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Abstract

Measures to reduce the impact of climate change are becoming more and
more critical. By increasing the use of renewable energy, up to 90% of the
CO2 emission reductions needed by 2050 can be achieved. The importance
of 3D data is becoming increasingly more evident in this field, as modern
cities require detailed models as a tool for in-depth planning to be both
efficient and environmentally friendly.

In this thesis, we want to help contribute to make applications that use
3D data more accessible by exploring the applicability of one of today’s
biggest technology trends within automation, Artificial Intelligence (AI),
on point cloud data. Specifically, we focus on the automation of the seg-
mentation necessary for creation of 3D models of roof structures. We
present a new dataset to be used for the task of 3D point cloud part seg-
mentation of roof structures using deep learning. The goal is to propose
a high-quality dataset based on real-life structures, yielding predictions of
roof segmentations appropriate for applications in Norway.

The dataset is established from Light Detection and Ranging (LiDAR)
data, collected across Trondheim municipality. Two versions of the data-
set are proposed. The original dataset consists of 906 roofs present in the
Trondheim area, and both datasets contain points manually annotated with
one out of seven defined roof types, and further labelled into individual
roof planes. Data augmentation methods is proposed and implemented to
produce an alternative version of the dataset that is large enough for train-
ing purposes.

To evaluate the suitability of our dataset for the use in the training of
a deep neural network, we adopt a recognized network for point cloud
processing, PointNet++, and train it using the augmented dataset. The
trained network is tested on a portion of the dataset, which results in a
predicted plane segmentation of roof structures. The results indicate that
our 3D dataset is suitable for training of a deep neural network. In addition,
this indicates that deep learning proves to be promising in automation of
the segmentation step in 3D modeling.
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Sammendrag

Stadig blir behovet for tiltak for å redusere effekten av klimaendringene
mer kritisk. Ved å fremme bruken av fornybar energi, kan man sørge for
opptil 90% av CO2 reduksjonene som behøves innen 2050. Betydningen av
3D data blir stadig tydeligere innenfor dette fagfeltet, da detaljerte model-
ler kreves for å gjøre dagens moderne byer mer effektive og miljøvennlige.

I denne oppgaven ønsker vi å bidra til å tilgjengeliggjøre 3D data
ved å utforske anvendbarheten til punktsky-data i en av dagens stør-
ste trender innenfor automatiserings-teknologi, kunstig intelligens. Vi vil
spesifikt sette et søkelys på automatisering av segmenterings-steget i eta-
bleringen av 3D modeller av tak-strukturer. Vi presenterer her et nytt data-
sett for bruk i dyp læring ment for å utføre semantisk segmentering av
3D-punktskyer bestående av tak-strukturer. Vårt mål er å tilby et datasett
av høy kvalitet, basert på ekte tak-strukturer, som skal resultere i gode pre-
diksjoner av tak-segmenter, og være anvendbart for bruk i Norge.

Datasettet er basert på "Light Detection and Ranging" (LiDAR) data,
samlet inn over Trondheim kommune. To ulike versjoner av datasettet er
etablert. Det originale datasettet består av 906 tak i Trondheims-området.
Begge datasett inneholder punkt manuelt annotert med én av syv definerte
taktyper, samt en videre inndeling i individuelle takplan. Metoder for å ut-
føre data augmentering er foreslått og anvendt for å etablere en alternativ
versjon av datasettet med flere treningseksempler.

Videre er datasettets egnethet for bruk i trening av dype neurale
nettverk evaluert ved hjelp av et velkjent nettverk for prosessering av
punktskyer, PointNet++. En stor del av det augmenterte datasettet er
brukt for treningen av nettverket, før testing er gjennomført på den gjen-
værende delen. Resultatet fra denne prosessen er predikerte segmenter av
tak-strukturer inndelt i ulike plan. Resultatene indikerer at vårt 3D-datasett
er velegnet for å trene dype neurale nettverk. I tillegg finner vi indikasjoner
på at dyp læring kan være gunstig i automatiseringen av segmenteringsste-
get i etableringen av 3D modeller.
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Chapter 1

Introduction

Geospatial data, such as three-dimensional point clouds, have the last
couple of years gained increased interest among researchers. Point clouds
are the basis for virtual 3D models representing real-world scenes and can
be used for applications such as estimations of the biomass of a forest area
[1], driving of autonomous vehicles [2] or the reconstruction of building
models [3]. Such building reconstruction 3D models are applicable in a
wide aspect of fields, including renewable energy applications. There is an
immediate need for action to reduce the impact of climate change, and for
this renewable energy is a key factor. The Paris Agreement of the United Na-
tions Framework Convention on Climate Change (UNFCCC) is an official
binding global treaty on climate change [4]. Nationally Determined Con-
tributions (NDCs) work as the central implementation tool for countries
under the Paris Agreement, and renewable energy is an essential compon-
ent of this as it can provide 90% of the CO2 emissions cuts that are needed
by 2050 [5]. 1

Solar energy is one source of renewable energy, where power is directly
harnessed from the sun, using solar panels. By analysing 3D models of roof
structures, simulation and estimation of potential solar energy production
in urban areas can be performed [6]. Such estimations are of great relev-
ance for solar power distributors, as well as for research on how renewable
energy can be utilised in the future. Another possibility is the investigation
of the most suitable placement of new solar panels in a city, a task connec-
ted to urban planning. These are all applications of virtual 3D models that
could help Norway reach the goals set by the Paris Agreement.

For the final 3D model to be of value, the processing of the raw point

1IRENA is the Internatational Renewable Energy Agency, to read more about how re-
newable energy is a key component of NDCs – the central implementation tool for coun-
tries under the Paris Agreement, visit https://www.irena.org/

1
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cloud is crucial. Multiple steps are necessary for the establishment of a
complete 3D model. An essential step in this process is the grouping of
points into segments based on common characteristics and assign semantic
meaning to each segment. For each of the segments, polygons needs to be
derived, before the final modeling can be performed resulting in a com-
plete 3D model of the real-world object. Thus, automatic segmentation of
roof-planes as a part of roof structure detection is of great importance in
geospatial analysis of building data and is the focus of this master thesis.

The task of grouping similar datapoints and assing them meaning is a
data processing task termed semantic segmentation. For the semantic seg-
mentation of an object into meaningfull object parts, such as the segmenta-
tion of roof structures into separate roof planes, one can further specify this
as a task of part segmentation. Therefore we will often talk about semantic
segmentation and part segmentation of roof structures interchangeably, as
part segmentation is a sub-category of sematic segmentation.

Difficulties concerning 3D data, such as its irregular structure and non-
uniform densities combined with large amounts of data, has historically
made the handling of 3D data a challenge. Another challenge connected
to the automatic segmentation of roof structures is the fact that such struc-
tures might be complex. No general data-driven method exists for the seg-
mentation of complex roof structures, though a lot of different approaches
have been applied for different scenarios [7] [8] [9]. As new technology
develops, there is a hope that this will gradually change as the ability to
handle heavy computational tasks is continuously increasing.

Simultaneously, the field of machine learning and computer vision,
with the invention of deep learning-based networks imitating the learning
process of human brains, have entered a new era. Semantic segmentation
is a key area of interest in the field of deep learning, as it allows for a deeper
understanding of real-world scenes. Increased computational power, com-
bined with advancement in acquisition technology for point clouds, have
made it possible to extend the use of deep learning-based networks from
segmentation of 2D images to that of 3D point clouds. We believe that such
deep learning-based networks are a suitable tool in the establishment of a
more general process for the segmentation of roof planes.

The task of applying deep learning methods designed for 2D on 3D data
is however non-trivial, due to the differences regarding the structure of the
data. Compared to 2D images arranged in pixels, 3D point clouds are often
unstructured and are not consistent in density. Supervised deep learning
systems depends significantly on the availability of annotated ground truth
data, and for point clouds the amount of data needed is immense. This need
for large amounts of labelled training data is one of the main challenges
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that machine learning methods, and especially data-hungry deep learning
neural networks, are facing [10]. In addition, neural networks needs to be
trained on high-quality data to produce good predictions.

The obtainment of high-quality point cloud data of a satisfactory dens-
ity for deep learning applications are often costly and time-consuming
[11]. Through a literature search it was found that dense 3D point cloud
datasets designed for the task of roof segmentation do exists. However,
these datasets are too dense to be suitable for large scale projects such
as solar energy estimations of cities. The state-of-the-art Airborne LiDAR
Scanning (ALS) equipment used as standard for survey and mapping pro-
jects today deliver a density of 10-12 points/m2. To obtain a higher point
density the expenses are very high, as it demands a need for several ac-
quisition fly-overs of the study area.

Remote sensing data is also area dependent and cannot be easily ap-
plied in other areas. The neural network needs to be exposed to Norwegian
roof types to be useful for local applications. Consequently, the need arises
for a 3D dataset suitable for deep learning-based segmentation for utiliza-
tion in Norway. To the best of our knowledge, no such dataset containing
typical Norwegian roof structures exists.

In this master thesis, we therefore present a new 3D point cloud data-
set containing manually annotated roof structures obtained in residential
areas of Trondheim, named TRD3DRoofs. The original Light Detection and
Ranging (LiDAR) point cloud used was obtained in 2018 and distributed to
us by Trondheim Municipality. The dataset consists of 2 199 051 points be-
longing to approximately 900 real-world roofs. Each roof is manually seg-
mented and annotated with semantic information about both roof struc-
ture and distinguishable planes divided into eleven plane types. As we wish
to both contribute a dataset consisting of only roof structures representing
real-life buildings in the Trondheim area, as well as a dataset suitable for
deep learning, an additional augmented dataset is presented. This augmen-
ted dataset is derived from the TRD3DRoofs dataset but contains extended
data to balance the dataset with regards to roof type. The augmented data
is also included to increase the size of the dataset, due to the vast amount
of training data needed for deep learning. Having a mean density of 9.07
points/m2 and being manually annotated with ground truth labels, the
augmented dataset is established with the intent of being well-suited for
deep learning applications to the problem of roof plane segmentation, and
to be applicable in real-world projects.

The evaluation of our datasets suitability for supervised deep learning
applications is performed by implementing PointNet++, a state-of-the-art
deep learning network, for direct processing of point clouds, and using our
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ground truth data for training and evaluation. Specifically, the usability of
PointNet++ for the task of roof plane segmentation of 3D point cloud data
is investigated.

1.1 Goal and Research Questions

This section formally presents the main goal of the thesis, together with
two research questions defined to reach the goal.

Goal Create a high-quality 3D point cloud dataset intended for training
deep learning applications for the task of segmentation of roof plane
structures. The dataset is to be appropriate for applications in Norway,
more specifically the Trondheim area.

Research for deep learning applied to point cloud data is increasing,
indicating the possibility of a general approach to the problem of 3D roof-
plane segmentation. This yields a need for area-specific high-quality train-
ing data. The main goal of this thesis is the construction of a 3D point cloud
dataset with manually annotated points, intended as training data to train
a deep learning model to segment roofs into separate roof planes. Two re-
search questions are proposed that addresses challenges to be solved to
reach the goal of the thesis.

Geospatial data obtained by LiDAR techniques are not formatted to be
suitable as direct input in deep learning algorithms. Additionally, it lacks
semantic information about each point and the surrounding neighbour-
hoods. To make it possible to use such data as input in deep neural net-
works, it must be purposefully processed and labelled. The development
of guidelines for processing of geospatial data is a crucial part of the de-
velopment of the dataset, and is therefore the first topic of research in this
thesis.

RQ1 How can LiDAR data be processed and labelled, making it suitable
as input in deep learning algorithms?

During the establishment of these guidelines, the final composition of
the dataset needs to be taken into consideration. The performance of a
deep learning algorithm depends on the contents of the dataset it has been
exposed to during training. To get the best possible result, the training
data should have a certain structure, and to achieve this there will, in most
cases, be a need for augmentation of the obtained data. Additionally, the
amount of manual work required to create enough data is a problem. Cre-
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ating more data through augmentation is an option that is both less time-
consuming and cheaper than manual labour. The second research question
therefore addresses the issue of data augmentation.

RQ2 How can a dataset consisting of 3D point clouds representing roof
structures be augmented to create the most suitable dataset for deep
learning?

To answer these questions, guidelines based on the needed workflow
will be established, together with a procedure for data augmentation. This
for the purpose of reaching the research goal.

1.2 Research Method

This section describes the research method applied in this thesis to reach
the goal and answer the research questions presented.

First, a literature review was conducted to gain knowledge of the meth-
ods and datasets available today. Findings from this process build a basis for
the design of the dataset, the choice of network and the metrics calculated
for the final evaluation. Following, a strategy for the labelling process of
the point cloud data was established, intended to answer RQ1. To address
RQ2, a strategy for augmentation of the real-world data was proposed and
implemented. A deep neural network intended for 3D point cloud data was
employed and adapted to fit the proposed dataset. The datasets usability
for training a neural network was evaluated based on the network results,
to measure the degree of achievement of the presented goal.

1.3 Defining the Scope

The scope of this master thesis is the construction of a 3D point cloud data-
set of roof structures suitable as input in a deep learning-based approach
to the problem of plane segmentation. The thesis does not address the col-
lection and processing of the original raw point cloud. The implementation
of improvements for the adapted network, PointNet++ is not addressed in
this thesis. Still, the network is modified to fit the proposed dataset.

Time and hardware constraints is another limitation of this thesis. The
training of neural networks on the available hardware takes several hours.
This makes it impossible to test every combination of model configurations
available for PointNet++, with the time available. The time limitation also
excludes the possibility of adaption and training of other, more complex,
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networks on the proposed dataset. The reported results are also dependent
on the hardware available at the time when the experiment was conducted.

1.4 Outline of the Thesis

The remaining chapters of the thesis are structured as follows: Chapter 2
Background and Related Work is included as an introduction to relevant
topics further explored in the thesis. The acquisition method of the original
point cloud is presented, together with a historical perspective of segment-
ation methods applied in earlier work. Deep learning-based methods are
introduced as an alternative to classic segmentation methods, and here
the need for large amounts of labelled data is explained and the state-of-
the-art network chosen for the evaluation, PointNet++, is detailed. Earlier
3D benchmark datasets of roof-structure data are further presented and
discussed, to substantiate the need for a new 3D dataset.

Chapter 3 Roof Segmentation Dataset presents the making of the new
TRD3DRoofs dataset and the additional augmented version. Guidelines for
the processing of data to make it suitable for deep learning purposes are
proposed as an answer to the first research question. Detailed information
about the labelling taxonomy and important pre-processing steps are then
described. Finally, the two new datasets are presented, including ground
truth examples of different roof structures.

In chapter 4 Deep Learning-Based Roof Segmentation using
TRD3DRoofs, the deep neural network PointNet++ is trained and
evaluated on the augmented version of TRD3DRoofs. Experimental
aspects, such as the hardware, software together and details regarding our
PointNet++ implementation are presented. The result of the predictions
are shown, and later evaluated and discussed, in the following chapter.

Chapter 5 Evaluation and Discussion presents the evaluation performed
on the segmentation approach outlined in chapter 4. The obtained results
are discussed, seen in the light of current research and relevant theory.
Further, choices made in this thesis both regarding the proposed dataset
and the implementation of PointNet++ are examined.

The final chapter, Chapter 6 Conclusion and Further Work reviews the
main proposals of the thesis and presents the conclusions of the work. Sug-
gestions for further work are proposed, based on the findings of the thesis.



Chapter 2

Background and Related Work

Novel technology is continuously implemented, accepted, and discarded,
leading way for what is known as today’s state-of-the-art technology. The
knowledge obtained by the continuous improvement of technology greatly
affects today’s research. In this chapter, core theory that forms the funda-
mental for the rest of the thesis are presented. Further, a deep learning ap-
proach to the problem of semantic segmentation of 3D data is introduced.
Lastly, existing benchmark datasets for the task of deep learning-based seg-
mentation of point clouds are introduced and discussed.

2.1 Fundamental Principles

This section presents theoretical information about 3D point cloud data
and is meant as an introduction to important concepts necessary for the
understanding of the work presented in this thesis. Fundamental inform-
ation about 3D point cloud data is given, together with the acquisition
method applied for the data used in this thesis. The concept of point cloud
segmentation is detailed, including a historical perspective leading up to
one of today’s most promising technologies, deep learning.

2.1.1 Point Cloud Data

A point cloud represents a set of points located in 3D space, described
by their respectively x-, y- and z-coordinates [12]. Together with addi-
tional optional attributes, these coordinates give valuable information to
the points, which jointly form a digital representation of a real-life object.
This point cloud representation is the most widespread representation of
acquired 3D data [13].

7
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The density of a point cloud describes the number of points present per
unit area. Based on the density, point clouds may be divided into two cat-
egories: dense or sparse point clouds. Here, we use the the definitions from
[14], giving the following categories of point clouds: (a) sparse (below 20
points/m2), and (b) dense (from 20 to hundres of points/m2).

Deep learning approaches from point cloud data processing are greatly
related to the density of the point clouds. The different densities in a point
cloud represents different qualities, as they describe the features of the ob-
jects varyingly. Datasets based on point clouds can be used for predictions
when the density of points in the data used for testing is similar to that in
the datasets used for training.

The density varies based on factors such as the method of obtainment,
with the earliest approaches being limited by the hardware of the acquisi-
tion equipment, computation ability and matching techniques, resulting in
sparse point clouds [14]. With better equipment for acquisition established
the last couple of years, computer vision algorithms, and increased com-
putational ability, the possibility for creating and processing denser point
clouds emerged and has been seen in work such as datasets such as The
Hessigheim 3D Benchmark (H3D) [15], DublinCity [16] and DALES [17].

2.1.2 Airborne LiDAR Scanning

Different acquisition methods may be used to obtain point clouds, such
as Image-derived methods, Red Green Blue -Depth (RGB-D) cameras and
LiDAR systems. For this thesis, where a point cloud representing the Trond-
heim area was acquired by Trondheim Municipality and later used as
a basis for a training dataset, Airborne LiDAR Scanning (ALS) was the
method of acquisition. By using pulses of light from a laser, the distance
between the acquisition instrument and the observed object may be de-
termined, making LiDAR a suitable remote sensing method for point cloud
acquisition [18]. A point density of 12-20 points/m2 is typically acquired
through ALS when using state-of-the-art equipment for large scale pro-
jects. A higher density can be obtained through the conduction of multiple
acquisition fly-overs of the same area at a higher expense.

Figure 2.1 gives a visual explanation of the time-of-flight concept ap-
plied.

The resulting 3D coordinates from the acquisition, together with
other optional attributes, describe the features of the points. The x-
and y-coordinates denotes the planimetric ground location, while the z-
coordinate defines the elevation. As mentioned, LiDAR systems detect the
echo of a pulse, and the intensity of this laser pulse at return is a potential
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Figure 2.1: Time-of-flight principle used in LiDAR. The “echo” that is re-
flected after the light from the instrument hits the desired object, is detec-
ted. As the speed of propagation of the pulse is known, and the time delay
between the originally released pulse and its echo may be measured, it is
possible to deduce the desired distance between the device and the object.
Further, the information is converted into 3D coordinates, leading to the
resulting point cloud of the object and the surrounding area [19].

attribute produced by this method. Other attributes generated is a unique
identifier, a timestamp for the return of a pulse, the number of returns one
single pulse resulted in, and the return number for this particular pulse
[19].

One laser pulse can illuminate multiple targets, as the pulse will have
an energy distribution both along and across the beam direction [12]. As a
result, one pulse may lead to the reflection of multiple echoes from multiple
targets. When scanning buildings from above, the first echoes might be
reflections from roof structures, while intermediate and last echoes can be
reflections from surrounding vegetation or the ground below.

By using LiDAR systems as the acquisition method, the coordinate in-
formation is known to be reliable, as there is a direct acquisition of spatial
coordinates. No complicated matching procedures are necessary, reducing
the risk of information loss. On the other hand, as the information is posi-
tional, the derivation of semantic information might be a challenge. Along
homogeneous surfaces, the information tends to be dense, but along break
lines the data is exposed to a possible information loss, as almost no data is
detected at these lines. Another potential issue is the fact that no inherent
redundancy is present, leading to a possibility for corrupted data [19].

Based on the platform of the scanning device, LiDAR systems are di-
vided into Terrestrial LiDAR Scanning (TLS)), Mobile LiDAR Scanning
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(MLS) and ALS. For outdoor applications, ALS is often applied [20] [21]
[22]. For the acquisition of building data in urban areas, ALS has been com-
monly applied such as by Morgan and Tempfli in their work on automatic
building extraction [23], and Chen et al. for their approach on rooftop re-
construction [24]. Kim and Shan [25] used ALS as an acquisition method
for their approach for building roof modeling, and Hu and Yangs visual
perception driven building representation is another example of a method
based on an ALS point cloud [11].

As ALS is conducted either from aircraft, helicopters, or Unmanned Aer-
ial Vehicles (UAV), this is the most suitable acquisition method for the ob-
tainment of a point cloud consisting of roof structures from buildings and
is also applied in this project.

2.1.3 Traditional Segmentation

The process of classifying a point cloud into subsets based on common char-
acteristics among the points is known as segmentation [26] [27]. Points
belonging to the same area will have the same properties, and be of spa-
tial proximity. This separation of a point cloud is a fundamental step in 3D
point cloud reconstruction, making it possible to perform tasks such as ob-
ject detection and classification [27]. To further exploit the point clouds,
making them useful for further analyses, it is necessary to understand what
kind of object each point represents. The purpose of segmentation is to
correctly assign each point contained in the point cloud to a subset, giving
value to the complete point cloud.

Traditional segmentation can be done by a variety of methods. Gener-
ally, the segmentation process typically consists of defining criteria, both
for spatial proximity and other similarity between the points. These val-
ues are then calculated, and points are placed into segments based on the
criteria they satisfy.

Roof Plane Segmentation

For tasks such as urban planning and the placement of solar systems, it
is vital that the point cloud is correctly segmented into buildings and the
surrounding environment. An important step in this process of classifying
an entire urban environment is the segmentation of a roof structure into
separate planes, as illustrated in Figure 2.2. For renewable energy applic-
ations, such as the simulation and estimation of solar energy generation,
the design of each roof is of high relevance. By segmenting the roof struc-
ture into its distinctive planes, the number of planes and the angles they
are placed in may be known.
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Figure 2.2: Example of a roof structure segmented into its contained
planes.

Different methods for the task of roof plane segmentation have been
presented in earlier work. The earliest model-driven methods has a primary
focus on detecting simple shapes in the data, such as geometric structures
or edges. Some early approaches utilise proximity or other attributes to find
similarities. Extensive research on 2D images was already performed when
the interest in 3D data increased, and consequently, several approaches
were developed for the segmentation of images before they were adapted
to point clouds. [28] uses primitives to perform segmentation of planar
and curved surfaces on range images. The proposed algorithm was one of
the first to introduce segmentation based on primitives, rather than indi-
vidual pixels. Xiong et al. [29] proposed flexible building primitives for the
purpose of modeling buildings in 3D. Based on basic elements in roof to-
pology graphs, the technique facilitates the use of model-driven methods
for all kind of buildings. With the use of these basic primitives, the seg-
mentation of complex roof planes are made possible. Figure 2.3 illustrate
the primitive fitting process applied in [29].

Figure 2.3: Primitive fitting: Workflow of the building model reconstruc-
tion by applying a building primitive library. Image origin: [29].

