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Abstract— Objective: The design of an Artificial Pan-
creas (AP) to regulate blood glucose levels requires reliable
control methods. Model Predictive Control has emerged
as a promising approach for glycemia control. However,
model–based control methods require computationally
simple and identifiable mathematical models that represent
glucose dynamics accurately, which is challenging due
to the complexity of glucose homeostasis. Methods: In
this work, a simple model is deduced to estimate blood
glucose concentration in subjects with Type 1 Diabetes
Mellitus (T1DM). Novel features in the model are power–
law kinetics for intraperitoneal insulin absorption and a
separate glucagon sensitivity state. Profile likelihood and
a method based on singular value decomposition of the
sensitivity matrix are carried out to assess parameter iden-
tifiability and guide a model reduction for improving the
identification of parameters. Results: A reduced model with
10 parameters is obtained and calibrated, showing good fit
to experimental data from pigs where insulin and glucagon
boluses were delivered in the intraperitoneal cavity. Con-
clusion: A simple model with power–law kinetics can accu-
rately represent glucose dynamics submitted to intraperi-
toneal insulin and glucagon injections. The reduced model
was found to exhibit local practical as well as structural
identifiability. Importance: The proposed model facilitates
intraperitoneal bi-hormonal model-based closed-loop con-
trol in animal trials.

Index Terms— Artificial pancreas (AP), power–law kinet-
ics, model validation, parameter identification.
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I. INTRODUCTION

Type 1 Diabetes Mellitus (T1DM) is the condition resulting
from a deficiency in the production of insulin from β–
pancreatic cells. A common therapy to control this disease
consists of exogenous insulin infusions given several times
per day. Insulin injections have to be controlled to some extent
manually, which is a laborious task and a major concern for
people with T1DM and their families [1], [2].

In order to help patients with T1DM, the idea of a fully–
automated Artificial Pancreas (AP) has been studied for
decades [3]. Basically, an AP is a device that uses blood
glucose measurements (collected with a sensor from a subject)
in a decision–making algorithm that estimates the necessary
amount of insulin to be administered in the subject [2]. The
quantity of insulin to be infused must be precisely calculated
in order to keep glucose levels in a safe and optimal range
[1]. Additionally, glucagon infusions can be used to counteract
severe hypoglycemia [4], [5].

AP can be classified in hybrid or fully–automated AP
systems. Hybrid systems demand the user to announce known
disturbances (e.g. meals, physical activity, etc.), while for
fully–automated AP the subject does not need to take part in
the control [6]. A fully–automated AP is expected to provide
a better control and reduce hyperglycemia and hypoglycemia
occurrences [7]–[9].

However, the slow insulin absorption is one obstacle to
achieve stable and safe control of blood glucose levels. For
instance, in the case of subcutaneous insulin infusions there
is a significant delay of insulin transport through the subcuta-
neous tissue. Then, to keep glucose levels within a target range,
the patient is required to announce in advance events such
as the ingestion of meals with an estimation of carbohydrate
contents or physical activities [1], [2]. Nevertheless, this relies
on the ability of the patient to announce events, which is
cumbersome to repeat multiple times per day and patients
struggle to properly estimate meal content.

Consequently, a fully–automated AP would be of great
help to any patient and, if its operation is accurate, it could
improve the control of blood glucose levels compared to
manual glucose regulation. However, there are still problems
to face and efforts must be made to achieve a fully–automated
AP.

The control of blood glucose concentration in T1DM is a
challenging problem because of the complex, non–linear, and
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time–varying dynamics of glucose homeostasis [2], including
delays in insulin infusions [1], inter and intra–subject vari-
ability [10], [11], etc. Model Predictive Control (MPC) has
emerged as a promising approach for the control of blood
glucose levels [12]. Effective MPC requires an accurate and
individualized model of patient glucose–insulin dynamics [13].
However, the identification of such models is a tough task and
the methods to measure individual parameters are invasive and
expensive [8].

Several proposed models attempt to describe the glucose
metabolism in some detail [14]–[16], and are thus useful
for simulating glucose dynamics. However, these nonlinear,
high–order models have a large number of parameters that in
general cannot be identified from easily obtainable data [12].
Moreover, their usage in MPC is computationally demanding,
making their integration on an AP impracticable [8] and does
not assure a better closed loop control [9].

