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On the influence of input data uncertainty on sewer deterioration models – a
case study in Norway

Thomas Fugledalena,b, Marius Møller Rokstada and Franz Tscheikner-Gratla

aDepartment of Civil and Environmental Engineering, Norwegian University of Science and Technology, Trondheim, Norway; bDepartment
of Water Engineering, Sweco Norge AS, Oslo, Norway

ABSTRACT
Visual inspection is currently the industry standard for assessing sewer and stormwater pipelines – a
method prone to uncertainties as shown by previous studies. The data gathered from the visual
inspection procedures is the main information base on which rehabilitation and replacement strategies
are founded in current practice. Consequently, this study evaluates the quality of visual inspection
data by quantifying the uncertainty and assessing its impact on the output of a deterioration model.
The study was carried out by re-classifying pipe condition classes using the same video footage and
transferring differences in the classifications into a distribution that was used as a measure of input
data uncertainty. This quantified uncertainty was then propagated into a deterioration model using a
Monte Carlo approach to assess its impact on the model behaviour. Results show that there is a con-
siderable uncertainty in condition classes coded according to the Norwegian standard, and that it is
comparable to uncertainties estimated in other studies using various European coding systems. The
uncertainty assessment indicates that the uncertainties have a considerable impact on the model pre-
dictions, which in consequence demonstrates that the uncertainty in the visual inspection method-
ology can heavily influence the decisions for rehabilitation and replacement strategies.
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1. Introduction

Sewer and stormwater infrastructure provide critical service
to public health and safety as well as urban flooding preven-
tion and provide pollution control of the natural aquatic
environment (EN 752, 2008). It is therefore important that
the sewer system is kept in a condition that assures that
these services are upheld, which the United Nations (2021)
strongly emphasise by highlighting the value of water from
different perspectives. From a cost perspective, the value of
urban drainage infrastructure assets represents a major pub-
lic or private investment and their management has signifi-
cant economic impact. For example, the sewer network in
the European Union has an overall length of 2.5 million kil-
ometres and a replacement value of 2.5 trillion e

(Br€uggemann, 2017).
Investment needs for urban water supply and drainage

infrastructure combined, if countries want to comply with
current European directives, are expected to amount to total
cumulative additional expenditures of 289 billion Euros for
the 28 EU member states by 2030, with sanitation represent-
ing the lion’s share of the total additional expenditures
(OECD, 2020). In general, the European countries are
spending well below those investment needs on the rehabili-
tation of their urban drainage infrastructure (Tscheikner-
Gratl et al., 2019). In Norway in 2018, about 218 km of

urban drainage pipes were replaced, while 322 km of new
ones were constructed, showing a higher development rate
than renewal rate, which has been the case since 2002 (SSB,
2021). Although significant investments are being made in
places, the sewer network is in poor condition with a
renewal rate of 0.6% per year and a non-increasing trend in
the future, as there is a large variability in the progress of
different municipalities (RIF, 2019).

The municipalities planning investments do so mainly by
developing and applying condition or risk-based rehabilita-
tion strategies (Bruaset, 2019; Rokstad & Ugarelli, 2015),
which rely heavily on the information provided by visual
inspection techniques and the subsequent condition assess-
ment methods and forecasting of the condition deterioration
using statistical models. The most prevalent method for vis-
ual inspection and acquiring sewer inspection data is using
Closed-Circuit Television (CCTV). CCTV is considered the
industry standard for inspecting sewers, in parts due to its
low price compared to other methods that exist for sewer
inspection (Roghani, Cherqui, Ahmadi, Le Gauffre, &
Tabesh, 2019). However, CCTV inspection produces only a
video depicting the internal conditions of sewer pipes, and
only by registering and describing the severity of defects
and dysfunctionalities, the pipes are classified into condition
classes (CC) by an operator.
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This process is fraught with uncertainties due to short-
comings inherent in such an endeavour: subjectivity of the
defect description and defect detection due to the human
factor (Dirksen et al., 2013) and variability between opera-
tors, defects not being observed due to technical properties
of the camera (Plihal, Kuratko, Schmidt, H€orandner, & Ertl,
2014), dependence on description from guidelines in itself
and the varying national guidelines (e.g. Norsk Vann
Rapport 2355 (2018) in Norway) and tools (for an overview
see e.g. Kley, Kropp, Schmidt, & Caradot (2013)), for estab-
lishing the condition states which make comparisons diffi-
cult, although they often base on the same standards (in
Europe EN 13508-2 (2011)).

Though it would be of interest to mitigate these uncertain-
ties, there have not been considerable efforts to do so. Sousa,
Ferreira, Meireles, Almeida, and Saldanha Matos (2013)
reported that the inspector’s uncertainty had a marginal influ-
ence in the selection of the sewers for additional analysis
when compared to the uncertainty associated with the coding
protocol used. CCTV inspection protocols entail two dimen-
sions, namely coding the defects and grading the defects.
Despite the differences in national standards (usually simplifi-
cations), there is a common European standard for defects
coding (EN 13508-2, 2011) and so, to a certain extent, this is
valid at an international level. The latter is slightly distinct
since there is no European standard for grading sewer defects
but rather various national standards on defects rating.

