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Abstract

This report presents an investigation on the inelastic behaviour of steel I-section

beam-columns under combinations of axial load, bending and torsion. The study

is motivated by the lack of information on the ultimate capacity of such members,

and the lack of design procedures and design provisions.

A test facility is built for the testing of the beam-columns, with the primary ob-

jective to obtain reliable experimental data for the response for specimens tested at

well controlled load- and support-conditions. Tests are carried out for two di�erent

Class1 I-sections, the wide 
ange section HEB 140 and the beam section IPE 160.

The behaviour in both uniform and nonuniform torsion is investigated, as well

as combinations of bending and torsion at various levels of axial load. Results are

given in terms of response histories.

Typical beam-column experiments are simulated by means of the general pur-

pose �nite element program ABAQUS, using shell elements to model the specimens.

The objective is to verify to what extent numerical simulations may replace physical

models in studies of beam-columns under similar load combinations.

Methods for calculating the full plastic nonuniform torsional moment are dis-

cussed. Second order e�ects are discussed for the combination of axial load and

torsion, and simple design interaction equations are proposed. For the interaction

between bending and torsion, the applicability of a commonly used quadratic in-

teraction equation is investigated. For the capacity de�nition, a deformation norm

is introduced. An interaction equation on the component level is proposed for the

full load combination of axial load, bending and torsion.
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Notation

Notations and symbols used in this report are de�ned in the text when they occur.

The axis system, the displacements and the forces are de�ned in Figure 5.1.

Symbol Explanation

A, A

0

cross-sectional area, original cross-sectional area

E, G modulus of elasticity, shear modulus of elasticity (G=E/2(1+�))

H transverse midspan load on beam-column

H

p

value of H giving full plasti�cation in bending (H

p

=4M

p

=l)

I

T

, I

w

section torsional constant, section warping constant

L length

L

C

reduced parallel length of tensile test coupon

L

0

original gauge length (=5.65

p

A

0

) for proportional test coupon

M bending moment or bending moment at beam-column midspan

M

f

bending moment in 
ange about strong axis of 
ange plate

M

fp

plastic bending moment in 
ange

M

p

plastic bending moment about strong axis (y) of cross-section

M

Y

yield bending moment (initial yield) about strong axis

N axial force, axial load

N

E

, N

ET

elastic 
exural buckling load, elastic torsional buckling load

N

Y

yield axial load (=squash load of cross section)

N

0

axial load applied to beam-column

N

d

design capacity for N (=N

Y

/


M

)

NMT load combination with N, M and T

T torsional moment (torque)

T

Y

yield torsional moment (initial yield)

T

0

torsional moment applied to end of beam-column

T

0;alt

alternative torsional capacity

T

d

, T

pd

design capacity for T, plastic design capacity (=T

p

/


M

)

T

p

plastic torsional moment

T

r

,T

�

ampli�ed value, reduced value for torsional capacity

T

u

, T

up

uniform torsional moment, plastic value of T

u

T

w

, T

wp

warping torsional moment, plastic value of T

w

V, V

f

shear force, shear force in 
ange (y-direction)

H

p

normalized value of H (
H

p

=H/H

p

)

M
normalized value of M (

M
=M/M

Y

)

M

p

normalized value of M (
M

p

=M/M

p

)

N
normalized value of N (

N
=N/N

Y

)
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T
normalized value of T (

T
=T/T

Y

)

T

p

normalized value of T (
T

p

=T/T

p

)

a deformation norm

b width of 
ange

f ampli�cation factor

f

y

yield strength (yield stress)

f

u

ultimate tensile strength

h depth of cross-section

h

t

distance between 
ange centroids

l length of beam, length of beam-column

s thickness of web

t thickness or thickness of 
ange

u axial shortening of beam-column

u

Y

value of u due to N

Y

w transverse displacement of beam-column at midspan

w

Y

value of w at initial yield due to transverse loading H

�

5:65

elongation (%) after rupture, measured over L

0

"

yp

yield point elongation

"

u

strain when f

u

is reached




M

partial safety factor for the resistance

� twist rotation of beam-column end

�

T

twist rotation due to external torsional loading

�

Y

value of � at initial yield due to torsional loading T

0

�

r

ampli�ed value of � due to presence of N

u
normalized u (

u
=u/u

Y

)

w
normalized value of w (

w
=w/w

Y

)

�
normalized value of � (

�
=�/�

Y

)



Chapter 1

Introduction

1.1 Background

Over the last ten years an extensive e�ort has been made in Europe in order to

write a complete set of design speci�cations for the most commonly used materials

in civil engineering structures. The work on these Eurocodes was initiated by

the Commission of the European Union, and continued under the auspices of the

European Standardisation Organisation (CEN). The codes are based on the concept

of partial coe�cients of structural reliability, and a major objective was to arrive

at a uniform level of reliability all through the structures. As a basis for the

development of Eurocode 3 - Design of Steel Structures - data bases were established

containing all available data, experimental or numerical, regarding the behaviour

of structures, structural components and joints and connectors.

At the ultimate limit state the provisions of the codes aim at predicting the real

load carrying capacity of the structure, taking advantage of second order e�ects

and inelastic material behaviour. For linearly elastic behaviour the theory of elas-

ticity provides solutions both for beams in torsion, torsional buckling and lateral

torsional buckling, but the interaction of bending, torsion and axial force is not well

documented. When writing the speci�cations for beam-columns it became clear

that very little information was available regarding the ultimate capacity of com-

ponents subjected to combined actions that included torsion. As a consequence,

the design formulas for beam-columns subjected to bending and axial force are

quite advanced and accurate, while the problem of torsion is almost completely

neglected.

In most civil engineering steel structures torsion is a secondary action, and is

commonly avoided through good structural design. Even though the transfer of

external loads by means of torsion is generally considered an ine�cient way of

resisting the external actions, there are cases were the torsional behaviour can not

be avoided and where the torsional resistance may be of great importance. This is

the case for instance in slender bridges, and for building structures under accidental

situations such as �re and earthquakes. Traditionally, the torsion e�ects have in

many cases simply been neglected in the structural analysis of building structures.

However, in today's structural analysis programs it is frequently easier to include

torsion in the computational model than to avoid it.

1



2 CHAPTER 1. INTRODUCTION

By means of the commercially available general purpose �nite element codes

that incorporate both geometrical and material nonlinearities structural design by

analysis is now feasible. This means that the traditional design procedure of �rst

carrying out a structural analysis followed by a separate (independent) check of

member capacity in the form of a code check, can in principle be replaced by

a one-step procedure in which the load carrying capacity of the structure can

be determined through a nonlinear �nite element analysis. The new Australian

Standard (AS 4100) states certain requirements for the use of such a procedure,

and Eurocode 3 also contains some general information for its use. In general, if

design by analysis is to be used, the safety level speci�ed by the appropriate building

authorities and ensured by today's design speci�cations, has to be maintained. This

means that all e�ects such as initial deformations, residual stresses, spatial variation

of material properties such as yield and ultimate stress must be represented in the

numerical model.

For the analysis of steel framed structures beam elements are available that

include warping deformations of the cross section and models based on concentrated

plasticity to describe the inelastic material behaviour. All the previously mentioned

e�ects can in principle be included here, and for steel frames where the components

are subjected primarily to axial and bending actions such elements predict the

response with good accuracy. However, when also torsion is present the existing

models for concentrated plasticity are inadequate, as the commonly available yield

or bounding surfaces in force space do not include torsion.

Further research is hence needed both to provide experimental data on the

structural behaviour of beam-columns subjected combinations of axial force, bend-

ing and torsion actions and on possible plastic failure or bounding surfaces for cross

sections subjected to the same actions.

1.2 Objectives

The present investigation has two primary objectives. Firstly, to obtain reliable

experimental data on the behaviour of beam-columns of I-shaped cross sections sub-

jected to combinations of axial, bending and torsion actions that take the member

into the inelastic range. This data is to serve as a basis both for the development

of interaction formulas on the same format as the current design speci�cations, and

may also be used for veri�cation of plastic failure surfaces for use in concentrated

plasticity models. Secondly, to use this data to evaluate the accuracy of numerical

models established by means of existing general purpose �nite element programs

for this type of problems.
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The main tasks of the present investigation are :

1. To develop and construct a test facility for testing of I-section beam-columns

under various combinations of axial load, bending moment and torsional mo-

ment. The primary objectives of the tests are to provide high precision exper-

imental data for the response of the beam-columns, tested at well controlled

load- and support-conditions which can be properly modelled in a �nite ele-

ment analysis.

2. To carry out tests on beam-columns of two di�erent I-shaped sections, at

various load combinations, to obtain data both for member behaviour and

for cross-sectional resistance. The load combination will be restricted to the

case of compressive axial force, torsional moment and strong axis bending

only at the critical section.

3. To simulate some typical experiments by means of an existing �nite element

program, using shell elements to model the test specimens. The objective here

is to verify to which extent numerical simulations can replace physical models

in a further study of beam-column behaviour under similar load combinations.

4. To discuss the existing design provisions for torsion in view of the experience

gained in the present study.

1.3 Previous studies

Not many studies have been made of the nonlinear behaviour of structural members

subjected to torsion, and especially not when torsion is combined with bending and

axial force. Torsional problems related to elastic instability, such as lateral-torsional

buckling of beams and torsional buckling of columns are considered to lie outside

the scope of the present study, and are not included here. An extensive summary

of the most relevant remaining literature is provided by Pi and Trahair (1994c).

The linear theories for elastic bending of beams and torsion of elastic beams and

bars are well established (Timoshenko 1936, Timoshenko and Goodier 1951, Vlasov

1961 and others) and give quite accurate predictions for the member behaviour in

the case of small deformations. The basic theories for the prediction of the plastic

bending capacity of beams and plastic torsional strength of members are given by

Nadai (1950), Hodge (1959) and Neal (1977).

Experimental investigations of the e�ects of inelastic torsion on structural mem-

bers have been carried out only by few authors. Boulton (1962) tested four rolled

steel I-section beams, two of which were restrained against warping deformation

at both ends and two which were free to warp. Dinno and Gill (1964) tested nine-

teen small I-section specimens with warping restraints at the ends subjected to a
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centrally applied torsional moment. Dinno and Merchant (1965) tested six similar

specimens in combined bending and torsion, while Farwell and Galambos (1969)

tested �ve wide-
ange beams subjected to both one and two concentrated torsional

moments. For square and rectangular section specimens Gill and Boucher (1964)

carried out eighteen tests with bending and torsion. Tests on cantilever I-section

beams under bending and torsion are given by Driver and Kennedy (1989), and

tests with combined torsion, bending and axial loading of box stub columns are

presented by Kitada and Nakai (1989).

Approximate methods for calculation of plastic cross-sectional capacity in bend-

ing and torsion are available for various sections. Hill and Siebel (1953) and Steele

(1954) studied the combined bending and torsion of respectively solid circular sec-

tions and solid square sections, while Imegwu (1960) studied square, triangular

and circular sections. Approximate solutions in terms of lower and upper bounds

for the bending and torsion interaction were presented by Hill and Siebel (1953),

Steele (1954) and Gaydon and Nuttall (1957), while a lower bound solution was

presented by Hodge (1959) for various sections. In all cases the bending and the

torsional moment were assumed uniform along the length of the member.

For I-beam sections with warping restraints Boulton (1962) obtained an ap-

proximate lower bound solution for the fully plastic capacity for combined strong

axis bending and torsion, while Dinno and Merchant (1965) proposed an empiri-

cal "upper bound" for the plastic capacity of a cantilevered beam subjected to a

torsional moment at the free end. In addition, they used the lower bound inter-

action equation obtained by Hodge (1959) in their study of I-section beams with

warping restraints. Augusti (1966) used an upper bound approach to the case of

torsion of a cantilevered I-section beam, based on linear geometry and rigid plastic

behaviour, and evaluated the results of Boulton (1962) and Dinno and Merchant

(1965). These studies all focus on the e�ects of material yielding.

The e�ects of geometrical nonlinearity for beams and beam-columns, included

the e�ects of torsion, have been analysed by Chen and Atsuta (1977), Attard (1986),

Yang and McGuire (1986) and others. In recent years, several �nite element for-

mulations for beam elements have been presented, where both the geometrical and

material nonlinearities are accounted for. Both El-Khenfas and Nethercot (1989)

and Pi and Trahair (1994a) presented beam element formulations for analysis of

problems with large de
ections and twist rotations.

Finite element analyses have been used to study some problems which included

torsion. Baba and Kajita (1982) studied torsion of a prismatic beam using a

specially developed element. Bathe and Wiener (1983) studied two approaches to

model an I-section cantilever in bending and warping torsion, one model built up

with 1-D beam elements and one model with shell elements. May and Al-Shaarbaf

(1988) used brick elements to model uniform and warping torsion on beams of

various sections, included the I-section. Chen and Trahair (1992) presented a

�nite element model for analysing elastic-plastic torsion on I-section beams, where

the e�ect of the transverse uniform torsion shear stresses on material yielding were
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specially accounted for, and used this to study two examples of nonuniform torsion.

Using their general nonlinear beam element with warping degrees of freedom,

El-Khenfas and Nethercot (1989) analysed a simply supported beam with axial

compression, end moments and constant torsional moment applied at the mid-

span. Here, they numerically investigated the e�ect of the higher order terms in

the nonlinear strain-displacement relationship for the element. This e�ect was also

studied by Pi and Trahair (1994b), who used a similar element to study combined

torsion and bending of a simply supported beam, torsion of a compression member

and nonuniform torsion of an I-beam. Further, Pi and Trahair (1994c) investigated

the inelastic combined bending and torsion of I-section beams for three cases of

laterally bracing. They carried out several numerical simulations for these beams

with initial stresses and geometrical imperfections, looking at the interaction e�ects

between strong axis bending, 
exural-torsional buckling and torsion. In a recent

paper (Pi and Trahair 1995) they studied the behaviour of beams in nonuniform

torsion only.

In the �eld of yield surfaces for steel sections based on force resultants, one

of the most useful compendiums is the work of Chen and Atsuta (1977). They

constructed three-dimensional yield surfaces for the combination of axial force and

biaxial moments for a number of cross-sectional shapes, and derived analytical

expressions that approximate the surfaces for some typical I-sections. For the case

when uniform torsion is included, a reduced yield stress is established assuming

that the torsional stresses in the section are uniformly distributed. This reduced

yield stress is subsequently used when computing the capacities for bending and

axial force. For interaction between axial force and bending, Orbison et al. (1982)

developed a single equation approximating the Chen-Atsuta yield surface for a

wide 
ange section. Duan and Chen (1990) extended the work to other sections.

Daddazio et al. (1983) described a procedure for deriving yield surface equations

for thin-walled bars with warping restraints, subjected to the combination of axial

force, biaxial bending moments and warping moments. A four-dimensional, multi-

faceted surface was derived for a Z-section. For I-sections with nonuniform torsion

Yang and Fan (1988) derived the yield surface for the full �ve-dimensional action;

axial force, bending moments about two axes, a bimoment (
ange warping) and

the uniform torsional moment. Their approach is based on a parametric expression

of a �ve-dimensional surface with three component yield surfaces, one for each of

the plates constituting the section.

For bending and torsion on simply supported laterally braced and unbraced

beams, the elastical interaction e�ects were studied by Chu and Johnson (1974),

Pastor and DeWolf (1978), Razzaq and Galambos (1979) and Nethercot et al.

(1989). Simple suggestions for calculation and ampli�cation of elastic stresses and

torsional rotation due to second order e�ects are given.
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Chapter 2

Test setup

2.1 Introductory remarks

The reported tests are a part of an investigation dealing with the behaviour and

ultimate resistance of beam-columns subjected to combined axial load, bending

and torsion. The primary objective of the tests is to obtain reliable experimental

data on beam-column behaviour and on cross-sectional resistance of typical I-beam

sections when subjected to various combinations of axial force, strong axis bending

and torsional moment.

The experimental investigation is carried out for two hot-rolled I-sections, the

beam section IPE 160 and the wide 
ange section HEB 140. The laboratory fa-

cilities and the forces needed to fail the test specimens restricted the size of the

sections. The length of the beam-column to be tested was for many reasons cho-

sen to about two meters. A special test rig was designed and built for this testing.

Existing loading frames and standard hydraulic actuators and equipment in the lab-

oratory were used as far as possible, but loading and control devices for torsional

loading had to be designed and manufactured for the tests. The experiments de-

scribed in this report were all carried out in the structural engineering laboratory

at the Civil Engineering Department, the Norwegian Institute of Technology.

This chapter describes all parts of the test rig and discusses the support and

loading of the test specimens.

2.2 Test rig

The test rig is based on a standard vertical loading frame consisting of two support-

ing columns and a hydraulic actuator. The test specimen is mounted in a vertical

position between two end supports and is braced at the mid-height. Figures 2.1

and 2.2 illustrate the test arrangements. The test setup uses a centrally applied

transverse point load for bending, while the torsional loading is applied at the ends

of the test specimen. As shown in Figure 2.2, the specimen is free to rotate about

its length-axis at the end supports, while the rotation is restrained at midspan.

7
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Figure 2.1: General view of the test rig. The test specimen is white-washed, the

horizontal actuator is located behind the curtain.
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Figure 2.2: Test specimen IPE 160 mounted in the test rig.
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The test rig involves three main loading devices and the necessary bearings

and bracings:

� A vertically mounted hydraulic actuator in the main vertical loading frame

applies axial load at the upper end of the test specimen, and the reaction force

is carried by the ground support. Both ends of the specimen are equipped

with base plates and spherical thrust bearings, and are laterally supported.

� A hydraulic actuator is mounted horizontally in a separate supporting frame,

and applies a transverse load to the test specimen at midspan. The load is

applied by means of a tension rod and a loading plate. The end supports

have circular end �xture plates supported in large roller bearings.

� Two hydraulic motors applies torsional moments to the ends of the test spec-

imen, by means of a chain driven loading arrangement. The torsional mo-

ments are transmitted to the specimen from the end �xture plates in the end

supports.

Photographs of the �xture plates at the supports and the loading plate at

midspan are given in Appendix B, while all loading and support arrangements are

shown in detail in the following.

The �xture plates at the specimen ends acts as "hinged" supports for the beam-

column specimens with respect to the transversal loading. The loading plate at

midspan encloses the test specimen, transmits the transverse load, and serves as

a restraint with respect to nonuniform torsional loading. At the ends, the test

specimen is given a special design (Figures 2.6 and 3.1) to allow for the warping

of the 
anges. In addition, both ends of the specimen are provided with torsional

"hinges" to allow the rotation about the longitudinal axis. As shown in Figures

2.3 to 2.6, the loading and bearing arrangements provide practically symmetrical

end conditions to the test specimen.

The test specimen may hence be subjected to the following loading combina-

tion; a constant axial force in compression, a bending moment acting about an axis

normal to the specimen length-axis, with the largest intensity at the loading point,

and a nonuniform torsional moment. As a result of the three-point transversal load

system there is also a shear force present in the specimen. A schematic and sim-

pli�ed view of the test arrangement and the resulting force- and moment-diagrams

are shown in Figures 2.7 and 5.1.

The torsion loading device is double-acting and the torsional moment applied

at the specimen ends can hence be reversed, allowing both nonuniform torsion

(Figure 2.2) and uniform torsion (Figure 4.3) to be applied to the test specimen.

The test rig is designed to minimize the chances of unintentional constraints

when the test specimens undergo large deformations. Furthermore, care has been

taken not to assume any ideal �xed or free boundary conditions, but to measure

all restraining forces and all displacements.
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All loading devices have separate controllers and act separately, allowing any

prescribed combination of the three force systems. The tests can be run in dis-

placement or force control. The maximum force resultants the test rig can apply to

a test specimen are: Axial force 1200 kN, bending moment 240 kNm and torsional

moment 9 kNm.

2.2.1 Axial loading

The test specimen extends 30 mm beyond the end �xture plates as shown in Figure

2.6. The vertical actuator applies the load to the upper end of the test specimen

through a spherical thrust bearing and a circular base plate, with an equal ar-

rangement at the lower end. The base plates are �tted to the cross-section of the

particular test specimen and to the thrust bearing as shown in Figures 2.3 and

2.8. This is done in order to prevent any end eccentricities caused by inaccurate

mounting of the test specimen.

The spherical thrust bearings are needed to provide a centric load transfer,

and are intended to allow end rotations of the test specimen induced by 
exural

deformations. Since the resisting bending moment in the bearings is negligible, the

test specimen can be considered "hinged" or "simply supported" at the ends. A

measurement of the friction moments at various axial load levels is presented in

Section 2.3.

The thrust bearings consist of a spherical cap attached to the base plate, a

sliding surface and a �xed casing (Figure 2.6). The center of rotation of the spec-

imen end with respect to 
exure-induced end-rotations is located in the plane of

the end �xture plates, at the cross-sectional centroid. The thickness of the base

plates is adjusted to make the rotation-center of the thrust bearing coincide with

the rotation center of the specimen.

The load applied through the thrust bearings, i.e. the load applied by the

actuator and the reaction force from the ground support, is enforced to point

through these rotation-centers no matter how large the end-rotations become. The

direction of the applied load coincide with the specimens length-axis in the initial,

unloaded state, and the result is a pure axial force in the test specimen.

The shortening of the test specimen due to an axial load, or 
exural or torsional

deformations, causes a de
ection of the circular �xture plate at the upper end

support. Due to a large diameter to thickness ratio (Figures 2.3 and 2.8) the

bending sti�ness of the plate is so small that it can sustain the de
ection without

developing signi�cant load.

2.2.2 Transverse loading

The transversal loading arrangement is shown in Figure 2.5. The horizontal actu-

ator applies load to the test specimen through a tension rod bolted to a loading

plate. The reaction forces due to the transversal load are balanced by forces in
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Figure 2.3: Part of the test rig, test specimen in vertical loading frame.
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Figure 2.4: Torsional loading device and end support.
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Figure 2.5: Bracing frame and loading plate.
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Figure 2.6: Part drawing of test specimen ends.
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the end �xture plates, and the forces are transmitted to the vertical loading frame

through the large roller bearing at both end supports, see Figures 2.4 and 2.8.

These bearings are designed to support large radial forces without preventing a

simultaneous rotation due to torsional twisting of the test specimen.

The loading plate encloses the test specimen, and is mounted in a bracing frame

that prevents its rotation and lateral displacement. In order to allow convenient

insertion and removal of test specimens the opening in the loading plate is oversized

and equipped with metal linings as shown in Figure 2.8. In addition to transmitting

the transverse load, the loading plate has to balance the externally applied torsional

moments for load combinations that include nonuniform torsion. The loading plate

tends to rotate due to these moments, and at the same time the plate has to follow

the displacement of the horizontal actuator without creating too much frictional

resistance. This is achieved by a roller bearing where the loading plate and the

adjacent part of the bracing frame have machined steel surfaces and are separated

by cylindrical rollers. This is shown in Figure 2.5. Measurements of the friction

force that can be developed are presented in Section 2.3.

Both the vertical and the horizontal actuator (Amsler) have hydrostatic bear-

ings, are double-acting and have a maximum stroke of 200 mm. The actuator

controllers are manufactured by Schenck, and provide ordinary actuator control,

such as setting displacement limits and running tests by force or displacement con-

trol. The vertical and the horizontal actuator have a nominal dynamic capacity of

1000 kN and 400 kN, respectively. For static loading these limits can be exceeded

by at least 20 %.

2.2.3 Torsional loading

Figure 2.4 shows the arrangement for the torsional loading. A hydraulic motor lo-

cated at the level of each of the test specimen ends generates the torsional moment,

and the moment is transferred to the test specimen by means of a roller chain. The

force in the chain acts at a �xed distance from the specimen longitudinal axis.

The torsional loading arrangement is symmetrically located at the ends of the test

specimen, as shown in Figure 2.3.

Details of the rotating parts of the end supports are given in Figures 2.8 and

2.9. The end of the specimen is inserted into a quadratic steel plate located 30

mm from the end. This plate is 5 mm thick and has a rectangular opening that

circumscribes the cross-section of the test specimen. The plate is again bolted to

a 3 mm thick circular plate which is connected to a sprocket wheel. The sprocket

wheel is engaged by a 1" roller chain driven by a smaller sprocket on the axle of

the hydraulic motor. The sprocket wheel is an integrated part of the large roller

bearing units at the end supports, and a cross-section of this bearing construction

is shown in Figure 2.9. The bearing consists of machined steel surfaces separated

by cylindrical rollers and balls. Under simultaneous torsion and transverse loading

from a test specimen this bearing is subjected to an angular movement and a radial
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force. A description of the bearing and a discussion of the resistance to rotation

are provided in Section 2.3.

The torsional restraining arrangements at the specimen midspan, consisting of

the loading plate for transverse load and the adjacent bracing frame, are shown in

Figure 2.5.

Also when axial load is applied, the free rotation of the specimen ends about the

longitudinal axis is ensured, by means of torsional bearings (or torsional "hinges")

that give only a small torsional resistance. At the lower end of the test specimen

this is obtained by a plane thrust bearing. This bearing is equipped with a center-

alignment plate and a �xture bolt that keep the bearing assembled and centered,

see Figure 2.6. At the upper end it is provided by the free rotation of the piston

rod and the piston inside the hydraulic actuator. A discussion of the rotational

resistance of these torsional bearings are presented in Section 2.3.

The hydraulic motors are manufactured by Riva Calzone, and are denoted

MR300. The motor consists of �ve cylinders mounted in a star con�guration on the

motor axle, producing a smooth torque output and a high starting torque. The op-

eration of the hydraulic motors is controlled by means of servo-valves, in the same

manner as the linear (Amsler) actuators, feedback being provided by multiturn

potentiometers on the motor axles or the load cells in the chains. The motors have

separate RPD Howden controllers, in principle similar to the controllers connected

to the actuators. The main elements of the controllers are; a servo ampli�er, a ramp

generator and a transducer ampli�er. During the testing, one ramp generator is

used to control both motors.

