
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f N

at
ur

al
 S

ci
en

ce
s

D
ep

ar
tm

en
t o

f P
hy

si
cs

Fredrik Knapskog
Plasm

onic response of supported and interacting spherical nanoparticles

Fredrik Knapskog

Plasmonic response of supported
and interacting spherical
nanoparticles

Master’s thesis in Applied Physics and Mathemathics
Supervisor: Ingve Simonsen

June 2021M
as

te
r’s

 th
es

is

Fredrik Knapskog

Plasmonic response of supported and
interacting spherical nanoparticles

Master’s thesis in Applied Physics and Mathemathics
Supervisor: Ingve Simonsen
June 2021

Norwegian University of Science and Technology
Faculty of Natural Sciences
Department of Physics

Abstract

Particle growth is common in various industries and sciences. The optical properties of nanoparticles
grown on a substrate are useful when trying to monitor the layer thickness or the composition of the
thin film. The software package GranFilm implemented by I. Simonsen and R. Lazzari is based on
the work of D. Bedeaux and J. Vlieger, which assumes the quasi-static approximation. It computes
linear optical coefficients for truncated spheres and spheroids by a substrate, taking account for the
interaction with the substrate and other particles. The software package allows for high order in the
multipole expansion regarding interaction with the substrate, but is limited to quadrupole order for
the multipole expansion regarding interaction between the particles. A python code is written for
full spheres above the substrate taking high order interaction between particles into account. By
comparison, the quadrupole approximation breaks down for a surface density of 55% for an Al2O3

substrate and 45% for a TiO2 substrate. The resonances of the optical coefficients are studied along
with the near field calculations. Lower heights above the substrate induce red shifts of the energy
positions of the resonances for any direction of the incident electric field, and the largest red shift
is obtained for incident electric field parallel to the z-axis. Shorter distances between neighbouring
spheres induce a larger red shift than the corresponding decrease in height, but only if the incident
field is parallel to a short lattice vector. Otherwise, the shorter distances induce a slight blue shift
due to the potential enhancements being symmetric rather than anti-symmetric, and the Coulomb
force is hence acting as a restoring force. Lastly, the multipole expansion method is compared to the
discrete dipole approximation software DDSCAT with great agreement except in the region near the
resonances. The discretisation at 523 305 point dipoles is insufficient for obtaining accurate results
where the field enhancements are at their largest.

i

Sammendrag

Partikkelvekst er vanlig i vitenskap og diverse industrier. De optiske egenskapene til nanopartikler
dyrket på et substrat er nyttige når det gjelder overvåking av tykkelsen og sammensetningen til
den tynne filmen. Programvarepakken GranFilm implementert av I. Simonsen and R. Lazzari er
basert på arbeidet til D. Bedeaux og J. Vlieger, som antar den kvasistatiske approksimasjonen. Den
beregner lineære optiske koeffisienter for sfærer og sfæroider trunkert av et substrat. Programvaren
tar i betraktning samspillet med substratet og de andre partiklene. Den tillater høy orden i mul-
tipolutviklingen som omhandler samspillet med substratet, men er begrenset til kvadrupol orden
i multipolutviklingen som omhandler samspillet mellom partiklene. En pythonkode er skrevet for
hele sfærer over et substrat og tar dermed høy orden i betraktning av samspillet mellom partiklene.
Fra sammenligning er grensen for hvor kvadrupolapproksimasjonen bryter ned funnet til å være en
overflatetetthet på 55% for et Al2O3 substrat og 45% for et TiO2 substrat. Resonansen til de optiske
koeffisientene er studert sammen med nærfeltsberegningene. Lavere høyder over substratet induserer
rødforskyvninger av energiposisjonene til resonansene for alle retninger for det innkommende elek-
triske feltet, og den største rødforskyvningen oppnås for innkommende elektrisk felt parallelt med
z-aksen. Kortere avstander mellom nabosfærer induserer en større rødforskyvning enn tilsvarende
minking av høyde, men kun for innkommende felt parallelt med en kort gittervektor. Ellers vil
kortere avstander indusere en svak blåforskyvning som følge av symmetriske potensialøkninger ist-
edenfor antisymmetriske, og Coulombkraften vil da fungere som en gjenopprettende kraft. Til slutt
er multipolutviklingsmetoden sammenlignet med den diskrete dipolapproksimasjonsprogramvaren
DDSCAT med gode overenstemmelser med unntak av området i nærheten av resonansene. Diskre-
tiseringen på 523 305 punktdipoler er utilstrekkelig for nøyaktige resultater når feltøkningene er på
deres største.

iii

Preface

This master’s thesis concludes the five year long Master of Science program in Applied Physics and
Mathematics at the Norwegian University of Science and Technology in Trondheim. The work on
the thesis was performed at the tenth semester of the study program during the spring of 2021,
with Prof. Ingve Simonsen as supervisor from the Department of Physics. This master’s thesis is
a continuation of the pre-masters project from the fall of 2020. Chapter 1, Secs. 2.1.1–2.2.5, 2.2.8,
2.2.11, 2.3, 3.1.1, 3.3, and 4.1.1–4.1.2 are hence heavily influenced by the pre-masters project if not
unchanged at all.

As a student with interests in the fields of physics, mathematics and programming, a numerical
project such as this one is rather rewarding, as numerics unifies the three sciences. Physics provides
an application for the problem, mathematics provides the tools necessary for solving the problem and
programming provides the force and power to execute solution. The result is a varied combination
of setting up the problem, solving the problem and analysing the result.