A defects rating reflects the relative weight that each type
of defect has on the sewer condition. Since they have been
developed mostly based on expert opinion (with limited and
biased statistical information), there are substantial differen-
ces between them depending on the context of each coun-
try. This suggests that alterations in the coding protocol
could be an effective way to reduce the uncertainties.
According to van der Steen, Dirksen, and Clemens (2014),
more detailed coding protocols to describe the defects had a
negative influence on the recognition of defects. From a
pragmatic point of view, this makes sense. There is a limit
to humans’ ability to process and respond to information,
and by introducing several possibilities to describe a defect,
one also increases the possibility of making errors.

To account for this, van der Steen et al. (2014) recommend
that coding systems should avoid doubt by making the various
methods of describing a defect unambiguous. Dirksen et al.
(2013) suggest investigating the effect of using photographs that
describe defects in the coding protocols, which has been done in
the Norwegian Guideline (Norsk Vann Rapport 235, 2018).
Another possible way to reduce uncertainty in the sewer inspec-
tion data, based on the findings from Caradot, Rouault, Clemens,
and Cherqui (2018), is to improve the data management proce-
dures so that improper inspections and undocumented rehabilita-
tions do not affect the data used for calibrating deterioration
models. Tscheikner-Gratl et al. (2019) point out that the human
factor may be diminished using artificial intelligence in the
upcoming years, but this may not completely cancel out the
uncertainties of visual condition assessment.

Although this issue has been first raised almost a decade
ago (Dirksen et al., 2013) and is also not questioned by

practitioners, and even though this data is the basis for
rehabilitation and replacement strategies, the research on
the uncertainties and their influence on the deterioration
models supporting the decision-making process is scarce
and focussed only on some few case studies. While there are
a lot of studies focussing on the development and applica-
tion of different deterioration models especially with the
applicability of machine learning techniques (e.g. Caradot,
Riechel, et al., 2018; Laakso, Kokkonen, Mellin, & Vahala,
2018; Malek Mohammadi et al., 2019) uncertainties of those
models are so far not investigated in detail in most applica-
tions. A few studies exist: For example, recent studies
(Mancuso, Compare, Salo, Zio, & Laakso, 2016; Roghani
et al., 2019) looked into the negative influence of uncertain-
ties on the efficiency of sewer inspection programs. Caradot
et al. (2020) showed the influence of uncertainties in the
input data to a deterioration model by propagating the
input uncertainty derived from repeated inspections directly
in the survival curves of the deterioration model.

The uncertainty assessments have often focussed on
structural uncertainty by comparing prediction performance
of different models on the same data set. For example, non-
homogeneous Markov Chain models with random forest
(Rokstad & Ugarelli, 2015), or artificial neural networks and
support vector machines (Sousa et al., 2014) to name a few.
Other studies focussed on the influence of data availability
and completeness (Ahmadi, Cherqui, De Massiac, & Le
Gauffre, 2015, 2014; Taillandier, Elachachi, & Bennabi,
2020), sample size for model calibration (Ahmadi, Cherqui,
Aubin, & Le Gauffre, 2016), lack of data about historical
pipe replacements as a source of uncertainty (Egger,
Scheidegger, Reichert, & Maurer, 2013) and the influence of
data heterogeneity (Rokstad & Ugarelli, 2016). When input
uncertainties have been quantified (Caradot, Rouault, et al.,
2018; Dirksen et al., 2013; Sousa et al., 2013; van der Steen
et al., 2014), the numbers differ from case study to case
study between 25% and 50% of CC variation with repeated
inspections of the same pipe, but the main message stays
the same: CCTV inspection introduces a high level of uncer-
tainty into every modelling endeavour based on its outcome.

In order to contribute to more evidence and data to the
topic, this study seeks to answer the following research ques-
tions: how big is the uncertainty in the closed-circuit-televi-
sion inspection data of sewer pipes in Norway compared to
literature and how does the uncertainty influence the output
of a commonly used sewer deterioration model on a network
level? The research questions are addressed by assessing the
quality of existing CCTV inspection data and quantifying the
uncertainty magnitude, using the data’s ability to get repro-
duced as a measure to evaluate the uncertainty. To assess the
reproducibility of the data, a condition re-assessment of exist-
ing CCTV inspection videos was conducted and compared to
the classification originally made by the operator. The existing
differences were used to quantify the uncertainty in the
CCTV inspection data. Consequently, the effect of this uncer-
tainty is assessed by evaluating its influence on the output of a
sewer deterioration model.
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2. Materials and methods

This study aims at assessing the uncertainty in CCTV data
codified using the Norwegian condition classification stand-
ard (Norsk Vann Rapport 235, 2018), and the impact this
uncertainty has on the predictions in a sewer deterioration
model (Le Gat, 2008) commonly used in Norway. The
Norwegian condition classification standard is based on the
European standard (EN 13508-2, 2011), and contains defect
codes pertaining to similar defects as the ones described in
the European standard (e.g. deformation, fissures, surface
damage, intruding connections, roots, deposits, infiltration/
exfiltration etc.).