The hydraulic motors are originally not intended to be operated at the low

speed range used in the present experiments. Due to the characteristics of the

motors, they gave a slightly "stepwise" motion of the roller chains, and not as

smooth motion as for instance provided by a linear actuator. The e�ect of this can

be seen in the graphs for the test results, presented in Chapters 4 and 5. Taking

Figure 5.10 as an example, it is seen that the curve for the measured/calculated

torsional moment,
T
-
�
, has a somewhat oscillating behaviour.

The force from which the torsional moment is computed, is measured by the

load cell in the roller chain (located near the motor). As the force is transmitted

to the specimen through the chain, the large bearing unit and the end �xture

plates, some of the measured oscillations in the force is hence due to inertia e�ects

of these parts. For the tests with large axial loads, the oscillations are somewhat

more pronounced, which is also due to the friction developed in the thrust bearings.

The observed oscillations are not believed to in
uence the obtained test results.

2.3 Bearing resistance

In order to calculate the forces acting on the test specimens information is needed

about the frictional resistance in all bearings supporting the test specimen. A
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Figure 2.10: Test setup at frictional resistance tests

separate investigation was carried out in order to obtain required data for the

resistance at various load levels. Figure 2.10 shows the principle of these tests.

Thrust bearings - bending moment "hinges"

These bearings are manufactured by SKF, and are denoted GX80F. They consist

of a spherical cap and a ring-shaped casing, separated by a sliding surface. This

sliding surface consists of a layer of glass �bre reinforced polyamide oiled with

polytetra
uoroethylene. Prior to each test some extra lubricant was applied to the

bearing surfaces.

The bearings were tested in a Losenhausen 3000 kN universal testing ma-

chine. As shown in Figure 2.10 the bearings were assembled to form a sphere,

which was then subjected to compressive loading. The load required to rotate

this sphere was measured, and the corresponding frictional moment was hence cal-

culated. Maximum compressive load during testing was 800 kN. There was no

signi�cant di�erence between friction at rest and friction at motion. The frictional

moment developed in each bearing was almost negligible, and can be taken as :

M

Friction

= [0:2 + 0:001�P(kN)]kNm

Thrust bearing - lower torsional moment "hinge"

This was a SKF bearing denoted AXK160. It is a single-acting bearing consisting

of two plain lipless stamped and hardened steel washers and a set of cylindrical

needle rollers in star formation held together in a cage. The bearing was tested in

the Losenhausen machine at load levels up to 800 kN, where two similar bearings

were mounted as shown in Figure 2.10. The bearings showed a linearly increasing

frictional moment when subjected to increasing compressive loads. The frictional

moment in one bearing can be expressed as : M

Friction

= [0:000375 � P(kN)]kNm

Thrust bearing - upper torsional moment "hinge"

This torsion moment "hinge" consists of the piston rod and the piston rotating

in the cylinder of the vertical actuator. The piston and the cylinder walls are

separated by a thin layer of compressed oil creating a hydrostatic bearing. Such

bearings are commonly considered to be almost without friction.
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The frictional moment in this hydrostatic bearing was measured to be about

0.04 kNm for the unloaded actuator. The bearing was also tested using an ordinary

test specimen mounted in the test rig. Axial load was applied, and the torsional

moment required to rotate both the test specimen, the piston and the lower thrust

bearing was measured. From this test, data for the total frictional moment in the

Amsler actuator was calculated, and was found to be less than 0.2 kNm for the

interesting levels of axial load.

Loading plate bearings

The midspan loading plate and the adjacent part of the bracing frame have ma-

chined steel surfaces and are separated by full-complemented rows of cylindrical

steel rollers. Since the loading plate has to balance the external applied torsional

moment and follow a movement of the horizontal actuator, the resisting transversal

frictional force is of interest. A simpli�ed friction resistance test was carried out in

the test rig as shown in Figure 2.10. When subjected to a torsional moment of 6

kNm, approximately equal to the maximum moment during the experiments, the

transverse frictional force F was less than 0.5 kN. A friction force of this magnitude

has practically no in
uence on the experimental results.

End support bearings

The reaction forces due to transverse loading on the test specimen are absorbed

by the large radial bearings at the end supports. The bearings were produced in

the laboratory workshop from a structural steel St-52 and standard roller elements

of bearing-steel grade. The large sprocket wheel constitutes the outer bearing

ring, while the inner ring is �xed to the test rig. See Figure 2.9 for a detailed

view of this bearing. The rotating parts are separated by a fully complemented

ring of cylindrical rollers in the radial direction and balls in the axial direction.

The bearing raceways are carefully machined and polished steel surfaces without

hardening treatment. The rollers carry the main load and the balls guide the

sprocket wheel.

The maximum applied radial force (R=H/2) results in relatively low local

stresses at the contact points of the cylindrical rollers and the raceways. Cal-

culations based on recommendations in Eschmann et al. (1985) shows that the

loading is less than 50% of the admissible static rolling element loading, and the

load dependent component of the frictional resistance can easily be calculated. The

load independent part, i.e. the sliding resistance, was measured at the bearings.

Due to an eccentricity of the radial load the balls have to balance a moment in

the bearing, which might lead to a limited degree of misalignment of the raceways.

Nevertheless, this should not cause any decisive increase in the total friction resis-

tance. The expected total frictional resistance is small, and can be expressed as :

M

Friction

= [0:02 + 0:0003 � R(kN)]kNm
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2.4 Instrumentation and measurement

Figure 2.11 shows a schematic view of the test setup and the types of, and locations

of the instrumentation. All external loads are measured using load cells, displace-

ments by means of inductive displacement transducers (IDTs) and rotations by

potentiometers. All measurement devices were calibrated prior to the testing, and

checked after the test program was �nished.

2.4.1 Axial and transverse loads

The 1000 kN and the 400 kN actuators are provided with load cells having mea-

surement ranges adapted to the nominal actuator capacity. Both load cells are

exited by the 10 volt power supply within the Schenck actuator controllers. The

largest load cell is a SENSOTEC 75, and the other is a BLH U3L, both with a load

accuracy of about 0:2%.

2.4.2 Torsional load

As indicated in Figure 2.11, a load cell is placed at the tension side of the roller

chains transmitting the torsional moment from the hydraulic motors. The other

side of the chain loops is unloaded, but provided with a guide to keep the chain

on the rail (Figure 2.4). The torsional moment applied to the test specimen ends

is computed on basis of the force in these load cells and the constant eccentricity

of the force. The geometry of the load cells is shown in Figure 2.12. They were

manufactured in the laboratory workshop to meet loads in the range of 0-20 kN

with a su�cient accuracy. They have a tension-coupon shape with a rectangular

cross-section and foil strain gauges of type FLA-3 in a temperature compensated

full bridge circuit. The load cells were individually calibrated and balanced while

connected to their corresponding ampli�ers. This was done in an Instron universal

testing machine, where the load cells were attached to the grips using short pieces

of the current roller chain.

2.4.3 Displacements

Transverse displacements

The transverse displacement of the test specimen is measured at the loading point

at midspan, using an external IDT (inductive displacement transducer) mounted

on a bar attached to the end support frames (Figures 2.11 and 2.1). A part of this

measured displacement is hence due to deformations at the end supports. Due to

the torsional rotation of the test specimen, the centroid of the cross-section was not

accessible for direct displacement measurement at the end supports. Data on the


exibility of the end supports were obtained from control tests, where the physical
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Figure 2.12: Load cell for torsional force.

Figure 2.13: Rotation gauge for measurement of test specimen end rotations.

de
ections were measured directly on a test specimen at various levels of transverse

load.

An internal IDT in the horizontal actuator is used to monitor the position

of the actuator piston. This provides duplicate measurements on the specimen

displacements, even though signi�cant elastical deformations of the loading and

support arrangements are included in this displacement quantity. The operation

of the actuator during the tests is based on the internal IDT.

Axial displacements

The axial shortening of the test specimen is measured by the displacement trans-

ducer in the vertical actuator. All tests are carried out with the axial load kept at

a constant level, and the displacements measured in the actuator are hence equal

to those of the specimen.

2.4.4 Rotations

The rotation about the longitudinal axis is measured directly at both ends of the

test specimen using rotation gauges consisting of a grooved circular base plate, a

copper �lament and a multi-turn potentiometer with a pulley, see Figure 2.13. The

rotation of the test specimen end is transferred to a rotation of the potentiometer,

and the rotation angle can be read as an induced voltage di�erence. Calibration

of these rotation gauges showed a linear and accurate behaviour. Potentiometers

attached to the hydraulic motors provide duplicate measurements of the end rota-
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tions, and are used for the operation of the torsional motors.

The rotation 
exibility of the loading plate and the bracing frame at the spec-

imen midspan was measured in a control test.

2.4.5 Strain

Strains were measured in a conventional way by foil strain gauges glued to the

test specimens at the relevant locations. TML electrical resistance foil gauges were

used, both ordinary gauges and strain rosettes. Power was supplied to the strain

gauges by the data logger.

2.4.6 Data acquisition

All electronic data were recorded using a Solatron datalogger. The system allowed

a large number of channels to be scanned continuously, at a reading rate of 40

channels per second at the chosen resolution. All load cell, displacement transducer,

rotation gauge and strain gauge measurements were recorded. In addition, the

power supply for the strain gauges, the external IDT and the potentiometers were

recorded to ensure that no considerable voltage 
uctuation occurred. The recorded

data were processed on a PC.

2.5 Test setup - load and support conditions

As mentioned above, there are two main objectives with these tests. The �rst is

to obtain experimental data on the response of beam-columns when subjected to

various combinations of axial load, bending and torsion. The second is to provide

data for the cross-sectional resistance for two types of I-beam sections, limited to

the load combination of axial force, torsional moment (warping) and a bending

moment acting about the strong axis only.

The current test setup was chosen in order to give:

� A loading system without any limiting connections between the three load

actions.

� Clearly de�ned loading and support conditions.

� One prede�ned section of the specimen with the largest load e�ect, and with

clearly de�ned resulting forces.

� For that section, bending moment only about the strong axis.

� As few local disturbances as possible at the most heavily loaded section of

the specimen, i.e. no welding or any other treatment.
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Due to the chosen one-point transverse loading, there is a gradient in the bend-

ing moment along the test specimen, with a corresponding transverse shear force.

Hence, when a plastic "hinge" is established, there is a gradient in the moment

through the hinge. For the investigation of the pure bending part of the beam-

column response, the commonly used two-point symmetrical transverse loading

would be preferable, due to the advantages of the constant bending moment and

less e�ect of strain hardening and local buckling (ASCE 1971). However, a two-

point loading could not in practice be combined with the torsional loading.

When choosing the length of the specimens, both the bending moment gradient,

the torsional conditions, the weak axis and the lateral-torsional buckling tendencies

and the length to depth ratio of the beam-columns had to be considered. The

chosen beam-column length of 2090 mm ensures that the tests can be carried out

for the desired levels of the axial load and bending moment, and that plasti�cation

of the cross-section at midspan can be reached.

The e�ect of bending shear stresses are normally ignored in beam experiments.

For the current tests, taking the case of pure bending loading as an example, the

maximum value of the web shear stress is about 50% of the yield limit. For the

tests with combined loading, this stress is considerably less and should not in any

case a�ect the overall behaviour of the beam-columns signi�cantly. In tests with

torsion, the externally applied torsional moments are balanced by the restraining

plate at midspan. The resulting compressive stresses at the contact points between

the 
anges of the test specimen and the linings in the restraining plate are very

local, less than the yield stress and have a favourable direction, and are therefore

considered to give no e�ect on the specimen response.
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Chapter 3

Test specimens

3.1 Introductory remarks

This chapter describes the material and geometry of the test specimens, the cross-

sectional dimensions and the mechanical properties of the materials. Most e�ort is

spent to determine the stress-strain characteristics of the steel, focusing particularly

on the yield strength and its variation over the cross-section.

3.2 Test specimens

The two shapes investigated in this study are the beam section IPE 160 and the

wide 
ange section HEB 140. They are both hot-rolled sections made of semikilled

mild structural steel, grade RSt 37-2 according to DIN 17100, Fe 360 BFN ac-

cording to EN 10025 or similar to ASTM A283 Gr.D. The HEB 140 (denoted

HEB in the following) is manufactured by a Norwegian steel mill (Fundia) and

the IPE 160 (denoted IPE) is manufactured by Irish steel Ltd. Both shapes are

cold-straightened in a standard rotorizing process after the hot rolling.

The steel was delivered in lengths of 12 meters, a total of 7 lengths of HEB and 5

lengths of IPE. The steel supplier provided steel materials with the lowest possible

yield strength from the ordinary stock, in order to avoid limitations imposed by the

test rig load capacity. Still, the measured mean yield stress was found to be about

25% above the speci�ed minimum strength. The HEB lengths were all marked with

the charge cast number while the IPE had no speci�c identi�cation marks. Both

the HEB and the IPE lengths were each declared positively to originate from one

batch. The main elements of the chemical composition and the tensile properties

of the steels are given in Table 3.1, based on information from the works certi�cate

provided by the manufacturers. In this particular case the upper yield stress is

given for the HEB section.

C Si Mn P S N f

y

/f

u

HEB 140
0.12% 0.23% 0.68% 0.025% 0.019% 0.006% 294 / 434 MPa

IPE 160
0.06% 0.21% 0.58% 0.021% 0.031% - 302 / 410 MPa

Table 3.1: Chemical composition and tensile properties
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Figure 3.1: Test specimens HEB 140 and IPE 160, nominal cross-sectional dimen-

sions.

Five test specimens were taken from each 12 meter unit, leaving shorter beam

stubs for material testing. The preparation of the test specimens consisted of saw

cutting and removal of the 
ange tips at each specimen end, and mill machining

to provide plane ends. Except for this, the condition of the test specimen was as-

rolled and rotorized. The test specimen geometry and the nominal cross-sectional

dimensions are shown in Figure 3.1.

The cross-sectional dimensions of all 12 meter units were measured. The vari-

ation in 
ange and web thickness in the cross-section and the distortion of the

sections were investigated. As usual (discussed in ECCS 1976), the 
anges are

thinner and the web is thicker than the nominal values, while the cross-section

height and width deviate less from the nominal values. The torsional properties

of the cross-section together with the weak axis properties such as the 2.moment
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(mm) (mm) (mm) (mm) (mm)

2

HEB 140
140.9 140.45 11.40 7.3 4190 0.98 0.98 0.97 0.97 0.96

IPE 160
83.2 160.2 6.83 5.6 2036 1.01 0.99 0.98 0.98 0.96

Table 3.2: Cross-sectional dimensions and properties

of area and the elastic and the plastic section modulus are most a�ected by this,

while the corresponding strong axis properties and the cross-sectional area are

closer to the nominal values. The measured dimensions and some of the cross-

sectional properties for two representative cross-sections are given in Table 3.2. In

the subsequent calculations and presentations of the beam-column test results the

measured dimensions are used for each test specimen.

The initial longitudinal out-of-straightness of the members and the out-of-


atness of the sectional elements were measured for four units, each of 3.0 m length.

Measurements were taken at both end sections and at three intermediate sections.

The measured deviation from a straight line through the end sections was within

1.5 mm both for the section centroid and the 
ange tips. The initial longitudinal

twist angle of the member axis was negligible.

3.3 Material tests

In the material tests, all load, strain and displacement measurements have an

accuracy within 1% of the measured value.

3.3.1 Tension tests

The uniaxial tensile properties of the steels were determined from standard test

coupons. Longitudinal test coupons were cut from various positions in the cross-

sections and from some selected locations along the 12 meter units.

All coupons had a rectangular cross-section and were machined at all four sides

at the reduced section, maintaining nearly the full thickness of the tested 
ange or

web plate. The test coupons met the geometry speci�cations of a proportional test

coupon, i.e. they had a machined parallel length L

C

consisting of an original gauge

length L

0

= 5:65

p

A

0

(minimum 25 mm) plus some additional transition length.

The original gauge length was used only as a basis for calculating the percentage

elongation after rupture ( �

5:65

). The dimensions of the tension coupons are given

in Figure 3.2 and Table 3.3.

All tension tests were carried out on an Instron 250 kN universal testing ma-

chine using displacement control, with a preset deformation velocity. Strain, i.e.
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Dimensions (mm)
L

C

L

0

B b t

HEB 
ange
125 95 35 26 11

HEB web
90 70 30 22 7

IPE 
ange
80 70 35 25 6

IPE web
70 55 30 20 5

Table 3.3: Geometry of tension test coupons

Figure 3.2: Test coupons for uniaxial tension tests

engineering strain, was measured by means of double-sided Instron extensometers.

In the majority of the tests a 50 mm extensometer was used, but shorter exten-

someters were used for coupons with initial parallel length L

C

less than 50 mm.

Strain was measured with the extensometer up to a strain level 2%, beyond this

level the Instron testing system determined the strain from the crosshead velocity

setting, the time registrations and the initial length of the reduced parallel portion

of the coupon. The coupons were tested at low strain rates in the elastic range and

during the yielding of the material. At onset of strain-hardening, the strain rate

was increased to reduce the time needed to complete the tests.

The strain rate in the beam-column tests was determined to vary mainly be-

tween 1 � 10

�5

=s and 1 � 10

�4

=s for the material involved in yielding. The majority

of the tension coupons was therefore tested at a mean strain rate of 0:5 � 10

�4

=s.

The cross-sectional position of the coupons is shown in Figure 3.3. A total of

40 coupons were taken from the HEB units and 20 coupons from the IPE units.

The HEB tests showed that the stress-strain curve di�ered signi�cantly over

the cross-section. The behaviour of the 
ange material was as expected for a

mild structural steel, comprising a distinct yield-point elongation, while the web

material near the web-
ange junction showed no yield point in the stress-strain

curve at all. This part also possessed an ultimate tensile strength as much as 25%

higher than the remainder of the cross-section. The IPE tests showed that the


ange and the web material had almost identical mechanical properties, with only

a minor variation over the cross-section.

The yield strength varied consistently for the IPE and the HEB sections. Gen-



HEB IPE

3.3. MATERIAL TESTS 33

Figure 3.3: Location of tensile coupons on cross-section.

erally, the webs had a higher yield strength than the 
anges, a di�erence of 3%

was obtained for the IPE section. Furthermore, the yield strength of the 
anges

was highest at the 
ange tips. The measured yield strength at the 
ange tips of

both sections was approximately 4% higher than the average for the 
anges. These

observations are consistent with similar investigations on semikilled steels (Alpsten

1970), and is explained from the di�erence in cooling rate, where the web and the


ange tips cool faster than the rest of the section, resulting in a �ner grain size

and a higher yield strength. The rotorizing process did not seem to have a�ected

the properties of the 
ange materials considerably, which was seen from practically

constant elongation properties across the 
anges of both sections ("

yp

; "

u

; �

5:65

in

Figure 3.6).

Coupons taken from identical positions in the cross-sections showed only a

small spread in the measured values. The values from 9 tested coupons taken

at the 
ange tips of the HEB section can be taken as a representative example;

mean yield strength 281 MPa, all measured values within a range of 17 MPa and

a standard deviation of 5.8 MPa.

The mechanical properties obtained from the tests of the longitudinal coupons

are summarized in Table 3.4. From the test, the yield strength f

y

is taken as the

mean stress in the yield plateau, neglecting any peak value at the start of yielding,

and emphasizing the stress values in the �rst 2/3 of the yield plateau. The results in

Table 3.4 are given as mean values for both 
anges and for the web. The variation

of the yield strength over the cross-section has to be considered when interpreting

the beam-column test results in the following chapters.

Representative stress-strain curves for the 
anges are shown for both sections

in Figure 3.4, while the behaviour of the HEB web is depicted in Figure 3.5 (based

on results from the following investigation). The central portion of the HEB web,

position 4 in Figure 3.5, has a stress-strain curve similar to that of the 
ange

material, while the behaviour of the rest of the web di�ers signi�cantly. At web
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f

y

f

u

"

yp

"

u

�

5:65

(MPa) (MPa) (%) (%) (%)

HEB 
ange
279 438 1.6 20 34

HEB web, center
290 449 1.4 19 36

IPE 
ange
304 424 2.2 23 34

IPE web
314 425 2.6 21 34

Table 3.4: Mechanical properties of the HEB 140 and the IPE 160 beams.

positions 2 and 3 increased yield strength and decreased ductility are observed,

both signs of cold-working during the rolling process. The lack of a yield point

elongation for the web material closest to the web-
ange junction, position 1, can

be explained by a relatively higher extent of cold-work, whereas the large increase in

ultimate strength might be a result from strain ageing caused by the lower cooling

rate at this part of the section.

Variations in mechanical properties

The distribution of the strength and the ductility across the 
ange and the web

plates was investigated in a separate test. To provide a higher resolution in the

measured distributions, smaller test coupons were used than in the above investi-

gation. Test coupons were taken from one HEB and one IPE stub as indicated in

Figure 3.6, utilizing the entire actual part of the cross-sections. Proportional test

coupons were used, the width was reduced with only 2 mm at the gauge length,

and the coupons were the full thickness of the 
ange or web. The coupons were

tested at identical strain rates. The measured mechanical properties are given in

Figure 3.6.

Anisotropy tests

The hot-rolled beam sections are normally not expected to display anisotropy in

the web and 
ange plates. However, a high extent of plastic work and severe defor-

mation of the steel billets during the rolling process at improper temperatures may

still lead to anisotropy in the tensile properties. The yield strength, and to a lesser

extent the tensile strength, are most likely to display anisotropy (Dieter 1988), and

the thinner web plate should be more a�ected than the 
ange if anisotropy exists.

A limited test programme was carried out to determine any possible anisotropy.

Two tension coupons were taken from the beams at neighbouring positions, one

coupon in the longitudinal direction of the beam and one coupon in the trans-

verse direction, as indicated in Figure 3.7. The transverse coupons were much

smaller than the standard tension coupons, and companion longitudinal coupons

were hence given the identical geometry. Coupons were taken from the 
ange of

both sections, from the center of both webs and from the part of the HEB-web

next to the 
ange junction, as shown in Figure 3.7.
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Figure 3.4: Typical stress-strain curves for IPE 160 and HEB 140 (
ange coupon).

The tests showed no signi�cant anisotropy in the stress-strain characteristics.

Modulus of elasticity

The modulus of elasticity (E) was determined from cylindrical tension specimens

machined from the 
ange of the HEB and from the web-
ange junction of the IPE

section. The specimens had a parallel length L

C

= 80mm and a diameter equal to

8 mm, and were connected to the test machine by 12mm threaded grip ends. A

double-sided extensometer was used, and care was taken to avoid possible e�ects

due to curvature of the specimens.

Two companion test specimens from both sections were tested in a series of

repeated loading and unloading up to load levels of 80% of the yield load. The

two companion specimens gave practically identical results, and the modulus of

elasticity was calculated to 210 GPa for the HEB and 207 GPa for the IPE steel.

3.3.2 Compression tests

Compression coupon tests

Compression coupon tests were carried out for the 
ange material of both sections.

An Instron 100 kN servo-hydraulic testing machine was used, and the rectangular
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Figure 3.5: Stress-strain characteristics at di�erent positions in web of HEB 140.
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Figure 3.6: Variation of mechanical properties in HEB 140 and IPE 160.

Figure 3.7: Location of coupons for anisotropy tests.
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test coupons were attached to the machine by hydraulic grip-heads, i.e. clamped

coupon ends. The coupons had a relatively short length L

C

in order to avoid

buckling, and were carefully machined and aligned before testing. Post yield strain

gauges were attached to two opposite coupon surfaces for strain measurements, and

the strain rate was the same as for the tension tests. Two coupons from the 
ange

of both sections were tested. The measured yield strength based on these tests was

as expected almost exactly the same as measured in the tension tests. The main

di�erence from the tension test was the appearance of a sharp upper yield point

about 10 to 15 percent higher than the average yield strength, which probably was

caused by more careful machining and alignment of the test coupons and the use

of a di�erent and sti�er test machine.

Stub column tests

The mean yield strength in compression for the entire section was obtained by stub

column tests, i.e. compressive loading of short columns into the inelastic range of

the material. The length of the columns was chosen short enough to avoid buckling

before reaching the yield load of the section, and su�ciently long to provide some

information about the residual stress level of the section.

The tests were carried out on a Losenhausen 5000 kN servo-hydraulic testing

machine, and load was imposed at a constant rate of deformation. A simpli�ed view

of the test setup is shown in Figure 3.8. The axial displacement, u, was measured

by three inductive displacement transducers individually spaced 120 degrees along

a circle, mounted on a collar enclosing the stub column. The stub column ends

were carefully machined to give plane end sections, and base plates of hardened

steel were used. The upper pressure platen of the test machine was equipped with

a spherical thrust bearing, and the stub column was carefully centred. Any axial

load eccentricities should therefore be minimized. The tests were performed at a

deformation rate 0.03 mm/minute, which produced a mean strain rate somewhat

lower than in the tension coupon tests. Data for the strain-rate sensitivity was

obtained by varying the deformation rate in two of the tests (as described by

Dieter 1988).

Representative curves from a total of 6 stub tests are shown in Figure 3.8. The

load is made dimensionless by means of the measured cross-sectional area and the

mean cross-sectional yield strength obtained from the tension coupon tests. Here,

a yield strength of 286 MPa is used for the HEB section and 308 MPa for the IPE

section. The test results are corrected to compensate for the strain rate e�ects, an

increase of 3.8% is used for the HEB stub tests and 2.8% for the IPE stub tests.

The results from the compression stub tests agree very well with the results

obtained from the tension coupon tests.

One of the HEB stubs was held at a constant deformation level for 5 minutes

(strain rate zero) as shown in the �gure. The load dropped to a level of about 95%

of the yield load, which should be the static yield load of the cross-section. The 5%

decrease in load illustrates the importance of using compatible strain rates when
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Figure 3.8: Stub column tests
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comparing experimental results which involves material yielding.

3.4 Residual stresses

The typical residual stress distribution for the IPE and HEB sections is quite labour

intensive to �nd, and hence only a limited study is carried out. A large number

of measurements and studies has been made in the past, many references can be

found in ECCS(1976) and Alpsten(1970).