The RANdom Sample Consensus (RANSAC), was introduced by Fisc-
hler and Bolles in 1981 [30]. The algorithm is based on the concept of
fitting a model to the data. Approaches cantered around RANSAC iterat-
ively fits a model to an arbitrary subsection of the data, until a consensus
as to which model describes the data most accurately is reached.

RANSAC is a robust algorithm even in cases of noise and outliers which
are often present in point clouds. However, there is a chance that the al-
gorithm produces false surfaces as it in some cases detects planes that do
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not belong to the same object surface. Awwad et al. proposed a modified
version of the RANSAC algorithm, the seq-NV-RANSAC algorithm, to pre-
vent the extraction of such spurious surfaces [31]. Their approach sequen-
tially checks that the normal vector between the point cloud and the cal-
culated RANSAC plane is below a given threshold. This approach gives,
in addition, an improvement of the quality of the generated planes. An-
other approach for reducing the tendency of generating false planes was
introduced by Xu et al. [32]. Their approach addresses the problem by in-
troducing the weighted RANSAC, where the hard threshold for the normal
vector consistency is changed into a soft threshold founded on two weight
functions.

As RANSAC and other model fitting-based segmentation methods con-
tain a solely mathematical principle, they are robust against outliers and
noise. Another benefit is the ability to process large amounts of point cloud
data in a relatively short time [33]. The main challenge with approaches
utilising RANSAC, is the fact that it is a non-deterministic algorithm, mean-
ing that the same input data possibly will yield different results, and the
produced result will not necessarily be the optimal solution.

Clustering methods are considered an unsupervised learning problem,
as the method does not require any knowledge about the different classes
prior to the segmentation. The purpose of the clustering process is to dis-
tinguish between different groups of points, based on their characteristics
[34]. From the result of the clustering, it is possible to distinguish between
hard and fuzzy clustering. In fuzzy clustering, each point might have a
varying degree of membership to each output cluster, while they would
either belong to a cluster or not, in a hard clustering [35]. Sampath and
Shan [7] iteratively uses the K-means clustering algorithm, first proposed
by MacQueen [36] to create a polyhedral model of building roofs based
on LiDAR point clouds. Normal vectors for small groups of points are cal-
culated and clustered together, giving the principal direction of the roof
planes. By identifying intersecting planes and break lines, the polyhedral
roof models are constructed. Sampath and Shan [37] improved their work
in 2010, using a fuzzy K-means approach and optimizing the clustering
process by using a potential-based approach to estimate the number of
clusters.

Occasionally the normal vectors of neighbouring planes are hard to
distinguish or untrustworthy, making the fuzzy K-means algorithm less re-
liable for point cloud segmentation. Kong et al. [8] introduced a combina-
tion of the K-means and K-plane algorithms giving a more satisfying result
for the segmentation of roof structures. Their approach estimates the clus-
tering centres for the K-means algorithm directly from the elevation of the
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point cloud, improving the initialization.
[38] proposed a method for automatic roof plane segmentation where

the raw LiDAR points are classified into two groups: ground and non-
ground points. To extract the planar roof segments, clustering is applied
based on coplanarity and neighbourhood relations of a point. Lastly, rule-
based post-processing is applied to refine the segmentation.

Albano investigated a fuzzy c-means clustering method for the auto-
matic segmentation of 3D point clouds containing roof structures [39]. A
fuzzy c-means clustering method is implemented to determine the clusters,
where the data points are iteratively relocated among various clusters until
the largest difference possible is attained. A data point might belong to any
of the clusters, and this degree of belonging is determined by the similarity.
Further, the method is refined through a density clustering and connectiv-
ity analysis where planar and coplanar planes are separated. Such planes
might have roof segments that are parallel or mathematically identical but
that are spatially separated. In terms of geometric accuracy, the method
yields good results.

While clustering-based segmentation is easy to understand and imple-
ment, it still has some limitations in the case of 3D point cloud data. Fea-
tures of points are typically generated using local neighbourhoods, making
techniques utilising clustering sensitive to noise and outliers. The choice
of neighbourhood will also affect the result of the segmentation.

Earlier work also includes those based on the simple and effective
region-growing method. Such approaches iteratively perform a set of steps
until they reach a termination criterion; (1) one or more seed points is to
be selected and used to initialize a new segment. These seed points cannot
be present in an existing segment; (2) a homogeneity criterion is decided;
(3) all the neighbouring points of a segment is tested against the criterion
and included into the segment if they meet the criterion; (4) the segment
grows from the included point(s) until no more additional points are avail-
able [26]. Such region growing methods are primarily sensitive to three
factors: the choice of initial seed point(s)and the homogeneity criterion
together with the growth unit.

Vo et al. [40] proposed a novel region-growing algorithm for point
cloud segmentation in urban areas, such as the segmentation of building
roofs. Two stages compose the algorithm that is based on a coarse-to-fine
concept. Their approach uses octree-based voxelization, meaning that the
input point cloud is represented as voxels. A region growing step is per-
formed on this representation on the original point cloud, resulting in the
extraction of the major coarse segments. Later, the output from this step
goes through a refinement process giving the result of the segmentation.
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Further, Xu et al. [41] uses a voxel-based region growing method for
the segmentation of building roofs. By exploiting the fact that roofs con-
sist of planar surfaces and are easily geometrically separated from other
objects, they present a method using region growing with Robust Principal
Component Analysis (RPCA) on a voxelized point cloud. Figure 2.4 shows
the results from the roof segmentation proposed in this work.

Figure 2.4: Region growing as proposed by [41]: Result of roof segment-
ation. Image origin: [41].

In his investigation on roof segmentation, Albano also proposed a re-
gion growing approach combined with RANSAC [39]. A region growing
method where each rooftop is described with the finest spatial detail pos-
sible is used, inspired by the work of Sun and Salvaggio [42]. The initial
seed point is found by an examination of the points surface smoothness,
where the point with the smallest curvature is chosen. Using the normal
vectors and curvatures of the neighbouring points, the region growing pro-
cess segments points together. RANSAC is applied to each segmented area,
with the purpose of fitting a virtual plane from the candidate points, and
then force the points to move on to this plane in order to assign an im-
peccable flatness property to each surface. Compared to the fuzzy c-means
clustering method, this approach achieved slightly better performance, but
with greater computational time.

Shao et al. [43] proposed a novel method for the extraction of roofs
in 3D point clouds, with a top-down strategy implemented rather than the
traditional bottom-up approach usually applied. Based on cloth simulation,
seed point sets containing semantic segmentation is detected at the top of
the scenario. Instead of a single seed point, the method extracts multiple
initial points for the region growing. This region growing technique is fur-
ther exploited to extract building roof points. The authors claim that their
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method simplifies the roof extraction workflow and gives way for rapid
extraction, at the same time as the risk of over-segmentation is reduced.

Compared to clustering-based methods, region-growing methods util-
ise global information, making them more robust to outliers and noise
present in 3D point cloud data. They do, however, typically tend to over-
or under-segment, and the accurate determination of region boundaries is
a challenge [33].

Generally, the segmentation and further processing of a point cloud is
a rather challenging task. The unordered nature of the points combined
with the varying density distributions and large amounts of data makes
the segmentation a complex and time-consuming assignment. The advent
of machine learning and especially deep learning-based neural networks
have introduced a possible solution to this problem, leading to a revolution
in the case of 3D point cloud processing.

2.2 Deep Learning

As an opening note to the coming decade, Forbes wrote that “the increasing
ability of machines to learn and act intelligently will absolutely transform
our world” [44] and accordingly placed AI at the very top of the list of
technology trends that will define the next 10 years. The interest in AI
has been rapidly growing for some years now, from simple single-layer,
feed-forward neural networks to what is largely considered today’s state-
of-the-art in most AI disciplines: deep learning. Making AI understand real,
sensed data through for example object detection, classification, and seg-
mentation has been particularly in focus as it facilitates automatic, in-depth
understanding of the world around us. In this section, a brief introduction
to the principles of deep learning is given, before a number of influential
deep learning methods designed for the task of part segmentation of point
clouds is presented.

2.2.1 Principles of Deep Learning

Deep learning is a sub-division of AI that can be described as a more soph-
isticated and mathematically complex branch of machine learning. When
talking about machine learning today, people generally refer to deep learn-
ing. The core concept of this technology is to allow machines to learn to
recognize patterns the same way we humans do – through experience.
Mimicking the network of neurons in a biological brain, the algorithm is
made up of layers of artificial neurons that learn a so-called activation
function mapping from input to output [45]. The structuring of the neural
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network is termed the network architecture and can be looked upon as a
deep, weighted and directed graph made up of layers of neurons. An ex-
ample of a simple neural network is shown in the figure Figure 2.5 below.

Input layer Hidden layers Output layer

i

o

h1 h2 hn

Input 1

Input 2

Input n

Output 1

Output m

Figure 2.5: A simple artificial neural network with three hidden layers.

Similar to a person, the network will learn a feature if it is exposed
to enough examples. In training, the example data are inputted together
with its corresponding ground-truth with correctly labelled data that tells
the algorithm what it is looking at. After processing the data, the network
will conclude as to the meaning of the input data, presented in the form
of a predicted output label for each datapoint. The algorithm learns by im-
plementing a loss function that calculates the difference between the pre-
dicted label and the given ground truth, given some error criteria, and up-
dating the network weights so that it minimizes the loss and consequently
maximizes the probability of the network predicting the correct label next
time it sees a similar example.

To ensure that the network has enough parameters to learn a precise
mapping, especially for more intricate features, it is important that its ar-
chitecture is sufficiently complex [46]. If not, the model will not be able to
accurately capture relationships present in the data. The complexity is con-
stituted by the number of layers, referred to as the depth of the network, as
well as the arrangement of different layer types and their dimensions. All
neural networks have one input layer and one output layer with dimen-
sions that corresponds to the dimensions of the input- and output data,
respectively. All other intermediate layers and are referred to as hidden
layers and accounts for all computations performed in the neural network.
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Deep neural networks are often defined as networks that utilise numer-
ous hidden layers, where each layer learns specific features at different
abstraction level, e.g., object parts, contours and colours, corners, edges
and smaller patterns [47].

Some of the most common hidden layer types are fully connected,
convolutional, pooling, upsampling and recurrent layers. Fully Connected
Layers (FCLs) are perhaps the most frequently used and are found in most
architectures. They connect every neuron in one layer with every neuron in
the next. Multi-Layer Perceptrons (MLPs) are the simplest form of artificial
neural networks and consist of the input layer, one or more FCL(s) and the
output layer. The next type is convolutional layers. In these, the presence
of smaller features is searched for by convolving one or more kernels, with
associated kernel weights, over the data. Such layers are often followed
by a pooling layer. Pooling layers reduces the dimensions of the data by
combining the outputs from multiple neurons in the previous layer into a
single input to a neuron in the next layer. Typically, by preserving the max-
imum or average value. Finally, we have the recurrent layers. These types
of layers can be used to give a network a memory resembling property by
adding a feedback loop that includes the output from a previous calcula-
tion done by the same layer as input together with the output from the
preceding layer.

As the name suggests, what is learned by the network in the hidden
layers are somewhat of a mystery. For this reason, deep learning is com-
monly referred to as a "black box" [48]. We simply do not understand ex-
actly which information is emphasized and which is ignored when a deep
neural network arrives at a prediction, and to an even lesser extent can we
control it. The only thing we can control is the examples we expose the
network to and the correctness of their labels. Because of this, the quality
of the data used as input becomes all the more important.

Given the fact that a neural network only learns what it is shown during
its training process, there are several factors that are important to consider
when generating a dataset for the purpose of deep learning. First of all, it is
important that the labels are correct and accurately determined as poorly
labelled data can confuse the model and deter it from reaching an optimal
mapping. Furthermore, it is crucial that the dataset is large enough so that
the network will have been exposed to enough examples to be able to prop-
erly learn the object in question. Another essential consideration is that
the data must contain a good variety of, for example, possible shapes, po-
sitions, rotations, colours, surroundings, and combinations of such traits,
to become able to generalize well within a class of objects. A common
practice to increase the size and diversity of a dataset is to perform data
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augmentation. This entails generating synthetic example data by shifting,
scaling, rotating, skewing or in similar ways alter the initial data. This is a
particularly critical step when dealing with unordered point cloud data as
such models need to be invariant to all permutations of input order for a
point set.

Preliminary to training a deep neural network, a dataset is typically
split into a training, and testing set, with the training set containing the
bulk of the data. The network is first trained using solely the training set
for a fixed number of iterations before the final network is evaluated using
the never-before-seen test data. This provides an unbiased assessment of
the network performance. The aspiration of the training phase is that the
model should learn the general characteristics of the data in such a way
that it also performs well on the unseen data in the testing set. A challenge
is to train the network long enough for it to learn necessary complex fea-
tures, but not too long because it might start to memorize the training data
in general. This is known as overfitting. An overfitted model is not desir-
able, as it will perform inadequately when exposed to new, unseen data
[49].

Often the dataset is split into an additional portion called the validation
set. This is used to evaluate the model during training as a tool for tuning
the model hyperparameters. The hyperparameters comprise a number of
model-specific parameters that affect the training process, for example, the
learning rate, momentum, batch size, number of iterations, step size, ran-
dom dropout, activation function, loss function, and decay rates, to men-
tion a few [50]. These differ from other model parameters, like the model
weights and the activation function coefficients, by the fact that they are set
in advance and not learned during training. They are used to gain more
control over the training process, and fine-tuning of these parameters is
crucial for the performance. A vital part of designing a good model is to
identify good values for these parameters, and these should therefore be
optimized to prevent both over- and underfitting of the network. This pro-
cess is called hyperparameter optimization [51].

In this section, we have only superficially remarked on the most vi-
tal aspects surrounding how a supervised deep neural network learns to
understand and recognize features. We have talked about the network ar-
chitecture, the importance of the input data, the training process and the
numerous parameters that must be decided. With this many variables, it is
almost an impossible task to point out a single optimal solution.
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2.2.2 Influential Deep Learning Methods for Point Cloud
Part Segmentation

For a long time, advancements in this field were mainly reserved for 2D
image processing and similar problems within the field of computer vis-
ion. Countless, large-scale datasets with annotated images, like ImageNet
[52], KITTY [53], Microsoft COCO [54] PASCAL VOC [55] and Cityscapes
[56], has been made publicly available over the years and has allowed for
deep learning algorithms to achieve incredible results in various image re-
cognition tasks [57], [58] [59] [60] [61]. Even though these methods have
come extremely far, they all have one undeniable limitation: they can never
be better than approximations, as the real world has three dimensions and
not two.

Unfortunately, the task of adapting algorithms designed for 2D applic-
ations to 3D point cloud data represents a considerable engineering chal-
lenge. This is not only due to the high dimensionality but also to the fact
that point clouds, unlike 2D data, is unordered by nature and that the data
density is extremely varying, making it unfeasible to directly apply these
methods to 3D cases [62]. To elude these problems, many researchers focus
on volumetric methods where the point cloud is typically transformed to
a regular voxel grid or a collection of multi-view images before processing
[63] [64] [65]. Whereas these methods benefit from the fact that they can
adopt 2D techniques, they also adopt the accompanying inaccuracies of
the necessary quantization.

However, with computers becoming progressively more powerful and
3D data acquisition tools becoming cheaper and more precise, spurring
the release of several new benchmark datasets, more and more work is
being conducted on directly applying deep learning on 3D point clouds
[66]. Methods that do not use an intermediate transformation, are gen-
erally termed point-based methods and can be further be categorized into
MLPs, convolution, and graph based methods. Here we present some of the
point-based deep learning architectures in each category that have been
highly influential or are considered state-of-the-art at the task of part seg-
mentation of 3D point cloud data.

For comparison purposes, the methods performance on the the syn-
thetic dataset ShapeNet Parts [67] are proposed. This is a well-known
benchmark dataset containing shapes represented by 3D Computer-Aided
Design (CAD) models. Novel work often evaluate their performance on
part segmentation by training and testing on this dataset.
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MLP-based methods

One of the first deep learning networks that successfully processed a raw
point cloud, that is, without first transforming the data, is called Point-
Net and was presented by Qi et al. [62]. This novel network architecture
laid the foundation for the new branch of point-based 3D deep learning
techniques. Similar methods, whose network mainly consists of MLPs, are
termed MLP-based methods.

PointNet takes an entire point cloud as input, where each point is rep-
resented by its coordinate values (x, y, z), and outputs a per point label for
each point in the input data. Optionally, other attributes, such as colours,
normal, e.g., can be included as input. The architecture is made up of three
main elements: (1) A stack of MLPs that learns per-point features, followed
by a pooling layer that extracts global features using the symmetric func-
tion max pooling. This combination lets the network be invariant to the
input order of points. (2) A feedback mechanism that combines global fea-
tures with local point features, enabling per-point prediction of semantic
point labels. (3) Two joint alignment networks that preserve invariance to
rigid transformations of the point cloud by aligning the input point and
point features.

Although groundbreaking, PointNet has one significant shortcoming –
it is, by design, not able to capture local relations between neighbouring
points in metric space. Because it does not consider the physical closeness
of points, it struggles to capture finer patterns and understand more com-
plex scenes. Realizing a solution to this problem, the creators of PointNet
shortly after release their improved architecture under the name Point-
Net++ [68]. This method rapidly attracted attention as it outperformed
the current state-of-the-art at point cloud recognition tasks by a large mar-
gin on several benchmark datasets.

Figure 2.6: Illustration of the PointNet++ architecture and methods using
2D points as an example. Segmentation and classification is exemplified
using SSG. Image origin: [68].
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PointNet++ is an hierarchical neural network that applies the original
PointNet recursively on subsets of points grouped into progressively larger
local regions. This way it can learn both local structure information as well
as the global context. The abstraction of the local regions is performed us-
ing a number of set abstraction levels. Each level consists of three key com-
ponents: (1) A sampling layer that uses iterative Farthest Point Sampling
(FPS) to select a subset of points that acts as centroids for their respective
local region. This is a sampling algorithm that always selects the data point
that is furthest from form any previously selected points until k points are
selected. (2) A grouping layer that defines the local regions by locating
neighbouring points for each centroid using a ball query. (3) The PointNet
layer utilizing a miniature version of PointNet to learn local patterns and
then construct summarizing feature vectors for each region. Using a local
coordinate system, with a basis in the centroid coordinates, it can preserve
relative point-to-point relations within the local regions. Figure 2.6 illus-
trates the architecture of PointNet++.

Additionally, PointNet++ introduces two novel density adaptive layers
that intelligently combines features from different scales based on local
densities. This improves the network’s ability to handle data with non-
uniform sample densities, something which is very common in remotely
sensed point clouds. The first layer is the Multi-Scale Grouping (MSG)
layer. It makes use of random point drop out for input points during train-
ing to expose the network to training data with varying density. The second
layer is the Multi-Resolution Grouping (MRG) layer. This layer is less com-
putationally expensive than the MSG layer but performs slightly worse.
It combines the feature vectors from different abstraction levels using
density-dependent weights. They show, through testing, that the model
performance greatly improves when MSG or MRG is used, compared to
when the network is trained using only Single Scale point Grouping (SSG).
To this date, PointNet++ is still considered state-of-the-art due to its low
complexity paired with high performance. Following their release, numer-
ous researchers have been inspired by PointNet and PointNet++ and sev-
eral improvements have been suggested.

One such improvement is a module designed by Jiang et al. [69], to
be integrated with various PointNet-based architectures to optimize their
performance for semantic segmentation. It uses an Orientation-Encoding
(OE) unit to convolve the features of neighbouring points in eight different
directions, improving the networks ability to learn shapes invariant to their
orientation. Increased ability to handle multi-scale features was also real-
ized by stacking multiple OE units and implementing shortcuts between
them.
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[70] uses PointNet++ as a feature extractor in their proposed Similarity
Group Proposal Network (SGPN). They then introduce a similarity matrix
to represent the similarity between any two point features. Exploiting the
fact that points belonging to the same object instance should have a sim-
ilar feature, they use the rows in the similarity matrix to combine similar
point into group proposals, followed by a PointNet layer that predicts a
confidence map for the similarity matrix. Finally, they use a semantic seg-
mentation scheme to classify each group before filtering out proposals with
a confidence score below a certain threshold. This, as well as using Non-
Maximum suppression to create non-overlapping object instances, makes
SGPN the very first point cloud instance segmentation framework.

Chen et al. [71] argue that PointNet++ and its early derivatives, are
unable to learn geometric patterns accurately and robustly, as they do not
consider the spatial distribution of the point cloud when creating the sub-
regions for the feature extraction. They utilise the FPS and the ball query
algorithms proposed by PointNet++, as well as their upsampling architec-
ture, but present a new Location Spatial Aware (LSA) layer together with
deeper MLP, for the feature learning a set of Spatial Distribution Weights
(SDWs) in a hierarchical fashion based on the spatial relationships in local
regions. They further propose LSAnet that implements the LSA layer and
show that it is highly effective regarding extracting fine-grained patterns.

Convolution-based Methods

Convolutional Neural Networks (CNNs) have, for a long time, been state-
of-the-art at 2D image recognition tasks due to their high accuracy and
efficiency [72]. These are a category of neural networks that uses convolu-
tion layers as core components in their architecture. However, traditional
convolution cannot be directly to point clouds because of their irregular
and unordered nature, making the designing of new convolutional operat-
ors a popular, but challenging, research topic.

For instance, Li et al. propose PointCNN [73], a network that learns an
X-transform from the grouped input points using a regular grid. This way,
they achieve a weighting of the associated input features as well as the
permutation of points into a local convolution order. Conventional convo-
lutional operators, such as element-wise product and sum, can thus be ap-
plied to the transformed features. PointCNN attained state-of-the-art mean
Intersection over Union (mIoU) for part segmentation on the ShapeNet
Parts dataset but takes long to converge at training time [74].

Alternatively, the lightweight architecture Shellnet [74], implements a
novel convolutional operator that makes it able to achieve even better res-
ults in a highly effective manner. It uses concentric sphere shells to define
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a point neighbourhood for each point, calculate representative features,
and resolving the ambiguity of the point order, permitting the appliance of
traditional convolution on the aggregated features.

Thomas et al. proposed Kernel Point Convolutions (KPconv) [75]. They
preserve the point order by using kernel points to store the convolution
weights in Euclidean space and correlates these to close input points using
a linear function. As KPconv has the capacity to handle any number of
kernel points and their location in continuous space can be learned by the
network to adapt local geometry, it becomes more flexible than CNNs such
as PointCNN that uses fixed-grid convolutions, making it better at handling
arbitrary sized point clouds.

Opposed to the explicit correlation function implemented by KPconv,
[76] learn the kernel-to-input relation using a MLP. Furthermore, the
method separates the spatial and feature components of the kernel. The
location of the spatial kernel elements are randomly sampled from the unit
sphere.

The current benchmark on ShapeNet Parts [77] was published in
December 2020 and is held by FG-Net [78]. It suggests three novel con-
tributions for effectively handle large-scale point cloud processing: (1) A
geometry-sensitive modeling module using per-point correlated feature ex-
traction. (2) A residual learning architecture based on feature pyramids,
facilitating memory-efficient, multi-scale feature learning. (3) Enhanced
performance and efficiency by presenting a swift outlier and noise removal,
together with a down-sampling scheme of extensive point clouds.

Graph-based Methods

Another popular design choice for neural networks is the graph-based ap-
proaches. Graphs are especially useful when it comes to capturing the
structural relations between points. This allows for the local and global
context to be considered to a larger degree when predicting per-point la-
bels for segmentation tasks.

