear combination of the parameters.
The Joint Committee for Guides in Metrology’s JCGM et al., 2008 gives an ap-
proximate solution for the latter problem. This work adds further progress to
that solution.
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CHAPTER 2

General theory on confidence distributions

1. Some fundamental concepts of probability theory

One of the most fundamental concepts in statistics which gives ground to
all the following discussion is a sample space. A sample space consists of a set
and a sigma-algebra of subsets of this set. A probability space is a sample space
equipped with a probability measure on the sigma-algebra. A sample space may
be denoted as (X,F), and a probability space as (X,F ,P), where X is the set, F
is the sigma-algebra and P is the probability measure. In a shorter notation, the
X is written explicitly, while the presence of F and, for the probability space, P is
implied. The sample spaces used in statistics are illustrated in the ’Commutative
diagram of statistics’ (Taraldsen, 2019) in Fig. 2.1 .

Figure 2.1 . The relation between definitions. From the NTNU
course page TMA4285 (2019)

In the underlying sample space, (Ω, E):

• elements of Ω are called outcomes and are denoted as ω;
• elements of E are called events.

The set Ω contains all the theoretically possible underlying outcomes without any
models or observations. Ω is never observed directly. The model is introduced by
defining the model space ΩΘ. If the model is parametric, the model space can be
indexed with parameters. In the Behrens-Fisher problem, θ = (µ1, σ1, µ2, σ2).

3



4 2. GENERAL THEORY ON CONFIDENCE DISTRIBUTIONS

There is also a measurable function focus Ψ: ΩΘ → ΩΓ, where ΩΓ is a space of
the parameter of interest. In the Behrens-Fisher problem, the focus parameter is
γ = µ1 − µ2 and Ψ(θ) = µ1 − µ2.

When an experiment is conducted, the data y ∈ ΩY is obtained. The elements
θ of ΩΘ determine the probability measure on ΩY . A function of the data is called
statistic. In the Behrens-Fisher problem, ΩY is usually the set of all the possible
values of the sufficient statistic

(y1, y2, s
2
Y1
, s2

Y2
) ∈ ΩY = R2 × R2

+.

However, the set of all the possible outcomes

(y1,1, y1,2, ... y1,n1
, y2,1, y2,2, ... y2,n2

) ∈ ΩY = Rn1+n2

is also sometimes used, e.g. when treating the Behrens-Fisher problem with the
paired t-test.

2. Distribution estimators as random measures

The sample space concept makes it possible to deal with random variables
and random measures.

Definition 2.1. A function X ΩX → R is a random variable if for all a ∈ R
X−1(−∞, a] ∈ E .

If the sample space (Ω, E) is equipped with probability measure P , the ran-
dom variable defines a probability measure PX also on (R,B).

Definition 2.2. Given an underlying abstract probability space (Ω, E , P ) and
a random variable X, a distribution function F : R 7→ [0, 1] is defined by

F (x) = P
((
X−1(−∞, x]

))
.

Proposition 2.3. A distribution function F has following properties:

(1) F (x) is non-decreasing with respect to x;
(2) F (x) is right-continuous with respect to x;
(3) limx→∞ F (x) = 1;
(4) limx→−∞ F (x) = 0.

Proof. (1) Let x1, x2 ∈ R, x2 > x1. Then

F (x2) = PX
(
(−∞, x2]

)
= PX

(
(−∞, x1] ∪ (x1, x2]

)
=

by countable additivity of measure for disjoint sets

= PX
(
(−∞, x1]

)
+ PX

(
(x1, x2]

)
≥

by non-negativity of measure

≥ PX
(
(−∞, x1]

)
= F (x1).
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(2) Let (xn) be a decreasing sequence of real numbers converging to x.

F (x) = PX
(
∩∞i=1 (−∞, xn])

)
= F (x1)− (

∞∑
i=1

(
F (xi)− F (xi+1)

)
=

= lim
xn→x+

F (xn)

(the second equality follows from decomposing (∞, x1] into the disjoint
sets (∩∞i=1(−∞, xn]), (x2, x1], ..., (xi+1, xi], ..., and countable additivity
of measure ).

(3) By Definition 2.2, PX is a probability measure, hence PX(R) = 1. Let
(xn) be an increasing sequence of real numbers converging to ∞. Then
PX(R) = PX((−∞, x1] ∪ (∪∞i=1(xi, xi+1])) = limx→∞ F (x).

(4) Let (xn) be a decreasing sequence of real numbers converging to −∞.
Then 0 = PX(∅) = PX(∩∞i=1(−∞, xi]) = limx→−∞ F (x).

�

Proposition 2.4. Given a a function F (x) which has the properties 1-4 listed
in 2.3, it defines a unique probability measure ζ on B such that F (x) = ζ

(
(−∞, x]

)
.

Proof. Consider a function F (x). We notice that for any x ∈ R limxn→x− F (ω, xn)
exists, because F is non-decreasing, and is on (−∞, x] bounded by F (x).
We define a map G from R to the set of subsets of [0, 1] (Fig. 2.2 ) as following:

(1) G(x) =

{
{F (x)}, F is continuous in x,

(limxn→x− F (x), F (x)], F is not continuous in x,

and a set map

(2) G∗(A) = ∪x∈AG(x)

By construction, G∗ maps any open interval to either interval (closed, half-open
or open) or to a single point in [0, 1], which sets belong to B. It also maps
the intersection of any sets to the intersection of their images. Hence G∗ maps
a π−system of intervals and points to a π−system of intervals and points. We
assign to any element A of this system the Lebesque measure λ of its image under
G∗:

ξ(A) := λ(G∗(A))

Therefore the measure ζ on π−system of intervals of R is well-defined.
The π−system of intervals of R generates B. By Lemma 1.42 in (Klenke,

2008), the probability measure ζ is uniquely determined on the measurable space
(R,B) because it is uniquely determined on a π−system generating B.

�



6 2. GENERAL THEORY ON CONFIDENCE DISTRIBUTIONS

Figure 2.2 . The construction of a measure from F by Eq. (1)

We will slightly restrict the general definition of random measure given by
(Kallenberg, 2017, p. 1) and define the random measure as following.

Definition 2.5. Given a probability space (Ω, E , P ) and another measurable
space (Ω2,B), where Ω2 = R and B is the Borel sigma-algebra on R, random
measure ξ is a function of ω ∈ Ω and of a set B ⊂ Ω2 : B ∈ B, such that

(1) ξ(ω,B) is a measure with respect to B for all fixed y,
(2) ξ(ω,B) is a random variable ∀B ∈ B.

Definition 2.6. The random measure ξ is a random probability measure if
ξ(y,Ω2) = 1 ∀ y ∈ ΩY .

Example 2.7. Denote λ for the Lebesque measure and let y ∈ R, B be a set
from Borel sigma-algebra B on R, and

ξ(y,B) = λ
(
(y − 0.5, y + 0.5] ∩B

)
.

Then ξ(y,B) is a random probability measure.
Indeed,

• Assume y is fixed.

ξ(y,B) = λ
(
B ∩ (y − 0.5, y + 0.5]

)
We see that (y − 0.5, y + 0.5] ∈ B, also

(
B ∩ (y − 0.5, y + 0.5]

)
∈ B as

an intersection of two elements of B. Hence ξ(y,B) is defined for all
B ∈ S. Furthermore, it is 0 for B = ∅, ξ(y,R) = y+0.5−y+0.5 = 1∀y.
Considering a countable union of disjoint sets B1, ..., Bn, .., we observe
that

(
∪∞n=1Bn

)
∩ (y−0.5, y+0.5] = ∪∞n=1

(
Bn∩ (y−0.5, y+0.5]

)
, which

is also a countable union of disjoint sets
(
Bn ∩ (y − 0.5, y + 0.5]

)
. Thus
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by countable additivity of the Lebesque integral,

ξ(y,∪∞n=1Bn) = λ(∪∞n=1

(
Bn ∩ (y− 0.5, y+ 0.5]

)
) =

∞∑
n=1

λ
(
Bn ∩ (y− 0.5, y+ 0.5]

)
,

and ξ(y,B) is countably additive with respect to B. So ξ(y,B) is a
probability measure in B for all fixed y.

• Assume B is fixed. Then

ξ(y,B) = λ
(
(−∞, y + 0.5] ∩B

)
− λ
(
(−∞, y − 0.5]) ∩B

)
Consider a function f(x) = λ

(
(−∞, x] ∩ B

)
. This function is non-

decreasing, because whenever x1 < x2, then f(x1) < f(x2) by finite
additivity of Lebesgue measure. Moreover, f is continuous, because
whenever

|x− x0| < δ,

then

|f(x)− f(x0)| = |λ
(
(−∞, x] ∩B

)
− λ

(
(−∞, x0] ∩B

)
| =

λ
((
min(x, x0),max(x, x0)

)
∩B

)
< δ.

Hence a preimage f−1(−∞, a) of any ray is also a ray (−∞, b), and for
same argument as for the continuous F in the proof of Proposition 2.4,
f is B−measurable. Therefore, ξ(y,B) = f(y + 0.5) − f(y − 0.5) as a
difference of two B−measurable functions is also B−measurable.

Proposition 2.8. Given a function F (x) with all the properties listed in Propo-
sition 2.3 and such that it is a random variable in any point, it defines a random
probability measure ζ on the Borel sigma-algebra B.

Proof. The requirement 1 of the Definition 2.5 that ζ(ω,B) is a measure with
respect to B for all fixed y, holds by Proposition 2.4, which states that ζ with
properties 1-4 listed in Proposition 2.3 is indeed a unique probability measure
for every fixed y. The requirement 2 of the Definition 2.5 that ζ(y,B) is E-
measurable, holds by the Definition 2.1. Indeed, the fact that F is a random
variable in any point means that the preimage of B = (−∞, x] is an event.
Therefore ζ(y,B) is E-measurable for any B = (−∞, x]. We also see that for
arbitrary B ∈ B, any ζ−1(y,B) is generated by preimages of rays (−∞, x] and
hence belongs to E . Therefore we conclude that ζ(y,B) is a random variable also
for arbitrary B ∈ B and hence ζ is a random measure. �

Definition 2.9. A distribution estimator for γ is a random measure, where
Ω2 = ΩΓ in notation of Figure 2.1 and the Definition 2.5.
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Remark 2.10. A point estimator γ̂ is a special case of a distribution estimator.
Than for all data y ∈ ΩY , the random measure may be defined as

ξ(y,B) = 1γ̂(y)(B).

Example 2.11. Let X ∼ Uniform(µ− 0.5, µ+ 0.5). Taking in the Example 2.7
y = x, and letting B ⊂ Ωµ, we obtain a distribution estimator for µ

ξ(x,B) = λ
(
(x− 0.5, x+ 0.5] ∩B

)
.

Example 2.12. Let X ∼ Uniform(µ− 0.5, µ+ 0.5). Taking in the Example 2.7
y = x + s2

X + 3, we obtain another distribution estimator for µ, although less
reasonable than the previous one.

Theorem 2.13. Let F be a distribution estimator by Definition 2.9. Then its
α-quantile xα : (x ≤ xα) ⇐⇒ (F (x) ≤ α) is a random variable for all the levels
α ∈ [0, 1].

Proof. We observe that

(xα ≤ x) ⇐⇒ (F (x) ≥ α) = [∪∞n=1(F (x) ≤ α− α

1 + n
)]C .

Hence (xα ≤ x) is event for all x ∈ R, and therefore xα is a random variable. �

The computations involving distribution estimators are often easier, if the
distribution estimators are expressed as randomised estimators. A randomised
estimator is a distribution estimator which is a function of both data and a
random variable U with a known distribution. More precisely,

Definition 2.14. A parameter generating model is defined by assuming that
a randomized estimator Γ̂y is on the form

Γ̂y = γ̂(V, y)

given by a measurable function γ̂ : ΩV × ΩY → ΩΓ and a random quantity V
with a known law P yV for given y. The data space ΩY , the Monte Carlo space
ΩV , and the parameter space ΩΓ are measurable spaces. A parameter generating
model is a model generating model if the parameter equals the model θ.

Definition 2.15. A location-scale data generating function is on the form

Y = (X,S) = (µ+ σU, σV )

with location-scale parameter θ = (µ, σ) ∈ ΩΘ = R × (0,∞). The joint law
PU,V on ΩΘ of the location U and scale V Monte Carlo variables is assumed
known. The location-scale generating function is symmetric if U ∼ −U .

The definitions 2.14 and 2.15 are given according to (Taraldsen, private com-
munication, 2021).
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Example 2.16. The distribution estimator from the example 2.11 may be ex-
pressed as

µ ∼ U + y − 0.5,

where U ∼ Uniform(0, 1).
Indeed, in notation of Example 2.7 and Example 2.11,

ξ(y, (−∞, µ]) = λ
(
(y−0.5, y+0.5]∩(−∞, µ]

)
=


0, µ < y − 0.5

µ− y + 0.5, y − 0.5 ≤ µ < y + 0.5

1, µ ≥ y + 0.5

which equals to the distribution function of U+y−0.5, where U ∼ Uniform(0, 1).

Remark 2.17. There exist alternative non-equivalent definitions of a randomised
estimator. E.g. Lehmann and Casella (2006) defines as ’randomised estimator’ an
object that is very similar to what we define a a random measure. By (Lehmann
& Casella, 2006, p.33), ’If X is a basic random observable, a randomised estimator
of g(θ) is a rule which assigns to each possible outcome x of X a random variable
Y (x) with a known distribution. When X = x, an observation of Y (x) will be
taken and will constitute the estimate of g(θ)’.

For any distribution of the data and any parameter, there always exist fol-
lowing trivial examples of a randomised estimator.

Example 2.18. Any distribution estimator can be represented by a function of
data and of a random variable taking a constant arbitrary chosen value with
probability 1.

Example 2.19. Any distribution estimator can be represented by a function of
data and of 0 · U , where U is a random variable with any known distribution

For every distribution estimator, there also exists many non-trivial random-
ized estimators. Continuous distribution estimators with everywhere nonzero
density (therefore strictly increasing distribution function) are especially appli-
cable for the Behrens-Fisher problem. For such estimators, use of randomized
estimators is facilitated by following.

Proposition 2.20. Let W be a continuous distribution estimator, and let U be
a continuous random variable, with strictly increasing distribution functions F
and Ψ respectively. Then there exist a bijection G : ΩU 7→ ΩW ; G = F−1(Ψ).

Proof. We observe that for all rational u, holds

(3) u ≤ u0 ⇐⇒ Ψ(u) ≤ Ψ(u0) ⇐⇒ F−1
(
Ψ(U) < F−1(Ψ(u0)

)
⇐⇒ w ≤ w0

As both the involved distribution functions are strictly increasing, every value
u0 corresponds to an unique value of w0, and every value u0 corresponds to an
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unique value of w0 by Eq. (3). Hence the transformation G : ΩU 7→ ΩW defined
by G(u) = F−1Ψ(u) is a bijection, and W is distributed as G(U).

�

However, a non-trivial randomized estimator is not necessary of a simple
form or a practical interest.

Example 2.21. Consider a density estimation by Gaussian smoothing (e.g. Racine,
2006, Silverman, 1986), and the consequent distribution estimator of the param-
eter ’mean’ from the density estimate. That is, having sampled the i.i.d. X1,...
Xn, we estimate the underlying probability density as

ĝ(x) =

n∑
i=1

φ(
x−Xi

σ̂
),

where σ̂ is a function of the sample standard deviation, sample size and the
version of the smoothing method (e.g. σ̂ = 1.06SXn

−0.2
X ). Than one of natural

distribution estimators for the mean is distributed as a mixture of all possible
combinations of the n components in a mixture ĝ with corresponding weights
(For example, in case of only two measurements it has a density

h(µ,X) =
0.25

σ̂/
√

2
φ(
µ−X1

σ̂/
√

2
) +

0.25

σ̂
√

2
φ(
µ−X2

σ̂/
√

2
) +

0.5

σ̂
√

2
φ(
µ− (X1 +X2)/2

σ̂
√

2
).

It is a distribution estimator, because a probability distribution on ΩΓ is well
defined by this density, and this density is a measurable function from ΩX as a
linear combination of continuous Gaussian densities.

Depending on the data, it may have 1 or 3 maximums and hence cannot be
expressed as a randomised estimator in a straighforward usable way (e.g. as X ′+
X ′′U where X ′ and X ′′ are some statistics and U has a standard distribution).

3. Confidence distributions and variables

A confidence distribution is a special case of a distribution estimator. The
main general definition of the confidence distribution (Taraldsen, private com-
munication, 2021) is as following.

Definition 2.22. A distribution estimator C for a parameter Γ is a statistic
such that ΩC is a set of probability distributions on the parameter space ΩΓ, and
is a confidence distribution (CD) if there exist a non-empty family Ap | p ∈ I of
confidence sets Ap with level p, and

(4) C(Ap) = p

The index set I is the set of levels for the CD C. By default, I = (0, 1), but
sometimes other sets are reasonable as values for I.