However, the Norwegian classification standard is some-
what simplified compared to the European standard, as it
contains fewer distinct defect codes, and fewer characterisa-
tion codes describing the details of each defect. For example,
the Norwegian standard only has one defect code describing
cracks and collapses of pipes, where the European standard
uses several codes (fissure, break/collapse, defective brick-
work, missing mortar). Defect codes are rated on an ordinal
scale from 1 to 4, where 1 is a mild defect and 4 a very
severe defect. Each rating corresponds to a weighting factor
(which is different for each defect code), that sums up to
the aggregated condition score. The CC is then determined
based on the sum of all assigned weighting factors. The
study is undertaken in two parts (see Figure 1):

Part 1: First, the uncertainty in the CCTV data is quantified by
repeating the interpretation of inspections (see Section 2.2).

Part 2: Then, the resulting uncertainty is propagated into the
data used to calibrate a sewer deterioration model, and the
resulting output uncertainty is assessed by Monte Carlo
simulation (see Section 2.3).

2.1. Background on sources of uncertainty in CCTV
inspection data and condition deterioration modelling

Dirksen et al. (2013) made the first comprehensive evalu-
ation of the quality of visual sewer inspection data. More
specifically, this research assessed the consistency of CCTV-
derived condition data, by analysing its reproducibility (i.e.
how well an inspection result can be reproduced by another
operator). The authors identified three sources of uncer-
tainty in CCTV inspection data:

1. The recognition of defects. This involves both technical
and human aspects. Technical errors are introduced
when features of the pipe cannot be observed by the
CCTV camera. These errors can occur for instance
when there is insufficient lighting, the camera lens is
fouled, or the inspection is carried out too rapidly for
the defects to appear in the images (Dirksen et al.,
2013). Another issue is that CCTV inspection can only
capture the defects that are visible for the camera.
Obstacles to visualisation (the state of the sewer at the
time of inspection, e.g. flow retention) and the capabil-
ities of the cameras to detect defects (characteristics of

the camera) are sources of uncertainty that can affect
the quality of the inspection data (Sousa et al., 2013).

2. The description of defects according to a prescribed
coding system. When a defect can be observed from the
CCTV footage, it must be detected and codified by the
inspector, which introduces the possibility for two
errors to occur: a) a false negative (FN) occurs when
the inspector misses a defect that is there or considers
the defect to be less severe than it really is, and b) a
false positive (FP) occurs when the inspector reports a
defect that is not there or considers the defect to be
more severe than it is in reality (Roghani et al., 2019).
There are several reasons why FNs and FPs can occur
when codifying defects based on CCTV footage of sew-
ers. An inspector might be too focussed on one specific
defect (leading to FPs), that other defects might be
neglected (leading to FNs). The incidence rate might
also affect which defects are more easily observed than
others (Dirksen et al., 2013). Factors that influence the
variability in identified defects between different opera-
tors could be experience and competence, while vari-
ability between inspections codified by the same
operator could be due to concentration and fatigue
(Sousa et al., 2013), both of which can be regarded as
systematic errors. The description of defects according
to a prescribed coding system concerns the characterisa-
tion, quantification of magnitude, and the location of
the defect, and errors in describing these can also con-
tribute to uncertainty in the inspection data. Such
errors can be made when the coding system is ambigu-
ous, or by incorrect application of the coding system
(Dirksen et al., 2013). Moreover, different coding proto-
cols might have different ways of determining the sewer
CC, and studies indicate that the uncertainty introduced
by the coding protocols has a significant influence on
the resulting structural condition grades to which the
sewer pipes are assigned (Sousa et al., 2013).

3. The interpretation of the final inspection report. This
step concerns the sewer managers’ (or decision makers’)
opinion about the inspection data’s implication for the
sewer pipes’ replacement and rehabilitation strategies,
which also introduces uncertainty because these opin-
ions can be subjective. Furthermore, non-reported con-
siderations may have been considered in this step,
which may render the interpretation of the report
non-repeatable.

FNs are generally more likely than FPs, when comparing
repeated inspections. The prevalence of FNs over FPs is
often caused by the fact that certain defects (e.g. cracks) can
be hidden and/or difficult to detect visually on the CCTV
footage (for example due to sediments or water covering the
defect). One of the studies indicated that the probability of
a FN was around 25%, while the probability of a FP was
about 4%. This means that it is more likely that defects are
not detected and coded accordingly, than defects being
over-reported (Dirksen et al., 2013).

STRUCTURE AND INFRASTRUCTURE ENGINEERING 3



Later, several studies (Caradot, Riechel, et al., 2018; Sousa
et al., 2013; van der Steen et al., 2014) using similar meth-
odologies have yielded similar results, demonstrating that
the occurrence of FNs is generally more prevalent than that
of FPs. The different studies show different results depend-
ing on which classification standard that has been used, but
on the overall, one can conclude from literature that the
uncertainties in defect detection and coding are consider-
able, owing to their subjective nature. Most of the studies
found in the literature on this topic has focussed on the

ability to recognise defects and the associated FN and FP
rates for individual defects; the judgement of the defects’
severities, and their consequent impact on the resulting CC,
have therefore not been emphasised in most studies.