I would like to thank Prof. Ingve Simonsen for all the great supervision and advice he has given
me and for the interesting project he made for me. He is one to rely on, and he always shows up
with a smile. During this CoVid-19 pandemic I would also like to thank my girlfriend of three years,
Gunhild Holen Eimhjellen, for accompanying me in these solitude times. There are a lot of lonely
students these days without the ability to socialise, and my thoughts are with them.

Fredrik Knapskog
Trondheim, June 2021

v

Acknowledgemets

I would like to acknowledge D. Bedeaux and J. Vlieger [1] for laying the foundation for the theory
and P. A. Letnes, I. Simonsen and D. L. Mills [2, 3] for the numerical results used for verification of
the implementations in App. A.1. I would like to acknowledge Numba [4], because without a just-in-
time compiler the software could not have been written in python due to its slow nature. I would also
like to acknowledge the freely available software shtools [5] for allowing calculation of spherical
harmonics of higher order than l = 86 and the Sopra database [6] for providing experimental data
for the dielectric functions. I would like to acknowledge B. T. Draine and P. J. Flatau [7, 8, 9]
for their freely available software DDSCAT. Moreover, I would like to acknowledge the nanoHUB
tool DDSCAT Shape Generator [10] for generating the discretisation of a sphere and the open
data analysis and visualisation application ParaView [11] for visualising the discretisation of the
scattering objects. I would like to acknowledge C. F. Bohren and D. R. Huffman [12] for the Fortran
code for the absorption efficiency factor and H. Kaiser [13] for translating it to python. I would
like to acknowledge I. Simonsen and R. Lazzari [14] for developing the freely available software
GranFilm, and especially I. Simonsen for providing the reflectivities obtained from GranFilm
in Sec. 4.3.2. Lastly, I would like to acknowledge the Department of physics at the Norwegian
University of Science and Technology for allocation of computer time on their computer cluster.

vii

Contents

Abstract i

Preface v

Acknowledgements vii

1 Introduction 1

2 Theory 3
2.1 Bulk theory . 3

2.1.1 Induced dipole moment in a metallic sphere 3
2.1.2 Boundary conditions on the interface between two media 4
2.1.3 The Drude model . 5
2.1.4 Method of images . 5
2.1.5 Multipole expansion of the Coulomb potential 5

2.2 Optical properties for a metasurface of supported and
interacting nanospheres . 8
2.2.1 The metasurface . 8
2.2.2 Maxwell’s equations and the quasistatic approximation 9
2.2.3 The solution to Laplace’s equation . 10
2.2.4 Spherical harmonics . 10
2.2.5 External incident electric field . 10
2.2.6 The potential in the various regions . 11
2.2.7 The electric field . 12
2.2.8 Determining the expansion coefficients for a finite set of spheres from the

boundary conditions . 13
2.2.9 Expanding the finite set of spheres to an infinite periodic lattice 18
2.2.10 Determining the expansion coefficients for an infinite periodic set of spheres

from the boundary conditions . 20
2.2.11 Dimensionless dipole moment . 25
2.2.12 Polarisation density and the effective dielectric tensor 25
2.2.13 Reflectance and transmittance . 26

2.3 Resonance energies . 27
2.3.1 The resonance energy of an isolated sphere 27
2.3.2 The resonance energy at dipole order for a single supported sphere 28
2.3.3 The resonance energy at dipole order for a supported dimer 29

2.4 The Discrete dipole approximation . 32
2.4.1 System of equations . 32

ix

2.4.2 Polarizabilities . 34
2.4.3 Cross sections and efficiency factors . 35
2.4.4 Reflectance from Stokes vectors and the Mueller matrix 35
2.4.5 Mie cross sections . 39
2.4.6 Reflectance and transmittance for a thin film 40

3 Method 41
3.1 Truncating the system of equations . 41

3.1.1 Truncating the system of equations for a finite set of spheres 41
3.1.2 Truncating the system of equations for an infinite lattice 43

3.2 DDSCAT . 45
3.2.1 Choice of method for the discrete dipole approximation 45
3.2.2 Truncating the system of equations . 46
3.2.3 Application of discrete Fourier transform to speed up computation 46
3.2.4 The parameter file . 47
3.2.5 The discretisation . 49

3.3 Implementation . 50

4 Results and discussion 53
4.1 Finite systems . 53

4.1.1 Dimensionless dipole moments . 53
4.1.2 Visualisation of the red shifts . 58
4.1.3 Ring structures . 63
4.1.4 Near field calculations . 65

4.2 Infinite systems . 70
4.2.1 Dimensionless dipole moments . 70
4.2.2 Reflectivities . 74

4.3 The Discrete Dipole Approximation Method . 76
4.3.1 Verification . 76
4.3.2 DDSCAT compared to multipole expansion and GranFilm 78

5 Conclusion 82

A Multipole expansion method 86
A.1 Python script . 86
A.2 Dielectric file for Ag in SOPRA database . 121

B DDSCAT 122
B.1 Python script for processing results . 122
B.2 Snippet of the Makefile . 129
B.3 The parameter file . 130
B.4 The target file . 131
B.5 The dielectric file . 132
B.6 The postrocessing parameter file . 133

x

Chapter 1

Introduction

The growth of nanoparticles is an active field of research with applications involving nanoelectron-
ics, chemical sensing, composite materials, biology and medicine [15]. Thin films are produced daily
in the semiconductors, glass and coatings industries. The nanoparticles are formed by condensing
a gas of metallic atoms onto a substrate with a relatively large surface energy [15]. The deposited
metal will thus start to form islands modelled by the Volmer-Weber growth [15]. The nanopar-
ticles represent a perturbation from the easily solvable case of an ideally planar surface between
two bulk media [15]. In order to learn more about the growth process and monitoring the layer
thickness in-situ, it is common to perform ellipsometric measurements such as Surface Differential
Reflectance Spectroscopy [15]. This involves measuring the specular reflectance spectrum of the
surface by using linearly polarised radiation in and around the visible range. The Surface Dif-
ferential Reflectance Spectroscopy is then the relative change, ∆R/R, of the specular reflectance
compared to the reference measurements, R, from before the nanoparticles were present i.e. for the
plain substrate.