In contrast, it has been shown that low–order linear models
with parameters estimated from clinical data can be suitable
for MPC with subcutaneous insulin delivery [17]. However,
more computationally tractable, minimalistic, and rather linear
models [18]–[21] often do not represent well the non–linear
dynamics that have been seen after intraperitoneal insulin
infusions [22].

The purpose of this article is to present a relatively simple
nonlinear model to approximate T1DM glucose dynamics
when insulin and glucagon boluses are introduced in the
intraperitoneal (IP) cavity. The conception of a new model
is also motivated by the fact that most of the work developed
for AP systems is adapted to subcutaneous insulin delivery
[23].

A tight glycemic control is difficult to attain with an AP
operating with subcutaneous insulin infusion, due to delays
in insulin absorption and slow insulin–clearance rates [1],
[23]. For these reasons, the intraperitoneal route to infuse
insulin has been investigated, since insulin–glucose kinetics
are significantly faster in the IP cavity than subcutaneously
[23], [24]. Furthermore, it has been observed that blood
glucose increases faster when glucagon is delivered in the IP
cavity, compared with subcutaneous glucagon infusions [5].

Therefore, the problem of not having a stable and safe
control due to the slow subcutaneous hormone (insulin and
glucagon) absorption can be overcome with an intraperitoneal
AP, because the delay of hormone absorption would be con-
siderably reduced.

In addition, a small identifiable model to predict blood
glucose dynamics during intraperitoneal insulin and glucagon
infusions is required for future experimental purposes. The
objective is to calibrate the model with subcutaneous glucose
measurements and / or intravenous (IV) blood samples ana-
lyzed on a blood gas machine [5], [25], [26] from the first
2–3 hours of an experiment, to obtain a personalized model
and then decide a model–based controller to normalize blood
glucose during the rest of the animal trial using intraperitoneal
boluses. This implies that the parameters of the model have
to be estimated as fast as possible, in order to test the
control method throughout the rest of experiment (which, with
anesthetized pigs, may last for not more than 10–12 hours).

This basic procedure will mimic the operation of an AP,
which requires a model feasibly adaptable (i.e. a model that
can be personalized) to the glucose dynamic scenario of a
determined time frame. Additionally, having a simple model
that can be adapted multiple times a day will allow for intra–
subject variability to be addressed.

In order to elucidate whether and how the proposed model
can be simplified, its local practical and structural parameter
identifiability has been analyzed. Parameter profile likelihoods
as well as a method based on Singular Value Decomposition
(SVD) of the sensitivity matrix have been used. The analysis
has led to detect non–identifiable parameters and to define a
reduced model with less parameters to estimate, while keeping
a satisfactory accuracy when approximating blood glucose
measurements.

The paper is organized as follows: In Section II, a model to
describe T1DM glucose dynamics is introduced. The model
accounts for intraperitoneal infusion of insulin and glucagon,
as well as for an exogenous IV glucose input. In Section
III, a reduced model to describe T1DM glucose dynamics is
presented. The parameter identification analysis of the reduced
model is also exposed. In Section IV, the experiments from
where glucose data were obtained are described, as well as
the method to calibrate the model with the data. In Section
V, the results obtained after calibrating the reduced model are
shown. Finally, the discussion and conclusion about the work
are exposed in Sections VI and VII, respectively.

II. BIHORMONAL–GLUCOSE MODEL

In this Section, a model to simulate T1DM glucose dynam-
ics is described. This model accounts for insulin and glucagon
boluses introduced in the IP cavity. The model is based on
two different models, which were deduced to approximate
experimental data from experiments with either intraperitoneal
insulin boluses, or intraperitoneal and subcutaneous glucagon
boluses. These two initial models are presented in Supplemen-
tary material S.1 and Supplementary material S.2

The bihormonal–glucose model is the following:
dG

dt
=− [k1 + kI · (I + Ib) + ki1 · i1] ·G (1)

+ kH · (H +Hb) · ξ + rG ·RaG
dI

dt
=−m1 · I +m2 · ip1 (2)

di1
dt

=−m3 · iq1 +m4 · i2 (3)

di2
dt

=−m4 · i2 + uI (4)

dH

dt
=− n ·H + n2 · h1 (5)

dh1
dt

=− n1 · h1 + uH (6)

dξ

dt
=− x1 ·H · ξ + x2 ·G · I (7)

The states, inputs, and parameters of the bihormonal–glucose
model (1)–(7) are described in Table I.