Given that there seems to be a significant uncertainty within
the CCTV sewer inspection data, it is of interest to know how
this uncertainty affects the decisions of replacement and
rehabilitation strategies. Deterioration models can be used to
predict the evolution of a sewer network’s condition given dif-
ferent investment strategies (Caradot et al., 2020) and they are

Figure 1. Schematic illustration of the applied method.
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a prerequisite for a proactive management of sewer infrastruc-
tures (Roghani et al., 2019). Even though CCTV inspection is
an economic choice in assessing sewer conditions, they come
at a cost, and it is not practically feasible to inspect an entire
network by CCTV regularly. Therefore, it is more beneficial to
inspect a subset of the whole pipe network and use deterior-
ation models to extrapolate this to the rest of the network to
save inspection resources (Caradot et al., 2017).

Thus, if there is uncertainty in the CCTV data used to
calibrate a sewer deterioration model, this uncertainty will
affect the confidence one can place in the predictions from
said model, and consequently the decisions which are made
based upon the model results. A feasible way to assess the
influence of uncertainty in CCTV data is therefore to assess
the results from the deterioration models. Rokstad and
Ugarelli (2015) assessed the benefits of applying sewer
deterioration models for infrastructure asset management
and found that, on a network level, the predictions from
sewer deterioration models were not more informative than
an uninformed estimate of the distribution of CCs based
solely on the CC data used for calibration. The authors
pointed out that inconsistent data can be a reason for the
uncertain predictions (Rokstad & Ugarelli, 2016).

Furthermore, Roghani et al. (2019) investigated the impact
of uncertainty in assessed condition data on a deterioration
model and whether it was better to over- or underestimate the
deterioration of a segment. The study concluded that uncer-
tainties in the assessed condition data had a negative impact
on the inspection efficiency, and that underestimation of the
deterioration had a more severe impact than overestimation.
Considering that the literature on uncertainty in CCTV defect
detection is consistent in reporting that underestimation
(FNs) of sewers happens more frequently, this finding indi-
cates that the impact of CCTV inspection data uncertainty
can be severe when used for deterioration modelling.
However, the study concludes that condition prediction mod-
els are worth using even if there exists uncertainty in the con-
dition assessment of sewers. Caradot et al. (2020) found an
indication that old pipes in bad condition were more prone to
FNs than FPs, compared to newer, less deteriorated pipes.
Moreover, their analysis showed that when uncertainties were
not considered, the required replacement rate to maintain a
constant network condition were underestimated.

Thus, from the literature one can ascertain that CCTV-
derived sewer condition classification data can have consider-
able uncertainties, owing to the subjective nature of the detec-
tion and coding procedure entailed in most sewer classification
standards. The level of uncertainty depends on the condition
deterioration of the sewers and the classification standard
used. Moreover, this uncertainty can impact the quality of pre-
dictions made from sewer deterioration models which are cali-
brated based on the uncertain CCTV data, and consequently
impact the adequacy of investment and rehabilitation.

2.2. Estimation of uncertainty in the CCTV condition
classification procedure

Similar to Dirksen et al. (2013), this study analyses the
reproducibility of CCTV inspection data, and uses it as a

measure of the data’s uncertainty. This reproducibility
uncertainty was analysed by performing a re-classification
(re-observing and re-codifying defects) of sewer pipes
according to the Norwegian Guidelines at the time
(NORVAR Rapport 150, 2007), and comparing the newly
obtained classification result with the result from the ori-
ginal classification. The re-classification is performed using
the same footage as in the original classification. The differ-
ence in results between the original CC and the CC
obtained in this study is then used as a measure of the
data’s uncertainty. This uncertainty is then expressed by an
uncertainty matrix (Caradot, Rouault, et al., 2018), which
summarises the probability of observing a CC given the ori-
ginal CC observation.

The original and repeated classifications were performed
by different persons, and the original CC result was not
revealed to the operator until after the reclassification was
completed. The repeated classification of each pipe should
as such be considered as independent of the original classifi-
cation. The original classification was performed by expert
inspectors/operators (holding certifications of training in the
Norwegian coding system), while the re-classification was
performed by an unskilled operator with quality control by
an expert. This is a means to observe the maximum uncer-
tainty in the data as the uncertainty between trained opera-
tors may, but does not necessarily have to (as shown by
(Dirksen et al., 2013)), be smaller.

2.3. Estimation of CCTV data uncertainty impact on
condition deterioration modelling results

The results of the CC uncertainty estimation using CCTV
footage (Section 2.2) yields a distribution of deviations
between the CCs obtained by the authors and the profes-
sional pipe inspectors’ condition classifications. The impact
this uncertainty distribution has on the deterioration model
predictions can be assessed by means of a Monte Carlo
simulation (Robert & Casella, 2010), checking the conver-
gence with a stopping criterion based on the 95% confi-
dence level of mean and variance (Lea, 2011) of the number
of pipes in a certain CC. By using the Monte Carlo simula-
tion, the uncertainty distribution is propagated by repeatedly
changing the CCs in the calibration data set according to
the deviation probabilities obtained from the uncertainty
matrix from part 1 (see Figure 1), recalibrating and per-
forming predictions with the recalibrated model, one can
estimate the resulting uncertainty propagated through the
model. This approach was selected since the CCTV inspec-
tion data is not merely input to the model but has a major
influence on the calibration of the model and in conse-
quence the model parameters. This puts them between input
and calibration uncertainties (Deletic et al., 2012).