One of the firsts to propose a graph-based approach for point cloud
deep learning was Landrieu and Simonovsky [79]. Using Super Point
Graphs (SPGS), they were able to preserve the relations between points
organized into similar geometric elements represented as superpoints. The
contextual relationship amongst these elements is encoded in the edge fea-
tures linking the superpoints in the SPG. Assuming that points in a super-
point are homogenous, a descriptor is calculated for each superpoint using
PointNet. Finally, a graph convolutional network is used to segment the
superpoints into meaningful partitions.
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To overcome the problem of early methods only considering points
one by one in an independent fashion when calculating features, Wang
et al. proposed specGCN [80]. This is a neural network that utilises spec-
tral graph convolution on local, nearest neighbour graphs in addition to a
novel graph pooling scheme, forcing joint feature learning and the deduc-
tion of local structural information.

Another well known graph-based architecture is DGCNN [33]. Introdu-
cing a novel operator, EdgeConv, they build upon the original PointNet ar-
chitecture to improve the capture of local geometric features. It constructs
a local neighbourhood graph in feature space and applies EdgeConv to the
edges connecting neighbouring points. Opposed to other graph CNNs, the
graph is dynamically updated after each layer in the architecture. This way,
they do not only exploit closeness in Euclidean space but also the similarity
of features, to achieve excellent results in various point cloud recognition
tasks. Zhang et al. [81] further improves this method by adding shortcuts
between layers, enabling better hierarchical feature learning, and remov-
ing PointNet’s transformation network. This boosts performance while re-
ducing model complexity.

In Table 2.1 a summary of the performance of the mentioned methods
is given in the form of their reported results on ShapeNet Parts, number
of model parameters, as well as inference times, for comparison. The in-
ference time refers to the time a network needs to make a prediction for a
single input, i.e. one forward pass.
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Table 2.1: 3D part segmentation comparisons of mIoU on points on
ShapeNet Parts. The table also include number of model parameters and
inference for methods where these were obtained. Shellnet is not included
as it reports a different metric.

Methods mIoU Parameters [M] Inference time [s]

PointNet [62] 83.7 3.48 0.015
PointNet ++ [68] 85.1 1.48 0.027
SGPN [70] 85.8 - -
PointCNN [73] 86.1 0.6 0.012
SpecGCN [80] 85.4 2.05 11.252
DGCNN [33] 85.1 1.84 0.064
LDGCNN [81] 85.1 1.08 -
LSAnet [71] 85.6 2.3 0.06
KPConv [75] 86.4 15 12.2
ConvPoint [76] 85.8 - -
FG-Net [78] 86.6 - 0.055

Evaluation Metrics

The mentioned mean Intersection over Union (mIoU) is one of the
most common evaluation metrics used to assess a segmentation result
outputted by a neural network. Another frequently used metric to evaluate
network performance is Pointwise Accuracy (PA) [66]. For the evaluation
of PointNet++ trained on the proposed dataset, both metrics are reported.
These values are computed between the ground truth and the predicted
output. The following quantities are defined to make it possible to describe
these evaluation measures.

True Positive (TP): Number of points correctly predicted as belonging to
a part type.
True Negative (TN): Number of points correctly predicted as not belong-
ing to a part type.
False Positive (FP): Number of points incorrectly predicted as belonging
to a part type.
False Negative (FN): Number of points incorrectly predicted as not be-
longing to a part type.
Number of parameters (N): The total number of part types possible.

True values indicate that the predictions are correct, while false values
correspond to wrong predictions.



Chapter 2: Background and Related Work 26

IoU =

Intersection
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Figure 2.7: The illustration shows how the IoU metric is found by taking
the intersection of the areas over the union.

PA is calculated by dividing the number of correctly predicted points
by the total number of points present. This will result in the metric defin-
ing the percentage of correctly classified points for the complete dataset.
Formally, it can be defined as:

PA=
T P + T N

T P + T N + F P + FN
(2.1)

While being a metric easy to understand, it might give a skewed impres-
sion of the performance. If the method is especially excellent at segmenting
physically larger planes, as might be the case in roof plane segmentation,
the PA metric will favour this performance and increase above what is ex-
pected. Another weakness is that it does not take class imbalance present
into consideration.

The Intersection over Union (IoU) is found by dividing the overlap
between the predicted area and the ground truth area, by the total of both
their areas. Figure 2.7 shows an explanation of how a single-class IoU is
found. The mIoU is obtained in a class-wise fashion, where predictions for
a given class is evaluated before the mean score is found over all classes. In
a more formal matter, the metric is computed using the following formula:

mIoU =
1
N

N
∑

i=1

T P i

T P i + F P i + FN i
(2.2)

This score provides a balanced indication of the performance, making
it a preferred metric in the evaluation of the segmentation of point clouds
[10].
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2.3 Existing Benchmark Datasets

A challenge of supervised deep learning approaches is the emerging need
for more training data in cases where the input is three-dimensional rather
than two-dimensional [49]. Consequently, large 3D benchmark datasets
with correctly annotated data is essential for the training and testing
of neural networks. Outdoor and indoor environments require separate
benchmark datasets, as there is a significant difference between objects ap-
pearing indoors and outdoors. Remote sensing data is region dependent,
meaning that data obtained in a specific area not necessary are suitable for
other regions, as both nature and constructions present varies with the loc-
ation. Task-specific data is therefore required for tasks where deep learning
approaches are to be utilised for geospatial data.

Additionally, there is a major difference between real-life and synthetic
data. Synthetic data constructed from 3D CAD models are both cheap to
obtain and easily accessible. Such data is of high quality containing few er-
rors. Real-world data, on the other hand, demands the use of costly equip-
ment and manual labour, increasing the cost and reducing the availability.
A lot less datasets containing real-world data is accessible compared to syn-
thetic datasets. Nevertheless, there is a large demand for real-world data,
as synthetic data cannot fully represent real-life scenes. Tests performed by
Uy et al. [82] shows that networks trained using synthetic datasets perform
poorly when tested on real-life data.

With regards to the task of reconstruction of building data, several real-
world benchmark datasets have been established in the last couple of years.
These include datasets obtained both through image derived methods and
with the use of LiDAR technology, and some of these important benchmark
datasets are detailed in this section.

2.3.1 Image Derived Datasets

One commonly applied image-based method is Structure-From-Motion
(SFM). The method automatically extracts features from a set of numer-
ous overlapping images, before an iterative bundle adjustment procedure
is performed based on this dataset. By using this procedure, SFM is cap-
able of handling multi-view images instantaneously [83]. Multiple view
Stereovision/Multiview Stereo (MVS) [84] is used for matching and re-
construction of 3D point data from pictures, and is important for the auto-
matic obtainment of data [85]. Large amounts of point cloud data can be
generated by the use of MVS algorithms, making it a suitable method for
obtaining dense 3D point clouds [14].
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Li et al. [86] proposed Campus3D as a point cloud benchmark for hier-
archical understanding of outdoor scenes. Based on UAV images obtained
with drones over the National University of Singapore, SFM with MVS was
used to construct the 3D point cloud. The point cloud contains 937.1 mil-
lion points and is annotated with point-wise labels, using a strategy where
the projected 2D images are labelled, before these labels are assigned to
the corresponding 3D points. Campus3D have hierarchical labels for better
scene understanding, and instance labelling is used to distinguish between
different instances, including different planes of a roof structure. As the
site of obtainment is a campus, the buildings are quite complex and very
different from typical Norwegian roof structures.

Like Campus3D [87], the SensatUrban dataset is based on UAV images
constructed into a 3D point cloud with the use of SFM. The dataset was
proposed by Hu et al. as an urban-scale point cloud and separates from
earlier work because of its large number of points. 2847 million points are
annotated into 13 classes describing typical outdoor areas. However, no
instance segmentation is performed, and roofs are not separated from the
rest of the building. This makes the dataset unsuitable for the task of roof
plane segmentation.

The use of SFM for the obtainment of dense 3D point clouds have in-
creased in the last couple of years, but the quality of such points clouds is
not as good as those obtained with LiDAR systems [88].

2.3.2 LiDAR-based Datasets

For the obtainment of building data, both terrestrial, mobile, and aerial
LiDAR scanning is commonly applied. TLS differs from ALS in that it oper-
ates from a ground-based stationary sensor rather than an airborne plat-
form. TLS is known for collecting data of high accuracy at a fast speed and
is commonly applied in medium to close-range environments. The result is
a point cloud of high density [19]. Opposed to TLS, MLS is performed from
vehicle-based mobile platforms, making it possible to gather data along a
path [89].

Terrestrial and Mobile Datasets

Datasets obtained through TLS includes semantic3D.net, a large-scale 3D
point cloud presented by Hackel et al. containing four billion manually
labelled points [49]. Paris-Lille-3D [90] and SemanticKITTI [91] are two
well-known large-scale datasets obtained through MLS, both of them con-
taining a large amount of annotated points. Even though these benchmark
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datasets are of high quality and contains a vast number of points, they con-
tain little to no points describing the roof structures of buildings, as they
are obtained from ground-based stations.

Airborne Datasets

ALS are the most common obtainment method for datasets meant for roof
segmentation tasks, as the data is acquired from an aerial point of view.
One of the first high-quality point cloud datasets meant for this task was
The Vaihingen 3D Benchmark (V3D) [92]. This is one of the most well-
known benchmark datasets in the field of remote sensing, and it contains
around 1.2 million points obtained by ALS. The points are annotated and
categorized into nine categories, one of them being roofs. The dataset are
however out-of-date with a median point density of 6.7 points/m2 and a
quite low number of points, making it unsuitable for deep learning tech-
niques [17].

The Hessigheim 3D Benchmark (H3D) [15] recently replaced V3D as
the International Society for Photogrammetry and Remote Sensing (ISPRS)
Benchmark for semantic segmentation of 3D point clouds [93]. By using
UAV for data obtainment, Kölle et al. established a dataset manually la-
belled into eleven classes. Figure 2.8 shows an example of the class labels
present in the dataset. The dataset has a point density of 800 points/m2,
meaning that it is a very dense point cloud. Too high densities leads to lim-
itations of the use of the dataset in deep learning applications. A datasets
with such a high point density can merely be used for small scale projects
due to the high cost of data acquisition and processing. Such high densit-
ies is however valuable for small scale projects such as cultural heritage or
construction planning. The area of obtainment is the village of Hessigheim
in Germany, and the buildings found in this area are to some extent similar
to buildings found in Norwegian cities such as Trondheim. H3D includes
a roof-class, but no further labelling into different planes is performed,
making the dataset unfit for segmentation of roof planes.

Another aerial LiDAR dataset annotated for use in deep learning is
the DublinCity dataset established by Zolanvari et al. in 2019 [16]. Ob-
tained in the city of Dublin, the dataset contains 260 million manually
labelled points that have been categorized into 13 classes at three hier-
archical levels, including roofs. No further segmentation is performed for
these categories, meaning that the dataset contains no plane information
for roofs. Compared to the H3D dataset, the dataset has a lower density
with around 348 points/m2, but is still a dense point cloud. As for H3D, is
the dataset too dense to be suitable for large scale projects. As the area of
obtainment is the city of Dublin, the roof structures present will greatly dif-



Chapter 2: Background and Related Work 30

Figure 2.8: H3D: Class labels present in the H3D dataset. No segmentation
of roofs into planes are present. Image origin: [15].

fer from those found in Norwegian cities, due to the difference in building
construction.

LASDU, proposed by Ye et al., is another large-scale dataset for se-
mantic labelling acquired through ALS [94]. Around 3 million points are
manually labelled, and the density of the point cloud is approximately 4
points/m2. Compared to other similar datasets, LASDU only contains five
categories, and the roofs are not separated from the building structures,
and consequently, no segmentation of roofs is possible with this dataset.

The ALS obtained dataset DALES is one of the latest benchmark data-
sets with regards to large-scale point cloud data acquired through LiDAR
[17]. Compared to the LASDU dataset, the dataset is denser, containing
approximately 500 million manually labelled points giving a density of
50 points/m2. Eight categories are defined, including roofs and facades of
buildings. The large size of the dataset makes it suitable for deep learning
purposes such as the segmentation of roofs. However, the roof structures
are not further divided into planes.

Established for the purpose of building reconstruction and with a focus
on including semantic roof type information, the RoofN3D dataset [95]
was obtained in the New York area for use in deep learning approaches.
Unlike other benchmark datasets, information about roof type is included
in the point cloud, and the roofs are further segmented into planes. Con-
sequently, the dataset can be considered state-of-the-art when it comes to
datasets for roof plane segmentation of 3D point clouds. However, the point
cloud has a density of only approximately 4.7 points/m2, and the data was
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obtained in the New York area in 2013 and 2014, making it out-of-date. As
the area of obtainment differs a lot from the city of Trondheim and typical
Norwegian buildings, the roof types present in the dataset is less relevant
for use in Norway.

As mentioned, remote sensing data is region dependent. Building struc-
tures vary greatly in different areas, and as a result, different datasets need
to be generated based on the location of the area of interest. As most of
the existing datasets are international, this creates demand for a separate
dataset containing typically Norwegian building structures. Another draw-
back of current benchmark datasets is the lack of an instance labelling of
roof planes. In addition, no dataset with a density corresponding to that
obtained in standard ALS operations exists. This leads to a need for data
suitable as input for data-hungry deep learning networks meant for roof
plane segmentation. With this work, we aim to close this gap, by creating
a real-world 3D point cloud dataset suitable for deep learning methods
applicable in Norwegian survey and mapping projects.
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Roof Segmentation Dataset

Segmentation of 3D roof structures into planes is a challenge possible to
solve with deep neural networks. This demands a need for datasets con-
taining large amounts of roof-plane structures. In this chapter, the aim is to
present how we establish a dataset suitable for deep learning-based tech-
niques. Guidelines for the processing of LiDAR data is introduced, includ-
ing the labelling strategy for the annotation of ground truth data. Based
on these guidelines, the TRD3DRoofs dataset is established. This dataset is
obtained in the Trondheim area and manually annotated into typical Nor-
wegian roof structures and planes. The original TRD3DRoofs dataset con-
sists of roofs representing real-world buildings. An additional augmented
version based on this original dataset is also presented, where augmented
data is added to create a more well-balanced dataset of a larger size well-
suited for deep learning. All implemented code for data augmentation and
preparation was written using Python as the programming language.

3.1 Proposed Guidelines

In this section, guidelines for the establishment of a training dataset from
an ALS point cloud is proposed. The result will be a dataset suitable as
input for machine learning algorithms. These guidelines are established as
an answer to the first research question.

The input data is a raw LiDAR point cloud acquired through ALS. As the
data lacks semantic information, a taxonomy for the annotation of points is
established. This taxonomy is based on what we consider Norwegian stand-
ards for roof structures and are designed to be suitable for data meant as
input in deep learning algorithms. A selection of objects from the original
dataset is performed, as the raw point cloud covers a vast area. These selec-
ted roof objects will form the foundation for the dataset, indicating a need

32
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for a selection strategy. For the concrete labelling task, manual segment-
ation is performed using the software CloudCompare [96]. This process
takes the raw LiDAR point cloud data as input and results in manually la-
belled roof structures annotated with ground truth semantic information.
Using the taxonomy for semantic labelling, each point will contain inform-
ation about the plane segment and concrete roof it belongs to, together
with the type of roof structure.

The next steps are crucial for the final design of a dataset suitable for
deep learning. As the number of manually segmented roof structures are
too low for data-hungry networks, augmentation of the data is necessary
to increase the size of the dataset. Additional roof structures are created
by shifting the labels of the planes within one category. This is performed
for all roof structures, except for those containing only rectangular plane
types, resulting in a more balanced dataset. The rectangular planes are
omitted from the augmentation, as most of the planes in the original data-
set are rectangular. The original dataset is kept as a separate dataset, result-
ing in the establishment of two separate datasets, respectively the Original
TRD3DRoofs dataset and the Augmented TRD3DRoofs dataset.

Preparing the data by performing normalization of the coordinates and
a shifting of origin is done for both datasets. The result is a 3D dataset
representing real-world buildings in Trondheim Municipality, and a well-
balanced 3D point cloud dataset annotated with semantic information, on
a format exploitable as input for a deep neural network.

3.2 Data Acquisition

The original LiDAR data is provided by Trondheim Municipality and
was obtained on 04. April 2018. For the georegistration, the coordinates
are represented by the the European Terrestrial Reference System 1989
(ETRS89), while the projection used is the Universal Transverse Mercator
(UTM) zone 32N. For the vertical datum, Normal Null 2000 (NN2000) is
used.

Obtained over a vast amount of Trondheim Municipality, the LiDAR
data consists of both rural and urban areas. The topography of this area
varies between both relatively flat regions and more hilly terrain. For the
annotation, the study area contained several areas mainly in the city of
Trondheim. These areas were primary residential areas surrounding the
city centre. Figure 3.1 shows a visualization of the LiDAR point cloud in a
typical residential area in Trondheim.The original point cloud was divided
into separate files based on the area of obtainment. To locate the desired
roof structures and the location of these, the bounding box of each file
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(a) Tilted view of the area. (b) Area seen from above.

Figure 3.1: Visualizations of LiDAR Point Cloud.

were visualized using ArcGIS® Pro [97].
As the roof structures are obtained from existing buildings, it was of

interest to make sure that each building present in the point cloud were
identified and connected to the real-world building. This was desirable as
the raw labelled dataset is to be applied in another thesis where the task
is to connect each point in a building to an existing building footprint. As
a result, it is necessary to identify all buildings. In Norway, each building
is given a building ID established by the Norwegian Mapping Authority,
Kartverket. This building data may be found in the common map data-
base, “FKB”, maintained by the Geovekst-parties in each municipality. The
data is made available at the online service https://geonorge.no, and
for this work the dataset “FKB Bygning” for Trondheim has been down-
loaded from this service. The projections used is the same as for the LiDAR
data, the vertical datum is ETRS89 UTM zone 32 and NN2000 is the height
datum. Licenced under the “Norge-digitalt” license 1, this data is restricted
to non-commercial use. Figure 3.2 gives an overview of the area of obtain-
ment. The bounding boxes corresponding to the LiDAR data is visualized
as slightly grey, transparent squares.

3.3 Data Labelling Convention

A taxonomy for labelling each roof plane was established and is presented
in this section. This was done to make sure that all needed information
connected to the plane is preserved.

1For more information, see https://www.geonorge.no/Geodataarbeid/
Norge-digitalt/Avtaler-og-maler/Norge-digitalt-lisens/

https://geonorge.no
https://www.geonorge.no/Geodataarbeid/Norge-digitalt/Avtaler-og-maler/Norge-digitalt-lisens/
https://www.geonorge.no/Geodataarbeid/Norge-digitalt/Avtaler-og-maler/Norge-digitalt-lisens/
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Figure 3.2: Overview of the area of 3D capture surrounding Trondheim.

As the dataset is to be used in a separate thesis where the roof struc-
tures manually labelled in the 3D point cloud are to be connected to the 2D
polygon footprint representing the same building, some considerations re-
garding the manual labelling were necessary. Because of this interest in pre-
serving the building information, every single segmented roof is labelled
with the corresponding building ID. This gives the possibility of connecting
the correct building in a point cloud to the corresponding footprint.

For the same task, buildings that are physically connected but have
different IDs needs to be labelled as two individual buildings. In the point
cloud, these separate buildings will in some cases be impossible to split
apart. To solve this problem, each building is given a number from 1 to n
where n is the largest number of connected buildings present in the dataset.
For example, if the roof only belongs to one building, the plane is labelled
1. If three connected buildings share the same roof, the plane is labelled 3.

For the semantic annotation of the data, it was decided that each roof
is to be assigned to a roof category based on the structure of the roof.
The selection criteria for roofs segmented were based on the eight roof
types proposed by Kada [98]. These roof types are based on primitives, and
their simple nature makes them suitable as the fundament for other more
complicated roof types. Additionally, they are established from German
residential buildings, which are closer to Norwegian building structures
than those found in residential areas in other parts of the world. The roof
types proposed by Kada were flat, shed, hipped, asymmetric hipped, gabled,
corner element, T-element, and cross element.
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After an examination of the data set and the area of study, it was dis-
covered that some changes to the definition of roof types would be suit-
able for Norwegian areas. One discovery was the fact that a lot of the roof
structures were a combination of several types, and therefore an additional
category named combination was proposed. As no buildings with an asym-
metric hipped roof structure were discovered, this category was discarded.
Only a few shed-structured roofs were observed, and it was decided that
the flat and shed roof structures were both to be a part of the first cat-
egory. As a result, seven categories for typical types of roofs in Norway
were proposed; flat, hipped, gabled, corner element, T-element, cross element
and combination. For analysis purposes, it was an interesting aspect to see
how well the neural network performs on the different roof types. To be
able to gather this information, each plane is labelled with a number from
1 to 7 corresponding to a type, describing the roof structure:

1. Flat
2. Hipped
3. Gabled
4. Corner Element
5. T-Element
6. Cross Element
7. Combination

Figure 3.3 contains a visualization of examples of the different roof
types established, but variations to these figures occur in the actual dataset.
Roof type 7 Combination consists of elements from all other categories and
is not visualized in the figure, due to large variations in this category.

1 2 3

4 5 6

Figure 3.3: Visualization of six of the defined roof types. The numbers
represents a roof type, and this corresponds to the list from section 3.3.
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Figure 3.4: Visualization of the defined plane shapes labelled with the cor-
responding digit. The description of each geometric type and the labelling
scheme may be found in Table 3.1.

A part labelling for each roof is performed, where the roofs are separ-
ated into different planes and each point annotated into the correct label.
The taxonomy for this labelling is of importance, as it will affect the se-
mantic information available for all points. For the original dataset, each
roof-plane was labelled with a number from 1 . . . n where n is the total
number of planes belonging to the same roof. No rules were defined for la-
belling within a plane, and each plane was arbitrarily numbered. However,
testing of this data showed that plane annotation was of great significance
for the results of the deep neural network. For the augmented dataset, a
need for another labelling strategy consequently emerged. After further
analysis, a more suitable taxonomy was established and is presented here.
This forms the basis for the labelling of each plane in the augmented data-
set.

The goal of the segmentation process is to make the deep neural net-
work learn to classify each point into the correct plane. The planes that
belong to the same category need to have some features other than prox-
imity that makes them similar. Considering this in the manual labelling of
the training data could enhance the learning process of the neural network,
demanding less training data.

Five different categories for plane types were defined, and each of these
categories given between two and four labels, being digits from 0 to 11. The
categories are proposed based on the geometry of planes present in Nor-
wegian roof structures and are as follows: rectangular, isosceles trapezoid,
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triangular, parallelogram and ladder-shaped. Figure 3.4 shows a visualiza-
tion of the different geometric shapes, labelled with the correct digit, and
coloured correspondingly based on the information in Table 3.1. Using geo-
metric shape as a feature for segmentation purposes is a common approach
and can be related to the earliest methods for segmentation, such as prim-
itive fitting, where simple shapes in the data were detected [99] [28] [13].
Deep neural networks are able to learn features such as the local geometry
of the neighbourhood surrounding a point, and this includes the shape of
the plane the points compose.

