
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f I
CT

 a
nd

 N
at

ur
al

 S
ci

en
ce

s

Vebjørn Bjørlo-Larsen

Vision based real-time fish counting,
inspection and classification using
deep learning

Master’s thesis in Simulation and Visualisation
Supervisor: Ibrahim A. Hameed
July 2021

M
as

te
r’s

 th
es

is

Vebjørn Bjørlo-Larsen

Vision based real-time fish counting,
inspection and classification using
deep learning

Master’s thesis in Simulation and Visualisation
Supervisor: Ibrahim A. Hameed
July 2021

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of ICT and Natural Sciences

i

Preface

This thesis was written during the spring of 2021 at the Norwegian University of Science and

Technology (NTNU), Faculty of Information Technology and Electrical Engineering, Depart-

ment of ICT and Engineering. The thesis was proposed by and done in collaboration with

Stranda Prolog AS.

I would like to thank Stranda Prolog AS for a very interesting and challenging problem for

the thesis, and for assisting with gathering of video material. I would also like to thank my su-

pervisor for help during the thesis, and the university for assisting with a powerful computer for

training and testing.

Supervisor: Ibrahim A. Hameed

Contact person at Stranda Prolog AS: Kjetil Osland Brekken

Vebjørn Bjørlo-Larsen

Ålesund, July 5, 2021

ii

Abstract

Current fish counters rely on feeding fish through dedicated equipment as a part of the fish

transportation. This thesis proposes a vision-based alternative, using cameras mounted above

conveyor belts to count, inspect, and classify fish. The proposed solution is based on a multiple

object tracking algorithm, using deep learning to detect and track fish from frame to frame in a

video. Tracking of fish through a video ensures that each fish is only counted once, and it also

enables fish inspection and classification. Thus, in addition to fish counting, this thesis also in-

vestigates damage detection approaches and methods for classifying fish as dead or alive. The

experiments conducted show that the developed solution performs better in fish counting than

existing fish counters, accurately counting above 98% of fish, with a total score of above 99%

when including fish counted twice. For fish inspection, the damage detection accuracy is close

to 90%, up to 95% with false positives. Classification accuracy is around 70% for alive fish and

90% for dead fish, resulting in a total score of around 100%, when including the false positives

from each category. The inspection results are promising, though further work is required to im-

prove the results even more. The datasets used for training the deep learning networks, another

contribution of this work, were created specifically for the project, using video footage from a

conveyor belt in use.

iii

Sammendrag

Dagens fisketellere er avhengige av å mate fisk gjennom dedikert utstyr som en del av fisketrans-

porten. Denne oppgaven foreslår et alternativ basert på maskinsyn, som bruker videokamera

montert over samlebånd for å telle, inspisere og klassifisere fisk. Den foreslåtte løsningen er

basert på mutiple object tracking algoritmer, som ved bruk av dype kunstige nevrale nettverk

detekterer og sporer fisk fra bilde til bilde i videoen. Ved å spore fisk gjennom videoen, er det

mulig å kun telle hver fisk en gang, og det muliggjør også fiskeinspeksjon og klassifisering som

er avhengig av sporing av fisk. I tillegg til å telle fisk, undersøker denne oppgaven også metoder

for påvisning av skader og metoder for å klassifisere fisk som død eller levende.

Eksperimentene som ble utført viser at den utviklede løsningen presterer bedre i fisketelling

enn eksisterende fisketellere, med en sann nøyaktighet på over 98 %, opp mot over 99 % når

falske positiver er inkludert. For fiskeinspeksjon er nøyaktigheten til deteksjon av skader nær 90

%, opptil 95 % med falske positive skader. Klassifiseringsnøyaktigheten er rundt 70 % for lev-

ende fisk og 90 % for død fisk, noe som resulterer i en samlet score på rundt 100 % når falske

positiver fra hver kategori er inkludert. Inspeksjonsresultatene er lovende, men det kreves yt-

terligere arbeid for å forbedre resultatene enda mer.

Datasettene som ble brukt til å trene maskinlæringsnetverkene er et annet bidrag fra dette

arbeidet. De ble laget spesielt for prosjektet, og er laget av videomateriale fra et transportbånd i

bruk.

Contents

Preface . i

Abstract . ii

Sammendrag . iii

Acronyms . 2

1 Introduction 7

1.1 Background and Motivation . 7

1.2 Goals and Research Questions . 9

1.3 Research Approach . 10

1.4 Thesis Structure . 12

2 Theoretical basis 14

2.1 Multiple Object Tracking . 14

2.1.1 Object Detection . 15

2.1.2 Motion Prediction . 15

2.1.3 Affinity . 16

2.1.4 Association . 16

2.2 Kalman Filter . 17

2.3 Hungarian Algorithm . 18

2.4 Deep Learning . 19

2.4.1 Neural Networks . 19

2.4.2 Convolutional Neural Networks . 24

2.4.3 Recurrent Neural Networks . 26

iv

CONTENTS v

3 Methods and Materials 30

3.1 Datasets . 30

3.1.1 Object Detection . 31

3.1.2 Motion Prediction and Classifying Dead / Alive Fish 32

3.1.3 Test Videos . 34

3.2 Object Detection . 34

3.3 Motion Prediction and Classifying Dead / Alive Fish 35

3.4 Programming Language . 37

3.5 Hardware . 37

4 Implementation 39

4.1 Solution Overview . 39

4.1.1 Object Detection (A) . 40

4.1.2 Object Tracking (B + C) . 41

4.1.3 Classifying Dead / Alive Fish (B) . 42

4.1.4 Assigning Damage To Fish . 42

4.1.5 Counting and Inspection (D) . 43

5 Experiments and Results 44

5.1 Object Detection . 44

5.1.1 Yolov4 training results . 45

5.1.2 Deployment using OpenCV w/CUDA . 47

5.2 Motion Prediction . 47

5.2.1 Kalman Filter . 47

5.2.2 Recurrent Neural Network (LSTM) . 50

5.2.3 Kalman Filter vs LSTM Efficiency Comparison 54

5.3 Damage Counting . 55

5.4 Classifying Dead / Alive Fish . 57

5.4.1 Dataset Variations . 59

5.4.2 Network Architecture . 60

5.4.3 Training Results . 61

CONTENTS 1

5.4.4 Evaluation on test video . 63

5.5 Test Video Results . 65

5.5.1 Fish Counting . 65

5.5.2 Fish Inspection . 65

6 Discussion 67

6.1 Dataset Creation (G1) . 68

6.2 Fish Counting (G2) . 68

6.2.1 Multiple Object Tracking . 68

6.3 Fish Inspection and Classification (G3) . 70

6.4 Hardware Requirements . 71

6.5 Future Work . 71

6.5.1 Fish Counting . 71

6.5.2 Fish Inspection and Classification . 72

6.5.3 Hardware and Interface . 73

7 Conclusion 74

Bibliography 76

Appendices 79

A Specialisation Project Report . 79

CONTENTS 2

Abbreviations

API Application Programming Interface

CNN Convolutional Neural Network

CPU Central Processing Unit

DNN Deep Neural Network

GPU Graphics Processing Unit

IoU Intersection over Union

LSTM Long Short-Term Memory

MOT Multiple object tracking

MSE Mean Squared Error

PTZ Pan-Tilt-Zoom (Camera)

ReLU Rectified Linear Unit

RNN Recurrent Neural Network

List of Figures

1.1 Example view from a camera mounted above a conveyor belt. 8

1.2 Overview diagram of thesis organization . 12

2.1 Example of a feed-forward neural network with an input layer, two hidden

layers and an output layer. Figure made through http://alexlenail.me/NN-

SVG/index.html . 20

2.2 Convolution operation on top-left corner, 6x6 input, 3x3 filter, stride 1, no

padding . 24

2.3 Max Pooling Layer, 4x4 input, 2x2 max filter, stride 2 25

2.4 LSTM Cell. Image by Guillaume Chevalier, distributed under CC BY-SA 4.0

license. URL: https://commons.wikimedia.org/wiki/File:The_LSTM_Cell.svg 27

3.1 Example frame of fish on the conveyor belt . 31

3.2 Labelling test data using LabelImg . 32

3.3 Object detection machine learning pipeline 35

3.4 Machine learning pipeline for motion prediction and classifying dead / alive

fish . 35

3.5 Motion prediction network model graph . 36

3.6 Dead / alive classification network model graph 37

4.1 Overview diagram of the developed solution 40

3

LIST OF FIGURES 4

4.2 Example output frame. Blue tracks are not counted yet, red have been counted,

and green entered the frame from behind the counting line 43

5.1 Training results from Yolov4 object detection 45

5.2 Example of fish and damages successfully detected in more crowded scenes 46

5.3 Example of a fish being counted twice due to track fragmentation 48

5.4 Example of a fish not being counted due to identity switching 49

5.5 Example of fish successfully tracked and counted 49

5.6 Example data generated using kalman filter tracking 50

5.7 Motion prediction network model graph (10 hidden units) 51

5.8 Example of fish tracked successfully in crowded frame 54

5.9 Example of damage being associated with the incorrect fish. The damage

track is closer to fish "265" (left) and the bounding boxes overlap, thus the

damage is incorrectly assigned to fish "265" 56

5.10 Example of damage being associated with the correct fish through a combi-

nation of euclidean distance and distance. Fish "435" is closer in distance,

however the damage bounding box does not overlap, thus the damage is cor-

rectly associated with fish "433". 57

5.11 Example of a fish moving by itself . 58

5.12 Example showing the change in bounding box and centroid of a moving fish 59

5.13 Network model graph (10 LSTM units) for classifying dead / alive fish 60

5.14 Example of fragmentation causing fish to lose classification information. In

frame two the distance between prediction and detection is too large, thus a

new track is started. For the following frames, this new track is tracked, while

the old one is eventually removed without being counted. 64

5.15 Screenshot of test video two after final fish had been counted 66

List of Tables

3.1 Overview of number of fish and damages in the dataset 32

3.2 Overview of dataset for motion prediction and dead / alive classification . . 33

3.3 Overview of test videos . 34

3.4 Hardware specifications . 38

5.1 Yolov4 configuration . 44

5.2 Yolov4 inference times using OpenCV with CUDA backend on test computer 47

5.3 Test results with kalman filters for motion prediction 48

5.4 Results for different LSTM network sizes . 51

5.5 Testing results of zero-padded sequences (sample size = 18 for each amount

of bounding boxes) . 52

5.6 Results from different LSTM network sizes using TensorFlow Lite 53

5.7 Test results with LSTM model for motion prediction 53

5.8 Comparison of time per frame between tracking with kalman filters and LSTM 55

5.9 Damage counting test results from test video 2 with different association

methods . 55

5.10 Test results using 10 LSTM units . 61

5.11 Test results using 50 LSTM units . 62

5.12 Test results using 100 LSTM units . 62

5

LIST OF TABLES 6

5.13 Test results using a combination of dataset variations 62

5.14 Test results on test video two, for different moving count target values (fish

classified as alive if above). w/o frag (fragments) refers to excluding tracks

that were fragmented and thus losing the move count before the counting

line, but would have been classified correctly if not for that 63

5.15 Final fish counting results . 65

5.16 Final fish inspection results, with total counts (including false positives) as

well as true positive counts . 66

6.1 RTX 2080Ti vs RTX 30-Series. Source: nvidia.com 71

Chapter 1

Introduction

This chapter aims to give a brief introduction to this thesis, starting with background concepts

and motivational aspects associated with the project. Next, the problem outline and the goals

and research questions this thesis explores are described. Finally, the research approach chosen

to achieve these goals is presented, before a quick overview of the structure of the thesis.

1.1 Background and Motivation

The aquaculture industry is a growing industry both nationally in Norway [15] and on a global

scale [6], with aquaculture productions covering the majority of the rise in fish consumption

since the early 1990s [6]. The Norwegian Seafood Federation (Sjømat Norge) aims to double

the value creation of the Norwegian seafood industry by 2030 and quintuple it by 2050, in a

sustainable way, and one of the areas of focus is on the use of new technologies and automation

in all parts of the industry [16].

One area where new technology can be deployed is for fish counting and inspection, and

for this thesis specifically during transportation of fish in fish processing facilities. Existing so-

lutions for fish counting use dedicated equipment installed as a step in the fish transportation

setup, usually as a counting module inserted between pipes , or as a separate counting table that

the fish are fed through.12 This means that planning and dedicated space need to be used for

1AquaScan: https://www.aquascan.com/ (As of June 2021).
2Calitri Technology: https://www.calitri-technology.com/en/fish-counters/ (As of June 2021).

7

https://www.aquascan.com/
https://www.calitri-technology.com/en/fish-counters/

CHAPTER 1. INTRODUCTION 8

the fish counters. This is especially challenging when it comes to upgrading or adding counters

to a system, as it would require changes to the layout and at least partial halts to the production

as parts are changed.

The motivation behind this thesis is to explore the use of cameras mounted above conveyor

belts as an alternative to existing technologies (see figure 1.1). The potential benefits of using

cameras are manifold. Cameras are small and can be easily mounted to both existing and new

equipment without the need for change in the layout. Because of this, they can also be used in

cramped areas where larger equipment can not fit. Cameras are non-intrusive as they do not

directly interfere with the fish, which eliminates risk of damaging them. Existing solutions are

also made to have as little impact on the fish as possible, but they do add an additional step in

the transportation, which can increase the chance of damaging fish.

Another benefit of cameras are their flexibility and versatility. They can be mounted through-

out a facility without affecting the flow of fish, which allows for both monitoring and regulation

of the flow of fish where desired. In addition to counting, cameras also have a huge potential to

be used for inspection of fish. While the main focus of this thesis is on counting, it also touches

on areas where cameras can be used for inspection, such as damage detection and classification

if a fish is dead or alive.

For a camera to be competitive for counting, it needs to offer similar or better results than

the existing technologies. While actual accuracy will depend on the implementation conditions,

current solutions3 4 are rated at 97% or above accuracy in optimal conditions, which means

there is a high burden of accuracy to be met.

Figure 1.1: Example view from a camera mounted above a conveyor belt.

3AquaScan: https://www.aquascan.com/ (As of June 2021).
4Calitri Technology: https://www.calitri-technology.com/en/fish-counters/ (As of June 2021).

https://www.aquascan.com/
https://www.calitri-technology.com/en/fish-counters/

CHAPTER 1. INTRODUCTION 9

This thesis builds upon knowledge gained through a specialisation project on the same topic,

with the report from the project attached in Appendix A. The specialisation project acts as back-

ground knowledge for this thesis, giving a direction for where to focus during the work. However,

for the sake of proper comparisons using new video material, all relevant parts from the special-

isation project have been redeveloped and new results and conclusions have been drawn, as

described in the main body of this document.

1.2 Goals and Research Questions

Goal 1: Gather video material and create datasets and testing videos to develop and test solutions

proposed in this thesis.

The main goal of this thesis is to explore methods for vision-based counting of fish on a con-

veyor belt, using real-time video footage. To perform fish counting with cameras, there are a few

challenges and problems that need to be addressed. First of all, it is necessary to gather video

material to create datasets and testing videos for the project. The availability of such data is lim-

ited, thus the first goal of this thesis is to gather the required data in collaboration with Stranda

Prolog AS, and use this data to create datasets and testing videos.

Goal 2: Develop solutions for accurate real-time fish counting from video of fish on a conveyor

belt.

The next task addressed is to perform the actual fish counting with the video material gath-

ered, which presents its own set of challenges. Counting objects in a static image is well under-

stood and can be done in a variety of ways, from using simple image processing methods [9],

to more advanced image segmentation and deep learning methods [10]. However, simply de-

tecting and counting objects in individual frames are not sufficient when a video is considered.

Each fish will appear in many successive frames, thus a way to track each individual from frame

to frame is required to perform accurate counting. This thesis will explore the use of the mul-

tiple object tracking algorithm [5] and deep learning methods for fish detection and tracking

from frame to frame, and how this can be used for counting, inspection, and classification.

Research question 1: How to use multiple object tracking algorithm to perform counting of

CHAPTER 1. INTRODUCTION 10

fish on video?

Multiple object tracking consists of two main parts, object detection and object tracking.