In the bihormonal–glucose model (1)–(7), glucose consump-
tion can be insulin-independent with rate k1 · G, or insulin-
dependent relying on insulin states I and i1. On the other
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TABLE I
DESCRIPTION OF THE STATES, INPUTS, AND PARAMETERS OF THE

BIHORMONAL–GLUCOSE MODEL (1)–(7) AND THE REDUCED

BIHORMONAL–GLUCOSE MODEL (8). BLOOD GLUCOSE

CONCENTRATION IS THE ONLY OUTPUT OF THE SYSTEM AND THE REST

OF STATES ARE CONSIDERED DIMENSIONLESS. ABBREVIATIONS: CS:
CIRCULATORY SYSTEM; IC: INTERMEDIATE COMPARTMENT; IP:

INTRAPERITONEAL CAVITY; IV: INTRAVENOUSLY.

Description State Units Compartment
Blood Glucose G mmol/L CS
Blood Insulin I dimensionless CS

Insulin IC i1 dimensionless IC
Insulin IP i2 dimensionless IP

Blood Glucagon H dimensionless CS
Glucagon IP h1 dimensionless IP

Glucagon sensitivity ξ dimensionless IC
Input

Exogenous Glucose RaG mmol/h CS
infusion IV

Insulin IP bolus uI U IP
Glucagon IP bolus uH µg IP

Parameter
Blood Insulin Ib dimensionless CS

basal value
Blood Glucagon Hb dimensionless CS

basal value
Insulin–independent k1 1/d CS

removal rate of glucose
Insulin–dependent kI , ki1 1/d CS

removal rates of glucose
Exogenous glucose rG h/(L· d) CS
rate of appearance
Glucose response kH 1/d CS
to glucagon rate

Consumption, degradation, m1,m2 1/d CS, IC, IP
and transport rates m3,m4,

n, n1, n2
Decrease rate of x1 1/d IC

glucagon sensitivity
Restoration rate x2 L/(mmol· d) IC

glucagon sensitivity
Powers p, q dimensionless CS, IC

hand, the increase in blood glucose concentration is regulated
by glucagon levels H and the exogenous IV glucose input
RaG.

The several insulin and glucagon states account for the
transport of each hormone through different compartments,
from the IP cavity (where the hormone boluses are released)
to the circulatory system. The infusion of exogenous insulin
and glucagon is represented by the external inputs uI and uH ,
respectively.

In the model it is assumed that the transport of insulin be-
tween compartments is nonlinear. This assumption was made
based on experimental data [25]. For more details see [22] and
Section Supplementary material S.1. This was described in (2)
and (3) with power–law kinetics, including the exponents p
and q.

Power–law approximation or synergistic systems (S–
systems) are used to describe in a non canonical form re-
actions with particular non–linearities [27]–[29]. The power–
law formulation accounts for the change rate of a state as
the difference of two products of states raised to non–integer
powers [29]–[31]. In this work, given the uncertainty of insulin
concentration in compartments where measurements cannot
be non–invasively obtained, power–law was used to simulate
insulin dynamics using few parameters and simple equations.

According to experimental data where glucagon boluses

were administered in the IP cavity and subcutaneously [26],
the changes in blood glucose concentration induced by
glucagon boluses are not always linearly proportional to bolus
sizes (see Section Supplementary material S.2). For this rea-
son, the state ξ to represent the sensitivity to glucagon boluses
is included in (7). Since glucagon sensitivity might be linked
to the amount of glycogen store in the liver or to the hepatic
responsivity to glucagon [32], it is assumed that glucagon
sensitivity decrease is proportional to glucagon concentration
and it can be restored when glucose is stored in the liver in
presence of insulin. For more details about the bihormonal–
glucose model (1)–(7) see Supplementary material S.3.

III. REDUCED BIHORMONAL–GLUCOSE MODEL

The reduced bihormonal–glucose model (8) is

dG

dt
=− [k1 + ki1 · i1] ·G (8)

+ kH · (H +Hb) · ξ + rG ·RaG
di1
dt

=−m3 · i1
q
+ i2

di2
dt

=−m4 · i2 + uI

dH

dt
=− n ·H + h1

dh1
dt

=− n1 · h1 + uH

dξ

dt
=− x1 ·H · ξ +G · i1

The reduced bihormonal–glucose model (8) is a reduced
version of the bihormonal–glucose model (1)–(7) presented in
II. It is obtained following the transformations to address the
lack of local structural and practical identifiability, which are
described in Supplementary material S.8 and Supplementary
material S.9. The reduced model accounts for 6 states and 10
parameters (1 state and 6 parameters less than the complete
model).