The magnitude and distribution of thermal residual stresses in rolled shapes are

mainly dependent on the geometry of the cross-section, and can to some accuracy

be calculated from formulas found in the literature. The cold-straightening of the

shapes after the rolling, the continuous rotorizing process, consists of controlled

bending about the cross-section minor axis imposed by passing the shape through

a series of rollers. In this operation bending stresses are superimposed on the

thermal residual stresses and the 
ange residual stresses are redistributed for the

whole pro�le length, except for a shorter part at the ends.

Alpsten (1970) has carried out an investigation concerning the mechanical prop-

erties and residual stresses in a shape of type HEA 200, whose geometry is quite

similar to that of the HEB 140. His study of a normally-heavy cold-straightened

HEA 200 shows a tooth-edged distribution of the residual stresses along the plates

(i.e. 
ange and web) in the cross-section, and a considerable variation of the

stresses through the thickness of the plates. Compared to residual stresses in as-

rolled condition, the residual stresses are totally redistributed in the 
anges of the

straightened member, while the web shows a stress pattern more similar to that

of as-rolled members. The average stresses in the 
anges are very small, still with

predominant compression stresses at the 
ange tips and tension at the 
ange mid-

dle, and the web has a local high stress peak near the �llets at the web-
ange

junctures. At this location the di�erence in stress level through the web thickness

ranges from near yielding in tension at one side to yielding in compression at the

other side.

Stub column tests

The magnitude of the longitudinal residual stresses in the present sections can to

some extent be estimated from the stub column tests. The length of the stub

column specimens was chosen equal to 10 times the minor axis radius of gyra-

tion (� = 10), for shorter specimens the initial residual stress pattern may be

disturbed (CRC 1961). A study of the load vs strain curves in Figure 3.8 shows

a distinct deviation from a linear elastic response at points marked. This pro-

portionality limit lies about 20-30% below the yield load for both sections, and

this indicates that the residual stress value in substantial parts of the cross-section

reaches 20-30% of the yield strength. This corresponds to residual stresses up to

90 MPa, which is considered to be low.
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Figure 3.9: Measured residual stresses for HEB 140 and IPE 160

Sectioning

A limited investigation was carried out in order to obtain some data on the residual

stress distribution over the cross-sections. Residual strains were measured using

the plate sectioning technique. Foil strain gauges with a gauge length of 6 mm were

bonded to opposite sides of the 
ange and web plates, and initial strain readings

were taken. The plates, �tted with the strain gauges, were sliced into 14-20 mm

wide and 40 mm long plate strips to release the residual strains, and the longitudinal

stress was calculated from the measured strain. The results from one test on both

sections are presented in Figure 3.9. Measurements on one of the other IPE-beams

showed almost the same magnitude and distribution of the residual stresses in the

web, and higher stress values in the 
anges. It should be noted that due to the

straightening process the residual stress distribution may vary considerably along

the length of a beam.
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Chapter 4

Torsion - experiments and analyses

4.1 Introductory remarks

As a special case of response of structural members subjected to load combinations

consisting of torsion, bending and axial loading, there is a considerable interest in

the response to single torsion loading.

Generally, the resistance of structural members to torsional loading can be

considered to be the sum of two components. Consider an I-section beam, uniform

in cross-section, subjected to opposed torsional moments at the ends. When there

is no restraint against longitudinal displacement at any point along the beam, the

warping of the cross-section is allowed to become uniform throughout the beam

length, and the rate of change of the angle of twist becomes constant along the

member. The resulting state of deformation is denoted uniform torsion. In this

case, the torsional moment acting at any cross-section is resisted by a set of shear

stresses distributed around the cross-section, with a constant distribution along the

beam. In the elastic state, this case is also referred to as "St. Venant torsion".

If the longitudinal displacements are restrained or prevented at any location

due to the support or loading conditions, the torsional loading results in twisting

of the beam accompanied by warping that varies along the beam, and the result is

nonuniform torsion. The torsional moment is then resisted by additional bending-

shear stresses caused by the restrained warping, stresses which act in conjunction

with those due to uniform torsion. If the resistance due to the restrained warping

completely dominates the resistance due to uniform torsion, the member is in a

limiting state of nonuniform torsion referred to as pure warping torsion (Trahair

and Bradford 1988).

This chapter presents the results from torsion experiments on bars of three

di�erent cross-sections, the two I-beam sections used in the main experimental

series and a rectangular bar section. The tests are carried out until the section

is fully plasti�ed, which involves large twisting deformations. The experiments

with the I-beams include both an uniform torsion test and a nonuniform torsion

test, whereas the 
at bar was tested only in uniform torsion. The experimental

results are compared with �nite element (FE) simulations in order to investigate

to what extent and accuracy the torsional response can be predicted by the use of

an existing nonlinear FE program. Both a shell and a beam model of the I-beams

are used in this investigation.

43
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4.2 Torsional analysis

The analysis of torsional problems has a long history. The basic contributions

are the study of uniform torsion of elastic beams by Saint-Venant, the membrane

analogy introduced by Prandtl, the sand-heap analogy of Nadai and the engineering

theories by Timoshenko and by Vlasov. These solutions of the torsion problem are

based on simpli�cations regarding material behaviour and geometry e�ects, but

provide valuable information about the elastic torsional sti�ness of a member, the

torsional moment at onset of yielding and estimates of the fully plastic moment. No

analytical solutions for the torsional behaviour that takes both nonlinear material

and geometry e�ects into account have been obtained.

The inelastic behaviour of I-shaped steel members subjected to torsion has been

investigated experimentally only by a few authors. Uniform and nonuniform torsion

tests on I-beams were carried out by Boulton (1962) on a rolled 3 in. by 1.5 in.

cross-section, nonuniform torsion tests by Dinno and Gill (1964) on a 5/8 in. by

5/8 in. cross-section machined out from a solid bar, and by Farwell and Galambos

(1969) on a 6 in. by 6 in. wide 
ange section.

Approximate methods to calculate the fully plastic torsional moment for an I-

section beam with warping restraints were proposed by Boulton (1962), Dinno and

Merchant (1965) and by Augusti (1966). A lower bound solution was presented

by Boulton, while Dinno and Merchant presented an empirically based solution

known as Merchants upper bound. Boulton also presented an interesting lower

bound solution that describes the increase in torsional moment when an I-beam is

subjected to large uniform torsional rotations. The solution is based on assumed

tension and compression zones of the beam section that arise from the helical

curvatures (i.e. nonlinear geometry e�ects).

Recently, a "mitre model" for the shear strain distribution in I-section beams

in uniform torsion was presented by Billinghurst et al. (1992). This model gives

an approximation for the complete inelastic torsional moment-twist relationship

(elastic-perfect plastic material), with an accurate approximation for the elastic

sti�ness and a fully plastic moment similar to that given by the sand-heap analogy.

Both the geometrical and material nonlinearities due to torsion can, to some

extent, be taken into account by the use of existing general purpose �nite element

formulations. The restrained warping of open section beams is often modelled by

beam elements having an extra "warping" degree of freedom or "warping" springs.

The geometrically linear and nonlinear torsion theories for beams in the elastic

range are considered to be well developed, but the extension to the case of material

nonlinearities is not as well advanced (Chen and Trahair 1992). One of the major

problems is the modelling of the torsional shear stress distribution over the cross-

sections, and how to account for these stresses in the elastic{plastic constitutive

equations of the material. Some of the recent contributions on beam elements for

nonlinear inelastic torsion are those of El-Khenfas and Nethercot (1989), Chen and

Trahair (1992) and Pi and Trahair (1994a).
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Figure 4.1: Uniform and nonuniform torsion tests.

4.3 Experimental investigation on torsional be-

haviour

The torsion tests of the present investigation were all conducted in the test rig

described in Chapter 2. Only the torsional loading and supporting parts of the

test rig were used. The load and support conditions of the torsion tests are shown

in Figure 4.1. The total length of the specimens was 2090 mm, and concentrated

torsional moments (T

0

) were applied 30 mm from the free ends.

In the tests with uniform torsion, equal and opposite directed moments were

applied to the specimens, resulting in a span of 2030 mm loaded with a constant

torsional moment T=T

0

.

In the nonuniform torsion tests the specimens were restrained against torsional

rotation at midspan (please note the symbol), and the specimen ends were given

equal rotations, both in direction and magnitude, about the longitudinal axis. In

principle, this produced equal torsional moments T=T

0

in the upper and lower half

of the test specimens. Hence, provided that the specimen ends are given exactly

equal rotations, the chosen test setup models the torsionally simply supported beam

(length L) subjected to a midpoint torsional moment of 2T

0

, or two torsionally �xed

cantilevers (length L/2) that meet in the midpoint of this beam (see Appendix A).

Details of the bracing arrangement at midspan is shown in Figure 2.5. Brie
y

described, the bracing consisted of a 30 mm steel plate, �xed in space and with a
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Figure 4.2: End �xture plates used in torsion tests.

rectangular opening that the specimen passed through.

The torsional deformations at the ends of the specimen were imposed by means

of the circular and rectangular end plates shown in Figures 2.4 and 4.2. The end

plates were not connected to the specimen. This lack of connection and the small

lateral sti�ness of the end plates result in a practically negligible restraint against

axial or warping displacements of the test specimen at the loading points. Hence,

no resultant axial force could be developed in the test specimens, even at large

twists. A photograph from the test on a HEB 140 beam is given in Figure 4.3,

showing the test setup and the large extent of twisting applied to the specimens.

The chosen loading arrangement transmits the torsional moments to the spec-

imen by compressive contact stresses, resulting in a stress distribution in the test

specimen near the loading point which di�ers from those in the cross-section some

distance from the loading point. The size of the stress transition-zone is estimated

to be about the size of the outer dimension of the actual section. For the HEB

140 beam tested in uniform torsion, this means that about 85 % of the specimen

length has strictly uniform torsional conditions, i.e. perfect uniform twist and

perfect uniform internal stress distribution, as assumed in the St.Venant torsion

theory. A study of the stress distribution near the support and loading points of

the specimens, obtained by the FE analyses, indicated that the actual length of

the stress transition-zone is about 50% of the largest cross-sectional dimension of

the specimen.

4.3.1 Experiments

A total of 10 specimens were tested. Four tests were carried out on the HEB

140 beam, namely one test with uniform and three tests with nonuniform torsion.

For the IPE 160 two tests were performed, one in uniform and one in nonuni-

form torsion. In addition, four 
at bar specimens with cross-sectional dimensions

15:3mm � 200mm were tested in uniform torsion.

The material properties of the HEB and the IPE beams are as presented in

Chapter 3, and cross-sectional dimensions as given in Table 3.2. However, note that

the HEB 140 section had a measured web and 
ange thickness equal to 7.30 mm



4.3. EXPERIMENTAL INVESTIGATION ON TORSIONAL BEHAVIOUR 47

Figure 4.3: Uniform torsion test on a HEB 140 beam.
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and 11.64 mm, respectively, for these specimens.

The tensile properties of the 
at bar steel were determined by testing 10 tension

coupons, 8 coupons taken parallel to the bar axis and 2 coupons in the transverse

direction. The coupons were the full thickness of the bar section. The mean

longitudinal yield stress of the bar steel was 275 MPa, and the mean yield point

elongation ("

yp

) was 2.0 %. The yield strength at the edges of the bar section was

about 4% higher than in the central part. No anisotropy was detected in these

tests.

The torsion tests were run at a constant rate of twisting, applying a constant

rate of rotation of the specimen ends, each test lasting about 30 minutes. The

tests were carried out to large angles of twist, in the uniform torsion case up to

more than 180

�

. For comparison it can be noted that the proportionality limit

for rotation in uniform torsional loading is approximately 20

�

for the HEB beam.

Consequently a large part of the sections was plasti�ed during the tests. The angle

of rotation was measured only at the end sections of the specimens.

4.3.2 Test results on uniform torsion

The results from the uniform torsion tests are presented in Figures 4.4, 4.5 and 4.6.

The graphs depict the applied torsional moment (T=T

0

) vs the total twist rotation

measured over the full specimen length of 2090 mm. The experimental results are

compared to the fully-plastic torsional moment given by Nadai's sand-heap analogy,

the elastic response in uniform torsion

T = �

x

�

GI

T

L

(4.1)

and the proportionality limit based on the �rst yielding (initial yielding) of the steel,

using the von Mises yield criterion and the St.Venant shear stress distribution. The

sand-heap capacity of the I-sections is computed neglecting the e�ect of the �llets

(Equation 6.1). For the torsional rigidity, however, the e�ects of the �llets are

included (El Darwish and Johnston 1965).

During the tests there were no indications that the boundary conditions di�ered

from those assumed. Even at large twists there were no signi�cant de
ection or

bending of the end �xture plates, indicating that the specimen was not subjected

to any axial force or warping restraints.

The experimental results agree quite well with those from theory. The main

exception is the 10% increase in the elastic sti�ness in the HEB test and the almost

linear elastic response that exceeds the proportionality limit by almost 20% in the

test with the 
at bar. It should be pointed out that the test on the HEB beam

is a single test, while the results presented for the 
at bar represents one of four

identical tests with almost identical results.

When calculating the proportionality limit for the 
at bar, the mean yield stress

of the entire section is used as yield strength for the steel at the surface. As reported
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Figure 4.4: Uniform torsion test on HEB 140 beam.

Figure 4.5: Uniform torsion test on IPE 160 beam.
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Figure 4.6: Uniform torsion test on 
at bar section 15.3 mm * 200 mm.

by Alpsten (1967), the actual value of the yield stress at the surface of an element

is commonly somewhat higher than the average stress, with a variation through

the thickness of the same order as the variation across the width. According to

his experimental data, a 4-9% higher yield stress can be expected at the surface,

which for the 
at bar should give a similar increase in the proportionality limit.

However, this increase does not fully explain the overshoot of the theoretical value

in Figure 4.6.

In the inelastic range, no distinct yield capacity or collapse moment can be

de�ned for any of the tests. Instead, there is a steady and almost linear increase in

the torsional moment with increasing twist, and the sand-heap capacity does not

represent an upper limit for neither sections.

4.3.3 Tests results on nonuniform torsion

The experimental results from the nonuniform torsion tests are presented in Figures

4.7 and 4.8. Both specimen ends were given equal and linear increasing rotations,

and the moments measured at the two ends did not di�er signi�cantly. The graphs

show the applied torsional moment at one end plotted against the angle of twist

measured at the same end section, i.e. due to the twist over the half length of

the specimen. The theoretical elastic sti�ness and the limit of proportionality are
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Figure 4.7: Nonuniform torsion test on HEB 140 beam.

calculated using the Timoshenko elastic analysis

T = �EI

w

d

3

�

dx

3

+ GI

T

d�

dx

(4.2)

and the �rst yielding of the most highly stressed point, which is the 
ange tips

at midspan. Please, refer to Appendix A for a discussion. Also shown is the

torsional capacity given by Merchant's upper bound for the present case (discussed

in Section 6.1).

In Figure 4.7, an extra curve is shown in the rotation range 0.4-1.2 radians,

representing the lowest response curve obtained from the two other tests on this

case.

The test on the IPE-beam (Figure 4.8) gives a response curve quite similar to

that obtained in the test with uniform torsion on the same section. Obviously

the two torsional cases have di�erent member sti�ness, but both have a steady

increase in the torsional moment for increasing twist. In contrast, the response

curve for the HEB levels o� somewhat more than for the IPE in the plastic range.

The di�erent behaviour for the two beams can be understood from the rather

signi�cant di�erence in cross-sectional shape, where the 
anges contribute more to

the total torsional capacity for the HEB beam. Consequently, when the 
anges of

the HEB beam have yielded a lesser part of the cross-section is available to carry

an increased torsional moment.
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Figure 4.8: Nonuniform torsion test on IPE 160 section.

The experimental results from the tests on the I-beams, both for uniform and

nonuniform torsion, agrees quite well with the previous tests (Boulton, Farwell and

Galambos, Dinno and Gill), both regarding torsional resistance, shape of curves,

and the di�erent inelastic behaviour for the two kinds of beam sections.

None of the specimens developed any local buckles during the testing. Pho-

tographs of the deformed test specimens are given in Appendix B. It can be seen

from the photographs that the specimens tested in uniform torsion developed per-

fectly uniform twist deformations along the bar axis, while, as expected, the defor-

mations for the nonuniform torsion specimens were concentrated in the central part

of the specimens. As shown, these specimens have developed a slope discontinuity

in the 
anges at the midpoint, due to localized cross-sectional plasti�cation and

bending of the 
anges about their weak axis.

Measurements on the permanent twist rotations along the beams are given in

Appendix C for the two specimens tested in nonuniform torsion. From similar

experiments Dinno and Gill (1963) found inelastic twist distributions geometri-

cally quite similar to that in the elastic range (obtained from Equation 4.2, see

Appendix A). They pointed out that for their tests the twist rotation at any sec-

tion and stage of loading could be deduced approximately from the knowledge of

its value at a given section (in their case it was the center section) and from its

ordinary elastic distribution along the beam. The main di�erence is that their

tests were carried out for smaller and much more compact I-section specimens. As
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shown in Appendix C the permanent rotations for the beams of the present study

are signi�cantly more localized.

4.4 Finite element simulations

The FE program ABAQUS (Hibbitt et al. 1994) is used for the nonlinear static

simulations of the torsion experiments. A model of the I-section beams was es-

tablished using eight-node shell elements (S8R) and an element mesh as shown in

Figure 4.9. The element mesh was chosen such that it could also be used for load

combinations that include axial force and bending moment, and allow for a proper

and practical representation of the support and loading conditions. The in
uence

of the mesh density on the numerical results is discussed in Chapter 8, where the

present mesh is found to give good results. Please, see also Figure 8.1 for a view

of the model.

The warping torsional resistance of the beam, which mainly is constituted of

the lateral bending of the 
anges, should in any case be satisfactory modelled by

using four element across the 
anges. (Please, refer to Section 8.1 for a discussion

of this).

For simulating the uniform torsional resistance, which is present in both the

uniform and the nonuniform torsion case, the capability of the model to represent

the uniform torsional shear stresses (�

u

) in a section is important. As known,

these stresses "
ow" in a "circular" pattern in the cross-section, similar to what is

indicated for the plastic situation in Figure 6.1a. They are directed parallel to the

web and 
ange planes except at the 
ange tips and at the web/
ange intersections.

In the elastic state, the stresses have a linear variation in the "through-thickness

direction" of the cross-sectional plates, and have a value equal to zero in the mid-

plane of the plates.

In the shell model, the actual distribution of the uniform torsional shear stresses

is quite well represented by the S8R elements. Here, the membrane part of the

element formulation allows a linearly varying shear strain distribution through the

shell thickness, and hence also contain the desired in-plane shear stresses. If a

reasonable number of section integration points through the thickness of the shell

is used, the uniform torsional response of the beam is properly modelled even for

the case of inelastic material.

However, there are uncertainties about the properties of the shell model with

respect to, among others, the elastic uniform torsional sti�ness due to local distur-

bances at the edges of the plates and at the web/
ange junctures. Hence, a limited

study was performed on this topic and the results are presented in Appendix D.1.

The main conclusions are that no more than one shell element is needed to give a

correct elastic torsional sti�ness for a rectangular section, and that the modelling

of the transverse shear 
exibility of the shell is of no importance to the predicted

elastic sti�ness. The present mesh with four elements across the 
anges and the
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Figure 4.9: Shell model of I-section beam. Here: model of an HEB 140 specimen.

web is therefore expected to give satisfactory results also for the uniform torsion

resistance.

The model was established as follows:

� The full I-beam specimen is modelled using four eight-node shell elements

across the 
anges and the web as depicted in Figure 4.9. The model consists

of a total of 396 elements, giving 7242 degrees of freedom.

� Fictitious sti�ener plates and diagonal beam sti�eners are added to the model

at sections 2 and 5 to allow proper modelling of the concentrated loading.

� The shell element interpolates the rotation and displacement degrees of free-

dom independently, uses reduced ( 2 � 2 ) surface integration, allows for

transverse shear deformations and provides estimates for the transverse shear

stresses. The kinematics in the element formulation allow large rotations and

small strains. Five or more integration points are used through the shell

thickness, two of which are located on the shell surfaces.

� The constitutive model uses a standard von Mises yield surface and the as-

sociated plastic 
ow theory with isotropic hardening. A piece-wise linear

model is used for the stress-strain curve, with seven line-segments up to the

ultimate strength level (f

u

) of the material. The yield plateau is represented
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by a single line segment with a hardening of 4 MPa over the plateau ("

yp

).

Slightly di�erent material properties were assigned for the elements in the

web and in the 
anges (see discussion in section 8.1).

� The uniform torsion case is analysed by applying oppositely directed torsional

rotations to the nodes at the centroid of the cross-section, at beam sections

2 and 5 (Figure 4.9).

� In the case of nonuniform torsion, the torsional rotation of the beam at

sections 3 and 4 was restrained by lateral supports (y-direction) at the 
ange

tips, while the torsional rotations were applied at the centroid at sections 2

and 5, as above.

The �ctitious sti�ener arrangement at the loading points was required to ensure

that the entire beam section followed the rotation of the node at the centroid. A

linearly elastic model was used for the sti�eners, and the dimensions of the sti�eners

were carefully chosen to prevent signi�cant warping restraints for the beam. This

was achieved using 5 mm thick plates and beams with cross-sectional dimensions

of 0.5 mm � 100 mm orientated with their weak axis in the plane of the sti�ener

plates.

Both nonlinear geometry and nonlinear material behaviour were taken into

account in the numerical simulations. Displacement control with automatic incre-

mentation of the rotation was used, limiting the increments to not more than 1%

of the total rotation. Default values were used for the convergence control.

Note that the �llets at the web-
ange junctures are not represented in the

shell model of the beam. The elastic torsional sti�ness is strongly e�ected by this

geometrical simpli�cation, even though the resulting loss in cross-sectional area is

more than balanced by the extra area introduced in the overlap of the shell elements

at the web and 
ange junctures. The torsional constant I

T

for the beam sections is

built up with a contribution of as much as 18% and 30% from the juncture e�ect for

the HEB and the IPE section, respectively. The underestimation of the torsional

sti�ness is expected to be most signi�cant in the uniform torsion case. No attempts

were made to model the residual stresses or any initial geometrical imperfections

of the specimens.

The results from both FE analyses and experiments are given in Figures 4.10 to

4.13. The numerical response agrees quite well with the experimental one, and the

best agreement is achieved for the cases of nonuniform torsion. This is as expected

as the warping stresses in nonuniform torsion are quite well modelled by the shell

elements.

In uniform torsion the numerical response is too soft in the elastic range. This

may be explained by the omission of the �llets in the model, but calculations show

that the sti�ness reduction is somewhat less than what could be expected from

the corresponding error in I

T

. (See Appendix D.1 for a discussion). In nonuniform
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Figure 4.10: Uniform torsion on HEB 140, experiment and analysis.

Figure 4.11: Uniform torsion on IPE 160, experiment and analysis.
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Figure 4.12: Nonuniform torsion on HEB 140, experiment and analysis.

Figure 4.13: Nonuniform torsion on IPE 160, experiment and analysis.
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torsion this de�ciency of the model has less e�ect, because a larger part of the

applied moment is carried by warping.

In the uniform torsion analyses the equivalent Mises stress does not exceed the

yield stress at any material point, even for an applied rotation of more than 3

radians. For the HEB specimen, yielding has extended to the middle surface of the

web for a rotation of 1.7 radians, but not the middle surface of the 
anges. The

yielding is, due to the helical deformation of the member, strongly in
uenced by

axial tensile and compressive stresses that for this rotation vary from 150 MPa in

tension at the 
ange tips to 210 MPa in compression in the center of the web, both

given as values averaged through the thickness.

In nonuniform torsion the maximum equivalent Mises stress occurs in the 
ange

tips at the midspan of the specimens, where the warping normal stresses (�

w

) are

largest. For the HEB beam the onset of strain hardening occurs at a rotation of

about 0.26 radians. At this stage, the 
anges have developed extensive plasti�ca-

tion at midspan due to the 
ange bending (warping). Yielding has also developed

at the surface of the beam along the entire member, due to the uniform torsional

shear stresses. At a rotation of 0.6 radians, the corresponding maximum equivalent

Mises stress at the 
ange tips at midspan has a value of 340 MPa, or about 22 %

higher than the yield plateau of the material.

In Appendix D.2, additional simulation results are shown for the HEB section.

Here, the e�ects of strain hardening and nonlinear geometry are separated. It is

shown that, for nonuniform torsion, the strain hardening contributes only slightly

to the predicted torsional moment, and that the predicted response in uniform

torsion agrees reasonably well with the sand-heap value of the torsional moment if

the nonlinear geometry option is excluded in the simulation.

Simulations of the 
at bar tested in uniform torsion

The 
at bar was tested to provide experimental data for a specimen with simple

geometry and shear stress distribution. The �nite element discretization of the 
at

bar was easily done without omitting any part of the cross-sectional area.

The 
at bar is modelled with both 8-node shell elements and with 20-node

solid elements. Transverse sti�ener beams at the loading point are included in the

models in order to represent the actual loading conditions. The material model is

the same as for the I-beams. The solid model is analysed primarily to evaluate the

response predicted using the shell model.

� The shell model consists of 5 elements in the transverse direction and 52

elements along the bar axis, i.e. a total of 260 elements in a uniform mesh.

� The solid model has two layers of brick elements through the thickness, 6

elements in the transverse direction and 70 elements along the bar axis. This

gives about 16000 DOFs.



0.0 1.0 2.0 3.0 4.0

Total twist rotation [radians]

0.0

1.0

2.0

3.0

4.0

5.0

6.0

T
o
rs

io
n
a
l 
m

o
m

e
n
t 
[k

N
m

]

Theor. initial yield

Sand-heap analogy

Elastic stiffness GIT / L

Experiment

ABAQUS shell

ABAQUS solid

9 p.

5 p.

4.4. FINITE ELEMENT SIMULATIONS 59

Figure 4.14: Uniform torsion on 
at bar section 15.3 mm*200 mm.