In the 1970s, the available theories for the reflectance of a thin film were essentially limited
to effective medium theories, such as the Maxwell-Garnet theory and the Bruggeman formula,
and to the dipolar Yamaguchi model [1]. The theories gave a decent qualitative description of
the behaviour of thin metallic films, but lacked the quantitative descriptions. D. Bedeaux and J.
Vlieger [1] improved the quantitative description when they developed their theory for thin island
films and rough surfaces, based on classical electromagnetism where they solve Maxwell’s equations
in the area of the nanoparticles in the quasi-static limit [15]. The approach involves the potentials
from the solution of Laplace’s equation and solving for the multipole expansion coefficients from the
equations which arise from the boundary conditions. The susceptibilities γ and β are the integrated
surface polarisation parallel and perpendicular to the surface, respectively, and can be determined
from the multipole expansion coefficients. From the susceptibilities the reflectivities for s- and
p-polarised light can be calculated.

The shapes of the islands in the thin island films can be spheres or spheroids placed either
above the substrate or truncated by the substrate. The theory of D. Bedeaux and J. Vlieger takes
account of the interactions within the islands and the interaction with the substrate. For islands not
truncated by the substrate the orthonormality of the spherical harmonics can be taken advantage of
when solving for the expansion coefficients. Otherwise, the number of numerical integrals concerning
the neighbour island interactions in the multipole expansion gets out of hand. I. Simonsen and
R. Lazzari implemented the theory of D. Bedeaux and J. Vlieger for truncated island films into the
software GranFilm [14]. Consequently, the contributions in the multipole expansion regarding the
neighbour interactions are limited to quadrupole order. The optical properties of the thin film are

1

strongly dependent on the shapes of the islands, especially near the resonances. Hence, the accuracy
of the substrate interaction and the shapes of the islands are of greater interest for GranFilm than
the high surface density limit.

The aim of this thesis is to gain better insight to where the quadrupole approximation in the
neighbour interaction is valid for GranFilm. The approach is to develop a software for whole
spheres not truncated by the substrate and thus placed a separating height above the substrate.
The software should be able to distinguish between the multipole order for the interaction with the
substrate and the multipole order for the interaction with the other spheres. The simulations for
quadrupole order in neighbour interactions can thus be compared to simulations for a high multipole
order where the solution has converged sufficiently. In both simulations the interaction with the
substrate should be calculated for a high multipole order. The comparisons for various surface
densities may provide a decent overview of where the quadrupole approximation is valid and where
it breaks down.

A completely different approach for the same problem is the discrete dipole approximation.
Instead of limiting the problem to a sphere or a spheroid, the shape of the scattering object can
take any form. The object is discretised to a set of sub volumes referred to as point dipoles, and
the polarisation for each point dipole is solved for. The polarisations can be used to determine
the Mueller matrix elements and thus the reflectivities for any degree of polarised light. The freely
available software DDSCAT [7, 8, 9] utilises the discrete dipole approximation and is developed by
B. T. Draine and P. J. Flatau. DDSCAT allows for periodic boundaries such that the reflectivities
for lattices of islands obtained from GranFilm and the multipole expansion software developed
here can be compared to DDSCAT. However, DDSCAT does not support substrates yet. The
comparisons must hence be for islands hovering in the ambient medium.

Along the way this thesis will also study the characteristics of the resonances for the optical
properties of the thin films. How the resonances are affected by various factors will be in focus.
The factors are the dielectric functions of the substrate and the islands, and the island separation
distance and height above the substrate. The interests in the plasmonic response of substrates for
the purpose of enhancing electric fields of laser beams in their near vicinity are great [2]. Such
enhancements due to excitation of collective plasmon modes have the potential of increasing the
field intensity in the near vicinity by many orders [2]. The phenomenon was first explored in Raman
scattering, but the use has been applied to cross sections of diverse nonlinear optical processes [2].
These field enhancements will be studied here along with the potential enhancements, for both a
supported and unsupported dimer. The near field calculations can be rather useful in order to gain
more insight in the characteristics of the resonances. The field enhancement is also rather useful for
comparing the multipole expansion to DDSCAT.