Another important aspect is the fact that the neural network can learn
the relationship between planes by analysing a set of planes such as a com-
plete roof structure. This can be seen as a case of shape co-segmentation,
a field of segmentation where a set of shapes is simultaneously segmented
[100]. Instead of processing the shapes separately, a set of shapes are in-
putted and segmentations carrying consistent semantics across the shapes
are generated. This can be exploited in the case of roof plane segmentation,
as planes in a roof structure belonging to a certain roof type tend to have
a similar fundamental relationship to other planes contained in the same
roof structure. By labelling the planes based on geometric shape and in-
putting point clouds containing complete roof structures, the network can
learn both the typical shapes of the planes and the connection between dif-
ferent plane types, possibly yielding better result in the task of roof plane
segmentation.

Roofs of a certain type are most likely to contain the same kind of planes
and the same number of each kind. By using this, fewer categories of planes
and labels are necessary. For visualization purposes are each label is given
a specific colour. The colour map used for this task is created using Col-
orBrewer2. The qualitative 12-class Paired is used, as this palette is well-
suited for visualizing categorical data due to its variation in hue. Table 3.1
contains information about the colour used for each plane label, together
with which plane geometry it describes, and which roof types contain such
plane types.

2ColorBrewer is a tool for choosing choropleth map color schemes, based on the re-
search of Dr. Cynthia Brewer. Visit https://colorbrewer2.org/ for more information.

https://colorbrewer2.org/
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Table 3.1: Overview of plane labels and geometry.

Plane label Plane geometry Roof types
0
1

Rectangular
Flat, Gabled, T-Element,
Cross-Element, Combination

2
3

Isosceles trapezoid
Hipped, Corner-Element,
Combination

4
5

Triangular
Hipped, Corner-Element,
Combination

6
7

Parallelogram Corner-Element, Combination

8
9
10
11

Ladder shaped
T-Element, Cross-Element,

Combination

3.4 The Manual Segmentation Work

In this section, the methodology for the manual generation of ground truth
data is presented. The main purpose of the resulting dataset is to provide
labelled data for the training and testing of deep learning techniques ap-
plied in semantic segmentation of roof planes from point clouds. This re-
quires the data to be annotated with the correct class label to generate the
ground truth, meaning the ideal expected result from the learning process.
Figure 3.5 visualizes an example of the desirable result from the segment-
ation process for each roof type, where each plane is coloured with the
corresponding class colour. The manual segmentation was conducted over
a period from December 2020 to March 2021.

Approximately 900 buildings spread across residential parts of the
Trondheim were chosen and form the data foundation. Both smaller and
larger buildings were selected, as the size of a building does not affect the
result of the final segmentation. In the selection process, a focus on choos-
ing different variations of the roof structures was prominent. If the network
is only exposed to similar-looking roof-planes, it will not be able to learn
planes outside of these structures. Roofs representing the same types, but
with variations with regards to rotation, size of planes and elevation were
desirable. As a balanced dataset is preferable in machine learning related
tasks, a focus on extracting roofs evenly distributed among the types were
incorporated.

For the generation of the ground truth, a manual process was estab-
lished and carried out by research assistants at Norwegian University of Sci-
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1 2 3

4 5 6

Figure 3.5: Visualization of desired result from manual segmentation and
labelling. Each plane are colored corresponding to a correct plane label.

ence and Technology (NTNU), including the authors of this thesis. Cloud-
Compare, a 3D point cloud and mesh processing software [96] were used
for the manual labelling. First, each individual roof was manually segmen-
ted to distinguish it from the surrounding environment. Following, the roof
of interest was segmented into subsets representing its respective planes.
The manual segmentation into subsets was done by identifying natural
boundaries in the structures, such as the roof ridge, or other edges. Based
on the labelling taxonomy, each point contained in a plane was manually
labelled with semantic information and finally each plane was stored indi-
vidually as a point cloud, with the possibility of merging planes belonging
to the same building into one singular point cloud. Figure 3.6 illustrates
this workflow for manual segmentation a single roof.

Quality control of the manual work was achieved in a two-step fash-
ion. First, all research assistants checked the labels of all roofs in unison.
Second, the authors separately verified the annotations as the last instance.
As manual annotations are prone to human error, it is not possible to avoid
all label noise, and the authors are aware that this is also the case for our
dataset, despite the cross-check performed.

Some challenges were encountered when identifying roof types with a
corner or cross-element, and this is further discussed in section 3.7. Result-
ingly, a lot fewer roof structures of these types were found and manually
labelled, leading to a skew in the dataset with regards to the type of roof.
As the plane types are connected to the type of roof, a skew in plane-type
will also appear in the finished dataset. For deep learning applications, a
skewed dataset is unfortunate as the networks tend to have a bias towards
the data there is a majority of [101]. Minor classes of data may in extreme
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(a) (b) (c)

(d) (e) (f)

Figure 3.6: A step-by-step illustration of the manual segmentation pro-
cess of a single roof structure. (a) Satellite image for a clearer view of the
roof type. (b) Building footprint from the FKB-data, containing the build-
ing ID. (c) Building outlined in the original point cloud. (d) Initial rough
segmentation of the building. (e) A single segmented roof plane. (f) Final
segmentation results, where the colour of the points indicates the plane
label.

cases be completely ignored. To avoid this bias, ensuring that the network
learns in the most unbiased way possible, some altering of the data is ne-
cessary. At the same time, there is a desire to preserve a dataset where no
altering is done, and only data of real-world buildings are present.

Consequently, two separate datasets are proposed in this thesis. The
first is the original TRD3DRoofs dataset containing the segmented ground
truth data of roof structures found in the Trondheim area. The second data-
set is based on the original dataset, but contains additional augmented
data, resulting in a larger, more well-balanced dataset.

3.5 Data Augmentation

In this section, the augmentation implemented and applied to the roof
structures, answering the second research question, are detailed.

To balance the appearance of the different roof types, and consequently
of plane types, in the dataset, two manual data augmentation steps were
performed. Firstly, the combination roofs were divided into separate “sub-
roof structures” based on similarity to the other roof types using Cloud-
Compare. This way it was possible to create more training examples for
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specific plane types and rare roof structures. For example, looking at the
roof shown in Figure 3.7, the original roof structure (left) is split into three
new roof structures (right).

Secondly, the fact that each plane type is associated with two or more
plane labels were exploited to generate more roofs by supplementing the
dataset with all possible permutations of part label combinations. Fig-
ure 3.8 shows these combinations for a roof with a hipped structure. This
was done for roof type 2, 4, 5, 6 and 7, as there already were preponder-
ance of type 1 and 3.

(a) Before split (b) After split

Figure 3.7: Data augmentation by splitting of roof structure of roof type
7 Combination.

Figure 3.8: Visualizations of all different label combinations of a roof
structure of type 2 Hipped.
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3.6 Preparing the Dataset for Segmentation

The points of the original dataset provided by Trondheim Municipality are
in a format unsuitable for direct use by most deep learning neural net-
works. Preparing the data is necessary to transform it into a dataset fit
for such purposes. Consequently, a data preparation framework was estab-
lished and applied to the datasets, and this is presented in this section.

First, recentering of the data was performed to decrease the size of
the coordinates, and thereby reducing the computational efforts needed.
A new origin was established and all remaining points subsequently moved
relative to this new origin. This was done by calculating the mean for all
three coordinates and subtracting these values from the coordinates of all
points. The second step in the preparation of the framework is the normal-
ization of the point cloud. When features in the data have various ranges,
normalization is done to achieve a universal scale for all features. For each
of the x-, y- and z-coordinates, the maximum distance from the origin was
found. The coordinates of all points were divided by this maximum dis-
tance, achieving normalized values for all points in a similar range between
0 and 1.

For the last step in the process necessary for the preparation of the data,
generation of normal vectors was performed for each point. The annotation
of the points gives information about the two-dimensional geometry of
the neighbourhood. However, one singular roof structure might contain
separate planes with the same geometric shape. As there is an interest in
segmenting these geometric shapes into their distinctive planes, normal
vectors are included for all points as an additional feature. These normal
vectors indicate the three-dimensionality of the neighbourhood of a point,
as they are calculated based on several of the point’s closest neighbours.

Using a k-Nearest Neighbours (k-NN) algorithm, a Principal Compon-
ent Analysis (PCA) was performed to obtain the normal of the tangent
plane best fitting the group of neighbouring points. The number of neigh-
bours was based on the point density of the roofs contained in the aug-
mented dataset, and the final value was found through trial and error. To
balance the problem of including enough similar neighbours but excluding
neighbours along ridges and edges belonging to other planes, the number
of neighbours were decided to be k= 6. The density of the resulting data-
set is further detailed in chapter 4. For the normal vectors to be of use in
the learning process of separating distinct planes, they must be consistent
when it comes to orientation. To make sure that all normal vectors point
outward of the shape, a check was performed where the orientation of all
normal vectors that do not exhibit this behaviour was turned. The calcu-
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lated normal vector was added to each point as a new feature, giving three
new values.

3.7 Experiences with Manual Labelling

Some challenges were encountered regarding the original data, and during
the manual labelling process, and these are presented and discussed in this
section.

One consequence of handling a large amount of data is issues regard-
ing storage. For the original LiDAR point cloud, the large number of points
were divided into smaller separate files. These files were organized in an
unstructured matter, making it challenging to locate the desired data. The
point cloud was separated into distinctive files based on the area of ob-
tainment, but these files were arbitrarily named. Consequently, the task of
retrieving the desired roof structures and their location were problematic.
To overcome this problem, the bounding box of each file were derived and
later visualized together with a map of the Trondheim area using ArcGIS®

Pro.
During the manual labelling process, several obstacles were met, some

of them affecting the resulting dataset. Segmentation and annotations
of training data performed manually by assistants tend to be both time-
consuming and expensive [102], and this sets a limit for the number of
roofs achievable in the proposed dataset. It was decided that 1000 manu-
ally segmented roofs would be enough. This would make the dataset con-
tain a sufficient number of unique roof structures, enabling the use of data
augmentation for further generation of training data.

A discovery during the segmentation process further increased the time
needed for manual segmentation. It was noticed that a lot of the 2D poly-
gons representing the footprints included parts of the buildings such as
porches or balconies which are not part of the actual roof structure. An
example of this is found in Figure 3.9. It was decided that such buildings
are to be ignored, and not labelled, as they unnecessarily complicate the
task of connecting the 2D polygons to the 3D point clouds. These types of
polygons are found to be common in the Trondheim area, making the task
of obtaining desirable roof structures harder.

Another finding was the fact that most buildings in Trondheim have
a gabled or T-element roof structure, giving a large predominance of roof
structures belonging to these two types. To even out this imbalance, build-
ings of the remaining types were targeted, leading to a new discovery. The
original point cloud data were found to have a lot of missing points, espe-
cially of buildings with a cross or corner element. Points belonging to flat
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(a) Satellite image of a building with a
balcony.

(b) Example of building footprint in-
cluding the balcony.

Figure 3.9: Example of polygon including balcony. FKB-data from
©Kartverket.

roof structures were also missing to some extent.
Different causes for this have been discussed to discover the origin of

the fault in the dataset. As LiDAR works by observing the reflected light
from an object, the surface must be reflective for the object to be detected.
Specular surfaces, such as windows, will absorb most of the light instead
of reflecting it, leading to the target being practically invisible to LiDAR.
How reflective a roof is, is dependent on the material used in the construc-
tion. The Solar Reflectance Index (SRI) is a measure describing the solar
reflectance and emissivity of materials [103]. Materials with a low SRI will
reflect less light than those with a high SRI. Roofs covered with materials
such as a black bituminous membrane will therefore not reflect enough
light to be detected by the LiDAR sensor.

It is therefore reasonable to assume that the roofs missing from the
LiDAR point cloud obtained in the Trondheim area are covered by materials
that absorb light instead of reflecting it. Another sensible assumption is that
flat roofs and roofs with a cross- or corner element are more likely to be
covered by such materials, and therefore are missing to a larger extent than
other roof types. To overcome this challenge, augmentation of the data was
performed and used to establish the extended version of the dataset.

3.8 The Overview of the Resulted Datasets

In this section, the resulting datasets are presented together with statistics
detailing them, and results of the labelled ground truth data. First, the
original dataset, named TRD3DRoofs is presented, before the result of the
augmented version is detailed further.
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Figure 3.10: Map showing the location of building footprint of all roofs in
TRD3DRoofs. The main map has a padding of 2 pixels around each poly-
gon to improve visibility, whilst the zoomed in portion of the map displays
the real area for the footprints, The scale is 1:110 000 and 1:11 000 re-
spectively. FKB-data from ©Kartverket. Basemap provided by Geodata AS
[104].
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(a) Overview of a residential area. The segmented roofs present in the dataset are visu-
alized with a dark orange color. The remaining FKB-building data are visualized in light
orange. FKB-data from ©Kartverket. Basemap provided by Geodata AS [104].

(b) Corresponding labelled point cloud data of the roofs. The different colors of the planes
corresponds to the definitions in Table 3.1.

Figure 3.11: Examples of the labelled point cloud data in a selected res-
idential area in Trondheim.
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3.8.1 The Original TRD3DRoofs Dataset

The original TRD3DRoofs dataset consists of a total of 2 199 051 points
belonging to 906 different roofs segmented into 3 344 planes. All roof
structures present are corresponding to a real-world roof structure found
in the Trondheim area. The building location of the sampled roofs are illus-
trated in Figure 3.10. All maps presented in this thesis was created using
the software ArcGIS® Pro by Esri, FKB-data from ©Kartverket is filtered
and overlaid a basemap provided by Geodata AS [104].

The dataset is well suited for applications such as urban planning or ac-
curate renewable energy simulations in Trondheim. Additionally, it forms
a good base for training data needed for machine learning technology.

An example of a residential area selected is shown in the zoomed in
portion of Figure 3.10. The same area are presented in Figure 3.11, where
both the labelled (dark orange) and unlabelled (light orange) buildings of
this area are included. Figure 3.11b shows the labelled point cloud data of
the corresponding roof structures in the resulting dataset.

Figure 3.12 shows a selection of resulting ground truth roof structures
segmented into distinctive roof types. An example is shown for each roof
type, but other variations of these are present in the dataset. Each plane
is coloured based on plane number, corresponding to the definitions in
Table 3.1.

The distribution of the different roof types in the original TRD3DRoofs
dataset is visualized in the pie chart in Figure 3.13. Each roof type is visu-
alized with a distinct colour, and these colours are consistent in all statist-
ics presented in the result section. From the pie chart, a skew in the data
with regards to roof type is apparent. The complete dataset contains only
a small percentage of type 4 Corner Element, containing 38 roofs, and type
6 Cross Element, containing 14 roofs. An overweight of Gabled (type 3)
and T-Element (type 5) roof structures are present, and respectively 262
and 191 roofs are present in these two categories. This is coincident with
the distribution of real-world roof structures, as the use of gabled and T-
element roof structures are quite common, while cross and corner elements
are rather rare in Norwegian residential areas. A more even distribution is
present with regards to the remaining roof types 1 Flat, 2 Hipped and 7
Combination, each containing around 130 roofs.

The histogram in Figure 3.14 visualizes the distribution of points
among the different roof structures. From this, it can be deduced that most
roofs contain between 1 000 and 4 000 points. A fair number of roofs also
contain less than 1 000 points, and some outliers are also present in the
dataset, including a few roofs containing up to 40 000 points. Roofs with
such a significant number of points are often large, flat roof structures be-
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(a) Type 1 Flat (b) Type 2 Hipped

(c) Type 3 Gabled (d) Type 4 Corner-Element

(e) Type 5 T-Element (f) Type 6 Cross-Element

(g) Type 7 Combination

Figure 3.12: Examples of manually labelled ground truth data present in
the TRD3DRoofs dataset. Each plane is colored corresponding to a correct
plane label.
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longing to either industrial buildings or residential blocks.

Figure 3.13: Pie chart of the roof type distribution in the original
TRD3DRoofs dataset.

Figure 3.14: Histogram showing the distribution of roofs based on num-
ber of points for the original TRD3DRoofs dataset.
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3.8.2 The Augmented TRD3DRoofs Dataset

The augmented TRD3DRoofs dataset is a more balanced dataset contain-
ing a larger number of roofs based on the original dataset. A total of 6
723 450 points belonging to 2 641 different roofs segmented into 12 007
planes are present. This dataset is constructed to be suitable as input for
deep learning purposes. Such deep learning networks can then be used
to predict the segmentation of similar roof plane data in other areas of
Norway with similar buildings as those found in the Trondheim area. This
will automate the process of establishing segmented roof data suitable for
urban planning or renewable energy simulations. For this dataset, the aug-
mentation described earlier is applied, adding new roof structures where
a rotation of the plane labels is performed, as well as new roofs from the
separation of those present in the combination category.

As can be seen in the pie chart found in Figure 3.15 the skew in the
data have been reduced, and the dataset has a more even distribution of
structures belonging to different roof types. The number of roofs in the
combination category (7) has increased to 674 roofs, as several structures
present in this category has been split into multiple roofs. A significant
increase in the number of roofs is also present in roof type 2 Hipped, now
containing 514 roofs. No augmentation is performed on roof structures
only containing planes of a rectangular shape, thus, the number of roofs
in type 1 Flat and 3 Gabled is the same as for the original dataset.

The histogram in Figure 3.16 visualizes the distribution of points
among the different roof structures for both the augmented and original
TRD3DRoofs dataset. The difference in the number of roofs present in the
original and augmented dataset is clearly visible. In total, additional 1 740
roofs have been added to the dataset to increase the number of training
data.
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Figure 3.15: Pie chart of the roof type distribution in the augmented
TRD3DRoofs dataset.

Figure 3.16: Stacked histogram showing the distribution of roofs for both
the original and augmented TRD3DRoofs dataset.

Figure 3.17 presents the distribution of roof planes in the dataset after
the split of roof type 7, before further augmentation is performed. Each bar
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is coloured corresponding to the label it belongs to, and these colours are
the same used for the visualization of the ground truth data. As expected,
a large overweight of the rectangular planes (0 and 1) is present, as these
appear in multiple roof types. For the ladder-shaped planes, the dataset
contains a lot fewer planes with labels 10 and 11 than 8 and 9. This is also
as expected, as only a few roof structures contain a total of four different
ladder-shaped planes. It can also be observed that few planes of a parallel-
ogram (6 and 7) shape are present in the dataset. These are planes present
in some, but not all corner-element roof types, as well as some roofs of the
combination type.

The effect of the further balancing of the dataset by augmentation can
be seen in the plane label distribution in Figure 3.18. The large overweight
of rectangular planes (0 and 1) has been reduced, by an increased number
of planes in all other categories. Still, the number of planes belonging to
the rarer plane types are lower than the other planes. However, we find that
the dataset contains a large enough amount of training data to make this
skew less evident, indicating its suitability in deep learning technologies.

Figure 3.17: Distribution of plane labels before rotation.

The point density distribution of roofs in each roof type is found in the
violin diagram in Figure 3.19. For visualization purposes, the same colours
as for the pie chart is used to visualize the roof types. The shape of each
plot describes the distribution of densities within a roof type. The number
of roofs having a certain point density is indicated by the wideness of the
plot at that density. Keep in mind that the area of each plot is constant, and
no scaling is done based on the number of roofs present in each category.
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Figure 3.18: Distribution of plane labels after rotation.

Except for some outliers in roof type 5 T-Element, all densities are found
to be between approximately 2.5 and 17.5 points/m2, with a mean density
of 9.07 points/m2. Roof type 4 Corner Element, 5 T-Element and 6 Cross
Element have a similar distribution of densities, with two major clusters of
densities centred around 5 and 10 points/m2. Additionally, the distribution
of densities in type 1 Flat is found to be similar to these, but contains a lar-
ger degree of roofs with a lower density. Roof type 7 Combination also have
a similar density distribution, but this is slightly shifted as these roofs have
an overall lower density. Type 3 Gabled differs from the beforementioned
roof types in that it only has one major cluster of densities, centred around
10 points/m2. Roofs of type 2 Hipped tend to be denser than other roof
types, and most of the roofs are grouped into two major clusters centred
around 10 or 15 points/m2.

The augmented TRD3DRoofs dataset is established to work as deep
learning training data for the purpose of 3D roof plane segmentation. The
original dataset used as the base consists of roofs with a varying number
of points, and this includes outliers with a point number far exceeding that
found in most roofs. This variation in the number of points is undesirable
for deep learning applications, and a subset of the augmented data is es-
tablished to overcome this obstacle. In this subset filtering of outliers is
performed. All roofs with over 5 000 points are considered outliers, only
roofs containing a lower number of points than 5 000 are included in the
subset, indicated by the dotted line in Figure 3.16. This filtered dataset
consists of a total of 5 083 462 points belonging to 2 497 distinctive roofs
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further separated into a total of 11 139 planes. The resulting distribution
of plane types in this subset can be observed in Figure 3.20.

Figure 3.19: Violin diagram showing the point density distribution of the
Augmented TRD3DRoofs dataset.

Figure 3.20: Distribution of plane labels after rotation and filtering.



Chapter 4

Deep Learning-Based Roof
Segmentation using TRD3DRoofs

In this chapter, the usability of the Augmented TRD3DRoofs dataset in deep
learning applications is investigated. The slightly adjusted PointNet++ net-
work described in chapter 2 is used for the evaluation of the dataset. First,
a description of the experimental setup used is given. Details about the ad-
justments applied to the state-of-the-art network PointNet++ is included
before the results of the predicted roof structures are presented.

4.1 Experimental Setup

Details about the experimental setup are explained in this section, includ-
ing the software and hardware specifications, as well as the training pro-
cedure used for the applied deep neural network.

4.1.1 Software

The chosen software for the experiment was PyTorch [105] 1.2 for Python
3.5 and CUDA 10. PyTorch is developed mainly by the Facebook AI research
lab and is an open-source machine learning framework commonly applied
in the implementation of deep learning neural networks. It enables power-
ful tensor computations on Graphical Processing Units (GPU) useful for
neural network implementation. PyTorch was chosen as we have more ex-
perience with this framework, it integrates better with Python and because
it is generally considered to be more transparent and developer-friendly,
making it easier to get familiar with existing code [106]. An existing im-
plementation of PointNet++ with PyTorch was used as the basis for the
neural network [107]. The software LAStools [108] and more specifically

56
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the tools text2las and lasinfo -compute_density was used for the processing
of LiDAR data. For visualization of the results, the open-source software
MeshLab [109] was used. This software facilitates easy rendering of large
3D meshes and therefore is suitable for 3D point cloud visualizations.

4.1.2 Hardware

All experiments have been completed by a remote workstation with the
following technical specifications regarding the Central Processing Units
(CPU) and GPU:

Processor: Intel Xeon(R) Gold 6146 CPU @ 3.20GHz x 45
Graphics card: Nvidia Quadro GV100/PCIe/SSE2
Memory: 250.6 GB

4.1.3 Part Segmentation using PointNet++

PointNet++ were chosen as the deep neural network to assess how suit-
able our suggested dataset is for the task of segmenting roofs into different
roof planes. This task can be defined as a part segmentation task, where
each roof plane is a separate part of a roof. This network was selected
based on several considerations. Firstly, an architecture that took a point
cloud directly as input was sought, as this is the nature of the proposed
data. Secondly, the network needed to handle highly fluctuating densities
because the density in our dataset varies between 2.5 and 17.5 points/m2.
Additionally, it was important to find a low-complexity high-performance
network as time and access to computation power would be limited. In ad-
dition to fulfilling these requirements, PointNet++ was chosen as it is re-
garded as state-of-the-art at point cloud segmentation tasks and is deemed
a pioneering network within its field. Because it being such a renowned
network, it is well explored and documented by other researchers, mean-
ing that it also has many questions and solutions readily available on the
internet.