3. CONFIDENCE DISTRIBUTIONS AND VARIABLES 11

We call function

(5) F (µ|y) =

∫ µ

−∞
f(t|y)dt

for cumulative distribution function for a CD for the parameter µ.If the
probability density for the CD exists, we call it confidence density . We call
confidence variable the random variable distributed as the CD. By Proposi-
tion 2.4, the confidence variable is uniquely defined by the cumulative distribution
function F for a CD. If the confidence density f exists it uniquely defines the
confidence variable as well, because it defines F as F (µ) =

∫ µ
−∞ f(t)dt.

In contrast to the Bayesian approach, the CD provides a distribution esti-
mator without any apriori assumptions (Schweder & Hjort, 2016).

We call a CD continuous if is cumulative distribution function is continuous
in all points.
The relevant example for the Behrens-Fisher problem is the CD for the sigle
mean, constructed as following.

Example 2.23. Mean µ of the normal distribution Y1, ...Yn ∼ N(µ, σ2) with
unknown variance σ2. As for any probability p ∈ (0, 1)

P (
µ− Y

SY /
√
nY

< tp,nY −1) = p,

so for any probability p ∈ (0, 1)

(6) P (µ < Y + tα,nY −1SY /
√
nY ) = p.

And therefore we define a CD for µ, given (y, sY ), to be same as for the variable

C = y + TNY −1sY /
√
nY ,

i.e. U = TNY −1. The Eq. (6) provides Ap = (−∞, Y + tα,nY −1SY /
√
nY ).

The important practical example where I 6= (0, 1) is as following.

Example 2.24. X ∼ N(θ, σ2), I = (0, 0.0, 9988). As further numerically shown
in Chapter 6, Section 5, the Welch-Aspin test with n1 = 5, n2 = 9, and an
adjusted nominal level, results in a conservative test and is only defined for prob-
abilities in I, but this test is not defined for probabilities of a set (a, 1), where
a > 0.9988.

A less practical, but still valid example where I 6= (0, 1) is:

Example 2.25. X ∼ N(θ, 1), I = {0.6, 0.7} The symmetric CD may look arbi-
trary weird for other levels, provided that it is a distribution estimator and its
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distribution function F satisfies
0.5− F (X − θ) = F (X + θ)− 0.5

F
(
Φ−1(0.8) +X

)
= 0.8 = 1− (1− 0.6)/2

F
(
Φ−1(0.85) +X

)
= 0.85 = 1− (1− 0.7)/2

In addition to the Definition 2.22, diverse non-equivalent definitions of the
’CD’ are used.

According to (Schweder & Hjort, 2016), a ’cumulative distribution function
for a CD’ for a one-dimensional parameter ψ is a non-decreasing right-continuous
function C(ψ, Y ) of ψ depending on the data Y , provided that it has a uniform
distribution whatever the true values of ψ and all the nuisance parameters χ are:

(7) P (ψ, χ){C(ψ) ≤ α} = α

We call the distribution with cummulative distribution function defined by Eq. (7)
exact CD. However, the definition can be also extended to the cases where Eq. (7)
cannot hold. One of the possible extensions of the definition (Xie & Singh, 2013)
is as following. ”For every α in (0, 1), let (−∞, τn(α)] be a α-lower-side confidence
interval for a parameter θ, where τn(α)] = τn(x, α) is continuous and increasing
in α for each sample x. Then, Hn(·) = τ−1

n (·) is a CD for θ”. H(ψ, Y ) converges
in distribution to C(ψ, Y ) and the definitions of (Taraldsen, 2020) and (Xie &
Singh, 2013) coincide. However, when Eq. 7 doesn’t hold, such a CD is often
asymmetric even when there exist symmetric two-sided confidence intervals for
all α in (0, 1). The latter confidence intervals is a typical straighforward choice
when inverting a test of H0 : Ψ = ψ. Hence the definition of (Xie & Singh, 2013)
is unlikely of practical use for real small samples.

We also introduce the following definitions.

Definition 2.26. The function f(µ|y) is a symmetric confidence density for
parameter µ is a distribution estimator such that:

(1) a = g(y), where g is a function ωY → R
f(a− µ) = f(a+ µ)
E(A) = µ

(2) ∀p ∈ I there exists a quantile q(p, y),such that

•
∫ q(p,y)

−∞ f(µ|y)dµ = p for all data y ∈ ΩY
• P

(
µ ≤ q(p, Y )

)
≥ p

The index set I of levels in the Definition 2.26 is usually taken I = (0, 0.5].
However, it is sometimes reasonable to choose it (a, 0.5] where 0 < a < 0.5, for
example when constructing a CD by inverting the adjusted Welch-Aspin test for
the Behrens-Fisher problem.

Definition 2.27. The function f(µ|y) is a unimodal probability density for
a CD for parameter µ is a distribution estimator such that:
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(1) f has only one local maximum,
(2) ∀α ∈ I there exists an interval quantile (a(α, y), b(α, y)), such that

•
∫ b(α,y)

a(α,y)
f(µ|y)dµ = α for all data y ∈ ΩY

• P
(
µ ∈ (a(α, Y ), b(α, Y ))

)
≥ α

If a function satisfies the Definition 2.26 or the Definition 2.27 and in addi-
tion the median for the confidence distribution is an estimator which is median
unbiased, we call the function a median unbiased probability density for a CD.
If the a function satisfies the Definition 2.26 or the Definition 2.27 and in addition

E
[
EY (µ|Y )

]
= µ0,

(where µ0 is the true value of the parameter) we call the function a mean un-
biased probability density for a CD.

Remark 2.28. A CD is never unique.

Theorem 2.29. Let F (θ) is a cumulative function for a CD function for a pa-
rameter θ, having median M and confidence sets Ap which are symmetric with
respect to M , and 0 < k < 1. Then

G(θ) =

{
kF (θ), θ ≤M,

1− k(1− F (θ)), θ > M

is also a cumulative distribution function for θ.

Proof. We observe that ∀a ≥ 0 :

P (θ ∈ (M − a,M + a)) ≥ F (M + a)− F (M − a) >

> 1− k(1− F (M + a))− kF (M − a) = G(M + a)−G(M − a),

where the first inequality holds because F is a CD with the defined Ap, and the
second inequality holds by the definition of G. If Ap = (M − a,M + a), than the

p-confidence set, corresponding G, is
(
G−1

(
F (M + a)

)
, G−1

(
F (M − a)

))
. �

Sometimes a CD does not exist or is useless to specify, e.g. Fieler problem
(Schweder & Hjort, 2016, p. 117-121). However, a related concept is used.
Following (Schweder & Hjort, 2016, p.115), we consider confidence curves for
the parameter θ = (φ, η), where φ is a focus parameter and η is the nuisance
parameter:

cc(θ, y) : Φ→ [0, 1],

which have as its level sets a nested family of confidence regions Rα(Y ) = {φ :
cc(θ) ≤ α} in Θ, with α ∈ [0, 1] being the confidence level.
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Definition 2.30. Consider a measurable function cc : Ωφ × ΩY 7→ [0, 1] such
that

• P
(
cc(φ, Y ) ≤ α

)
≥ α ∀θ, ∀α ∈ [0, 1]

• cc(φ, y) is nested: ∀y ∈ ΩY , α2 > α1 ⇒ {φ : cc(φ, y) < α1} ⊂ {φ :
cc(φ, y) < α2}

We call this function a confidence curve for ψ.

If all the confidence regions are exact, then

P
(
cc0(φ, Y ) ≤ α

)
= α ∀θ, ∀α ∈ [0, 1]

and we call the confidence curve exact confidence curve. The exact confidence
curve has following properties: (i) minθ cc(θ, y) = cc(θ̂, y) = 0 for all outcomes of

the data y, where θ̂ is a point estimate; (ii) cc(θ0, Y ) has the uniform distribution
on the unit interval, when θ0 is the true value of the parameter.

For a continuous CD, cc(θ) = 1− p(θ), where p(θ) is a p-value function.
There exist infinitely many confidence curves for a given CD.

Example 2.31. A classical example of existence of many confidence curves for
a single CD is the exponential distribution (Schweder & Hjort, 2016, p.140-

142). When expressing the density as f(y) = 1
µe
− yµ , we observe that the variable

W = 2
µY is exponentially (1/2) distributed which means that W is χ2

2 distributed.

Therefore,

(8)

n∑
i=1

Wn =
2nY

µ
∼ χ2

2n

In order to construct the distribution function for the mean µ, we denote the
distribution function for χ2

2n as Γ and get

1− Γ(x) = P
(2nY

µ
> x

)
= P

(
µ ≤ 2nY

x

)
and hence may express the cumulative distribution function for the distribution
estimator of µ as

(9) C(µ0) = P (µ < µ0) = 1− Γ(
2nY

µ0
).

This distribution estimator satisfies Eq. (4), when the intervals Ap for p ∈ [0, 1)
are taken as Ap = (0, C−1(p)]: indeed: p(C(µ, Y ) ∈ Ap) ≥ p by construction.
Moreover, we have observed that it is an exact CD: the Ap are not only confidence
sets for Ap, but satisfy p(C(µ, Y ) ∈ Ap) = p.



3. CONFIDENCE DISTRIBUTIONS AND VARIABLES 15

We also observe that the CD for µ may be expressed with a randomised
estimator

(10) µ ∼ 2nY

χ2
2n

.

The latter conclusion follows from Eq. (9) but not from Eq. (8) directly.

As pointed in (Schweder & Hjort, 2016), all the intervals
(
C−1(a), C−1(b)

)
,

where 0 ≤ a < b ≤ 1 and b−a = α, are α−level confidence intervals for µ. Hence
only the points with coordinates (a, α) or (b, α), where C(b)− C(a) = α, belong
to the confidence curve. Reasonable restrictions may be added to this condition,
but still there exist multiple confidence curves.

A reasonable choice for a confidence curve may be a locus of points⋃
α∈[0,1)

(C−1(
1− α

2
, α) ∪ (C−1(

1 + α

2
, α),

where µ̂ = C−1(0.5). In this case the the expression for confidence curve is

(cc(µ) = |1− 2C(µ)|.
Indeed, P (cc(µ) ≤ α) = C(C−1( 1+α

2 ))−C(C−1( 1−α
2 )) = α and the Definition

2.30 holds.
Another alternative is using the maximum likelihood estimator µ̂ = Y . The

deviance equals

−2ln

n∏
i=1

f(µ, Yi) + 2ln

n∏
i=1

f(Y , Yi) = 2nln(µ) +
2nY

µ
− 2nln(Y )− 2n

which, by Eq. (8), is distributed as D = 2n(Vn−1− lnVn), where Vn ∼ χn2n/(2n).
The latter fact is also shown in (Schweder & Hjort, 2016, p.141). Each positive
value of the deviance is reached in two values of µ. We denote the cumulative

distribution function of U as FD(d) = FD(2nln(µ) + 2nY
µ − 2nln(Y ) − 2n). We

denote the inverses to the two monotone fragments of FD(µ) as F−1
D1 (α) : [0, 1) 7→

(−∞, µ̂) and F−1
D2 (α) : [0, 1) 7→ (µ̂,∞). Then

cc(µ) =

{
FD1(µ), µ < µ̂

FD2(µ), µ ≥ µ̂.

Indeed, P (cc(µ) ≤ α) = P (FD(d) ≤ α) = α.

The confidence distributions may be evaluated by considering their loss and
risk (Taraldsen & Lindqvist, 2013). Given the penalty function Γ, we define
according to (Schweder & Hjort, 2016, p. 162):
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Definition 2.32. The confidence loss at θ of the confidence distribution with
distribution function F (ψ, y) for the focus parameter ψ = a(θ) is

lo(θ, F ) =

∫
Ωψ

Γ(t− ψ)dF (t, y).

Definition 2.33. The confidence risk at θ is the expected confidence loss:

R(θ, F ) = Eθ

∫
Ωψ

Γ(t− ψ)dF (t, Y ).



CHAPTER 3

Linear combination of confidence variables

An open general problem involves constructing a CD for a linear combination
of such randomised estimators. It is of especial interest whether, and in which
cases, a linear combination of confidence variables is itself a confidence variable
for the corresponding linear combination of parameters. More specifically, if M1

is distributed so that its density equals to a confidence density f1(µ1|y1) and M2

is distributed so that its density equals to a confidence density f2(µ2|y2), it is of
interest in which cases the probability distribution for c1M1 + c2M2 is a CD for
c1µ1 + c2µ2.

Recently, Hayter (2014), investigating this problem, has found an upper
bound for the p-quantiles of a linear combination of symmetric confidence vari-
ables (with p > 0.5). However, the fact that a linear combination of confidence
variables is itself a confidence variable for the corresponding linear combination
of parameters, has only been established asymptotically for large samples (Singh
et al., 2005).

This chapter demonstrates that a linear combination of confidence variables
is generally not a confidence variable for the corresponding linear combination
of parameters, though it may be so under mild restrictions. We also provide
a preliminary proof that a linear combination of confidence variables is itself a
confidence variable under rather weak conditions. We mostly consider the sum
of the randomised estimators for the means, because the Behrens-Fisher problem
concerns a sum of means.

1. Multiplication of a confidence variable with a scalar

For a constant c 6= 0 and a confidence variable Θ, the symmetric confidence
variable for cΘ with symmetric connected confidence sets Ap, or one-sided confi-
dence sets Ap of type −∞, a, in a sense of the Definition 2.26 is a c times scaling
of the confidence variable for Θ. Indeed,

P (|cΘ− cΘ̂| ≤ ca) = P (|Θ− Θ̂| ≤ a) ∀a ≥ 0

For non-symmetric CDs the fact

P (cΘ− cΘ̂ ≤ ca) = P (Θ− Θ̂ ≤ a) ∀a ∈ R

17
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holds only for c > 0, while for negative c we only have

P (cΘ− cΘ̂ ≤ ca) = P (Θ− Θ̂ ≥ a) = 1− P (Θ− Θ̂ < a) ∀a ∈ R.

Hence the family of the confidence sets Ap that is mentioned in the Definition
2.22 still exists, but is also reflected with respect to zero. If there are added
additional requirements for Ap (e.g. that any element of Ap is a ray (−∞, x), x ∈
R, the multiplication of the randomised estimator with a negative scalar will not
result in a CD with respect to this family of confidence sets.

2. Linear combination of a symmetric confidence variable and a
symmetric unimodal continuous confidence variable

The following conjecture is of special interest both for the Behrens-Fisher
problem and other practical problems including construction conservative confi-
dence intervals and CDs.

Conjecture 3.1. Let µ̂1 and µ̂2 confidence variables for location parameters,
from two independent and symmetric location-scale data generating functions.
The randomized estimator τ̂ = c1µ̂1 + c2µ̂2 is a confidence variable for τ =
c1µ1 + c2µ2 if the location Monte Carlo variable U1 has a unimodal density.

The conjecture 3.1 means that if

• Y1, Y2, S1, S2 be mutually independent statistics,
• Y1 ∼ σ1U1 + µ1, U1 be symmetric random variable with piecewise con-

tinuous non-decreasing density at (−∞, 0),
• Y2 ∼ σ2U2 + µ2, U2 be a symmetric random variable,
• S1 ∼ σ1V1, V1 be a positive random variable,
• S2 ∼ σ2V2, V2 be a positive random variable,
• The random variables U1, U2, V1, V2 be independent on the parameters
µ1, µ2, σ1, σ2,
• T1 ∼ U1

V1
, T2 ∼ U2

V2
.

Than y1−y2+s1T1+s2T2 is CD for µ1−µ2 with symmetric connected confidence
sets. From the conjecture 3.1 it also follows that for any 0 < α < 0.5, any point
(y1, y2, s1, s2) in the data space, and the quantile tα ∈ R satisfying P (|s1T1 +
s2T2| > tα) = α,

(11) P (|Y1 − µ1 − (Y2 − µ2)| > tα) ≤ α.

The proof for this conjecture is beyond the scope of this work. The author
of this thesis has developed a preliminary proof for the conjecture and, at the
moment of submitting this thesis, believes that the conjecture is proved and
has become a theorem. However, there have been neither time nor resources to
thoroughly check the proof, formulate it more clearly, and have it proofread by
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someone else. Of this reason, the parts of the proof which are not enough checked
are put into the appendix.

This proof requires several easier lemmas.

Lemma 3.2. The Conjecture 3.1 holds if U2 ∼ Unif{−1, 1} and σ2 is known.

Proof: Appendix, section 1.

Lemma 3.3. The Conjecture 3.1 holds if:

• U1 ∼ Uniform(−a, a),
• U2 ∼ Unif{−1, 1},
• V2 ∼ Unif{b1, b2, ..., bn},
• 0 ≤ b1 ≤ b2 ≤ ... ≤ bn,
• the parameters σ1,a, b1...bn are known

Proof: Appendix, section 2.

Lemma 3.4. Any symmetric random variable U having a piecewise continuous
non-decreasing density fU (u) at (−∞, 0) is a limit in distribution of finite mix-
tures Un of symmetric uniform distributions.