2

Chapter 2

Theory

2.1 Bulk theory

2.1.1 Induced dipole moment in a metallic sphere

A metallic sphere exposed to an electric field, E, experiences an induced polarisation due to the
electrostatic force, F, exerted on the sphere’s charge carriers

F = qE. (2.1.1)

A charge q’s sign determines the direction of the force. Thus carriers of opposite charges are

Figure 2.1: Two metallic spheres placed above a dielectric substrate occupying the half space z < 0.
The induced charge distributions occur when they are exposed to an external electric field. The black dots
represent point charge approximations of the charge distributions as well as the image charges of these as
seen by an observer in the half space z > 0. The external electric field is here orthogonal to the substrate
such that the induced dipole moments denoted with arrows are lined vertically.

separated in opposite directions. The separation continues until an equilibrium is reached due
to the Coulomb force from the other charge carriers. Then, there will be two concentrations of
opposite charges. The concentrations can cause the electric field to be locally stronger than the
external electric field. The concentrations are placed at opposite sides of the sphere according to
the direction of the external electric field. If the observer is far away from the sphere, the charge

3

Figure 2.2: Two metallic spheres placed above a dielectric substrate occupying the half space z < 0.
The induced charge distributions occur when they are exposed to an external electric field. The black dots
represent point charge approximations of the charge distributions as well as the image charges of these as
seen by an observer in the half space z > 0. The external electric field is here parallel to the substrate such
that the induced dipole moments denoted with arrows are lined horizontally.

concentrations can be simplified into two point charges. An electric dipole moment, p, will then
occur as illustrated in Figs. 2.1 and 2.2

p = d|q|. (2.1.2)

The vector d is the distance from the negative point charge to the positive one. As the figures show,
the induced dipole moments in the spheres point in the same direction as the external electric field.
Furthermore, for two spheres placed next to each other, the dipole moments line up in series when
the external electric field is parallel to the axis through the centres of the two spheres. That is not
the case for the electric field parallel to either of the other two axes.

2.1.2 Boundary conditions on the interface between two media

At the interface between media 1 and 2, the component of the electric field parallel with respect to
the interface must be continuous [16]

E1,‖ −E2,‖ = 0, (2.1.3)

while the component of the electric displacement field perpendicular with respect to the interface
will be discontinuous for non zero free surface charge density, σf

D1,⊥ −D2,⊥ = σf . (2.1.4)

The electric displacement field takes the form

D ≡ ε0E + P, (2.1.5)

where ε0 is the vacuum permittivity and P is the polarisation density

P ≡ dp

dτ
, (2.1.6)

with τ denoting volume. For a linear, homogeneous and isotropic dielectric medium the polarisation
density is linearly proportional to the electric field

P = ε0χE, (2.1.7)

4

with the susceptibility, χ, multiplied by the vacuum permittivity as the constant of proportionality.
Inserting the polarisation density in Eq.(2.1.7) into the electric displacement field from Eq. (2.1.5)
yields

D = ε0E + ε0χE = ε0(1 + χ)E = ε0εrE = εE. (2.1.8)

The relative permittivity, εr, will from here be referred to as the dielectric function or as the
permittivity, and ε will denote the relative permittivity instead of the absolute permittivity in
Eq. (2.1.8). Often, the permittivities in the computations appear in fractions, both in the dividend
and the divisor, and so forth the vacuum permittivities cancel out anyway.

2.1.3 The Drude model

The permittivity of the spheres can be modelled by the Drude model

εj(ω) = 1−
ω2
p

ω(ω + iγ)
, (2.1.9)

with ω as the angular frequency of the incident plane wave, ωp as the plasma frequency and γ as the
inverse of the free carrier relaxation time. The model takes into account that frequencies greater
than the plasma frequency results in the real part of the permittivity becoming negative. Hence, the
spheres are not considered metallic if the frequency is too high. The transition is a consequence of
the charge carriers in the metal being unable to oscillate sufficiently fast if the incident field changes
too rapidly. Otherwise, the model is not a very accurate formula [16].

2.1.4 Method of images

If a sphere is placed above a substrate with a dielectric function greater than 1, the induced charges
from the sphere will induce new charges in the substrate. The potential is required to be contin-
uous at the surface of the substrate, and to be convergent in the far field limit. The method of
images exploits the first uniqueness theorem [16] in order to deal with the substrate interaction.
Consequently, if a function for the potential satisfies the two boundary conditions, the function is
guaranteed to be the only solution to meet those requirements. The function for the potential is
found by replacing the substrate with an image charge, q′, with opposite sign of the corresponding
point charge in the sphere, at the position mirrored by the substrate’s surface. The amplitude of the
image charge will most likely differ from the the one in the sphere, as it depends on the dielectric
functions of the substrate and the ambient medium in order to fulfil the boundary condition at the
interface of the two media. The image charges in Figs. 2.1–2.2 form point charge dipole moments
as well. This time, the dipole moments in the substrate line up in series with the ones from the
spheres when the external electric field is orthogonal to the substrate. When the field is parallel to
the substrate on the other hand, the dipole moments from the spheres point in opposite direction
of the ones from the substrate, and they are not in series.

2.1.5 Multipole expansion of the Coulomb potential

The Coulomb potential, V , evaluated at position r, from a set of point charges is described by

V (r) =
1

4πε

∑
i

qi
|r− r′i|

, (2.1.10)

5

Figure 2.3: Three cases of point charges q placed to form (a) a dipole, (b) two dipoles in series, and (c) a
quadrupole. The observation point is described by the vector r, which makes an angle θ with the x-axis. For
the single dipole, the charges are separated by a distance d. The dipoles in series are of the same lengths, d,
but separated by a distance of 2h. The point charges in the quadrupole are all placed a distance d/2 from
the origin.

where ε is the absolute permittivity of the ambient medium, and r′i is the position of point charge
qi. The distance in the denominator of Eq. (2.1.10) can be rewritten as

|r− r′i| =
√
r2 − 2r · r′i + r′2i = r

√
1 + η, (2.1.11)

where
η = −2

r̂ · r′i
r

+ (
r′i
r

)2. (2.1.12)