The solid element uses quadratic interpolation of the displacements and reduced

(2 � 2 � 2) integration at the Gauss points for both internal forces and the element

sti�ness, which gives 4 integration points through the thickness of the model. The

outermost integration points of the solid element are then located at a distance of

approximately t=10 or 1.6 mm from the outer surface of the bar, while the shell

element model has integration points on the surface.

The numerical results are compared with the experimental result in Figure

4.14. For the shell model two curves are depicted, based on respectively 5 and

9 integration points through the shell thickness. The numerical analyses predict

the torsional response quite well, except that the torsional resistance in the plastic

region is overestimated. The results from the shell and the solid models agree quite

well, except in the elastic-plastic transition region. As shown, the use of more than

5 integration points in the shell elements improves the predicted response in this

region. A closer view of this region is given in Appendix D.

The deformation caused by the transverse shear stresses in the shell elements

is treated elastically at all stress levels by ABAQUS, and some of the overshoot in

the plastic region may be caused by this. On the other hand, the solid elements

should model this shear 
exibility better, but give almost equal results.

Simulations of torsion of I-beam using beam elements

An open section beam element (ABAQUS:B32OS) with three-node quadratic in-
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terpolation was used to establish a simple 1-D model of the HEB 140 specimens.

Figure 4.15: Torsional response of HEB 140 beam, modelled with beam elements.

Here, the 2030 mm length of the specimen between the loading points was modelled

with 10 beam elements, which gives 5 beam elements to represent the half specimen

length (Figure 4.15). The beam element has an additional "warping magnitude" de-

gree of freedom at each node, and is intended for problems with restrained warping.

The element formulation is based on Timoshenko beam theory and includes trans-

verse shear deformation. Note however, that the behaviour in transverse shear and

torsional shear always is assumed to be elastic. The strain formulation allows large

axial strains and moderately large torsional strain. The cross-section is de�ned by

a number of line segments, and ABAQUS obtains the beam section properties by

numerical integration. Here, a total of 25 integration points were used, nine points

in each 
ange and seven in the web. The element uses three Gauss integration

points along the beam axis.

The numerical response is compared to the experiments in Figure 4.15. As

expected from the element formulation, the response to uniform torsion is almost

linear, and gives a poor representation of the torsional behaviour for large values

of twist. The deviation in initial sti�ness between the test and analysis is mainly

caused by the simpli�ed computation of the torsional constant I

T

, which is taken
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as

P

1

3

bt

3

by ABAQUS.

The prediction of the nonuniform torsional response is somewhat better, with

a fairly accurate prediction of initial yielding and almost correct representation of

the initial sti�ness. For larger twist values the computed linear elastic response to

uniform torsion again causes the model to grossly overestimate the behaviour.

From this limited study it can be concluded that the beam element with its

"warping DOFs" is unsuited for analyses of structures subjected to large torsional

twists and inelastic deformations. However, the element gives a correct representa-

tion of the increase in sti�ness which results from warping restraints on a member,

and the warping DOFs of the element are essentially for modelling stability prob-

lems where torsional deformations occur, like in lateral torsional buckling of beams

and torsional buckling of columns. Thus, for elastic analysis the element may give

adequate results.

Summary

The response of the specimens, to both uniform and nonuniform torsion, is pre-

dicted quite well when shell elements are used. For uniform torsion on the I-section

beams, the largest source of error in the model is due to the representation of the

�llets. If the elastic torsional sti�ness could be computed correctly in the analyses,

the experimental and the analysis response curves would follow even better.

The analyses of the 
at bar specimens show that a shell model is able to predict

uniform torsional response almost as accurately as a much larger model based on

solid elements.

Torsional problems involving beams with constrained warping can also be prop-

erly modelled with beam elements having warping DOFs, as long as the application

is restricted to problems where nonlinear material behaviour is not dominant.
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Chapter 5

Beam-column tests

5.1 Introductory remarks

In this chapter the results from the beam-column experiments are presented. The

response of the beam-columns is presented by means of curves that show the rela-

tionships between the applied resultant forces and the corresponding displacements.

Generally, the curves are drawn as straight lines between subsequent data

points, based on approximately thousand points in each test. For some of the

tests, the presented curves are based on a polynomial �t to the recorded response

data, as will be pointed out in each case. The testing and the observed behaviour

of each test specimen are brie
y discussed in connection with the graphical presen-

tation of the response.

5.2 About the tests and the presentation

5.2.1 Test conditions

Figure 5.1 shows the load and support conditions of the beam-columns. The

beam-column specimens are subjected to a combination of the three applied loads

N

0

, H and T

0

. At the ends, the specimens are simply supported with respect to

the y and z axes (v=0 and w=0). They are supported with respect to the y axis

(v=0) at midpoint, where also the torsional rotation is restrained (�

x

=0). Please

note the symbol for the support conditions at midpoint, as it will be frequently

used in the following. As shown in Figure b), the compressive axial load N

0

acts

along a line through the cross-sectional centroids at the transverse end supports.

The de
ection w is also measured from this line.

The most heavily loaded part of the specimen is at midpoint, where the bending

moment has its maximum. At this location the bending moment is balanced by

strong axis bending of the cross-section only. The active stress resultants (internal

forces) at the midsection are denoted N, M and T, and all experimental results

presented in the following refer to these forces.

63



2
0

9
0

2
0

3
0

N0

H

x,u

z,w
y,v

u

M

N

fx = 0

H/2

f

( a ) ( b ) ( c )

(Twist rotation
 not shown)

Definition:

fx = 0

v = 0

V

T

w

T0

T0

N0

T0

64 CHAPTER 5. BEAM-COLUMN TESTS

Figure 5.1: Beam-column tests, load and support conditions.
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The internal forces are taken as:

N = N

0

M =

1

4

�H � 2030mm +N

0

� w (5.1)

T = T

0

Note that the internal torsional moment (T) at midsection is in fact in
uenced by

the axial load. Reference is made to Section 6.2 for a discussion of the second order

e�ect of N

0

on the internal torsional moment.

The displacements that are associated with the internal forces are the axial

shortening u, the transverse displacement w at midsection and the twist rotation

� at the end sections as de�ned in Figure 5.1. The forces and the displacements

point in the same direction in all tests and are taken positive as shown.

5.2.2 Normalization

The graphical presentation of the test results uses normalized (nondimensionalized)

values for the measured forces and displacements. The internal forces N, M and

T and the corresponding displacements u, w and � are normalized by their yield

values, viz.:

N
=

N

N

Y

;
u
=

u

u

Y

M =

M

M

Y

;
w
=

w

w

Y

(5.2)

T
=

T

T

Y

;
�
=

�

�

Y

Here, the yield value means the value of the single force or the displacement that

corresponds to initial yielding at the most stressed point in the beam-column. Both

for the strong axis bending moment, M, and the torsional moment, T, this yielding

occurs at the extreme �bres at the midsection. For bending, the displacement w is

taken as the sum of the contributions from the axial strain (w

b

= 1=48 �Hl

3

=EI

y

)

and the not insigni�cant contribution from the shear strain (w

s

= 1=4 �Hl�=GA).

Here, the value of � is as given by Shames and Dym (1985). For torsion, the yield

values T

Y

and �

Y

are obtained from the di�erential equation for elastic torsion

T = �EI

W

d

3

�=dx

3

+ GI

T

d�=dx , assuming full symmetry in torsional rotations

about the midsection and initial yielding of the 
ange-tips at midsection caused by

pure warping stresses. The yield value �

Y

is calculated at the position where the

torsional moment is applied, i.e. 30 mm from the end sections where the rotations

are actually measured (Figures 5.1a and c). Since the 30 mm long extensions at
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Axial loading Strong axis bending Torsion

f

y

N

Y

u

Y

f

y

M

Y

w

Y

f

y

T

Y

�

Y

MPa kN mm MPa kNm mm MPa kNm degrees

HEB 140
286 1198 2.85 279 58.9 7.3 290 2.65 4.95

IPE 160
308 626 3.11 304 32.4 6.8 316 0.772 7.84

Table 5.1: Yield values used for normalization of test data.

both ends of the specimen are not subjected to torsional loading, the rotations

measured at the end sections are considered to be representative for the loading

points. Appendix A.2 gives the formulas for the torsional moment - twist rotation

relationships for the present load situation.

The normalization is based on measured cross-sectional dimensions, and takes

the variation of the yield strength over the cross-section into account. Consequently,

the value of the yield stress is di�erent for the three internal forces (N,M,T). The

mean yield strength of the 
anges is used for the strong axis bending moment, the

yield strength at the 
ange tips is used for the torsional moment while the squash

load obtained from the stub column tests is used for the axial force.

Table 5.1 gives the force and displacement values that are used in the normal-

ization. The values are given for the typical test specimen with cross-sectional

dimensions as presented in Table 3.2. Only smaller adjustments of these values

were needed for some of the test specimens.

5.2.3 Test procedure - chosen loading

In principle, the three loadings N, M and T could all be applied either by displace-

ment/rotation control or by force control. However, many considerations in
uenced

the choice of test procedure.

In order to provide full symmetry in displacements about the specimen mid-

point, the torsional loading had to be imposed by applying equal rotations at the

two ends, i.e. by rotation control.

As shown in Table 5.1, the axial shortening of the test specimens at squash

load is small, approximately 3 mm. The shortening of a specimen due to simul-

taneously twist is of at least the same order as this, and it develops nonlinearly

throughout the test (Figure 5.11). Due to this, the axial force in the specimen

resulting from a prescribed linear displacement of the vertical actuator would de-

velop quite unpredictable. Displacement control of the axial loading by means of

the displacement-transducer in the vertical actuator was hence considered infeasi-

ble. On the other hand, a force controlled axial loading using a linearly increasing

axial load was considered unsuitable due to instability at the load level when the

specimens resistance no longer increases.

For all tests the axial load is hence kept constant throughout the test. This

simpli�ed both the testing and the subsequent presentation of the test data.
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Furthermore, at least one of the displacement components w and/or � were

increased linearly in each test. This allowed the specimen response to be extended

into the fully plastic state of the cross-section, also for decreasing values of the

resistances.

At the beginning of each test, the loads were applied to the test specimen up to

a limited level of force to establish contact in the parts of the loading arrangements.

In torsion, the start-up of each test was quite troublesome due to the relatively low

torsional resistance of the sections, with corresponding small start values of the

torsional force, and the requirement of equal rotations at the two ends. The actual

testing of a specimen to failure took about 30 minutes.

The actual load combinations were chosen in order to cover most of the force

space, however, taking into consideration what combinations could be of practical

interest. As the e�ect of combined bending moment and axial loading, including

local and global buckling, is well known for the present sections, torsional loading

was present for most tests. For the IPE beam-columns the magnitude of the axial

load had to be restricted due to the possibility of weak axis buckling (see Appendix

A.1 for capacities).

5.3 Test program

The loading situations for the beam-column tests are summarized in Table 5.2.

The test program is subdivided into two main parts, tests on the HEB 140 section

(identi�cation H in Table 5.2) and tests on the IPE 160 section (identi�cation

I), with a total of 26 tests. Each test has its individual number, and the load

conditions are indicated with the letters N, M and T. For all tests with axial load,

the magnitude of the constant axial load is given. The expression "active" in

Table 5.2 means that the force is applied gradually by increasing its corresponding

displacement value.

The references (a) to (m) in Table 5.2 connect each test to one of the load paths

in Figure 5.2, where each arrow represents one test. The arrows in the di�erent

M
-
T
planes indicate only the ratio between the load components

M
and

T
in the

test, and not the obtained load values. In addition to the 26 beam-columns tested

(and presented here in Sections 5.4 and 5.5), the two nonuniform torsion tests from

Chapter 4 are also shown in Figure 5.2.

Figure 5.2 shows that the loading (M and T) was applied in two di�erent ways.

Figures 5.2(a)-(d) depict 11 tests on the HEB 140 section where the loading con-

sisted of single M or T loading or proportional M-T loading at di�erent levels of

axial load. For the 5 other tests depicted in Figures 5.2(e)-(h) the bending moment

(M) was �rst applied to a predetermined level, and then the torsional loading was

imposed. Three out of the 5 tests were carried out at a constant bending moment,

achieved by reducing the transverse load (H) as a function of the transverse dis-

placement (w), i.e. compensating for the second order e�ect from the axial load
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Test N M T
Load path

(in Figure 5.2)

H-1-M
- active - (a)

H-2-MT
- active active (a)

H-3-MT
- active active (a)

H-4-NM
0.334 active - (b)

H-5-NMT
0.334 active active (b)

H-6-NMT
0.334 active active (b)

H-7-NT
0.334 - active (b)

H-8-NMT
0.50 active active (c)

H-9-NT
0.50 - active (c)

H-10-NT
0.835 - active (d)

H-11-MT
- 0.77 active (e)

H-12-NMT
0.25 0.93 active (f)

H-13-NMT
0.334 0.55 active (g)

H-14-NMT
0.50 0.62 active (h)

H-15-NMT
0.50 0.155 active (h)

I-1-M
- active - (i)

I-2-MT
- active active (i)

I-3-MT
- active active (i)

I-4-NMT
0.14 active active (j)

I-5-NMT
0.14 active active (j)

I-6-NM
0.32 active - (k)

I-7-NMT
0.32 active active (k)

I-8-NT
0.32 - active (k)

I-9-NT
0.50 - active (l)

I-10-MT
- 0.71 active (m)

I-11-MT
- 0.42 active (m)

Table 5.2: Beam-column test program
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Figure 5.2: Load paths for beam-column tests.
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(N�w). For the other two tests the bending moment increased somewhat during

the test due to this e�ect. The main reason for two di�erent test procedures, was

that the last 5 tests mentioned (three tests at a constant bending moment and two

at "near" constant moment) were considerably simpler to perform.

Table 5.2 gives the magnitude of only the �rst order bending moment (H�l/4).

The tests on the IPE 160 section are organized in a similar manner.

As shown in Figure 5.2 both the HEB and the IPE sections are tested in strong

axis bending. Together with the axial load tests presented in Chapter 3, i.e. the

stub column tests, and the nonuniform torsion tests in Chapter 4, this means that

the three basic load cases N, M, and T are all investigated.

In some of the tests with proportional M-T loading, Figures 5.2(b) and (j),

the bending moment M is started with some delay. This was unintended, and

was caused by inaccurate operation of the loading devices and slack in the loading

parts.

5.4 Beam-column test results

The following presentation of the tests show all measured test parameters, i.e. the

forces N, M, and T and the displacements u, w and �. In all tests where torsion

is applied, the torsional rotation � is increased almost linearly throughout the test

and can, in a sense, be interpreted as the "time" scale of the test. The graphs

depict curves that connect all response parameters to this rotation, and this allows

the simultaneous value of all test parameters to be presented within one single

graph for each test.

Generally, the graphs use solid lines for the forces and dotted lines for the

displacements, and for some of the tests two horizontal and two vertical axes are

used in the diagrams. In all graphs the curves are labelled, and the labels use a

y-axis versus x-axis convention, which means that a
M
-
w
curve is shown with the

value of the moment
M

along one of the y-axes and the de
ection
w
along one of

the x-axes.

As discussed above, the curves show the normalized values of the response

parameters. The normalizing values are the theoretical limit for the elastic linear

behaviour, and the �rst part of response curves for torsional moment (
T
-
�
) and

bending moment (
M
-
w
) is therefore, for tests without axial load, expected to point

against the (1.0,1.0)-coordinate in the graphs. The measured torsional response

followed this quite well.

As discussed in Chapter 2, the de
ection w due to bending is not measured

directly on the specimens. A part of the measured displacement is hence due to

elastic deformation at the end supports. This is taken care of by a small linear

correction to the measured displacements, based on data from control tests where

the physical de
ections were measured directly at the specimens at various load

levels. The correction to the measured de
ection value is not more than 1.5 mm
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for any of the tests.

Due to di�erent deformations of the loading devices for torsion and bending, the

applied displacement histories (paths) do not follow a perfectly straight line in any

of the proportional M-T tests. The
w
-
�
curve in Figure 5.9 illustrates this. The

deviation was not considered to be of signi�cant importance for the test results.

If so, it may have been avoided by controlling the testing by the displacements

measured directly on the specimen (i.e. the rotation gauges at the specimen ends

and the displacement transducer at midspan).

In the following presentation, similar tests on the HEB 140 and the IPE 160

are grouped together. Only the measured force and displacement relationships are

given in the main text. Some measurements on the distribution of angle of twist

along the specimens are given in Appendix C. Photographs of some of the deformed

specimens are given in Appendix B.

5.4.1 Bending tests

Tests H-1-M and I-1-M, strong axis bending

Figures 5.3 and 5.4 show the behaviour of the specimens that were subjected to pure

strong axis bending. The specimen ends were braced against torsional rotations in

these tests.

The nominal plastic shape factor (�) for strong axis bending is 1.14 for both

the HEB 140 and the IPE 160 section. However, as the web and the 
anges have

slightly di�erent material properties, the fully plastic moment is computed to be

M

p

=1.145�M

Y

for the HEB section and M

p

=1.155�M

Y

for the IPE section. The

corresponding values for the normalized moments are, of course,
M
=1.145 and

M
=1.155, respectively.

The response curves show a distinct yield plateau at a moment value somewhat

higher than the theoretical plastic moment resistance M

p

for both sections. At

a de
ection of
w
=2.0 the developed moment is 6% higher than M

p

for the HEB

beam, and 3% higher for the IPE beam. Most of the increased resistance can be

explained from the e�ect of the localized plastic deformation and strain hardening

at the loading point, as a result of the gradient in the moment. ASCE (1971)

presents results for a similar test on a beam with almost identical geometry (h/l

-ratio and cross-section shape) as the present IPE. Here, a moment plateau about

6% higher than M

p

for a similar de
ection level is obtained.

The �rst observed 
ange buckle appeared close to the loading point, and is

marked on the curves. The bending tests demonstrate clearly that the moment

resistance for these sections is almost una�ected by developed 
ange buckles until

the resistance decreases (only observed for the IPE) due to lateral buckling between

the braced points.
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Figure 5.3: Test H-1-M, HEB 140 subjected to strong axis bending.

Figure 5.4: Test I-1-M, IPE 160 subjected to strong axis bending.
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5.4.2 Load combination NM

Tests H-4-NM and I-6-NM, axial load and strong axis bending

Figures 5.5 and 5.6 show the results of the two NM tests that were carried out. Also

for these tests the specimen ends were restrained against torsional rotations. The

response curves for pure bending (
N
=0) are shown for comparison. The graphs

show how the axial load a�ects the behaviour in bending, and that the moment

"capacity" becomes more di�cult to de�ne from tests.

The HEB test (
N
=0.334) gave a nice and smooth curve, where the plasti�cation

starts as expected at a moment value about 30% lower than in the pure bending

test. The �rst 
ange buckle appeared near the loading point at a de
ection
w
=5.2,

and lateral buckling deformations started at a de
ection about
w
=12.0, as a S-

shaped deformation of the compression 
ange.

The IPE test (
N
=0.32) showed less e�ect of the axial load at the beginning

of the plastic range, even though the inelastic response also for this test starts at

the expected level. The resistance decreased when the 
ange buckled, and the test

ended in a lateral buckling of the compressive parts of the section. The somewhat

di�erent behaviour in the start of the plastic range for the two sections may be

explained from the di�erence in cross-section geometry. For the IPE section the web

contributes with 25% to the total plastic bending capacity, while the corresponding

value for the HEB section is 11%. Hence, most of the applied axial force can be

carried by the web of the IPE without a�ecting the bending response as much as

for the HEB.

5.4.3 Load combination MT

Tests H-2-MT, H-3-MT, I-2-MT and I-3-MT, bending and torsion

Figures 5.7 to 5.10 show the behaviour of the specimens that were subjected to

proportional bending and torsional loading. As discussed previously the tests were

carried out under displacement control, in this case by imposition of transverse

displacementw and twist rotation �. For each test the actual imposed displacement

history (deformation path) is shown with the curve labelled
w
-
�
. It could have been

desirable for this curve to be completely linear, but due to the 
exibility in the load

transfer systems it is somewhat nonlinear especially at the lower load levels and

most marked for the IPE specimens, due to their extremely low torsional resistance.

The bending response and the torsional response are shown with the
M
-
w
and the

T
-
�
curve, respectively. An additional curve

M
-
�
connects the two single responses,

and allows the simultaneous values of
M

and
T
to be read from the graphs as a

function of
�
(or the "time"). Of course the latter curve could have been omitted,

as the
M

and
T
responses are also connected through the

w
-
�
curve.

The two specimens H-2-MT and I-2-MT were subjected to almost identical dis-

placement histories, and the behaviour and measured resistance is quite similar in

both bending and torsion. From Figures 5.7 and 5.9 it can be seen that the value
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Figure 5.5: Test H-4-NM, HEB 140 with axial load and strong axis bending mo-

ment.

Figure 5.6: Test I-6-NM, IPE 160 with axial load and strong axis bending moment.
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obtained for the moment is approximately
M
=1.0 for both sections, while the max-

imum value for the torsional moment is
T
=1.5 and

T
=1.6 for the HEB and the IPE

section, respectively. The levelling o� of the response curves is due to plasti�ca-

tion, as no local instabilities occurred. For both sections a signi�cant reduction in

the bending sti�ness occurs at approximately
M
=0.5, while the torsional sti�ness

remains relatively unchanged up to
T
=0.7 to 0.8.

Figure 5.7: Test H-2-MT, HEB 140 with bending and torsion.

The plastic capacity in bending only, is about
M
=1.15 for both sections. In

torsion, the fully plastic warping torsional moment is
T
=1.5 (discussed in Section

6.1), where the value 1.5 refers to the plastic shape factor for pure bending of a

rectangular cross-section, in this case the 
anges. When these fully plastic "ca-

pacities" are compared to the measured resistances for tests H-2-MT and I-2-MT,

it can be seen that the values agree quite well. Note that this indicates a weak

interaction between the forces for this particular load case.

The two specimens H-3-MT and I-3-MT were subjected to the same load com-

bination, but were given a relatively larger torsion load than the two previous

tests. Due to this the torsional deformations became larger, and a signi�cant weak

axis bending component arose, increasing from the midsection towards the end

supports. For the I-3-MT specimen the response is shown to a twist rotation of

approximately
�
=12.0 or �=12.0�7.84

�

= 94

�

, i.e. practically a state of pure weak

axis bending near the support points at the end of the test. Figures 5.8 and 5.10
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Figure 5.8: Test H-3-MT, HEB 140 with bending and torsion.

show the response, that for the torsional moment gives curves that have a steadily

increase in the inelastic range for increasing twist, whereas the curves for bend-

ing moment level o�. For the IPE section in particular, the bending resistance

decreases for deformations
w

beyond approximately 5.0, probably due to the in-

troduced weak axis bending. For the HEB section this is not observed, and this

can be explained by the relatively smaller rotation of this specimen and hence less

weak axis bending, and also by the smaller di�erence between weak and strong axis

bending resistance for this section.

The torsional moments obtained are almost as large as for the specimens sub-

jected to nonuniform torsion alone, see Figures 5.27 and 5.28. Also the shape of the

curves is quite similar. For the bending moment, the maximum value obtained is

M
=0.8 and

M
=0.7 for the HEB and the IPE section, respectively. The interaction

between the forces (M and T) is hence weak. Furthermore, it can also be seen that

the response in torsion for these tests is quite similar to the response obtained in

the MT-tests performed with a constant bending moment, see Figures 5.22 and

5.26. Hence the load path dependence seems to be small.

For all four MT tests the sum of the largest obtained torsional and bending

moment greatly exceeds the capacity de�ned by initial yielding. Taking a rotation

of
�
=4.0 as reference in all tests, it is seen that the sum of the moments,

M
+
T
,

results in values ranging from 2.5 to 3.0 times the capacity determined from linear

interaction between the theoretical �rst yield values (
M

+
T
=1.0). All tests show
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a ductile behaviour, and a design based on the plastic capacities is conservative.

None of the specimens developed any signi�cant local buckles during the test-

ing. Like all the test specimens subjected to nonuniform torsional loading, and as

depicted in Appendix B, the deformed specimens showed a smaller slope disconti-

nuity in the 
anges at the specimen midpoint, due to localized plasti�cation.

Figure 5.9: Test I-2-MT, IPE 160 with bending and torsion.

5.4.4 Load combination NT

Tests H-7-NT, H-9-NT and H-10-NT, axial load and torsion

Figures 5.11 to 5.13 show the behaviour of the HEB specimens that were subjected

to axial load and nonuniform torsion. Both the torsional response (
T
-
�
) and the

axial shortening
u
-
�
during the tests are given. As indicated in the graphs, the

displacement in w-direction was restrained at the specimen midpoint in these tests,

to prevent the test specimens from buckling in that direction.

For the H-10-NT test (
N
=0.835, Figure 5.13) the response-data for the torsional

moment was signi�cantly disturbed by friction e�ects and some problems with

�nding the appropriate ampli�cation of the control signal for the torsional motors.

A 10'th degree polynomial �t is therefore used for curve smoothing. The response

curves for the tests at
N
=0.334 and

N
=0.50 are plotted directly from the recorded

data.
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Figure 5.10: Test I-3-MT, IPE 160 with bending and torsion.

No local buckles were observed for the H-7-NT and the H-9-NT specimens. The

distribution of the twist angle along the specimen H-7-NT was measured during

the test, and the results are presented in Appendix C. The H-10-NT test specimen

developed a smaller local buckle in one of the 
anges at the l=4 point of the specimen

after the maximum moment was well passed.

A repeat experiment was carried out for test H-9-NT, in order to study to what

extent the axial load transfer at the specimen ends could in
uence the experimental

results. The results from this repeat experiment are discussed in Section 8.2, and

the experimental results are shown in Figure 8.6.

Tests I-8-NT and I-9-NT, axial load and torsion

The results from these tests are given in Figures 5.14 and 5.15. Both tests were

carried out without observing any local buckling of the 
anges, but at the end of test

I-9-NT the web developed some large buckles which was followed by a deformation

of the 
anges. The curve for the torsional moment is smoothed for both tests.