Proof: Appendix, section 3.
Corollary. If V2 ∼ Simple

(
p(b1) = w1, p(b2) = w2, ..., p(bn) = wn)

)
, 0 < b1 <

b2 < ... < bm, w1, ..., wn are known, the Conjecture 3.1 holds, by approximating
the weights by rationals ∀i wi = kiw, where ki ∈ N and taking

∑n
i=1 ki values of

the new V2.

Lemma 3.5. The Conjecture 3.1 holds if:

• U2 ∼ Unif{−1, 1},
• V2 ∼ Simple

(
p(b1) = w1, p(b2) = w2, ..., p(bn) = wn)

)
,

• 0 < b1 < b2 < ... < bm, w1, ..., wn are known.

Proof: Appendix, section 4.

Lemma 3.6. The Conjecture 3.1 holds if U2 is symmetric and has zero density
outside an interval (−|umax|, |umax|).

Proof: Appendix, section 5.
The Conjecture 3.1 is than proved by stretching infinitely many times the

compact support in Lemma 3.6 and by applying the Continuous Mapping Theo-
rem to the Tα as a continuous function of {U1, U2, V1, V2}.

3. An example of non-exact CD

As an analytical illustration that the conjecture 3.1 holds, we consider now
a following simplified analogue of the Behrens-Fisher problem, including two
unknown location parameters and only one unknown scale parameter.
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Lemma 3.7. Let:

• Y1, Y2, S1, S2 be mutually independent statistics,
• Y1 ∼ σ1U1 + µ1, U1 ∼ Uniform(−1, 1),
• Y2 ∼ σ2U2 + µ2, U2 ∼ Unif{−1, 1},
• S1 ∼ σ1V1, V1 = 1 with probability 1 (hence T1 = U1),
• S2 ∼ σ2V2, V2 ∼ Discrete

(
P (V2 = b1) = w1, P (V2 = b2) = w2 =

1− w1),
• The random variables U1, U2, V1, V2 do not depend on the unknown

parameters µ1, µ2, σ1, σ2,
• T1 ∼ U1

V1
, T2 ∼ U2

V2
,

• 0 < b1 < b2, σ1, b1, b2, w1 are known.

Then the randomised estimator y1 − y2 + s1T1 − s2T2 provides a CD for µ1 − µ2

with symmetric connected confidence regions.

For proving this, we will need a following technical lemma.

Lemma 3.8. Let:

• W1 ∼ Uniform(−a, a)
• W2 ∼ Unif{−b, b}
• a, b are known

The probability density of W = W1 +W2 when a ≤ b is

fW (w) =

{
1
4a , w ∈ (−a− b, a− b) ∪ (−a+ b, a+ b)

0, otherwise

and when a > b,

fW (w) =


1
4a , w ∈ (−a− b,−a+ b) ∪ (a− b, a+ b)
1
2a , w ∈ (−a+ b, a− b)
0, otherwise

Proof. The density

fW (w) = fW (w|W2 = −b)P (W2 = −b) + fW (w|W2 = b)P (W2 = b) =

I(w ∈ (−a− b, a− b) · 1

2a
· 1

2
+ I(w ∈ (−a+ b, a+ b) · 1

2a
· 1

2
and the result follows. �

Proof of the lemma 3.7. The (2α)-confidence regions forming the declared
CD are of form (−tα, tα), where tα is the (1 − α)-quantile of s1T1 − s2T2. By
symmetry,

P (Y1 − Y2 − (µ1 − µ2) ∈ (−Tα, Tα) = 1− 2P
(
Y1 − Y2 − (µ1 − µ2) > Tα

)
.
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For calculating P
(
Y1 − Y2 − (µ1 − µ2) > Tα

)
, we observe that:

T2 ∼ Discrete
(
P (T2 = − 1

b1
) =

w1

2
, P (−T2 =

1

b2
) =

w2

2
, P (T2 =

1

b2
) =

w2

2
,

P (T2 =
1

b1
) =

w1

2

)
.

Denoting b2/b1 = k > 1,

S2T2|(S2 = σ2b1) ∼ Discrete
(
P (s2T2 = −σ2) =

w1

2
, P (s2T2 = −σ2

k
) =

w2

2
,

P (s2T2 =
σ2

k
) =

w2

2
, P (s2T2 = σ2) =

w1

2

)
,

S2T2|(S2 = σ2b2) ∼ Discrete
(
P (s2T2 = −kσ2) =

w1

2
, P (s2T2 = −σ2) =

w2

2
,

P (s2T2 = σ2) =
w2

2
, P (s2T2 = kσ2) =

w1

2

)
.

Furthermore,

σ1U1 − S2T2|(S2 = σ2b1) ∼ w1(σ1U1 − σ2U2) : w2(σ1U1 − σ2U2/k),

σ1U1 − S2T2|(S2 = σ2b2) ∼ w1(σ1U1 − kσ2U2) : w2(σ1U1 − σ2U2),

and the densities of the components σ1U1− σ2U2, σ1U1− kσ2U2, σ1U1− σ2U2/k
are as described in Lemma 3.8. We now consider the possible relations between
tα, P

(
Y1 − Y2 − (µ1 − µ2) > tα

)
and parameters.

Consider σ1 < σ2.
Assume that tα|(S2 = b1) > σ2

k + σ1:

Hence α < w1σ2(1− 1
k ) 1

4σ1
and then

P
(
Y1 − Y2 − (µ1 − µ2) > tα

)
=

= w1P
(
Y1 − Y2 − (µ1 − µ2) > tα|S2 = b1

)
+

+w2P
(
Y1 − Y2 − (µ1 − µ2) > tα|S2 = b2

)
=

= w1
α

w1
+ w2 · 0 = α
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Figure 3.1 . Illustration to the proof of Lemma 3.7, case when
σ1 < σ2, σ2/k − 1 > 0, σ2/k + σ1 > σ2 − σ1, σ2k − σ1 < σ2 + σ1

The Figure 3.1 shows the case when

σ2/k − 1 > 0, σ2/k + σ1 > σ2 − σ1,

(12) σ2k − σ1 < σ2 + σ1.

The expressions to the left remain same for these tα when Eq. (12) does not hold
(then the mixture components are shifted more with respect to each other, but equal
on (tα,+∞).
Assume that (tα|S2 = b1) < σ2

k
+ σ1 and (tα|S2 = b2) > σ2 + σ1:

w1σ2(1− 1

k
)

1

4σ1
<

< α < w1 ·min(σ2(k − 1), 2σ1) · 1

4σ1

(By ”min(σ2(k−1), 2σ1)” we consider that if σ2(k−1) > 2σ1) and, then, when S2 = b2,
the shifted density component with weight w1 is disjoint from the unshifted component
with weight w2)
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Let α1 = w1σ2(1 − 1
k

) 1
4σ1

(α1 is shown as light blue area in the Figure 3.2 ),

α2 = α− α1 (α2 is illustrate by the dark grey area in the figure)

P
(
Y1 − Y2 − (µ1 − µ2) > tα

)
=

w1P (Y1 − Y2 − (µ1 − µ2) > tα|S2 = b1)+

+w2P (Y1 − Y2 − (µ1 − µ2) > tα|S2 = b2) =

= w1α2 + w1
α1

w1
+ w2 · 0 < α

Figure 3.2 . Illustration to the proof of Lemma 3.7, case when
σ2/k− σ1 > 0, σ2/k + σ1 > σ2 − σ1, σ2k − σ1 < σ2 + σ1

The Figure 3.2 shows the case when

σ2/k − σ1 > 0, σ2/k + σ1 > σ2 − σ1,

(13) σ2k − σ1 < σ2 + σ1.

The case

σ2/k − σ1 > 0, σ2/k + σ1 > σ2 − σ1,

σ2k − σ1 < σ2 + σ1,

i.e. of the disconnected positive part of support of density of σ1T1 + s2T2|s2 = σ2b2, is
not shown in the figure. However, splitting α = α1 + α2 and computation

P
(
Y1 − Y2 − (µ1 − µ2) > tα

)
=

= w1α2 + w1
α1

w1
+ w2 · 0 < α
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is done quite similarly in the latter case.
Assume that σ2 − σ1 < tα < σ2 + σ1 both when S2 = b1 and when S2 = b2:
w1σ2(k − 1) 1

4σ1
< α < 1− w2σ2(k − 1) 1

4σ1
, σ2(k − 1) < 2σ1)

P
(
Y1 − Y2 − (µ1 − µ2) > tα

)
=

w1P (Y1 − Y2 − (µ1 − µ2) > tα|S2 = b1)+

+w2P (Y1 − Y2 − (µ1 − µ2) > tα|S2 = b2) =

= w1α2 + w1
α1

w1
+ (w1 + w2)α3 + w2 · 0 < α

Figure 3.3 . Illustration to the proof of Lemma 3.7, case when
σ2/k− σ1 > 0, σ2 − σ1 < tα < σ2 + σ1 both when S2 = b1 and
S2 = b2

Assume that (tα|S2 = b1) < σ2k − σ1:
σ2 − σ1 < tα < σ2 + σ1 both when S2 = b1 and when S2 = b2

Here it is easier to consider p instead α, and we see that 0 < p < w2min(σ2(k −
1), 2σ1) 1

4σ1
.

Similarly to the first two situations when there was (tα|S2 = b2) > σ2
k

+ σ1,

P (Y1 − Y2 − (µ1 − µ2) > tα) =

1− w1P
(
Y1 − Y2 − (µ1 − µ2) < tα|S2 = b1

)
−

−w2P
(
Y1 − Y2 − (µ1 − µ2) < tα|S2 = b2

)
=

= 1− w1(p− σ2(1− 1/k)

4σ1
)− w2

1− α
w2

≥ p

Consider now the possible cases when σ1 > σ2

For (tα|S2 = b1) > −σ2
k

+ σ1 the argumentation is exactly as for σ1 < σ2.
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For −σ2 + σ1 < (tα|S2 = b1) < −σ2
k

+ σ1:
As shown in the Figure 3.4 ,

P
(
Y1 − Y2 − (µ1 − µ2) > tα

)
≤ w1

( w2

1 + w2
α3 + α2 +

α1

w1

)
+ w2(α3 + α2) ≤

≤ α3 + α2 + α1 = α

For (tα|S2 = b1) < −σ2 + σ1:
We observe that

(tα|S2 = b2) ≥ (tα|S2 = b1),

while (tα|S2 = b1) equals to the 1 − α-quantile of Y1 − Y2 − (µ1 − µ2). Hence P (Y1 −
Y2 − (µ1 − µ2) > tα) < α

Figure 3.4 . Illustration to the proof of Lemma 3.7, case when
σ1 > σ2 and −σ2 + σ1 < (tα|S2 = b1) < −σ2

k
+ σ1

4. Counterexamples for a sum of confidence variable as CD of the sum

We present here two counterexamples for the more general situations where sum
of confidence variables for parameters is not a confidence variable for the sum of these
location parameters

Counterexample for the sum of polymodal confidence variables
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Let Y1 ∼ Uniform(µ1 − 1, µ1 + 1), Y2 ∼ Uniform(µ2 − 1, µ2 + 1). We define the
following confidence densities f1 and f2 for the location parameters µ1 and µ2

(14) fi(µ) =

{
5, µ ∈ (Yi − 10, Yi − 9.9) ∪ (Yi + 9.9, Yi + 10)

0, otherwise,

i ∈ {1, 2}
For each i, fi is a valid probability density, because

fi(µ) ≥ 0∀µ

and ∫ +∞

−∞
fi(µ)dµ = 5(−9.9− (−10)) + 5(10− 9.9) = 1.

Moreover, fi is symmetric with respect to Yi and E(Yi) = µi. Besides, for any symmetric
connected confidence set Ap with 0 < p < 1,

P (µ ∈ Ap) > P (µ /∈ (−9.9 + Yi, 9.9 + Yi)) = 1 ≥ p ∀p ∈ (0, 1).

Hence f1(µ|y) and f2(µ|y) are probability densities for CDs by Definition 2.26, although
rather weirdly chosen. (Their confidence densities are shown in Fig. 3.5 , a)

We consider the Y1 +Y2 and µ1 +µ2. The sum of µ1 +µ2 is distributed as a mixture
of 4 possible sums of uniform (const+U(0, 0.1) distributions and has three sharp peaks.
Its probability density f(µ) is shown in Fig. 3.5 , b) and equals:

(15) f(µ) =



2.5 + 25(µ+ 19.9), µ ∈ (Y1 + Y2 − 20, Y1 + Y2 − 19.9)

2.5− 25(µ+ 19.9), µ ∈ (Y1 + Y2 − 19.9, Y1 + Y2 − 19.8)

5 + 50µ, µ ∈ (Y1 + Y2 − 0.1, Y1 + Y2)

5− 50µ, µ ∈ (Y1 + Y2, Y1 + Y2 + 0.1)

2.5 + 25(µ− 19.9), µ ∈ (Y1 + Y2 + 19.8, Y1 + Y2 + 19.9)

2.5− 25(µ− 19.9), µ ∈ (Y1 + Y2 + 19.9, Y1 + Y2 + 20)

0, otherwise.

If f(µ) were a confidence density, there would hold P (|Y1 +Y2− (µ1 +µ2)| < 0.1) ≥ 0.5
However, the density g(y) for Y1 + Y2 is

(16) g(y) =


0.5 + 0.25

(
y − (µ1 + µ2)

)
, y ∈ (µ1 + µ2 − 2, µ1 + µ2)

0.5− 0.25
(
y − (µ1 + µ2)

)
, y ∈ (µ1 + µ2, µ1 + µ2 + 2)

0, otherwise,

And

P (|Y1 + Y2 − (µ1 + µ2)| < 0.1) =

∫ µ1+µ2+0.1

µ1+µ2−0.1

g(y)dy = 2

∫ 0.1

0

(0.5− 0.25t)dt =

= 2(0.5t− 0.125t2)
∣∣0.1
0

= 0.0975,

which also corresponds the numerical estimation by Monte-Carlo simulation. This prob-
ability is much less than it would be if f(µ) were not a CD for the sum of means. We
have a contradiction.
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Figure 3.5 . A bimodal symmetric CD and the sum of two bimodal
symmetric CDs. The black graphs corresponds the densities of data,
the red graphs correspond confidence densities for µ, the green text
shows the true parameter values

Counterexample for exact confidence distributions
We consider the conditions of the Behrens-Fisher problem and will denote θ1 =

|1/µ1|, θ2 = |1/µ2|. The following confidence variable for θ1 is W1 = | 1
Tn1−1s1/

√
n1+x1

|,
and similarly W2 = | 1

Tn2−1s2/
√
n2+x2

| is a confidence variable for θ2. Indeed, for any

p-quantile of the absolute value of student t-distribution |t|p,n1−1,

(|µi| < ||t|p,ni−1Si/
√
n1 + xi|) ⇐⇒ (| 1

µ1
| > | 1

|t|p,ni−1S1/
√
n1 + x1

)|,

and therefore for any p1, p2: 0 < p1 < p2 < 1,

p2 − p1 = P (|tp1,ni−1Si/
√
ni + xi|) < |µ1| < |tp2,ni−1Si/

√
ni + xi|) =

P (| 1

|t|p1,ni−1Si/
√
ni + xi

)| > | 1

µi
| > | 1

|t|p2,ni−1Si/
√
ni + xi

)|,

which defines the exact confidence sets for 1
µi

.

However, setting µ1 = µ2 = 10, σ1 = σ2 = 1, n1 = 3, n2 = 5, and computing
numerically the 0.025- and 0.975-quantiles (Q1, Q2) of

| 1

Tn1−1s2/
√
n1 +X

| − | 1

Tn2−1s2/
√
nY + y

|,

using 30000 simulations, we obtain that P
(
0 ∈ (Q1, Q2)

)
≈ 0.942 < 0.95

We conclude that W1 +W2 is not a confidence variable for θ1 + θ2.





CHAPTER 4

Tests for the Behrens-Fisher problem

1. Simple properties of the Behrens-Fisher statistic

A large class of the tests are based on the Behrens-Fisher statistic

B =
X1 −X2√

S2
1/n1 + S2

2/n2

Assume in conditions and notation of the Behrens-Fisher problem k =
σ2
1

σ2
2

, τ = ln(k).

Proposition 4.1. Given H0 : µ1 = µ2,

B ∼
Z
√

k
n1

+ 1
n2√

kV1
n1(n1−1)

+ V2
n2(n2−1)

,

where Z, V1, V2 are independent with Z ∼ N(0, 1), V1 ∼ χ2
n1−1, V2 ∼ χ2

n2−1.

Proof. A sum of independent normal variables is also normally distributed. This gives

X1 ∼ N(µ1, σ
2
1/n1), X2 ∼ N(µ2, σ

2
2/n2), (X1 −X2) ∼ N(µ1 − µ2, σ

2
1/n1 + σ2

2/n2).