The binomial series

(1 + x)s =

∞∑
n=0

(
s

n

)
xn, (2.1.13)

can be applied to expand Eq. (2.1.11) for small η when r � r′i as done in Ref. [16]. The name of
the series originates from the binomial coefficients(

s

n

)
≡ s!

n!(s− n)!
, (2.1.14)

where ! represents the factorial function. When inserting −1/2 for s and η for x in the expansion,
the Coulomb potential takes the form

V (r) =
1

4πεr

∑
i

qi(1−
1

2
η +

3

8
η2 + . . .) =

1

4πεr

∑
i

qi

[
1 +

r̂ · r′i
r

+
3(r̂ · r′i)2 − r′2i

2r2
+O(

r′i
r

)3

]
.

(2.1.15)
The series can be written as

V (r) = Vmono(r) + Vdi(r) + Vquad(r) + . . . , (2.1.16)

where

Vmono(r) =
1

4πεr

∑
i

qi,

Vdi(r) =
1

4πεr2

∑
i

qir̂ · r′i,

Vquad(r) =
1

4πεr3

∑
i

qi
3

2

[
(r̂ · r′i)2 − r′2i

]
(2.1.17)

...

6

The term, Vmono, is the monopole term, Vdi is the dipole term, Vquad is the quadrupole term and
so on. This is where the expression multipole expansion originates from. As the order increases,
the terms decay faster with distance r. Thus, the monopole term dominates when only one point
charge is present. For a dipole of two equal but opposite charges separated by a distance d as in
Fig. 2.3(a) on the other hand, the case will be different. The scalar product, r̂ · r′i, can be found
from the angle, θ, in Fig. 2.3(a) and the distance between the two charges,

r̂ · r′1 =
d

2
cos(π − θ) = −d

2
cos θ and r̂ · r′2 =

d

2
cos θ. (2.1.18)

The potential from the dipole hence becomes

V (r) =
q

4πεr

[
(1− 1) +

(
d cos θ

2r
− −d cos θ

2r

)
+O

(
r′i
r

)2
]

=
p cos θ

4πεr2
+O(r−3). (2.1.19)

Here the monopole term has vanished and the potential is dominated by the dipole term. Conse-
quently, the potential decays as r−2. Putting two equal dipoles in series as shown in Fig. 2.3 (b)
and using the same procedure gives

V (r) =
q

4πεr

[
(2− 2) +

cos θ

r
[(h+ d)− h− h+ (h+ d)] +O

(
r′i
r

)2
]

=
p cos θ

2πεr2
+O(r−3), (2.1.20)

which results in a twice as strong potential as for a single dipole. The quantity 2h is the distance
used between the dipole moments, but the potential turned out independent of this separation
when r � h+ d. When looking at the interaction between two spheres in Fig. 2.2, where the field
is parallel to the axis through the centres of the two spheres, the result from Eq. (2.1.20) is quite
descriptive. Likewise for the interaction with the substrate in Fig. 2.1, where the external field is
orthogonal to the substrate, if the amplitudes of the image charges are close to the amplitudes of the
point charges in the spheres. For the interaction with the substrate in Fig. 2.2 on the other hand,
the model from Fig. 2.3(c) can be used if the distance separating the dipole moments are close to
the distances of the dipole moments, that is, the height above the substrate is small. Moreover, the
amplitudes of the image charges must be close to the amplitudes of the point charges in the spheres.
The four scalar products then turn into

r̂ · r′1 =
d

2
cos(π − θ) = −d

2
cos θ

r̂ · r′2 =
d

2
cos θ

r̂ · r′3 =
d

2
cos
(
π/2 + θ

)
=
d

2
cos
(
π/2− (−θ)

)
=
d

2
sin(−θ) = −d

2
sin θ

r̂ · r′4 =
d

2
sin θ, (2.1.21)

which results in the potential

V (r) =
q

4πεr

[
(2− 2) +

[
cos θ

r
(1− 1) +

sin θ

r
(1− 1)

]
+

6d2(cos2 θ − sin2 θ)

8r2
+O

(
r′i
r

)3
]

=
3Q cos(2θ)

16πεr3
+O(r−4), (2.1.22)

where Q is the quadrupole moment
Q = d2|q|. (2.1.23)

The potential in Eq. (2.1.22) decays as r−3, as it is a pure quadrupole.

7

2.2 Optical properties for a metasurface of supported and
interacting nanospheres

2.2.1 The metasurface

Figure 2.4: Two nanospheres, j and i, placed a distance hj and hi, respectively, above a substrate occupying
the half space z < 0. The black dots represent the spheres’ image multipoles as seen by an observer in the
half space z > 0. Sphere i and j have radii ai and aj , respectively, and are separated by a distance dij .
The medium above the substrate has a dielectric function ε+(ω), and the substrate’s dielectric function is
ε−(ω). The spheres have the dielectric functions εj(ω) and εi(ω). Sphere j’s polar and azimuthal angle with
respect to the origin are θR,j and φR,j , respectively. Similarly, sphere i’s polar and azimuthal angle relative
to the centre of sphere j’s coordinate system are θij and φij . The polar angle of sphere i’s image multipole
in sphere j’s coordinate system is θīj . The position of sphere i relative to sphere j is Rij . The position of
sphere j’s image multipole relative to sphere j is Rj̄j , and the position of the image multipole of sphere i
relative to sphere j is Rīj . The position vector relative to sphere i is ri and its polar and azimuthal angle
are θi and φi, respectively.