The network was trained using our presented dataset, the Augmented
TRD3DRoofs datasets consist of 4 641 roofs after pre-processing, adher-
ing to the following procedure: The roofs were split into training/valid-
ation/testing sets, using a ratio of 80:10:10 split for each roof type, as
shown in Table 4.2. We chose a to reserve a large portion of the data for
training, due to the size limitation of our dataset. The training and valid-
ation data were then randomly arranged into 32 batches and normalized.
The network was trained batch wise for 251 iterations using the Adam op-
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Table 4.1: Train, validation and test split for MSG_100.

Training Validation Testing

Type 1 89 11 11
Type 2 412 51 51
Type 3 208 26 26
Type 4 253 32 31
Type 5 302 38 38
Type 6 288 36 36
Type 7 446 56 56

Sum 1998 250 249

timizer. For each batch, it takes one roof at the time as the input, selects
3 000 points using Nearest Point Sampling, each knowing its xyz-values,
estimated normal vector and part label, and outputs a prediction and lastly
updates the network weights. An initial learning rate of 0.001 and a mo-
mentum of 0.1 were used, both with a decay rate of 0.5 and step size 20. All
parameters are the same as those chosen for the original network, except
for the number of sample points. This is sat higher to better learn more
complex roofs.

Furthermore, two data augmentation steps were added at training time
to improve variation in the training data and thereby reducing the possib-
ility of overfitting the network. The first was a random shifting of the roofs
within one batch within the range of 0.1 normalized unit. This way an
increased number of possible roof positions was simulated. The other aug-
mentation technique was a random scaling of each roof within one batch,
making the roofs somewhere between 20% smaller and 25% larger. Again,
the purpose of this is to expose the network to an increased variation in
roof sizes.

4.2 Experimental Results

Here, the final results achieved for the part segmentation task on the
TRD3DRoofs dataset using PointNet++ is presented. The PA, mIoU and
the training time are reported for different training configurations of the
deep neural network. Furthermore, the PA and mIoU are reported for each
roof type the model attaining the highest mIoU score. These findings will
later be used as a basis to do a final evaluation of our datasets suitability
for deep learning tasks, as well as reporting our experience when training



Chapter 4: Deep Learning-Based Roof Segmentation 59

Table 4.2: Different training configurations.

Model Number of roofs PA mIoU Training time (hours)

SSG_100 2248 0.541 0.746 6.5
MSG_100 2248 0.558 0.752 6.5
MSG_80 1799 0.657 0.794 3.3
MSG_60 1351 0.627 0.787 2.4
MSG_40 897 0.603 0.776 1.0
MSG_20 449 0.603 0.778 1.0

on PointNet++.

4.2.1 Model Configurations

Various models were trained using different configurations to observe
which base model and input data yielded the best results on our dataset.
Initially, the models were trained on the complete dataset using both the
MSG and SSG model variation presented by PointNet++, see Table 4.2.
For these models we achieved a mIoU of 0.7456 for SSG_100 and 0.75172
for MSG_100. Both models took an equal number of hours to train. These
results are consistent with the results reported in the PointNet++ paper,
where the MSG approach also attains the higher results. On this basis, the
MSG variation is chosen for the training of the following models.

Table 4.3: Train, validation and test split for MSG_80.

Training Validation Testing

Type 1 71 9 11
Type 2 330 41 51
Type 3 166 21 26
Type 4 202 26 31
Type 5 242 30 38
Type 6 230 29 36
Type 7 357 45 56

Sum 1598 201 249

To decide the optimal roof number for training, four models were
trained on a diminishing number of roofs. Using the model trained on
the original 2 497 roofs as the starting point, the number of roofs in the
training- and validation sets were reduced from 100% down to 20%, with
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Figure 4.1: The plot shows the achieved mIoU vs. the number of roofs
used for training of the model. The mIoU increases steadily, before it drops
when trained on the complete dataset. mIoU of models trained.

a step size of 20%, between each of the four models. All models were,
however, tested on 100% of the 249 roofs in the test dataset to procure
comparable results. An example of this train/val/test split is shown in in
Table 4.3 for the model utelizing 80% of the test and validation data. All
other splits are listed in in Appendix A. The reported test PA, mIoU and
training time for each model can be found in table Table 4.2. Here we can
see that the model performs increasingly better with more training data,
reaching a peak utilizing 80% of the data, before showing a drop in per-
formance when trained on the full dataset. The best model (MSG_80) was
trained using 80% of the training- and validation data, corresponding to
1799 roofs. It obtained a test PA of 0.658 and mIoU of 0.794 in the test
data, after training for 3.3 hours. Figure 4.2 and Figure 4.1 shows plots of
how, respectively, the PA and mIoU varies based on the number of roofs
used for training.
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Figure 4.2: The plot shows the achieved PA vs. the number of roofs used
for training of the model. The same tendency as for the mIoU is also
present here.

4.2.2 Optimal Number of Points: Final Results on Point-
Net++

Based on the model configurations, the MSG_80 model was found to
achieve the best results for PA and mIoU. In Figure 4.3, a selection of pre-
dictions performed on the test dataset are shown, additional results may
be found in Appendix B.

From the results, it can be observed that model is good at segmenting
and separating rectangular planes. It has more difficulties with parallelo-
gram and ladder shaped planes. The worst result are found for roofs of
type 2 Hipped, where points part of the isosceles trapezoidal planes are
mistaken for rectangular planes.

Additionally, result of predictions performed on the complete dataset
may be found in Appendix C.
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(a) Type 1: Ground truth (b) Type 2: Prediction

(c) Type 2: Ground truth (d) Type 2: Prediction

(e) Type 3: Ground truth (f) Type 3: Prediction

(g) Type 4: Ground truth (h) Type 4: Prediction

Figure 4.3: Result of predictions performed by the MSG_80 model com-
pared to the corresponding ground truth data.
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(i) Type 5: Ground truth (j) Type 5: Prediction

(k) Type 6: Ground truth (l) Type 6: Prediction

(m) Type 7: Ground truth (n) Type 7: Prediction

Figure 4.3: Result of predictions performed by the MSG_80 model com-
pared to the corresponding ground truth data.
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Evaluation and Discussion

This chapter presents the result of the evaluation performed for the ex-
perimental segmentation process outlined in chapter 4. Furthermore, the
result of the segmentation, aspects regarding the proposed TRD3DRoofs
dataset, and the applied network, PointNet++, are discussed in light of
relevant theory and work.

5.1 Evaluation

The evaluation of the network yielding the best results chosen from the
model configuration, MSG_80, is elaborated in this section. This will in-
dicate the performance of the model for the task of roof plane segmenta-
tion. For the evaluation, the metrics introduced in chapter 2, PA and mIoU
are used. The mIoU is calculated over all distinct planes present in a roof
structure, meaning that this value represents the average of the IoU metric
for each plane, given for each roof.

The plot in Figure 5.1 shows the training and test PA for the model,
reported for each epoch. Both accuracies increase fast, yielding a PA of ap-
proximately 55% after only a couple of epochs. The training PA continues
to increase, but at a slower rate. This is contrary to the test PA which comes
to a halt, before slightly dropping. This large gap between test and training
PA indicates that the model might be overfitted. This could also explain the
reason for the drop in the performance for the MSG_100 model trained on
the complete dataset.

64
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Figure 5.1: Train and testing PAs for model MSG_80.

Figure 5.2: mIoUs for model MSG_80.
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Table 5.1: Result of type-by-type metrics for MSG_80.

Roof type PA mIoU
1 0.997 0.992
2 0.475 0.751
3 0.804 0.970
4 0.432 0.642
5 0.851 0.885
6 0.722 0.691
7 0.704 0.791

Another observation from this plot is that no further improvement is
present regarding the PA after approximately 50-70 epochs. This is an in-
dication that the model could benefit from early stopping. Early stopping
is a regularization approach that can be implemented to avoid overfit-
ting[110]. This will provide guidance regarding the number of iterations
that can be performed before the model becomes overfitted.

The plot in Figure 5.2 shows the mIoU for the validation set of the
model. During the first epochs, the mIoU is varying, but have a gradually
increasing tendency. After approximately 50-70 epochs, the value stabilizes
and does not get any better. This is a similar tendency to that of the PA
metric, further indicating that early stopping would be beneficial. A mIoU
of 1 indicates that the predictions are perfect, and the mIoU reached here
is 79.4%.

The MSG_80 model’s performance on different roof types was addition-
ally evaluated. To make this possible the model was tested on a variation
of the test set where the roofs are separated based on the roof type. For
these results, the average of the mIoU over all roofs is reported. The result
of the performance is displayed in Table 5.1.

The best performance is found for roof type 1 Flat, with both a PA and
mIoU close to 100%. Roofs of type 3 Gabled and 5 T-Element also yields
good results, with PAs of 80% and 85% and mIoUs of 97% and 88%. For
roof type 4 Corner Element, the worst PA is obtained with a score of 43%,
and mIoU of 64%. The performance on roof structures of type 7 Combina-
tion is surprisingly good as this category is assumed to contain the highest
number of complex roofs, with a PA of 70% and a mIoU of 79%.

The PA metric does as mentioned favour large areas, yielding a skewed
result in cases where the separation of large planes is either remarkably
good or bad. Based on the calculated metrics, there is an indication that
this might be the case for this dataset. The model tends to predict a worse
segmentation of the larger planes when exposed to roofs of type 2 Hipped
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and 4 Corner Element, compared to type 3 Gabled and 5 T-Element. Res-
ultingly, the mIoU will give a better impression of the performance of the
model.

Based on the labelling strategy and taxonomy established, it is desired
that the points are recognized as correctly predicted if they are annotated
with a label from the correct geometric class and segmented into separate
planes. This means that roof planes can be arbitrary annotated with labels
in the same geometric class and still be recognized as correctly predicted.
An example of this is shown in Figure 5.3, where the labels of the ground
truth data and the predicted results have been switched. A prediction like
this should give a PA of approximately 100%, as both planes are almost
completely correctly predicted into their geometric shape and separated
by the roof ridge. PointNet++ does not take this fact into consideration
in their calculation of the PA metric. Resultingly, the PA of the predicted
results for this case will be calculated to approximately 0%, indicating that
none of the planes are correctly segmented.

(a) Ground truth (b) Prediction

Figure 5.3: Example of a case where the labels are switched for ground
truth and predicted roof.

Therefore, evaluation performed by only investigating the PA metrics
proposed and used in PointNet++ will not correctly demonstrate the per-
formance of the network trained on the Augmented TRD3DRoofs dataset.
While the metrics are not optimal for detailing the actual performance of
the models, they are useful for the comparison between the different mod-
els proposed. To solve the lack of suitable metric indicating the perform-
ance of the models, a visual assessment was manually performed as part
of the evaluation process.
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5.2 Manual Evaluation

To capture a more complete overview of the performance of the trained
network, two different accuracy measurement were established for the
manual evaluation. The first metric, part accuracy, describes how well the
network is at segmenting the different planes of a roof from each other.
This metric is the same as the original PA, but is altered to solve the prob-
lem of switched labels. The second metric, geometric accuracy, describes
the performance of the segmentation of the planes into the correct geo-
metric shape. This means that if the label given corresponds to the correct
geometric shape, the prediction of the point will be recognized as correct.
Both metrics are found by a visual evaluation, performed manually, and
are done for the entire roof structure as a whole. Consequently the met-
rics are prone to a human degree of error. Both metrics found by manual
evaluations are only estimations of the accuracy as they are found through
visual inspection, and a scale increasing by 5% for each step is used.

The manual evaluation is performed for two of the trained models, the
model trained on the complete dataset, MSG_100, and the model yielding
the best results from the calculated metrics, MSG_80. 10 different roof
structures of each roof type were randomly chosen from the test dataset,
giving a total of 70 roofs used for evaluation. These were visualised and
manually evaluated, resulting in estimated scores for the complete roof.
Tables for both models containing estimated values for each roof are to be
found in Appendix D and Appendix E. The average of both measurements
for each roof type is calculated, together with the mean for all roof type
classes. Table 5.2 contains a full overview of the result of these calculations
for both models.

The MSG_80 model performs slightly better than the MSG_100 with
regards to the mean geometric accuracy with scores of respectively 97%
and 96%. Scores for both models are high for this metric, indicating
that PointNet++ recognizes the different geometric shapes defined in the
TRD3DRoofs dataset to a large extent. It can be observed that this beha-
viour seems to be independent of the roof structure, as there is a consist-
ency in the performance yielded for each type. For roofs of type 1 Flat,
both models excel, yielding scores of 100% for both part and geometric
accuracy. The lowest geometric accuracy obtained for the MSG_80 model
is a score of 96%, obtained for roofs of type 2 Hipped, 4 Corner Element,
5 T-Element and 6 Cross Element. For the MSG_100 model, the lowest geo-
metric accuracy is obtained for type 2 Hipped with score of 90%.

For the part accuracy, the performance of both models is somewhat
worse, and a larger difference is present between the two. MSG_80 have a
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Table 5.2: Visual evaluation performed on model MSG_100 and MSG_80.

Roof type Trained model Part accuracy
Geometric
accuracy

MSG_100 1.00 1.00
1

MSG_80 1.00 1.00

MSG_100 0.71 0.90
2

MSG_80 0.72 0.96

MSG_100 0.92 1.00
3

MSG_80 0.96 1.00

MSG_100 0.65 0.96
4

MSG_80 0.73 0.96

MSG_100 0.86 0.98
5

MSG_80 0.87 0.96

MSG_100 0.76 0.95
6

MSG_80 0.82 0.96

MSG_100 0.76 0.97
7

MSG_80 0.82 0.97

MSG_100 0.81 0.96
Mean

MSG_80 0.84 0.97

mean part accuracy of 84%, while the same metric for MSG_100 is 81%.
Contrary to the geometric measurement, there is a variance in the perform-
ance dependent on the roof type. This variance is present in both models.
The part accuracy metric drops noticeably for roofs of type 2 Hipped and
type 4 Corner Element. For the MSG_80 model, type 2 Hipped structures
yield the worst performance, with a score of 72% , while the MSG_100
performs worst on type 4 Corner Element, with a score of 65%. A similar
tendency as the calculated metrics regarding the accuracy and the favour-
ing of large planes is also present in these visual evaluation results.

By observing the predicted results, it can be noted that most of the
wrongly labelled points are present along ridges in the roof. For roofs with
a small degree of error, the wrongly labelled points are often those found
on or close to the ridge to another segment. The presence of such error
is most likely due to the variance in the neighbourhood of such points, as
they will include points belonging to multiple planes.

It is important to notice that the metrics calculated are based on a sub-
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set of the test dataset, not all predictions performed by the models. This
indicates a limitation in the validity of the results and evaluations presen-
ted.

5.3 Discussion

This section discusses certain aspects of the new TRD3DRoofs point cloud
dataset, together with the results obtained from the segmentation per-
formed using the neural network PointNet++. These aspects are discussed
in light of related work and theory, as a tool in understanding why certain
results are yielded, and how the methods have been conducted.

5.3.1 Labelling Strategy for Deep Learning Purposes

As indicated by the visual evaluation, the labelling strategy of the ground
truth data might affect the result of the predictions performed by a neural
network.

PointNet++ is presented as a neural network capable of both capturing
local and global features of the input point cloud [68]. This means that not
only the local neighbourhood of a point is considered during the segmenta-
tion, but the point’s complete roof structure is evaluated as a whole as well.
Resultingly, the network has the ability to learn the relationships between
adjacent planes in the roof structures. One approach to the problem of la-
belling is consistency in plane labelling with regards to global factors. By
labelling the planes with an approach that keeps the relationship between
adjacent planes consistent, the network could learn this connection, im-
proving the prediction of the roofs.

Most of the roofs of the same roof type have a similar structure, mean-
ing that they will contain the same number of planes with consistent rela-
tions between them. By implementing consistency in the labelling of planes
within roof types, there is reason to believe that the plane accuracy of sev-
eral roof types would increase. For roof types where this has unconsciously
been adapted in the labelling process, such as 3 Gabled and 5 T-Element the
achieved part accuracy is significantly higher. The same strategy could with
benefit have been applied to other roof types such as 2 Hipped, 4 Corner-
Element and 6 Cross-Element. However, this is not the case for roofs of type
7 Combination. These roofs have an arbitrary number of planes, and no
reliability is present in their positioning to each other. Thus, this approach
is not guaranteed to solve the problem of part segmentation for these roof
structures.
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Based on the presented results, there is an indication that the connec-
tion between plane label and normal vector affects the performed predic-
tions. There is a possibility that PointNet++ is dependent on consistent
normal vectors to correctly segment the planes into distinct planimetric
shapes, thereby yielding weaker results for the part segmentation. How-
ever, as roofs present in real-world environment are placed with arbit-
rary rotations, there is no possibility of keeping a consistent relationship
between a roof plane label and the normal vector of a plane in such data.
[111] adapted their solution to a labelling where the planes were an-

notated based on cardinal directions rather than geometry. This is espe-
cially suitable in cases where a fixed number of planes is present in the
roof structures. This labelling strategy would give a better consistency both
for the relationship between adjacent planes and for the normal vector of
each type. Both factors would be consistent across different roof structures.
Norwegian roof structures are, as discussed, prone to arbitrary rotations.
This would complicate the definition of the cardinal directions in the tax-
onomy for this strategy. To achieve the desired benefits from this method,
there is also a need for a fixed number of planes. This is not suitable for
the roof types defined in this thesis, both due to the variations across the
classes and because of the large variation of roofs present in the combin-
ation category. Resultingly, we find that the drawbacks of this approach
make it unsuitable for annotation of Norwegian roof structures.

There is a desire for the network to learn to separate the planes inde-
pendent of the rotation and the connection between planes. Solving these
issues is a non-trivial task. As mentioned, deep neural networks are often
referred to as “black boxes”. One can only assume which features are of
the highest importance, and thoroughly testing of different approaches is
needed to prove these theories. For point cloud applications, the amount
of research performed is still sheer, and proposed novel networks such as
PointNet++ are prone to weaknesses.

5.3.2 Discussion of the Achieved Results

Based on the given evaluation, the following discussion is proposed to bet-
ter understand the obtained results and possible explanations.

The drop of PA for the model tested on the complete dataset, together
with the large gap between test and training PA indicates that the model
might be overfitted. For relatively small datasets, supervised learning al-
gorithms tend to overfit [49]. One explanation as to why this happening,
in this case, is that the model hasn’t been exposed to enough examples of
different variations of data. In datasets where the data is very similar, over-
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fitting is more common. This problem could be solved by increasing the size
of the dataset, including variations of different structures. Obtainment of
such data is possible by further manual annotation of roof structures, or
through data augmentation. Manual labelling is both time-consuming and
expensive, leaving further data augmentation as the best option. Another
possible explanation for these issues is that the hyperparameters in the net-
work are not optimized. The setting of these hyperparameters is discussed
further in subsection 5.3.5.

One question that arises from the proposed results is why the network
is better at segmenting the roofs based on geometric features rather than
planimetric feature. The labelling strategy proposed might be a factor that
affects the methods ability to segment the planes. Each plane is segmented
into different geometric classes in the training data, and this labelling of
a geometric shape is kept consistent across all roof types. A reasonable
possibility is that the network learns the shape and connects it to a label,
and if this is done consistently in the data it is exposed to during training,
it will recognize such shapes when exposed to the test data.

For the segmentation of the planes based on their planimetric features,
it is reasonable to assume that other attributes of the points are studied
during the learning process. PointNet++ considers both local and global
features during the segmentation [68], and global features might include
factors such as the connection between adjacent planes. The results indic-
ate that PointNet++ is dependent on consistent relationships between the
planes, to exploit this as a global feature. For the manually labelled data
in the TRD3DRoofs dataset, these relationships are not consistent, as the
structures of the roofs vary both within the same roof type and across the
different classes.

Further study of roof types yielding bad results for planimetric seg-
mentation substantiates this theory. By inspecting the ground truth data
labelled for type 2 Hipped and 4 Corner-Element, it can be observed that no
consistency with regards to plane labelling is present. It appears like the
manual labelling strategy has been unconsciously less consistent during
the annotation of these roof type structures. This might explain the net-
work’s lack of ability to segment planes in these roof structures properly.
Especially roofs of type 3 Gabled and 5 T-Element have consistent labelling
in the ground truth data, and as the plane accuracy for these two is among
the highest achieved, the assumption that the relationship between labels
is of great importance is further supported.

The model performs surprisingly well for roof structures of type 7 Com-
bination, even though this category contains some of the most complex
structures. A reason for this might be the fact that a lot of the roofs of
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more complex structures has a basis consisting of rectangular planes. These
planes are well-represented in roofs of type 3 Gabled and 5 T-Element, and
the model has learned to predict these planes adequately. Resultingly, these
will to a large extent be correctly predicted for the combined roof struc-
tures, increasing the performance in this class.

For the determination of planimetric shape, the normal vector of each
point is another important feature. Each roof obtained and segmented in
the dataset are based on a real-world object present in the Trondheim area.
In real-world data, buildings are placed with arbitrary orientation in rela-
tion to the other roofs. This orientation is kept the same in the dataset,
meaning that a roof of a certain type might have several different arbit-
rary orientations around the z-axis. Inconsistency in the direction of the
normal vector might be a factor affecting the predicted results of part ac-
curacy. The number of neighbours in the k-NN algorithm is an important
factor. For the proposed TRD3DRoofs dataset, the six nearest neighbours
were considered during the calculation of normal vectors for each point.
This number might not be optimal, yielding inferior results for the plane
segmentation. This value, as well as the effect of this on both the part and
geometric accuracy, is further discussed in subsection 5.3.3.

5.3.3 Calculation of Normal Vector using k-nn: Effects of
Varying the k

Based on the evaluation, there is an indication that the calculation of the
normal vector affects the prediction performed by the network. The calcu-
lation of the normal vector is based on the k-NN algorithm. In this section,
the effects of varying the value of k, the number of nearest neighbours to
retrieve, is discussed.

If the number of retrieved neighbours is too small, the algorithm will
be sensitive to outliers. This would result in too much variance in the val-
ues, and the normal vector calculated for each point of a plane would be
inconsistent. If a too large number of neighbours are retrieved, the neigh-
bourhood may include points from adjacent planes. In cases where most
points present in a point neighbourhood are belonging to bordering planes,
this is a problem. The points normal vector would in this situation repres-
ent the neighbouring plane, leading to the point possibly being wrongly
segmented. This is particularly a problem along the ridges of a roof struc-
ture.

The visual inspection performed, indicates that most of the wrong pre-
dictions are done along ridges, indicating that a k = 6 is not optimal for
this dataset. Research for finding this optimal value is an aspect possible
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to investigate in future work.

5.3.4 Rule-based Post-Processing

As mentioned in the previous section, a lot of the errors of the predic-
tions occur along ridges. Figure 5.4 shows one example of how the points
along ridges are prone to errors, being wrongly segmented into the adja-
cent planes.

If the error present in the segmentation occurs along the ridge of the
roof structures, a higher degree of error could be considered sufficient for
the intended applications presented in this thesis. When seen in light of the
3D modeling process, the segmentation step of the roof structures does
not need to be flawless. Before the final 3D model is to be constructed,
polygons must be derived for each of the segments. Post-processing of the
segmented dataset is therefore a necessity, and this process could exclude
errors present at the ridges.