At H0, µ1 − µ2 = 0, so

X1 −X2 ∼ N(0, σ2
1/n1 + σ2

2/n2) ∼ Z
√
σ2

1/n1 + σ2
2/n2,

where Z ∼ (0, 1)
It is also well-known (Casella & Berger, 2002, p.218) that

V1 =
S2

1(n1 − 1)

σ2
1

∼ χ2
n1−1, V2 =

S2
2(n2 − 1)

σ2
2

∼ χ2
n2−1.

Therefore,

B ∼
Z
√
σ2

1/n1 + σ2
2/n2√

σ2
1V1

n1(n1−1)
+

σ2
2V2

n2(n2−1)

=
Z
√

k
n1

+ 1
n2√

kV1
n1(n1−1)

+ V2
n2(n2−1)

�

29
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2. Conservative tests and the nominal level

A statistical hypothesis is a measurable subset of parameter space.

Example 4.2. In the classical form of Behrens-Fisher problem, there is the null hy-
pothesis H0 : µ1 = µ2 and the alternative hypothesis ”H1 : µ1 6= µ2”. H0 may be
written explicitly as {(µ1, µ2, σ

2
1 , σ

2
2) : µ1 = µ2} ⊂ R2 × R2

+, and H1 may be written
explicitly as {(µ1, µ2, σ

2
1 , σ

2
2) : µ1 6= µ2} ⊂ R2 × R2

+.

Definition 4.3. A statistical test for a statistical hypothesis is a function ΩY →
{′′accept′′,′′ reject′′}.

The test is well-defined by specifying the set of data C for which the decision of
the test is ”reject”, which is called the critical region . The level of the test α satisfies
P (Y ∈ C) ≤ α (Lehmann, 2006, p.57).

A CD with an index set I may be constructed by inverting a test for H0 : µ =∑n
i=1 E(Yi) if the test is conservative for all levels α satisfying 1 − α ∈ I. Being a

conservative test means that the probability of rejecting H0 indeed does not exceed
α, or, equivalently, that the acceptance regions are indeed confidence sets with level
1− α. However, not all tests which are constructed to be of level α (which we call the
nominal level of the test α̃) are in fact of that planned level, which we call the actual
level .

This way of constructing CDs is relevant to n-sample general case of the Behrens-
Fisher problem.

Many tests have rejection region
∑n
i=1 Y i−µ

T (S1,...Si)
∈
(
− ∞, H−1(α/2)

)
∪
(
H−1(1 −

α/2),∞
)

, where T (S1, ...Si) is a statistic which is independent on the means µ1, ..µi.

Boundaries of the acceptance regions of the tests can be treated as functions of α ∈ I
where I is a set of available levels.

3. Methods of numerical study of the tests

3.1. Monte-Carlo simulations

For all the discussed tests, we studied the probability that µ1 − µ2 is not within
the confidence interval A1−α̃ constructed by the inversion of the tests, as a function of
the nominal test level α̃ and the parameters. For the known parameters, there were
simulated a large number of samples with µ1 = µ2 (this number is specified further for
each test) and the test of level α̃ was conducted for each sample. The P (µ1−µ2) 6= A1−α̃
was estimate as empiric frequency of rejecting H0 : µ1 = µ2

3.2. Numerical integration

The Welch-Satterthwaite test and Welch-Aspin test were in addition studied via
numerical integration. The Simpson method was applied to computing

P (reject H0) =∫ ∞
0

∫ ∞
0

P (reject H0|s1, s2)
n1 − 1

σ2
1

fχn1−1(s1
n1 − 1

σ2
1

)
n2 − 1

σ2
2

fχn2−1(s2
n2 − 1

σ2
2

)ds1ds2
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4. Behrens-Fisher test

This test provides the historically earliest solution for the Behrens-Fisher problem,
suggested by Behrens (1929, as described by Best and Rayner (1987)) and developed

by Fisher (Fisher, 1935; Fisher, 1930). Let ϕ = atan
S2
1/n1

S2
2/n2

, the student-t distributed

variables Tn1 and Tn2 be independent, tα/2 be a 1−α/2-quantile of Tn1sinϕ+Tn2cosϕ.

Reject H0 if
∣∣∣ X1−X2√

S2
1
n1

+
S2
2
n2

∣∣∣ > tα/2, accept H0 otherwise.

This test provides a CD which is identical to the CD by linear combination, because
its construction is based on the distribution estimators for µ1 and µ2, taken the confi-

dence variables µ̂1 ∼ x1 + T1

√
s2

1/n1, µ̂2 ∼ x2 + T2

√
s2

2/n2. As shown in the Example
2.23, these are exact CDs for µ1 and µ2. In order to obtain the test, we assume that

µ̂ = ˆµ1 − µ2 ∼ X1 −X2 + Tn1

√
S2

1/n1 − Tn2

√
S2

2/n2

which is equivalent to

(17)
X1 −X2√
S2
1
n1

+
S2
2
n2

∼ Tn1|Θcos(ϕ)− Tn2|Θsin(ϕ)

The assumption that the Eq. (17) holds means that the sum of the CDs for µ1 and
µ2 is an exact CD, and it also means that Tn1|θ ∼ Tn1, Tn2|θ ∼ Tn2. In fact, the the
student-t distributed variables involved in the Eq. (17) are dependent. The difference
of the CDs fr µ1 and µ2 is a CD for µ1−µ2 by our Theorem 3.1. However, it is not an
exact CD, as many numerical simulations reveal (e.g. Wang, 1971).

The Behrens-Fisher fiducial distribution is identical with a posterior for a Jeffrey’s
prior (Ghosh & Kim, 2001).

If the preliminary proof of the Conjecture 3.1 is correct, the direct consequence
is that the Behrens-Fisher test is conservative. If the proof is incorrect, whether the
Behrens–Fisher test is conservative remains an open problem. However, Appendix B
provides an alternative original proof indicating that the Behrens-Fisher test is conser-
vative for sample sizes n1 = n2 = 2 or n1 = n2 = 3.

5. Welch-Satterthwaite test: ISO GUM version

The Welch-Satterthwaite approximation is applicable to N normally distributed
samples, such that each i−th of them has the sample average Xi, sample variance S2

i ,
size ni, mean µi and variance σ2

i . According to this approximation, the distribution

of the variable V =
∑N
i=1 µi−

∑N
i=1Xi

Uc
may be approximated by a student t-distribution

with νeff degrees of freedom, where

(18)

U
2
c =

∑N
i=1

S2
i
ni
,

U4
c

νeff
= c

The test is derived as follows, generalizing (Larsen & Marx, 2013, p. 465–466). The
statistic V is assumed to be Student t-distributed. The nominator of V can be presented
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as

Z

N∑
i=1

√
σ2
i

ni
,

where Z ∼ N(0, 1). Hence the denominator of V is assumed to have the distribution√∑N
i=1

S2
i
ni
∼
√

W
νeff

∑N
i=1

σ2
i
ni

where W is chi-square distributed with νeff degrees of

freedom (and hence the mean νeff and variance 2νeff ). In order to establish νeff , we

notice that S2
i =

wiσ
2
i

ni−1
where S2

i ∼ χ2
ni−1, Wi and Wj are independent for all i 6= j. We

apply method of moments to

(19)

N∑
i=1

S2
i

ni
∼ W

νeff

N∑
i=1

σ2
i

ni
.

The expected values of the left and the right sides of Eq. (19) are equal for all νeff .
Setting the variances of both sides of Eq. (19) to be equal, we get

N∑
i=1

σ4
i 2(ni − 1)

n2
i (ni − 1)2

=
2νeff

(∑N
i=1

σ2
i
ni

)2

ν2
eff

Replacing each of σ2
i with its unbiased estimator S2

i and letting Uc =
∑N
i=1

σ2
i
ni

, we

obtain
N∑
i=1

S4
i

n2
i (ni − 1)

=
1

νeff
(∑N

i=1

S2
i
ni

)2

which corresponds to the Eq. (18).
By the Central Limit Theorem, even if Xi for all i have another distribution as the

normal, their sample average converges to a normally distributed random variable as the
sample sizes increase, under very mild restrictions. The type of convergence depends on
the restrictions (Karr, 1993, p. 183-216). Therefore the approximation Eq. (18) can be
extended as in the ISO GUM standard (JCGM et al., 2008) to large but not necessary
normally distributed samples X1..XN . It can also be extended to arbitrary function of
the data which is independent on the sample variances, rather than linear combination
of the averages. In this general case there is introduced

Y = f(X11, ...X1n1 , ...Xi1, ..XNnN ),

where Xij is a j-th measurement in the i-th sample

U2
c =

n∑
i=1

N∑
j=1

( ∂f

∂xij

)2

u2(Xi)

and U2
i is the estimate of the variance of the mean of Xi, typically S2

i /ni. Than

U4
c

νeff
=

N∑
i=1

U4
i

ni − 1
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6. Welch-Aspin test

The Welch-Aspin test enables constructing a CD not only for the Behrens-Fisher
problem, but also for the mean of k normally distributed each with unknown variance.
Welch (1947) and Aspin (1948) calculated four terms of the Taylor-series for the bound-

ary of the confidence interval for (X − Y ). The boundary of the confidence region is of
form: √

(
S2

1

n1
) +

S2
2

n2
) · polynom

( S2
1
n1

+
S2
2
n2(S2

1
n1

+
S2
2
n2

) , .. S2r
1
nr1

+
S2r
2
nr2( S2

1
nX

+
S2
2
n2

)r )
(where ξ is the (α/2)-quantile for the normal distribution, r the number of term, and
the polynom is of r-th degree).

There was a typo for the expression for the fourth term in the original article
in 1948, which was shown by Bachmaier (e.g. 2012). We provide here the correct
expression. In order to specify the boundary of the confidence interval for µ, we denote,
following the original notation of Alice Aspin (1948), λi = 1/ni, f

u
i = 1/(ni − 1)u,

Vru =

∑k
i=1

λri s
2r
i

fu
i

(
∑k
i=1)rλis

2
i )r

, ξ be the 0.5 + 0.5p-quantile of the standard normal distribution

for symmetric confidence regions Ap (or ξ be the p-quantile of the standard normal
distribution for one-sided confidence regions Ap). Then the boundary of the confidence

set Ap may be approximated as h = h0 + h1 + h2 + h3 + h4, where h0 = ξ
√∑k

i=1λis
2
i

h1 = 1
4
(1 + ξ2)V21h0

h2 =
(
− 1

2
(1 + ξ2)V22 + 1

3
(3 + 5ξ2 + ξ4)V32 − 1

32
(15 + 32ξ2 + 9ξ4)V 2

21

)
h0

h3 =
(

(1 + ξ2)V23− 2(3 + 5ξ2 + ξ4)V33 + 1
8
(15 + 32ξ2 + 9ξ4)V22V21+ 1

8
(75 + 173ξ2 +

63ξ4 + 5ξ6)V43 − 1
12

(105 + 298ξ2 + 140ξ4 + 15ξ6)V32V21+ 1
384

(945 + 3169ξ2 + 1811ξ4 +

243ξ6)V 3
21

)
h0

h4 =
(
− 2(1 + ξ2)V24 + 28

3
(3 + 5ξ2 + ξ4)V34 − 1

4
(15 + 32ξ2 + 9ξ4)(V23V21+ 1

2
V 2

22 −
3
2
(75 + 173ξ2 + 63ξ4 + 5ξ6)V44 + 1

2
(105 + 298ξ2 + 140ξ4 + 15ξ6)( 1

3
V22V32 + V2133)+

1
4
(15 + 33ξ2 + 11ξ4 + ξ6)V44 + 1

5
(735 + 2170ξ2 + 1126ξ4 + 168ξ6 + 7ξ8)V54− 1

64
(945 +

3169ξ2+1811ξ4+243ξ6)V22V
2
21− 1

18
(945+3354ξ2+2166ξ4+425ξ6+25ξ8)V 2

32− 1
32

(4725+

16586ξ2 + 10514ξ4 + 1974ξ6 + 105ξ8)V21V43+ 1
96

(10395 + 42429ξ2 + 31938ξ4 + 7335ξ6 +

495ξ8)V32V
2
21− 1

6144
(135135 + 66144ξ2 + 542026ξ4 + 145320ξ6 + 11583ξ8)V 4

21

)
h0

7. Paired t-test

The paired t-test is not based on a sufficient statistic. It is only applicable when the
sample sizes are equal: n1 = n2. For each component j of the samples, the difference
Dj = Y1,j − Y2,j is normally distributed:

Di ∼ N(µ1 − µ2, σ
2
1 + σ2

2

and hence
D − (µ1 − µ2)

SD/
√
n1

∼ tn1−1.
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Therefore there exists an exact test: reject H0 if

D − (µ1 − µ2)

SD/
√
n1

∈ (−∞,−tα/2) ∪ (tα/2,∞),

accept H0 otherwise.
The test may be generalized for m independent samples for H0 :

∑m
i=1 µi = µ.

8. Likelihood ratio test

The likelihood ratio test is not based on the three statistics X1 −X2, S2
1 , S2

2 , but
rather on a more complicated function of all the four sufficient statistics X1, X2, S2

1 , S2
2

1.
We observe that for the given X1, X2, the critical region for the likelihood ratio statistic

is in form
(
−∞, H−1(α/2)

)
∪
(
H−1(1−α/2),∞

)
. The maximum likelihood estimator

µ̂ for µ, along with the corresponding σ̂2
1 and σ̂2

2 obtained above as the solution of the
following system of equations:

(20)


µ̂ =

n1X1σ̂
2
2+n2X2σ̂

2
1

n2σ̂
2
1+n1σ̂

2
2

σ̂2
1 =

∑n1
i=1(Xi−X1)2

n1
+ (X1 − µ̂)2 = Q2

1 + (X1 − µ̂)2

σ̂2
2 =

∑n2
i=1(Yi−X2)2

n2
+ (X2 − µ̂)2 = Q2

2 + (X2 − µ̂)2,

which may be estimated by the iteration method (Cox & Jaber, 1990). In this nota-
tion, Q1 and Q2 are the maximum likelihood estimators of the variances σ2

1 and σ2
2

respectively. The likelihood ratio equals

Λ = (
Q2

1

σ̂2
1

)
1
2
n1(

Q2
2

σ̂2
2

)
1
2
n2exp(−n1Q

2
1

2Q2
1

− n2Q
2
2

2Q2
2

+
n2

2
+
n2

2
) = (

Q2
1

σ̂2
1

)
1
2
n1(

Q2
2

σ̂2
2

)
1
2
n2 .

The distribution of the likelihood ratio under H0 : µ1 = µ2 depends on the parameter
σ1/σ2. The critical values of the likelihood ratio are computed numerically and max-
imised over the parameter space.

1The µ̂ is not shift invariant while X1 − X2, S2
1 , S

2
2 are, and hence µ̂ depends on other

statistics than these three.



CHAPTER 5

Constructing CDs for the Behrens-Fisher
problem

1. As distribution of the difference of confidence variables

The difference of CDs for the means µ1 and µ2 is a CD by our Conjecture 3.1
which have been observed numerically. The original preliminary analytical proofs are
presented in the Chapter 3, in sections 2 – 5 of the Appendix, and alternatively, in
terms of a conservative test with n1 = n2 = 2 or n1 = n2 = 3, in Appendix B.

2. By inverting conservative tests for the Behrens-Fisher problem

Theorem 5.1. Let the critical region for a test H0 : µ =
∑n
i=1 E(Yi) of any level

α ∈ (0, 1) be in form
∑n
i=1 Y i−µ

T (S1,...Si)
∈
(
− ∞, H−1(α/2)

)
∪
(
H−1(1 − α/2),∞

)
, where

T (S1, ...Si) is a statistic which is independent on sample averages and H is a continuous

distribution function, with an even derivative h). Then F (µ) = H(
µ−

∑n
i=1 Y i

T (S1,...Si)
) is a

cumulative distribution function for a CD for µ and f(µ) = dF
dµ

is a probability density

for a CD for µ.

Proof. The requirements 1 and 2 of the definition 2.26 hold, because F is a distribution
function by construction.
h( µ

T (S1,...Si)
) is even as a scale-transformation of h(µ) = dH

dµ
which is even by the

assumption, and h(
µ−

∑n
i=1 Y i

T (S1,...Si)
) is a location transformation: a shift of h( µ

T (S1,...Si)
f(µ)

by
∑n
i=1 Y i. Hence f is symmetric with respect to

∑n
i=1 Y i. As E(

∑n
i=1 Y i) = µ, the

requirement 3 also holds. By the symmetry of the critical region,

α/2 ≥ 0.5P
(∑n

i=1 Y i − µ
T (S1, ...Si)

∈ C
)

By symmetry of h,

0.5P
(∑n

i=1 Y i − µ
T (S1, ...Si)

∈ C
)

= 0.5P
( |∑n

i=1 Y i − µ|
T (S1, ...Si)

> H−1(1− α/2)
)

=

(21) = P
(µ−∑n

i=1 Y i

T (S1, ...Si)
< H−1(α/2)

)
= P

(
µ <

n∑
i=1

Y i +H−1(α/2) · T (S1, ...Si)
)

Choosing q(α) = H−1(α) · T (S1, ...Si) +
∑n
i=1 Y i, we have
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• F (q(α)) = H(
q(α)−

∑n
i=1 Y i

T (S1,...Si
) = α, and hence

∫ q(α,y)

−∞ f(µ|y)dµ = α∀y
• P

(
µ ≤ q(α, Y )

)
≤ α by Eq. (21),

so the requirement 4 of the definition 2.26 holds as well. �

The confidence distributions constructed by inverting tests from chapter 4 using
Theorem 5.1 are as following.