The metasurface is a set of nanospheres of radius ai with corresponding dielectric functions εi
as illustrated in Fig. 2.4. The spheres are placed in an ambient medium with a dielectric function
ε+ right above the interface with a dielectric substrate with a dielectric function ε−. The height
separating the spheres from the substrate is denoted as hi, and the distance separating sphere i
from sphere j is denoted as dij . The global coordinate system is defined with the z-axis orthogonal
to the substrate and pointing upwards from the substrate. The global position vector is denoted
as r and has its origin at the interface between the substrate and the ambient medium. The unit
length used for r is the radius from one of the spheres. The position vectors of the centres of the
spheres are denoted as Ri, and their components in spherical coordinates are denoted as Ri, θR,i

8

and φR,i. Similarly, the position vectors for the image multipoles are denoted as Rī. The position
vector with origin in the centre of sphere i is denoted as ri = r−Ri, and its components in spherical
coordinates with origin in centre of sphere i are ri, θi and φi. Similarly for the position vector with
origin in the image multipole of sphere i, rī = r − Rī. Finally, the position vector of the centre
of sphere i with origin in the centre of sphere j is denoted as Rij = Ri −Rj , and its components
in spherical coordinates with origin in the centre of sphere j is Rij , θij and φij . Similarly for the
position vector of the image multipole of sphere i with origin in centre of sphere j, Rīj = Rī −Rj .

2.2.2 Maxwell’s equations and the quasistatic approximation

Maxwell’s equations have the form [16]

∇ ·D = ρ

∇ ·B = 0

∇×E = −∂B

∂t

∇×H = J +
∂D

∂t
, (2.2.1)

where ρ is the electric charge density, B is the magnetic flux density, H is the magnetic field and J
is the electric current density. As the divergence of B is zero, it is possible to rewrite B in terms of
a vector potential A

B = ∇×A, (2.2.2)

since the divergence of a curl is always zero. Inserting the vector potential into the third of Maxwell’s
equations yields

∇×E = − ∂

∂t
(∇×A). (2.2.3)

Factorising Eq. (2.2.3) with respect to the curl operator results in a conservative field

∇× (E +
∂A

∂t
) = 0. (2.2.4)

The conservative field can thus be written in terms of a scalar potential φ

E +
∂A

∂t
= −∇φ. (2.2.5)

On a scale much smaller than half a wave length of the incident plane wave, the variations in the
electric field across the domain will be small at a given time. The quasi-static approximation hence
considers a static image such that the time derivative is neglected

E = −∇φ. (2.2.6)

Inserting the electric field from Eq. (2.2.6) into the first of Maxwell’s equations

∇ ·D = ∇ · (εE) = −ε∇2φ = ρ (2.2.7)

results in Poisson’s equation for the potential

∇2φ = −ρ
ε
. (2.2.8)

For a neutrally charged sphere, with hence ρ = 0, Poisson’s equation is reduced to Laplace’s equation

∇2φ = 0. (2.2.9)

9

2.2.3 The solution to Laplace’s equation

The potential, ψj , from a neutrally charged sphere j positioned at Rj , when viewed from the half
space z > 0 as shown in Fig. 2.4, satisfies Eq. (2.2.9) when [1]

ψj(rj) =


∑
lm

A
(j)
lmr
−l−1
j Y m

l (θj , φj), rj ≥ aj ,∑
lm

B
(j)
lmr

l
jY

m
l (θj , φj), rj < aj .

(2.2.10)

Similarly, the potential from the image multipole of sphere j satisfies Eq. (2.2.9) when

ψj̄(rj̄) =
∑
lm

A
(j,R)
lm r−l−1

j̄
Y m
l (θj̄ , φj̄). (2.2.11)

However, when viewed from the half space z < 0, the image multipoles don’t contribute and the
potential from sphere j becomes

ψTj (rj) =
∑
lm

A
(j,T)
lm r−l−1

j Y m
l (θj , φj). (2.2.12)

The shorthand notation used is
∑

lm =
∑∞

l=0

∑l
m=−l, and the quantities A(j)

lm, B(j)
lm , A(j,R)

lm and
A

(j,T)
lm are unknown expansion coefficients to solve for.

2.2.4 Spherical harmonics

The eigenfunctions of the angular part of the Laplacian operator, Y m
l (θj , φj), are referred to as

spherical harmonics [17]. Here the orthonormal normalisation is used with the Condon-Shortley
phase included

Y m
l (θ, φ) = (−1)m

√
2l + 1

4π

(l −m)!