The reduced bihormonal–glucose model (8) is validated
using experimental data from pigs where insulin and glucagon
boluses were administered in the IP cavity. The details are
presented in the next two sections. Furthermore, the local
practical and structural parameter identifiability of the reduced
bihormonal–glucose model (8) were analyzed as explained in
Section III-A and Section III-B.

A. Profile Likelihood of the reduced bihormonal–glucose
model

Profile likelihoods [33] were computed for the reduced
bihormonal–glucose model (8) using the method described in
Supplementary material S.5. The results are depicted in Fig.
1. All profile likelihoods have a single minima and exceed
the confidence threshold twice. Therefore, no parameters of
the reduced bihormonal–glucose model (8) with lack of local
practical identifiability were found.
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Fig. 1. Profile likelihoods of the reduced bihormonal–glucose model
(8). The parameters have profile likelihoods with single minima and that
exceed the confidence threshold twice, which suggests that they are
locally practically identifiable. The green horizontal lines indicate the
confidence thresholds of 99% for Pig 1, 98% for Pigs 2,3, and 4, and
96% for Pig 5.

B. Singular Value Decomposition of the reduced
bihormonal–glucose model

The Singular Value Decomposition method [34], [35] de-
scribed in Supplementary material S.6 was performed for
the reduced bihormonal–glucose model (8) combining cases.
The result are depicted in Fig. 2. All singular values has
order superior to 10−6, while for the bihormonal–glucose
model (1)–(7) there are singular values with order 10−9 or
less. In conclusion, no parameter with lack of local structural
identifiability was found for the reduced bihormonal–glucose
model (8).
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Fig. 2. Singular Value Decomposition of the reduced bihormonal–
glucose model (8). No singular value equal to zero or very small was
found, suggesting that parameters are locally structurally identifiable.

IV. DATA COLLECTION AND METHODS

A. Data Collection
The reduced bihormonal–glucose model (8) was calibrated

using data from experiments with pigs. Each experiment was
carried out in about 8 hours. Blood glucose levels were
measured at least every 5 minutes from IV blood samples
collected in syringes and analyzed on a Radiometer ABL
725 blood gas analyzer (Radiometer Medical ApS, Brønshøj,
Denmark) [5], [25], [26].

Glucose was intravenously infused at different rates during
all the experiment. In order to simulate food intake, glucose
infusion was increased and then decreased as a step function
after the first half of the experiments (glucose infusion is
depicted in Fig. 3). In the experiments for Pig 1 and Pig
4, there were several increments in glucose infusion to avoid
hypoglycemia.

Insulin and glucagon boluses were pumped into the IP
cavity. Porcine insulin and glucagon endogenous production
were neglected for modeling, since they were suppressed
by a combination of octreotide and pasireotide during the
experiments.

B. Parameter Estimation: Minimization Method
Model calibration is performed in order to personalize

the reduced bihormonal–glucose model (8) for each subject.
Parameter estimation for each experiment was carried out
using the Nelder–Mead algorithm to minimize the sum of
square errors between the model and experimental data. The
fminsearch tool was used in Scilab to obtain parameter values
that minimize the cost function

F (θ) =
∑

t∈TBGA

[
BGA(t)−G(t,θ)

]2
,

where θ is the vector of parameters to be estimated, BGA(t)
blood glucose measurements, TBGA the set of time–points
at which glucose was measured, and G(t,θ) the glucose
state of the reduced bihormonal–glucose model (8) with the
parameters in θ.



0018-9294 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TBME.2021.3125839, IEEE
Transactions on Biomedical Engineering

LOPEZ-ZAZUETA et al.: IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING (2021) 5

After the calibration, the Mean Square Error was computed
for each experimental case:

σ̂2 =

∑
t∈TBGA

[
BGA−G(t,θ)

]2
n

,

where n is the sample size.
To compare the accuracy of the model estimation, the BIC

(Bayesian information criterion) value was calculated for each
experiment case. BIC criterion considers the complexity of the
model, i.e. the number of parameters and the sample size. The
BIC value is defined as

BIC = n · log(σ̂2) + p# · log(n)

where p# is the number of parameters. BIC can take negative
values. The better the performance of the model, the lower the
BIC value [36].