The statistical sewer deterioration model GompitZ (Le
Gat, 2008) was chosen for this case study, as this model has
already been used in several case study projects in Norway
in the past (e.g. Rokstad & Ugarelli, 2015). The performance
of predictions from GompitZ given uncertain CCTV-derived
Norwegian CC data is therefore highly pertinent. GompitZ
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models the deterioration of sewer CCs using a non-homoge-
neous Markov chain, meaning that the transition probabil-
ities between Markov states (i.e. the probability that a pipe
transitions from one condition to another) varies with time.
Furthermore, the transition probabilities are derived from
Gompertz distribution, which allows one to include (time-
dependent and -independent) explanatory variables (covari-
ates) that may explain the variability in condition deterior-
ation of the sewer pipes. The parameters in GompitZ are
calibrated/estimated by maximum likelihood estimation.

The time-independent covariates account for the initial
CC, while the time-dependent covariates include variables
that can explain the deterioration rate (speed) of the pipe
(Le Gat, 2008). CC predictions are made in two different
ways in GompitZ, depending on whether the condition of a
pipe has been observed: a) if a pipe’s condition has been
observed at least once, the condition prediction is based on
the calibrated survival curve function and the estimated
individual frailty factor (IFF), which accounts for the differ-
ence between model prediction and observation at the time
of inspection; b) if a pipe’s condition has not been observed,
the prediction is made using only the survival curve func-
tions (the marginal model).

The Monte Carlo simulations are performed as follows
(compare with Figure 1):

i. The uncertainty is propagated into the calibration data
set by changing CCs randomly according to the proba-
bilities obtained in Part 1.

ii. GompitZ is calibrated using this randomised data set.
iii. Based on calibrated parameters the individual frailty

factors (IFFs) are calculated for pipes which have
been observed.

iv. Survival probabilities are calculated for each CC for 5-
year age groups (where the age refers to the age of the
pipe at the time of observation).

v. The process returns to step (i) until the number of
desired repetitions has been reached.

The uncertainty obtained in Part 1 (compare with Figure
1) was propagated into the model calibration using two dif-
ferent assumptions:

Scenario 1: Age-independent uncertainties. Uncertainties
were propagated as calculated in the matrix in Part 1,
without any changes. This assumes that the uncertainties
are equally valid for all pipes.

Scenario 2: Age-dependent linear increase. The complete
data set of inspections contains results from inspections of
pipes of all ages. New pipes are often inspected as part of
the quality assurance during construction. Young pipes are
therefore generally less prone to defects than old pipes,
and consequently also less susceptible to uncertainty in the
condition assessment process. The assumption in scenario
1, that all pipes equally disposed to the uncertainty, is
therefore not necessarily valid. To account for this age-
dependency, it was assumed that there was no uncertainty
in inspection results for pipes inspected at age zero, and

that the uncertainty increased linearly for pipes between
ages zero and the youngest pipe (age ¼ 29 years) which
was re-classified and found exhibiting a deviation from the
original classification in Part 1.

To expand the scope of the study, and make the results
comparable to previous studies, Part 2 (see Figure 1) of the
analysis was also performed using uncertainty data derived
from previous studies:

Scenario 3: The data presented by Dirksen et al. (2013).
These results were based on the old German standard
(ATV-M 149, 1999), where 0 was the worst condition and
4 was the best. The data were therefore translated to the
same numeric system (1 to 5) which is currently used in
the Norwegian classification system

Scenario 4: The data presented by Caradot et al. (2020).
This study assumed a system containing only three CCs,
where 1 was the best and 3 was the worst condition class.
The uncertainty matrix has been kept as is, while the input
data was adjusted in the following way to fit the uncer-
tainty matrix: CC1 and CC2 were combined into a com-
mon CC1, CC3 translated into CC2 and CC4 and CC5
were combined into a common CC3.

The uncertainty matrices for Scenario 3 and 4 can be
seen in Table 1, and the ones for Scenario 1 and 2 in the
results section in Table 2. The Monte Carlo simulations
were performed with 1000 repetitions (for each uncertainty
assumption), which were found in preliminary tests to be
sufficient to represent the uncertainty distribution, with e.g.
for Scenario 1 a confidence interval of the current mean
estimate (Lea, 2011) below ±0.3% for each CC after 1000
repetitions. Based on the results from the Monte Carlo sim-
ulations the 5% and the 95% percentiles of the survival

Table 1. Uncertainty matrices for scenario 3 and 4.

Scenario 3

Pipe is inspected in condition class

1 2 3 4 5

Pipe is actually in
condition class

1 0.705 0.240 0.090 0.008 –
2 0.127 0.465 0.150 0.082 0.008
3 0.088 0.127 0.465 0.150 0.082
4 0.063 0.088 0.127 0.465 0.150
5 0.017 0.080 0.168 0.295 0.760

Scenario 4

Pipe is inspected in condition class

1 2 3 4 5

Pipe is actually in
condition class

1 0.852 0.852 0.159 0.061 0.061
2 0.106 0.106 0.673 0.125 0.125
3 0.042 0.042 0.168 0.814 0.814

Table 2. Uncertainty matrix for scenario 1 and 2.