5.4.5 Load combination NMT

Tests H-5-NMT and H-6-NMT

The test results are shown in Figures 5.16 and 5.17.

These tests were both carried out at an axial load level
N
=0.344. For H-5-NMT

the loading vector in the force space gives a larger moment component than for
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Figure 5.11: Test H-7-NT, HEB 140 with axial load and torsion.

Figure 5.12: Test H-9-NT, HEB 140 with axial load and torsion.
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Figure 5.13: Test H-10-NT, HEB 140 with axial load and torsion.

Figure 5.14: Test I-8-NT, IPE 160 with axial load and torsion.
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Figure 5.15: Test I-9-NT, IPE 160 with axial load and torsion.

H-6-NMT. The specimens showed only minor 
ange deformations, and no clear

local buckles. For test H-6-NMT the de
ection w was measured only by the IDT

in the actuator, and the presented
w
-
�
curve may be slightly misleading at low

levels of the bending moment. In both tests, values of
N
+
M
+
T
in the range 2.4

to 2.7 are obtained.

Test H-8-NMT

Test H-8-NMT is shown in Figure 5.18. Two 
ange buckles appeared symmetrically

about and close to the specimen midpoint in the most compressed 
ange part at

the de
ection level
w
=3.4. The buckle amplitude was about 2 mm, but seemed

to be straightened out towards the end of the test. Again, a value of
N
+
M
+
T
of

approximately 2.5 is obtained, which indicates large inelastic reserves.

Tests I-4-NMT and I-5-NMT

The results from the tests at the axial load level
N
=0.14 are shown in Figures 5.19

and 5.20, where the
T
-
�
curve for test I-4-NMT is smoothed. At this low level of

axial load both tests were carried out without signi�cant local buckling before the

response curves started to 
atten out. In test I-5-NMT the transverse loading was

started somewhat late, but still within the linear part of the torsional response.

Both tests ended in a kind of lateral torsional / lateral buckling failure. Also for

the IPE specimens the sum of the obtained values of
N
,
M

and
T
exceeds 2.0.
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Figure 5.16: Test H-5-NMT, HEB 140 with axial load,bending and torsion.
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Figure 5.17: Test H-6-NMT, HEB 140 with axial load,bending and torsion.

Figure 5.18: Test H-8-NMT, HEB 140 with axial load,bending and torsion.
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Figure 5.19: Test I-4-NMT, IPE 160 with axial load,bending and torsion.

Figure 5.20: Test I-5-NMT, IPE 160 with axial load,bending and torsion.
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Figure 5.21: Test I-7-NMT, IPE 160 with axial load,bending and torsion.

Test I-7-NMT

This test was carried out at an axial load level
N
=0.32, and the results are given

in Figure 5.21. As clearly shown by the
u
-
�
curve, the test ended in a sudden

buckling, starting from local 
ange buckles which appeared about at the time of the

maximum torsional moment. A cross-sectional capacity can hardly be determined

from this test.

5.4.6 Load combinations with constant bending moment

In the following, the results from the tests with constant and near constant bending

moment are presented.

Test H-11-MT

In this test, the bending moment (
M
=0.77) was kept constant by means a constant

transverse load H, and no axial load was applied. Figure 5.22 shows both the

response in torsion,
T
-
�
, and the developed midspan de
ection,

w
-
�
. Also shown

is the response curve from the test with nonuniform torsion only (
M
=0), presented

in Chapter 4. It is seen that the applied bending moment reduces the torsional

moment with approximately 20 %.
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Figure 5.22: Test H-11-MT, HEB 140 with constant bending moment and torsion.

Tests H-12-NMT and H-13-NMT

In these two tests the axial load (N) was �rst applied, followed by the constant

transverse load (H), and then the torsional loading was started (linearly increasing �).

Figure 5.23 presents the results from test H-12-NMT, where an axial load

of
N
=0.25 was applied. As shown in the �gure, the bending moment increases

throughout the test due to the induced additional bending moment N�w.

Figure 5.24 shows the results for test H-13-NMT. Compared to test H-7-NT

(Figure 5.11), which has the same axial load but no bending moment, it is seen

that almost the same values are obtained for the torsional moment.

Tests H-14-NMT and H-15-NMT

These two tests were carried out with a constant axial load
N
=0.50 and a constant

bending moment.

The results from test H-14-NMT is presented in Figure 5.25. If the test is

compared to test H-8-NMT (Figure 5.18, with a di�erent loading procedure) it can

be seen that almost the same capacities are achieved.

In test H-15-NMT a constant bending moment
M
=0.155 was applied. The

results obtained for the torsional moment were nearly identical to those given in

Figure 5.12. No graph for this test is shown here, but the results are in used in
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Figure 5.23: Test H-12-NMT, HEB 140 with axial load, bending and torsion.

Figure 5.24: Test H-13-NMT, HEB 140 with axial load, bending and torsion.
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Figure 5.25: Test H-14-NMT, HEB 140 with axial load, bending and torsion.

Section 6.4 (Figure 6.15).

Tests I-10-MT and I-11-MT

The torsional response from these tests is shown in Figure 5.26 together with the

response curve for pure nonuniform torsion,
M
=0. The two curves from the present

tests are smoothed, and are based on mean values of the torsional momentmeasured

at the upper and lower end of the specimens. The rotation symmetry was not too

good in the two tests, and the torsional moment di�ered about 10% at the specimen

ends in both tests. Nevertheless, the presented curves give quite representative

results.

As shown, the torsional resistance is not much a�ected by the bending moment.

Still at an end rotation of 31 degrees (
�
=4.0) the curves show almost identical values

for the torsional moment. At twice this rotation, the torsional resistance is reduced

with not more than 20% due to the bending moment
M
=0.71. For the test with

M
=0.71, it is seen that the sum

M
+
T
is approximately 3.3 at the end of the test,

i.e. a signi�cant larger capacity than predicted by any existing design method. The

total de
ection w of the specimens was about 25 mm in these two tests.
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Figure 5.26: Tests I-10-MT and I-11-MT, IPE 160 with constant bending moment

and torsion.
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5.5 Compilation of tests with axial load and tor-

sion

Figure 5.27 presents the results for all NT tests on the HEB section, i.e. the axial

load levels
N
=0,

N
=0.334,

N
=0.50 and

N
=0.835. Here, the rotation

�
=14.0

corresponds to a twist rotation of approximately 70 degrees. As shown, no global

instability is reached for axial loads less than approximately
N
=0.35. This is

mainly due to the fact that the induced second order e�ects caused by N (discussed

in Section 6.2) are balanced by the increased torsional resistance due to large

rotations. Note that the initial torsional sti�ness is dependent on the level of the

axial load. Note also that even for an axial load equal to 83.5% of the section squash

load, a torsional moment equal to 90% of the initial yield moment is reached.

Figure 5.28 shows the corresponding results for the IPE section. Here, the in-

stable situation is reached already for the test at
N
=0.33. Taking the

N
=0.50 -test

as an example, it is seen that the sum of
N

and
T
is about 2.0. This indicates that

there are large inelastic reserves present also for this load combination. Compared

to the tests on the HEB section, it is seen that the initial torsional sti�ness for the

IPE tests is relatively more a�ected by the applied axial load.

Figure 5.27: Tests with axial load and nonuniform torsion on HEB 140.
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Figure 5.28: Tests with axial load and nonuniform torsion on IPE 160.

5.6 Tests with uniform torsion and axial load.

In addition to the beam-column tests presented in the previous, two tests were

carried out for columns with axial load and uniform torsion. The loading conditions

are shown in the inset of Figure 5.29. The axial load was applied and held at a

constant level, and uniform twist rotations were applied linearly. The objective of

these tests was to investigate how the axial force a�ects the behaviour in uniform

torsion, and an axial load level of 50% and 34% was chosen for the HEB and the

IPE, respectively. The IPE specimen (
N
=0.34) was laterally braced (v=0) at the

midpoint to prevent lateral buckling.

The uniform torsion was applied in the same manner as in the pure uniform

torsion tests in Chapter 4, i.e. without warping restraints at the loading points

or at the specimen midspan. For these two particular tests the specimen ends

were given a special design, slightly di�erent from that used for the beam-columns

tested in nonuniform torsion. At the ends of these two specimens more of the


ange material was removed, leaving only the web plate (h�s) in contact with the

base plates. The axial load was then applied through the base plates without

constraining the warping of the 
anges.

The results from the tests are shown in Figures 5.29 and 5.30. The normalization

of the torsional moments and the rotations is based on the �rst-yield values in single

uniform torsion. Here, the values T

Y

=2.62 kNm and �

Y

=19.9

�

are used for the
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HEB and T

Y

=0.938 kNm and �

Y

=37.1

�

for the IPE. Only the response curve for

the HEB test (
N
=0.50) is smoothed. The corresponding curves from the uniform

torsion tests at
N
=0 are shown for comparison.

Figure 5.29: Tests on HEB 140, uniform torsion at constant axial load.

As pointed out in Chapter 4 the HEB test in single uniform torsion (
N
=0) gave

a somewhat large elastic torsional sti�ness (compared to theory). Hence, some of

the di�erence in elastic sti�ness for the two HEB tests in Figure 5.29 may be caused

by this. Nevertheless, as the applied axial load N is expected to reduce the torsional

sti�ness somewhat, the results seems quite reasonable.

Note that the initial yield moment (
T
=1.0) is reached in the HEB test, even

though the axial load level is as high as 50%.
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Figure 5.30: Tests on IPE 160, uniform torsion at constant axial load.
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Chapter 6

Interpretation of results

This chapter presents results from the beam-column tests. The second order tor-

sional e�ects arising from the axial force is discussed, and the interaction between

bending and torsion is shown for di�erent levels of the axial force.

6.1 Plastic torsional moment

As previously noted, the total internal resistance of a member to torsional loading

is composed of the sum of the two components "uniform torsion" and "warping

torsion". With the assumptions of the linear elastic torsion theory, these two

components and their interdependence may be determined from the di�erential

equation for torsion (Equation 4.2). Appendix A.2 gives the solution for the elastic

distribution between uniform torsional moment (T

u

) and warping torsional moment

(T

w

) for the beam-columns of the present study. As shown, the applied torsional

moment is resisted 100% by warping torsional moment at the midspan section

decreasing to about 30% at the free ends.

In the elastic state the shear stresses due to uniform torsion and the normal and

shear stresses due to warping torsion may be determined at any point in a beam.

For inelastic torsion, however, no theory exists for calculating the two components

or the resulting stresses, but there exist some simple limits for the plastic resistance.

For an I-section fully plasti�ed in uniform shear, i.e. with a fully plastic shear stress

distribution as shown in Figure 6.1a, the corresponding plastic moment T

up

is given

by the sand-heap analogy (Nadai 1950)

T

up

=

f

y

p

3

"

bt

2

�

1�

t

3b

�

+ (h� 2t)

s

2

2

+

s

3

6

#

(6.1)

if the section is considered to be made up of three rectangular strips and the von

Mises yield criterion is used. For a real rolled section, the contribution of the �llets

to the capacity may increase T

up

somewhat, but this is not taken into account in

the following.

For pure elastic warping torsion on an I-shaped section the external torsional

moment is resisted by warping shear stresses �

w

creating a 
ange shear couple

V

f

as shown in Figure 6.1b. The 
anges are bent laterally, about their strong

axis, resulting in equal and opposite directed 
ange bending moments M

f

. These

moments may also be expressed in form of the bimoment B = h

t

M

f

, to allow
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Figure 6.1: Torsion on an I-shaped section.
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the warping stress - bimoment relationship to be expressed in the same form as for

ordinary beam 
exure. The warping normal stresses �

w

developed are usually much

larger than the warping shear stresses �

w

, and the initial yield 
ange moment is

hence governed by the normal stresses. As the plastic shape factor for pure bending

of rectangular sections (the 
anges) is equal to 1.5, the fully plastic warping 
ange

moment is correspondingly equal to 1.5 times the initial yield 
ange moment. Even

with this simple and well de�ned plastic limit in warping the plastic capacity for an

I-shaped member cannot in general be determined. For a structural component the

condition of pure warping torsion may not be realized due to plastic deformation

as the boundary conditions that lead to zero St.Venant torsion in the elastic case

may be violated.

However, when considering that in uniform torsion the ratio between the fully

plastic moment T

up

and the initial yield moment is also equal to 1.5 (for narrow

rectangular section, Appendix A.3), it may seem reasonable to accept the shape

factor 1.5 used also for computation of the plastic capacity of a member, regardless

of the type of torsion. If so, the plastic capacity for nonuniform torsion should be

taken as 1.5 times the torsional moment that produces initial yielding in torsion,

based on an elastic member distribution between the two torsion types. Note that

only the 
anges of the I-section are utilized in this model for the case of warping

torsion, and that the actual fully plastic uniform torsional moment T

up

for an I-

section with di�erent thickness for web and 
anges exceeds the �rst yield moment

by a factor larger than 1.5. This is due to the fact that the thinner plate remains

elastic when the thicker reaches yielding. For these reasons the use of a factor equal

to 1.5 is expected to give a conservative estimate of the capacity.

Another possible limit for the plastic torsional moment may be determined

from a bending analogy, where only the lateral bending resistance of the 
anges is

considered. As shown in Figure 6.1 the applied torsional moment is replaced by

a shear force couple V

f

acting on the 
anges, and the 
anges are treated as two

separate rectangular beams bent in opposite directions about their strong axes.

For a torsionally pinned beam with a concentrated torsional moment T

0

applied at

both ends, similar to the situation for the beam-columns of the present study (see

also Appendix A), the 
ange shear force and the 
ange moment are distributed as

shown in Figure 6.1c. The plastic 
ange moment is

M

fp

= f

y

1

4

tb

2

(6.2)

and the corresponding 
ange shear force is

V

f

=

2M

fp

l

(6.3)

which gives a plastic torsional moment

T

0p

= V

f

� h

t

= f

y

1

2

tb

2

h

t

l

(6.4)
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As the entire torsional moment is here assumed to be resisted by 
ange bending

only, the in many cases signi�cant uniform torsion resistance is neglected and the

resulting bending actions and the normal stresses are over-estimated. When con-

sidering that for most cases the normal stresses are critical, rather than the uniform

shear stresses, the bending analogy is expected to give quite conservative values for

the plastic capacity. For the present HEB and the IPE beam this is clearly demon-

strated, as the full plastic torsional moments predicted by the bending analogy

are even less than the initial yielding torsional moments obtained from the elastic

torsion equation (Equation 4.2).

For the nonuniform torsion tests presented in Chapter 4 the experimental re-

sults for the torsional moment are compared to a value denoted "Merchant upper

bound". This "upper bound" was originally suggested by Dinno and Merchant

(1965) as an empirically based limit for the plastic collapse torsional moment for

an I-section cantilever beam subjected to a concentrated torsional moment at the

free end. The method has been extended to other load and support conditions

and used in several investigations. Dinno and Merchant assumed that the total

torsional moment at plastic collapse of the cantilever could be taken as the sum

of the plastic uniform torsional moment T

up

, i.e. the full sand heap capacity of

the section, plus a contribution T

wp

from plastic bending (warping resistance) of

the 
anges similar to the bending analogy above. The "Merchant" value of the

torsional moment for the beam in Figure 6.1c is then

T

0;Merchant

= T

up

+ T

wp

= T

up

+ f

y

1

2

tb

2

h

t

l

(6.5)

where T

up

is given in Equation 6.1.

Equation 6.5 is obviously not an upper bound according to the theory of plastic-

ity. In that case it should have involved an assumed deformation �eld from which

the stress resultants were deduced. Instead, full yielding over the cross-section and

along the beam due to uniform shear stresses is assumed, with simultaneously oc-

curring warping stresses in the 
anges, which reaches full yielding at the critical

section. In addition, as in the bending analogy, the normally less signi�cant warp-

ing shear stresses �

w

are ignored. However, as the Merchant upper bound includes

both torsional resistance components, and models the warping resistance's depen-

dency of the beam length and boundary conditions, it seems to be a reasonable

method for estimating the capacity for nonuniform torsion.

In all available experiments on I-section beams in nonuniform torsion, (Boulton

1965, Dinno and Merchant 1965, Farwell and Galambos 1969), higher values of the

torsional moments are reached than those predicted by Equation 6.5. As shown in

Figures 4.6 and 4.7 this is also the case for the tests in the present investigation,

for which the ultimate value is predicted quite well for the HEB section while the

resistance for the IPE exceeds the Merchant value considerably. This is of course

due to nonlinear geometric and material strain hardening e�ects. It can also be

seen from the experimental data in the literature that the Merchant value also
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gives a reasonable prediction of the values of the torsional moment at which a

signi�cant change in torsional sti�ness occurs. At least the Merchant value gives

no poorer information on this point than the alternatives do (sand-heap or initial

yielding). The results obtained in the numerical studies by Baba et al. (1982),

Bathe et al. (1983), May et al. (1989) and Pi and Trahair (1994c) all lend support

to the acceptance of Merchant's upper bound as a reasonable accurate model for

estimating the torsional moment at plastic collapse.

An alternative formula can easily be derived based on the same approach to the

problem, but without the violation of the yield criterion. This is achieved simply by

reducing the values for the plastic warping moment T

wp

and for the plastic uniform

torsional moment T

up

(Equation 6.5) in the 
anges such that the combination of

the resulting stresses, still plastic distributed, at any material point satis�es the

von Mises yield criterion

�

2

+ 3�

2

= f

2

y

(6.6)

This has the e�ect of using a reduced (*) value for the yield stress

�

�

Y

=

q

f

2

y

� 3�

2

 

or �

�

Y

=

1

p

3

q

f

2

y

� �

2

!

(6.7)

in the development of the formula. For a beam with a load situation as shown in

Figure 6.1c the alternative capacity (T

0;alt

) is hence obtained as the sum of the

fully plastic uniform torsional moment for the web plus the two contributions from

the 
anges (combining Equations 6.1, 6.5 and 6.7)
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(6.8)

Note, however, that interaction with the warping shear stresses �

w

in the 
anges is

neglected.

The largest value max(T

0;alt

) is obtained by maximizing Equation 6.8 with

respect to � , which gives the optimum ratio between the torsional moment carried

by warping and by uniform torsion in the 
anges. The solution for max(T

0;alt

) is

max(T

0;alt

) =

f
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p
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Note that Equation 6.8 is based on the interaction between internal forces due

to two separate load carrying mechanisms. Due to the similarity with standard
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Figure 6.2: Methods for determining plastic collapse torsional moment.

solutions for interaction between sectional forces, it is assumed that also Equation

6.8 will give conservative results.

Figure 6.2 gives a comparison of some of the above methods for estimating

the torsional moment at plastic collapse. The �gure shows curves for the plastic

torsional moment as a function of the beam length (l), calculated for the HEB 140

section with the load situation shown in Figure 6.1c. As the sand-heap moment

T

up

is a property of the section (for a given material) it is of course constant for

all beam lengths, while the resistance caused by 
ange bending T

wp

varies as a

linear function of 1=l. The capacity for a real beam will exceed the values given

by T

up

and T

wp

since the sand-heap value T

up

is exceeded in all experimental

investigations and T

wp

is a conservative solution. The �gure clearly demonstrates

that the Merchant upper bound predicts values for the torsional moment relatively

close to T

up

and T

wp

for the limiting cases of very short and very long beams, with

a maximum relative deviation for a beam length of approximately 1.2 meter. The

solution max(T

0;alt

) predicts values close to T

up

and T

wp

for beam length less than

0.8 meter and larger than 2.5 meter respectively, but gives a signi�cant increase
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for beam lengths of 0.8 to 2.5 meter.

The actual beam length 2030 mm used in the experiments of the present investi-

gation is marked on the �gure. Also marked is the value for the torsional moments

corresponding to the computed �rst yield in elastic torsion, the value obtained by

scaling this value by 1.5, and the real value measured in experiment. As shown,

the torsional moment predicted by the Merchant upper bound is closest to the

experimental value, and about 33% higher than the value predicted by max(T

0;alt

).

As the scaled value of the elastic solution and the derived "lower bound" solu-

tion (max(T

0;alt

)) predict almost identical values for the torsional moment, these

methods might be best suited for design purposes. Furthermore, this assumption

is supported by studying the response curves from the nonuniform torsion tests,

where the torsional sti�ness remains almost unchanged for both the HEB and the

IPE up to this level.

Nevertheless, due to the very simple form of the Merchant upper bound, and

the good agreement with experimental and numerical tests, it seems to be the most

obvious value to be used in discussions regarding full plastic torsional capacity.

6.2 Interaction e�ects

For a beam-column element subjected to loadings consisting of axial force, bending

and torsion actions, there exist several types of interaction and ampli�cation e�ects.

The following discussion refers to components of I-shaped sections, but some of

these e�ects are present for other cross-sections.

An extensive presentation of interaction and ampli�cation e�ects for beam-

columns in general is given by Chen and Atsuta (1977). They give a detailed de-

scription of the displacement/strain/sectional-force relationships for beam-columns

of general cross-section, and of I-sections in particular. Some of these e�ects are dis-

cussed also by Pi and Trahair (1992) and (1994c) for the case of beams in bending

and torsion.

The various interaction e�ects for beam-columns subjected to torsion as one

of the actions, may be considered to be analogous to the situation in a member

subjected to bending and compressive axial force, for which the lateral de
ection

induces additional moments, which in turn amplify the de
ections. For torsion

this "lateral de
ection" is the de
ection of the plate elements (web and 
anges)

that constitutes the cross-section, caused by the twist rotation of the member. The

axial force that creates additional moments, or second order load actions, is the

resultant of the compressive stresses in the particular parts of the cross-section.

For an I-shaped cross-section, these e�ects are most prominent in the 
anges.
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The main e�ects related to torsional deformations for beam-columns are :

� Torsional buckling caused by a compressive axial force on the member.

� Torsional buckling caused by strong axis bending actions. This is only pos-

sible for beams which are continuously braced laterally, such that the lateral

de
ections (v) at the cross-sectional shear center remain at zero, and when

prebuckling de
ections are included.

� Lateral torsional buckling.

� Interaction between these buckling modes.

� Secondary weak axis bending moments that are induced when a beam orig-

inally subjected to strong axis bending is rotated/twisted about its longitu-

dinal axis.

For a real beam-column not continuously braced, the actual failure will be a

combination of those above, where also strong and weak axis 
exural buckling

and local buckling may contribute. As all member displacements are ampli�ed by

cross-sectional plasti�cation, the behaviour is of course also strongly a�ected by

this.

6.2.1 Uniform torsion - e�ects from axial load

Figure 6.3a shows the case of an I-section beam-column segment subjected to uni-

form torsion and a compressive axial load. Due to the applied uniform twist rota-

tion, the longitudinal "�bers" of the segment form a helical shaped curve about the

axis of rotation, while the cross-section sustains considerable warping deformation.

The resulting warping of the 
anges is illustrated in Figure 6.3a (no attempt is

made to depict the actual twist). For the symmetric I-sections, the axis of rotation

coincides with the member axis through the shear center/centroid of the cross-

section. As the �bers outside the centroid form a helical curve, they are inclined

relative to the member axis, with an angle that depends on the applied angle of

twist and the distance from the centroid to the considered �ber.

The normal stresses � caused by an axial load N can produce a second order

contribution to the torsional moment due to the warping deformation that exists

in the cross-section, i.e. due to the resulting inclination of the �bers and hence the

normal stresses � relative to the member axis. The component of these stresses in

the plane normal to the member axis, indicated by the arrows in Figure 6.3b, con-

tributes to this additional torsional moment. In the general case this contribution

is called the "Wagner e�ect" (Chen and Atsuta 1977).

The importance of these e�ects may be demonstrated for the HEB section

of the present study. For simplicity consider only the lateral rigid body motion
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Figure 6.3: I-section beam-column in uniform torsion.

of the 
anges (Figure 6.3a) and disregard the inclination normal to the 
ange

element. Furthermore, assume the axial load to be carried by the 
anges alone.

For the beam-column of 2030 mm length subjected to an axial load of
N

=0.50

(600 kN) and a uniform twist rotation of
�
=1.0 (19.9

�

), the resulting additional

torsional moment equals approximately 16% of the initial yield moment. The full

additional moment is obviously somewhat larger than this. Refer to Figure 5.27

for experimental results for the present example.

The critical value of the axial compressive load for the case of pure elastic

torsional buckling with uniform twist deformations may be derived directly from a

consideration of the force equilibrium. Consider the I-shaped member in Figure 6.4

which is subjected to an axial load N and is free to warp and to rotate about the

longitudinal axis at the ends. The initial compressive stress is given by � = N=A.

A stub mn of this beam between two consecutive cross-sections, subjected to a

small angle of twist �, is shown in Figure 6.4b. By considering a strip in the 
ange

as shown in �gure b) of length dx and cross-sectional area dA, it is seen that the

force � �dA acting on the strip parallel to the member axis may be decomposed into

a component � � � � dA directed perpendicular to the member axis (and ? to the

radius-vector) and a component � � �dA acting along the strip direction. Only the

former component gives a contribution to a torsional moment as the force along

the strip is balanced by an equal force at the opposite end. The inclination � of
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Figure 6.4: Uniform torsional buckling of an I-section beam.

the strip is given by

� = r

d�

dx

(6.10)

By integrating the moment contributions for the entire section about the member

axis the equilibrium equation describing torsional buckling is obtained

Z

A

�r

d�

dx

� dA � r �GI

T

d�

dx

= 0 (6.11)

This gives a critical value (N

ET

) for the axial force N

N

ET

=

A

I

p

GI

T

(6.12)

Here, I

p

=

R

A

r

2

dA . Note that all the common assumptions of the linearized elastic

buckling theory have been invoked.

The interaction e�ects between uniform torsion and a compressive axial load

may be obtained by a similar approach. Let the beam-column element have an ini-

tial rotation �

T

and the strip have an initial inclination �

T

caused by the externally

applied torsional moment T on the beam-column. The application of the axial load

N will produce an additional angle of twist �

N

and an additional inclination �

N

.