2.1. From Behrens-Fisher test

As follows from the Eq. (17), the expression for the confidence density is

f(µ) =
1

u
fBF (

µ− (x1 − x2)

u
, s1, s2, n1, n2),

where u =

√
s21
n1

+
s22
n2

and fBF (x, s1, s2, n1, n2) is the probability density for X =

Tn1|Θcos(atan s
2
1/n1

s22/n2
) − Tn2|Θsin(atan

s21/n1

s22/n2
). The Theorem 5.1 was applied here with

H(x) = FBF (x, s1, s2, n1, n2).

2.2. From Welch-Satterthwaite test

As follows from the Eq. (18), the expression for the confidence density is

f(µ) =
1

u
ψT, νeff (

µ−
∑N
i=1 Xi

u
, νeff ),

where u =

√
s21
n1

+
s22
n2

and νeff =

(∑N
i=1

S2
i
ni

)2

∑N
i=1

S4
i

n2
i
(ni−1)

. The Theorem 5.1 was applied here

with H(x) = Ψ(x, νeff ).

2.3. From the paired t-test

The confidence density is

f(µ) =
1

SD/
√
n1
ψ(

µ−D
SD/
√
n1
, n1 − 1),

where Dj =
∑m
i=1 µiYi,j . The Theorem 5.1 was applied here with H(x) = Ψ(x, n1 − 1).

2.4. From the likelihood ratio test

With the help of likelihood ratio test, a CD for µ = µ1−µ2 may be constructed as
following. The maximum likelihood estimator µ̂ for the common mean of X1 and X2+µ,

along with the corresponding σ̂2
1 and σ̂2

2 becomes, same as when testing H0 : µ1 = µ2+µ:

(22)


µ̂ =

n1X1σ̂
2
2+n2(X2+µ)σ̂2

1

n2σ̂
2
1+n1σ̂

2
2

σ̂2
1 =

∑n1
i=1(X1i−X1)2

n1
+ (X1 − µ̂)2 = Q2

1 + (X1 − µ̂)2

σ̂2
2 =

∑n2
i=1(X2i−X2)2

n2
+ ((X2 + µ)− µ̂)2 = Q2

2 + ((X2 + µ)− µ̂)2.

and the likelihood ratio still equals

Λ = (
U2

1

σ̂2
1

)
1
2
n1(

U2
2

σ̂2
2

)
1
2
n2 .
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From the p-quantiles Λcrit(p) which are already computed numerically for the cor-
responding test for each p, the value p : P (Λ < λ = Λcrit(p)) = p is known. Therefore
the confidence curve CC(µ) becomes the locus of points

(µ,CC(µ)) : Λ(Y, µ) = Λcrit(CC(Y, µ).

The likelihood ratio statistic for µ is a function of the four-dimensional statistic (X1, X2,
S2

1 , S
2
2) and cannot be expressed as a function of the three-dimensional (X1−X2, S

2
1 , S

2
2).

Constructing a confidence distribution requires an additional assumption on P (µ <
µ̂),because this asymmetry does not influence the likelihood ratio. Assuming that µ̂
is the median of the confidence distribution, we get the expression for the distribution
function

F (µ) =

{
P (Λ(Y, µ ≤ CC(Y, µ))P (µ < µ̂) = 0.5− 0.5CC(µ), µ ≤ µ̂
0.5 + 0.5CC(µ), µ > µ̂

and for confidence density

f(µ) =

{
−0.5CC′(µ), µ < µ̂

0.5CC′(µ), µ > µ̂

The numerical implementation of the likelihood ratio based CD (Appendix C) is ten-
tative and needs numerical improvement.

3. By asymptotic methods

3.1. High-order approximations for the deviance

The deviance may be directly approximated as a Taylor series as described in
(Schweder & Hjort, 2016, ch. 7.2). The Bartlett correction (Schweder & Hjort, 2016,
ch. 7.4), using the expected deviance value corresponding to the CD, also approximates
a rational function of the deviance. Another approach is based on the approximation for
the deviance is the third order approximation , which can be conducted using Bédard
et al. (2007) method.

3.2. High-order approximations for the quantiles of the CD

This type of tests type approximate the boundaries of the confidence regions Ap
via approximation the probability for µ1 − µ2. In this work, we will study, in detail,
the Welch-Aspin test, which is based on the approximation for P (µ1 − µ2 ∈ Ap) as a
Taylor series. However, there are other applicable possibilities, e.g. the Chernoff-Wald
test, based on an iterative approximation of a more complex form.

4. Numerical adjustment

Conservative tests may be obtained from non-conservative tests by numerically
computing the nominal test level as a function of the planned actual level. This is
possible for at least some sets of levels I ⊂ (0, 1), and very often for the whole I = [0, 1].
The confidence distributions are then obtained by inverting these adjusted conservative
tests.





CHAPTER 6

Numerical results

1. Overall comparison of the confidence densities

The Figures 6.1 – 6.3 present diverse confidence densities for three different data.
The true parameter value is µ1 − µ2 = −1 in all the three cases. All the confidence
distributions differ, and their features will be discussed later. However, the likelihood
ratio based condidence density clearly deviates from all the other. This peculiarity
is not due to any numerical imprecision, and occurs because of applying of the four-
dimensional non-sufficient statistic in its construction. That statistic does not include
the difference of the means.

Figure 6.1 . The confidence densities for Y1 = (−0.9142985,
0.9320448, 1.0945988, −1.5417058, 0.2018343) and Y2 = (−0.6688093,
0.1468806, −1.2870124, 1.2566792, −1.0072095)
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Figure 6.2 . The confidence densities for Y1 = (0.28626327,
−0.09423993, 0.20402356, −1.36958796, 0.08829856) and
Y2 = (−1.11996987, −2.07113205, −0.26252523, −0.07963677,
−1.18116007
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Figure 6.3 . The confidence densities for Y1 = (1.9686916,
−0.02861356, 1.05992191) and Y2 = (−1.39063, −1.132441,
−2.775170, −2.471090, −2.230663)

2. Behrens-Fisher test based CDs

The Figure 6.4 presents P (µ1 − µ2) ∈ Ap as a function of p for several values of
σ2
1

σ2
2

, when Ap is symmetric and connected. This probability is observed to exceed p for

all studied values of p and parameters.
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Figure 6.4 . Probability that µ belongs to its p-confidence set Ap
when constructing the Behrens-Fisher test based CD, for sample sizes
n1 = 5 and n2 = 3, as function of p

3. Other CDs corresponding sums of confidence distributed variables

We have studied a more weird solution of the Behrens-Fisher problem, where the
scale parameters σ1 and σ2 are estimated not as sample standard deviations, but
from the difference between the maximal and the minimal value within the sample,
because they are proportional to this difference. That is, let Ui = (Xi − µi)/σi,
Vi =

(
max∈1..ni(Xi,j)−min∈1..ni(Xi,j)

)
/σi. The Figure 6.5 presents P (µ1−µ2) /∈ Ap

as a function of
σ2
1

σ2
2

when Ap is symmetric and connected, and p = 0.95. The Figure

6.6 presents P (µ1 − µ2) ∈ Ap as a function of p for several values of
σ2
1

σ2
2

, when Ap is

symmetric and connected. We observe that P (µ1−µ2) ∈ Ap ≥ p for all observed p and
parameters, so the conjecture 3.1 holds.
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Figure 6.5 . Probability that µ belongs to its p-confidence set Ap
when constructing the Conjecture 3.1 based CD, for sample sizes n1 =
5 and n2 = 3 for σ1 = σ2 = 1, as function of p, from 1000 simulations
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Figure 6.6 . Probability that µ belongs to its p-confidence set Ap
when constructing the Conjecture 3.1 based CD, for sample sizes
n1 = 5 and n2 = 3, for p = 0.95, as function of σ1/σ2, from 100000
simulations

We have also tried the conjecture to another problem, where X1j is a mixture:
X1j ∼ 0.5N(−5σ1 + σ1µ1, σ

2
1) : 0.5N(5σ1 + σ1µ1, σ

2
1), j = 1..5 and X2j ∼ N(µ2, σ

2
2),

j = 1..3. We take U1 = (X1 − µ1)/σ1, U2 = (X2 − µ2)/σ2, V1 =
(
max∈1..5(Xi,j) −

min∈1..5(Xi,j)
)
/σ1, V2 = S2/σ2. The figure 6.7 presents P (µ1−µ2) ∈ Ap as a function

of p for several values of
σ2
1

σ2
2

, when Ap is symmetric and connected. We observe that

P (µ1 − µ2) ∈ Ap ≥ p for all observed p and parameters as well, which also corresponds
the Conjecture 3.1.
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Figure 6.7 . Probability that µ belongs to its p-confidence set Ap
when constructing the Conjecture 3.1 based CD, for sample sizes n1 =
5 and n2 = 3, for p = 0.95, as function of p,from 10000 simulations

4. Welch-Satterthwaite test based CDs

The numerical simulations reveal that the test is not conservative. This corresponds
with many previous results (e.g. Duong & Shorrock, 1996; Wang, 1971).

Moreover, we reveal numerically that the Welch’s approximation works worse when
only one of two sample sizes increases. The probabilities to reject H0 were studied by
numerical integration

P (rejectH0) =

∫ +∞

0

∫ +∞

0

P
( X − Y√

s2
1/n1 + s2

2/n2

> Tf(s1,s2,n1,n2)

)
fS1(s1)fs2(s2)ds1ds2

We integrated by Simpson method

P (reject H0) =

∫ b

a

∫ d

c

2 · φ(qt(1− α̃

2
,

s2
1/s

2
2 + n1/n2)2

s41
(s42(n1−1)

+
n2
1

n2
2(n2−1)

)/

√
σ2

1/n1 + σ2
2/n2

s2
1/n1 + s2

2/n2
)·

(23) · n1 − 1

σ2
1

fχn1−1(s1
n1 − 1

σ2
1

)
n2 − 1

σ2
2

fχn2−1(s2
n2 − 1

σ2
2

)ds1ds2,

where

• a, b, c, d are 0.0001-quantile and 0.99999-quantile of s1 og s2 respectively,
defined as scaled quantiles og the corresponding chi-squared distributions,

• qt(p, df) is a p-quantile of a Student t-distribution with df degrees of freedom,
• σ2

2 was in fact always set to 1, because the level of the test only depends on
the ratio between σ2

1/σ
2
2 .
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The results of such probability computation were more precise than the Monte-
Carlo simulations, as shown in Fig 6.8 .

Figure 6.8 . The dependence of the probabilities to reject H0 from
the nuisance parameter, for sample sizes n1 = 5 and several sizes n2

The following dataset was studied when trying to discover some easy form of de-
pendence between the parameters, the nominal and the actual level:

• α̃ ∈ {0001, 0.001, 0.005, 0.01, 0.02, 0.05, 0.10, 0.15, .., 0.90, 0.95}
• n1 ∈ {2, 3, ..9, 10, 20, 30..90, 100, 200, ..900, 1000, 2000, ..9000, 10000}
• n2 ∈ {2, 3, ..38, 39, 40, 50, 60, 70, 80, 90, 100, 200, 300, 400, 500, 1000, 2000}
• σ1 ∈ {exp(−7), exp(−6.8), exp(−6.6), .., exp(6.8), exp(7)}
• σ2 = 1

We observe, that the dependence of actual level from one of the sample sizes, when
nominal level and another sample size are constant, is as following. For all sample sizes
and levels, the level decreases until n2 = n1, than increases approaching asymptotically
some value. This value is higher than the nominal level and depends on the nominal
level and the minimal sample size. The examples of such a dependence are shown in
Fig 6.9 –6.10 .
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Figure 6.9 . The
dependence of the
level of the test on
n2, at nominal level
of 0.2 and n1 = 21

Figure 6.10 . The
dependence of the
level of the test on
n2, at nominal level
of 0.05 and n1 = 5

We observed that the dependence between max(n1, n2) and the 1
α∞−α̃ is close to

linear, as shown in Fig 6.11 .

Figure 6.11 . Typical dependencies between n2 and the 1
α∞−α

We have not detected other simple relations between the actual level and nominal
level.

The typical dependencies between P (reject H0) and the relation between the two
unknown variances for various nominal test levels are presented in Figure 6.12 .
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Figure 6.12 . Probabilities to reject H0 by Welch-Satterthwaite test
at different levels, for sample sizes n1 = 5 and n2 = 3
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The Figure 6.13 depicts the dependence between nominal and actual level for
sample sizes: n1 = 5, n2 = 9 and n1 = 3, n2 = 5. In order to use the Welch-Satterthwaite
test as a conservative test of level α actually, the nominal level should be adjusted.

Figure 6.13 . The dependence between nominal and actual level of
the Welch-Satterthwaite test for sample sizes: n1 = 5, n2 = 9 and
n1 = 3, n2 = 5. Two scales

5. Welch-Aspin test based CDs

The Figure 6.14 depicts the dependence between nominal and actual level for
sample sizes: n1 = 5, n2 = 9 and n1 = 3, n2 = 5. In order to use the Welch-Aspin test
as a conservative test of level α actually, the nominal level should be adjusted, as well
as for Welch-Satterthwaite test. For some levels the test cannot be conducted.

Figure 6.14 . The dependence between nominal and actual level the
Welch-Aspin test for sample sizes: n1 = 5, n2 = 9 and n1 = 3, n2 = 5.
Two scales
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6. Asymptotic tests

We observed that the asymptotic methods described in (Schweder & Hjort, 2016,
ch. 7) do not result in conservative tests for H0 : µ1 = µ2, and the difference between
the planned and the actual probability to accept is very high. We illustrate it in Figures
6.15 -6.17 for the test level 0.05, which correspond p = 0.95 with symmetric confidence
sets Ap. Of this reason, these tests have not been used for constructing confidence
distributions in this work.

Figure 6.15 . The probability to reject H0 : µ1 = µ2 as function of
2logσ1/σ2: n1 = 5, n2 = 9, with nominal test level 0.05

Figure 6.16 . The probability to reject H0 :′′ µ1 = µ′′2 as function of
2logσ1/σ2: n1 = 15, n2 = 19, with nominal test level 0.05
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Figure 6.17 . The probability to reject H0 :′′ µ1 = µ′′2 as function of
2logσ1/σ2: n1 = 40, n2 = 60, with nominal test level 0.05

7. Preliminary computation of the loss and risk of the CDs

We illustrate in Tables 1 and 2 the confidence risk of the several sets of parameters,
several types of CDs and two pairs of sample sizes. While computing these results, there
were simulated 100 values of data for each parameter and each pair of sample sizes. The
confidence density was calculated for the set of points (−15,−14.995,−14.99... + 15),
the loss was computed according to the Def. 2.32 via trapezoidal integration and the
risk was estimated as the average loss. We observed that the confidence densities have
very heavy tailes, especially for the Behrens-Fisher distributions, hence the estimates
of the risk in the tables may be imprecise. Nevertheless, as the data were same for the
various CDs, we observe the relative risk for the different CD. The Likelihood ratio and
Welch-Aspin method appear to be more precise. That is probably because the boundary
of the rejection region of the Welch-Aspin test is a polynom of a normally distributed
variable. This variable has less heavy tailes than the scaled student t-distribution, which
is the confidence distribution based on the Welch-Satthertwaite and paired t-tests). It
has also less heavy tails than the linear combination of scaled student t-distributions,
used in the Behrens-Fisher method. For likelihood ratio based confidence distribution,
the tailes had numerically zero weight beyond some interval, but that may also be due
to imprecise calculation technique.

Generally, the risk mostly increases regardless the method of its computation, be-
cause the other scale parameter increases while the first scale parameter remains con-
stant, so the overall scale increases. However, the increase is not always monotone.
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σ2
2

σ2
1

: 0 1/16 1/4 1 4

Welch-Satterthwaite 0.61 0.57 0.73 1.09 2.61
Welch-Aspin 0.46 0.44 0.62 0.97 2.22
Behrens-Fisher 0.55 0.54 0.75 1.19 2.71
Likelihood ratio 0.36 0.34 0.47 0.77 2.05
Paired t 0.61 0.60 0.84 1.30 2.97

Table 1. Approximate risk for n1 = n2 = 5 with different CDs, by
500 simulations

σ2
2

σ2
1

: 0 1/16 1/4 1 4

Welch-Satterthwaite 0.68 0.58 0.56 0.93 3.05
Welch-Aspin 0.53 0.47 0.45 0.82 2.62
Behrens-Fisher 0.62 0.56 0.58 1.01 3.12
Likelihood ratio 0.43 0.41 0.43 0.78 2.64

Table 2. Approximate risk for n1 = 5, n2 = 3 with different CDs,
by 100 simulations



CHAPTER 7

Discussion and conclusions

Applying CDs as distribution estimators is clearly advantageous compared to ap-
plying Bayesian distribution estimators, which, currently, are more commonly used.
The CD approach does not rely on any subjectively specified priors. The CDs just
provide the confidence sets, only accumulating the information that is available from
the data. As presented above, many CDs are applicable to the Behrens–Fisher problem.
This variety is due to the use of different statistics.