(l +m)!
eimφPml (cos(θ)), (2.2.13)

where Pml denotes the associated Legendre functions. The orthonormality of the spherical harmonics
is fulfilled by ∫ π

0
dθ sin θ

∫ 2π

0
dφ
[
Y m
l (θ, φ)

]∗
Y m′
l′ (θ, φ) = δll′δmm′ , (2.2.14)

with the asterisk * denoting the complex conjugate, and consequently∫ π

0
dθ sin θ

∫ 2π

0
dφY m

l (θ, φ) =

∫ π

0
dθ sin θ

∫ 2π

0
dφ
[
Y m
l (θ, φ)

]∗
= δl,0

√
4π. (2.2.15)

2.2.5 External incident electric field

Considering the external electric field of an incident plane wave in the ambient medium

E0 = E0(sin θ0 cosφ0, sin θ0 sinφ0, cos θ0), (2.2.16)

where E0 is the field strength, θ0 is the polar angle of the field, and φ0 is the azimuthal angle. The
corresponding potential can then be described as

ψ0(r) = −r ·E0. (2.2.17)

10

The inner product can be expanded in spherical harmonics by [1]

− r ·E0 = −rE0

√
2π

3

[√
2 cos(θ0)Y 0

1 (θ, φ) + sin(θ0){eiφ0Y −1
1 (θ, φ)− e−iφ0Y 1

1 (θ, φ)}
]

= r
∑
l,m

bl,mY
m
l (θ, φ). (2.2.18)

where

b1,0 = −E0

√
4π

3
cos(θ0)

b1,±1 = ±E0

√
2π

3
sin(θ0)e∓iφ0

blj ,mj
= 0 else. (2.2.19)

As only the change in potential energy is of physical significance the position of the zero point is
arbitrary. The constant b0,0 is thus set to zero to maintain generality. The terms higher than l = 1
being zero is a consequence of the plane wave approximation. For the electric field of an incident
plane wave when evaluated in the substrate the same approach yields

ψT0 (r) = bT0,0 − r ·ET
0 = bT0,0 + r

∞∑
l=1

m=l∑
m=−l

bTl,mY
m
l (θ, φ), (2.2.20)

where

bT0,0 = −E0z0 cos(θ0)

(
ε+

ε−
− 1

)
bT1,0 = −E0

ε+

ε−

√
4π

3
cos(θ0)

bT1,±1 = ±E0

√
2π

3
sin(θ0)e∓iφ0

bTlj ,mj
= 0 else. (2.2.21)

Here, z0 is the z-coordinate at the origin of the coordinate system of r.

2.2.6 The potential in the various regions

The potential in the ambient medium, ψ+, is a superposition of the potential from the incident
plane wave, the spheres and their corresponding image multipoles [2]

ψ+(r) = ψ0(r) +

N∑
j=1

ψj(rj) +

N∑
j̄=1

ψj̄(rj̄). (2.2.22)

Similarly, the potential in the substrate, ψ−, is a superposition of the potential from the spheres
and the incident plane wave

ψ−(r) = ψT0 (r) +

N∑
j=1

ψTj (rj). (2.2.23)

Inside a sphere on the other hand, the only contribution to the potential is from the sphere itself.

11

2.2.7 The electric field

The electric field can be found from Eq. (2.2.6). In spherical coordinates the gradient takes the
form

∇j =
∂

∂rj
r̂j +

1

rj

∂

∂θj
θ̂j +

1

rj sin θj

∂

∂φj
φ̂j , (2.2.24)

such that the electric field from sphere j yields

Ej(rj) = E(j)
r r̂j + E

(j)
θ θ̂j + E

(j)
φ φ̂j = −∂ψj(rj)

∂rj
r̂j −

1

rj

∂ψj(rj)

∂θj
θ̂j −

1

rj sin θj

∂ψj(rj)

∂φj
φ̂j . (2.2.25)

The only part of the potential with angular dependencies is the spherical harmonics. The differen-
tiation with respect to the azimuthal angle is trivial

∂Y m
l (θ, φ)

∂φ
= imY m

l (θ, φ), (2.2.26)

whereas to differentiate the spherical harmonics with respect to the polar angle, the differentiation
of the Legendre functions with respect to θ must be applied [18]

∂Pml (cos(θ))

∂θ
= m cot(θ)Pml (cos(θ))− Pm+1

l (cos(θ)). (2.2.27)

The differentiation of the spherical harmonics with respect to the polar angle hence becomes

∂Y m
l (θ, φ)

∂θ
= m cot(θ)Y m

l (θ, φ)− (−1)m

√
2l + 1

4π

(l −m)!

(l +m)!
eimφPm+1

l (cos(θ))

= m cot(θ)Y m
l (θ, φ)−

(−1)m
√

2l+1
4π

(l−m)!
(l+m)!e

imφ

(−1)m+1
√

2l+1
4π

(l−(m+1))!
(l+m+1)! e

i(m+1)φ
Y m+1
l (θ, φ)

= m cot(θ)Y m
l (θ, φ) +

√
(l +m+ 1)(l −m)e−iφY m+1

l (θ, φ). (2.2.28)

When adding the contributions to the total electric field from the various sources it is useful to
convert them to a global coordinate system to allow for component-wise addition. This is done by
the rotation matrix

Ej(r) =

sin θR,j cosφR,j cos θR,j cosφR,j − sinφR,j
sin θR,j sinφR,j cos θR,j sinφR,j cosφR,j

cos θR,j − sin θR,j 0

Ej(rj) ≡ Ω(θR,j , φR,j)Ej(rj). (2.2.29)

The electric field in the two regions then become

E+(r) = E0 +
N∑
j=1

Ω(θR,j , φR,j)Ej(rj) +
N∑
j̄=1

Ω(θR,j̄ , φR,j̄)Ej̄(rj̄), (2.2.30)

and

E−(r) = ET
0 +

N∑
j=1

Ω(θR,j , φR,j)E
T
j (rj), (2.2.31)

with

Ej(rj) = −∇jψj(rj), Ej̄(rj̄) = −∇j̄ψj̄(rj̄), and ET
j (rj) = −∇jψTj (rj). (2.2.32)