Object detection deals with detection of objects in each individual frame, while object tracking

attempts to track each object from frame to frame [5]. There are many different ways to achieve

this, thus one of the research goals is to find suitable methods for this implementation, primarily

focusing on deep learning methods.

Research question 2: Which methods, algorithms, and techniques are most suited for a real-

time implementation of multiple object tracking for fish counting?

Goal 3: Expand the fish counting solution to include fish inspection and classification

In addition to fish counting, this thesis will also explore fish inspection and classification

based on the same system of tracking fish from frame to frame in a video. This is a very broad

topic and there are a lot of different possibilities, such as estimating fish size and weight, orien-

tation on conveyor belt, fish species, damage detection, classifying if fish are dead or alive, and

so on. This thesis will focus on damage detection and classifying if fish are dead or alive, while

laying the groundwork for future expansion.

Research question 3: How to extend the same system used for fish counting to also perform

fish inspection?

Research question 4: Specifically, how to extend the system so that it can be used for damage

detection, and to classify fish as dead or alive?

1.3 Research Approach

1. Literature Review: The first phase of the project was to perform a literature review of

existing solutions within fish counting, as well as for other technologies, methods, and

techniques that can be applied to fish counting. After an initial research on the topic, the

main area of research was narrowed to be within multiple object tracking. This includes

research into the best ways to perform object detection, as well as different methods for

tracking objects frame to frame.

CHAPTER 1. INTRODUCTION 11

2. Data Gathering: The next step of the project was to gather data for development and test-

ing. This was done in collaboration with Stranda Prolog, who set up a PTZ camera above

a conveyor belt in use at a fish processing facility. Through remote control of the camera

the necessary video material could be gathered, from which datasets could be created.

3. Development and Testing: The main part of this project consisted of development and

testing of sections of the solution and finally the solution as a whole. The development was

done following an agile methodology, with a focus on rapid iteration and development

based on a combination of the original goals and results [1]. Throughout the project, the

work was focused on achieving the goals and answering the research questions set out

in Section 1.2, while also being responsive to results and basing further work on them.

For example, after data gathering, it became clear that there were enough examples of

damaged fish to explore damage detection, which made that a focus for exploring fish

inspection. Through this process, the final solution presented in this thesis was derived.

CHAPTER 1. INTRODUCTION 12

1.4 Thesis Structure

Figure 1.2: Overview diagram of thesis organization

• Chapter 1 - Introduction gives an introduction to the project presented in this thesis,

including background and motivational aspects, goals and research questions, and the

research approach chosen for the project.

• Chapter 2 - Theoretical basis provides an introduction to the theoretical background that

forms the basis for the solutions presented in this thesis.

• Chapter 3 - Methods contains a description of the methodology and materials that were

considered throughout the project.

• Chapter 4 - Implementation provides a detailed overview of the developed solution.

• Chapter 5 - Experiments and Results goes into details about the experiments used to

validate the solution and their results

• Chapter 6 - Discussion presents a discussion of the results, advantages, disadvantages,

and plans for further development.

CHAPTER 1. INTRODUCTION 13

• Chapter 7 - Conclusions presents an overall conclusion and final results of the whole the-

sis.

Chapter 2

Theoretical basis

This chapter contains an overview of the theory behind the methods and algorithms used in this

thesis. The central focus of this thesis is on the use of multiple object tracking (MOT) and deep

learning for visual fish counting and inspection, thus this chapter will first give an overview of

MOT and the steps that make up the algorithm. This is followed by an overview of the specific

theory behind the methods used for the specific MOT steps, such as the deep learning meth-

ods used. The following chapters assume that the reader is familiar with the theory from this

chapter.

2.1 Multiple Object Tracking

Multiple object tracking (MOT) is a computer vision problem that attempts to identify and track

multiple objects in a video sequence, keeping track of their positions and trajectories. Each

object is tracked in a track, which contains a unique ID and information of the object from

previous frames. The most commonly used strategy, and the one used in this thesis, is detection-

based tracking (or "tracking-by-detection") [13]. This method consists of four main parts or

stages for each frame of the video. First is the detection stage, where all the objects in the frame

are identified. This is followed by a motion prediction or feature extraction stage, where the

goal is to either predict the position of existing tracks, or to extract features such as appearance

features of the objects. This is followed by an affinity / cost stage, where all the objects in the

new frame are compared to all the existing tracks, and given an affinity or cost score based on a

14

CHAPTER 2. THEORETICAL BASIS 15

chosen metric, such as distance or appearance similarity. Lastly, a matching algorithm is used

in an association stage to match detected objects to existing tracks, and handle the birth/death

of tracked objects [5].

Within detection-based tracking there are different models that can be used, such as an ap-

pearance model or a motion model. The appearance model uses the visual representation of

an object to calculate similarity between objects, while the motion model uses the dynamic be-

haviour to estimate positions of known objects and compare them to detected objects [13]. This

thesis uses the motion model, which will be described in more detail in the following sections.

2.1.1 Object Detection

The object detection stage deals with detecting and identifying objects within a frame. Usually

the output from this step is a set of bounding boxes, and the corresponding types of objects if

there are multiple object types (human, dog, car, etc). There are a range of different methods for

object detection, but most state-of-the-art MOT algorithms use deep learning algorithms such

as Faster R-CNN, SSD or Yolo [5].

2.1.2 Motion Prediction

In the motion prediction stage, the aim is to estimate the new positions of the tracked ob-

jects from the previous frames. The predictions usually take the form of the object centroids

or bounding boxes, and are used in the following steps to match and assign new detections to

tracked objects.

One common algorithm for this is the kalman filter [5]. The kalman filter uses a linear dy-

namical system to model the motion of the objects [12], which is used to estimate the centroids

of all the tracked object. The kalman filter is described further in 2.2.

An alternative method for motion prediction is through the use of deep learning models,

particularly recurrent neural networks (RNNs) such as the long short-term memory (LSTM) net-

work [14]. RNN models take as input the detections (bounding boxes) of an object from the

previous frames, and outputs a bounding box prediction for the next frame based on a learned

prediction model. RNNs and LSTMs are described further in 2.4.3.

CHAPTER 2. THEORETICAL BASIS 16

2.1.3 Affinity

In the affinity stage a cost or affinity matrix is created by calculating a score between each of

the predicted and detected object positions. This score indicates how similar or how low the

distance is between each pair of prediction and detections. The metric used to calculate the

scores will depend on the specific implementation, for this thesis the metrics used are distance

and IoU [5].

Distance indicates how far away the centers of two objects are, and is calculated as the eu-

clidean distance between the two object centroids:

Di st ance =
√

(X 2−X 1)2 + (Y 2−Y 1)2 (2.1)

Where X1, Y1 and X2, Y2 are the coordinates of the object centroids.

IoU, or intersection over union, is a metric for how big the overlap between two rectangles is

and is used to determine how closely two bounding boxes match each other. The cost calcula-

tion is a ratio between the overlap and the union of the two bounding boxes:

I oU = Ar ea o f Over l ap

Ar ea o f Uni on
(2.2)

2.1.4 Association

In the association stage the aim is to assign or match detected objects from the current frame

to the tracked objects (tracks), and if necessary create new tracks for new objects, or remove

tracks from objects no longer in the frame. The assignment is done using the cost matrix from

the affinity stage, with the goal of matching detection/track pairs with the lowest costs. This

can be solved using assignment problem algorithms such as the hungarian algorithm, which

is an efficient algorithm for minimising the total cost of all pairs. The hungarian algorithm is

explained further in 2.3. To handle the birth and death of tracks, a detection is classified as a

new track if it is not paired with an existing track, or if the cost of a pair is deemed too high. If

CHAPTER 2. THEORETICAL BASIS 17

a track is not paired with a detected object for a set amount of frames, it is deemed to have left

the scene, and the track is removed.

2.2 Kalman Filter

The kalman filter uses a linear dynamical system to model the motion of objects. This is an it-

erative method to predict the next centroid of an object and update the dynamic model based

on how accurate the estimates are. The algorithm consists of two main stages, prediction and

update. In the prediction stage, the predicted state estimate and predicted error covariance are

calculated using formula 2.3 and 2.4, respectively [12].

Predicted state estimate

x̂−
k = Fk x̂+

k−1 +Buk−1 (2.3)

Predicted error covariance

P−
k = FP+

k−1FT+Q (2.4)

Where x is the state vector, F the state transition matrix, B the control-input matrix, u the

control vector, P the state error covariance, and Q the covariance of process noise. The hat op-

erator ̂ is the estimate value, and − and + signifies if the estimate is the predicted or updated

estimate. Superscript T denotes the transpose of the matrix [12].

During the update stage the formulas 2.5 to 2.8 are used to update the state estimate and

error covariance.

Measurement residual

ŷk = zk −Hx̂−
k (2.5)

Kalman gain

Kk = P−
k HT (R+HP−

k HT)−1 (2.6)

Update state estimate

x̂+
k +Kk ŷ (2.7)

CHAPTER 2. THEORETICAL BASIS 18

Update error covariance

P+
k = (I−Kk H)P−

k (2.8)

Where z is the measurement vector, H the measurement matrix, R the covariance of obser-

vation noise, and the other variables and symbols the same as described for the prediction stage

[12].

The algorithm is computationally relatively simple and requires small computational power,

which means it can be used for real-time applications. Each of the tracked objects has a corre-

sponding filter, which allows the filters to capture the dynamic model of each individual object.

2.3 Hungarian Algorithm

The hungarian algorithm is an efficient algorithm for solving the assignment problem. The as-

signment problem consists of finding an optimal assignment of n resources to m tasks, such that

the total cost of the assignments is minimized. Each resource and task pair has a cost, which is

collected in a cost matrix with the cost of all the pairs [3]. The hungarian algorithm for solving

the assignment problem consists of 4 steps, using the cost matrix of the assignments [3]:

Step 1. Find the lowest cost in each row and subtract it from all elements in the row.

Step 2. Find the lowest cost in each column and subtract it from all elements in the column.

Step 3. Draw lines such that all the zeroes in the resulting matrix are covered with the min-

imum amount of lines. If the number of lines is equal to the highest out of number of tasks or

resources, an optimal solution can be found. If not, move on to step 4.

Step 4. Find the lowest cost not covered by a line, subtract it from all costs not covered by a

line, and add it to all elements covered by a line twice. Repeat step 3 until an optimal solution is

found.

CHAPTER 2. THEORETICAL BASIS 19

2.4 Deep Learning

One of the big challenges within artificial intelligence is solving problems without set rules,

problems that are often trivial to humans, but that are difficult for computers to solve. Ma-

chines are great at solving well-defined problems with known rules, but can struggle with more

nuanced problems without fixed rules, such as computer vision problems, timeseries forecast-

ing, image classification, speech recognition, and so on. Machine learning is a paradigm within

artificial intelligence that attempts to solve such problems. The main difference from classical

programming is that instead of getting answers based on rules and data, machine learning at-

tempts to learn the rules through data and answers. A machine learning system is trained by

learning from known data, without the need to explicitly program the rules [4].

Deep learning is a subfield within machine learning, with an emphasis on learning based

on successive layers of representations. The layers attempt to extract meaningful representa-

tions from the data, and through consecutive layers the aim is to learn a representative model

of the problem that can be used to predict results from new data. This layered approach in deep

learning almost always refer to neural networks [4].

2.4.1 Neural Networks

Neural networks are built up by layers of interconnected processing nodes, usually in the form

of "feed-forward" networks where data goes through the network in one direction. Each layers

receives input data from the previous layer, and transforms the input based on trainable param-

eters (weights w and biases b) within the layer and the layer activation function, which calculates

an output based on inputs, weights and biases. The purpose of training a neural network is to

"adjust" the network parameters by exposing the network to training data, such that they make

a generalized model of the problem that can be used to predict results on unknown data. [4]

CHAPTER 2. THEORETICAL BASIS 20

Figure 2.1: Example of a feed-forward neural network with an input layer, two hidden layers and
an output layer. Figure made through http://alexlenail.me/NN-SVG/index.html

Training Overview

Training a neural network is usually done using gradient-based optimization. The network weights

are initialized with small random values, which in itself will not lead to any meaningful repre-

sentation, however it functions as a starting point. Through a training loop, the weights are then

gradually adjusted based on feedback from the training. The gradient-based optimization loop

works by first sending a batch of training samples through the network, generating at first ran-

dom outputs. The results are then compared to the expected outputs and a loss is calculated

using a loss function, which gives an estimate of how accurate the predictions are. This loss is

then backpropagated through the network, updating the weights based on the gradient of the

loss over the network. This process is then repeated for as long as desired [4].

Backpropagation

Backpropagation is the algorithm used in gradient-based optimization to update the weights

for each step. In backpropagation the chain rule is applied to compute the gradient values of

the loss across the neural network. Starting with the final loss value from the output layer, the

algorithm works backwards through the hidden layers to the input layer. For each layer, the

chain rule is used to calculate how big of a contribution each node has in the loss value, and

CHAPTER 2. THEORETICAL BASIS 21

based on this each node can be adjusted accordingly [4].

Activation Functions

The activation function is used to calculate the output from a node based on the node inputs.

There are many different activation functions for different applications, though perhaps the

most commonly used function currently is the ReLU or rectified linear unit function. ReLU

makes all negative outputs 0, while keeping the positive outputs unchanged.

ReLU(x) = max(0,x) (2.9)

ReLU is a linear activation function that is computationally simple to implement, only re-

quiring a max() function. Additionally, linear models are easier to optimize [8]. Vanishing gra-

dients are less of a problem in a linear model, as the gradient is proportional to the node activa-

tions [7].

Softmax is an activation function that transforms the input values into values between 0 and

1 that sum up to 1, representing a probability distribution. Softmax is often used for classifica-

tion of mutually exclusive classes in the final layer of a network, such as classifying the number

in an image. The softmax function is given by:

Softmax(~z)i = ezi∑K
j=1 ezi

(2.10)

Where~z is the input venctor, zi the elements of the input vector, K the number of elements in

the input vector, and e the exponential function. The function applies the exponential function

to each element of the input vector, and normalizer them by dividing by the sum of exponentials

[8].

Sigmoid is an activation function that maps all inputs to be between 0 and 1, using an s-

shaped curve. Negative values are mapped between 0 and 0.5, and positive values between 0

and 1. The sigmoid function is given by:

CHAPTER 2. THEORETICAL BASIS 22

σ(x) = 1

1+e−x (2.11)

Tanh is an activation function that is similar to the sigmoid function, however instead of

mapping values between 0 and 1, the tanh function maps values between -1 and 1. The tanh

function is given by:

tanh(x) = ex −e−x

ex +e−x (2.12)

Loss Function

The loss function calculates the error between the predicted output and expected output. The

choice of loss function plays a big role in training as it calculates the errors acted upon during

backpropagation. Loss functions can be split into two main classes, regression functions and

categorical functions.

Regression loss functions are used for predictive models predicting real-valued continuous

values. The most widely used regression loss function is MSE, or mean squared error loss. MSE

is given by:

MSE = 1

n

n∑
i=1

e2
i (2.13)

Where ei is the error of prediction i and n the number of data points in the prediction. The

MSE value is always positive, and higher errors will be punished harder, as a result of squaring

the error [8].

Categorical functions are used for classification problems, calculating the difference be-

tween probability distributions. The categorical cross-entropy loss function is given by:

C E =−
n∑

i=1
yi log ŷi (2.14)

Where ŷi is the i-th output value, yi the corresponding target value, and n the number of ele-

ments in the output [8].

CHAPTER 2. THEORETICAL BASIS 23

Overfitting

A common problem with neural networks is overfitting. This is when the model learns the train-

ing data, instead of creating a generalized model that has learned the underlying problem. A

clear sign of overfitting is a model with very good training results, but that performs signifi-

cantly worse on separate testing data [8].

There are various techniques for minimize overfitting, referred to as regularization methods.

One common regularization method is parameter norm penalties, which attaches weights to

larger weights. This penalizes networks with larger weights, which are often a sign of overfitting.

Common norm penalties are the L1 and L2 vector norm penalties.

Another regularization method is dropout. For each training loop, a given amount of the

nodes are blocked, so that the network has to train without them. This makes it harder for

weights to be overfitted to the training data, as the model is essentially forced to train a variety

of networks. During inference all nodes are active to take advantage of the more generalized

model [8].