Two of the most common tests, the Welch-Satterthwaite and the Welch-Aspin tests,
are not conservative. To be used correctly and to construct CDs, the tests require
numerical adjustment, which may be numerically slow if used for many samples.

Welch-Satterthwaite test is probably the most popular (Lilleg̊ard, 2001) test. The
CD based on this test requires more adjustment for the level than the CD based on the
Welch-Aspin test, but the adjusted test exists for all levels. The peculiarity of the test
is that its actual level is not only higher than the planned nominal, but increases even
more when the smaller sample size is fixed and another sample size increases. Therefore
the test becomes less, and not more precise as the sample size increases, and this looks
to be a new observation.

The CD based on the Welch-Aspin test is very close to an exact CD. Its advantage
is narrower confidence sets for usual test levels (large p) than for other tests. However,
for smaller p these confidence sets are wider. The peculiarity of this CD is that for
very high probabilities p > pcrit it is not defined. The value of pcrit depends on the
sample sizes and is very close to 1. It has also been observed that for sample sizes
n1 = 3, n2 = 5 and n1 = n2 = 5 this CD has very low quadratic risk.

The CD based on the likelihood ratio test is conservative by construction, without
any numerical adjustment. However, it requires numerically difficult computation of
the likelihood ratio quantiles for all sample sizes. Unlike other studied CDs, it is
asymmetric. The quadratic risk connected with this distribution is the lowest among
the studied alternatives. That is probably because this CD has a sharper peak and
becomes nearly zero beyond some interval. However, this peak and this interval are
often wrong, and, with another penalty function, the risk would likely be higher than
that of alternatives.

The CD based on the paired t-test is exact, but it is only applicable when n1 = n2.
Its risk is observed to be highest, the related confidence sets are typically rather wide.

The CD based on the Behrens-Fisher test is easier to construct. The test is conser-
vative, so the distribution does not require numerical adjustment. However, the risk for
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this CD is rather large. Studying this CD motivated us to pursue a more general study
of linear combinations of confidence variables. We have found an example in which the
linear combination of the confidence variables for the parameters is not a CD for the
linear combination of these parameters. We have also found other examples in which
such a CD does result from the linear combination of the confidence variables.

Via the results listed above, this work makes progress toward solving a very general
problem of great theoretical and practical importance. The further research will possibly
continue in a more general way the study of linear combinations of confidence variables
and the confidence distributions for linear combinations of parameters.



APPENDIX A

Preliminary proofs for the lemmas in the
Chapter 3

1. Proof of the Lemma 3.2

Assume µ1 = µ2. Then T1s1 + T2s2 is distributed as a mixture of T1s1 + σ2 and
T1s1 + σ2 with equal weights. We observe that tα satisfies

0.5
(
FT1s1+σ2(tα) + (FT1s1−σ2(tα)

)
= 1− α

Hence by location transformation

0.5(FT1s1(tα − σ2) + (FT1s1(tα + σ2)) = 1− α.

Besides, ∀s > 0, for all random variables holds the elementary equality X : P (X ≤
tα) = P (X/s ≤ tα/s). Of these two reasons, we have

0.5(FT1(
tα + σ2

s1
) + (FT1(

tα − σ2

s1
)) = 1− α

We introduce α′ and α′′ such that the corresponding quantiles of T equal: tα′ = tα+σ2
s1

,

tα′′ = tα−σ2
s1

. Then 0.5(α′ + α′′) = α From the other hand,

P (Y1 − µ1 − (Y2 − µ2) ≤ tα) =

P (Y1 − µ1 − U2 ≤ tα) = 0.5
(
P (Y1 − µ1 − σ2 ≤ tα) + P (Y1 − µ1 + σ2 ≤ tα)

)
=

= 0.5
(
P (
Y1 − µ1

s1
≤ tα + σ2

s1
) + P (

Y1 − µ1

s1
≤ tα − σ2

s1
) = 0.5(α′ + α′′) = α

�

2. Proof of the Lemma 3.3

Consider at first some elementary properties of T = s1T1 + s2T2 = σ1U1 + s2T2.

(1) The probability density of T is

fT (t|s2 = σ2bm) =

∑n
i=1 I(t ∈ Bi) + I(t ∈ −Bi)

2nσ1
.

We treat fT (t|s2 = σ2bm) as a mixture of 2n uniform components. We
denote the supports of these components as Bi = (σ2

bm
bi
− σ1, σ2

bm
bi

+ σ1),

−Bi = (−σ2
bm
bi
− σ1,−σ2

bm
bi

+ σ1).
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(2) When m is constant, the right boundaries ( bm
bi

+ σ1) of the sets Bi decrease

as a function of i, as well as the left boundaries.
Follows from 1.

(3) As m increases, the fT (tα|s2 = σ2bm) decreases or remains constant.
We well at first show that

∑n
i=1 I(t ∈ Bi) decreases or remains constant.

Indeed, whenever bm > bm−1
bm
bi
>

bm−1

bi
, i.e. for s2 = σ2bm all the intervals

Bi are shifted more with respect to Bmin{i: tα∈Bi}. Hence if
∫∞
tα
fT (t|s2 =

σ2bm−1) = α > 0.5, then
∫∞
tα
fT (t|s2 = σ2bm) > α. Hence the shift of

tα ∈ Bi|s2 = σ2bm with respect of edges of all sets Bi is greater for m than
for m+ 1, i.e.

σ2
bm
bi
− tα|s2 = σ2bm > σ2

bm−1

bi
− tα|s2 = σ2bm−1.

By symmetry between −Bi and Bi, and because the centres of all the intervals

Bi are positive, fT (tα|s2 = σ2bm) =
∑n
i=1 I(tα∈Bi)+I(tα∈−Bi)

2n
also decreases

or remains constant.
(4) As m increases, the min{i : tα ∈ Bi} increases or remain constant - because

of the shift in (3).
(5) By (3)., number of sets Bi|s2 = σ2bm such that tα ∈ Bi may with the change

of the number m of value of s2: 5.1) remain constant k for m1..mk, be 0
otherwise; 5.2) be ≥ k for m1..mk, 0 otherwise, 5.3) exceed k for m1..ml, be
≤ k ml+1..mk, 0 otherwise.

Consider 5.1. This case, in view of (1) – (4) items above, is for k > 0 schematically
depicted in Fig. 1.1 .

Figure 1.1 . The schematic example of the sets Bi ∪
(
(t − α|s2 =

σ2m),+∞
)

We denote lengthes bij and aj Fig. 1.1 . We take into account the fact that
tα is an α−quantile of T and that the probability that B = bi equals for all i.
We express P (T1s1 + T2s2) as area of all the blocks placed above the tα in Fig.
1.1 . Hence we observe that there is a proportionality constant C such that ∀i :
1 ≤ i ≤ k C(kai +

∑k−1
j=1 (k − j)bij) = α, and from 2. and 4. it follows that
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∀i : 1 < i ≤ k, ∀j : 1 ≤ u < k holds bij ≤ b(i+1),j .

P
(
Y1 − Y2 − (µ1 − µ2) > Tα

)
= C(

k∑
i=1

(ak +

k−1∑
j=1

bij) +
∑

l: ∀x∈Bltα<x

1

n
)

and the latter equation implies that P (y1 − y2 − µ1 + µ2 > tα) ≤ α.
For k = 0, Consider 5.2. For almost every α it holds that

dP
(
Y1 − Y2 − (µ1 − µ2) > Tα

)
− α

dα
(α) =

= lim
ε→0

∑k
i=1

1
n
fY1−Y2−(µ1−µ2)(tα|s2 = σ2bm) ε

fT (tα|s2=σ2bm)

ε/fT (tα|s2 = σ2bm)
− 1 =

= lim
ε→0

∑k
i=1

1
n
fY1−Y2−(µ1−µ2)(tα|s2 = σ2bm) ε

fY1−Y2−(µ1−µ2)(tα|s2=σ2bm)·k/n

ε/fY1−Y2−(µ1−µ2)(tα|s2 = σ2bm)
− 1 ≤ 0

Consider 5.3.
dP
(
Y1−Y2−(µ1−µ2)>Tα

)
−α

dα
(α) may be positive, zero or negative. As the

changing α leads to the change of the case 5.3 to 5.2 through the case 5.1 and by
continuity of the P

(
Y1 − Y2 − (µ1 − µ2) > Tα

)
as a function of α, also in this case

P
(
Y1 − Y2 − (µ1 − µ2) > Tα

)
≤ α.

3. Proof of the Lemma 3.4

We split R into k intervals Ik = (ak, bk) where fU (u) is continuous. Denote the
distribution function of U as F . For 2 ≤ i ≤ k − 1 split (F (ak), F (bk)) into m equal
parts, the boundaries of which we denote cim for i = 1..k. We choose a decreasing
sequence (c1n)→ 0 : 0 < c1n < F (b1)∀n > 1, c11 = b1, c11 − c12 = 1/m and a sequence
of values symmetric with respect to the point 1/2 to (c1n).
All the points cij : cij > 0.5 are elements of an increasing sequence (cn) The non-
decreasing function Fa having a graph connecting points F−1(0.5 − cn), 0.5 − cn and
points F−1(cn), F−1(cn) is also a distribution function. Due to the symmetry, piecewise
linearity and the non-decreasing derivative of f (−∞, 0), it may be expressed as a
convex combination of distribution functions of Unif(F−1(0.5− cn), cit). The weights
are weights w1 = 2(c1 − 0.5); wi = 2(ci − 0.5) − wi−1 : i > 1. By construction,
max(|Fa(x)− F (x)| ≤ 1/n), hence the mixture converges to U in distribution.

4. Proof of the Lemma 3.5

Let t′α be an (unknown) (1 − α)-quantile of s1T1 + (Y2 − µ2) and tα be a 1 − α-
quantile of s1T1 + s2T2 For any value of S1, we approximate the s1T1 as a mixture
of symmetric uniform distributions Unif(−a1, a1), .. Unif(−aτ , aτ ), ...Unif(−an, an).
In general, P (Unif(−aτ , aτ ) < tα) = pτ differs for all τ , and

P (s1T1 + s2T2 < tα) =

n∑
i=1

wipτ
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By lemma 3.3, for all values of s1 and each τ ,

P (s1T1 − (Y2 − µ2) < tα|s1, τ) ≥ 1− α
we have P (s1T1 − (Y2 − µ2) < tα) ≥ 1 − α and tα > t′α for all α. By the choice of α,
P (Y1 − Y2 − (µ1 − µ2) < t′α) = α So the test is of level α.

5. Proof of the Lemma 3.6

We approximate the denominator by a simple variable, letting V2 ∼ Discrete
(
P (V2 =

b1) = w1, P (V2 = b2) = w2 = 1 − w1). We also approximate the nominator in U2
V2

as a

simple variable. We will proceed by induction, adding pairs of values which are closer
and closer to zero. For two-valued U2 it is proven by Lemma 3.5.
Assume now that the lemma holds for any simple variable U taking 2n values, with
all positive weights and also the values b2....bn+1. We can construct a new simple
variable taking 2(n + 1) values by compressing one pair of old values k > 1 times.
More specifically, we introduce Y old2 ∼ w1Unif{−b1σ2, b1σ2} + µ2:(1 − w1)(U + µ2)
and consider the s1T1 as a mixture of symmetric uniform distributions Unif(−a1, a1),
.. Unif(−aτ , aτ ), ..., as it was in the lemma 3.5. We introduce k > 1 and Y new2 ∼
w0Y

old
2 : (1− w0)(Unif{−b1σ2/k, b1σ2/k}+ µ2).

We add σ2b1k,..σ2bik,.. σ2bnk in the denominator of U2
V2

, so that P (Sold2 = σ2b1 =

w1w0, ...P (Sold2 = σ2bn = wnw0, P (Sold2 = σ2b1k = w1(1 − w0),... P (Sold2 = σ2bnk =

wn(1 − w0). The pivot
Y old2 −µ2

Sold2
is same as

Y new2 −µ2

S2
. Let the mixture in the de-

nominator of U2
V2

change to the mixture in the nominator, i.e. (Y old2 , Sold2 ) change to

(Y new2 , S2). Then those components of (s1T1 + s2T2)-mixture [aτ , kσ2
bi
bj

] which cor-

responded to s1T1 ∼ (−aτ , aτ ) and s2 = bik, change to just [at, σ2
bi
bj

]. Denote xτ,i,j

the p-quantile of the (s1T1 + s2T2)-mixture including the component Unif(−aτ , aτ ) +

Unif{−kσ2
bi
bj
, kσ2

bi
bj
}, we have

P old(Y1 − Y2 − (µ1 − µ2) < tα|τ, i) = P (|Y1 − Y old2 | < xtij) = p,

and

Pnew(Y1−Y2−(µ1−µ2) < tα|τ, i) = w0P
new
i (acceptH0|τ, i)+(1−w0)P (Y1−Y old2 /k < xtij) > p

It holds for all components (i, τ), so Pnew
(
Y1 − Y2 − (µ1 − µ2) < tα|τ, i

)
> P old

(
Y1 −

Y2 − (µ1 − µ2) < tα|τ, i
)

.



APPENDIX B

Level of the Behrens-Fisher test with n1 = n2 = 2
and n1 = n2 = 3

In this chapter we prove that Behrens-Fisher test is conservative in case of samples
with equal sample sizes of n1 = n2 = 2 and with equal sample sizes of n1 = n2 = 3.

1. The test with a constant critical value

Lemma B.1. b2 =
z2( e

τ

n1
+ 1
n2

)

eτ v1
n1(n1−1)

+
v2

n2(n2−1)

as a function of τ decreases for all τ if v1
n1−1

>

v2
n2−1

, increases for all τ otherwise, has two horizontal asymptotes, and its graph has a

centre of symmetry

(τ0, b
2
τ0) = (ln

(v2n1(n1 − 1)

v1n2(n2 − 1)

)
, z2 1

2
(
(n1 − 1)

v1
+

(n2 − 1)

v2
))

.

Proof. A function of type f(t) = aet+b
cet+d

where c > 0, d > 0, can be expressed as

a
d
d
c
exp(ln c

d
+ t) + b

d

exp(ln c
d

+ t) + 1
=

1

2
(
a

c
− b

d
)
exp(ln c

d
+ t)− 1

exp(ln c
d

+ t) + 1
+

1

2
(
a

c
+
b

d
),

which is 1
2
(a
c
− b
d
)-times scaling, vertical shift by 1

2
(a
c
+ b
d
) and horizontal shift to the right

by x0 = ln d
c

of an odd function g(t) = et−1
et+1

that has two horizontal asymptotes y = −1

and y = 1 and increases for all t. We assign: a = z2/n1, b = z2/n2, c = v1/(n1(n1−1)),
d = v2/(n2(n2 − 1)) and get the statement of lemma. �

Theorem B.1. If n1 = n2, the level of the test with H0 : µ1 = µ2 and the critical region

(24) |B| > a,

equals P (|Tn1−1| > a).

Proof. We will study how the probability to reject H0 changes with τ . In order to
do this, we will study how I(|B| > a) changes k the H0 will be rejected for any single
sample.
We denote with b2 the value of squared Behrens-Fisher statistic characterising the single
sample. Clearly,

P (|B| > a) = P (B2 > a2)
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We denote z, v1, v2 for the values of Z, V1, V2 corresponding to this sample, in notation
of Statement 1. The value of b2 is a function of k and hence a function of τ :

b2 =
z2( e

τ

n1
+ 1

n2
)

eτv1
n1(n1−1)

+ v2
n2(n2−1)

To any such sample with τ = 0 we will assign a curve Γ(f(τ)): a graph Γ of a squared
Behrens-Fisher statistic as a function f of τ .

We apply Lemma B.1 to the case n1 = n2 = n and see that b2 increases if and only

if v2 > v1, and that happens if and only if τ0 = ln
(
v2n1(n1−1)
v1(n2(n2−1)

)
= ln

(
v2
v1

)
> 0, i.e. if

and only if τ -coordinate of the symmetry centre of the curves is positive.

Consider curves Γ(f(τ)) that intersect horizontal line b2 = a2, that is, curves for
which the acceptance decision depends on k. We denote the τ -coordinate of the point
of intersection τr and the τ -coordinate of the centre of symmetry as τ0.
Any curve that has the opposite sign of τr and τ0, belongs to a family of four curves
having the same |τ0| and the same |τr|. The family is shown in Figure 2.1 . If the curve
is generated by a sample (z1, v1, v2), then the four-curve family includes:

(1) the initial curve from (z1, v1, v2),
(2) a curve from (z1, v2, v1) (mirror reflection of initial curve),
(3) a curve from (z2, v1, v2), where |(z2)|2 = a

f(−τr)
|(z1)|2 < |(z1)|2 and sign(z2) =

sign(z1),
(4) a curve from (z2, v2, v1).