Scenario 1/2

Pipe is inspected in condition class

1 2 3 4 5

Pipe is really in
condition

1 0.625 0.100 – – –
2 0.200 0.525 0.100 – –
3 0.100 0.200 0.525 0.100 –
4 0.050 0.100 0.200 0.525 0.100
5 0.025 0.075 0.175 0.375 0.900
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probabilities were calculated to represent the uncer-
tainty bands.

2.4. Case study area description

Data from the sewer system of Trondheim, Norway, was
used for this case study. As of 2016, the municipality of
Trondheim’s database of sewer pipes contained 30,131 seg-
ments (from manhole to manhole), where 26,180 are regis-
tered to be in use. The total length of the sewer pipes that
are in use is 1196.60 km. Gravity-based combined sewers,
separate sewers, and storm water sewer pipes make up
320.51 km, 352.15 km, and 455.54 km of the pipe system
lengths, respectively. These pipes make up 94.3% of the total
sewer network, where the combined sewer pipes, foul sewer
pipes, and the stormwater pipes respectively make up
26.78%, 29.43% and 38.07% of the sewer network that are
registered to be in use.

Other pipe types are pressurised combined sewer pipes,
combined sewer tunnel segments, stormwater overflow
pipes, and pressurised sewer pipes that ranges from 10-
15 km each. Concrete is the prevalent material in the sewer
network in Trondheim, making up 83% of the whole net-
work. 9% of the pipes are PVC and the rest are clay, differ-
ent types of PE, synthetic fibre, and glass fibre pipes. Of this
network 43.12% were inspected as of 2020. There is a major
overrepresentation of segments in CC1 (49.28% - see

Table 2) and one can clearly see the indications of survival
bias in the data, e.g. when looking at the CC of the pipes
constructed before 1900.

The re-classification was performed based on CCTV foot-
age from 40 (to fulfil the requirements of the central limit
theorem) different sewer pipes in Trondheim, which were
selected randomly to represent the concrete pipes of the sys-
tem with a focus on the two largest drainage zones. Only
concrete pipes were included in this study, as concrete is
the dominant material used in Trondheim’s sewer systems.
The available inspection data are from the period 2008-
2017, for which the NORVAR Rapport 150 (2007) was the
standard for sewer condition assessments in Norway. The
age of the pipes varied from 0 to 102 years at the time of
inspection and the diameters from 125mm to 600mm. This
information was used as input for the GompitZ deterior-
ation model, and as covariates if found statistically signifi-
cant during the calibration process.

3. Results and discussion

3.1. Estimated uncertainty

Figure 2 presents the resulting deviation of this study’s con-
dition assessment from the original CC and the resulting
uncertainty matrix. A deviation of 0 means that that this
study has found a pipe to be in the same CC as the original
inspector. When the deviation in CC is negative, this means
that this study’s CC is lower than what the inspector has
given. Similarly, a positive deviation in CC means that this
study has given a higher CC to the pipe than the original
inspector. The terms FN and FP will be used in this study
to compare the results with other studies, as most of the lit-
erature on the uncertainty in CCTV sewer inspection (e.g.
Caradot, Rouault, et al., 2018; Dirksen et al., 2013) has used
these terms using the second classification as the ‘correct’
one, although the authors are aware that it in reality is
impossible to say which of the two classifications is correct,
as a condition class is not an objective and measurable
property. FNs arise when a defect that is in the pipe is not
recognised, or its severity is reported to be lower than it is.
This means that FN can underestimate the pipe’s CC
because the pipe’s damage score becomes lower. Conversely,
FPs are introduced when a defect that is not really there is
reported, or its severity is reported to be more serious than
it really is. Therefore, FPs can overestimate the pipe’s CC

Figure 2. Bar chart showing the deviation between this project’s and profes-
sional pipe inspector’s condition classification of the same CCTV video and the
derived uncertainty matrix showing the probability of a pipe to be really in con-
dition y when inspected in condition x.

Table 3. Distribution (%) of installation periods and observed CC for concrete pipes.

Installation period All pipes [%] Inspected pipes [%]

Observed condition [%]

1 2 3 4 5

before 1900 0.07 0.08 28.57 – 42.86 – 28.57
1900-1919 0.34 1.34 13.91 10.43 18.26 26.09 31.30
1920-1939 1.56 3.54 15.18 10.56 13.86 19.47 40.92
1940-1959 7.62 13.16 27.26 14.30 16.52 22.47 19.45
1960-1979 45.66 52.24 38.29 21.42 18.46 13.72 8.10
1980-1999 27.47 18.79 78.16 10.77 5.91 2.49 2.68
2000- 17.28 10.84 94.61 2.16 1.94 0.54 0.76
All 100.00 100.00 49.28 15.84 13.91 11.69 9.27
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because its damage score become larger due to the intro-
duced errors.