The parameters estimated are in Table II. For the measurable
state (i.e. glucose state), the initial condition can be taken as
the last data point registered. For the non–measurable states
(dimensionless states), the initial conditions are fixed and not
estimated with the minimization method, because they can be
readjusted by a change of variable without affecting the output
of the system (the measurable state).

A second algorithm based on the quasi–Newton method was
used to calibrate the parameters of the reduced bihormonal–
glucose model (8). The results are presented in Table S.6 of
Supplementary Material S.10. The estimates obtained with
the Nelder–Mead algorithm and the quasi–Newton method
are close. The mean of the relative difference between the
parameters is 0.11.

V. MODEL CALIBRATION RESULTS

The reduced bihormonal–glucose model (8) is personalized
according to the experimental data of each subject. For this
purpose, its parameters were estimated for each experimental
case, as explained in Section IV. The numerical results are
plotted in Fig. 3.

The BIC values for 4 out of the 5 experimental cases are
-47.97 in average (see Table II), which suggest that data are
accurately approximated with a model of adequate complexity.
The case with the largest BIC value (Pig 4) had an abnormal
late and sharp response to the first glucagon bolus.

The variability of parameters between individuals is due to
the inter–subject variability of glucose dynamics [10], [11]. To
determine the range of variation for the parameters will require
many experimental cases (which might only be possible with
clinical cases) to make the estimations statistical meaningful.

The Mean Square Error between the data and the model was
computed for the complete and reduced model. This show that
the error obtained approximating the data with the reduced
model is lower than with the complete model (compare Table
II and Table S.3 of Supplementary material S.4.

Furthermore, the BIC criteria was used to compare the per-
formance of the complete and reduced models to approximate
the data of the full experiments (i.e. about 8 hours). BIC values
are lower for the reduced model than for the complete model
(see Table II and Table S.3 of Supplementary material S.4.),

TABLE II
PARAMETERS ESTIMATED WITH THE NELDER–MEAD ALGORITHM FOR

THE REDUCED BIHORMONAL–GLUCOSE MODEL (8), PARAMETER

COEFFICIENT OF VARIATION (CV), MEAN SQUARE ERROR (MSE),
AND BIC VALUES OF THE MODEL APPROXIMATION. THE BETTER THE

MODEL PERFORMANCE TO APPROXIMATE THE DATA, THE LOWER THE

MSE AND BIC VALUES.
Parameter Pig 1 Pig 2 Pig 3 Pig 4 Pig 5 CV
k1 13.79 21.56 7.41 0.98 3.92 0.87
ki1 171.68 168.68 181.79 115.36 185.46 0.17
kH 38.50 44.02 33.20 28.63 655.46 1.73
rG 4.73 2.79 2.21 1.77 1.73 0.47
m3 4.83 2.33 4.38 8.74 37.89 1.28
m4 27.84 85.05 64.96 9.49 12.30 0.84
q 0.48 0.81 0.52 0.96 1.37 0.44
n 110.34 177.30 142.24 37.85 709.33 1.15
n1 138.95 200.09 177.44 38.52 2152.87 1.67
x1 237.39 196.85 102.37 0.0014 3392.80 1.86

MSE 0.30 0.54 0.36 3.45 0.25
BIC -57.40 -8.15 -38.47 174.15 -87.85

indicating that the reduced model has a better performance for
approximating the experimental data. This is shown with the
number of cases had at the moment when the work was done.
To consider more experimental cases or longer experiments
may be done in future works.

VI. DISCUSSION

The bihormonal–glucose model (1)–(7) and the reduced
bihormonal–glucose model (8) have been presented in this
work. Both models can be personalized to represent glucose
nonlinear dynamics when intraperitoneal insulin and glucagon
boluses are administered. Furthermore, these models can rep-
resent the variants in glucose infusions as performed during
the experiments, leading to conclude that the models can
approximate the dynamics of glucose even when there is food
intake.

The local identifiability of the complete model was ad-
dressed. After local structural identification analysis, the re-
duction of the bihormonal–glucose model was accomplished
through re–parametrization and state transformations. More-
over, a structural identification analysis was performed for the
reduced bihormonal–glucose model (8) and no parameter was
found to lack of local structural identifiability.