In terms of the total values �

r

= �

T

+ �

N

and �

r

= �

T

+ �

N

, the equilibrium

equation becomes

Z

A

�r

d�

r

dx

rdA �GI

T

d�

N

dx

= 0 (6.13)
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By using the value for N

ET

from Equation 6.12, the additional twist angle

caused by N is given by

�

N

= �

T

N=N

ET

1�N=N

ET

(6.14)

and the total twist angle becomes

�

r

= �

T

1

1�N=N

ET

(6.15)

The presence of the axial load N results in an ampli�cation of the applied torsional

moment T

T

r

= T

1

1�N=N

ET

(6.16)

The ampli�cation factor is similar to that obtained for beam-columns subjected to

bending and compressive axial actions.

A simple design equation for beam-columns under uniform torsion and com-

pressive axial load may be established based on the von Mises yield criterion

�

2

+ 3�

2
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. If the section modulus in uniform torsion is denoted W

T

this
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which may be rewritten as
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= 1 (6.18)

Here the yield stress f

y

is replaced by a design stress f

d

, and the capacities N

d

and

T

d

are introduced. For a given value of the axial load N, the reduced capacity for

a uniform torsional moment may be taken as

T

�

=

v

u

u

t

1�

�

N

N

d

�

2

� (1�N=N

ET

) � T

d

(6.19)

Figure 6.5 gives a comparison of the capacities predicted by Equation 6.18

(or 6.19) and the results obtained from numerical simulations for the HEB beam-

column of the present study. The numerical results are obtained with the FE-

program ABAQUS, using the shell element model of the beam-column as discussed

in Chapter 8. Results are given for the torsional response at four values of the axial

load, the largest being 80% of the yield load, i.e.
N
=0.80. Experimental data for

the case
N
=0 and

N
=0.50 are presented in Chapter 5, and the agreement between

experiments and simulations is documented in Chapter 8. For the present purpose
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Figure 6.5: HEB 140 beam-column subjected to uniform torsion and axial load.

it was chosen to use simulations rather than the experiments for the comparison,

as the latter contain data only for two values of N. In Figure 6.5 the fully plastic

(sand-heap) value of T

d

is used, and the torsional constant I

T

which is used for

calculation of N

ET

is calculated without any contribution from the �llets. It may

be noted that the torsional buckling load for the HEB specimen is approximately

N

ET

=2630 kN, while the axial yield load is N

Y

=N

d

=1198 kN. The results given

in Figure 6.5 are normalized with respect to values at initial yielding, again based

on a cross-section without �llets. For this reason, the experimental results given in

Chapters 5 and 8 di�er slightly from the results given in Figure 6.5, as the actual

value of I

T

is used for the interpretation of the tests.

Figure 6.5 shows that the capacity predicted by Equation 6.18 gives conservative

results for axial loads up to
N

=0.80. As the beam-columns in real civil engineering

structures normally are loaded far below this level, this seems to be acceptable. For

the load cases
N

=0.50 and
N

=0.80, the largest value obtained for the torsional

moment in the simulations is predicted with almost 100% accuracy. For the cases

N
=0 and

N
=0.20 no better agreement could be expected, as the plastic value for

the torsional moment (sand-heap) used in Equation 6.18 is signi�cantly exceeded
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for both simulations. Note that the torsional moments predicted by Equation

6.18 corresponds to a stage in the simulations where a signi�cant reduction in the

torsional sti�ness has occurred, and that except for
N

=0.80 the deformations
�

are almost the same.

The values for the torsional moment for which the deviation from a perfect linear

response occurs may be obtained from Figure 6.5 and the underlying response-data

from the ABAQUS simulations. For the case
N

=0 this occurs for
T
=1.0, while

for
N
=0.20,

N
=0.50 and

N
=0.80 the corresponding values are

T
=0.90,

T
=0.70

and
T
=0.39, respectively. The corresponding values of T derived from Equation

6.18, using the initial yield value for T

d

, are
T
=1.0,

T
=0.89,

T
=0.67 and

T
=0.38,

i.e. almost the identical values as above.

For the elastic torsional sti�ness, the same good agreement is observed. Here,

the simulations give values for the ampli�ed rotations �

r

of 1.0, 1.10, 1.27 and

1.56 times the primary rotation �

T

, while the ampli�cation factor 1/(1-N/N

ET

)

according to Equation 6.15 should produce values of 1.0, 1.10, 1.26 and 1.58.

Both the suggested ampli�cation factor for torsional actions and the design

equation hence seem reasonable.

6.2.2 Nonuniform torsion - e�ects from axial load

Figure 6.6 shows the load situation for the beam-columns tested in nonuniform

torsion and axial compression. Due to the symmetry in load and rotation in the

tests, only one half of the specimen length needs to be considered. The �xed section

shown in �gure a) hence corresponds to the midsection of the beam-column, where

the warping displacements are zero. The actual design of the specimen ends is

shown in �gure b).

The importance of the second order e�ects from an axial load N may also for this

case be demonstrated by a simple approach. Consider the beam-column in Figure

6.6, subjected to a torsional moment T and an axial load N at the end. Mainly due

to the torsional loading, the beam-column twists and the 
anges de
ects laterally

as shown in �gures a) and c). As discussed previously, initial yielding in torsion

alone occurs in the 
ange tips at the �xed section due to the induced 
ange bending

moment M

f

. It can be seen from �gure a) that the axial load contributes to an

increase in this 
ange moment due to the load eccentricity e which develops when

the free beam end is rotated.

If, for simplicity, the axial force is assumed to be carried by the 
anges alone

(
ange forces N

f

=N/2) and only the displacement of the 
anges in y-direction is

considered, the additional 
ange bending moment (M

f;N

) at the �xed section may

be taken as M

f;N

= N

f

� e. Here, the displacement e caused by the rotation �

is given by e = sin� � (h � t)=2 . For the HEB specimen of the present study,

subjected to an axial load of
N
=0.50 and an end rotation of

�
=1.0 (4.95

�

), this

gives an additional 
ange moment of approximately 15% of the initial 
ange yield

moment (M

fY

= f

y

� 1=6tb

2

). Note that this magnitude of the second order e�ect
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Figure 6.6: I-section beam-column in nonuniform torsion.

is somewhat smaller than that obtained for the uniform torsion case.

Experimental results for this example is given in Figure 5.26. By studying the

response curves for the two tests
N
=0 and

N
=0.50, and also the corresponding

numerical simulations presented later in this section (Figure 6.7), it can be seen

that at the di�erence in torsional moment at
�
=1.0 equals about 15%, as stipulated

above.

The linear elastic torsional buckling load in nonuniform torsion is given by

Timoshenko and Gere (1961). For the present case it is given by

N

ET

=

A

I

p

 

�

2

EI

w

l

2

+GI

T

!

(6.20)

where I

w

is the section warping constant and l is the total length of the beam-

column, i.e. twice the length of the "cantilever" depicted in Figure 6.6a.

The interaction e�ects between nonuniform torsion and a compressive axial load

can not be derived analytically as easily as for the case of uniform torsion. The

reason for this is that the hyperbolic solution of the torsion equation enters into

the di�erential equation describing the torsional buckling problem. The resulting

equation hence has no simple solution.



6.2. INTERACTION EFFECTS 109

An ampli�cation factor on the form

f =

1

1�N=N

ET

(6.21)

seems to be a reasonable choice also for the present case, as it is theoretically

correct for cases where the uniform torsional resistance is dominant. It also re
ects

the behaviour in warping where the 
ange bending, as shown in Figure 6.6a, in

principle is similar to the case of bending and compression for beams, where the

ampli�cation factor for the reference case is given by 1/(N-N

E

). The torsional

buckling load N

ET

should then be based on Equation 6.20. The resulting ampli�ed

torsional moment T

r

again becomes

T

r

= T

1

1�N=N

ET

(6.22)

and the total twist angle

�

r

= �

T

1

1�N=N

ET

(6.23)

Design equations for beam-columns under nonuniform torsion and compressive

axial load may also for this case quite simply be established. If a �rst yield design

is chosen as a basis for the development, the capacity is limited by the yielding

in the 
ange tips at the �xed section (Figure 6.6a) due to the occurrence of the

normal stresses �

N

from the axial loading N and the warping normal stresses �

w

from the induced 
ange bending moment M

f

. These stresses then has to be limited

by �

N

+ �

w

= f

y

. As the 
ange bending moment M

f

consists of a contribution

from the externally applied torsional moment T and a second order contribution

due to the axial load N, the design equation becomes

N

N

d

+

T

T

d

�

1

1�N=N

ET

= 1 (6.24)

Again the design values N

d

and T

d

are introduced, as for Equation 6.18. For a

given value of the axial load N, the reduced capacity now becomes

T

�

=

�

1�

N

N

d

�

� (1�N=N

ET

) � T

d

(6.25)

If, on the other hand, a fully plastic distribution of the warping normal stresses

is assumed, the capacity is limited by the plastic interaction between the axial force

(N

f

) and the bending moment (M

f

) in the 
anges at the �xed section. For this

kind of loading, the capacity for a general rectangular shaped section (the 
anges)

with plastic capacities N

d

and M

d

is given by

�

N

N

d

�

2

+

M

M

d

= 1 (6.26)
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which is a standard solution according to the theory of plasticity for this combi-

nation. When the second order e�ect of the axial load is taken into account, the

plastic design equation for the beam-column hence becomes

�

N

N

d

�

2

+

T

T

pd

�

1

1�N=N

ET

= 1 (6.27)

which may be rewritten to express the reduced capacity in nonuniform torsion

T

�

=

"

1�

�

N

N

d

�

2

#

� (1�N=N

ET

) � T

pd

(6.28)

Here, T

pd

denotes that value of externally applied torsional moment T that cor-

responds to the fully plastic value (M

fp

) for the 
ange bending moment M

f

. As

pointed out in Section 6.1, this plastic value of T has to be determined directly

from an extension of the elastic solution of the nonuniform torsional problem, which

previously was taken as T

pd

=1.5�T

Y

. However, as pointed out in Section 6.1, the

stress situation for the beam-column is complex, and the stress distributions may

only be determined analytically for the case of elastic behaviour. Hence, the model

above may only be considered as a simple suggestion for a stress distribution for

the inelastic situation, and it is known that the actual capacity in torsion alone at

large rotations is considerably underestimated by this. It should also be pointed

out that the capacity for other beam-columns, where the most heavily loaded part

of the member is not necessarily dominated by pure warping actions, may be lim-

ited by the capacity in uniform torsion. In that case it may be more appropriate to

use the elastic and the plastic capacity in uniform torsion to replace the capacities

T

d

and T

pd

in Equations 6.24 and 6.27, respectively.

It should, however, be noted that Equation 6.27 may for instance be modi�ed

by assuming that the axial force N is primarily resisted by the web, and that only

the excess axial force (N-N

web

) enters into the square brackets of the equation.

Figure 6.7 gives a comparison of the capacities predicted by Equation 6.27 and

the results obtained from ABAQUS simulations for the HEB beam-column. As

shown, results are given for the torsional response at four values of the axial load

N,
N
=0,

N
=0.334,

N
=0.50 and

N
=0.835, which corresponds to the experiments

carried out for this load combination. A relatively good agreement between ex-

periments and simulations is documented in Chapter 8, and it was chosen to use

the simulations rather than the experiments for comparison. The results given in

Figure 6.7 are normalized with respect to values at initial yielding. It can hence be

seen that the plastic capacity in torsion alone (
N
=0) according to Equation 6.27

corresponds to the value
T
=1.5 in the �gure. It may be noted that the torsional

buckling load for this nonuniform torsional case is approximately N

ET

=4950 kN,

while the axial yield load remains at N

Y

=N

d

=1198 kN. As the torsional buckling

load for this case is about twice the buckling load for the uniform torsion case, the

destabilizing e�ects from the axial load are expected to be less prominent. However,

as also the interaction equation is changed, a comparison of Figures 6.5 and 6.7
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shows that the presence of an axial load gives the largest e�ect for the nonuniform

torsion case.

As shown, the capacities predicted by Equation 6.27 give quite conservative

results for the torsional moments
T
for all values of the axial load

N
. As long as

the actual observed capacity in nonuniform torsion is not properly represented by

the plastic value used for T

pd

, a better agreement could not be expected.

It can easily be shown that by using (N-N

web

) as axial force in Equation 6.27,

the predicted capacity in torsion can be increased, in particular for cases where N

is large. If this is done for the case
N
=0.835, the largest value obtained for the

torsional moment in the simulation is predicted with good accuracy.

Figure 6.7: HEB 140 beam-column subjected to nonuniform torsion and axial load.

By studying the response curves in Figure 6.7, and the ABAQUS response-

data from which they are derived, the torsional moments where the inelastic tor-

sional behaviour starts can be obtained. For an axial load of
N
=0 this occurs

for
T
=1.0, while for

N
=0.334,

N
=0.50 and

N
=0.835 the corresponding values are

T
=0.65,

T
=0.51 and

T
=0.13, respectively. The corresponding values derived from

the "elastic" design equation, Equation 6.24, which uses the initial yield value T

Y
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for the torsional capacity T

d

, gives corresponding values
T
=1.0,

T
=0.61,

T
=0.44

and
T
=0.13. This means that the two methods give quite similar results.

The elastic torsional sti�ness which can be read from the ABAQUS simulations

gives values for the ampli�ed rotations �

r

of 1.0, 1.08, 1.12 and 1.24 times the

primary rotation �

T

. From Equation 6.23 the corresponding values are 1.0, 1.09,

1.14 and 1.25, i.e. as good as identical results.

It seems hence as if the suggested ampli�cation factor also for the case of

nonuniform torsion gives quite satisfactory results, and that the design equations

are feasible. The observations presented here are supported by similar investiga-

tions/observations also for the IPE section.

6.3 Bending and torsion interaction

For the beams of this study the interaction between bending and torsion at a cross

sectional level is discussed in the following. Results are given for the nonuniform

torsion tests (T) presented in Chapter 4 and for the strong axis bending tests (M)

and the combined bending and torsion tests (MT) in Chapter 5.

The advantage of the test setup of the present study, compared to many others,

is that the cross-section at the critical midspan section of the beams maintains

its orientation relative to the external transverse load (Figure 5.1). Independent

of the torsional loading and the twist deformations, the beam specimens are bent

solely about their strong axis at this section, and disturbing action from secondary

weak axis bending is avoided. Consequently, the interaction e�ect between the pure

sectional forces strong axis bending M and nonuniform torsion T may be studied,

also for large inelastic deformations. Of course, at all sections outside the midspan

section combined strong and weak axis bending takes place, which also a�ects the

deformation measures used in the following. It should be remembered that the e�ect

of the nonuniform torsion is strongly dependent on the actual load and boundary

conditions, hence the conclusions presented in the following are closely related to

the chosen specimens.

As shown with the graphs in Chapters 4 and 5, the torsional moment developed

in the tests depends strongly on the extent of the torsional deformations. For most

tests the torsional moment shows a steady increase with increasing twist, and no

well de�ned value for the "capacity" or "yield" torsional moment is obtained. An

ultimate limit resistance in torsion may hence only have meaning when referred to

a speci�c value of the inelastic torsional deformations. For the pure strong axis

bending tests some of the same deformation dependency may be observed, Figures

5.3 and 5.4, even though the response curves show a well de�ned yield plateau for

the moment. It is hence necessary to choose a ductility requirement (i.e. amount

of inelastic deformation) to serve as a basis for the de�nition of the capacity. This

choice is discussed in the following.

Figures 6.8 and 6.9 depict the results in the MT-plane for the tests with propor-
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tional loading (Figures 5.2a) and i)). The results are given for the sectional forces

M and T at midsection, as de�ned in Chapter 5. However, as the bending moment

in this case is directly proportional with the applied transverse load H (M=H�l/4),

the results presented in the following may also be interpreted as interaction e�ects

for the external loads H and T.

The strong axis bending moment M is normalized with respect to the fully

plastic bending moment

M

p

= f

y;f lange

[bt (h� t)] + f

y;web

�

1

4

s(h� 2t)

2

�

(6.29)

with an additional small contribution from the �llets. The torsional moment is

normalized with respect to the Merchant upper bound value (T

p

=T

0;Merchant

). For

the tests with both torsion and bending, simultaneous values for T and M are

plotted. In the �gures, the data points are identi�ed by integer numbers that

represent multiples of the deformation at initial yielding. For the tests with single

torsion and combined torsion and bending points are given for
�
=1, 2, 4, 6 and

8, while
w

is not used as a parameter. In bending, points are given for
w
=1, 2,

4 and 6. Also shown is a circular interaction curve corresponding to a quadratic

interaction between the sectional forces M and T :

 

M

M

p

!

2

+

 

T

T

p

!

2

= 1 (6.30)

Figures 6.8 and 6.9 show that the maximum values of M and T obtained in the

tests signi�cantly exceed the capacity given by the circular interaction, and that

the choice of reference value for the inelastic deformations strongly in
uences the

corresponding capacity. If curves are drawn through data points representing the

same level of deformations, for instance through points where both
�
and

w
take on

the value 4, it can be seen that the capacity may be approximately represented by

curves of circular shape as given by Equation 6.30. The �gures also show that for

the HEB section the use of the Merchant upper bound value for the normalization

of the torsional moment T gives good results, with respect to the possibility of using

the quadratic interaction and the values for M

p

and T

p

without any modi�cations.

For another value for T

p

, the test results would not �t to a circle. When comparing

the results for the HEB and the IPE sections, it should be remembered that equal

values of
�
for the two sections do not represent equal physical rotations measured

in degrees, as
�
is given as multiples of the rotation 4.95

�

for the HEB section and

of 7.84

�

for the IPE section. Hence, the larger values obtained for the torsional

moment T for the IPE section can be explained by larger contributions of the e�ects

from large rotations and nonlinear geometry.

As shown in Figures 6.8 and 6.9, the loading path for the MT tests is changing

direction when the inelastic deformations increase. This is a direct result of the test

being run by displacement control, and the fact that the changes in the specimen

sti�ness in bending and torsion are not proportional for increasing proportional
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Figure 6.8: Interaction between bending and torsion for HEB 140 section.

Figure 6.9: Interaction between bending and torsion for IPE 160 section.
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deformations. For one of the IPE tests in particular, some of the reduction in the

bending moment at large values of
�
is probably caused by sti�ness reduction due

to weak axis bending in parts of the specimen.

From separate FE-analyses (Chapters 4 and 8) it is found that, for the tests in

pure bending and torsion only, the onset of strain hardening in the 
anges takes

place at a deformation of approximately
w
=3.0 and

�
=4.4 for the HEB and

w
=3.9

and
�
=4.6 for the IPE section. It may be noted that a rotation of, for instance,

�
=4 corresponds to an end rotation of approximately 20

�

and 31

�

for the HEB

and IPE specimens, respectively. Based on the results at hand it seems reasonable

to choose values of
�
and

w
in the range 3 to 6. This choice is based on the fact

that material strain hardening e�ects are commonly neglected in member design,

and that limits are imposed on what twist rotations can be obtained in a real civil

engineering structure. It does not seem appropriate to use values for the rotation

�
less than 3 in this context, as a "plastic" response in torsion depends on, at

least, deformations of this size. The e�ect of rotations within this range may be

illustrated with a beam originally loaded in strong axis bending. When the cross-

section is given a rotation about the member axis of about 20 degrees (
�
=4 for the

HEB section), bending still takes place mainly about the strong axis of the section,

even though a signi�cant secondary weak axis bending moment is developed. The

strong and the weak axis components of the bending moment M are M � cos � and

M � sin �, respectively for this case, or 94% and 34 % of M.

Considering both shape and values, Figures 6.8 and 6.9 show that reasonable

agreement between test results and the circular curve is obtained for deformations

�
and

w
in the range 3 to 6. Figures 6.10 and 6.11 contain more closely spaced

data points for
�
, and lend support for a choice of the deformations

�
and

w
equal

to 4 for the HEB section and
�
and

w
equal to 3 for the IPE section. In fact,

this corresponds to almost equal twist rotation for the two sections, measured in

degrees. For these levels of deformation, the tests in bending and in torsion only,

show good agreement, while the deviation between test results and the circular

curve is larger for the tests with combined bending and torsion (MT). It should,

however, be noted that the given value of
�
does not give a true picture of the cross-

sectional deformation in the MT tests, as the additional deformation due to
w
is

not given. For this reason it is to be expected that the data points lie somewhat

outside the quadratic interaction curve for these tests.

The e�ect of taking also the transverse displacement
w

into account, i.e. by

using a deformation norm that includes both
w
and

�
, is shown for the HEB section

in Section 6.4. The use of such a deformation norm does not alter the conclusions

presented here.

The circular interaction curve, Equation 6.30, was suggested by Hodge (1959)

as a lower bound for the cross-sectional capacity for the interaction between bend-

ing and uniform torsion for various sections. The equation is based on interaction

between uniform shear stresses and bending normal stresses with plastic distribu-

tions, and is hence theoretically valid only for beams of solid or closed cross-sections
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where the warping stresses are negligible. The equation was also used by Imegwu

(1960) for circular, square and triangular sections subjected to the same type of

loading.

Gill and Boucher (1964) and Dinno and Merchant (1965) investigated exper-

imentally the interaction between torsion and in-plane bending for respectively

beams of solid square and rectangular sections and for beams of a compact I-

shaped section. The two investigations were concerned with the plastic capacity at

a component level, and did not include the problem of lateral torsional buckling.

The beams were subjected to combinations of a centrically applied torsional mo-

ment and a varying bending moment produced by a concentrated load at midspan.

The I-section investigated by Dinno and Merchant had outer dimensions 5/8 in.

by 5/8 in., and 
ange and web thickness of 1/8 in. and 3/32 in. respectively, i.e.

it was quite thick-walled and had a relatively large lateral bending sti�ness (I

z

/I

y

-

ratio of 1/2). As a consequence of their choice of cross-sections, Gill and Boucher

really studied a problem with uniform torsion while Dinno and Merchant studied

nonuniform torsion.

In both investigations the experimental results were found to lie outside the

circular interaction curve, Equation 6.30. Only Gill and Boucher discussed how

they de�ned the plastic capacity on the basis of test results, which in this case was

relatively simple due to the shape of the response curves. Dinno and Merchant

reported only data points for the plastic values of M and T, but it is assumed that

the response curves for their section also showed a well de�ned plastic capacity.

The interaction between bending, 
exural-torsional buckling and torsion actions

for I-beams with various types of lateral bracing was investigated numerically by

Pi and Trahair (1994c). Based on �nite element results obtained with a special

beam element (Pi and Trahair 1994a), they proposed two equations for design of

beams as a function of lateral slenderness. Here, Equation 6.30 was used as a basis

with modi�cations made to the exponents only. Their investigation showed that

the capacity for beams with signi�cant secondary weak axis bending e�ects or with

a signi�cant tendency for lateral (and pure) torsional buckling was signi�cantly

overestimated by Equation 6.30. However, the interaction e�ects between bending

and torsional buckling, as demonstrated by Pi and Trahair (1992) and (1994c), are

not deemed important for the specimens of the present study.

Figures 6.10 and 6.11 show test results from all tests with load combinations

M and T, i.e. both the tests with proportional loading in M and T as presented

previously and additional tests where the bending moment was kept constant while

the torsional moment increased. Figure 6.10 shows the test results for the HEB

section, and includes also the data points given by Dinno and Merchant (1965)

for their thick-walled I-section beam. It is seen that the Dinno and Merchant

data points agree quite well with the present test results. It should, however, be

noted that the tests of Dinno and Merchant included a smaller secondary weak axis

bending component, but due to the shape of their section this is not believed to be

important.
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Figure 6.10: Interaction between bending and torsion for HEB 140 section, all tests.

Figure 6.11: Interaction between bending and torsion for IPE 160 section, all tests
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When comparing the results from the tests with proportional loading with those

from the tests with constant bending moment, it can be seen that almost equal

values for M and T are obtained for equal values of the deformation
�
. Hence, the

loading path; proportional loading or constant bending moment, has little e�ect on

the test results for these specimens. As both the bending and the warping torsion

actions produce mainly longitudinal uniaxial stresses in the specimens, the observed

load-path independency at the cross-sectional level is not entirely unexpected.

Also shown in Figures 6.10 and 6.11 is the interaction curve based on the "lin-

ear" interaction equation given by Equation 7.1 of Eurocode 3. For the present

I-sections, this interaction curve corresponds to full plasti�cation of the 
anges due

to bending and warping stresses. Due to the nonlinear variation of the factor K in

Equation 7.1 (Eurocode 3), caused by the variation in the ratio between M and T,

the resulting interaction curve in the M

p

T

p

-plane is also somewhat nonlinear. The

�gures clearly demonstrate that Eurocode 3 underestimates the observed capacity.

6.4 Axial force, bending and torsion interaction

The interaction between torsion/torsional deformations and a compressive axial

load was discussed in Section 6.2 for the I-section beam-columns. Based on the

assumptions of elastic behaviour and linear geometry, the ampli�cation of the tor-

sional moments and of the torsional rotations was found to be dependent on the

elastic torsional buckling load through the ampli�cation factor 1/(1-N/N

ET

). This

factor was then applied when deriving the design equations on member level for

the load combination of axial load and torsional moment.

For determining the actual load e�ect on the beam-columns in the inelastic

state, the above method surely represents a very simpli�ed approach, as it does

not take the magnitude and the distribution of the actual deformations into ac-

count. This situation is similar to that of a beam-column subjected to axial force

and bending, where the ampli�cation factor with same mathematical form is ap-

plicable for elastic behaviour only, and is exact only for some special cases of trans-

verse loading. For the latter case the actual value of the internal bending moment

at the critical section may easily be determined (Figure 5.1) by the well-known

relationship

M = 1=4 �H � l +N � w (6.31)

In torsion there is no such simple expression available to represent the second order

e�ect. A discussion of the tests under combined axial loading, bending and torsion

(NMT tests) in terms of the calculated/measured values for the cross-sectional

forces does hence not seem feasible. Instead, the observed behaviour for the NMT

tests is presented on member level, based on the values for the external loads

applied to the beam-columns. The results for the beam-columns are hence given in

terms of the applied torsional moment T (=T

0

) and the applied transverse midspan

load H, for the di�erent levels of the axial force.
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The value of the transverse load H is normalized with respect to its value

corresponding to full yielding in bending at midspan, i.e. by using

H

p

= M

p

�

4

l

(6.32)

As the test results in Chapter 5 present values for the resulting bending moment,

and not directly for the transverse load H, the values for H have to be determined

from the test data by using Equation 6.31 for the tests where an axial load N

is present. For the tests at zero axial load, however, the normalized value
H

p

is

identical with
M

p

.