Dataset splitting

Another way to help testing and preventing overfitting is by splitting the dataset into different

sets. Data is usually split into three sets, a training set, a validation set, and a testing set. The split

usually heavily favours the training set, for example 70/15/15, 80/10/10, and so on for training/-

validation/testing.

• The training set is usually the largest part of the data so that training can be performed on

as much data as possible. This set is the one used for actual training of the models.

• The validation set is used to test the performance of a model after each epoch during

training. It is important that this data is not used for the actual training, as that would

increase the risk of overfitting.

• Lastly, the testing set is used for testing the model after it has been trained. This set should

CHAPTER 2. THEORETICAL BASIS 24

be different from the training data, so that the generalization power of the model can be

tested.

2.4.2 Convolutional Neural Networks

Convolutional neural networks, or convnets, are neural networks that aim to learn high-order

features in the data through convolutions. The convolution operation extracts information by

convolving a kernel or filter over the input, which is usually in the form of a two- or three-

dimensional image (grayscale, rgb). The convolution kernel is usually a f ∗ f filter for 2D images

or f ∗ f ∗3 for 3D-images (rgb), with each element of the kernal determined by trainable weights

and biases [4]. Figure 2.2 shows an example of the convolution operation, starting in the top-left

corner.

Figure 2.2: Convolution operation on top-left corner, 6x6 input, 3x3 filter, stride 1, no padding

The convolution operation generates an output that is generally smaller than the input. It is

possible to correct for this by padding the input before the convolution. During convolution it

is also possible to choose how many steps the kernel shifts horizontally and vertically for each

step, this is called the stride [4]. In general, the output dimensions are of the form:

Out put si ze = [
n +2p + f

s
+1] x [

n +2p + f

s
+1] (2.15)

CHAPTER 2. THEORETICAL BASIS 25

Where n is the input dimension, p is the padding, f is the kernel size, and s is the stride.

There are two main types of layers in a convnet, convolution layers and pooling layers [4].

In the convolution layer, convolution operations are performed on the input data, with the

output a feature map based on the trained weights of the filter. Unlike fully connected layers

in classic neural networks, the aim of the convolution process is to extract local patterns from

the input. These patterns have properties that make them ideal for problems such as computer

vision problems. The patterns are translation invariant, which means that any patterns learned

during training can be recognized anywhere in the input data. A cat is still a cat, independent

of where in an image it is located. Convnets can also learn spatial hierarchies of patterns, for

example one layer can learn patterns such as edges, with the next layer learning larger patterns

based on these edges, and so on. This makes convnets great at learning more abstract visual

concepts, such as detecting fish in an image. [4]

In addition to convolutional layers, convnets also have pooling layers. There are different

types of pooling layers, but the general idea is to reduce the size of the inputs by pooling together

smaller sections of the input. For example, a max pooling layer with a 4∗4 input and 2∗2 filter

with stride 2, will result in a 2∗2 output, with each value the max value from the 4 corners of the

input. Figure 2.3 shows an example of this. There are other pooling layers as well, such a min

pooling or average pooling that calculates the minimum and average values, respectively [4].

Figure 2.3: Max Pooling Layer, 4x4 input, 2x2 max filter, stride 2

The pooling layer improves the computation speed by reducing the input size, however an

additional benefit is that it allows the model to become approximately invariant to small trans-

CHAPTER 2. THEORETICAL BASIS 26

lations in the input, which makes the network more robust to small changes [8].

By successively layering convolutional and pooling layers, the aim is to extract higher level

features from layers of lower level features. For example, locating and classifying objects in an

image. The network architecture of a convolutional network is therefore important for any given

task. Object detection is an area with a lot of research, with many proposed network architec-

tures. For this work, Yolov4 is used.

Yolov4

Yolov4 is a state-of-the-art single-stage object detection model. It uses a pre-trained network

to detect and classify objects in a frame. The output from the detection is a set of bounding

boxes and confidence scores of the detected objects in the frame. Yolov4 can be broken into

three parts. First stage is the backbone, which is a pre-trained feature extraction network (CSP-

Darknet53). Second is the neck (PAN, SAM), which is used to collect feature maps from different

stages. Finally is the head (Yolov3), which computes the bounding boxes and classification con-

fidences of detected objects [2].

2.4.3 Recurrent Neural Networks

Recurrent neural networks (RNNs) introduce memory to the neural network by allowing previ-

ous outputs to be used as inputs and through an internal hidden state. RNNs are mainly used

for handling sequential data, such as time series data, natural language processing problems,

and speech recognition [4].

An RNN consists of cells, where the inputs to each cell is a concatenation of the new input

and the previous output. This allows the network to memories from previous steps. In short,

the goal of a recurrent neural network is to memories past inputs that have an effect on the

next output, and use that in the prediction of the next output. For example, predicting the next

step in a time series requires knowledge about the previous inputs. The classic RNN is able to

memories timesteps in the short term, however the further back in time there is an increasingly

high chance the information will be lost. This is due to the vanishing gradient problem, where

the effect of previous timesteps become increasingly small. As mentioned the input to a cell

CHAPTER 2. THEORETICAL BASIS 27

is a concatenation of the new input and the output from the previous cell, which means the

degree to which each of the previous cells contribute diminish the further back in time it is.

This problem is addressed in the long short-term memory (LSTM) recurrent neural network [4],

which is a variation of the classi RNN.

LSTM

Figure 2.4: LSTM Cell. Image by Guillaume Chevalier, distributed under CC BY-SA 4.0 license.
URL: https://commons.wikimedia.org/wiki/File:The_LSTM_Cell.svg

The idea behind the LSTM cell is to have a cell state that carries information through each cell

with minimal interaction, such that information from cells far behind in time has a chance of

passing through. The interactions between the cell state and inputs to the cell are done through

gates [18].

The first gate is the forget gate. This gate is used to determine what information should be

removed from the cell state. A concatenation of the input and the hidden state from last cell are

sent through a sigmoid activation function, resulting in a value between 0 and 1. The degree

to which information is kept or removed from the cell state depends on the output value from

this gate, with 0 being forget all, and 1 keep all. The cell state is updated through a pointwise

multiplication with the forget gate’s output [18]. The formula for the forget gate is:

CHAPTER 2. THEORETICAL BASIS 28

ft =σ(W f xt +U f ht−1 +b f) (2.16)

With W f and U f the weight matrices, b f the bias vector, xt the input and ht−1 the previous

hidden state (output) [4].

The next two gates handle which new information should be added to the cell state. The

input and hidden state are used as inputs to both a sigmoid and a tanh activation function,

and the outputs are multiplied with each other and added to the cell state. The tanh function

attempts to extract helpful information from the input and previous hidden state, while the sig-

moid function decides which of the tanh outputs to add to the cell state [18]. The two functons

are:

it =σ(Wi xt +Ui ht−1 +bi) (2.17)

kt = tanh(Wk xt +Uk ht−1 +bk) (2.18)

With Wi , Wk , Ui and Uk the weight matrices, bi and bk the bias vector, xt the input and ht−1

the previous hidden state (output) [4]. The updated cell state is then given by:

ct = it kt + ct−1 ft (2.19)

The final gate is the output gate, which calculates the output and next hidden state. First, the

previous hidden state and input values go through a sigmoid function. The updated cell state

is sent through a tanh function, as well as to the next cell. The output of the tanh and sigmoid

functions are then multiplied using a pointwise operator, giving the new hidden state of the cell.

This hidden state is given as the output from the cell, and it is sent to the next cell [18]. The

formulas for the output gate and next hidden state is:

ot =σ(Wo xt +Uoht−1 +bo) (2.20)

CHAPTER 2. THEORETICAL BASIS 29

ht = otσ(ct) (2.21)

With Wo and Uo the weight matrices, bo the bias vector, xt the input and ht−1 the previous

hidden state (output) [4].

Chapter 3

Materials and methods

This chapter gives an overview of all the materials and methods used for this thesis.

3.1 Datasets

One of the main challenges for this thesis was getting suitable datasets to work with. A dataset

would need enough video material of fish on a moving conveyor belt for both training of net-

works and testing of developed solutions. Through early research no suitable publicly available

dataset was found, and it was decided that a new dataset would be created. This also has the

benefit of using video material from actual locations were the solution can be deployed in the

future.

To gather video material, a PTZ camera was mounted by Stranda Prolog at one of the fish

processing facilities using their equipment. The camera was mounted above an active conveyor

belt, and through remote control the camera could be controlled to get a suitable view of the

conveyor belt. The main goal when choosing the camera position was to get as much of the con-

veyor belt in view of the camera, without capturing areas where no fish would pass. In the video

materials used the conveyor belt runs horizontally through the camera view, covering most of

the video area.

30

CHAPTER 3. METHODS AND MATERIALS 31

Figure 3.1: Example frame of fish on the conveyor belt

3.1.1 Object Detection

With the video material gathered, the next step was to create a dataset for object detection

(Yolov4). Yolov4 requires a dataset with a set of images and corresponding labels (bounding

boxes) of the objects in the images. First step in this process was to extract images from the

videos, which was done with a simple OpenCV script that extracted frames from the video at

a given interval. To prevent overfitting, frames were extracted every two seconds, with varying

amounts of fish in the frames. In total 500 frames were extracted to be used for dataset creation,

refered to as subset 1.

In addition to detecting fish, this thesis also attempts to detect damages to fish. Therefore,

in addition to images extracted at a fixed interval from training videos, a curated video where

damage is present was also created. This video contains video sections where one or more fish

is damaged, compiled from the training videos. From this video, a further 400 frames were ex-

tracted, with at least one instance of damage in each frame, refered to as subset 2.

With frames extracted from the videos, the next task was to manually label the images. This

can be a time consuming task, but with the aid of tools the process is fairly simple. For this

thesis, the tool LabelImg was used, which is a graphical labeling tool that can automatically

CHAPTER 3. METHODS AND MATERIALS 32

Figure 3.2: Labelling test data using LabelImg

save created labels in the correct format for Yolov4. Yolov4 requires the labels for an image to be

in a text file with the same name as the image file, with each label on a seperate line in the file.

The labels are on the form [ID, x, y, w, h], where ID is the object ID (0 for fish, 1 for damage), x

and y are the normalized coordinates of the top-left corner of the bounding box, and w and h

are the normalized width and height of the bounding box. In total, 8979 fish and 628 instances

of damage was labeled in the 900 images of the dataset, as can be seen in table 3.1.

Subset 1 Subset 2 Total

Images 500 400 900

Fish 4591 4388 8979

Damages 147 481 628

Table 3.1: Overview of number of fish and damages in the dataset

3.1.2 Motion Prediction and Classifying Dead / Alive Fish

The second dataset required for this thesis was a dataset to train recurrent neural network mod-

els for both motion prediction, and for classifying whether or not fish are alive (moving). Both

of these networks require data in the form of sequences of bounding boxes from subsequent

CHAPTER 3. METHODS AND MATERIALS 33

frames from individual fish. This would have been very time consuming to manually create

from scratch, so a different approach to creating the dataset was adopted.

As explained further in 5.2.1, the first solution derived used a kalman filter to perform mo-

tion prediction, which worked well enough to successfully track most fish correctly. Thus, this

solution could be used to automatically create data based on actual detected bounding boxes.

With a slightly modified code, each of the tracked fish also stored all the bounding boxes,

and upon the death of a track the entire bounding box history was saved to a file, with each

bounding box on the form [f, x, y, w, h], where f is the frame number, x and y the normalized

coordinated of the top-left corner and w and h the width and height of the bounding box.

In addition to storing the data, a video with the bounding boxes was created, so that the data

could be checked for false data and incorrect tracking. By manually going through the video

frame by frame, any incorrect or incomplete data could be removed. Examples of this include

identity switches, false detections, and duplicate detections with incomplete data. Data that

was partially broken was cleaned by removing the broken parts, so that they could be used in

the dataset as well.

Additionally, to prepare the data for classifying dead and alive fish, the data was also grouped

into two subsets based on whether or not the fish were moving, indicating that they are alive. In

total, 89 fish were tracked, with between 33 and 477 frames (around 0.5 to 8 seconds) of bound-

ing boxes depending on how long the fish were in the video (or how intact the tracks were).

Dead Fish Alive Fish Total

Fish 53 36 89

Bounding boxes 18627 7474 26101

Table 3.2: Overview of dataset for motion prediction and dead / alive classification

As explained further in 5.2.2, the inputs to the networks are of a fixed length, such as 10 or 20

frames of bounding boxes. Thus, the data was split into sections such that each possible fixed

length section became one data input. To allow for flexibility during development and testing,

the dataset is stored as 89 individual files with the full track history of the fish, and the splitting

is done at run-time depending on network requirement.

As can be seen in 5.4, this also allows for flexibility in what form the data is used. The network

CHAPTER 3. METHODS AND MATERIALS 34

for classifying fish state uses the difference between subsequent frames, for example, which can

be created from the same dataset during run-time.

3.1.3 Test Videos

Two test videos were used for testing the developed solutions. It was important that these videos

were long and varied enough to get good data during testing, such that potential weaknesses

could be found. In these videos there are varied amount of fish at any given time, as well as both

alive and dead fish. Table 3.3 gives an overview of the test videos.

Test Video 1 Test Video 2 Total

Length (m) 12:00 20:00 32:00

FPS 60 60 60

Fish 385 1125 1510

Fish per minute 32.1 56.3 47.2

Damages 20 43 63

Dead fish 289 836 1125

Alive fish 96 289 385

Table 3.3: Overview of test videos

3.2 Object Detection

For object detection, the state-of-the-art Yolov4 convolutional neural network architecture is

used [2]. Yolov4 uses the darknet framework, which is an open source neural network frame-

work written in C and CUDA. It supports CPU and GPU computations, and through GPU com-

putation with CUDA enabled graphics cards is a fast framework for training object detection

models [19].

For training, the model was configured based on the directions given in [2], and trained using

an NVIDIA RTX 2080Ti. See section 5.1.1 for the training results.

CHAPTER 3. METHODS AND MATERIALS 35

Figure 3.3: Object detection machine learning pipeline

After the model was trained to detect fish and damage, it was deployed using OpenCV’s DNN

module, with CUDA backend enabled to fully utilize the power of the graphics card [17]. CUDA

is a parallel computing platform and programming model made by NVIDIA, to support general

computing on CUDA-enabled GPUs. It can dramatically increase the performance of compute

heavy models, such as the Yolov4 CNN model used for object detection in this thesis.

3.3 Motion Prediction and Classifying Dead / Alive Fish

TensorFlow1 was used for creating the models used in motion prediction and classifying dead

/ alive fish. TensorFlow is an end-to-end open source platform for machine learning, with a

focus on easy model building through high-level APIs like Keras2. Keras is focused on simple

and consistent APIs that are clear and human-readable, with the goal of minimizing time spent

on boilerplate, and more time spent on implementing and testing ideas . This is ideal for the

adopted methodology of rapid iterations through experimentation.

Figure 3.4: Machine learning pipeline for motion prediction and classifying dead / alive fish

1TensorFlow: https://www.tensorflow.org/
2Keras: https://keras.io/

CHAPTER 3. METHODS AND MATERIALS 36

Both the models were set up as sequential models using Keras’ LSTM and Dense (fully con-

nected) layers. The motion prediction models takes a sequence of bounding boxes as input and

outputs a predicted bounding box for the next steps. The network has an input LSTM layer,

connected to a fully connected dense layer with 4 output units. Both layers use ReLu as the

activation function, with a recurrent dropout of 0.5 in the LSTM layer to limit overfitting.

Figure 3.5: Motion prediction network model graph

To perform the training, the prepared dataset was parsed so that the full training data in-

cluded every sequence of bounding boxes and ground truths from the full bounding box histo-

ries of the 89 fish. 20% of the dataset was set aside for testing after the model was trained, with

the remaining data used for training. Using a sequence length of 10, the training data consisted

of 11,873 input sequences. This data was then split into testing and validation data with a 80/20

split, and used to train and validate the models. Results from different model sizes can be found

in section 5.2.2

The model used to classify if fish are dead or alive is largely based on the same model used

to predict motion, with a few notable differences. First of all, instead of using a sequence of

bounding boxes, the sequence uses the difference between the bounding boxes and centroids

from frame to frame, as well as the aspect ratio. The other notable difference is the fully con-

nected layer, which consists of 2 units, each with the probability of the sequence belonging to

the category dead or alive. For classificaton problems, softmax is the most suited activation

function, thus that is used here.