If not automatically done, rule-based methods can be implemented to
correct small errors in the segmentation. Rule-based segmentation have
earlier been applied for LiDAR point clouds [112]. By defining a set of
rules for the proper segmentation of wrongly segmented points along the
ridges, the post-processing will reduce the amount of error present in the
predictions.

Based on this reasoning, it is sensible to find the result of the roof plane
segmentation of TRD3DRoofs using PointNet++ sufficient for modeling
purposes.

5.3.5 Hyperparameter Optimization and Training Split

The performance of a neural network is highly dependent on the configur-
ations of the parameters. Optimization of hyperparameters are important
aspects that can affect the training process, and thereby also the predicted
results [51]. Based on this, there is reason to believe that adjustment of
the used hyperparameters could yield better results for the segmentation
of roof planes.

To find the most suitable settings, tests and analysis are needed for each
of these parameters. This is done through trial and error, and is often a
hugely time-consuming task as the network needs to be trained for several
variations of each of the parameters. The network currently uses 3-6 hours
for training. With the limitations of the thesis regarding available hardware
and time, this a task not feasible to perform. Consequently, hyperparameter



Chapter 5: Evaluation and Discussion 75

(a) Ground Truth

(b) Predicted Result

Figure 5.4: Visualization of error present along ridges in the predicted
result. The dotted lines indicates the ridges of the roof. It can bee seen
that points from the ladder shaped plane (light purple) along the ridge has
been wrongly segmented into the neighbouring rectangular plane (blue).
This is also the case along the ridge between the rectangular planes (blue-
shades), where several points are segmented into the wrong plane.
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optimization goes beyond the scope of this thesis. This is a topic that with
benefit could be further investigated in future work.

Another factor that affects the training of neural networks is the
train/validation/test split of the dataset. Currently, the split ratio for train-
ing and testing applied to the data is 80 : 20. Other variations of this
ratio are commonly applied, such as 70 : 30 [17]. As the splits define
which structures the network is to be exposed to during training, these
splits might affect the resulting predictions performed. As point clouds are
unordered, and the variation of roof structures present in real-life areas
are very diverse, there is a need for a large number of examples of roofs.
For a dataset of this size, a split where only 70% of the complete data-
set is used for training could result in poor performance. Some roof type
classes already contain a minimum of structures, and reducing this number
even further is not desirable. With a low number of roofs used for train-
ing, each structure is of more importance. Consequently, in these cases a
well-balanced dataset, both between classes and with regards to variations
within a class, is desirable. This is not possible with the current data in the
TRD3DRoofs dataset.

Presently, all models proposed are tested on the same number of data
but trained varying percentages of the training dataset. Other variations
for the amount of data in the splits could yield better results, especially for
more complex structures, as the network could in these cases have been
exposed to these at a higher rate in the training. E.g. for the models trained
on a low percentage of the training set, the test set will contain a large share
of the data. The most important consideration when deciding split ratio, is
to make sure that both the train and test datasets appropriately represents
the problem domain.

Another possibility is to implement and adapt a more advanced ap-
proach to the splitting of the data. By analysing and evaluating the struc-
tures present in the dataset, each structure could individually be placed in
the different splits based on a set of rules, resulting in a more optimal split.

5.3.6 Comparison of our Results with the Results from
PointNet++

The creators of PointNet++ shows that their network can be used for se-
mantic part segmentation by using a subset of the ShapeNet dataset [67].
Shapes represented by point clouds are taken as input and used to predict a
part label for each point. Normal vectors are added to each point, to depict
the underlying shape to a larger extent. For this dataset, state-of-the-art
performance at the time is achieved with a mIoU of 85.1%. On the pro-
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Figure 5.5: Examples of aligned models in the ShapeNet dataset. Figure
origin: [67].

posed TRD3DRoofs dataset presentet in this thesis, PointNet++ achieves a
mIoU of 79.4%.

Compared to our proposed TRD3DRoofs dataset, the ShapeNet Parts
dataset is very different. ShapeNet [67] consists of 3D CAD models of ob-
jects labelled with a hybrid approach. Both algorithms and human effort
are combined to perform the annotation of the models. 3D CAD models are
contrary to our data not based on scans of real-world objects. As the data is
artificially obtained, the quality of the point cloud is significantly superior.
Density distributions in 3D CAD models will not contain the same degree
of variety as a point cloud obtained through ALS. Another significant dis-
similarity between the datasets is the orientation and annotation of the
objects. For ShapeNet Parts, all objects are aligned with a rigid alignment
strategy, making sure that every object has the same orientation. Examples
of this can be found in Figure 5.5. This rigid alignment simplifies the train-
ing procedure, as the normal vectors of points will be consistent between
different objects with regards to part label. This will however never be the
case of data obtained in real-world scenarios, as these are prone to arbit-
rary rotations. Another benefit of the rigid alignment is that it simplifies
the annotation process, making it easier to retain information about the
relationship between neighbouring planes.

The predicted results and our manual evaluation indicate that the per-



Chapter 5: Evaluation and Discussion 78

formance of PointNet++ with regards to part segmentation is dependent
on the consistency of global features. When exposed to data with incon-
sistency in global features, such as the TRD3DRoofs dataset, the perform-
ance of the part segmentation drops. It appears that the network in this
case still learns the geometric features of the local points. Nevertheless, it
is not satisfyingly separating points belonging to distinct planes. To per-
form this separation, the global features of the complete point clouds need
to be taken into consideration. The peformance results of PointNet++ for
this application indicates that it in some cases are vulnerable to inconsist-
ency in global features. This is remarkably evident when the network is
trained on real-world data where arbitrary orientations of roof structures
are present.

Based on the theory presented in section 2.3, the differences between
our dataset consisting of real roof data and the syntetic data of ShapeNet
Parts is significant. We therefore consider the obtained mIoU of 79.4 to
be satisfying. This belief is further strengthened when comparing to the
highest mIoU obtained on ScanNet[113], a dataset consisting of real in-
door scenes. [66] reports that the best performing point based method,
KPConv[75], achieves a mIoU of 68.8.

5.3.7 Choice of Neural Network

PointNet++ was selected as a basis used to test our datasets applicability
for training a deep learning network, specifically for the task of part seg-
mentation of roof structures. This method was deemed fitting because it
fulfilled our requirements of directly processing a point cloud as input, the
handling of varying data densities and achieves good results at the task of
part segmentation. However, the main reason as to why it was preferred
over other deep learning methods, such as the ones mentioned in 2.2.2,
that also satisfy the necessities, was to consider the time and hardware
constrains.

For example could the graph-based methods, specGCN [80] and
LDGCNN [81], not be as affected by the plane labelling scheme as graph-
based method are especially focused on capturing structural relations.
Then again, DGCNN has a longer inference time, while achieving the same
mIoU as PointNet++ on ShapeNet Parts Table 2.1. SpecGCN has a higher
mIoU score, but the network is too complex for it to be practical consider-
ing our limitation.

On the other, could a CNN-based method produce good results, as sev-
eral of these receive high marks at task of part segmentation. Both KPConv
[75] and FG-net [78], but we deem these methods to be too new to be im-
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plemented by enough independent researchers and is therefore not as well-
documented as PointNet++. This became a deciding factor, due to the time
limitation. The best alternative would be PointCNN [73], as this method is
less complex that PointNet++ whilst still achieving a higher mIoU score.
The down side is that it is slow to converge during training.

5.3.8 Deep Learning vs Traditional Segmentation

In this thesis, we argue that a deep learning approach to the problem of
roof plane segmentation of 3D point cloud data is a feasible option for a
more general solution to the problem of segmentation. There is one ma-
jor reason why neural networks are an improved alternative to traditional
segmentation methods: the learning process.

Traditional segmentation methods have in common that they all need
definitions of features and criteria to determine the similarity between
points and detect objects [26]. The feature definition and selection for
identifying planes is a challenging task. Humans instinctively recognize
object around us that we earlier have been exposed to. However, it is not
necessary possible to easily explain mathematically why we are able to
recognize and categorize different objects. A varying unspecified number
of factors affect this process. Thus, the task of correctly defining the fea-
tures and criterions necessary to separate an arbitrary roof structure into
distinctive planes is difficult. It is not possible to address all aspects that
affect what is to be considered a roof plane.

This problem is solved in the case of deep learning. Artificial neural net-
works are inspired by the neurobiological basis of how the human brain is
learning. The result of this novel field of research is advanced algorithms
that, as the human brain, learn features based on the input they are ex-
posed to. This means that no mathematical definition of features describing
the roof planes is necessary. Resultingly, the neural network has the pos-
sibility of detecting roof planes outside of what is possible to define with
mathematical features. This is a huge advantage in the case of segment-
ation of 3D point clouds. The use of deep learning-based approaches for
the segmentation of roof planes in 3D point clouds can both improve the
result of the segmentation, as well as reduce the time spent, by simplifying
the process.
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Conclusion and Further work

In this chapter, we conclude our work in light of the established research
questions. Limitations of the proposed work, including the dataset and the
adapted network, are presented and discussed. Research that could further
improve our work is highlighted and would be interesting to investigate in
future work.

This thesis addresses the creation of suitable 3D point cloud data for
deep learning techniques intended for roof plane segmentation needed for
applications in typical Norwegian residential areas. The purpose of this
thesis is to achieve this by answering the proposed research questions.

The establishment of guidelines for manual labeling of LiDAR data,
which explains how data formatting and normalization are performed, can
be seen as an answer to the first research question. The output is annotated
ground truth data of point cloud roof structures, in a format suitable for
deep learning algorithms. However, limitations are present regarding the
labelling strategy established. Currently, no consistency between the labels
and the normal vectors are present, and the result from the experiments
indicates that this affects the predictions given. In addition, some indic-
ations show that maintaining a consistent relationship between adjacent
planes across all roof types would be appropriate. This is however not con-
sistently applied in this work. No optimal solution were found, suggesting
that further research on this labelling strategy should be conducted. The
second research question is answered in the guidelines proposed. In this
step, multiple roof structures are separated, and rotation of the labels is
performed to increase the amount of data present. This augmentation of
the data, along with the formatting, results in a dataset large enough for
deep learning techniques.

The result of this thesis is two new datasets, TRD3DRoofs and Aug-
mented TRD3DRoofs. These datasets consist of manually labelled ground
truth data of roof structures. Two separate datasets are established to sat-

80
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isfy the need for both real-life data, and a large enough amount of training
data for data-hungry networks. Further, by conducting experiments, the
usability of the proposed augmented version of the dataset is tested in a
well-recognized neural network for point cloud data, PointNet++. Evalu-
ation of both the usability of the Augmented TRD3DRoofs dataset in a deep
neural network and the usability of PointNet++ for plane segmentation of
real-world roof structures are conducted.

Based on the presented evaluation and reasoning proposed in the dis-
cussion in chapter 5, it is reasonable to assume that the results of the roof
plane segmentation are sufficient for the construction of 3D models of roof
structures. Nevertheless, to achieve desirable results along ridges of the
roofs, a need for rule-based post-processing methods for the segmentation
emerges. It should also be noted that the results are dependent on the
area of obtainment and hardware used, and that manual estimations are
the basis of parts of the evaluation performed.

We conclude that the proposed Augmented TRD3DRoofs dataset
achieves promising results for roof plane segmentation when utilised as
training data for the deep neural network PointNet++. It is reasonable
to conclude that the 3D models that may be constructed based on the
TRD3DRoofs dataset and the segmentation performed by PointNet++, is
applicable for renewable energy applications in residential areas of Trond-
heim. This indicates that a deep learning approach might be a solution to
the lack of a general method for segmentation of complex roof structures,
but further research is necessary to confirm this indication.

This thesis distinguishes itself from earlier work by establishing ground
truth 3D point cloud data labelled with semantic information about roof
planes, not only roof structures. In addition, the proposed dataset has
a point density similar to that obtained in most projects in surveying
and mapping, opposed to other datasets. Furthermore, the roof structures
present are typical for Norwegian residential areas, and to the best of our
knowledge, no such dataset already exists. The use of neural networks on
3D data is a challenging task, and not much research has yet been conduc-
ted.

Our work points out the usability of the neural network PointNet++
used for the task of 3D roof plane segmentation. Factors regarding the net-
work trained on real-world data where arbitrary real-life orientations of
the roof structures are present, are discussed. We find this important to
highlight for future improvements and research on point-wise deep learn-
ing algorithms, such as PointNet++.



Chapter 6: Conclusion and Further work 82

6.1 Limitations

Based on the experiment performed on the established dataset, it was dis-
covered certain limitations regarding the methodology of the project and
the resulting TRD3DRoofs dataset. In addition, limitations of PointNet++
trained on our proposed dataset are also present. These limitations will be
presented and discussed in this final section.

6.1.1 TRD3DRoofs

Datasets established from real-world LiDAR data are heavily dependent on
the quality of the raw point cloud. The density of the point cloud depends
on the surrounding conditions during the time of obtainment and will con-
sequently lead to a varying point density for the roofs. Point density is a
feature that might affect the prediction result, so a varying density is not
optimal [68]. This limitation related to variations in density will be present
both in the original and augmented dataset.

Few complicated roof structures are present in the ground truth data,
leading to a lack of training data for such structures in the original dataset.
These complex roof structures are however present both in the Trondheim
area and other Norwegian residential areas. If the trained network is ex-
posed to these roofs, it will provide poor prediction results not applicable
for the desired applications. The validity of the original dataset is limited by
both the amount of roofs, and the variation of the roofs present. The data-
set is prone to a skew related to categories, as it is based on only real-world
roof structures. In real-life residential areas, there is a natural imbalance
based on the commonality of different roof types. Additionally, due to the
cost and time needed for manual annotation, the original dataset is not
large enough to be suitable as input for data-hungry networks [49].

These limitations could be overcome by additional segmentation of
real-world roof structures, and the augmented TRD3DRoofs improves
these weaknesses to some extent. The augmented version have a smaller
skew, and a larger amount of roofs. However, issues regarding the consist-
ency of the plane labelling are introduced. As discussed, there is a desire for
consistency between adjacent planes across all roof types in the augmen-
ted dataset. Normal vectors are also added to all points as an additional
feature. Their contribution is intended to support the learning process, but
as these normal vectors are not consistent with regards to plane label, the
labelling strategy is not ideal. Theses annotations issues are a major lim-
itation of the current Augmented TRD3DRoofs dataset. No solution was
discovered for this problem during the work of this master thesis, and fur-
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ther research will be necessary to improve the labelling strategy.

6.1.2 PointNet++

Based on how the metrics are calculated in PointNet++ and how the data
of the proposed Augmented TRD3DRoofs is structured, the network will in
theory only have a 50% chance of separating planes of a geometric class
correctly (except for ladder shaped planes, where the chance is 25%). This
is due to the problem highlighted in section 5.1.

This limitation indicates that no metric given by the implementation
of PointNet++ is suitable for presenting the performance of the models
correctly. This creates a need for a visual evaluation to determine the qual-
ity of the performance. These results will only be estimates, as they are
performed manually.

6.2 Further Work

In this section, further work is proposed that addresses current limitations
and which can further improve the work of this thesis. This includes the
collection and processing of additional data, examination of possible post-
processing methods and investigation of the usability of the dataset for
training other neural network models.

The original dataset consists of approximately 900 manually segmen-
ted roof structures. For the complicated task of training neural networks
on 3D point clouds, this is not enough as an excessive amount of data is
needed. Additionally, as the data is only collected in the Trondheim area,
the validity of the results are limited based on the roof structures present
here. Further work would therefore involve the collection, segmentation,
and processing of additional data obtained both in the Trondheim area
and other Norwegian cities. This would also include the addition of more
complex structures into the dataset, to make the model able to predict a
broader type of roof structures present in Norwegian residential areas. To-
gether, these further contributions would increase the validity of the data-
set beyond that of today. Additional data augmentation, such as resizing
of the points, would further increase the amount of data present, possibly
resulting in an even more appropriate dataset for deep learning purposes.

The current manual labelling strategy includes limitations regarding
consistency between the plane label and the normal vector, and consist-
ency between adjacent planes. The establishment of a suitable labelling
scheme is challenging, as variations in roof structures of all types complic-
ate the task of consistency. A study where different approaches are tested
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and evaluated is desirable, but such a task is time-consuming and in need
of large amounts of manual labour, going beyond the scope of this thesis.
However, this is an interesting task for future research.

Currently, the resulting predictions include errors of varying degrees,
primarily with regards to separation of distinctive planes. Future research
would include the establishment of rule-based post-processing methods
meant to eliminate such errors. These methods would be applied to the roof
planes where certain points are incorrectly segmented, or the separation
of distinct planes is at flaw. By establishing post-processing methods errors
could be corrected based on a set of established rules, and the “cleaning” of
the predicted data would result in an improved result of the segmentation.

Further optimization of the network hyperparameters is necessary to
improve the training process of PointNet++ on real-world data, as such
data is significantly different from the synthetic data it has been tested on
in the past. It would be interesting to see the result of the predictions if
this were to be done. It would also be of interest to test other possibilities
for calculating the normal vector, for example using different values of k or
letting the network learn this value, to see if that could improve the results
on the edge cases.

Features that are present for each point in the dataset at its current state
is coordinates, normal vector, roof type, and plane label. In the future, fur-
ther investigation of additional features would be interesting. Combining
the point cloud with Red Green Blue (RGB) colour data have been success-
ful in related work on 3D point clouds [11] [86]. This indicates that com-
bining the existing point cloud with UAV images of the same area could
provide improved results and is a topic relevant for further work on the
dataset.

One aspect that would be interesting to investigate further, is the us-
ability of TRD3DRoofs in training other deep neural networks. It seems
like the dataset has limitations regarding the consistency of the relation-
ship between adjacent planes and the given labels when utilised in Point-
Net++. PointNet++ uses layers that imitates convolution, but this may
not be optimal. It would be interesting to adopt a network using CNNs, to
see if this would yield better results, indicating a more suitable technique
for the proposed task of roof plane segmentation of real-world buildings.
Pre-processing of the point cloud, where clustering is applied to separate
the point cloud into clusters could resolve the problem of plane segmenta-
tion present when utilizing PointNet++. This is not optimal, as it complic-
ates the segmentation process. From a mathematical perspective, the prob-
lem of clustering can be regarded as a graph-based optimization problem
[14]. Several graph-based deep learning methods have been developed for



Chapter 6: Conclusion and Further work 85

point cloud processing, and these could prove to be more suitable for the
proposed dataset. In further work, it would be interesting to investigate
the suitability of TRD3DRoofs in graph-based networks such as PointGCR
[114].



Bibliography

[1] N. Lu, J. Zhou, Z. Han, D. Li, Q. Cao, X. Yao, Y. Tian, Y. Zhu, W.
Cao and T. Cheng, ‘Improved estimation of aboveground biomass
in wheat from RGB imagery and point cloud data acquired with
a low-cost unmanned aerial vehicle system,’ Plant Methods, 2019.
DOI: 10.1186/s13007-019-0402-3.

[2] P. Narksri, E. Takeuchi, Y. Ninomiya, Y. Morales, N. Akai and N.
Kawaguchi, ‘A Slope-robust Cascaded Ground Segmentation in 3D
Point Cloud for Autonomous Vehicles,’ IEEE Conference on Intel-
ligent Transportation Systems, Proceedings, ITSC, 2018. DOI: 10.
1109/ITSC.2018.8569534.

[3] S. Malihi, M. J. Valadan Zoej, M. Hahn, M. Mokhtarzade and H.
Arefi, ‘3D building reconstruction using dense photogrammetric
point cloud,’ 2016. DOI: 10.5194/isprsarchives-XLI-B3-71-
2016.

[4] Unfccc - united nations framework convention on climate change:
The paris agreement. [Online]. Available: https://unfccc.int/
process- and- meetings/the- paris- agreement/the- paris-
agreement (visited on 27/05/2021).

[5] (). ‘Irena - international renewable energy agency: Climate
change,’ [Online]. Available: https : / / www . irena . org /
climatechange (visited on 27/05/2021).

[6] M. S. Wong, R. Zhu, Z. Liu, L. Lu, J. Peng, Z. Tang, C. H. Lo and W. K.
Chan, ‘Estimation of Hong Kong’s solar energy potential using GIS
and remote sensing technologies,’ Renewable Energy, 2016. DOI:
10.1016/j.renene.2016.07.003.

[7] A. Sampath and J. Shan, ‘Building Roof Segmentation and Recon-
struction from LiDAR Point Clouds Using Clustering Techniques,’
IAPRS International Archives of Photogrammetry and Remote Sens-
ing and Spatial Information Sciences, 2008, ISSN: 16821750.

86

https://doi.org/10.1186/s13007-019-0402-3
https://doi.org/10.1109/ITSC.2018.8569534
https://doi.org/10.1109/ITSC.2018.8569534
https://doi.org/10.5194/isprsarchives-XLI-B3-71-2016
https://doi.org/10.5194/isprsarchives-XLI-B3-71-2016
https://unfccc.int/process-and-meetings/the-paris-agreement/the-paris-agreement
https://unfccc.int/process-and-meetings/the-paris-agreement/the-paris-agreement
https://unfccc.int/process-and-meetings/the-paris-agreement/the-paris-agreement
https://www.irena.org/climatechange
https://www.irena.org/climatechange
https://doi.org/10.1016/j.renene.2016.07.003


Bibliography 87

[8] D. Kong, L. Xu and X. Li, ‘A new method for building roof segment-
ation from airborne LiDAR point cloud data,’ Measurement Science
and Technology, 2013. DOI: 10.1088/0957-0233/24/9/095402.

[9] S. A. N. Gilani, M. Awrangjeb and G. Lu, ‘Segmentation of air-
borne point cloud data for automatic building roof extraction,’ GIS-
cience and Remote Sensing, 2018. DOI: 10.1080/15481603.2017.
1361509.

[10] E. Goceri, ‘Challenges and Recent Solutions for Image Segmenta-
tion in the Era of Deep Learning,’ 2019 9th International Confer-
ence on Image Processing Theory, Tools and Applications, IPTA 2019,
2019. DOI: 10.1109/IPTA.2019.8936087.

[11] Q. Hu, B. Ang, L. Xie, S. Rosa, Y. Guo, Z. Wang, N. Trigoni and
A. Markham, ‘RandLA-Net: Efficient Semantic Segmentation of
Large-Scale Point Clouds,’ Tech. Rep., 2020, pp. 11 108–11 117.

[12] H. Fan. (2018). ‘Uav and laser scanning - tba4231 applied geo-
matics,’ [Online]. Available: https://ntnu.blackboard.com/.
(accessed: 19.04.2021).

[13] A. Kaiser, J. A. Ybanez Zepeda and T. Boubekeur, ‘A Survey of
Simple Geometric Primitives Detection Methods for Captured 3D
Data,’ Computer Graphics Forum, vol. 38, no. 1, pp. 167–196, 2019.
DOI: 10.1111/cgf.13451.

[14] Y. Xie, J. TIAN and X. X. Zhu, ‘Linking Points With Labels in 3D: A
Review of Point Cloud Semantic Segmentation,’ IEEE Geoscience
and Remote Sensing Magazine, pp. 1–20, 2020. DOI: 10 . 1109 /
MGRS.2019.2937630.

[15] M. Kolle, D. Laupheimer, S. Schmohl, N. Haala, F. Rottensteiner,
J. D. Wegner and H. Ledoux, ‘The Hessigheim 3D (H3D) Bench-
mark on Semantic Segmentation of High-Resolution 3D Point
Clouds and Textured Meshes from UAV LiDAR and Multi-View-
Stereo,’ ISPRS Open Journal of Photogr. and Rem. Sens., 2021.