For the tests presented in the following, it was found more appropriate to refer

the observed capacity to a deformation norm that accounts for the amount of

deformation in both bending and torsion. This norm (a) was taken as the mean

square root of the normalized deformations

a =

q

w

2

+
�

2

(6.33)

i.e. both terms weighted equally. Note that the normalized axial deformation is

not included in a, which is motivated by a wish of treating the bending/torsion

interaction as in the previous section, and by including the e�ect of a simultaneous

axial load only by making modi�cations to the quadratic interaction equation,

Equation 6.30.

Figures 6.12 to 6.15 depict the test results for the HEB 140 section. Figure 6.12

shows the results at zero axial load (
N
=0), i.e. the same tests (MT) as presented

in Figure 6.8, but now with data points for the observed capacities referred to the

deformation norm a. Obviously, the data points for the test in bending only and

for the test in torsion only (along H and T axes) remain unchanged, while a close

comparison shows that the data points for the tests with combined bending and

torsion are only slightly shifted due to the new deformation norm. Figures 6.13

and 6.14 allow a comparison of the two alternative ways of presenting the test

results; Figure 6.13 shows the obtained values for the midspan internal bending

moment and the externally applied torsional moment, while Figure 6.14 shows the

results for the external loads. As expected, it is seen that only for load vectors were

bending dominates will the two presentations di�er. Note that even though the

bending moment (M) increases as a function of increasing deformation norm, this

is associated with a decreasing transverse force (H). For this reason, data points

beyond the value a=3 are not present along the H-axis in Figure 6.14.

Based on the previous discussion and conclusions reached in Chapter 6.3 a

simple interaction formula that takes also the axial load N into account is suggested

on the form

 

H

H

p

!

2

+

 

T

T

p

!

2

=

�

1�

N

N

Y

�

2

(6.34)

i.e. a uniform reduction of the circular (quadratic) interaction curve presented

previously. Here, N

Y

is the squash load of the cross-section. Note that only the
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Figure 6.12: Interaction between a transverse load H and torsion for HEB 140

section for
N

= 0.

Figure 6.13: Interaction at axial load level
N
=0.334 for HEB 140 beam-column, in

terms of the bending moment and the torsional moment.
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Figure 6.14: Interaction at axial load level
N
=0.334 for HEB 140 beam-column.

Figure 6.15: Interaction at axial load level
N
=0.50 for HEB 140 beam-column.
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increased stress level due to N is considered here, whereas the additional second

order bending moment and the additional second order torsional moment produced

by N are neglected.

Figures 6.14 and 6.15 show the test results at the axial load levels
N
=0.334 and

N
=0.50. Note that for

N
=0.334 the data points for one load case are established

by means of a numerical simulation, using the ABAQUS shell model presented in

Chapter 8. Data points are given for values of the torsional moment T and the

transverse load H up to the level where the moment/load no longer increased. As

shown, the maximum values of T and H signi�cantly exceed the capacity given by

Equation 6.34 for all tests. This implies that the increase in bending and torsional

capacities compensate for the increased load e�ect due to the second order e�ects

as the deformations increase.

It is also seen that the agreement with the circular interaction curve is main-

tained both for
N
=0.334 and

N
=0.50. This may be due to the fact that the second

order e�ects give an almost equal reduction of the capacity for both bending and

torsion. It is seen (Figure 6.15) that the response in torsion reaches a higher value

of inelastic deformations than in bending. This indicates the importance of the

deformation norm in the de�nition of the member (component) capacity.

For other specimens, and particularly for specimens with larger slenderness

in torsion and bending, the second order load e�ects are expected to be more

signi�cant. (For the present HEB 140 beam-column specimen the capacity in all

buckling modes is close to the squash load, see Appendix A.1). For such cases it

may be more appropriate to use the inelastic buckling load to replace the squash

load N

Y

in Equation 6.34. Furthermore, only further studies can verify if it is

appropriate to neglect the second order e�ect of N in this equation.



Chapter 7

Design formats

The members of steel structures are occasionally subjected to torsional actions in

addition to the primary axial and bending actions. The torsional actions often

arises from secondary e�ects, resulting from various kinds of load eccentricities on

members or connections, or from di�erential member deformation in space frames.

Steel design standards in general provide little guidance for the strength design

of members subjected to torsion; in most cases the standards simply ignore the

e�ects from torsion (Trahair and Bridge, AS4100 Supplement). This is not sur-

prising as the literature in this �eld gives only a few very simple procedures for

designing against torsion. Obviously, this is due to the fact that torsional response

is inherently more complex than the simple axial force and bending response, and

has a correspondingly more complex elastic theory which automatically limits the

possibilities for direct application of theory to design. A need for design provi-

sions for determining the ultimate capacity in torsion has been addressed by many

authors (Driver and Kennedy 1987, Pi and Trahair 1994c).

7.1 Design based on codes

For the design of beam-columns subjected to torsion, it seems reasonable to follow

the same requirements as for beam-columns in general, i.e. the structural analysis

and the member design have to take into account :

� relevant material properties and their variations over the component

� residual stresses

� initial imperfections and erection eccentricities

� second-order e�ects from the design loads acting on the displaced structure

� second-order e�ects due to plasti�cation, such as shift of gravity center and

shift of shear center

� possible reduction in cross-sectional resistance due to local buckling

There are almost no �eld data for the imperfections that can be expected in

real structures with relevance to the torsion problem, and only a few very simple

123
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analytical methods for determining second order e�ects on torsional response exists.

In addition, the existing system for determining the classi�cation of cross-sections

with respect to for instance b/t -ratio is only based on the bending and axial

actions.

The provisions for torsion given in two of the most recent design standards will

be presented in the following. This is the Australian Standard AS 4100 - Steel

structures - published in 1990, and Eurocode 3 - Design of steel structures - from

1992.

The Australian Standard (AS 4100) gives no speci�c rules or requirements for

design against torsion. Nevertheless, this topic is treated in a Commentary to the

standard - AS 4100, Supplement 1-1990. The Commentary discusses the occur-

rence and the signi�cance of torsion in steel structures, and de�nes the types of

torsion and the di�erent torsional mechanisms that can be present in structures

and components.

For the analysis of torsion only, the Commentary gives references for deter-

mining the cross-sectional properties, for the analysis of member distribution of

uniform and warping torsion and for the distribution of the stresses caused by the

torsion.

For the analysis of combined bending and torsion, three methods are outlined.

The �rst is a common �rst-order analysis, where the bending and torsional re-

sponses are treated independently, followed by a superposition of the separate re-

sults. The second is an approximate second order analysis where the most signi�-

cant second order contributions are added to the �rst-order bending- and torsional

moments. Speci�cally, for a 3-D beam (beam in space), these contributions are the

linearized minor and major axis bending component M

y

�� and M

z

� � respectively

that arise from the �rst-order bending actions working through the �rst-order twist

rotations �, and the linearized second order torsional moments M

y

� v

0

and M

z

� w

0

that arise from the bending moments working through the de
ections. It is pointed

out that this approximated method is of reasonable accuracy only for laterally sta-

ble members. Hence, for beams with larger major bending moments M

y

where the

tendency for lateral torsional instability is signi�cant, a third analysis method is

suggested. This method consists of an ampli�cation of the �rst-order de
ections,

the twist rotations, and of the minor axis bending moments and torsional moments.

The suggested ampli�cation takes the form of the conventional ampli�cation factor

1=(1 �M

y

=M

C

), in which M

c

is the elastic lateral torsional buckling moment.

For the design against torsion only, the stresses predicted by an elastic analysis

are used in the design check. Both for the shearing stresses from pure uniform

torsion and for the normal stresses from warping torsion the limiting design stresses

are based on the respective yield values (0.6�f

y

and f

y

) reduced with a capacity factor

0.9. Due to the considerable capacity reserves of compact (Class 1 and 2) I-sections,

that for both uniform torsion and for warping torsion (
ange bending) have plastic

shape factors equal to 1.5, an increase of 25% in the limiting design stresses is
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suggested. Interaction with the 
ange shear stresses is considered unimportant and

is neglected. For the interaction between uniform shear stresses and warping normal

stresses, as in the case of nonuniform torsion, a standard von Mises interaction

equation is suggested, allowing a 25% exceeding of the yield values.

In the case of combined bending moment and warping torsional moment, the

suggested strength design check incorporates the e�ect of the warping moment

by using an increased value (M

incr:

) for the design (action) bending moment (M):

M

incr:

= M + �

w

M

s

=1:25f

y

, where M

s

is the nominal section moment capacity.

For combined bending and uniform torsion, the interaction e�ects between the

bending shear and the torsional shear stresses are treated similarly, i.e. by using

an increased value for the design bending shear force. For both these cases the 25%

increase is used only for Class 1 and 2 I-sections.

No guidance is given for the design against combined torsion, bending and ax-

ial actions in the Commentary. However, AS 4100 opens for design by means of

"advanced structural analyses" for laterally braced frames, i.e. inelastic analy-

sis/design, provided that the actual method takes into account all the signi�cant

in plane e�ects listed in the beginning of this section. This opens for the use of

for instance nonlinear inelastic FE analyses. Obviously, several questions arise if

this approach is chosen; how to model relevant imperfections and how to de�ne a

failure/capacity criterion. The provisions given for ampli�cation and design checks

in the Commentary are similar to those given by Nethercot et al. (1989), Trahair

and Bradford (1988) and British Standard BS 5950.

Eurocode 3 (EC3) has an informative Annex G - Design for torsional resistance

- that gives the application rules for the design of members subjected to torsion.

The Annex summarizes the basic formulas for determination of the elastic torsional

properties for members of open and box types of sections, as they also can be found

in various text-books. The same information is also given in Part 2 of Eurocode 3

- Design of bridges. For the analysis of bending and torsion, also EC3 suggests an

ampli�cation of the �rst order twist rotations � and the torsional moments due to

the presence of the bending moment, and points attention to the additional minor

axis moments which are caused by the twisting of a beam originally loaded in major

axis bending.

For the design against torsion, EC3 suggests in essence a design check based on

the stresses obtained from an elastic analysis. As an approximation it is suggested

to neglect the uniform torsion resistance for open sections (as the bending analogy

presented in Section 6.1) and to neglect the warping resistance for closed hollow

sections. As a design criterion for open cross-sections, the �rst yield (f

y

=

p

3
) is

suggested as the limit for the uniform shearing stresses without considering the

interaction with any bending shear stresses or normal stresses, whereas this inter-

action is to be considered for closed hollow sections. The resistance of I-sections

to warping torsion is to be limited by the capacity based on the plastic bending

resistance of the 
anges. For open sections this approach may lead to a signi�cant
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larger calculated capacity than that obtained with the 25% increase used in the

Australian rules. The latter uses a factor 1.25 with shear interaction while EC3

uses 1.5 without shear interaction.

For the interaction between axial force, bending moments and warping mo-

ments, second order e�ects included, EC3 gives an interesting linear interaction

formula for the capacity of the cross-section in terms of the internal forces and

moments :

N

N

R

+

M

y

M

yR

+

M

z

M

zR

+

M

w

M

wR

� K (7.1)

Here, the subscript R refers to the resistance for each particular action (N,M

y

,M

z

,M

w

)

based on elastic stress distribution within the cross-section and yielding at the most

stressed point of the cross-section, and K is a factor that accounts for the degree of

plasti�cation. The interaction formula can be used for all classes of open sections.

The plasti�cation of the cross-sections cannot proceed beyond the full plasti�cation

of the most stressed plate element in the cross-section. This has to be interpreted

as the plate element which has a stress distribution closest to full plasti�cation, and

not the element with the highest elastic stresses. Hence the value of K ranges from

1.5 for the case of a compact (Class 1 and 2) section where this particular plate el-

ement has a stress distribution that corresponds to pure bending to 1.0 for the case

of uniform compression or tension or for Class 3 and 4 sections. The background

for this formula is not known to the author, and compared to the recommendations

in AS 4100 it leads to a higher utilization of the cross-section. It should be noted

that the formula neglects the possibility of interaction with the shear stresses.

Similar to the Australian standard, EC3 allows the use of advanced methods of

analysis. For inelastic torsion in particular, EC3 states that the full plastic capacity

of the entire section can be utilized, as long as all the relevant e�ects are included

in the analysis. In practice this implies the use of numerical simulations such as

FE analyses, and in principle this is relatively simple as the second order e�ects are

accounted for in the analyses. However, at the present stage this requires that the

beam is modelled by shell elements as in Chapter 8, as no satisfactory formulation

is available on the beam element level. For that reason this approach is not feasible

at the design stage.

7.2 Other design procedures

As previously noted, the literature contains only a few and simple procedures for

design against torsion. For the design against nonuniform torsion, an example is

the bending analogy which assumes the torsional moment to be resisted only by

the lateral bending of the 
anges (Equations 6.2 to 6.4).

Based on experiments on an I-section cantilevered beam, Driver and Kennedy

(1989) present a suggestion for an ultimate limit state design procedure for the case

of combined strong axis bending and torsion. Their interaction model is based on
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assumed stress blocks in the cross-section (similar to Equation 6.26), where the

web and the central portion of the 
anges resist the bending moment, and warping

normal stresses (�

w

) in the 
ange tips resist the torsional moment. Here, the

yield strength (f

y

) is used for the bending normal stresses, while the stresses �

w

are assumed to reach the ultimate strength (f

u

) of the material. In addition, the

cross-section is assumed to be able to carry the full sand-heap moment, again

based on the ultimate stress (f

u

=

p

3
). Even with their somewhat non-conservative

assumptions, good agreement with test results is obtained.

Kollbrunner et al. (1978) (referred by Driver and Kennedy) describe the be-

haviour of both a cantilever and a �xed end beam. For the combination of strong

axis bending and torsion, they propose the interaction equation

(M �M

p;web

)

2

(M

p;f lange

)

2

+

M

f

M

fp

= 1 (7.2)

to predict the full plasti�cation of the section. M

p;web

and M

p;f lange

are the plastic

bending moments of the web and the 
anges, respectively, and M

f

and M

fp

are the


ange bending moment (warping) and the plastic 
ange moment. Again, Equation

6.26 is used as a basis. The ratio M/M

f

is assumed to remain constant during

loading from the elastic and into the plastic region. Here, M

f

is to be derived from

the di�erential equation for nonuniform torsion.

The two above methods have been compared to test results for the HEB 140

(test H-2-MT, initial
M
/
T
ratio approx. 3/4). Here, the largest value obtained for

the bending moment and the torsional moment in the test is
M
=1.0 and

T
=1.5,

respectively. Compared to the Driver and Kennedy method which implies the con-

struction of an interaction diagram, the tests results fall well inside the interaction

curve, i.e. an non-conservative result. This is not surprising, as the extent of defor-

mation for the test specimen can not in any case justify the use of ultimate values

for the stresses. The results obtained using the Kollbrunner method (Equation 7.2)

are better. Here, a capacity of
M
=0.73 and

T
=0.97 is reached, which is considered

quite good, as the method does not take advantage of the section's resistance to

uniform torsion beyond the fact that M

f

is computed from the elastic di�erential

equation.

7.3 Design by analysis

In Chapters 4 and 8, the experimental beam-column response is simulated by means

of FE-analyses based on a shell-model for the I-section specimens. For the purpose

of veri�cation of test results and for the development of simple design models, this

approach is well suited. For the analysis of real structures, of course, this is not a

feasible approach.

For the analysis of structural problems where the modelling of torsion is needed,

several element formulations based on beam elements have been developed. As dis-
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cussed in Chapter 4, the beam-element provided by ABAQUS has inherent limita-

tions, as the uniform shear stresses within the cross-section do not a�ect the yield-

ing of the material. The same simpli�cation is made by El-Khenfas and Nethercot

(1989) in their beam-element formulation suitable for problems with large torsional

rotations.

In a recent work, Pi and Trahair (1994a) have developed a beam element that

allows a reasonable representation of the uniform shear stresses. Here, the "mitre"

model developed by Billinghurst et al. (1991) is used to approximate the variations

of the uniform shear strains around the cross-section (using a distribution similar

to the distribution of the shear stresses in the sand-heap analogy, Figure 6.1). An

elastic sti�ness correction factor is used to give correct torsional sti�ness for the

beam element, and the numerical integration over the cross-section also takes the

stress-variation through the web and 
ange plates into account. It is shown by

Pi and Trahair (1995) that this formulation gives an accurate description of the

behaviour of I-section beams in nonuniform torsion.

Several attempts have been made to model torsional e�ects also in FE pro-

grams that use the concept of concentrated plastic hinges, and where the inelastic

behaviour of the members is treated at a cross-sectional level in terms of stress re-

sultants. One of the contributions here is the work of Yang and Fan (1988), which

describes a yield surface model for I-shaped sections, where the full combination of

axial force, biaxial bending moments, warping moment (bimoment) and the uni-

form torsional moment are included. In most existing programs the torsional e�ects

are, however, treated somewhat simpli�ed. An example here is the FE program

USFOS (S�reide et al. 1993), which is intended for ultimate strength and collapse

analysis of framed structures. The program contains models both for members of

tubular and I-shaped sections (and others), but does not have a warping degree

of freedom to represent the restrained warping of members of open sections. The

uniform torsional stresses are, however, accounted for quite well, as USFOS in-

corporates the e�ect of these stresses by reducing the available yield stress, which

again gives a reduction of the bending and axial force capacities.



Chapter 8

Numerical simulations

In this chapter numerical simulations of some typical beam-column experiments

are presented. The objective here is to study to what accuracy the beam-column

behaviour under combined load actions can be predicted. The general �nite el-

ement program ABAQUS is used, and the beam-column specimens are modelled

using shell elements. In Chapter 4, the same shell model was used to analyse the

experiments with torsion only.

Simulations are carried out for experiments on both the HEB 140 and the

IPE 160 section. Only the results for the HEB are presented in the main text,

while the corresponding results for the IPE are given in Appendix D.

8.1 Shell element model

The shell model of the beam-columns is discussed in detail in Chapter 4, and the

element mesh is depicted in Figure 8.1. As shown, the entire test specimen is

modelled, using four elements both across the width of the 
anges and over the

depth of the web, while 29 elements are used along the length of the specimen.

Fictitious sti�ener plates and diagonal beam sti�eners are added at the "support"

points near the specimen ends, to allow the torsional loading to be applied to the

model.

The choice of four elements across the web and the 
anges was primarily gov-

erned by practical considerations. With the chosen eight-node shell element (Figure

8.1) this gives nine nodes across the web and the 
ange plates, and correspond-

ingly eight element integration points across the plates. The outermost integration

points at the 
ange tips are located a distance of 7.4 mm and 4.4 mm from the tip

for the HEB and the IPE, respectively. For the 
ange bending (warping) caused

by the nonuniform torsion this element mesh is expected to give reasonable results,

while it for the beam-bending should give quite satisfactory results. As known from

Chapter 4, the response in pure uniform torsion is quite well modelled also with

fewer elements. The problem of local buckling was not considered when choosing

the mesh, nor did it occur to any signi�cant extent in the tests. Both the HEB

and the IPE section are of cross-section Class 1.
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Figure 8.1: Shell model of HEB 140 beam-column.

The e�ect of several modelling choices was investigated.

� The in
uence of the mesh density was investigated for the case of pure strong

axis bending and for the case of nonuniform torsion. Simulations were carried

out using both the standard mesh of Figure 8.1 and a re�ned model where

each shell element of the standard model was divided into four new elements

of equal size. In torsion, the di�erence in the predicted torsional moment was

less than 1% for the two models, and in bending the predicted moment was

almost identical.

� By varying the number of section integration points through the shell thick-

ness for some typical simulations with nonuniform torsion and/or bending,

the chosen number of points (5) was found to be su�cient. Correspondingly,

for the simulations with uniform torsion, the use of more than 7 integration

points did not improve the results.

� The material of the specimens was modelled (See Chapter 4) with a piece-

wise linear representation of the actual stress-strain curve. For the IPE 160

one material curve was used for the shell elements in the web, and a slightly

di�erent material curve for the elements in the 
anges. For the HEB 140,

however, the material has a large variation across the web (Figure 3.5), and

di�erent material properties were assigned for the elements in the web. The

two exterior and the two interior elements were modelled identically.
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Simulations showed that variations of this material modelling for the exterior

elements of the web had a noticeable e�ect only for the predicted bending

response. By using the same material for all elements in the web (the lower

material curve in Figure 3.5), and comparing with the results obtained using

the strongest material in Figure 3.5 for the exterior elements, a di�erence

in the predicted bending moment of 2-3% was found. Mean values of the

material properties are used in the following for the exterior elements.

It should be noted that the size of the "exterior" web elements could have

been reduced in order to reduce the variation in material properties within

the element, but this was deemed unnecessary in view of the obtained results.

For the same reason no attempt was made to model the slightly higher yield

stress at the tips of the 
anges.

The bending tests are analysed by imposing equal displacement (z-direction)

to all nodes located in the compression 
ange of the cross-section at midspan,

i.e. at beam sections 3 and 4 in Figure 8.1. The tests with torsion are analysed as

previously discussed, by applying torsional rotations to the nodes at the centroid of

the cross-section at beam sections 2 and 5. Here, for the case of nonuniform torsion,

the torsional rotation at midspan is restrained by lateral supports (y-direction) at

the 
ange tips. The axial loading is applied to all nodes at beam sections 2 and 5.

8.2 Numerical results

In the following, the response obtained in the numerical simulations (ABAQUS)

is compared with the experimental (measured) response. Results are given for the

case of pure strong axis bending (M), axial force and bending (NM), bending and

nonuniform torsion (MT), axial force and nonuniform torsion (NT), and the full

load combination of axial force, bending and torsion (NMT). Finally, results are

given for the case of uniform torsion combined with axial loading. Simulations of

the pure torsion tests, both for the case of uniform and the case of nonuniform

torsion, is thoroughly discussed in Chapter 4, and are repeated here for the sake of

completeness.

Both the initial residual stresses and the initial geometrical imperfections are

ignored in the modelling. As discussed in Chapter 3, the measured residual stresses

are, in average, quite small. For the 
anges of the HEB section, stress values (Figure

3.9) average about 10 % of the yield strength, while in the web the residual stresses

were somewhat higher. Due to the seemingly random variation of the stresses, both

in the cross-section, through the thickness of the plates and along the members,

a typical distribution of the stresses could not be de�ned. Further, as residual

stresses are expected only to a�ect the behaviour slightly at the level of initial

yielding, and not the obtained inelastic load capacities, no attempt was made to

model these stresses. The initial imperfections are, as discussed in Chapter 3, also



0.0 4.0 8.0 12.0 16.0
   w
   _

0.0

0.5

1.0

1.5

 M _

Experiment

ABAQUS

132 CHAPTER 8. NUMERICAL SIMULATIONS

small for the present specimens, and compared to the deformations applied in the

tests of no signi�cance.

Figure 8.2: HEB 140 beam in pure strong axis bending (test H-1-M).

Figure 8.2 shows the results from the simulation of the strong axis bending

test (M) on the HEB 140 section. As shown, the simulation gives a response

curve practically identical to the experimental one. As both the bending and

the shearing stresses in this case are modelled quite well with the chosen shell

elements, and as the geometry and the material properties are well represented,

this agreement is expected. It should, however, be noted that for large values of
w

the deformation for the specimen predicted by the simulation di�ers somewhat from

the experimentally observed. Here, the simulation shows a stronger tendency for

local 
ange buckling near the mid-section. This is partly due to the omission of the

�llets of the section in the numerical model, where the 
ange restraint due to the

support from the sti� web/
ange juncture is not accounted for. In a simulation

carried out with the re�ned model with four times as many elements, a sudden

drop in the bending moment at about
w
=14.0 was caused by 
ange buckling. This

illustrates what is seen in many of the simulations; a somewhat "too" large tendency

towards local 
ange buckling, even though the e�ect on the predicted response not

necessarily is noticeable. This overestimation of local buckling increases with the

mesh re�nement.

The same good agreement is achieved also for the IPE 160 specimen for this

load case, see Appendix D for further details.
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Figure 8.3: HEB 140 beam-column subjected to axial force and strong axis bending

(test H-4-NM).

Figure 8.3 depicts the results for the axial force and bending case (NM). The

ABAQUS simulation is carried out as in the experiment; by �rst applying the con-

stant axial load (
N
=0.334), and then imposing the linear increasing displacement

(w) at midspan. The response in pure bending (
N
=0) is given for comparison.

The numerical response gives a reasonable prediction of the experimental response,

although the curves do not follow as well as for the pure bending case. As seen,

the deviation between predicted and experimental response is within 10%, even for

large values of the displacement, w. A new modi�ed simulation for this case, in

which the 
anges were given a larger thickness and a smaller width (i.e. maintain-

ing the plastic bending capacity of the section), proved that the deviation between

experiment and simulation is not caused by a relative larger tendency of local 
ange

buckling in the simulation.

Figure 8.4 shows the numerical results of one of the bending and torsion inter-

action tests (MT) for the HEB section. The simulation is carried out by imposing

the experimental displacement history given by the
w
{
�
curve. As shown, the sim-

ulation gives in general a quite well prediction of both the response in torsion (
T
-
�
)

and in bending (
M
-
w
). As in the previous case, the simulated bending moment

is slightly underestimated for large values of the displacement w. In torsion, the

predicted response becomes somewhat too sti� for large values of the rotation �,

which is also observed for the simulation of the case of torsion alone (Chapter 4
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Figure 8.4: HEB 140 beam in bending and nonuniform torsion (test H-2-MT).

and Figure 8.7). Further, it can be seen that for the most relevant range of �,

which in Chapter 6.3 is de�ned as
�
�4, the deviation for the moments M and T

is within 10%.