In the case study data from Trondheim (see Figure 2)
there is a probability of 52.5% to reproduce the CC data
from CCTV sewer inspection. This is in accordance with
the literature that assessed the uncertainties in describing
sewer defects using similar condition classification schemes.
M€uller (2005) used data from 307 sewer pipes which were
inspected twice within 3 years using the German guidelines
ATV-M 149 (1999), where 0 was the worst condition and 4
was the best. This resulted in a nearly normal distribution
of deviation with only 45% of the pipes being classified in
the same CC twice, very similar to the data presented by
Dirksen et al. (2013) but lower than the 65% observed by
Caradot, Rouault, et al. (2018). Of these 45%, only 65%
were able to also describe the same defects in both original
and repeated inspection. This is in line with the findings of
Dirksen et al. (2013) that there was over a 50% probability
to incorrectly recognise and describe defects with data
acquired from Austria using EN 13508-2 (2011). What is
observable is that for this case study, the proportion of FPs
is larger than FNs.

This study finds that there is a 10% probability of FN,
whereas the probability of FP is 37.5%. This is not in
accordance with the findings of Caradot, Rouault, et al.
(2018) which have found the proportion of FN to be signifi-
cantly larger than FP. It is important to note that most of
the literature has used repeated measurements within a
period (mostly 3 years) and not the same video footage as
base for the uncertainty assessment, which may include
some more uncertainty. In this study the same footage has
been used for both assessments, thus singling out the uncer-
tainty arising from the interpretation of the footage (i.e. the
human factor). The Norwegian coding system also differs
significantly from the German coding system (ATV-M 143-
2, 1999) used by Caradot, Rouault, et al. (2018), which
might also explain the difference in the observed rates of
FNs and FPs. Furthermore, the sample size of this study is
smaller (40 pipes), so it might be that this sample was
dominated by the FP pipes in the population. This might
explain why this study’s results differ from the literature.

3.2. Effect of the uncertainty on the model output

The plots in Figures 3 and 4 illustrate the probability of a
pipe with a certain age to be in a certain condition class or
the respective boundaries between those probabilities, as
predicted by GompitZ. During the calibration process it
became apparent that no additional covariates were statistic-
ally significant for this case study. The line CC1/2 represents
the boundaries for a pipe where below this threshold it is in
CC1 and above in CC2 or worse and so on for the other
condition states. The lines are stepwise due to the inherent
quality of the model to use 5-year steps. Figure 3 shows the
model results including the IFF, which accounts for the dif-
ference between model prediction and observation at the
time of inspection, while Figure 4 shows the results of the
marginal model. The Scenarios 1-4 account for the different

uncertainty matrices (compare Table 1 and Figure 2).
Scenario 4 differs in the sense that only 3 CC were used and
therefore only two curves are plotted. As those correspond
to the curves between CC2/3 and CC3/4, they are shown in
those colours. Uncertainty is represented as the area in cor-
responding colour to the lines, with the 5% and 95% per-
centiles as boundaries.

The general trend from the Monte Carlo analysis for the
IFF model is that the uncertainty bands are quite narrow
for the younger pipes and that they gradually get wider for
the older pipes. This is most likely due to fewer existing
older pipes, where a change in CC will have a higher
impact. The marginal models on the other hand is more
consistent in their uncertainty bands where the bound
widths stay the same for most of pipe ages. Another prom-
inent feature is the shift between the uncertainty bands and
the model from the original data, which in consequence
indicates that the original model is more of an outlier in
most time periods. For the younger pipes up to about
50 years, the calibration results are relatively far away from
the uncertainty bands. We can see for example for the
model with IFF that the original model starts off for the age
group of 0-5 years with condition probability between CC1
and CC2 of 0.91 for the different uncertainty scenarios that
changes to 0.62 to 0.68 (scenario 1), 0.81 to 0.83 (scenario
2) and 0.69 to 0.72 (scenario 3). For scenario 1 this is logical
due to the skewedness of the uncertainty matrix towards
worse condition classes. For scenario 3 and 4 it cannot be
explained by the uncertainty matrix alone.

However, as in the data set almost 50% of the pipes
inspected were found to be in CC1(see Table 3) the prob-
ability of them to worsen has a much higher impact on the
outcome than the possibility of other condition classes being
underrated. One possible explanation is the higher probabil-
ity of younger pipes to be in CC1, that can be observed in
the data. This led to the formulation of Scenario 2, which
showed an effect in decreasing the shift between the uncer-
tainty band and the original calibration result, as well as
showing more similar aging properties of the curves, which
is to be expected as it is formulated with an inherent age
dependency. Still it did not eliminate the shift completely,
due to the calibration, which poses the question if the exist-
ing model is too optimistic. This is in contrast to the obser-
vation of Caradot et al. (2020), whose original model was
mainly within the boundaries of its uncertainty bands. This
may be caused by the difference in uncertainty propagation,
i.e. including the uncertainty before the calibration (as done
in this study) rather than applying it on the deterioration
curves (e.g. Caradot et al., 2020), and the difference in data
availability.

egarding the impact the uncertainty could have for prac-
tical situations, it is appropriate to evaluate what happens
with CC4 and CC5 since these are the pipes that are subject to
replacement or rehabilitation measures according to the rec-
ommendation from Norsk Vann Rapport 235 (2018). It is
important to note that these survival graphs represent the
calibration results of the models and do not consider renewal
rates of the sewer network. As most sewer utility managers
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have a certain pipe renewal rate each year and that they will
use it to forecast the deterioration into the future, this assess-
ment will not be realistic in that regard. However, it will show
the trend of how the quantified uncertainty could influence
practical situations for asset managers. We will therefore con-
centrate on the marginal model in Figure 4 to discuss this, as
this would consider the not inspected pipes. According to the
original model 50% of the pipes in this cohort would stay in
CC1 until 35 to 40 years.