CHAPTER 3. METHODS AND MATERIALS 37

Figure 3.6: Dead / alive classification network model graph

TensorFlow Light3 was used to deploy both models. TensorFlow Lite is a deep learning

framework for on-device inference, and is designed to improve inference speed without sac-

rificing accuracy.

3.4 Programming Language

The programming language used for the thesis was Python. Python is a high-level general-

purpose programming language, and is among the most popular programming languages, es-

pecially within machine learning and data science4. It supports a range of frameworks and APIs

for machine learning, such as TensorFlow and Keras.

3.5 Hardware

The development and testing was done using an Alienware Area-51 desktop. The specifications

are described below, though during testing only one of the GPUs were used.

3TensorFlow Lite: https://www.tensorflow.org/lite
4https://www.python.org/

CHAPTER 3. METHODS AND MATERIALS 38

Processor (CPU) AMD Ryzen Threadripper 2950X

RAM 64GB 2667 MHz DDR4

Graphics Card (GPU) 2x NVIDIA GeForce RTX 2080 Ti

VRAM 2x 11GB GDDR6

Operating System Windows 10 Education

Table 3.4: Hardware specifications

Chapter 4

Implementation

This chapter will give a detailed overview of the proposed solution, with descriptions of the

different parts of the implementation. It will cover how multiple object tracking (MOT) and

deep learning was implemented in order to perform fish counting, and how the fish inspection

parts of the solution are connected to the MOT fish tracking.

4.1 Solution Overview

The overview diagram in figure 4.1 shows how the developed solution is structured for each

frame of the video. There are four main parts or modules to the implementation, each consti-

tuted of various smaller parts. First, each frame is sent to module A, which is responsible for the

first stage of the MOT algorithm: object detection. This is done with the trained Yolov4 model,

deployed using OpenCV’s DNN module with CUDA backend enabled. The resulting object de-

tections, if any, are then classified and split into either fish detections or damage detections.

The fish detections are then sent to module B and damage detections to module C, which are

both responsible for the object tracking part of the MOT algorithm. Section 4.1.2 goes into detail

about the object tracking, with details on how the two modules work, as well as the key differ-

ences between them. Module B and C are linked through a function that assigns each detected

damage uniquely to a fish track for damage inspection. Classifying the state of a fish (dead /

alive) is done as a step in the fish tracking module, thus both of these inspection metrics are

stored in the fish tracks. Module D handles the actual counting and inspection. As fish tracks

39

CHAPTER 4. IMPLEMENTATION 40

pass an imaginary line in the frame, they are counted as a detected fish, and the inspection

metrics are logged.

Figure 4.1: Overview diagram of the developed solution

4.1.1 Object Detection (A)

The first step of the object detection is to extract frames, which is done using OpenCV. Through-

out testing frames were extracted from recorded videos, however this can easily be adapted to

extract frames from a connected camera device in real-time. The same OpenCV methods are

used for both, thus no change in the code is necessary beyond changing to reading from camera

instead of file.

Next, the extracted frame is used as input in the Yolov4 object detection model. The training

results for the model are described in section 5.1.1. The model is deployed with the OpenCV

DNN module using CUDA as the backend, which enables it to take full advantage of the CUDA-

enabled GPU for better performance. The output from the detection model is a set of bounding

boxes and the corresponding classes and confidence scores. These are used to classify if the

CHAPTER 4. IMPLEMENTATION 41

detections are fish or damages, as well as to calculate the centroid of the objects. The bound-

ing boxes and centroids are then sent to module B and C, where they are matched against the

existing tracks or established as new tracks.

4.1.2 Object Tracking (B + C)

The next part of the MOT algorithm is the object tracking part, which consists of three stages:

motion prediction, affinity calculations and association. Both module B and C largely use the

same methods for these stages, so this section will describe the methods generally, diverging

only where there are differences between the modules.

Motion prediction is the main stage where the two modules differ. The predictions for dam-

age tracks (module C) are calculated using kalman filters, which predict the next centroid of the

objects. Fish tracks (module B) on the other hand use a recurrent neural network (LSTM) model

to predict the bounding boxes of the objects.

When using kalman filters, motion prediction consists of two main steps. First, the next cen-

troid is predicted based on the internal state of the filter. Then the next step updates the internal

state based on the error between the predicted centroid and actual centroid. This step requires

the actual centroid to be known, thus this step is performed after the affinity and association

stages. See section 2.2 for more details on the kalman filter.

The LSTM motion prediction model consists of a single step, the prediction. The model

input is a fixed-length sequence of the previous bounding boxes of the object. At the birth of

tracks, this is zero-padded to match the required length. Section 5.2.2 details the accuracy and

accuracy loss by using zero-padding. The output from the model is the predicted next bounding

box, from which the predicted centroid can also be calculated.

The next stage of the MOT algorithm is the affinity stage. In this stage the aim is to calculate

a score or cost for all the possible pairs of detection from the object detection stage and predic-

tions from the motion prediction stage. The cost measures how low the distance between all

the pairs of centroids are, using the euclidean distance. Distance between centroids is the cost

metric for both fish and damage tracking. The result from this stage is a cost matrix, which is

CHAPTER 4. IMPLEMENTATION 42

used in the association stage.

The final stage is the association stage, where the aim is to pair detections to the correct

tracks. This is accomplished using the Hungarian algorithm, which is an assignment algorithm

that minimizes the overall cost of assignments. The cost matrix is used as the input, with de-

tection/prediction pairs as the output. The matches are then used to update the tracks with the

new detections, and to establish new tracks for detections not matched to any tracks. If a track

is not matched to a detection, the prediction is used as the actual value. However, if too many

frames have passed without a match the track is assumed to have disappeared from the frame,

and the track is removed.

Additionally, one of the issues that arose during testing was the occasional duplicate fish

track. To address this there is a function that removes the shortest out of two tracks if the overlap

between them is too large for too many frames. The IoU metric is used to calculate the overlap.

4.1.3 Classifying Dead / Alive Fish (B)

To classify whether or not a fish is alive, an LSTM model is used to detect movement. When fish

move the bounding boxes tend to change more frequently and to a bigger degree than fish lying

still, which is utilized to classify if fish are dead or not. The LSTM model input is a fixed-length

sequence of the difference in bounding boxes and centroids from frame to frame, as well as the

aspect ratio, all calculated from the bounding box history used in motion prediction. The output

is the confidence that the fish is moving, which is used to classify if the fish is alive or not. If the

confidence is high enough for a long enough period, the fish is classified as alive.

4.1.4 Assigning Damage To Fish

For damage inspection, each detected damage is associated with a fish through an assignment

method. For each frame where one or more damage tracks are present, a cost function is used

to determine which fish is closest to the damage. This cost function is a combination of IoU and

euclidean distance between damage and fish centroids. The smallest cost indicates the fish that

is closest to the damage. If a fish track is marked as the closest for a given number of frames, it is

CHAPTER 4. IMPLEMENTATION 43

marked as damaged, and the damage track is marked as counted and can no longer be assigned

to any other fish. This way, if the fish flips over or the damage is no longer detected, the fish is still

marked as damaged. If the fish track disappears before being counted (as a result of incorrect

tracking, for example), the corresponding damage track is marked as not counted, so that it can

be assigned to a new fish.

4.1.5 Counting and Inspection (D)

The final module handles the counting of fish and logs the inspection data. As a fish track passes

a fixed line in the frame, the fish counter is increased by 1, the inspection data is logged, and

the track is marked as counted. Additionally, tracks that originate behind the line are marked

as such, and should they pass the line backwards and then forwards again, they will not be

counted.

Figure 4.2: Example output frame. Blue tracks are not counted yet, red have been counted, and
green entered the frame from behind the counting line

Chapter 5

Experiments and Results

This chapter describes the experiments conducted for the different parts of the solution, and

details the results and findings from the experiments.

5.1 Object Detection

The first goal of the project was to develop a dataset and train an object detection model to de-

tect fish and damages in video frames. As described in section 3.1.1, the dataset was prepared

through manually labeling objects, which resulted in 900 images, with a total of 8979 labeled

fish and 628 labeled instances of damage. To train the yolov4 model the instructions and rec-

ommendations from the official yolov4 github page were followed 1, resulting in the following

configuration:

batch 64

subdivisions 16

max batches 6000

network size width = 416, height = 416

classes 2

filters 21

Table 5.1: Yolov4 configuration

1https://github.com/AlexeyAB/darknet#how-to-train-to-detect-your-custom-objects

44

CHAPTER 5. EXPERIMENTS AND RESULTS 45

5.1.1 Yolov4 training results

Figure 5.1: Training results from Yolov4 object detection

Figure 5.1 shows the training results from the model training, with the best results after around

1800 iterations. Testing the model on testing videos shows similarly good accuracy, indicating

that the model has been able to generalize from the training data. Figure 5.2 depicts the detected

bounding boxes from two example frames that have relatively many fish, including instances of

damage in the second example.

CHAPTER 5. EXPERIMENTS AND RESULTS 46

(a) Example One

(b) Example Two

Figure 5.2: Example of fish and damages successfully detected in more crowded scenes

CHAPTER 5. EXPERIMENTS AND RESULTS 47

5.1.2 Deployment using OpenCV w/CUDA

After completed training, the next step was to deploy the model. To take full advantage of the

machine hardware described in 3.5, the model was deployed using OpenCV’s DNN module with

CUDA backend enabled. To evaluate the performance, a series of tests were performed to find

the average inference time.

Test Run Run 1 Run 2 Run 3 Run 4 Average

Inference

time (ms)

11.88 12.02 11.92 11.92 11.94

FPS 84.18 83.19 83.89 83.89 83.75

Table 5.2: Yolov4 inference times using OpenCV with CUDA backend on test computer

The results show that the object detection runs consistently above 80 frames per second on

the test machine, which is above the 60 frames per second of the test video. This shows that

the object detection model can run in real-time with a powerful GPU when deployed using the

OpenCV DNN module.

5.2 Motion Prediction

The next stage of development was to find the best motion prediction model for the project. The

two main methods looked at for this were the use of kalman filters to predict centroid position

and an LSTM model to predict bounding boxes. The kalman filter did not require any training

data, thus experiments to test how well it performs were conducted first. The aim was to dis-

cover how suited the kalman filters were for this implementation, and should the results be good

enough it was planned that this method could be used to gather data to train the LSTM model.

5.2.1 Kalman Filter

Tests of the kalman filters for motion prediction were conducted on the testing videos described

in section 3.1.3. The chosen affinity cost function was the euclidean distance between cen-

troids, and the hungarian algorithm was used for the association stage. The results were mea-

CHAPTER 5. EXPERIMENTS AND RESULTS 48

sured using a number of metrics: fish count is the total amount of counted fish in the video,

false positives measures how many times fish were measured more than once, false negatives

measure how many fish were not counted, identify switches measure how many times the iden-

tity between two fish were switched, fragmented tracks measure how many times a track was

broken and then restarted again as a new track, and total tracks measure the actual number of

tracks started. Total tracks also include tracks that were present for only a few frames and other

incorrect tracks, thus this is expected to be higher than the number of counted tracks (fish).

Test Video Fish Count False Posities False Negatives Identity Switches Fragmented Tracks Total Tracks

Video One 390/385 (101.3%) 7 (1.8%) 2 (0.5%) 14 21 499

Video Two 1146/1125 (101.9%) 41 (3.6%) 17 (1.5%) 75 69 2076

Combined 1536/1510 (101.7%) 48 (3.2%) 19 (1.3%) 89 90 2575

Table 5.3: Test results with kalman filters for motion prediction

The results from the test videos show that 1491 out of 1510 fish were correctly counted

(98.7%), however due to the amount of false positives the actual count was higher than the ex-

pected count (101.7%). This is in large part down to identity switches and track fragmentation

occurring while the fish passes the line used for counting.

(a) Frame 1 (b) Frame 8 (c) Frame 40

Figure 5.3: Example of a fish being counted twice due to track fragmentation

Figure 5.3 shows an example where a fish is counted twice due to track fragmentation. After

frame 1 the track was momentarily lost, and a new track was established due to the next de-

tection being too far away from the previous one. In the following frames both tracks alternate

CHAPTER 5. EXPERIMENTS AND RESULTS 49

being the closest to the new detections, so that both tracks were moved through the counting

line.

(a) Frame 1 (b) Frame 17 (c) Frame 34

Figure 5.4: Example of a fish not being counted due to identity switching

Figure 5.4 shows an example where a fish is not counted due to identity switching. After

frame 1 there is an identity switch where the track of the already counted fish (red 1288) is

switched to the one not counted. However, as the track has already been counted it will not

be counted again, thus the other fish is not counted when it passes the counting line.

The majority of issues occurred in crowded sections, especially with alive fish, however the

motion prediction and tracking using kalman filters proved very stable in sections without a

lot of fish. Figure 5.5 shows an example where four fish are tracked and counted, without any

identity switches, fragmented tracks, or other issues.

(a) Frame 1 (b) Frame 158 (c) Frame 395

Figure 5.5: Example of fish successfully tracked and counted

CHAPTER 5. EXPERIMENTS AND RESULTS 50

5.2.2 Recurrent Neural Network (LSTM)

The next set of experiments revolved around developing and testing LSTM models for motion

prediction, and comparing the results to kalman filters.

Creating Dataset

Creating a dataset for motion prediction manually would require a lot of time, thus it was tested

if the previously developed solution using kalman filters could be used to automatically create

the dataset from test data. As described in section 5.2.1 there were some issues with identity

switching and fragmented tracks, but largely the tracks were intact for the duration they were in

frame. Thus, the code was altered to track all the bounding boxes for each track, and upon track

death the data was written to a text file with the track id as file name.

Figure 5.6: Example data generated using kalman filter tracking

Each data point was on the form [frame id, x, y, h, w], where frame id is the frame number in

the video, x and y the normalized top-left point of the bounding box, and h and w the normalized

height and width of the bounding box. In addition to storing the data, a video was recorded

at the same time so that manual inspection could be used to remove any faulty tracks. This

method proved to be successful and saved many hours of manual work, resulting in the datasets

described in section 3.1.2.

CHAPTER 5. EXPERIMENTS AND RESULTS 51

LSTM network architecture

The next challenge was to develop a suitable network architecture for motion prediction. The

two main criteria for a good architecture were speed and accuracy, so a series of experiments

were conducted to find the right compromise. First test looked at a simple network consisting of

two layers, an LSTM layer as the input layer and a fully connected output layer for the predicted

bounding box. The input sequence consisted of 10 subsequent bounding boxes, and to find the

optimal number of hiden units in the LSTM layer different number of units were tested. The

fully connected layer had 4 outputs for the bounding box, with ReLu as the activation function.

Figure 5.7: Motion prediction network model graph (10 hidden units)

The metrics used to test the performance of the networks were average inference time in

milliseconds (Time), the IoU between predicted and actual bounding boxes (IoU), and the eu-

clidean distance in pixels between the predicted and actual centroids (Dist.).

Units 1 5 10 30 100 300 500

Time 4.2 ms 4.3 ms 4.3 ms 4.4 ms 4.5 ms 5.1 ms 6.3 ms

IoU 39.5 % 94.3 % 94.3 % 94.2 % 93.8 % 94.1 % 93.9 %

Dist. 117.2px 4.4 px 4.3 px 4.6 px 5.0 px 4.6 px 4.7 px

Table 5.4: Results for different LSTM network sizes

The results in 5.4 show that the difference in accuracy is quite small for the different number

of hidden units (excluding 1), which indicates that the small models learn as well as the larger

CHAPTER 5. EXPERIMENTS AND RESULTS 52

models. In fact, the larger models performed slightly worse, which could indicate that they were

overfitting to the training data. Additionally, there is a slight increase in inference time with

higher number of units due to the networks being more complex, thus 30 hidden units seem to

be the optimal size for this implementation.

The input data was zero-padded for the first 9 sequences, meaning that predictions were

done with between 1 and 9 true bounding boxes until 10 true bounding boxes had been recorded.

To test the impact this had on accuracy for the start of a track, a separate test was conducted us-

ing the LSTM model with 30 hidden units.