Figure 8.5 presents a simulation of one of the tests with axial load and nonuni-

form torsion (NT). The simulation is performed in two steps, by �rst applying the

constant axial load
N
=0.50, and subsequently the twist rotation � at the speci-

men ends. Results are given for the response in torsion (
T
-
�
) and for the axial

shortening of the specimen (
u
-
�
).

As shown, simulation and experiment agree reasonably well. The di�erence in

the values for the maximum torsional moment is less than 7%. When considering

the results for this case, it should be remembered that due to the axial load present

(
N
=0.50), only 50% of f

y

is available for resisting the torsional moment, which

implies a signi�cant sensitivity of T to di�erences between model and experiment.

In this case, a small disagreement is observed already for low values of �, and

the initial torsional sti�ness seems to be somewhat underestimated. This may be

caused by the modelling of the geometry of the specimen ends. In the tests, the

axial load is applied through the web and the 35-40 mm wide central part of the


anges (Figure 3.1). Primarily, this design was chosen to allow large axial loads

to be applied without any local stress redistribution, and still allowing a warping

free condition to be retained. When the 
anges of the specimen warp due to the

torsional loading, the present design causes a small shift in the application point
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Figure 8.5: HEB 140 with axial load and nonuniform torsion (test H-9-NT).

of N, see Figure 6.6b. As this shift contributes to a reduction of the warping 
ange

bending moment M

f

(Section 6.2.2), the experimental response becomes sti�er and

causes a higher specimen capacity. Later experience has, however, shown that for

all actual values of N the web has su�cient capacity to transfer the axial load, and

this problem could have been avoided.

No attempt is made to model the above situation as a contact problem in the

simulations. Instead, a repeat experiment was carried out where the axial load

(
N
=0.50) was applied to the web only, leaving the 
anges completely free to warp,

and hence avoiding the contact problem. The simulation of this repeat test is

shown in Figure 8.6, and it can be seen that the curves for the simulation and

the experiment almost coincide. It should be noted that this study is included

for the sake of completeness only, and that this inaccuracy in the modelling of the

end conditions has signi�cance only for the experiments with large values of N. The

problem is primarily of academic interest, as such well de�ned boundary conditions

will not be obtained in real structures.

Figure 8.7 presents the results for all NT tests, i.e. the axial load levels
N
=0,

N
=0.334,

N
=0.50 and

N
=0.835. For

N
=0, the results are previously discussed in

Chapter 4, while the test at
N
=0.50 is already given in Figure 8.6. As shown, the

numerical simulations give in essence a very accurate prediction of the experimental

response. The deviation for the case
N
=0.835 can be understood in view of the

previous discussion. Considering that only 16.5% of f

y

is available for resisting the
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Figure 8.6: HEB 140 with axial load and nonuniform torsion (repeat test H-9-NT).

Axial load applied to the specimen only through the web.

torsional moment for this case, the results may be considered acceptable. For all

four simulations the sti�ness in the elastic range is somewhat low, which is due to

the omission of the web/
ange �llets in the numerical model.

Figure 8.8 depicts the simulation for a case with a full load combination, con-

sisting of an axial load of
N
=0.50, bending moment and torsional moment. Again

the axial load is applied �rst and kept constant, followed by the displacement his-

tory given by the almost bilinear
w
-
�
curve. Also for this complex load case the

numerical response is a quite good approximation to the experimental one. As for

the previous cases the response in bending is somewhat underestimated for large

values of the displacement, w, while the response in torsion is similar to that shown

in Figure 8.5. Considering the discrepancies in N, T and M, a mean discrepancy

of about 10% is present for the beam-column.

The simulations for the cases of uniform torsion combined with axial load for

the HEB section are shown in Figure 8.9. Results are given for the two tests that

were carried out for this somewhat special load situation. For the case of
N
=0.50

the axial load was applied by contact at the web only, and hence no modelling

problem occurs with respect to the warping deformation of the 
anges. As shown,

the numerical simulation underestimates the elastic torsional sti�ness considerably

in both cases, which is caused by the underestimation of I

T

in the numerical model.

This de�ciency of course also a�ects the values for the predicted torsional moments
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Figure 8.7: HEB 140 beam-column subjected to axial load and nonuniform torsion.

somewhat.

Note, however, that the di�erence in initial sti�ness for the two simulations

(
N
=0.0 and

N
=0.50) is of the same magnitude as the di�erence in sti�ness for the

two experiments. This shows that the simulations also for the uniform torsion case

give a satisfactory prediction of the beam-column behaviour, and only the error in

I

T

causes the curves to di�er.

8.3 Conclusions

In the previous section, a very good agreement between experiments and numerical

simulations is shown for tests on HEB specimens. This is the case for the whole

range of load combinations which is treated in the present study. Almost the same

good agreement is obtained for typical tests on the IPE section (Appendix D).

In general, the simulations are shown capable to predict the actual beam-column

behaviour with an error of less than 10% with respect to the experimental load

capacities.
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Figure 8.8: HEB 140 beam-column subjected combined axial load, bending and

torsion (test H-8-NMT).

This means that numerical simulations can be used to replace experiments for

similar load situations. For a further study of the problem at hand, the data basis

may hence easily be augmented, both for the present specimen geometry and for

beam-columns with di�erent slenderness.

The present experimental and numerical data may serve as a basis both for the

development of simple interaction formulas for design of beam-column components,

and for the future development of more e�cient beam elements capable of handling

load combinations that include torsion. An initial attempt has been made to de-

scribe possible design models in Chapter 6, even though further studies must be

made in order to extend the range of applicability of the models presented. A de�-

ciency of some of the recent work on new beam elements, El-Khenfas and Nethercot

(1989) and Pi and Trahair (1994b), is that the elements have been compared with

classical analytical solutions. The present beam-column data may hence serve as

a benchmark for further development of such elements.
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Figure 8.9: HEB 140 beam-column in uniform torsion and axial loading.
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Chapter 9

Conclusions and suggestions

9.1 Conclusions

From the various experiments described in this report the following conclusions can

be drawn:

1. The test facility is well suited for studies of beam-columns subjected to the

load combinations investigated.

2. The test program for the beam-columns was carried out without signi�cant

problems. However, due to the low torsional sti�ness of the members, and

in particular for the IPE section, the initial part of the tests required special

attention. A number of tests are not presented in the report due to lack of

symmetry in the response and other minor de�ciencies.

3. From the tests with single torsional loading (both uniform and nonuniform

torsion), it is seen that there exists large inelastic reserves beyond the capacity

de�ned by initial yielding. In the tests, no ultimate value is observed for the

torsional moment, as the response curves show a steadily increasing torsional

moment with increasing twist. It is hence necessary to de�ne the capacity in

torsion with reference to a given value of the inelastic rotations.

4. Also for the tests in combined strong axis bending and nonuniform torsion,

large inelastic load capacities are observed, and a ductile behaviour is ob-

tained. Again, the capacity must be referred to the extent of deformations.

Assuming a direct summation of the obtained values for the bending and the

torsional moments, a total capacity of about 2 to 3 times that given by initial

yielding is observed.

5. For the beam-column tests at load combinations consisting of axial load and

nonuniform torsion, no global instability is reached for axial loads up to 35%

of the section squash load. This is mainly due to the fact that the induced

second order e�ects caused by the axial load are balanced by the increased

torsional resistance, again due to the large rotations (i.e. nonlinear geometry).

Even for an axial load equal to 50% of the squash load, a torsional moment

equal to 150% of the initial yield moment is reached (HEB section).
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6. For the beam-column tests with a full load combination of axial load, bend-

ing moment and torsional moment, similar large inelastic load capacities are

found. Again, the linear interaction gives a capacity that exceeds initial

yielding by a factor of about 2.5.

7. Numerical simulations performed by means of the �nite element program

ABAQUS, using shell elements to model the beam-column specimens, show

that the behaviour in torsion is very well modelled. Simulations of the beam-

column tests, for the whole range of load combinations treated in this report,

show a very good agreement between the numerical and the experimental

response.

8. For the interaction between bending moment and nonuniform torsional mo-

ment, a commonly used quadratic interaction equation is found to give rea-

sonable results for present tests. Here, Merchant's value for the fully plastic

nonuniform torsional moment is used.

9. Interaction equations are suggested for the axial load and torsion interaction.

An elastic ampli�cation factor is used to represent the second order e�ects of

the axial load, and gives good results.

9.2 Suggestions for further study

In the present study emphasis is put on the design and construction of a test facility

for testing of beam-columns under the combined load actions, and to obtain a set

of experimental data for such structural components.

The e�ect of the nonuniform torsion depends strongly on the specimen length,

both with respect to the distribution between warping torsion and uniform torsion

within the member, and the additional load action that results from the interaction

with the axial load. Hence it is suggested that additional tests should be made

with specimens of other lengths in order to investigate the applicability of the

observations made. FE simulations using shell models are in general proved to

be capable of simulating the beam-column response for the present specimens.

Therefore, it should be su�cient to carry out only a limited number of experiments,

and to augment these by simulations.

For members with larger slenderness than the present specimens, the member

behaviour and the capacity will be in
uenced by e�ects from both 
exural and

lateral torsional buckling. For members of other cross-sections local buckling may

introduce additional problems. Further tests and simulations should therefore be

made to investigate if the present formulas can be extended to such situations.

In recent years new beam elements have been developed that model both uni-

form and nonuniform torsion. In order to increase the e�ciency of such elements,

material models should be formulated that can describe the inelastic behaviour on

a cross-sectional level in terms of stress resultants (concentrated plastic hinges).
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Appendix A

Characteristic data

A.1 Beam-column capacities

Load capacities for the beam-columns are given in Table A.1. Please, refer to Fig-

ures 3.1 and 5.1 for specimen geometry and load/support conditions. The buckling

length for strong and weak axis 
exural buckling is 2030 mm and 1015mm, re-

spectively. For lateral torsional buckling, the buckling length is 1015 mm. The

value denoted "torsional buckling" in the table refers to torsional buckling for the

torsionally pin-ended beam-column of 2030 mm, i.e buckling between the two ends

of the beam-column. "Torsional buckling (Uniform)" refers to a situation where

the beam-column buckles with uniform twist deformations along the member axis,

i.e. where the end sections are allowed to rotate relative to each other. For the uni-

form buckling case, the torsional buckling load is independent of the beam-column

length. It can be seen from Table A.1 that only the IPE section has any signi�cant

buckling tendency.

Note that the HEB 140 and the IPE 160 sections are both of cross-section

Class 1 according to the requirements given in Eurocode 3, both in pure bending

and for the case of compressive axial force.

HEB 140 IPE 160

Elastic / Inelastic Elastic / Inelastic

Squash load (= N

Y

)
- / 1198 kN - / 626 kN

Strong axis buckling (l = 2030mm)
7450 kN / 0.93 N

Y

4288 kN / 0.96 N

Y

Weak axis buckling (l = 1015mm)
11000 kN / 0.94 N

Y

1341 kN / 0.80 N

Y

Torsional buckling (l = 2030mm)
5600 kN / 0.97 N

Y

1060 kN / 0.86 N

Y

Torsional buckling (Uniform)
3200 kN / 0.93 N

Y

649 kN / 0.71 N

Y

Lateral tors. buckl. (l = 1015mm)
1411 kNm / 1.0 M

Y

217 kNm / 0.99 M

Y

Table A.1: Beam-column capacities, based on NS 3472 - The Norwegian steel design

standard.
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A.2 Elastic nonuniform torsion

The di�erential equation describing the general case of elastic nonuniform torsion

of a beam is given by Timoshenko (1930) and Kollbrunner and Basler (1969). The

total resistance of a beam to torsional loading is given as the sum of the warp-

ing resistance T

w

and the uniform torsional resistance T

u

(also denoted St.Venant

torsion, T

St:V

) :

T = T

w

+ T

u

= �EI

w

d

3

�

dx

3

+GI

T

d�

dx

(A.1)

The general solution of this equation, with respect to the twist rotation �(x) along

a beam is for the case of an applied constant torsional moment T

0

�(x) =

�

C

1

+ C

2

x+ C

3

cosh

x

�

+ C

4

sinh

x

�

�

T

0

GI

T

; � =

s

EI

w

GI

T

(A.2)

For the beams of the present study, as shown in Figure A.1, concentrated torsional

moments T

0

are applied at the free ends and a moment of 2T

0

is resisted at midspan.

It is easily seen that this is identical with the case of a simply supported beam,

torsionally pinned at the ends, subjected to a concentrated torsional moment of

2T

0

at midspan. From considerations of symmetry, the cross-section at midspan

must remain plane during twisting. The present loading case may hence also be

considered as two separate cantilevered beams connected at the midspan.

If the coordinate x and the rotation � are measured from the midpoint of the

beam as shown in the �gure, the solution of Equation A.2 is given by

�(x) = �

T

0

GI

T

"

tanh

l=2

�

�

cosh

x

�

� 1

�

� sinh

x

�

+

x

�

#

(A.3)

The elastic �rst-order twist rotation of the beam ends may hence be calculated by

�

end

= �(x = l=2) (A.4)

The distribution between warping torsional moment T

w

and uniform torsional mo-

ment T

u

along the beam is obtained using Equations A.1 and A.3, and is given by

respectively

T

w

= �EI

w

d

3

�

dx

3

=

"

cosh

x

�

� tanh

l=2

�

� sinh

x

�

#

T

0

(A.5)

and

T

u

= GI

T

d�

dx

=

"

1 + tanh

l=2

�

� sinh

x

�

� cosh

x

�

#

T

0

(A.6)

The resulting distribution along the beam is shown in Figure A.1, calculated for

the HEB 140 section. The distribution for the IPE 160 section is almost identical.

As shown, the external applied torsional moment T

0

is fully resisted by warping

at midspan, decreasing towards the free ends where 32% and 28% are resisted by

warping for the HEB and the IPE, respectively.
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Figure A.1: Nonuniform torsion on I-section beam.

A.3 Uniform torsion - Elastic/Plastic

For a narrow rectangular section (b�t) in uniform torsion, the torsional moment at

nominal initial yield is given by

T

Y

=

f

y

p

3

�

1

3

bt

2

(A.7)

if an elastic shear stress distribution is assumed (Timoshenko 1951).

Based on a fully plastic distribution of the shear stresses, obtained by using the

sand-heap analogy of Prandtl (Nadai 1950), the torsional moment is correspond-

ingly

T

up

=

f

y

p

3

�

1�

t

3b

�

1

2

bt

2

�

f

y

p

3

1

2

bt

2

(A.8)

Hence, the ratio between the fully plastic torsional moment to the initial yield

moment is

T

up

=T

Y

= 3=2 or 1:5 (A.9)
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Appendix B

Photographs

Test rig

The Figures B.1 and B.2 show details from the test rig. Figure B.1 shows the upper

end of an HEB 140 test specimen after testing, extending about 30 mm beyond the

end �xture / torsional loading plates at the end support. Note the design of the

test specimen end, where part of the 
anges are removed to minimize the warping

restraints resulting from the contact with the axial loading parts, i.e. the base

plate. This particular specimen has been tested in bending and torsion (MT), and

it can be seen that the 
anges have sustained signi�cant warping deformations.

Figure B.1: End supports of test specimen, with circular and quadratic end �xture

plate.

Figure B.2 shows the loading plate / torsional restraining plate at midspan, with

a IPE 160 test specimen mounted in the test rig. The specimen extends through
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the opening in the 30 mm thick loading plate, where the opening is equipped with

32 mm metal linings. Also shown is some of the equipment used to measure the

transverse displacement (w) at midspan; a displacement transducer attached to the

loading plate by means of a magnetic foot, connected to a bar attached to the end

support frames.

Figures B.3 and B.4 show details of the thrust bearings and the base plates.

Figure B.2: Loading plate at midspan, and deformed test specimen.

Specimens tested in torsion

Figures B.5 and B.6 show photographs of the specimens tested in torsion only

(Chapter 4). For the case of uniform torsion, only the IPE and the 
at bar is

shown.

Note the perfect uniform twist rotation along the specimens tested in uniform
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Figure B.3: Spherical thrust bearing (bending moment "hinge") and plane thrust

bearing (torsional moment "hinge").

Figure B.4: Base plates �tted to the cross-section of the test specimens.
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Figure B.5: IPE 160 section and 
at bar section (15.3x200) tested in uniform

torsion.

torsion, and the slope discontinuity in the 
ange of the specimens tested in nonuni-

form torsion.

Beam-column specimens

Figures B.7 to B.9 show photographs of some of the beam-column specimens, and

illustrate the extent of deformation in the tests.
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Figure B.6: HEB 140 and IPE 160 sections tested in nonuniform torsion.

Figure B.7: Test specimen H-2-MT, HEB 140 tested in bending and nonuniform

torsion.

Figure B.8: Test specimen I-9-NT, IPE 160 tested in axial load and nonuniform

torsion.
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Figure B.9: Test specimen H-8-NMT, HEB 140 tested in axial load, bending and

nonuniform torsion.



Appendix C

Twist rotations

Measurements of twist rotations along the specimens

The distribution of the permanent twist rotations was measured directly on the

deformed, unloaded specimens using an adjustable angle measuring device, with

the specimens mounted on a plane table.

During testing, the rotations were measured at di�erent positions along the

specimen (positions marked on the curves), by means of a simple arrangement with

long sticks attached to the specimen, and a manually reading of their displacements.

Due to symmetry only half the specimen length is considered. The theoretical

elastic distribution of the rotations, obtained from Equation A.3, is given for com-

parison. This distribution is practically identical for the two cross-sections. The

rotations along the specimens are made dimensionless by means of the value of the

rotation � measured at the specimen end.

Figure C.1 shows the distribution of the permanent rotations for the specimens

tested in nonuniform torsion (Chapter 4). In the �gure, 0 mm corresponds to the

midpoint of the specimen, and 1045 mm is at the specimen end.

Figure C.2 shows the twist rotations for one of the HEB 140 specimens tested

with axial load and nonuniform torsion. Both the permanent rotations and the

rotations measured during testing are given. As shown, the theoretical elastic

distribution and the experienced (plastic) distribution di�er signi�cantly at the

end of the test, due to localized plasti�cation.
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Figure C.1: HEB 140 and IPE 160 specimens tested in nonuniform torsion - dis-

tribution of permanent twist rotation.
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Figure C.2: Beam-column specimen H-7-NT, twist rotations.
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Appendix D

Results from numerical simulations

D.1 Shell model - properties in uniform torsion

A limited numerical study was carried out in order to investigate how well the

uniform torsional properties of the I-beams are represented by the present shell

model (Figure 4.9). To reduce the complexity of the problem, pure uniform torsion

on a rectangular cross-section was modelled. Several simulations were performed

using the shell model of the 15:3 � 200mm

2


at bar of length 2090 mm, presented

in Section 4.4.

Simulations were performed using the transverse shear 
exible shell element

S8R, taking only linear geometry into account. Two alternatives were studied :

1. An element mesh consisting of 1 element in the width direction (200 mm)

and 12 elements along the bar (2090 mm), i.e. quadratic shape.

2. An element mesh consisting of 5 elements in the width direction and 52

elements along the bar, i.e. quadratic shape.

Theoretical values for the elastic torsional sti�ness and the torsional shear

stresses are calculated from the formulas provided by Timoshenko and Goodier

(1951). The elastic torsional sti�ness predicted by alternatives 1.) and 2.) was

1.043 and 1.000 times the theoretical sti�ness, respectively. For the shear stresses

�

xy

at the bar surface, the simulations gave practically identical values, about 95%

of the theoretical value. This shows that no more than one shell element is needed

to give a reasonable prediction of the behaviour for this case, which seems rea-

sonable as one element gives a quite good description of the actual displacement

�eld.

Simulations similar to the alternatives 1.) and 2.) above were also performed

using the ABAQUS element S8R5. This shell element does not have the transverse

shear 
exibility which is present for the S8R element. The results obtained with

this shell element were practically identical to those above, both with respect to

the predicted sti�ness and the shear stresses. As the transverse shear stresses (�

xz

)

contained in the S8R element give only an insigni�cant contribution to the total

energy of the plate when twisted, this seems reasonable.
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Simulations were also carried out for a quadratic cross-section with dimensions

100 � 100mm

2

, still using shell elements. Here, the mesh with 1�12 elements pre-

dicted an elastic sti�ness equal to 1.07 times the theoretical value, both for the

simulation with the S8R element and the simulation with the S8R5 element. The

predicted values for the stresses �

xy

were also almost identical for the two sim-

ulations. However, and not unexpected, the predicted stresses were in this case

only 62% of the theoretical value. The interesting part here is to note that both

elements give a almost correct value for the elastic torsional sti�ness.

With reference to the shell model of the I-section beams, the above simulations

show that the behaviour of the individual web and 
ange plates can be expected

to be properly modelled by the chosen discretization. Of course, this does not

automatically mean that I-section model gives the correct value for the sti�ness of

the beam. In fact, it is quite di�cult a priori to give an estimate for the sti�ness.

Here, the IPE 160 section can be taken as an example. The sti�ness of the beam

is directly proportional to the value of the torsional constant I

T

. The theoretical

value of I

T

for the actual beam, including the e�ect of juncture and �llets (El

Darwish and Jonhston 1965), is calculated to be 36370 mm

4

. For a section without

�llets, as in the shell model, the value of I

T

may be calculated as the sum of I

T

for the three sectional plates, which gives a value of 25470 mm

4

if corrections for

end e�ects are made for the 
ange plates only. The value of I

T

deduced from the

ABAQUS simulation for the beam is correspondingly 28560 mm

4

, which hence lies

somewhere between the values above.

D.2 Torsion simulations

Uniform and nonuniform torsion on HEB 140

Figures D.1 and D.2 show simulations for the HEB section in uniform torsion and

nonuniform torsion, respectively. For simplicity, the material data for the 
ange

material is used for the entire beam.

For the uniform torsion case, the upper curve in Figure D.1 shows the numerical

results when both nonlinear geometry and nonlinear material behaviour are taken

into account. The lower curve shows the results from a linear analysis, i.e. where

the nonlinear terms in the strain-displacement relationships are suppressed. It was

seen from the simulations that strain hardening of the material not was reached

within the given rotation range. Hence, the di�erence between the two curves

is purely due to the e�ect of large rotations/deformations. As strain hardening

not takes place, the linear analysis may also be considered to represent a linear

elastic/perfect-plastic analysis. As shown, the torsional moment obtained in this

linear analysis agrees reasonable well with the sand-heap value of the moment.

For the nonuniform torsion case, Figure D.2 shows simulations where the e�ects

from nonlinear geometry and material strain hardening are separated. As shown by

the two uppermost curves, strain hardening a�ects the behaviour only for rotations



0.0 1.0 2.0 3.0

Total twist rotation [radians]

0.0

2.0

4.0

6.0

T
o
rs

io
n
a
l 
m

o
m

e
n
t 
[k

N
m

]

Sand-heap analogy

T T

Nonlinear geometry

Linear geometry

D.3. NUMERICAL RESULTS FOR IPE BEAM-COLUMNS 163

Figure D.1: Simulations for HEB 140 in uniform torsion.

larger than 0.6 radians.

Uniform torsion on 
at bar steel

Figure D.3 shows a closer view of the torsional response in the elastic-plastic tran-

sition region for the 
at bar steel (Figure 4.14). Of the three numerically predicted

curves, the curve for the solid model shows better agreement with the experimental

curve at the point where the experimental curve levels o�.

D.3 Numerical results for IPE beam-columns

Beam-column tests on IPE 160 (Chapter 8).

In the following, numerical simulations of some typical beam-column experiments

for the IPE 160 section are presented. The simulations are similar to those pre-

sented in Chapter 8 for the HEB 140 section.

Figure D.4 shows the results for the strong axis bending test (M). A very good

agreement between experiment and simulation is achieved. While the actual spec-

imen failed due to a combination of smaller local 
ange buckles combined with

a signi�cant extent of lateral torsional (S-shaped) buckling, the numerical model

failed due to local 
ange and web buckling at midspan.

Figure D.5 shows the numerical results of one of the combined bending and

torsion tests (MT) for the IPE section. The simulation is carried out by imposing
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Figure D.2: Simulations for HEB 140 in nonuniform torsion.

the experimental displacement history given by the
w
-
�
curve. In bending (

M
-
w
),

the response curves are practically identical, while in torsion (
T
-
�
) the simulation

underestimates the response somewhat. Considering the discrepancies in both M

and T, a mean discrepancy of about 10% is present for the test.

Figure D.6 presents the results for all NT tests carried out for the IPE section.

Results are shown for the axial load levels
N
=0,

N
=0.33 and

N
=0.50. For

N
=0,

the results are discussed in Chapter 4. The simulations give in essence a reasonable

prediction of the experimental responses, as the deviation between experiment and

simulation for all three tests may be explained by the error in I

T

. The actual design

of the specimen ends may also contribute somewhat to the deviation for the tests

at
N
=0.33 and

N
=0.50 (see discussion in Section 8.2)

Simulations for the case of uniform torsion combined with axial load are shown

in Figure D.7. Also here the numerical simulations underestimate the torsional sti�-

ness, due to the underestimation of I

T

. Despite this, the torsional moment also for

the test at
N
=0.34 is predicted reasonably well. For the initial torsional sti�ness,

the two simulations show a sti�ness reduction quite similar to that obtained in the

experiments. It can be shown that this sti�ness reduction agrees quite well with

that predicted by using Equation 6.15 (based on the ampli�cation factor).
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Figure D.3: Details of analyses on 
at bar tested in uniform torsion.
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Figure D.4: IPE 160 beam in pure strong axis bending (test I-1-M).

Figure D.5: IPE 160 beam in bending and nonuniform torsion (test I-2-MT)
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Figure D.6: IPE 160 beam-column subjected to axial load and nonuniform torsion.
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Figure D.7: IPE 160 beam-column subjected to uniform torsion and axial load.