As |z2| < |z1|, the standard normal probability density at z2 is larger than at z1. So
the joint probability density

f(z1, v1, v2) < f(z2, v1, v2)

and due to equality of sample sizes

f(z1, v1, v2) = f(z1, v2, v1), f(z2, v1, v2) = f(z2, v2, v1).

So if a curve with opposite sign of τr and τ0 belongs to a specific 4-curves-family, then,
due to the placement of τ0 towards the direction of increase of f :

p(Reject H0) =

{
1, |τ | > |τr|
p : 0 < p < 1, |τ | ≤ |τr|

There are also other curves that intersect the horizontal line b2 = a2 and have same
sign of τr and τ0, but do not belong to such 4-curves-families. These curves we group
into families of only two symmetric curves. That is, if a curve is generated by a sample
(z, v1, v2), the 2-curves-family includes:

(1) the initial curve from (z, v1, v2)
(2) a curve from (z, v2, v1)
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Due to monotonicity of f and the placement of τ0, all these families give rejection of
H0 for {τ : |τ | > |τr|}, i.e.

p(Reject H0) =

{
1, |τ | > |τr|
0, |τ | ≤ |τr|

We will also group all the curves that do not intersect the horizontal line b2 = a2 into
1-curve-families, consisting of a single curve. If a curve belongs to a specific 1-curve-
family, than the probability to reject H0 is constant with respect to τ (taking values 1
or 0).
We will call the sum of the probability densities of the samples generating the curves
of the specific family for ”the probability density of a curve family f(family)” (in a
discretized approximation, that is exactly a probability to sample the specific family) .
The probability to reject H0 as a function of τ

P (reject H0)(τ) =

∫
Ω(Z,V1,V2)

P (reject H0|τ, z, v1, v2)f(z, v1, v2)dzdv1dv2 =

=

∫
all families

P (reject H0|family)(τ)f(family(z, v1, v2))dzdv1dv2

We see that for all families, P (reject H0|family)(τ) is an even function of τ with a
minimum at 0, decreases non-strictly at (−∞, τ) and increases at (τ,∞, ). Consequently,
so is P (reject H0)(τ).

Finally, we observe that when |τ | → ∞, the B converges in distribution to Tn1−1.
Hence

limτ→∞P (reject H0)(τ) = P (|Tn1−1| > a)

�

Figure 2.1 . The graphs of a squared Behrens-Fisher statistic as
functions τ , belonging to the ’4-curves’ -family.

2. The quantiles of T1cosθ + T2sinθ

Lemma B.2. Let θ ∈ (0, π/2), η > 0, Ss be the set of values of S, satisfying the system
of inequalities

(25)

{
sin2θ
s

+ 1−sin2θ
1−s < η

0 < s < 1
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(1) Ss is either a connected open interval or an empty set.
(2) For any θ ∈ (0, π/2) there exist a real η0 such that the Ss is non-empty for

all η > η0.
(3) If Ss is non-empty, then its Lebesgue measure increases strictly with |π/4−θ|.
(4) If Ss is non-empty and s0 is its the centre, then |0.5 − s0| increases with
|π/4− θ|.

Proof. 1. We denote u = sin2θ. In this notation, Eq. (25) becomes
u
s

+ 1−u
1−s < η

0 < s < 1

0 < u < 1

that is equivalent to

(26)
s ∈ (

−
√

4u2−4u+(η−1)2+2u+η−1

2η
,

√
4u2−4u+(η−1)2+2u+η−1

2η
), if 4u2 − 4u+ (η − 1)2 > 0

s ∈ ∅, if 4u2 − 4u+ (η − 1)2 + 2u+ η − 1 ≤ 0

0 < s < 1,

0 < u < 1,

2. We choose η0 = 2max(sin2θ, 1− sin2θ) + 1. Then for s = 1/2 Eq. (25) holds for all
η > η0.
3. We denote t = 2u− 1 = 2sin2θ − 1. Eq. (26) becomes the same as

(27)


s ∈ (

−
√
t2+η2−2η+t+η

2η
,

√
t2+η2−2η+t+η

2η
) ∩ (0, 1) if t2 + η2 − 2η ≥ 0,

s ∈ ∅ if t2 + η2 − 2η < 0,

−1 < t < 1.

In fact, the boundary of Ss includes neither {0} nor {1}, because Eq. (25) holds for

neither s < sin2θ
η

nor s > 1− 1−sin2θ
η

. So Ss satisfies just

(28)


s ∈ (

−
√
t2+η2−2η+t+η

2η
,

√
t2+η2−2η+t+η

2η
) if t2 + η2 − 2η ≥ 0,

s ∈ ∅ if t2 + η2 − 2η < 0,

−1 < t < 1.

If Ss is not empty, both boundaries of the interval containing the solution,Ss change
with t: the lower boundary decreases and the upper boundary increases. So the length of
Ss increases with |t|, and the increase with |t| corresponds to increase with |2sin2θ−1|.
As we defined θ ∈ (0, pi/2), the latter means increase with |π/4− θ|.

4. According to Eq.(28), the centre of Ss is (
−
√
t2+η2−2η+t+η

2η
,

√
t2+η2−2η+t+η

2η
), which

is t
2η

+ 0.5. Its distance from 0.5 clearly increases with |t| and hence with |π/4− θ|.
�
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Theorem B.2. For any a > 0 and T1, T2 being independent student variables with equal
degrees of freedom f1 = f2 = f ∈ {1, 2}, P (|T1cosθ+T2sinθ| < a) decreases in the range
θ ∈ (0, π/4) and than increases.

Remark B.3. That doesn’t hold for all degrees of freedom; the numerical counterex-
ample was found for f = 6 and a being 0.975-quantile of T6 distribution

Proof. As shown by (Ruben, 1960),

Tf1cosθ + Tf2sinθ ∼
Tf1+f2

ψ(S)
,

where S ∼ Beta(f1/2, f2/2), Tf1 is independent on Tf2 , degrees of freedom respectively,
Tf1+f2 is independent on S, and

ψ(S) =

√
(f1 + f2)s(1− s)

f1(1− s)sin2θ + f2scos2θ
.

We observe that for f1 = f2 = f

P (
|Tf1+f2 |
ψ(S)

< a) = P (
T 2
f1+f2

ψ(S)2
< a2) = P

(T 2
f1+f2

2

(sin2θ

s
+

1− sin2θ

1− s
)
< a2

)

(29) = P
(sin2θ

s
+

1− sin2θ

1− s <
2a2

T 2
f1+f2

)
From Lemma B.2,(2) it follows that for any a there exists a set of values of |Tf1+f2 |

of non-zero measure such that Eq. (29) holds for some values of S. From Lemma B.2,
(1) it follows that the set of values of (|Tf1+f2 |, S) such that Eq. (29) holds, has also
non-zero measure. From Lemma B.2, (3) it follows that for any fixed |tf1+f2 | such that
for some values of S Eq. (29) holds, the measure of this set of values of S increases
|π/4− θ|.

In case f = 2, S is distributed uniformly between 0 and 1.
The increase in the measure of this set of values of S for any |tf1+f2 | and the indepen-
dence between S and |Tf1+f2 | lead to an increase of probability that Eq. 29 holds with
|π/4− θ|.

In case f = 1, the density for S has maxima in 0 and 1, an only minimum at
s = 0.5 and is symmetric. For a fixed |tf1+f2 | two intervals of s that are proper subsets
of (0,1) that have the same length, the interval with a larger distance between its centre
and s = 0.5 has the larger probability. From Lemmas B.2, (4) and B.2, (3), it follows
that for any fixed |tf1+f2 | such that for some values of S Eq. (29) holds, not only does
the centre of this interval of values of S move further from s = 0.5 with increase of
|θ − π/4|, but the length of this interval of the values of S increases. Therefore, the
probability of this interval increases with |θ − π/4| for any fixed |tf1+f2 |. Hence, the
probability that Eq. (29) holds, also increases with |θ − π/4|. �
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3. Level of the Behrens-Fisher test in case n1 = n2 = 2 and n1 = n2 = 3

From Theorem B.1, we conclude that for all sample sizes n if they are equal in both
samples, there exist a test of level α: ”reject Ho if | X1−X2√

S2
1/n+S2

2/n
| > tα/2”. We call this

test ”New test”.

For n = 2 and n = 3, it follows from Theorem B.2 that the p-quantiles of T1cosθ+
T2sinθ for all θ ∈ (0, π/2) and p ∈ (0.5, 1) are larger than p-quantiles of a student
t-distributed value with f degrees of freedom. Therefore the rejection region of the
Behrens-Fisher test is a proper subset of the rejection region for the ”New test” for all
values of the nuisance parameter, so the Behrens-Fisher test is also of the nominal level.

QED.



APPENDIX C

R-codes

1. Computing the confidence density

The following function was used

dconf<−function (par , data , method=”Welch” )

{ i f ( ( method==” Paired ” ) | | ( method==” pai red ” ) | | ( method==4)) {
#OTHER DTATA FORMAT: matr ix o f 2 rows , rows corre spond samples

i f ( length (dim(data ))>2) return ( ” Error : too many samples ” )

else{
n pairs=length (data [ 1 , ] )

sd d i f f e r e n c e=sd (data [1 , ] −data [ 2 , ] ) /sqrt (n pairs )

av d i f f e r e n c e=mean(data [ 1 , ]+data [ 2 , ] )

return (dt ( (par−av d i f f e r e n c e )/sd d i f f e r e n c e , n pairs −1)/sd d i f f e r e n c e )

}
}

i f ( ( ! i s . numeric (data ) ) | | ( length (data )%%3>0)) return ( ”Wrong format o f the data” )

i f ( ( method==”Welch” ) | | ( method==”Welch−Satherwaite ” ) | | ( method==1)) {

i f ( length (dim(data))==3)

{ nominator df=(colSums (data [ 2 , , ] /data [ 3 , , ] ) ) ˆ 2

denominator df=colSums ( ( data [ 2 , , ] /data [ 3 , , ] ) ˆ 2 / (data [ 3 , , ] −1) )

return (dt ( (par−colSums (data [ 1 , , ] ) ) /nominator df ˆ0 .25 , nominator df/denominator df )/

nominator df ˆ0 .25 )

}
else{

i f ( length (dim(data ))<2)

data=matrix (data=data , byrow=TRUE,nrow=length (data )/3 , ncol=3)

{
nominator df=(sum(data [ , 2 ] /data [ , 3 ] ) ) ˆ 2

denominator df=sum( ( data [ , 2 ] /data [ , 3 ] ) ˆ 2 / (data [ , 3 ] −1))

return (dt ( (par−sum(data [ , 1 ] ) ) /nominator df ˆ0 .25 , nominator df/denominator df )/

nominator df ˆ0 .25 )

}} }
i f ( ( method==”Aspin” ) | | ( method==”Welch−Aspin” ) | | ( method==2)) {

i f ( length (dim(data))==3)

{ s igmaconf=Forkas tn ingsgrense (data [ 2 , 1 , ] , data [ 2 , 2 , ] , data [ 3 , 1 , 1 ] , data [ 3 , 2 , 1 ] , 0 . 4 ) /

qnorm ( 0 . 8 )

return (dnorm( (par−colSums (data [ 1 , , ] ) ) / s igmaconf )/ s igmaconf )}
else{

i f ( length (dim(data ))<2)

data=matrix (data=data , byrow=TRUE,nrow=length (data )/3 , ncol=3)

{
i f ( length (data [ , 1 ] ) >2) return ( ” Error : too many samples ” )

else

{ s igmaconf=Forkas tn ingsgrense (data [ 1 , 2 ] , data [ 2 , 2 ] , data [ 1 , 3 ] , data [ 2 , 3 ] , 0 . 4 ) /qnorm ( 0 . 8 )

return (dnorm( (par−sum(data [ , 1 ] ) ) / s igmaconf )/ s igmaconf )}
}} }

65
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i f ( ( method==”BF” ) | | ( method==”Behrens−Fisher ” ) | | ( method==3)) {

i f ( length (dim(data))==3)

{ s igmaconf=sqrt ( colSums (data [ 2 , , ] /data [ 3 , , ] ) )

theta=atan ( sqrt (data [ 2 , 1 , ] ∗data [ 3 , 2 , ] /data [ 3 , 1 , ] /data [ 2 , 2 , ] ) )

return (dBF( (par−colSums (data [ 1 , , ] ) ) /sigmaconf , data [ 3 , 1 , 1 ] , data [ 3 , 2 , 1 ] , theta )/

s igmaconf )}
else{

i f ( length (dim(data ))<2)

data=matrix (data=data , byrow=TRUE,nrow=length (data )/3 , ncol=3)

{
i f ( length (data [ , 1 ] ) >2) return ( ” Error : too many samples ” )

else

{ s igmaconf=sqrt (sum(data [ , 2 ] /data [ , 3 ] ) )

theta=atan ( sqrt (data [ 1 , 2 ] ∗data [ 2 , 3 ] /data [ 1 , 3 ] /data [ 2 , 2 ] ) )

return (dBF( (par−sum(data [ , 1 ] ) ) /sigmaconf , data [ 1 , 3 ] , data [ 2 , 3 ] , theta )/ s igmaconf )}
}} }

else

return ( ”Sorry , the suggested method i s not implemented yet :−(” )

}

Very similarly the confidence distribution function was computed.
The following additional computations were necessary to compute the confidence

density and confidence distribution function.

##################### fo r Welch−Aspin

VRU<−function ( r , u , s12 , s22 )

( lambda i r [ r , 1 ] ∗ ( s12 ˆ r )∗ f iu [ u ,1 ]+ lambda i r [ r , 2 ] ∗ ( s22 ˆ r )∗ f iu [ u , 2 ] ) /

( lambda i [ 1 ] ∗s12+lambda i [ 2 ] ∗s22 )ˆ r

############################### fo r Welch−Aspin

Forkas tn ingsgrense<−function ( s12 , s22 ,N,M, nominal s i g n i f i c a n c e )

{
lambda i<<−c (1/N,1/M)

lambda i r<<−matrix (data=NA,nrow=5,ncol=2)

for ( i in 1 : 2 )

for ( r in 1 : 5 )

lambda i r [ r , i ]<<−lambda i [ i ] ˆ r

f iu<<−matrix (data=NA,nrow=5,ncol=2)

for (u in 1 : 5 )

{ f iu [ u , 1 ]<<−1/ (N−1)ˆu

f iu [ u , 2 ]<<−1/ (M−1)ˆu

}
z=qnorm(1−nominal s i g n i f i c a n c e /2)

#summands in no t a t i on o f Aspin , d z e t a i s c a l l e d z to make e x p r e s s i o n s s h o r t e r

h0=z∗sqrt ( lambda i [ 1 ] ∗s12+lambda i [ 2 ] ∗s22 )

h1=0.25∗(1+z ˆ2)∗VRU(2 ,1 , s12 , s22 )∗h0

h2=(−0.5∗(1+z ˆ2)∗VRU(2 ,2 , s12 , s22 )+1/3∗(3+5∗zˆ2+z ˆ4)∗VRU(3 ,2 , s12 , s22)−
1/32∗(15+32∗zˆ2+9∗z ˆ4)∗ (VRU(2 ,1 , s12 , s22 ) )ˆ2 )∗h0

h3=h0∗((1+ z ˆ2)∗VRU(2 ,3 , s12 , s22)−2∗(3+5∗zˆ2+z ˆ4)∗VRU(3 ,3 , s12 , s22 )+1/

8∗(15+32∗zˆ2+9∗z ˆ4)∗VRU(2 ,2 , s12 , s22 )∗VRU(2 ,1 , s12 , s22)+

1/8∗(75+173∗zˆ2+63∗zˆ4+5∗z ˆ6)∗VRU(4 ,3 , s12 , s22)−1/12∗
(105+298∗zˆ2+140∗zˆ4+15∗z ˆ6)∗VRU(3 ,2 , s12 , s22 )∗VRU(2 ,1 , s12 , s22)+

1/384∗(945+3169∗zˆ2+1811∗zˆ4+243∗z ˆ6)∗ ( (VRU(2 ,1 , s12 , s22 ))ˆ3 ) )

h4=h0∗ (

−2∗(1+z ˆ2)∗VRU(2 ,4 , s12 , s22 )+28/3∗(3+5∗zˆ2+z ˆ4)∗VRU(3 ,4 , s12 , s22 )

−1/4∗(15+32∗zˆ2+9∗z ˆ4)∗ (VRU(2 ,3 , s12 , s22 )∗VRU(2 ,1 , s12 , s22 )+0.5∗ (VRU(2 ,2 , s12 , s22 ) )ˆ2 )