True Bounding Boxes 1 2 3 4 5 6 7 8 9

IoU 83.0 % 85.4 % 85.7 % 81.2 % 91.1 % 93.0 % 93.2 % 93.5 % 93.9 %

Distance 25.7 px 7.8 px 7.9 px 8.0 px 6.3 px 7.9 px 5.1 px 6.7 px 6.6 px

Table 5.5: Testing results of zero-padded sequences (sample size = 18 for each amount of bound-
ing boxes)

The results in table 5.5 show that the accuracy is lower, especially for the first prediction.

However, the accuracy is still relatively high, and the accuracy increases rapidly as a few more

bounding boxes are added.

Deployment using Tensorflow Lite

To increase the performance of the model, tests were conducted using TensorFlow Lite to de-

ploy the model. TensorFlow Lite is a deep learning framework for on-device inference, and is

designed to improve inference speed without sacrificing accuracy. To evaluate this, tests were

conducted to check how big of an inference speed improvement was possible, and if that would

affect the accuracy. The models were converted to TensorFlow Lite models using built in func-

tions, and run through the same tests as the TensorFlow models.

CHAPTER 5. EXPERIMENTS AND RESULTS 53

Units 1 5 10 30 100 300 500

Time 0.11 ms 0.11 ms 0.12 ms 0.13 ms 0.17 ms 0.56 ms 1.23 ms

IoU 39.5 % 94.3 % 94.3 % 94.2 % 93.8 % 94.1 % 93.9 %

Dist. 117.2px 4.4 px 4.3 px 4.6 px 5.0 px 4.6 px 4.7 px

Table 5.6: Results from different LSTM network sizes using TensorFlow Lite

Table 5.6 shows that the inference speed was an order of magnitude lower using TensorFlow

Lite for all but the largest models, however there were no detectable difference in the accuracy.

The speed increase is significant for real-time performance, thus TensorFlow Lite was used to

deploy the models.

Results

Finally, tests were conducted on the test videos to evaluate actual performance in the real ap-

plication. Affinity cost function was the euclidean distance between centroids, and association

algorithm was the hungarian algorithm.

Test Video Fish Count False Posities False Negatives Identity Switches Fragmented Tracks Total Tracks

Video One 385/385 (100.0%) 2 (0.5%) 2 (0.5%) 12 18 487

Video Two 1118/1125 (99.4%) 13 (1.2%) 20 (1.8%) 30 37 1795

Combined 1503/1510 (99.5%) 15 (1.0%) 21(1.4%) 42 55 2282

Table 5.7: Test results with LSTM model for motion prediction

Table 5.7 shows that both the number of identity switches and fragmented tracks were sig-

nificantly lower compared to the results from using kalman filters (5.3). The number of false

negatives is slightly higher using an LSTM model compared to kalman filters, however the num-

ber of false positives, identity switches and fragmented tracks were all significantly lower. The

total number of tracks was also lower, which in addition to the other metrics show that the LSTM

model was more stable than the kalman filters for motion prediction. Especially for fish inspec-

tion, the lower numbers of identity switching and fragmented tracks is significant, as it makes

methods that rely on correctly tracked fish more reliable.

CHAPTER 5. EXPERIMENTS AND RESULTS 54

Figure 5.8: Example of fish tracked successfully in crowded frame

Figure 5.8 shows an example of fish tracked successfully in a crowded scene. The green

bounding boxes are the predicted bounding boxes, while the blue are the detected bounding

boxes.

5.2.3 Kalman Filter vs LSTM Efficiency Comparison

The results from the previous sections showed that using an LSTM model for motion prediction

performed better than the kalman filter, however that did not take into account how efficiently

the different methods ran. An experiment was conducted to time the two methods, and the

results shown in table 5.8 clearly shows that kalman filters are more efficient. This seemed to be

especially clear in frames with a lot of fish. However, the overall difference was not significant

enough to discard the benefits of LSTM motion prediction, thus that was used going forward.

Kalman filters performed equally as well as LSTM models in scenes with few fish, thus a

decision was made to use kalman filters for the damage tracks. There are very rarely multiple

instances of damage at the same time, in any case not enough for the kalman filters to perform

worse than the LSTM model.

CHAPTER 5. EXPERIMENTS AND RESULTS 55

Test Video Fish / Minute Kalman filter LSTM Difference

Video 1 32.1 Fish 2.9 ms / frame 3.8 ms / frame +31 %

Video 2 56.3 Fish 6.5 ms / frame 9.1 ms / frame +40 %

Table 5.8: Comparison of time per frame between tracking with kalman filters and LSTM

5.3 Damage Counting

For counting damage, the first method tested was to use the same method as for fish counting,

to count instances of damage as the tracks passed the counting line. However, from the initial

tests (table 5.9) it became clear that there were some issues with this. For one, if a fish is moving

and only damaged on one side, the damage will be blocked from the camera if the fish flips. Sec-

ondly, if the damage is small or occluded by other fish as the damaged fish passes the counting

line, the damage might not be detected and counted as it passes the line.

To prevent partial damage tracks from not being counted, a method was devised where dam-

age was associated to a fish track, such that no matter if the damage track disappeared, the

damage would be counted as long as the fish track was intact as it crossed the counting line.

The idea behind the method was to calculate a cost between each damage track and each

fish track, and if the same fish was the closest for a given amount of frames, the damage was

associated with that fish. Two different cost functions were tested: the euclidean distance be-

tween damage and fish centroids, and a combination of the euclidean distance and the IoU of

the bounding boxes.

Association

Method

Total Count

(out of 43)

True

Positives

False

Positives

Missed

Damages

Correct

Assignment

False

Assignment

None 31 (72%) 30 (70%) 1 (2%) 12 (28%) N/A N/A

Dist 41 (95%) 38 (88%) 3 (7%) 5 (12%) 33 (80%) 8 (20%)

Dist*IoU 41 (95%) 38 (88%) 3 (7%) 5 (12%) 36 (88%) 5 (12%)

Table 5.9: Damage counting test results from test video 2 with different association methods

CHAPTER 5. EXPERIMENTS AND RESULTS 56

Table 5.9 shows that by associating damages to fish, the accuracy was improved significantly.

The number of missed damages was lower, in large part down to partial damage tracks also be-

ing counted. The tests also showed that a combination of euclidean distance and IoU matched

damage better to the correct fish. This was expected, as the damage isn’t necessarily closest to

the center of the damaged fish. Figure 5.9 shows an example where the damage is closest to an-

other fish. In this specific example the bounding box of the damage is also within the bounding

box of this fish, thus the damage was assigned to the incorrect fish. Conversly, 5.10 shows an

example where the damage is correctly assigned. The damage track is closer to another fish in

distance, however the bounding boxes do not overlap, thus the damage is assigned to the correct

fish.

Figure 5.9: Example of damage being associated with the incorrect fish. The damage track is
closer to fish "265" (left) and the bounding boxes overlap, thus the damage is incorrectly as-
signed to fish "265"

CHAPTER 5. EXPERIMENTS AND RESULTS 57

Figure 5.10: Example of damage being associated with the correct fish through a combination of
euclidean distance and distance. Fish "435" is closer in distance, however the damage bounding
box does not overlap, thus the damage is correctly associated with fish "433".

5.4 Classifying Dead / Alive Fish

In addition to damage detection, the other inspection method explored was a way to classify if

a fish was dead or alive. The assumption made for this problem was that fish moving by them-

selves are alive, and fish lying still on the conveyor belt were dead. Thus the method experi-

mented with for dead / alive classification, was to detect if a fish was moving or not, and assum-

ing that if a fish was moving it was alive, otherwise it was dead. Figure 5.11 shows an example of

a fish moving by itself.

CHAPTER 5. EXPERIMENTS AND RESULTS 58

(a) Frame 1

(b) Frame 21

(c) Frame 31

Figure 5.11: Example of a fish moving by itself

The proposed method for detecting movement utilized a similar network to the one used

for motion prediction, however instead of predicting the next bounding box, an LSTM network

was used to classify if a sequence of inputs came from a moving or still fish. Figure 5.12 shows

an example of the bounding box and centroid of a fish changing from frame to frame as the

fish moved by itself. In the following sections the process and results of developing models to

capture this movement are explained.

CHAPTER 5. EXPERIMENTS AND RESULTS 59

(a) Frame 1

(b) Frame 21

(c) Frame 31

Figure 5.12: Example showing the change in bounding box and centroid of a moving fish

5.4.1 Dataset Variations

The dataset used for this part of the thesis was the same dataset used for the motion predic-

tion training, however there were quite a few different possible ways to represent the data. The

motion prediction used a sequence of bounding boxes, however for classifying the sequences

based on movement it was theorized that the difference from frame to frame might perform

better. There were other representations of interest as well, thus a set of representations were

created and tested. Each representation has an abbreviation, which is used in tables to indicate

CHAPTER 5. EXPERIMENTS AND RESULTS 60

which representations were used.

• A - Aspect ratio: The ratio between width and hight of bounding box (w/h)

• Ad - Aspect ratio difference: Change in aspect ratio from frame to frame

• B - Bounding box: The normalized x and y coordinates of top-left corner and normalized

hight and with

• Bd - Bounding box difference: Change in bounding box from frame to frame

• C - Centroid: The normalized x and y coordinates of the object center

• Cd - Centroid difference: Change in centroid from frame to frame

5.4.2 Network Architecture

Figure 5.13: Network model graph (10 LSTM units) for classifying dead / alive fish

The network architecture experimented with was similar to the architecture used for motion

prediction, with the main difference being the fully connected layer. The final dense layer has

2 outputs, which are the confidence values that an input sequence belong to either the dead

or alive class. The activation function chosen for the network was the softmax activation func-

tion, which gives a probability distribution summing to 1 that the input belongs to the different

classes. The loss function chosen was sparse categorical crossentropy. For the experiments,

CHAPTER 5. EXPERIMENTS AND RESULTS 61

tests were done on networks with 10, 50 and 100 LSTM units. Initial results indicated a degree

of overfitting, thus a recurrent dropout of 0.5 was used for training the models.

5.4.3 Training Results

The first set of experiements looked at each of the dataset variations in turn, each on different

network sizes. Tables 5.10, 5.11 and 5.12 show the accuracy of the models when tested on the

testing split, including total accuracy as well as separate accuracy measurements for dead and

alive fish. The results were calculated both with a 50% and 90% confidence value, indicating

how certain the model has to be a sequence belongs to the moving category for it to count as

alive.

The results indicate that using the difference from frame to frame performed significantly

better for the bounding box and centroid data, however the reverse seemed to be true for aspect

ratio. In general, bounding box difference and centroid difference seemed to have the best ac-

curacy, followed by aspect ratio. The data also showed that with the exception of the bounding

box representation, classification was more accurate for dead fish on average. However, because

there are usually more dead than alive fish, this could still lead to more false positives on actual

test videos.

Total Accuracy Alive Accuracy Dead Accuracy

Dataset Variation 50% Confidence 90% Confidence 50% Confidence 90% Confidence 50% Confidence 90% Confidence

A - Aspect Ratio 79.4 % 79.8 % 58.2 % 9.2 % 85.3 % 99.5 %

Ad - Aspect Ratio Diff 77.5 % 80.0 % 52.1 % 10.7 % 84.6 % 99.4 %

B - Bounding Box 54.8 % 66.2 % 69.2 % 21.2 % 50.8 % 78.9 %

Bd - Bounding Box Diff 87.2 % 86.5 % 71.5 % 46.4 % 91.6 % 97.8 %

C - Centroid 64.0 % 78.7 % 69.6 % 8.8 % 64.7 % 96.0 %

Cd - Centroid Diff 86.4 % 86.5 % 71.6 % 44.8 % 90.5 % 98.4 %

Table 5.10: Test results using 10 LSTM units

CHAPTER 5. EXPERIMENTS AND RESULTS 62

Total Accuracy Alive Accuracy Dead Accuracy

Dataset Variation 50% Confidence 90% Confidence 50% Confidence 90% Confidence 50% Confidence 90% Confidence

A - Aspect Ratio 80.1 % 81.7 % 51.3 % 21.7 % 88.9 % 98.5 %

Ad - Aspect Ratio Diff 78.3 % 80.6 % 52.1 % 12.1 % 85.6 % 99.1 %

B - Bounding Box 52.7 % 58.0 % 70.1 % 59.5 % 47.6 % 57.4 %

Bd - Bounding Box Diff 87.7 % 87.6 % 71.9 % 53.5 % 92.2 % 97.2 %

C - Centroid 57.0 % 72.5 % 69.6 % 15.8 % 53.5 % 88.4 %

Cd - Centroid Diff 88.8 % 86.7 % 76.6 % 45.1 % 92.3 % 98.6 %

Table 5.11: Test results using 50 LSTM units

Total Accuracy Alive Accuracy Dead Accuracy

Dataset Variation 50% Confidence 90% Confidence 50% Confidence 90% Confidence 50% Confidence 90% Confidence

A - Aspect Ratio 77.9 % 81.9 % 56.9 % 25.0 % 83.8 % 97.8 %

Ad - Aspect Ratio Diff 78.6 % 80.6 % 51.6 % 16.4 % 86.0 % 98.5 %

B - Bounding Box 50.4 % 54.7 % 74.7 % 66.1 % 43.3 % 51.2 %

Bd - Bounding Box Diff 87.2 % 87.8 % 74.0 % 57.2 % 90.9 % 96.4 %

C - Centroid 66.9 % 75.4 74.0 % 25.3 % 64.9 % 89.5 %

Cd - Centroid Diff 88.8 % 87.7 % 73.5 % 45.1 % 92.3 % 98.5 %

Table 5.12: Test results using 100 LSTM units

With the baseline results, the next set of experiments revolved around combining the met-

rics into the same networks, to test if a combination allowed the network to better understand

the data. As described above the best accuracy came from bounding box difference and cen-

troid distance, thus a combination of these were tested first. In addition, tests were performed

including aspect ratio as well.

Total Accuracy Alive Accuracy Dead Accuracy

LSTM Units Dataset Variations 50% Confidence 90% Confidence 50% Confidence 90% Confidence 50% Confidence 90% Confidence

10 Bd + Cd 89.2 % 87.6 % 77.4 % 51.3 % 92.5 % 97.8 %

50 Bd + Cd 88.5 % 87.7 % 74.8 % 57.7 % 92.3 % 96.1 %

100 Bd + Cd 87.3 % 88.0 % 73.2 % 61.1 % 91.2 % 95.6 %

10 A + Bd + Cd 88.4 % 87.6 % 75.4 % 52.4 % 92.1 % 97.4 %

50 A + Bd + Cd 88.0 % 88.3 % 79.7 % 62.6 % 90.3 % 95.5 %

100 A + Bd + Cd 87.3 % 88.1 % 76.0 % 66.1 % 90.5 % 94.2 %

10 Ad + Bd + Cd 88.3 % 87.5 % 73.5 % 51.6 % 92.5 % 97.6 %

50 Ad + Bd + Cd 88.1 % 87.9 % 75.5 % 57.4 % 91.6 % 96.4 %

100 Ad + Bd + Cd 88.0 % 88.3 % 75.5 % 63.6 % 91.4 % 95.2 %

Table 5.13: Test results using a combination of dataset variations

CHAPTER 5. EXPERIMENTS AND RESULTS 63

Results from table 5.13 show that combining data representations improved the accuracy of

the model, especially with higher confidence values and for classifying alive fish.

5.4.4 Evaluation on test video

With a model designed and trained, the next step was to deploy and evaluate the model in the

complete solution on the test videos. The model was deployed using TensorFlow Lite, and in-

tegrated into the object tracking part of the MOT algorithm as described in section 4.1.2. The

model chosen for testing was the A + Bd + Cd model with 100 LSTM units, as it had the high-

est accuracy for classifying alive fish at high confidence variables, while still having acceptable

accuracy classifying dead fish.

As described, the model has an input of a fixed length sequence of previous bounding boxes.

The classification is run every frame after the required number of bounding boxes have been

tracked, and if classified as moving an internal counter within the fish track is incremented.

To prevent a few incorrect classifications from marking a fish as alive, an experiment was con-

ducted to find an appropriate value for number of times a fish should be marked as moving

before it was classified as alive (as the track passes the counting line).