To address practical identifiability of the complete model,
two insulin states active in glucose removal were reduced to
a single state, and it has been shown that this does not imply
less accuracy in the approximation of glucose measurements.
Moreover, parameter profile likelihoods were computed for the
reduced bihormonal–glucose model (8) and the results suggest
that parameters are locally practically identifiable.

In this way, the number of parameters to be estimated was
reduced for the bihormonal–glucose model (1)–(7), obtaining
the reduced bihormonal–glucose model (8) which can repre-
sent experimental data with the same or better accuracy.

The reduced model was inferred taking into account that
insulin and glucagon are not measured (to approximate insulin
and glucagon measurements, the complete model may be
used). Indeed, the reason for reducing is to have a simpler
model which can be quickly calibrated after 2–3 hours of
animal experiments where only blood glucose measurements
are available, so that the model can be tested in MPC.
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Fig. 3. Reduced bihormonal–glucose model (8) compared to experimental data. During the experiments, several intraperitoneal insulin and
glucagon boluses were used to identify the nonlinear dynamics of both hormones and the glucose response. The parameters estimated are
described in Table II.
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In this work, two different methods were used to address
parameter estimation: a minimization routine based on the
Nelder–Mead algorithm and the quasi–Newton method. Other
approaches can be tested to identify the models with prior
knowledge on model parameters, for instance, using Bayesian
methodologies [32], [37] and Markov chain Monte Carlo
techniques [38], [39].

New technologies concerning the treatment of T1DM have
been proposed to be incorporated in AP, for instance, to
analyze body sounds to detect meal ingestion [40], [41]. But
so far for this work, it is considered that only blood glucose
measures will be available and that the information about
glucose input is given. Besides, there is low probability that the
necessary data to make practically identifiable the parameters
of the bihormonal–glucose model could be obtained from a
non–invasive device, specially for the parameters related to the
concentration of hormones within the intraperitoneal cavity.

Also, glucagon sensitivity might be related to the glycogen
stored in the liver and the generation of glucose from amino
acids (gluconeogenesis) [42]. As future work, the formulation
of the glucagon sensitivity state can be revised, for instance to
analyze if in larger periods of time there is an increment in this
state and whether there is saturation. In these experiments, the
repletion of glycogen in the liver could not be observed, prob-
ably due to the short duration of the experiments. However,
it is expected that hepatic glycogen repletion will enhance the
effects of glucagon doses [43].

On the other hand, the main risks observed in the use of
IP insulin infusions are skin infections and interruption of
the insulin supply attributable to catheter obstruction [23],
[44]–[46]. The addition of a second hormone (glucagon)
does not necessarily imply a second port, but rather a single
catheter with two channels. Therefore, increasing one to two
intraperitoneal hormones may not significantly increase the
risk of infection. Even if the efficiency of a single port (or a
two–lumen catheter) to infuse dual hormones intraperitoneally
is still to be established, the primary purpose of this work is
to propose a suitable and relatively simple model to develop
a controller that allows progress in animal experiments and
future clinical trials.

Although the risk of these complications has been reduced
with experience [23], the use of the intraperitoneal route is
something that must be balanced with its benefit [47]. In–silico
comparisons have shown that with intraperitoneal insulin infu-
sions glucose levels can be controlled within the normal range
by giving smaller glucose excursions after meals compared to
subcutaneous insulin infusions, keeping blood glucose levels
lower and preventing hypoglycemia even without the need for
boluses before meals. [45], [48].

Furthermore, in animal experiments it has been observed
that, compared to subcutaneous administration of hormones,
intraperitoneal boluses induce faster effects on glucose levels
while reducing the concentration of hormones in the circula-
tory system [5], [25], [26], [49].

Finally, normalizing glucose levels can eradicate the long–
term adverse effects of diabetes that affect many patients after
decades of disease.

VII. CONCLUSION

In summary, a low–order nonlinear bihormonal–glucose
model accounting for intraperitoneal insulin and glucagon
infusions is introduced in this work. The innovations of the
model are the use of power–law kinetics for representing
intraperitoneal insulin absorption and a separate glucagon sen-
sitivity state. The model was reduced addressing its practical
and structural lack of parameter identifiability, given glucose
estimations from animal experiments. The parameters of the
reduced model were found to exhibit local practical as well
as structural identifiability. Both the complete and the reduced
model can fit data from animal experiments, where insulin and
glucagon boluses were introduced in the IP cavity, which is
completely novel to the best of the knowledge of the authors.
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