−3/2∗(75+173∗zˆ2+63∗zˆ4+5∗z ˆ6)∗VRU(4 ,4 , s12 , s22 )

+1/2∗(105+298∗zˆ2+140∗zˆ4+15∗z ˆ6)∗ (1/3∗VRU(2 ,2 , s12 , s22 )∗
VRU(3 ,2 , s12 , s22)+VRU(2 ,1 , s12 , s22 )∗VRU(3 ,3 , s12 , s22 ) )

+1/4∗(15+33∗zˆ2+11∗zˆ4+z ˆ6)∗VRU(4 ,4 , s12 , s22 )
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+1/5∗(735+2170∗zˆ2+1126∗zˆ4+168∗zˆ6+7∗z ˆ8)∗VRU(5 ,4 , s12 , s22 )

−1/64∗(945+3169∗zˆ2+1811∗zˆ4+243∗z ˆ6)∗VRU(2 ,2 , s12 , s22 )∗VRU(2 ,1 , s12 , s22 )ˆ2

−1/18∗(945+3354∗zˆ2+2166∗zˆ4+425∗zˆ6+25∗z ˆ8)∗VRU(3 ,2 , s12 , s22 )ˆ2

−1/32∗(4725+16586∗zˆ2+10514∗zˆ4+1974∗zˆ6+105∗z ˆ8)∗VRU(2 ,1 , s12 , s22 )∗VRU(4 ,3 , s12 , s22 )

+1/96∗(10395+42429∗zˆ2+31938∗zˆ4+7335∗zˆ6+495∗z ˆ8)∗
VRU(3 ,2 , s12 , s22 )∗VRU(2 ,1 , s12 , s22 )ˆ2

−1/6144∗(135135+626144∗zˆ2+542026∗zˆ4+145320∗zˆ6+11583∗z ˆ8)∗VRU(2 ,1 , s12 , s22 )ˆ4

)

return ( h0+h1+h2+h3+h4 )

}
#fo r BF d en s i t y by Ruben (1960)

Integrand for BF<−function (v , x , f1 , f2 , th )#no t a t i on as in Ruben (1960) , ” th ” i s t h e t a

x ˆ(0 . 5∗ ( f1 −1))∗(1−x ) ˆ ( 0 . 5∗ ( f2 −1))∗ ( f 1∗(1−x )∗ ( sin ( th ))ˆ2+ f2∗x∗
( cos ( th )ˆ2))ˆ( −0 .5)∗(1+(vˆ2∗x∗(1−x ) )/ ( f 1∗(1−x )∗ ( sin ( th ))ˆ2+

f2∗x∗ ( cos ( th )ˆ2)))ˆ( −0 .5∗ ( f 1+f2 +1))

#Pr o b a b i l i t y d e n s i t y f o r Behrens−Fi she r d i s t r i b u t i o n

dBF<−function (v , f1 , f2 , th ,N points=501) #name ”N po i n t s ” cor r e sponds to number o f p o i n t s f o r Simpson p a r t i t i t i o n

{ i f (N points %% 2 ==0) N points=N points+1

P a r t i t i t i o n=matrix (data=seq ( from=0, to =1, length=N points ) , byrow=TRUE, ncol=N points ,

nrow=length ( v ) )

v=matrix (data=rep (v ,N points ) , ncol=N points ,nrow=length ( v ) )

P a r t i t i t i o n=Integrand for BF(v , P a r t i t i t i o n , f1 , f2 , th )

even numbers =(1 : ( (N points−1)/2) )∗2

h=1/ (N points−1)

i f ( length (dim( P a r t i t i t i o n [ , even numbers ]))>1)# fo r ma t r i c e s we use ”rowSums”

return (h/3∗gamma( 0 . 5∗ f 1 +0.5∗ f 2 +0.5)/ ( sqrt ( p i )∗gamma( 0 . 5∗ f 1 )∗gamma( 0 . 5∗ f 2 ) )∗
( rowSums( P a r t i t i t i o n )∗2+rowSums( P a r t i t i t i o n [ , even numbers ] ) ∗
2−rowSums( P a r t i t i t i o n [ , c (1 ,N points ) ] ) ) )

else #fo r v e c t o r s ”rowSums” doesn ’ t work , must use sum

return (h/3∗gamma( 0 . 5∗ f 1 +0.5∗ f 2 +0.5)/ ( sqrt ( p i )∗gamma( 0 . 5∗ f 1 )∗gamma( 0 . 5∗ f 2 ) )∗
(sum( P a r t i t i t i o n )∗2+sum( P a r t i t i t i o n [ , even numbers ] ) ∗2−sum( P a r t i t i t i o n [ , c (1 ,N points ) ] ) ) )

}
##########################

}

For the likelihood ratio method, the computation was different and included the likeli-
hood ratio distribution computation. The following codes are were written for not using
much RAM, because due to technical reasons they were compiled on an old PC with a
little memory. Of this reasons, the codes use matrix operations in less extent than that
would be reasonable, and are therefore rather slow. The computations are presented
for sample sizes n1 = 3 and n2 = 5.

N=3

M=5

sigma0 2=1 #standard d e v i a t i o n o f t h e second sample

#lns i gma=seq ( from=−2, to =2, by =0.2)

lns igma=sort (c ( seq ( from=−2,to =2,by=0.2) , seq ( from =0.5 , to =1.5 ,by=0.07)))

sigma0 1=10ˆ( lnsigma )

pr=1−seq ( from =0.00001 , to =0.99999 ,by=0.00001)

alpha=1−pr

Lcr=matrix (nrow=length ( alpha ) , ncol=length ( sigma0 1) )

Lcr gene ra l=array (dim=c ( length (N) , length (M) , length ( alpha ) ) )

N s imu la t i on s =500000
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mu=0

I t e r <−function (m1,m2, S1 , S2 ,N,M){#the i t e r a t i o n s

m0=(m1∗N+m2∗M)/ (M+N)

S10=S1

S20=S2

t = 2

for ( i in 1 : 5 ){
m0=(N∗m1∗S20+M∗m2∗S10 )/ (N∗S20+M∗S10 )

S10=S1+(m1−m0)ˆ2

S20=S2+(m2−m0)ˆ2

}
return (m0)

}
## The f un c t i o n computing t h e c r i t i c a l v a l u e o f d e v i a t i o n ############

# fo r t h e g i v en r e l a t i o n between s tandard d e v i a t i o n s in samples

Cri t Deviance Pval<−function (N,M, sigma0 1 , sigma0 2=1, alpha =0.05)

#alpha may be a v e c t o r

{
#Simu la t e samples X og Y

X=matrix (rnorm(N∗N simulat ions ,mean=0,sd=sigma0 1) ,

nrow=N, # number o f rows

ncol=N s imu la t i on s )

Y=matrix (rnorm(M∗N simulat ions ,mean=0,sd=sigma0 2) ,

nrow=M, # number o f rows

ncol=N s imu la t i on s )

s12=colVars (X)∗ (N−1)/N #not to c a l c u l a t e i t many t imes

s22=colVars (Y)∗ (M−1)/M #not to c a l c u l a t e i t many t imes

M1=colMeans (X)

M2=colMeans (Y)

mu hat=I t e r (M1,M2, s12 , s22 ,N,M)

sigma 1 hat2=s12+(M1−mu hat )ˆ2

sigma 2 hat2=s22+(M2−mu hat )ˆ2

a=(sigma 1 hat2/s12 ) ˆ ( 0 . 5∗N)

b=(sigma 2 hat2/s22 ) ˆ ( 0 . 5∗M)

Deviance=2∗ log ( a∗b)

return ( quantile ( Deviance ,1− alpha ) )

}

for ( i in 1 : length (N) )

for ( i i in 1 : length (M) )

{ for ( s in 1 : length ( sigma0 1) )

Lcr [ , s ]= Cr i t Deviance Pval (N[ i ] ,M[ i i ] , sigma0 1 [ s ] , alpha=alpha )

for ( i i i in 1 : length ( pr ) )

Lcr gene ra l [ i , i i , i i i ]=max( Lcr [ i i i , ] )

#the s e l e c t e d c r i t i c a l v a l u e .

} #the c r i t i c a l s i z e f o r a l l sample s i z e s

Lcr gene ra l [ i , i i , ]= Lcr gene ra l [ i , i i , length ( Lcr gene ra l [ i , i i , ] ) : 1 ]

i=which ( length (X[ ,1]==N)

i i=which ( length (X[ ,1]==M)

CC mu <−function (mu, X,Y,N,M){ #con s t r u c t s con f curve

#check i n c r e a s e s

i f ( length (dim(X))>1)

{
s12=colVars (X)∗ (N−1)/N #not to c a l c u l a t e i t many t imes

s22=colVars (Y)∗ (M−1)/M #not to c a l c u l a t e i t many t imes

M1=colMeans (X)
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M2=colMeans (Y)

}
else

{ s12=var (X)∗ (N−1)/N #not to c a l c u l a t e i t many t imes

s22=var (Y)∗ (M−1)/M #not to c a l c u l a t e i t many t imes

M1=mean(X)

M2=mean(Y) }
sigma 1 hat2=s12+(M1−mu)ˆ2

sigma 2 hat2=s22+(M2−mu)ˆ2

a=(sigma 1 hat2/s12 ) ˆ ( 0 . 5∗N)

b=(sigma 2 hat2/s22 ) ˆ ( 0 . 5∗M)

#i=which ( l e n g t h (X[ ,1]==N)#drop i f s i n g l e sample s i z e

#i i=which ( l e n g t h (X[ ,1]==M)#drop i f s i n g l e sample s i z e

i=1

i i =1

Deviance=2∗ log ( a∗b)

a l p h a l e f t ind=which .max( Lcr gene ra l [ i , i i , ( Lcr gene ra l [ i , i i , ]<Deviance ) ] )

#pr i n t ( Deviance )

i f ( length ( a l p h a l e f t ind )>0)

{ i f ( a l p h a l e f t ind<length ( Lcr gene ra l [ i , i i , ] ) )

return ( pr [ a l p h a l e f t ind ]+0.001∗ ( Deviance−Lcr gene ra l [ i , i i , a l p h a l e f t ind ] ) /

( Lcr gene ra l [ i , i i , a l p h a l e f t ind +1] − Lcr gene ra l [ i , i i , a l p h a l e f t ind ] ) )

#may r e p l a c e 0 .001 wi th pr [ a l p h a l e f t ind+1]−pr [ a l p h a l e f t ind ] )

else return ( pr [ a l p h a l e f t ind ] )}
else return (0 )

}

dcon f l<−function (mu,X,Y,N,M)#{mu−v e c t o r

{
dcon f l=rep (0 , length (mu)−1)

y=rep (0 , length (mu) )

for ( i in 1 : length (mu) )

y [ i ]=CC mu(mu[ i ] , X,Y,N,M)

for ( i in 2 : length (mu) )

i f ( y [ i ]<y [ i −1])

dcon f l [ i ]=(y [ i −1]−y [ i ] ) /2/ (mu[ i ]−mu[ i −1])#assume MLE i s median o f cd

else

dcon f l [ i ]=(y [ i ]−y [ i −1])/2/ (mu[ i ]−mu[ i −1])

return ( dcon f l )

2. Converting between nominal and actual level of the tests

The computation of the nominal level corresponding the desired level of the test
may be calculated as following.

Nominal for Actual<−function ( l e v e l ,N,M, method=”Welch” , d i g i t s =4)

#Computes nominal l e v e l f o r o b t a i n i n g t h e g i v en a c t u a l .

{ i f ( method==”Welch” )#Numerical s o l u t i o n o f e qua t i on ”Actua l ( nominal )= g i v en ”

{x1=l e v e l

x=0

y=0

xw=0#wrong l e v e l , nominal l e v e l can ’ t be l e s s

y1=ActualWelchleve l (N,M, x1 , d i g i t s=d i g i t s )

x2=max( x1 −0.005 , x1∗ 0 . 9 )

y2=ActualWelchleve l (N,M, x2 , d i g i t s=d i g i t s )

ready=FALSE

# pr i n t ( c ( x , y ,”−” , x1 , y1 ,”−” , x2 , y2 ,”−” ,xw ) )
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while ( ! ready )

{while ( y2>y1 )

{
xw=x2

x2=x1−(x1−x2 )/2

y2=ActualWelchleve l (N,M, x2 , d i g i t s=d i g i t s )

#

}#now y1>y2 , xw<x2<x1

x=where l i n e c r o s s e s ho r i z ( x1 , y1 , x2 , y2 , l e v e l )

while (x<xw)

x=x2−(x2−xw)/2#now xw<x<x2

y=ActualWelchleve l (N,M, x , d i g i t s=d i g i t s )

i f (y<l e v e l )

{y2=y

x2=x}
else

i f (y>y2 )

{y1=y

x1=x}
else

{y1=y2

x1=x2

y2=y

x2=x}

i f (abs (y−l e v e l )<10ˆ(− d i g i t s ) ) return ( x )

i f (abs (xw−x)<10ˆ(− d i g i t s ) ) return (NA)

}
}

else

i f ( method==”Aspin” )

{x1=l e v e l

x=0

y=0

xw=0#wrong l e v e l , nominal l e v e l can ’ t be l e s s

y1=Actua lAsp in l eve l (N,M, x1 , d i g i t s=d i g i t s )

x2=max( x1 −0.005 , x1∗ 0 . 9 )

y2=Actua lAsp in l eve l (N,M, x2 , d i g i t s=d i g i t s )

ready=FALSE

# pr i n t ( c ( x , y ,”−” , x1 , y1 ,”−” , x2 , y2 ,”−” ,xw ) )

while ( ! ready )

{while ( y2>y1 )

{
xw=x2

x2=x1−(x1−x2 )/2

y2=Actua lAsp in l eve l (N,M, x2 , d i g i t s=d i g i t s )

# pr i n t ( c ( x , y , x1 , y1 , x2 , y2 , xw ) )

}#now y1>y2 , xw<x2<x1

x=where l i n e c r o s s e s ho r i z ( x1 , y1 , x2 , y2 , l e v e l )

while (x<xw)

x=x2−(x2−xw)/2#now xw<x<x2

y=Actua lAsp in l eve l (N,M, x , d i g i t s=d i g i t s )

i f (y<l e v e l )

{y2=y

x2=x}
else

i f (y>y2 )

{y1=y

x1=x}
else

{y1=y2
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x1=x2

y2=y

x2=x}

i f (abs (y−l e v e l )<10ˆ(− d i g i t s ) ) return ( x )

i f (abs (xw−x)<10ˆ(− d i g i t s ) ) return (NA)

}} else

return ( ”The a v a i l a b l e methods are only −Welch− and −Aspin−” )

}

Here we solve the inverse task, computing the actual level for the given nominal
level, as follows for the W.

ActualWelchleve l<−function (N,M, l nom, d i g i t s =5, bothcoord inate s=FALSE)

#f i n d s max p ( r e j e c t H0)

{ cent r e=0#cen t r e o f i n i t i a l i n t e r v a l we check f o r maximum

ready=FALSE

pr=rep (0 ,50)

while ( ! ready )#At f i r s t choose s i n i t i a l maximum point , computing r ough l y

{
s e q i n i t i a l=seq ( from=−2+centre , to=2+centre , length=50)

for ( i in 1 : 50 ) pr [ i ]= prob re j ec tH0 (exp( s e q i n i t i a l [ i ] ) ,N,M, l nom, 18 )

k=(which .max( pr ) ) [ 1 ]

i f ( ( k<50)&&(k>1)) ready=TRUE#un t i l t h e maximum i s i n s i d e

i f ( k==50) cent r e=cent r e +1.77

#i f t h e maximum po in t i s not i n s i d e , then s h i f t s t h e i n t e r v a l

#by 1 . 97 ( a number t h a t 1 .97 !=n∗4/50)

else cent r e=centre −1.97

}
ready=FALSE

i f ( d i g i t s <5) i n t e r v a l s =20 else

i f ( d i g i t s <6) i n t e r v a l s =30 else

i f ( d i g i t s <7) i n t e r v a l s =50 else

i f ( d i g i t s <8) i n t e r v a l s =70 else i n t e r v a l s =100

pr=numeric (5 )

step=0.06

while ( ! ready )

{
s e q i n i t i a l=c ( s e q i n i t i a l [ k]−step∗2 , s e q i n i t i a l [ k]−
step , s e q i n i t i a l [ k ] , s e q i n i t i a l [ k]+step , s e q i n i t i a l [ k]+step∗2)

for ( i in 1 : 5 ) pr [ i ]= prob re j ec tH0 (exp( s e q i n i t i a l [ i ] ) ,N,M, l nom, i n t e r v a l s )

i f (max( pr)−min( pr)<10ˆ(− d i g i t s ) ) ready=TRUE

k=(which .max( pr ) ) [ 1 ]

step=step/2 .5 #con t r a c t s t h e 5−po in t i n t e r v a l

}
i f ( bothcoord inates )

return (c (max( pr ) , s e q i n i t i a l [ k ] ) ) else return (max( pr ) )

}

The computations were very similar for the Welch-Aspin test.
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