[16] S. M. I. Zolanvari, S. Ruano, A. Rana, C. Alan, R. E. da Siliva, M.
Rahbar and A. Smolic, ‘DublinCity : Annotated LiDAR Point Cloud
and its Applications,’ 2019.

[17] N. Varney, V. K. Asari and Q. Graehling, ‘DALES : A Large-scale
Aerial LiDAR Data Set for Semantic Segmentation,’ 2020 IEEE/CVF
Conference on Computer Vision and Pattern Recognition Workshops
(CVPRW) DALES:, 2020. DOI: 10.1109/CVPRW50498.2020.00101.

https://doi.org/10.1088/0957-0233/24/9/095402
https://doi.org/10.1080/15481603.2017.1361509
https://doi.org/10.1080/15481603.2017.1361509
https://doi.org/10.1109/IPTA.2019.8936087
https://ntnu.blackboard.com/
https://doi.org/10.1111/cgf.13451
https://doi.org/10.1109/MGRS.2019.2937630
https://doi.org/10.1109/MGRS.2019.2937630
https://doi.org/10.1109/CVPRW50498.2020.00101


Bibliography 88

[18] S. E. Reutebuch, H.-e. Andersen and R. J. Mcgaughey, ‘Light De-
tection and Ranging ( LIDAR ): An Emerging Tool for Multiple Re-
source Inventory,’ Journal of Forestry, 2005.

[19] H. Fan. (2019). ‘Laser scanning i - tba4236 theoretical geomatics,’
[Online]. Available: https://ntnu.blackboard.com/. (accessed:
10.04.2021).

[20] E. Naesset, ‘Determination of mean tree height of forest stands us-
ing airborne laser scanner data,’ ISPRS Journal of Photogrammetry
and Remote Sensing, 1997.

[21] S. Xu, G. Vosselman and S. O. Elberink, ‘Multiple-entity based clas-
sification of airborne laser scanning data in urban areas,’ 2013.
DOI: 10.1016/j.isprsjprs.2013.11.008.

[22] P. Packalen, J. Strunk, T. Packalen, M. Maltamo and L. Mehtätalo,
‘Resolution dependence in an area-based approach to forest in-
ventory with airborne laser scanning,’ Remote Sensing of Environ-
ment, 2019. DOI: 10.1016/j.rse.2019.01.022.

[23] M. Morgan and K. Tempfli, ‘Automatic building extraction from
airborne laser scanning data,’ International Archives of Photogram-
metry and Remote Sensing., 2000.

[24] D. Chen, R. Wang and J. Peethambaran, ‘Topologically Aware
Building Rooftop Reconstruction From Airborne Laser Scanning
Point Clouds,’ IEEE TRANSACTIONS ON GEOSCIENCE AND RE-
MOTE SENSING, 2017.

[25] K. Kim and J. Shan, ‘Building roof modeling from airborne laser
scanning data based on level set approach,’ ISPRS Journal of
Photogrammetry and Remote Sensing, 2011. DOI: 10 . 1016 / j .
isprsjprs.2011.02.007.

[26] H. Fan. (2020). ‘Segmentation - tba4256 3d digital modelling,’
[Online]. Available: https://ntnu.blackboard.com/. (accessed:
10.04.2021).

[27] A. Nguyen and B. Le, ‘3D point cloud segmentation: A survey,’ IEEE
Conference on Robotics, Automation and Mechatronics, RAM - Pro-
ceedings, pp. 225–230, 2013. DOI: 10.1109/RAM.2013.6758588.

[28] X. Y. Jiang, U. Meier and H. Bunke, ‘Fast range image segmenta-
tion using high-level segmentation primitives,’ IEEE Workshop on
Applications of Computer Vision - Proceedings, 1996. DOI: 10.1109/
acv.1996.572006.

https://ntnu.blackboard.com/
https://doi.org/10.1016/j.isprsjprs.2013.11.008
https://doi.org/10.1016/j.rse.2019.01.022
https://doi.org/10.1016/j.isprsjprs.2011.02.007
https://doi.org/10.1016/j.isprsjprs.2011.02.007
https://ntnu.blackboard.com/
https://doi.org/10.1109/RAM.2013.6758588
https://doi.org/10.1109/acv.1996.572006
https://doi.org/10.1109/acv.1996.572006


Bibliography 89

[29] B. Xiong, M. Jancosek, S. Oude Elberink and G. Vosselman, ‘Flex-
ible building primitives for 3D building modeling,’ ISPRS Journal of
Photogrammetry and Remote Sensing, vol. 101, pp. 275–290, 2015.
DOI: 10.1016/j.isprsjprs.2015.01.002.

[30] M. A. Fischler and R. C. Bolles, ‘Random Sample Paradigm for
Model Consensus: A Apphcatlons to Image Fitting with Ana-
lysis and Automated Cartography,’ Graphics and Image Processing,
vol. 24, no. 6, pp. 381–395, 1981.

[31] T. M. Awwad, Q. Zhu, Z. DU and Y. Zhang, ‘AN IMPROVED
SEGMENTATION APPROACH FOR PlANAR SURFACES FROM UN-
STRUCTURED 3D POINT CLOUDS,’ The Photogrammetric Record,
2010.

[32] B. Xu, W. Jiang, J. Shan, J. Zhang and L. Li, ‘Investigation on the
weighted RANSAC approaches for building roof plane segmenta-
tion from LiDAR point clouds,’ Remote Sensing, vol. 8, no. 1, p. 5,
Dec. 2016. DOI: 10.3390/rs8010005.

[33] C. Wang, M. Ji, J. Wang, W. Wen, T. Li and Y. Sun, ‘An improved
DBSCAN method for LiDAR data segmentation with automatic Eps
estimation,’ Sensors (Switzerland), vol. 19, no. 1, Jan. 2019. DOI:
10.3390/s19010172.

[34] H. Fan. (2020). ‘Clustering - tba4256 3d digital modelling,’ [On-
line]. Available: https : / / ntnu . blackboard . com/. (accessed:
03.04.2021).

[35] L. V. Vilson, P. S. Excell and R. J. Green, ‘A Generalisation of the
fuzzy c-means clustering algorithm,’ 1988.

[36] J. Macqueen, ‘SOME METHODS FOR CLASSIFICATION AND ANA-
LYSIS OF MULTIVARIATE OBSERVATIONS,’ 1967.

[37] A. Sampath and J. Shan, ‘Segmentation and Reconstruction of
Polyhedral Building Roofs From Aerial Lidar Point Clouds,’ IEEE
TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2010.

[38] M. Awrangjeb and G. Lu, ‘Building roof plane extraction from
LIDAR data,’ 2013 International Conference on Digital Image Com-
puting: Techniques and Applications, DICTA 2013, 2013. DOI: 10.
1109/DICTA.2013.6691490.

[39] R. Albano, ‘Investigation on Roof Segmentation for 3D Building
Reconstruction from Aerial LIDAR Point Clouds,’ applied sciences,
2019.

https://doi.org/10.1016/j.isprsjprs.2015.01.002
https://doi.org/10.3390/rs8010005
https://doi.org/10.3390/s19010172
https://ntnu.blackboard.com/
https://doi.org/10.1109/DICTA.2013.6691490
https://doi.org/10.1109/DICTA.2013.6691490


Bibliography 90

[40] A. V. Vo, L. Truong-Hong, D. F. Laefer and M. Bertolotto, ‘Octree-
based region growing for point cloud segmentation,’ ISPRS Journal
of Photogrammetry and Remote Sensing, vol. 104, pp. 88–100,
2015. DOI: 10.1016/j.isprsjprs.2015.01.011.

[41] Y. Xu, W. Yao, L. Hoegner and U. Stilla, ‘Segmentation of building
roofs from airborne LiDAR point clouds using robust voxel-based
region growing,’ Remote Sensing Letters, 2017. DOI: 10 . 1080 /
2150704X.2017.1349961.

[42] S. Sun and C. Salvaggio, ‘Aerial 3D Building Detection and Mod-
eling From Airborne LiDAR Point Clouds,’ IEEE JOURNAL OF SE-
LECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE
SENSING, 2013.

[43] J. Shaou, W. Zhang, A. Shen, N. Mellando, S. Cai, L. Luo, N. Wang,
G. Yan and G. Zhou, ‘Seed point set-based building roof extrac-
tion from airborne LiDAR point clouds using a top-down strategy,’
Automation in Construction, 2021. DOI: 10.1016/j.autcon.2021.
103660.

[44] B. Marr, These 25 Technology Trends Will Define The Next Decade,
2020. [Online]. Available: https://www.forbes.com/sites/
bernardmarr / 2020 / 04 / 20 / these - 25 - technology - trends -
will-define-the-next-decade/?sh=ddcdf9829e3b (visited on
15/12/2020).

[45] W. Liu, Z. Wang, X. Liu, N. Zeng, Y. Liu and F. E. Alsaadi, ‘A sur-
vey of deep neural network architectures and their applications,’
Neurocomputing, vol. 234, pp. 11–26, Apr. 2017. DOI: 10.1016/j.
neucom.2016.12.038.

[46] J. Patterson and A. Gibson, Deep Learning: A Practitioner’s Ap-
proach. 2017, pp. 7–7.

[47] A. L’Heureux, K. Grolinger, H. F. Elyamany and M. A. Capretz, ‘Ma-
chine Learning with Big Data: Challenges and Approaches,’ IEEE
Access, vol. 5, pp. 7776–7797, 2017. DOI: 10.1109/ACCESS.2017.
2696365.

[48] V. Buhrmester, D. Münch and M. Arens, ‘Analysis of Explainers of
Black Box Deep Neural Networks for Computer Vision: A Survey,’
2019.

https://doi.org/10.1016/j.isprsjprs.2015.01.011
https://doi.org/10.1080/2150704X.2017.1349961
https://doi.org/10.1080/2150704X.2017.1349961
https://doi.org/10.1016/j.autcon.2021.103660
https://doi.org/10.1016/j.autcon.2021.103660
https://www.forbes.com/sites/bernardmarr/2020/04/20/these-25-technology-trends-will-define-the-next-decade/?sh=ddcdf9829e3b
https://www.forbes.com/sites/bernardmarr/2020/04/20/these-25-technology-trends-will-define-the-next-decade/?sh=ddcdf9829e3b
https://www.forbes.com/sites/bernardmarr/2020/04/20/these-25-technology-trends-will-define-the-next-decade/?sh=ddcdf9829e3b
https://doi.org/10.1016/j.neucom.2016.12.038
https://doi.org/10.1016/j.neucom.2016.12.038
https://doi.org/10.1109/ACCESS.2017.2696365
https://doi.org/10.1109/ACCESS.2017.2696365


Bibliography 91

[49] T. Hackel, N. Savinov, L. Ladicky, J. D. Wegner, K. Schindler and M.
Pollefeys, ‘Semantic3D.Net: a New Large-Scale Point Cloud Classi-
fication Benchmark,’ ISPRS Annals of the Photogrammetry, Remote
Sensing and Spatial Information Sciences, 2017. DOI: 10 . 5194 /
isprs-annals-IV-1-W1-91-2017.

[50] A. Ioannidou, E. Chatzilari, S. Nikolopoulos and I. Kompatsiaris,
‘Deep learning advances in computer vision with 3D data: A sur-
vey,’ ACM Computing Surveys, vol. 50, no. 2, 2017. DOI: 10.1145/
3042064.

[51] J. Bergstra, R. Bardenet, Y. Bengio, B. Kégl and R. Bardenet,
‘Algorithms for Hyper-Parameter Opti-mization,’ Tech. Rep., Dec.
2011. [Online]. Available: https : / / hal . inria . fr / hal -
00642998.

[52] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li and L. Fei-Fei, ‘Im-
ageNet: A large-scale hierarchical image database,’ pp. 248–255,
2009. DOI: 10.1109/cvprw.2009.5206848.

[53] A. Geiger, P. Lenz, C. Stiller and R. Urtasun, ‘Vision meets ro-
botics: The KITTI dataset,’ International Journal of Robotics Re-
search, vol. 32, no. 11, pp. 1231–1237, Sep. 2013. DOI: 10.1177/
0278364913491297.

[54] T. Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan,
P. Dollár and C. L. Zitnick, ‘Microsoft COCO: Common objects in
context,’ in Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioin-
formatics), vol. 8693 LNCS, Springer Verlag, 2014, pp. 740–755.
DOI: 10.1007/978-3-319-10602-1_48.

[55] M. Everingham, S. M. Eslami, L. Van Gool, C. K. Williams, J. Winn
and A. Zisserman, ‘The Pascal Visual Object Classes Challenge: A
Retrospective,’ International Journal of Computer Vision, vol. 111,
no. 1, pp. 98–136, Jan. 2015. DOI: 10.1007/s11263-014-0733-5.

[56] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Ben-
enson, U. Franke, S. Roth and B. Schiele, ‘The Cityscapes Data-
set for Semantic Urban Scene Understanding,’ in Proceedings of
the IEEE Computer Society Conference on Computer Vision and Pat-
tern Recognition, vol. 2016-Decem, 2016, pp. 3213–3223, ISBN:
9781467388504. DOI: 10.1109/CVPR.2016.350.

[57] A. Krizhevsky, I. Sutskever and G. Hinton, ‘Imagenet classification
with deep convolutional neural networks,’ Advances in neural in-
formation processing systems, 2012.

https://doi.org/10.5194/isprs-annals-IV-1-W1-91-2017
https://doi.org/10.5194/isprs-annals-IV-1-W1-91-2017
https://doi.org/10.1145/3042064
https://doi.org/10.1145/3042064
https://hal.inria.fr/hal-00642998
https://hal.inria.fr/hal-00642998
https://doi.org/10.1109/cvprw.2009.5206848
https://doi.org/10.1177/0278364913491297
https://doi.org/10.1177/0278364913491297
https://doi.org/10.1007/978-3-319-10602-1_48
https://doi.org/10.1007/s11263-014-0733-5
https://doi.org/10.1109/CVPR.2016.350


Bibliography 92

[58] K. Simonyan and A. Zisserman, ‘Very deep convolutional networks
for large-scale image recognition,’ in 3rd International Conference
on Learning Representations, ICLR 2015 - Conference Track Proceed-
ings, International Conference on Learning Representations, ICLR,
Sep. 2015.

[59] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D.
Erhan, V. Vanhoucke and A. Rabinovich, ‘Going Deeper with Con-
volutions,’ Tech. Rep., 2015, pp. 1–9.

[60] J. Long, E. Shelhamer and T. Darrell, ‘Fully Convolutional Net-
works for Semantic Segmentation,’ Tech. Rep., 2015, pp. 3431–
3440.

[61] K. He, X. Zhang, S. Ren and J. Sun, ‘Deep residual learning for
image recognition,’ in Proceedings of the IEEE Computer Society
Conference on Computer Vision and Pattern Recognition, vol. 2016-
Decem, 2016, pp. 770–778, ISBN: 9781467388504. DOI: 10.1109/
CVPR.2016.90.

[62] C. R. Qi, H. Su, K. Mo and L. J. Guibas, ‘PointNet: Deep learning
on point sets for 3D classification and segmentation,’ Proceedings
- 30th IEEE Conference on Computer Vision and Pattern Recogni-
tion, CVPR 2017, vol. 2017-Janua, pp. 77–85, 2017. DOI: 10.1109/
CVPR.2017.16.

[63] L. Tchapmi, C. Choy, I. Armeni, J. Gwak and S. Savarese,
‘SEGCloud: Semantic segmentation of 3D point clouds,’ Proceed-
ings - 2017 International Conference on 3D Vision, 3DV 2017,
pp. 537–547, 2018. DOI: 10.1109/3DV.2017.00067.

[64] H. Y. Meng, L. Gao, Y. K. Lai and D. Manocha, ‘VV-NET: Voxel VAE
net with group convolutions for point cloud segmentation,’ arXiv,
pp. 8500–8508, 2018.

[65] R. A. Rosu, P. Schütt, J. Quenzel and S. Behnke, ‘LatticeNet: Fast
Point Cloud Segmentation Using Permutohedral Lattices,’ 2019.

[66] Y. Guo, H. Wang, Q. Hu, H. Liu, L. Liu and M. Bennamoun, ‘Deep
learning for 3D point clouds: A survey,’ arXiv, pp. 1–27, 2020. DOI:
10.1109/tpami.2020.3005434.

[67] A. X. Chang, T. Funkhouser, L. Guibas, P. Hanrahan, Q. Huang, Z.
Li, S. Savarese, M. Savva, S. Song, H. Su, J. Xiao, L. Yi and F. Yu,
‘ShapeNet: An Information-Rich 3D Model Repository,’ Dec. 2015.

https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2017.16
https://doi.org/10.1109/CVPR.2017.16
https://doi.org/10.1109/3DV.2017.00067
https://doi.org/10.1109/tpami.2020.3005434


Bibliography 93

[68] C. Qi, L. Yi, H. Su and L. Guibas, ‘PointNet++: Deep Hierarch-
ical Feature Learning on,’ NIPS’17: Proceedings of the 31st In-
ternational Conference on Neural Information Processing Systems,
no. Dec, pp. 5105–5114, 2017.

[69] M. Jiang, Y. Wu, T. Zhao, Z. Zhao and C. Lu, ‘PointSIFT: A SIFT-
like Network Module for 3D Point Cloud Semantic Segmentation,’
2018.

[70] W. Wang and R. Yu, ‘SGPN : Similarity Group Proposal Network
for 3D Point Cloud Instance Segmentation University of California
, San Diego,’ 2018 IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 2569–2578, 2018.

[71] L. Z. Chen, X. Y. Li, D. P. Fan, K. Wang, S. P. Lu and M. M. Cheng, ‘LS-
ANet: Feature learning on point sets by local spatial aware layer,’
arXiv, 2019.

[72] S. Khan, H. Rahmani, S. A. A. Shah and M. Bennamoun, ‘A Guide
to Convolutional Neural Networks for Computer Vision,’ Synthesis
Lectures on Computer Vision, vol. 8, no. 1, pp. 1–207, Feb. 2018.
DOI: 10.2200/s00822ed1v01y201712cov015.

[73] Y. Li, R. Bu and X. Di, ‘PointCNN : Convolution On X -Transformed
Points,’ no. NeurIPS, 2018.

[74] Z. Zhang, B. S. Hua and S. K. Yeung, ‘ShellNet: Efficient point cloud
convolutional neural networks using concentric shells statistics,’
Proceedings of the IEEE International Conference on Computer Vis-
ion, vol. 2019-Octob, pp. 1607–1616, 2019. DOI: 10.1109/ICCV.
2019.00169.

[75] H. Thomas, C. R. Qi, J.-E. Deschaud, B. Marcotegui, F. Goulette
and L. J. Guibas, ‘KPConv: Flexible and Deformable Convolution
for Point Clouds,’ Tech. Rep., 2019, pp. 6411–6420.

[76] A. Boulch, ‘ConvPoint: Continuous convolutions for point cloud
processing,’ Computers and Graphics (Pergamon), vol. 88, pp. 24–
34, May 2020. DOI: 10.1016/j.cag.2020.02.005.

[77] ShapeNet-Part Benchmark (3D Part Segmentation) | Papers With
Code. [Online]. Available: https : / / paperswithcode . com /
sota/3d- part- segmentation- on- shapenet- part (visited on
06/06/2021).

[78] K. Liu, Z. Gao, F. Lin and B. M. Chen, ‘FG-Net: Fast Large-Scale
LiDAR Point CloudsUnderstanding Network Leveraging Correl-
atedFeature Mining and Geometric-Aware Modelling,’ 2020.

https://doi.org/10.2200/s00822ed1v01y201712cov015
https://doi.org/10.1109/ICCV.2019.00169
https://doi.org/10.1109/ICCV.2019.00169
https://doi.org/10.1016/j.cag.2020.02.005
https://paperswithcode.com/sota/3d-part-segmentation-on-shapenet-part
https://paperswithcode.com/sota/3d-part-segmentation-on-shapenet-part


Bibliography 94

[79] L. Landrieu and M. Simonovsky, ‘Large-scale Point Cloud Se-
mantic Segmentation with Superpoint Graphs,’ Tech. Rep., 2017,
pp. 4558–4567.

[80] C. Wang, B. Samari and K. Siddiqi, ‘Local Spectral Graph Convo-
lution for Point Set Feature Learning,’ Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence
and Lecture Notes in Bioinformatics), vol. 11208 LNCS, pp. 56–71,
2018. DOI: 10.1007/978-3-030-01225-0_4.

[81] K. Zhang, M. Hao, J. Wang, C. W. de Silva and C. Fu, ‘Linked Dy-
namic Graph CNN: Learning on Point Cloud via Linking Hierarch-
ical Features,’ 2019.

[82] M. A. Uy, Q. H. Pham, B. S. Hua, T. Nguyen and S. K. Yeung, ‘Re-
visiting point cloud classification: A new benchmark dataset and
classification model on real-world data,’ Proceedings of the IEEE
International Conference on Computer Vision, vol. 2019-October,
no. Iccv, pp. 1588–1597, 2019. DOI: 10.1109/ICCV.2019.00167.

[83] M. J. Westoby, J. Brasington, N. F. Glasser, M. J. Hambrey and J. M.
Reynolds, ‘’Structure-from-Motion’ photogrammetry: A low-cost,
effective tool for geoscience applications,’ Geomorphology, 2012.
DOI: 10.1016/j.geomorph.2012.08.021.

[84] M. Bosch, Z. Kurtz, S. Hagstrom and M. Brown, ‘A multiple view
stereo benchmark for satellite imagery,’ Proceedings - Applied Im-
agery Pattern Recognition Workshop, 2017. DOI: 10.1109/AIPR.
2016.8010543.

[85] Y. Furukawa and J. Ponce, ‘Accurate, dense, and robust multiview
stereopsis,’ IEEE Transactions on Pattern Analysis and Machine In-
telligence, 2010. DOI: 10.1109/TPAMI.2009.161.

[86] X. Li, C. Li, Z. Tong, A. Lim, J. Yuan, Y. Wu, J. Tang and R. Huang,
‘Campus3D: A Photogrammetry Point Cloud Benchmark for Hier-
archical Understanding of Outdoor Scene,’ 2020. DOI: 10.1145/
3394171.3413661.

[87] Q. Hu, B. Yang, S. Khalid, W. Xiao, N. Trigoni and A. Markham,
‘Towards Semantic Segmentation of Urban-Scale 3D Point Clouds:
A Dataset, Benchmarks and Challenges,’ 2021. arXiv: 2009.03137.

[88] J. Xiao, J. Zhang, B. Adler, H. Zhang and J. Zhang, ‘Three-
dimensional point cloud plane segmentation in both structured
and unstructured environments,’ Robotics and Autonomous Sys-
tems, 2013. DOI: 10.1016/j.robot.2013.07.001.

https://doi.org/10.1007/978-3-030-01225-0_4
https://doi.org/10.1109/ICCV.2019.00167
https://doi.org/10.1016/j.geomorph.2012.08.021
https://doi.org/10.1109/AIPR.2016.8010543
https://doi.org/10.1109/AIPR.2016.8010543
https://doi.org/10.1109/TPAMI.2009.161
https://doi.org/10.1145/3394171.3413661
https://doi.org/10.1145/3394171.3413661
https://arxiv.org/abs/2009.03137
https://doi.org/10.1016/j.robot.2013.07.001


Bibliography 95

[89] S. Nikoohemat, M. Peter, S. O. Elberink and G. Vosselman, ‘Se-
mantic interpretation of mobile laser scanner point clouds in In-
door Scenes using trajectories,’ Remote Sensing, vol. 10, no. 11,
pp. 18–22, 2018. DOI: 10.3390/rs10111754.