Moving Count 10 11 12 13 14 15 16

Alive Accuracy 73.4 % 72.0 % 69.2 % 67.8 % 64.4 % 62.3 % 60.9 %

Alive Accuracy w/o Frag. 83.5 % 71.9 % 78.7 % 77.2 % 73.2 % 70.9 % 69.3 %

Dead Accuracy 88.4 % 89.5 % 90.7 % 92.1 % 93.1 % 93.5 % 93.5 %

Total Count Score 106.2 % 101.7 % 95.5 % 90.0 % 83.7 % 80.7 % 77.9 %

Total Score w/o Frag. 120.9 % 115.7 % 108.7 % 102.4 % 95.3 % 91.3 % 88.6 %

Table 5.14: Test results on test video two, for different moving count target values (fish classified
as alive if above). w/o frag (fragments) refers to excluding tracks that were fragmented and thus
losing the move count before the counting line, but would have been classified correctly if not
for that

Table 5.14 shows the results with different values for the move count target to classify the fish

as alive. One issue that became apparent during manual inspection was that track fragmenta-

tion was a semi-frequent occurrence for moving fish (35 times, 12.1% of moving fish), and this

CHAPTER 5. EXPERIMENTS AND RESULTS 64

caused issues for classifying it as alive. After fragmentation a new track is established for the

fish, and often it will pass the counting line before it can be classified as alive again.

(a) Frame 1 (b) Frame 4 (c) Frame 6

Figure 5.14: Example of fragmentation causing fish to lose classification information. In frame
two the distance between prediction and detection is too large, thus a new track is started. For
the following frames, this new track is tracked, while the old one is eventually removed without
being counted.

Figure 5.14 gives an example of a fish losing the classification information through fragmen-

tation. Before the track was lost the move count was 56 for the track, well above the tracking

limit. In fact, all the alive fish not classified correctly due to fragmentation would have been

classified as alive had the tracks not been broken. Therefore, results excluding these are also

included in 5.14, as it is not directly linked to the method for classifying the fish and it is an area

for potential improvement in regards to the tracking algorithm.

Another challenge with the proposed method is that fish interactions can cause incorrect

classifications. For example, a moving fish might temporarily occlude or otherwise change the

bounding box and centroid of a nearby dead fish, which could lead to incorrect classification as

moving. As can be seen in the test results, the number of dead fish classified as alive was close to

the number of alive fish incorrectly classified as dead, thus the total score was close to and even

beyond 100%. However, independently the accuracy was closer to 70% and 80% for correctly

classified alive and dead fish, respectively.

CHAPTER 5. EXPERIMENTS AND RESULTS 65

From the results, somewhere between 10 and 12 seemed to be the optimal count target for

this test video. However, whether this works as a general limit or not for other videos is not guar-

anteed, and further testing and changes are required for a more reliable classification method,

see sections 6.3 and 6.5 for more on this.

5.5 Test Video Results

Finally, with all the fish counting and inspection experiments completed, it was time to get the

final results of the complete solution on the two test videos.

5.5.1 Fish Counting

Test Video Length (m) Fish Total Count True Count False Count Frame Time FPS

Video One 12:00 385 385 (100%) 383 (99.5%) 2 (0.5%) 18.9 ms 52.9

Video Two 20:00 1125 1118 (99.4%) 1107 (98.4%) 11 (1.0%) 24.6 ms 40.7

Combined 32:00 1510 1503 (99.5%) 1490 (98.7%) 13 (0.8%) 22.5 ms 44.4

Table 5.15: Final fish counting results

Table 5.15 shows that the solution has a very high accuracy, correctly counting over 98% of fish,

and through a few false positives bringing the total score to above 99%. The inference time

depends on how many fish there are, but around 20-25 ms per frame with the current hardware

as explained in section 3.5. This equates to around 40-45 frames per second, which is lower than

the 60 frames per second of the videos, though with improved hardware and some more focus

on optimization, it should be possible to get the frame rate to above 60. See section 6.4 for more

discussion on this.

5.5.2 Fish Inspection

Table 5.16 shows that damage detection performs relatively well, with a true positive score close

to 89%. The total score including false positives raises the number almost up to 97%.

CHAPTER 5. EXPERIMENTS AND RESULTS 66

Test Video Length (m) Fish Damage Count True Damage Alive Count True Alive
Video One 12:00 385 20/20 (100%) 18/20 (90%) 80/96 (83.3%) 68/96 (70.8%)
Video Two 20:00 1125 41/43 (95.3%) 38/43 (88.4%) 310/289 (107.3%) 200/289 (69.2%)
Combined 32:00 1510 61/63 (96.8%) 56/63 (88.9%) 390/385 (101.3%) 268/385 (69.6%)

Table 5.16: Final fish inspection results, with total counts (including false positives) as well as
true positive counts

The number of fish that are classified alive is less stable, with below 70% accurately counted

using 10 as the movement target for classification. The total number is raised by false positives,

and the numbers happen to match up well with the number of alive fish not detected. However,

this is not necessarily repeatable in general, and would not work well if the method was com-

bined with another method in future work. Still, the results show a proof-of-concept that can be

worked on and improved in future works.

Figure 5.15: Screenshot of test video two after final fish had been counted

Chapter 6

Discussion

In this chapter the developed solution and test results will be discussed. In that regard it might

be helpful repeating the goals and research question set out in the introduction.

Goals

• G1: Gather video material and create datasets and testing videos to develop and test solu-

tions proposed in this thesis.

• G2: Develop solutions for accurate real-time fish counting from video of fish on a conveyor

belt.

• G3: Expand the fish counting solution to include fish inspection and classification.

Research Questions

• RQ1: How to use multiple object tracking algorithm to perform counting of fish on video?

• RQ2: Which methods, algorithms, and techniques are most suited for a real-time imple-

mentation of multiple object tracking for fish counting?

• RQ3: How to extend the same system used for fish counting to also perform fish inspection?

• RQ4: Specifically, how to extend the system so that it can be used for damage detection, and

to classify fish as dead or alive?

67

CHAPTER 6. DISCUSSION 68

6.1 Dataset Creation (G1)

The first goal of this thesis was to gather data and create datasets for both training and testing

of the various parts of the solution, as well as the full solution. The first dataset created was a

labelled set of images consisting of fish and instances of damage. The yolov4 object detection

training results using the dataset were very good, and the accuracy of the object detection model

and of the fish counting as a whole prove that the dataset performed well.

The dataset created for both motion prediction and classifying fish as dead or alive also

largely performed well. The motion prediction models trained on the dataset showed very good

results for predictions, as shown in both testing results and the improvement in fish counting

using the model over kalman filters. The classification model didn’t perform as well as the mo-

tion prediction one, which is most likely partly down to the dataset. One of the main issues

during classification was interaction between fish, which is not addressed in the dataset. Disre-

garding that, though, the performance was still promising, accurately classifying 70-80% of the

fish.

6.2 Fish Counting (G2)

The second goal of this thesis was to develop solutions for accurate real-time fish counting.

The following sections discuss the research questions behind this goal (RQ1 and RQ2), showing

that this goal has successfully been achieved through the implementation of the multiple object

tracking algorithm and deep learning methods.

6.2.1 Multiple Object Tracking

The first research question of the thesis (RQ1) was to evaluate if the multiple object tracking

(MOT) algorithm could be used for fish counting and inspection. The thesis shows that MOT

is a suitable method to track fish for fish counting, outperforming the accuracy rating of ded-

icated fish counting equipment, while at the same time allowing for visual fish inspection. As

mentioned in 1.1 current solutions are rated at 97% accuracy, and as shown from test results

in 5.15 the developed solution accurately counts over 98% fish, and including double counting

CHAPTER 6. DISCUSSION 69

the total count has an overall accuracy of 99%. This thesis shows that by using the MOT algo-

rithm the central issue for fish counting from video, namely tracking and only counting each

fish once, can be solved. Tracking also allows for inspection over time, which is demonstrated

in the damage detection and dead / alive classification methods developed in this thesis.

Research question two (RQ2) of the thesis asked which methods were most suited for imple-

menting real-time multiple object tracking for fish counting. The two most important methods

for the MOT algorithm were the object detection and motion prediction methods. Both of these

were implemented using deep learning networks, and as discussed in the following sections the

implementation proved very successful for fish counting.

Object Detection

Yolov4 was chosen as it is a state-of-the-art object detection model, promising both accurate

and fast object detection. As demonstrated in 5.1.1, the custom-trained yolov4 model created

for this project has a high degree of accuracy (98% mAP), correctly detecting and classifying the

vast majority of objects in the frames 5.1.1. Even in crowded scenes most objects are clearly

classified, and bounding boxes are accurately bounding objects. The object detection inference

time is low, above 60 FPS on the test machine used for this thesis, allowing for real-time detec-

tion with a powerful computer.

Motion Prediction: Kalman Filter vs LSTM

One of the main areas of research in this thesis were the motion prediction methods, with the

two main methods tested being the use of kalman filters and recurrent neural network models

(LSTM). The results detailed in sections 5.2.1 and 5.2.2 showed that both methods worked well,

however there were a few more issues with the kalman filters. Both methods resulted in some

identity switches and fragmented tracks, which in turn led to some incorrect data, however the

LSTM method performed significantly better in this regard.

Kalman filters are computationally cheap and as shown in 5.2.3 this did result in higher

speeds using kalman filters. However, through optimization such as deployment using Ten-

sorFlow Lite, the LSTM model’s performance was close to that of the kalman filters, and the

prediction accuracy more than made up for the difference.

CHAPTER 6. DISCUSSION 70

Therefore, the best results over all came from using the LSTM method for motion prediction,

at least for fish tracks. Both the kalman filters and LSTM method had next to no issues in calm

scenes with few objects, thus it was decided to use the kalman filters for damage tracking, as

there is very rarely more than one or two instances of damage at the same time.

6.3 Fish Inspection and Classification (G3)

Research question three and four asked if the same system used for fish counting can be ex-

tended to perform fish inspection and classification as well. This thesis has laid down the

groundwork for this, and through damage inspection and classifying fish as dead or alive, prov-

ing that with some more work, the same system can indeed be used for fish inspection as well.

The results for damage detection (5.3) are promising for what can be a challenging problem.

Detecting damage on the fish side laying down on the conveyor belt is not possible with the

current setup (with video from above), however as shown the current method is able to detect

damage visible to the camera. Using the same MOT algorithm used for detecting fish, the dam-

age is tracked from frame to frame thus only counted once. Additionally, by associating damage

to fish tracks, damage that is only partly visible (moving fish changing side pointing to camera)

is also counted. There are still some issues that need to be addressed in future works, the main

one being that fragmented tracks can cause lost damage detections.

The results for classifying if fish are dead or alive (5.4) were not as accurate as the damage de-

tection results, but as a proof of concept this thesis shows that it is possible to detect fish move-

ment using recurrent neural networks. There are two main issues that need to be addressed in

future works. Firstly, improving tracking is required to minimize track fragmentation, which can

cause alive fish to be classified as dead. Secondly, alive fish temporarily occluding or otherwise

changing the bounding boxes of dead fish can cause the dead fish to be classified as alive. In

the current implementation with the test videos used, these two errors roughly balance each

other out, resulting in a total score close to the target. However, that does not necessarily gen-

eralize well, and without improvements it will be hard to combine this classification with other

inspection methods in future works.

The two developed inspection methods offer proof-of-concepts that show that it is possible

CHAPTER 6. DISCUSSION 71

to expand the fish counting solution to also include fish inspection and classification. There are

also good possibilities for adding more methods in future works, such as estimating size and

weight, classifying fish species, and more.

6.4 Hardware Requirements

As described in section 3.5, the tests were performed using an NVIDIA RTX 2080Ti graphics card,

achieving between 40-45 frames per second (5.15). This is sufficient to run the solution in real-

time, though with a newer graphics card the performance should be able to match the 60 frames

per second of the camera. Table 6.1 shows that even the low-end RTX 30-Series graphics cards

have more CUDA cores and higher clock speeds, as well as a newer CUDA architecture, which

will result in improved performance. Thus, for real-time performance a computer equipped

with an RTX 30-Series graphics card or higher is recommended.

Graphics Card RTX 2080Ti RTX 3070 RTX 3070Ti RTX 3080 RTX 3080Ti RTX3090

CUDA Cores 4352 5888 6144 8704 10340 10496

Base Clock (GHz) 1.35 1.50 1.58 1.44 1.37 1.40

Boost Clock (GHz) 1.55 1.77 1.73 1.71 1.67 1.70

Memory 11 GB GDDR6 8 GB GDDR6X 8 GB GDDR6X 10 GB GDDR6X 12 GB GDDR6X 24 GB GDDR6X

Architecture Turing Ampere Ampere Ampere Ampere Ampere

Table 6.1: RTX 2080Ti vs RTX 30-Series. Source: nvidia.com

6.5 Future Work

6.5.1 Fish Counting

For future work there are a few main areas to look at. First of all, as good as the counting results

are, there are still improvements to be made for the MOT algorithm to tackle identity switches

and fragmented tracks. This is especially significant for inspection methods that rely on tracks

staying intact, such as the two methods developed in this thesis.

A possible area to look into in this regard is the use of recurrent neural networks for the

affinity and association stages, as proposed in [14]. This could potentially lower the number of

CHAPTER 6. DISCUSSION 72

identity switches and fragmented tracks, resulting in better performance, especially for inspec-

tion methods relying on tracking fish.

Another possible area to look at is creating a larger dataset for the Yolov4 model, and poten-

tially tweak some of the variables for object detection. The current detection model works well,

but there can still be improvements. Additionally, in the future there will undoubtedly be de-

veloped more accurate and efficient object detection models, so following the state-of-the-art

could lead to improvements in this regard for the future. There is already a Yolov5, however this

is not directly an upgrade, but a separate project not directly related to Yolov4 [11]. Still, future

works could include testing Yolov5, as well as other object detection models.

For an improved dataset it is also possible to improve the camera angle further. Currently it

does point down at the conveyor belt, but not directly down and the conveyor belt doesn’t take

up the entire field of view, leaving some dead space not being used. Additionally, in some of the

test videos there were some water on the lens, which caused some incorrect detections.

6.5.2 Fish Inspection and Classification

Probably the main area for improvement and future work is within fish inspection and classifi-

cation. This thesis offers a proof-of-concept for two inspection methods, but there is still work

to be done to make them more robust. Especially the method for classifying dead and alive fish,

where the current method classifies around 70% and 80% of alive and dead fish correctly.

One possible way to improve this could be to look at the full sequence of bounding boxes

as a whole, classifying the whole sequence once, instead of using a fixed sequence length every

frame. This would improve the efficiency of the algorithm, however if the classification would

be better has to be tested.

Another possibility could be to look at all the tracks together, instead of looking at each indi-

vidually. One of the issues with the current method is that dead fish that are pushed by alive fish

are often detected as moving. Similarly, a moving fish often ends up partially occluding parts of

other fish, which causes their bounding boxes to rapidly change. This is then detected by the

network as movement. So again, one possible way to minimize this issue could be to look at all

fish in each image at the same time, or in some other way include information about surround-

CHAPTER 6. DISCUSSION 73

ing fish during classification.

The damage detection method shows promising results, however there are still work to be

done to make it more reliable. The main issue to address in future work is the loss of information

as a result of fragmented tracks. This can be improved by better detection and tracking as dis-

cussed previously, however alternative methods for counting and reporting detected damages

could also be explored. Accurately detecting and counting damage can be really valuable. It can

help detect faults with the fish processing and transportation systems, and it can be used by vet-

erinarians to inspect the fish. Thus, in addition to improving the damage detection, future work

could also be to look at methods for reporting the damage, for example through automated re-

ports with screenshots/video attached of the damages.

In addition to improving current solution, there is also a lot of future work in implementing

other inspection methods, such as estimating size or weight of fish, classifying different species

of fish, and so on. The choices of methods and how to implement them will depend on what is

desired, but there is definitely room for new additions to the current methods.

6.5.3 Hardware and Interface

Other future work includes a more detailed look at the hardware, including which camera to use

and hardware for performing the processing. When determining this, future work should also

look at additional optimization methods to further improve the time to process each frame.

Another important area for future work is the creation or implementation of a proper inter-

face, such that a user or other equipment can interact with the fish counting, inspection and

classification results. For example, can existing solutions like OPC UA1 be used, or is a custom

interface more appropriate?