For the different uncertainty scenarios this changes con-
siderably. For Scenario 1 it would only be 10 to 15 years, for
Scenario 2 and 3 it would be 25 to 30. A similar picture can
be seen when one considers how long 50% of the pipes are
expected to be in a better condition than CC5, i.e. the
threshold at which a sewer pipe would require immediate
action. In the original model one could expect that to be 90
to 95 years, for Scenario 1 and 3 already 105 to 115 years,
for Scenario 2 only 75 to 85 years. If we look at Scenario 4,
50% of the pipes would be better than CC2 until 50 to
55 years and better than CC4 until 70-75 years. Thus, if one
had used the predictions from the models in Scenario 1 or
3 to make decisions about e.g. long-term budgets needed for
pipe replacement, without considering the uncertainties, one
would most likely grossly overestimate the ageing and con-
sequently the future budgets needed to deal with CC5 pipes.

All but Scenario 2 present a similar behaviour, i.e. the
uncertainties estimated in this case study are comparable
and corroborated by the data from previous studies.
Scenario 2, where it is assumed that the inspection data
uncertainties are time-dependent, is the odd one out of all
four scenarios in the marginal models, which indicates that
the time-dependency assumption is quite a crucial assump-
tion. For instance, for all other scenarios, one will be
expected to overestimate the time until 50% of the pipes
reaches CC5, while one for Scenario 2 will underestimate it.
One can also observe that the uncertainty bands of the CC
transitions in Scenario 2 are much steeper compared to the
other scenarios, and thus that one with this assumption
obtains a result where younger pipes are generally expected
to be in better conditions, but that they deteriorate more
quickly compared to the predictions in the other scenarios.
The validity of the assumption that there is less uncertainty
in the CCTV condition data for younger pipes is therefore
very important, as it seems to influence the resulting rate of
deterioration strongly, and more research should be con-
ducted to verify or reject this assumption.

The abovementioned numbers do not say anything about
how the quality of the model calibration, which showed
convergence with all model parameters significant with
p< 0.05 in the original calibration as well as in the

Figure 3. Condition probabilities of the calibrated GompitZ model with IFF and the corresponding uncertainty bands for the four defined scenarios.
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subsequent calibration runs for the different scenarios, is
affected by the uncertainty propagated in the input data.
Nevertheless, the results highlight that the basis of decisions
may be influenced heavily by the estimated uncertainties in
the input data. Depending on which of the models is to be
believed to represent the ‘real’ data set, the uncertainty
could lead to large over- or underestimations of life-expect-
ancies, inspection priorities, necessary rehabilitation rates
and in consequence funds allocation.

4. Conclusions

In this study the uncertainty in Norwegian CCTV sewer
inspection data has been quantified, and its consequent
impact on sewer deterioration model predictions has been
demonstrated. The study shows that the uncertainty in con-
dition classes coded according to the Norwegian standards
are considerable, and comparable to the uncertainties esti-
mated for other European coding systems found in the lit-
erature. The impact of the uncertainties, when propagated
in a condition deterioration model, were also found to be
considerable, and the results demonstrate that the uncer-
tainty in the model predictions can influence the strategic
decisions one makes based upon these results strongly.

All scenarios that assumed that the CCTV data uncer-
tainty was time-independent showed similar results, thus
corroborating that the uncertainty using the Norwegian cod-
ing system is comparable to that of previous studies.
However, the results from the scenario assuming time-
dependent uncertainties (Scenario 2) produced results with
a much more distinct ageing process. The practical implica-
tions of this finding are that one can risk either under- or
overestimating the time until pipes reach a condition class
which requires renewal action, depending on whether the
assumption of time-dependency is true or false. Further
studies therefore need to be undertaken to confirm or reject
this assumption of time-dependent uncertainty in CCTV
condition class data. This point also highlights that it is
beneficial to assess how the calibration of the deterioration
model is affected by the uncertainty in the calibration data,
compared to propagating the uncertainty through an already
calibrated model.

This study corroborates earlier research that points out
the weaknesses of the CCTV inspection method to estimate
sewer pipe conditions and in consequence model-based asset
management plans. One of these weaknesses, the subjectivity
of the inspector doing the condition assessment, may be
improved by the usage of machine learning in the upcoming
years (e.g. Meijer, Scholten, Clemens, & Knobbe, 2019). Still

Figure 4. Condition probabilities of the calibrated marginal GompitZ model and the corresponding uncertainty bands for the four defined scenarios.

10 T. FUGLEDALEN ET AL.



the uncertainties will stay considerable, as well as the need
for researching those uncertainties, and the question arises
if the method of using video footage for assessing condition
of sewer pipes is appropriate for the task of making
informed decisions on the need for replacing and rehabili-
tating sewers and the high investments connected to this or
if measurements of physical qualities will be necessary (e.g.
Lepot, Stani�c, & Clemens, 2017).
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