[90] X. Roynard, J. E. Deschaud and F. Goulette, ‘Paris-Lille-3D: A large
and high-quality ground-truth urban point cloud dataset for auto-
matic segmentation and classification,’ International Journal of Ro-
botics Research, 2018.

[91] J. Behley, M. Garbade, A. Milioto, J. Quenzel, S. Behnke, C. Stach-
niss and J. Gall, ‘SemanticKITTI,’ Iccv, no. iii, 2019.

[92] F. Rottensteiner, G. Sohn, J. Jung, M. Gerke, C. Baillard, S. Benitez
and U. Breitkopf, ‘THE ISPRS BENCHMARK on URBAN OBJECT
CLASSIFICATION and 3D BUILDING RECONSTRUCTION,’ ISPRS
Annals of the Photogrammetry, Remote Sensing and Spatial Inform-
ation Sciences, DOI: 10.5194/isprsannals-I-3-293-2012.

[93] I. I. S. for Photogrammetry and R. Sensing. (). ‘Isprs benchmarks,’
[Online]. Available: https : / / www . isprs . org / education /
benchmarks.aspx. (accessed: 07.05.2021).

[94] Z. Ye, Y. Xu, R. Huang, X. Tong, X. Li, X. Liu, K. Luan, L. Hoegner
and U. Stilla, ‘LASDU: A large-scale aerial LiDAR dataset for se-
mantic labeling in dense urban areas,’ ISPRS International Journal
of Geo-Information, 2020. DOI: 10.3390/ijgi9070450.

[95] A. Wichmann, A. Agoub and M. Kada, ‘ROOFN3D: Deep learning
training data for 3D building reconstruction,’ International Archives
of the Photogrammetry, Remote Sensing and Spatial Information Sci-
ences - ISPRS Archives, 2018. DOI: 10.5194/isprs- archives-
XLII-2-1191-2018.

[96] D. Girardeau-Montaut. (). ‘Cloudcompare,’ [Online]. Available:
http://www.cloudcompare.org/. (accessed: 18.03.2021).

[97] (). ‘Arcgis pro - the world’s leading gis software,’ [Online]. Avail-
able: https://www.esri.com/en-us/arcgis/products/arcgis-
pro/overview. (accessed: 09.06.2021).

[98] M. Kada, ‘Scale-dependent simplification of 3D building models
based on cell decomposition and primitive instancing,’ 2007. DOI:
10.1007/978-3-540-74788-8_14.

[99] Y. Shirai and M. Suva, ‘RECOGNITION OF POLYHEDRONS WITH A
RANGE FINDER,’ Electrotechnica l Laboratory Tokyo, Japan, no. 3,
pp. 80–87, 1972.

https://doi.org/10.3390/rs10111754
https://doi.org/10.5194/isprsannals-I-3-293-2012
https://www.isprs.org/education/benchmarks.aspx
https://www.isprs.org/education/benchmarks.aspx
https://doi.org/10.3390/ijgi9070450
https://doi.org/10.5194/isprs-archives-XLII-2-1191-2018
https://doi.org/10.5194/isprs-archives-XLII-2-1191-2018
http://www.cloudcompare.org/
https://www.esri.com/en-us/arcgis/products/arcgis-pro/overview
https://www.esri.com/en-us/arcgis/products/arcgis-pro/overview
https://doi.org/10.1007/978-3-540-74788-8_14


Bibliography 96

[100] Z. Wu, R. Shou, Y. Wang and X. Liu, ‘Interactive shape co-
segmentation via label propagation,’ Computers and Graphics,
2014. DOI: 10.1016/j.cag.2013.11.009.

[101] J. M. Johnson and T. M. Khoshgoftaar, ‘Survey on deep learning
with class imbalance,’ Journal of Big Data, 2019. DOI: 10.1186/
s40537-019-0192-5.

[102] X. Huang, C. Weng, Q. Lu, T. Feng and L. Zhang, ‘Automatic la-
belling and selection of training samples for high-resolution re-
mote sensing image classification over urban areas,’ Remote Sens-
ing, no. 1, 2015. DOI: 10.3390/rs71215819.

[103] N. L. Alchapar and E. N. Correa, ‘Optothermal properties of façade
coatings. Effects of environmental exposure over solar reflective
index,’ Journal of Building Engineering, 2020. DOI: 10.1016/j.
jobe.2020.101536.

[104] Gråtone (UTM33). [Online]. Available: https://geodataonline.
maps . arcgis . com / apps / Embed / index . html ? webmap =
f7a6927a01cc46d59a279facc84b4556 & extent = 10 . 9532 , 59 .
9265, 11.0982, 59.9765&zoom=true&scale=false&disable_
scroll=false&theme=light (visited on 08/06/2021).

[105] (). ‘Pytorch - from research to production,’ [Online]. Available:
https://pytorch.org/. (accessed: 09.06.2021).

[106] R. Johns, PyTorch vs Tensorflow for Your Python Deep Learning
Project, 2020. [Online]. Available: https: // realpython.com /
pytorch-vs-tensorflow/#pytorch-vs-tensorflow-decision-
guide%20https://realpython.com/pytorch-vs-tensorflow/
(visited on 29/05/2021).

[107] X. Yan, ‘Pointnet/pointnet++ pytorch,’
https://github.com/yanx27/PointnetP ointnet2p y torch, 2019.

[108] (). ‘Rapidlasso gmbh - fast tools to catch reality: Lastools,’ [On-
line]. Available: https://rapidlasso.com/lastools/. (accessed:
09.06.2021).

[109] (). ‘Meshlab,’ [Online]. Available: https://www.meshlab.net/.
(accessed: 09.06.2021).

[110] L. Prechelt, ‘Early Stopping - But When?’ In, Springer, Berlin,
Heidelberg, 1998, pp. 55–69. DOI: 10.1007/3-540-49430-8_3.

https://doi.org/10.1016/j.cag.2013.11.009
https://doi.org/10.1186/s40537-019-0192-5
https://doi.org/10.1186/s40537-019-0192-5
https://doi.org/10.3390/rs71215819
https://doi.org/10.1016/j.jobe.2020.101536
https://doi.org/10.1016/j.jobe.2020.101536
https://geodataonline.maps.arcgis.com/apps/Embed/index.html?webmap=f7a6927a01cc46d59a279facc84b4556&extent=10.9532,59.9265,11.0982,59.9765&zoom=true&scale=false&disable_scroll=false&theme=light
https://geodataonline.maps.arcgis.com/apps/Embed/index.html?webmap=f7a6927a01cc46d59a279facc84b4556&extent=10.9532,59.9265,11.0982,59.9765&zoom=true&scale=false&disable_scroll=false&theme=light
https://geodataonline.maps.arcgis.com/apps/Embed/index.html?webmap=f7a6927a01cc46d59a279facc84b4556&extent=10.9532,59.9265,11.0982,59.9765&zoom=true&scale=false&disable_scroll=false&theme=light
https://geodataonline.maps.arcgis.com/apps/Embed/index.html?webmap=f7a6927a01cc46d59a279facc84b4556&extent=10.9532,59.9265,11.0982,59.9765&zoom=true&scale=false&disable_scroll=false&theme=light
https://geodataonline.maps.arcgis.com/apps/Embed/index.html?webmap=f7a6927a01cc46d59a279facc84b4556&extent=10.9532,59.9265,11.0982,59.9765&zoom=true&scale=false&disable_scroll=false&theme=light
https://pytorch.org/
https://realpython.com/pytorch-vs-tensorflow/#pytorch-vs-tensorflow-decision-guide%20https://realpython.com/pytorch-vs-tensorflow/
https://realpython.com/pytorch-vs-tensorflow/#pytorch-vs-tensorflow-decision-guide%20https://realpython.com/pytorch-vs-tensorflow/
https://realpython.com/pytorch-vs-tensorflow/#pytorch-vs-tensorflow-decision-guide%20https://realpython.com/pytorch-vs-tensorflow/
https://rapidlasso.com/lastools/
https://www.meshlab.net/
https://doi.org/10.1007/3-540-49430-8_3


Chapter : Conclusion and Further work 97

[111] R. Pohle-Fröhlich, A. Bohm, P. Ueberholz, M. Korb and S. Goebbels,
‘Roof segmentation based on deep neural networks,’ VISIGRAPP
2019 - Proceedings of the 14th International Joint Conference
on Computer Vision, Imaging and Computer Graphics Theory
and Applications, vol. 4, pp. 326–333, 2019. DOI: 10 . 5220 /
0007343803260333.

[112] B. Yang and Z. Dong, ‘A shape-based segmentation method for mo-
bile laser scanning point clouds,’ ISPRS Journal of Photogrammetry
and Remote Sensing, 2013. DOI: 10.1016/j.isprsjprs.2013.04.
002.

[113] A. Dai, A. X. Chang, M. Savva, M. Halber, T. Funkhouser and M.
Nießner, ‘ScanNet: Richly-annotated 3D reconstructions of indoor
scenes,’ in Proceedings - 30th IEEE Conference on Computer Vis-
ion and Pattern Recognition, CVPR 2017, vol. 2017-Janua, 2017,
pp. 2432–2443. DOI: 10.1109/CVPR.2017.261.

[114] Y. Ma, Y. Guo, H. Liu, Y. Lei and G. Wen, ‘Global context reasoning
for semantic segmentation of 3D point clouds,’ Proceedings - 2020
IEEE Winter Conference on Applications of Computer Vision, 2020.
DOI: 10.1109/WACV45572.2020.9093411.

https://doi.org/10.5220/0007343803260333
https://doi.org/10.5220/0007343803260333
https://doi.org/10.1016/j.isprsjprs.2013.04.002
https://doi.org/10.1016/j.isprsjprs.2013.04.002
https://doi.org/10.1109/CVPR.2017.261
https://doi.org/10.1109/WACV45572.2020.9093411


Appendix A

Train, test and validation splits
for all models

98



Chapter A: Train, test and validation splits for all models 99

Table A.1: Train, validation and test splits for all models. For SSG_100,
the split is identical to the split used for MSG_100.

Roof type Model Training Validation Testing

1

MSG_100 89 11 11
MSG_80 71 9 11
MSG_60 53 7 11
MSG_40 36 4 11
MSG_20 18 2 11

2

MSG_100 412 51 51
MSG_80 330 41 51
MSG_60 247 31 51
MSG_40 165 20 51
MSG_20 82 10 51

3

MSG_100 208 26 26
MSG_80 166 21 26
MSG_60 125 16 26
MSG_40 83 10 26
MSG_20 42 5 26

4

MSG_100 253 32 31
MSG_80 202 26 31
MSG_60 152 19 31
MSG_40 101 13 31
MSG_20 51 6 31

5

MSG_100 302 38 38
MSG_80 242 30 38
MSG_60 181 23 38
MSG_40 121 15 38
MSG_20 60 8 38

6

MSG_100 288 36 36
MSG_80 230 29 36
MSG_60 173 22 36
MSG_40 115 14 36
MSG_20 58 7 36

7

MSG_100 446 56 56
MSG_80 357 45 56
MSG_60 268 34 56
MSG_40 178 22 56
MSG_20 89 11 56



Appendix B

Visual results MSG_80

In this appendix, additional visuals for the predictions done by the MSG_80
model are shown. The results are separated by roof type, and 9 examples
are given for each type.

B.1 Type 1: Flat

(a) Ground truth (b) Prediction

(c) Ground truth (d) Prediction
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(e) Ground truth (f) Prediction

(g) Ground truth (h) Prediction

(i) Ground truth (j) Prediction

(k) Ground truth (l) Prediction
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(m) Ground truth (n) Prediction

(o) Ground truth (p) Prediction

(q) Ground truth (r) Prediction
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B.2 Type 2: Hipped

(a) Ground truth (b) Prediction

(c) Ground truth (d) Prediction

(e) Ground truth (f) Prediction
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(g) Ground truth (h) Prediction

(i) Ground truth (j) Prediction

(k) Ground truth (l) Prediction
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(m) Ground truth (n) Prediction

(o) Ground truth (p) Prediction

(q) Ground truth (r) Prediction
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B.3 Type 3: Gabled

(a) Ground truth (b) Prediction

(c) Ground truth (d) Prediction

(e) Ground truth (f) Prediction
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(g) Ground truth (h) Prediction

(i) Ground truth (j) Prediction

(k) Ground truth (l) Prediction
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(m) Ground truth (n) Prediction

(o) Ground truth (p) Prediction

(q) Ground truth (r) Prediction
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B.4 Type 4: Corner Element

(a) Ground truth (b) Prediction

(c) Ground truth (d) Prediction

(e) Ground truth (f) Prediction
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(g) Ground truth (h) Prediction

(i) Ground truth (j) Prediction

(k) Ground truth (l) Prediction
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(m) Ground truth (n) Prediction

(o) Ground truth (p) Prediction

(q) Ground truth (r) Prediction
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B.5 Type 5: T-Element

(a) Ground truth (b) Prediction

(c) Ground truth (d) Prediction

(e) Ground truth (f) Prediction
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(g) Ground truth (h) Prediction

(i) Ground truth (j) Prediction

(k) Ground truth (l) Prediction
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(m) Ground truth (n) Prediction

(o) Ground truth (p) Prediction

(q) Ground truth (r) Prediction
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B.6 Type 6: Cross Element

(a) Ground truth (b) Prediction

(c) Ground truth (d) Prediction

(e) Ground truth (f) Prediction
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(g) Ground truth (h) Prediction

(i) Ground truth (j) Prediction

(k) Ground truth (l) Prediction
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(m) Ground truth (n) Prediction

(o) Ground truth (p) Prediction

(q) Ground truth (r) Prediction
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B.7 Type 7: Combination

(a) Ground truth (b) Prediction

(c) Ground truth (d) Prediction

(e) Ground truth (f) Prediction
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(g) Ground truth (h) Prediction

(i) Ground truth (j) Prediction

(k) Ground truth (l) Prediction
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(m) Ground truth (n) Prediction

(o) Ground truth (p) Prediction

(q) Ground truth (r) Prediction
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Visual results MSG_100

In this appendix, additional visuals for the predictions done by the
MSG_100 model are shown. The results are separated by roof type, and
10 examples are given for each type.

C.1 Type 1: Flat

(a) Ground truth (b) Prediction

(c) Ground truth (d) Prediction
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(e) Ground truth (f) Prediction

(g) Ground truth (h) Prediction

(i) Ground truth (j) Prediction

(k) Ground truth (l) Prediction
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(m) Ground truth (n) Prediction

(o) Ground truth (p) Prediction

(q) Ground truth (r) Prediction

(s) Ground truth (t) Prediction
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C.2 Type 2: Hipped

(a) Ground truth (b) Prediction

(c) Ground truth (d) Prediction

(e) Ground truth (f) Prediction
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(g) Ground truth (h) Prediction

(i) Ground truth (j) Prediction

(k) Ground truth (l) Prediction

(m) Ground truth (n) Prediction
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(o) Ground truth (p) Prediction

(q) Ground truth (r) Prediction

(s) Ground truth (t) Prediction
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C.3 Type 3: Gabled

(a) Ground truth (b) Prediction

(c) Ground truth (d) Prediction

(e) Ground truth (f) Prediction
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(g) Ground truth (h) Prediction

(i) Ground truth (j) Prediction

(k) Ground truth (l) Prediction

(m) Ground truth (n) Prediction
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(o) Ground truth (p) Prediction

(q) Ground truth (r) Prediction

(s) Ground truth (t) Prediction
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C.4 Type 4: Corner Element

(a) Ground truth (b) Prediction

(c) Ground truth (d) Prediction

(e) Ground truth (f) Prediction
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(g) Ground truth (h) Prediction

(i) Ground truth (j) Prediction

(k) Ground truth (l) Prediction

(m) Ground truth (n) Prediction
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(o) Ground truth (p) Prediction

(q) Ground truth (r) Prediction

(s) Ground truth (t) Prediction
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C.5 Type 5: T-Element

(a) Ground truth (b) Prediction

(c) Ground truth (d) Prediction

(e) Ground truth (f) Prediction
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(g) Ground truth (h) Prediction

(i) Ground truth (j) Prediction

(k) Ground truth (l) Prediction

(m) Ground truth (n) Prediction
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(o) Ground truth (p) Prediction

(q) Ground truth (r) Prediction

(s) Ground truth (t) Prediction
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C.6 Type 6: Cross-Element

(a) Ground truth (b) Prediction

(c) Ground truth (d) Prediction

(e) Ground truth (f) Prediction
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(g) Ground truth (h) Prediction

(i) Ground truth (j) Prediction

(k) Ground truth (l) Prediction

(m) Ground truth (n) Prediction
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(o) Ground truth (p) Prediction

(q) Ground truth (r) Prediction

(s) Ground truth (t) Prediction
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C.7 Type 7: Combination

(a) Ground truth (b) Prediction

(c) Ground truth (d) Prediction

(e) Ground truth (f) Prediction
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(g) Ground truth (h) Prediction

(i) Ground truth (j) Prediction

(k) Ground truth (l) Prediction

(m) Ground truth (n) Prediction
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(o) Ground truth (p) Prediction

(q) Ground truth (r) Prediction

(s) Ground truth (t) Prediction



Appendix D

Manual Evaluation on MSG_80

This appendix includes the metrics given in the manual evaluation of model
MSG_80 for all 70 roofs.

Bid Roof type Part accuracy Geometric accuracy

182224308 1 1.00 1.00
182279587 1 1.00 1.00
182284173 1 1.00 1.00
182287091 1 1.00 1.00
182380016 1 1.00 1.00
182397652 1 1.00 1.00
300118905 1 1.00 1.00
300287193 1 1.00 1.00
300455961 1 1.00 1.00
300557684 1 1.00 1.00

10456495-3 2 0.55 1.00
300079914-3 2 0.75 1.00

21070440-2 2 0.65 0.95
21074551-0 2 0.75 0.95

182142182-3 2 0.85 0.95
182142379-1 2 0.80 0.95
182215910-3 2 0.65 0.95
182181447-2 2 0.65 0.95
182142239-2 2 0.85 0.95
182143398-2 2 0.70 0.95

10519136 3 0.95 1.00
10519209 3 1.00 1.00
10519268 3 0.95 1.00
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Table D.1 continued from previous page

Bid Roof type Part accuracy Geometric accuracy

10519292 3 0.95 1.00
300279692 3 1.00 1.00
21104825 3 0.95 1.00

182152056 3 0.95 1.00
182130516 3 0.95 1.00
182213217 3 0.90 1.00
182214620 3 0.95 1.00

10470048-21 4 0.75 1.00
10473225-1 4 0.75 0.95
10477018-3 4 0.70 0.95
21084573-7 4 0.80 0.95

182149136-3 4 0.80 0.95
182150630-0 4 0.70 0.95
182213608-1 4 0.60 1.00
182211605-3 4 0.55 0.95
182245070-3 4 0.80 0.90
182274798-6 4 0.80 0.95

10486823-0 5 0.90 0.95
10486831-0 5 0.85 0.95
10474442-1 5 0.85 0.95
10477107-0 5 0.85 0.95
10477867-1 5 0.90 0.95
10478413-0 5 0.85 0.95
10498821-1 5 0.90 0.95
10505712-0 5 0.85 0.95
10517389-0 5 0.85 1.00
21048860-0 5 0.90 1.00

10465036-6 6 0.70 0.90
10457319-0 6 0.90 1.00
10557747-8 6 0.80 0.95

21021539-17 6 0.85 0.95
21062618-10 6 0.75 0.90

21088358-4 6 0.80 0.95
182210331-5 6 0.85 1.00
182210161-5 6 0.90 0.95

182280291-19 6 0.80 1.00
182294063-10 6 0.80 1.00
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Table D.1 continued from previous page

Bid Roof type Part accuracy Geometric accuracy

10463092-10 7 0.90 0.95
10498422-7 7 0.80 0.95
10541220-1 7 0.70 1.00
21022071-2 7 0.65 0.95

182173827-6 7 0.75 0.90
182177164-6 7 0.90 0.95
300504074-2 7 0.90 1.00
182280240-8 7 0.85 1.00

182278599-2-3 7 0.80 0.95
182279854-1 7 0.95 1.00



Appendix E

Manual Evaluation on MSG_100

This appendix includes the metrics given in the manual evaluation of model
MSG_100 for all 70 roofs.

Bid Roof type Part accuracy Geometric accuracy

182224308 1 1.00 1.00
182279587 1 1.00 1.00
182284173 1 1.00 1.00
182287091 1 1.00 1.00
182380016 1 1.00 1.00
182397652 1 1.00 1.00
300118905 1 1.00 1.00
300287193 1 1.00 1.00
300455961 1 1.00 1.00
300557684 1 1.00 1.00

10456495-3 2 0.65 1.00
300079914-3 2 0.80 0.95

21070440-2 2 0.45 0.70
21074551-0 2 0.80 0.95

182142182-3 2 0.80 0.95
182142379-1 2 0.80 1.00
182215910-3 2 0.80 0.95
182181447-2 2 0.80 0.95
182142239-2 2 0.85 1.00
182142298-2 2 0.30 0.50

10519136 3 0.90 1.00
10519209 3 0.95 1.00
10519268 3 0.95 1.00
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Table E.1 continued from previous page

Bid Roof type Part accuracy Geometric accuracy

10519292 3 0.65 1.00
300279692 3 0.95 1.00
21104825 3 0.95 1.00

182152056 3 0.95 1.00
182130516 3 0.95 1.00
182213217 3 0.95 1.00
182214620 3 0.95 1.00

10470048-21 4 0.40 1.00
10473225-1 4 0.70 0.95
10477018-3 4 0.70 0.90
21084573-7 4 0.65 1.00

182149136-3 4 0.65 0.95
182150630-0 4 0.60 0.95
182213608-1 4 0.70 0.90
182211605-3 4 0.80 0.95
182245070-3 4 0.65 1.00
182274798-6 4 0.60 0.95

10486823-0 5 0.80 0.95
10486831-0 5 0.85 0.95
10474442-1 5 0.90 0.95
10477107-0 5 0.90 1.00
10477867-1 5 0.85 1.00
10478413-0 5 0.90 1.00
10498821-1 5 0.75 0.95
10505712-0 5 0.85 0.95
10517389-0 5 0.85 1.00
21048860-0 5 0.90 1.00

10465036-6 6 0.65 0.85
10457319-0 6 0.80 1.00
10557747-8 6 0.85 0.95

21021539-17 6 0.85 0.95
21062618-10 6 0.65 0.90

21088358-4 6 0.70 0.95
182210331-5 6 0.80 1.00
182210161-5 6 0.80 1.00

182280291-19 6 0.75 0.95
182294063-10 6 0.70 0.95
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Table E.1 continued from previous page

Bid Roof type Part accuracy Geometric accuracy

10463092-10 7 0.85 0.95
10498422-7 7 0.65 1.00
10541220-1 7 0.60 1.00
21022071-2 7 0.60 1.00

182173827-6 7 0.60 0.90
182177164-6 7 0.85 0.95
300504074-2 7 0.80 0.95
182280240-8 7 0.85 1.00

182278599-2-3 7 0.90 0.95
182279854-1 7 0.90 1.00
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