1OPC UA: https://opcfoundation.org/about/opc-technologies/opc-ua/ (As of June 2021)

Chapter 7

Conclusion

This thesis has shown that by using multiple object tracking and state-of-the-art deep learning

models, the developed solution for visual real-time fish counting can deliver results exceeding

existing fish counting equipment. The proposed solution accurately counts above 98% of fish

in test videos with over 1500 fish, and if false positives are included the total score is above 99%.

The solution runs at 40-45 frames per second on a powerful last-gen graphics card, which is

sufficient for real-time performance, and with upgrades to the hardware it is easily possible to

improve the performance to get higher frame rates.

The accuracy and performance is in large part down to implementation of state-of-the-art

deep learning models. The Yolov4 object detection model used can accurately detect fish in

video frames, with real-time inference speeds. The implementation of recurrent neural net-

works (LSTM) for motion prediction in the MOT algorithm saw significant improvements in

terms of stability of object tracking compared to classic methods like the kalman filter, with

only a minor increase in inference times.

This thesis has also laid the groundwork for expanding the solution to include fish inspec-

tion. The developed damage detection algorithm accurately detects close to 90% of visible dam-

age, and the developed algorithm for classifying fish as dead or alive accurately classifies around

70% of alive fish, and 80% of dead fish.

Both of these methods work as proof-of-concepts for fish inspection using the detection

and tracking methods developed for fish counting. They both require further development to

74

CHAPTER 7. CONCLUSION 75

become more stable, however they show that there is a huge potential in using deep learning for

visual-based fish inspection.

Bibliography

[1] Atlassian. What is agile? URL https://www.atlassian.com/agile.

[2] Alexey Bochkovskiy, Chien-Yao Wang, and Hong-Yuan Mark Liao. Yolov4: Optimal speed

and accuracy of object detection, 2020.

[3] Bruff, D. The assignment problem and the hungarian method. URL https:

//web.archive.org/web/20120105112913/http://www.math.harvard.edu/

archive/20_spring_05/handouts/assignment_overheads.pdf.

[4] François Chollet. Deep Learning with Python. Manning, November 2017. ISBN

9781617294433.

[5] Gioele Ciaparrone, Francisco Luque Sánchez, Siham Tabik, Luigi Troiano, Roberto Taglia-

ferri, and Francisco Herrera. Deep learning in video multi-object tracking: A survey. Neu-

rocomputing, 381:61–88, Mar 2020. ISSN 0925-2312. doi: 10.1016/j.neucom.2019.11.023.

URL http://dx.doi.org/10.1016/j.neucom.2019.11.023.

[6] Food and Agriculture Organization of the United Nations. The state of world fisheries and

aquaculture 2020. URL http://www.fao.org/state-of-fisheries-aquaculture.

[7] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Deep sparse rectifier neural networks.

[8] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. Adaptive computation and ma-

chine learning. MIT Press, 2016. ISBN 9780262035613. URL https://books.google.co.

in/books?id=Np9SDQAAQBAJ.

76

https://www.atlassian.com/agile
https://web.archive.org/web/20120105112913/http://www.math.harvard.edu/archive/20_spring_05/handouts/assignment_overheads.pdf
https://web.archive.org/web/20120105112913/http://www.math.harvard.edu/archive/20_spring_05/handouts/assignment_overheads.pdf
https://web.archive.org/web/20120105112913/http://www.math.harvard.edu/archive/20_spring_05/handouts/assignment_overheads.pdf
http://dx.doi.org/10.1016/j.neucom.2019.11.023
http://www.fao.org/state-of-fisheries-aquaculture
https://books.google.co.in/books?id=Np9SDQAAQBAJ
https://books.google.co.in/books?id=Np9SDQAAQBAJ

BIBLIOGRAPHY 77

[9] Furkan Gulsen. Detecting and counting objects with

opencv. URL https://medium.com/analytics-vidhya/

detecting-and-counting-objects-with-opencv-b0f59bc1e111.

[10] Shaunak Halbe. Object detection and instance segmenta-

tion: A detailed overview. URL https://medium.com/swlh/

object-detection-and-instance-segmentation-a-detailed-overview-94ca109274f2.

[11] Ildar Idrisov. Yolov4 vs yolov5. URL https://medium.com/deelvin-machine-learning/

yolov4-vs-yolov5-db1e0ac7962b.

[12] Youngjoo Kim and Hyochoong Bang. Introduction to kalman filter and its applications.

In Felix Govaers, editor, Introduction and Implementations of the Kalman Filter, chapter 2.

IntechOpen, Rijeka, 2019. doi: 10.5772/intechopen.80600. URL https://doi.org/10.

5772/intechopen.80600.

[13] Wenhan Luo, Junliang Xing, Anton Milan, Xiaoqin Zhang, Wei Liu, Xiaowei Zhao, and Tae-

Kyun Kim. Multiple object tracking: A literature review, 2017.

[14] Anton Milan, S. Hamid Rezatofighi, Anthony Dick, Ian Reid, and Konrad Schindler. On-

line multi-target tracking using recurrent neural networks, 2017. URL https://aaai.org/

ocs/index.php/AAAI/AAAI17/paper/view/14184.

[15] Miljødirektoratet. Fiskeoppdrett. URL https://miljostatus.miljodirektoratet.no/

Fiskeoppdrett/.

[16] Bård Misund and Ragnar Tveterås. Et blått taktskifte. URL https://sjomatnorge.no/

wp-content/uploads/2019/04/Blått-Taktskifte-Investeringsbehov.pdf.

[17] OpenCV. Deep neural network module. URL https://docs.opencv.org/4.4.0/d6/

d0f/group__dnn.html.

[18] Michael Phi. Illustrated guide to lstm’s and gru’s: A step

by step explanation. URL https://towardsdatascience.com/

illustrated-guide-to-lstms-and-gru-s-a-step-by-step-explanation-44e9eb85bf21.

https://medium.com/analytics-vidhya/detecting-and-counting-objects-with-opencv-b0f59bc1e111
https://medium.com/analytics-vidhya/detecting-and-counting-objects-with-opencv-b0f59bc1e111
https://medium.com/swlh/object-detection-and-instance-segmentation-a-detailed-overview-94ca109274f2
https://medium.com/swlh/object-detection-and-instance-segmentation-a-detailed-overview-94ca109274f2
https://medium.com/deelvin-machine-learning/yolov4-vs-yolov5-db1e0ac7962b
https://medium.com/deelvin-machine-learning/yolov4-vs-yolov5-db1e0ac7962b
https://doi.org/10.5772/intechopen.80600
https://doi.org/10.5772/intechopen.80600
https://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14184
https://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14184
https://miljostatus.miljodirektoratet.no/Fiskeoppdrett/
https://miljostatus.miljodirektoratet.no/Fiskeoppdrett/
https://sjomatnorge.no/wp-content/uploads/2019/04/Bl�tt-Taktskifte-Investeringsbehov.pdf
https://sjomatnorge.no/wp-content/uploads/2019/04/Bl�tt-Taktskifte-Investeringsbehov.pdf
https://docs.opencv.org/4.4.0/d6/d0f/group__dnn.html
https://docs.opencv.org/4.4.0/d6/d0f/group__dnn.html
https://towardsdatascience.com/illustrated-guide-to-lstms-and-gru-s-a-step-by-step-explanation-44e9eb85bf21
https://towardsdatascience.com/illustrated-guide-to-lstms-and-gru-s-a-step-by-step-explanation-44e9eb85bf21

BIBLIOGRAPHY 78

[19] Joseph Redmon. Darknet: Open source neural networks in c. http://pjreddie.com/

darknet/, 2013–2016.

http://pjreddie.com/darknet/
http://pjreddie.com/darknet/

Appendices

A Specialisation Project Report

79

Fish counting using cameras and machine learning

Vebjørn Bjørlo-Larsen

Department of ICT and Engineering

 Norwegian University of Science and Technology, NTNU

Ålesund, Norway

Email: vebjorbj@stud.ntnu.no

Abstract—This paper provides a proof of concept for the use of

cameras and machine learning to perform counting of fish on a

conveyor belt, designed to be used in fish processing facilities. The

proposed solution is based on multi object tracking techniques,

using Yolov4 for object detection and a combination of Kalman

filter and Hungarian Algorithm for object tracking. Counting is

done using an algorithm that counts a tracked fish as it passes an

imaginary line in the video.

Keywords—Object detection, convolutional neural networks,

object tracking, Kalman filters, Hungarian algorithm

I. MOTIVATIONAL ASPECTS

The fish farming industry is a rapidly growing market [1],
and thus the desire for new technology to improve productivity
is big. Some areas where new technology can be used are for
fish counting and monitoring in fish processing facilities.
Existing solutions for fish counting use dedicated equipment
installed as a step in the fish transportation setup, usually as a
counting module inserted between pipes, or as a separate
counting table that the fish are fed through [2][3]. This means
planning and dedicated space need to be used for the fish
counters. This is especially challenging when it comes to
upgrading or adding counters to a system, as it would require
changes to the layout and at least partial halts to the production
as parts are changed.

For these reasons, this work aims to explore the possibility
of using cameras and machine learning technology to perform
fish counting. There are several benefits of using cameras
instead of dedicated equipment for fish counting. They take up
less space and can easily be mounted to new or already existing
equipment without the need to change the layout. Cameras are
non-intrusive, as they do not interact or interfere directly with
the fish. While existing solutions are made to have as little
impact on the fish as possible [2], they do add an additional step
in the transportation, which can increase the chance of damaging
the fish. Cameras are also versatile; they can be mounted
throughout a fish processing facility without having to redesign
and overhaul it.

For a camera to be competitive, it needs to offer similar or
better results than the existing technologies. While actual
accuracy will depend on the implementation conditions, current
solutions are rated at 97% or above accuracy [2][3] in optimal
conditions, which means there is a high burden of accuracy to
be met.

In addition to performing counting, cameras can also be used
for other types of inspections simultaneously, such as quality or
damage controls. The focus of this project is on fish counting,
but there are a multitude of other areas of interest, and the
flexibility of using cameras and video analysis allows for easy
expansion in the future without having to redesign the system.

This project was proposed by and done in collaboration with
Stranda Prolog AS. After initial discussions with the company a
set of objectives and requirements were established. Stranda
Prolog AS were also responsible for organizing and installing
cameras for data acquisition.

Fig. 1. Cropped image of current camera setup. Height is accurate, but the

width is roughly 2/3rds of full width.

II. OBJECTIVES

The project has three main objectives. The first objective of
this project is to perform a literature review of existing solutions
and technology from other research areas that can be applied to
this topic. There are three main challenges that needs to be
addressed:

1) Detecting fish in frames of the video/camera feed;

2) Applying methods to only count each fish once (each fish

will appear in many frames);

3) Identifying methods that can run in real-time.

 The second objective is to gather video material of fish on a
conveyor belt and create a labelled dataset out of this video
material to be used to train machine learning models.

The third objective is to apply methods and algorithms from
the literature review and perform fish counting on test video,
with the goal of getting promising results and to lay a foundation
for further work in the area.

III. ADOPTED METHODOLOGY

To address the challenges laid out during the initial review
phase, multi object tracking (MOT) techniques were chosen.
Multi object tracking consists of two main parts, object detection
and object tracking. Object detection deals with detection of
objects in each individual frame, and object tracking attempts to
track each object from frame to frame [4]. The goal is that by
successfully implementing both parts, requirements for
challenge 1) and 2) are met. Additional care must be taken in
choosing which methods to use to address challenge 3).

Fig. 2. Overview diagram of the developed solution

Figure 2 gives an overview of the developed solution, which
consists of three main parts. Object detection (a) and object
tracking (b) using multi object tracking techniques, followed by
a counting algorithm (c) to count each detected fish once (and
only once). In the following paragraphs these parts are described
in more detail.

A. Object Detection and Dataset Creation

Object detection is an area with a lot of interest and research,
with a large variety of machine learning methods and models to
choose from [5]. For this project, both speed and accuracy are
important, so Yolov4 was chosen as the object detection model.
Yolov4 is a state-of-the-art object detection model, using a
convolutional neural network to detect objects with high
accuracy in real-time [6].

The first step of the machine learning pipeline was to acquire
data in the form of video recordings of fish being transported on
a conveyor belt. The installation of cameras was done by Stranda
Prolog AS in collaboration with one of their partners. For this
project, a remote computer was set up to remotely record video
from the camera, so that all the necessary video material could
be acquired. Due to limitations with the setup, sections of video
were recorded at 720p, 60 FPS.

Fig. 3. Machine learning pipeline

After obtaining the video material the data was prepared for
use in the model training. First, a section of video was converted
into images using OpenCV [7]. These images were then
manually labelled using the open-source labelling tool labelImg
[8], saving the labels in the Yolov4 format [10]. This saves the
labels for each image in a separate .txt file in the same folder and
with the same name as the image.Yolov4 uses a normalized
format to store labels, so each label consists of a class variable
and four normalized pixel values indicating the rectangular
label. Only a single class was used (fish), so all labels have 0 as
the class variable. Below is an example label:

0 0.418359 0.706944 0.302344 0.563889

 Currently 575 images have been labelled for training, with
between 1 and 12 labels per image, totalling 2948 labels. An
additional 45 images have been labelled from a different video,
which will be used to test the model on new data.

Fig. 4. Example of image with 5 labelled fishes.

Training of a custom model was done using the Yolov4
darknet framework, following the steps outlined by the Yolov4
authors [10]. The model is trained using transfer learning, with
pre-trained weights from the Yolov4 authors and custom
parameters recommended by the Yolov4 guide based on the
custom dataset. Using transfer learning speeds up the training
process and can achieve higher accuracy [9]. This especially
applies when future improvements to the model are made. Using
new data to train, the already trained weights can be used as the

starting point, which both speeds up the training and improves
the accuracy of the new model.

The initial training was done with a 90/10 training/validation
split, with the model set to be trained over 6000 iterations.
However, the best results came after around 1500 iterations, so
these weights were used when implementing the model.

Fig. 5. Chart graphing training results, with blue indicating loss, and red

indicating mAP%.

As can be seen in Figure 5 the training resulted in a very high
mAP% of above 99%, which could be an indication of
overfitting [11]. Testing the performance on the testing dataset,
which was created from a different video section, gives a mAP%
of 95%. This shows that there is some discrepancy between the
validation and testing precision, so there is likely some degree
of overfitting. The cause of this is most likely that the frames
extracted from the video were too close to each other in time, so
subsequent frames would be too similar. This meant that images
in the validation set were too similar to the training data.

Despite some concerns of overfitting, for the purpose of this
project the training results were very good. Whether the results
would generalize well to videos from other cameras is uncertain,
but for this project only one camera angle was available, so this
is something that can be improved in the future when more
camera angles are available.

The trained model was implemented using OpenCV’s deep
neural network module in Python. Detections are made by
sending a frame through the model, which returns boundary
boxes with classification and probability scores for each
detection. The results from subsequent frames are then used to
perform object tracking.

B. Object Tracking

Object tracking is usually done in three stages; Feature
extraction or motion prediction stage, affinity stage, and
association stage [4]. Each detected object is stored and tracked
as its own object (track). This object includes its own Kalman

filter instance, as well as other parameters such as a unique
identification, and whether the object has been counted or not.

For this project, a motion prediction model was adopted for
the first stage. The first step of the motion prediction model is to
predict where each tracked object (fish) will be in the next frame.
This is done using a Kalman filter for each object, which predicts
the next position based on the physical model of the object
(position, velocity) and the previous measurements of the object
[12]. The Kalman filter is an iterative process that updates its
own prediction model after each iteration based on how
accurately it predicted the new position. To update the filter,
each prediction must be matched to new detections from the next
frame. This is done using the results from the affinity and
association stages.

 The affinity stage calculates the cost between each
prediction and each new detection, where the cost is the distance
between each prediction / detection pair. For this
implementation the Euclidean distance of each pair was used. In
addition to the distance, a hard limit can be set, which means a
prediction / detection pair with a distance above this limit will
never be matched.

In the association stage the affinity costs are used to match
predictions to the new detections, using the Hungarian
Algorithm to perform the matching. The Hungarian Algorithm
is an assignment algorithm, which minimizes the overall cost of
assigning predictions to detections [13].

With the assignment done, the Kalman filters of each object
can be updated based on the difference in the prediction and
actual detection, or a new tracker can be created if the detection
is a new detection (un-matched to any prediction). If a tracked
object is not matched to a new detection, it could mean that the
fish has left the frame, that it is occluded, or that the fish was not
detected by the object detector. When this happens the Kalman
filter will continue to predict new positions until a threshold has
been reached. After this threshold the tracker is removed, and if
the fish is detected again in future frames, it will be assigned a
new tracker.

C. Fish Counting

Counting the detection is the final step in the process. Two
main approaches were tested for this step; counting unique
detections and counting a detection as it passes an imaginary
line.

The first approach is to count each unique detection as a
unique fish. This relies on the tracking algorithm perfectly
tracking each fish, which is not always the case. For example, if
a fish is occluded for too long it can be assigned a new unique
detection when it reappears, or if a fish moves too quickly
through the video it can be deemed to be a new fish in the next
frame. During testing with the current tracking algorithm
implementation this approach invariably resulted in over-
counting, the degree depending on algorithm settings.

 The other option tested is to count a unique detection as it
passes an imaginary line in the frame. This gives much more
control, as any misidentification that happens outside of the line
will not affect the count. For example, if a fish is counted as a
unique detection two times before passing the line, it wouldn’t

matter as only the second unique detection would cross the line,
and thus be the only one counted. Generally, this method tends
to under-count, because if a fish is not detected properly as it
passes the line it will not be counted at all.

Fig. 6. Example frame showing fish being counted as they pass an imaginary
line (green line). The green labels indicate that the fish has been counted, blue

indicates that it is yet to be counted.

Of the two methods tested, counting a fish as it passes an
imaginary line proved most accurate. It deals with common
problems such as misidentification and multiple detections per
object better than counting unique detections.

IV. RESULTS

 To perform tests a separate test video was recorded and split

into 5 sections based on their perceived difficulty. The

decisions on where to start and stop the sections were made

subjectively based on believed difficulty factors, such as

crowding, occlusions, and fast-moving fish. The sections were

given a difficulty level between 1 and 5, as illustrated in Figure

7.

.

Fig. 7. Example frames from each test video section, from difficulty level 1

(top-left) to difficulty level 5 (bottom-right)

 The test videos were all saved in 30 FPs, while the full video

was recorded at 60 FPs. This was done so that a comparison

between framerates could be made. The test videos were used

during testing to quicker test changes to the configuration, so

the choice was made to make these 30 FPs as it would further

speed up the testing.

 The expected number of fish per section was manually

counted going through the video frame by frame. This gives an

evaluation criteria for how well the algorithm performs on the

entire section of the test video, but doesn’t necessarily say how

well each fish is counted. There are some instances of double

counting, which would incorrectly improve the total accuracy

assuming a base of under-counting.

 All of the video sections, with detections marked, are

included in the separate zip file showing the project demos.

 Video Section based on difficulty (30 FPS) Full
Video
30 FPS 1 2 3 4 5

Video
Length

0:13
Minutes

0:47
Minutes

1:01
Minutes

1:32
Minutes

3:39
Minutes

7:15
Minutes

Expected
Fish

5 34 67 104 341 551

Fish
Counted

5 33 65 98 304 505

Percentage
Counted

100% 97% 97% 94% 89% 92%

Table 1. Results performing fish counting on each video section. Expected fish

count is manually counted going through the video frame by frame.

The results in Table 1 shows some promising results,
particularly for sections with fewer fish. In sections with few
fish, or a moderate amount of non-moving fish, the current
algorithm can successfully detect and count most fish once and
only once. Manually reviewing the results shows that all fish are
accurately counted in section 1, whereas the missing fish from
section 2 is detected, but the detection is lost (merged with
neighbouring fish) right before it is counted.

A manual review of section 3 shows that all 65/67 fish
counted were accurately counted, with only 2 fish not being
counted and no instances of double counting. The two missed
detections were both caused by fast moving fish not being
counted.

 In more crowded sections the accuracy is lower, and it is
especially poor when there are fast-moving fish (which often
occlude other fish temporarily) or fish not laying still, which
causes the detection centre to shift back and forth rapidly.

Manually reviewing section 4 shows that in fact 9 fish were
missed by the counter, either due to being occluded at the time
of counting, misidentified as a previously counted fish, or two
fish detected as a single fish by the detector at the time of passing
the line. There were 3 cases of double counting, which
incorrectly improved the apparent accuracy to 98/104 instead of
95/104 fish counted. The reason for double counting were fish
being detected as two unique fishes at the time of passing the
line, so both detections were counted.

Fig. 8. Example showing a fish being counted twice. Middle fish was wrongly

detected as two fish (Fish 71, Fish 56), which were both counted. Fish 65 and

58 were both counted as different fish, but were falsly assigned new unique
identifications after crossing the line. This is a counter example showing how

the line also prevents double counting.

Section 5 had by far the worst results, which was expected
due to the number of fish and long periods of crowded frames.
In this section at least 12 fish, but probably more, were counted
twice (it is sometimes difficult to determine). Most of the time
this is caused by a crowded scene where the fish are still
moving by themselves, causing the centre of the detection to
move back and forth rapidly. When this happens as the fish
crosses the line it might incorrectly be detected as two separate
fishes frame to frame, and because the centre of the new
detection was before the line, it is counted as it passes the line.
This means that while the total accuracy for the section was
89%, only around 85% of the fish were counted.

 Video Section based on difficulty Full
Video

1 2 3 4 5

Video
Length

0:13
Minutes

0:47
Minutes

1:01
Minutes

1:32
Minutes

3:39
Minutes

7:15
Minutes

Fish 5 34 67 104 341 551

Fish /
Second

0.38 0.72 1.10 1.13 1.56 1.27

Average
FPS

64.0 63.7 58.8 60.9 54.6 57.4

Table 2. Frame rate performance of running algorithm on video sections.

Performed using a NVIDIA RTX 2080TI graphics card.

As laid out in the objectives, another target for the project
was to develop an algorithm that can run in real-time. As Table
2 shows, the current algorithm can run at between 55-65 FPS
(which includes drawing time to draw detections for each
frame) using a powerful GPU. The average FPS was calculated
running each section three times, averaging the average FPS
from the three runs.

This means the test setup can easily run at a target
framerate of 30 FPS, with room for either more resource
intense upgrades to the algorithm or running at a higher
framerate. To test whether running at a higher framerate is

advantageous, the same test that was performed on the 5
sections was performed on a full video at 60 FPs.

 Full Video (30 FPS Sections) Full Video (60 FPS)

Video Length 7:15 Minutes 7:15 Minutes

Expected Fish 551 551

Fish Counted 505 527

Percentage Counted 91.7% 95.6%

Table 3. Comparison of performance between 30 and 60 FPS. 30 FPs is

combined performance from the 5 sections, while 60 FPs is of the full

video.

The comparison in Table 3 shows a clear improvement
from 30 FPs to 60 FPs. After manual review of the video, the
main reason appears to be that fast-moving fish are better
detected. There are more frames for the fish to be detected, so
it has an improved chance of being counted.

Test computer specifications

AMD Ryzen Threadripper 2950X 16-Core Processor (3.50
GHz)

2x NVIDIA GeForce RTX 2080 Ti, 11 GB GDDR6-
Memory (only one GPU used for testing)

64 GB 2666MHz DDR4 RAM

64-bit Windows 10 Education

Table 4. Computer specifications of test computer

V. DISCUSSION AND FUTURE WORK

The results of the project are promising, especially
considering the current limits of the implementation. There is
much room for improvements, which makes the current results
promising for future development upon the work laid out in this
project.

One possible area of improvement is the dataset used for
training and testing the current implementation. The video
quality is good enough for a proof of concept, but there are some
significant issues with the current dataset that can help improve
the overall results. The current dataset was created from video
recorded with some water on the lens. This creates some
noticeable blurring and distortions in certain frames, making it
more difficult to distinguish between fish.

Another possible improvement to the camera is its
orientation relative to the conveyor belt. Currently, the conveyor
belt is vertical in the frame and recorded at an angle, meaning it
only takes up a small portion of and loses focus towards the top
of the frame. This could be improved by rotating the camera 90
degrees and pointing it directly downwards, so that the conveyor
belt is horizontal relative to the camera.

When it comes to the training dataset, another improvement
that can be made is the choice of frames. Taking more diverse
frames, and preferably frames from different angles or camera
positions, could help improve generalization and prevent
overfitting.

The object detection itself performs well for the current data
and is for the most part very reliable. There are a few instances
where fish close together or over each other are detected as one
fish, but most of the fish that are not counted are not caused by
missing detections. With improved video material these possible
issues should be even less likely to happen. When it comes to
generalization, this project lacks tests to validate how well the
trained model generalizes to different camera angles. However,
this should also be possible to test and if necessary, improve with
an improved dataset.

The area with most room for improvement is the object
tracking. For calm scenarios with clearly distinguished fish the
tracking works well, but for chaotic scenes with lots of
movement and occlusion there are some clear issues with
misidentification and fish “losing” its track and being assigned
as a new unique detection.

There are two main ways to improve the object tracking. The
first is to continue tuning the algorithm parameters or possibly
change the prediction and matching algorithms. The current
results were achieved through tuning the current algorithms, but
there should still be room for improving the tuning. Improved
video quality should also have a noticeable effect on the tracking
accuracy.

The other way is to completely change the way the object
tracking is performed. The object tracking is currently
implemented using a physical model of the system, predicting
and matching based on velocity and position of objects (fish).
An alternative to this is to use machine learning techniques for
the tracking part as well. This is an area with a lot of research
[3], with some of the possible architectures to explore being
convolutional neural networks (CNN), long short-term memory
(LSTM), or other recurrent neural network (RNN) architectures.

There are also other areas of future work that are important
for a proper implementation of fish counting. The current
software setup is conducive to testing, but needs to be
streamlined for an actual implementation. Additionally, a proper
interface should be chosen or created to allow for
communication with other equipment in the facility and for
controlling the counting process.

Finally, a proper assessment of hardware needs to be made
based on future test results and any other requirements the final
system might have. The current test hardware performed well
giving an indication of what might be acceptable or even too
powerful hardware, but further testing needs to be done to
determine what best fits the full requirements of the system. For
example, with improved detection and tracking methods, is it
necessary to run the code at a high framerate for accuracy, or
can a lower framerate, lowering computing requirements, be
used?

VI. CONCLUSION

This work provides a working proof of concept for the use
of video cameras and machine learning techniques to perform
fish counting of fish on a conveyor belt. By using multi object
tracking techniques, the objectives and challenges laid out in the
objectives section are all met to varying degrees. The current
implementation can both detect and track fish in videos at real-

time speeds, with decent to very good results depending on how
crowded sections of the video are.

There are still room for improvements, especially when there
are many fish in a scene. The key areas of improvements are
improved datasets for training and testing, and improved object
tracking methods, potentially using machine learning techniques
instead of the current physical tracking model.

ACKNOWLEDGMENT

The author would like to thank supervisor Ibrahim A.
Hameed of Department of ICT and Natural Sciences at NTNU
for his assistance during the project, and Stranda Prolog AS for
the project proposal, for organising video material gathering,
and for any other assistance required. The author would like to
thank Kjetil Osland Brekken as the contact person for Stranda
Prolog AS.

REFERENCES

[1] Fiskedirektoratet. (2019, May 29). Hvor stor er oppdrettsnæringen i
Norge? [Online]. Available:
https://www.fiskeridir.no/Akvakultur/Nyheter/2019/0519/Hvor-stor-er-
oppdrettsnaeringen-i-Norge

[2] AquaScan. Fast, accurate & reliable fish counting equipment. 2020.
Available: https://www.aquascan.com/

[3] CALITRI TECHNOLOGY. Fish counters. 2018. Available:
https://www.calitri-technology.com/en/fish-counters/

[4] G. Ciaparrone, F. L. Sánchez, S. Tabik, L. Troiano, R. Tagliaferri, F.
Herrera. (2019, November). “Deep Learning in Video Multi-Object
Tracking: A Survey”. arXiv:1907.12740v4 [cs.CV]. Available:
https://arxiv.org/abs/1907.12740

[5] J. Hui. “Object detection: speed and accuracy comparison (Faster R-
CNN, R-FCN, SSD, FPN, RetinaNet and YOLOv3)”. [Online].
Available: https://jonathan-hui.medium.com/object-detection-speed-and-
accuracy-comparison-faster-r-cnn-r-fcn-ssd-and-yolo-5425656ae359

[6] A. Bochkovskiy, C.-Y. Wang and H.-Y. M. Liao. (2020, April).
“Yolov4: Optimal Speed and Accuracy of Object Detection”. arXiv:
2004.10934 [cs.CV]. Available: https://arxiv.org/abs/2004.10934

[7] OpenCV. Open Source Computer Vision Library. 2020. Available:
https://opencv.org/

[8] Tzutalin. LabelImg. Git code (2015). Available:
https://github.com/tzutalin/labelImg

[9] J. Brownlee. “A Gentle Introduction to Transfer Learning for Deep
Learning”. [Online]. Available:
https://machinelearningmastery.com/transfer-learning-for-deep-learning/

[10] A. Bochkovskiy. “Yolo v4, v3 and v2 for Windows and Linux”. Git
code (2020). Available: https://github.com/AlexeyAB/darknet

[11] I. A. Hameed, Class Lecture, Topic: “Fundamentals of machine
learning”. IE500618, Department of ICT and Natural Sciences, NTNU,
Ålesund. Aug. 2020.

[12] Kenshi Saho (December 20th 2017). Kalman Filter for Moving Object
Tracking: Performance Analysis and Filter Design, Kalman Filters -
Theory for Advanced Applications, Ginalber Luiz de Oliveira Serra,
IntechOpen, DOI: 10.5772/intechopen.71731. Available from:
https://www.intechopen.com/books/kalman-filters-theory-for-advanced-
applications/kalman-filter-for-moving-object-tracking-performance-
analysis-and-filter-design

[13] Hungarian Maximum Matching Algorithm. Brilliant.org. Retrieved
12:23, December 15, 2020, from https://brilliant.org/wiki/hungarian-
matching/

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f I
CT

 a
nd

 N
at

ur
al

 S
ci

en
ce

s

Vebjørn Bjørlo-Larsen

Vision based real-time fish counting,
inspection and classification using
deep learning

Master’s thesis in Simulation and Visualisation
Supervisor: Ibrahim A. Hameed
July 2021

M
as

te
r’s

 th
es

is

	Preface
	Abstract
	Sammendrag
	Acronyms
	Introduction
	Background and Motivation
	Goals and Research Questions
	Research Approach
	Thesis Structure

	Theoretical basis
	Multiple Object Tracking
	Object Detection
	Motion Prediction
	Affinity
	Association

	Kalman Filter
	Hungarian Algorithm
	Deep Learning
	Neural Networks
	Convolutional Neural Networks
	Recurrent Neural Networks

	Methods and Materials
	Datasets
	Object Detection
	Motion Prediction and Classifying Dead / Alive Fish
	Test Videos

	Object Detection
	Motion Prediction and Classifying Dead / Alive Fish
	Programming Language
	Hardware

	Implementation
	Solution Overview
	Object Detection (A)
	Object Tracking (B + C)
	Classifying Dead / Alive Fish (B)
	Assigning Damage To Fish
	Counting and Inspection (D)

	Experiments and Results
	Object Detection
	Yolov4 training results
	Deployment using OpenCV w/CUDA

	Motion Prediction
	Kalman Filter
	Recurrent Neural Network (LSTM)
	Kalman Filter vs LSTM Efficiency Comparison

	Damage Counting
	Classifying Dead / Alive Fish
	Dataset Variations
	Network Architecture
	Training Results
	Evaluation on test video

	Test Video Results
	Fish Counting
	Fish Inspection

	Discussion
	Dataset Creation (G1)
	Fish Counting (G2)
	Multiple Object Tracking

	Fish Inspection and Classification (G3)
	Hardware Requirements
	Future Work
	Fish Counting
	Fish Inspection and Classification
	Hardware and Interface

	Conclusion
	Bibliography
	Appendices
	Specialisation Project Report