12

2.2.8 Determining the expansion coefficients for a finite set of spheres from the
boundary conditions

For the boundary condition on the interface between the ambient medium and the substrate to be
satisfied by the method of images, the A coefficients can be related by [1]

A
(j,R)
lm = (−1)l+mβA

(j)
lm, where β ≡ ε+ − ε−

ε+ + ε−
, (2.2.33)

and
A

(j,T)
lm = γA

(j)
lm, where γ ≡ 2ε+

ε+ + ε−
. (2.2.34)

The expansion coefficients, A(j)
lm, can then be found from two boundary conditions at the surface of

the spheres. The first boundary condition requires the potential to be continuous at the interface
of sphere j

lim
rj→a−j

ψ(r) = lim
rj→a+j

ψ(r). (2.2.35)

Inserting the potential for inside sphere j on the left-hand-side and the potential for the ambient
medium from Eq. (2.2.22) into the right-hand-side, the limits yield

lim
rj→a−j

ψj(rj) = lim
rj→a+j

ψ+(r) = lim
rj→a+j

{
ψ0(r) +

N∑
i=1

ψi(ri) +
N∑
ī=1

ψī(rī)

}
. (2.2.36)

Inserting the potentials from Eqs. (2.2.10), (2.2.11) and (2.2.18) into Eq. (2.2.36) leads to

lim
rj→a−j

∑
lj ,mj

B
(j)
lj ,mj

r
lj
j Y

mj

lj
(θj , φj) = lim

rj→a+j

{
r
∑
lj ,mj

blj ,mj
Y
mj

lj
(θ, φ)

+
∑
lj ,mj

A
(j)
lj ,mj

r
−lj−1
j Y

mj

lj
(θj , φj) +

∑
li,mi

A
(j,R)
li,mi

r−li−1
j̄

Y mi
li

(θj̄ , φj̄)

+
∑
i 6=j

∑
li,mi

A
(i)
li,mi

r−li−1
i Y mi

li
(θi, φi) +

∑
i 6=j

∑
li,mi

A
(i,R)
li,mi

r−li−1
ī

Y mi
li

(θī, φī)

}
. (2.2.37)

The boundary condition has to be satisfied at all points on the surface of sphere j. As there can’t be
an infinite set of equations to solve numerically, a weak boundary condition has to be used instead.
The weak boundary condition involves demanding the integral of the product of Eq. (2.2.35) and a
test function, over the entire surface of sphere j to be satisfied. The orthonormality of the spherical
harmonics and its complex conjugate from Eq. (2.2.14) is a good motivation for choosing the test
function. The weak boundary condition from Eq. (2.2.35) hence takes the form∫ π

0
dθj sin θj

∫ 2π

0
dφj

[
Y m′
l′ (θj , φj)

]∗  lim
rj→a−j

ψ(r)− lim
rj→a+j

ψ(r)

 = 0. (2.2.38)

In order to exploit the orthonormality of the spherical harmonics and its complex conjugate from
Eq. (2.2.14), all the contributions to the potential in Eq. (2.2.37) must be expressed in terms of
r−li−1
j Y mi

li
(θj , φj). For the incident electric field, the trivial substitution as defined in Sec. 2.2.1 is

used [1]

r ·E0 = Rj ·E0 + (r−Rj) ·E0 = Rj ·E0 + rj ·E0. (2.2.39)

13

The shift in potential due to the change of the origin

ψ0(Rj) = −Rj ·E0 = Rj
∑
l,m

bl,mY
m
l (θR,j , φR,j), (2.2.40)

is independent of r and thus rj . To express the potential from the other spheres in the coordinate
system of sphere j on the other hand, is less trivial. The potentials have to be expanded around
the centre of sphere j [1]

r−li−1
i Y mi

li
(θi, φi) =

∞∑
lj=0

lj∑
mj=−lj

H(lj ,mj |li,mi)
Y
mi−mj

li+lj
(θij , φij)

R
lj+li+1
ij

r
lj
j Y

mj

lj
(θj , φj), (2.2.41)

where

H(lj ,mj |li,mi) =
√

4π(−1)li+mj

[
2li + 1

(2lj + 1)(2l + 1)

] 1
2
[(

l +m

li +mi

)(
l −m
lj +mj

)] 1
2

. (2.2.42)

In Eq. (2.2.42), the notation used is l = li + lj , m = mi − mj and the binomial coefficients are
familiar from Eq. (2.1.14). The limits in Eq. (2.2.36) expressed in the coordinates of sphere j thus
become

lim
rj→a−j

∑
lj ,mj

B
(j)
lj ,mj

r
lj
j Y

mj

lj
(θj , φj) =

lim
rj→a+j

{
−Rj ·E0 + rj

∑
lj ,mj

blj ,mj
Y
mj

lj
(θj , φj) +

∑
lj ,mj

A
(j)
lj ,mj

r
−lj−1
j Y

mj

lj
(θj , φj)

+
∑
li,mi

(−1)li+miβA
(j)
li,mi

∑
lj ,mj

H(lj ,mj |li,mi)
Y
mi−mj

li+lj
(θj̄j , φj̄j)

R
lj+li+1

j̄j

r
lj
j Y

mj

lj
(θj , φj)

+
∑
i 6=j

∑
li,mi

A
(i)
li,mi

∑
lj ,mj

H(lj ,mj |li,mi)r
lj
j Y

mj

lj
(θj , φj)

Y mi−mj

li+lj
(θij , φij)

R
lj+li+1
ij

+(−1)li+miβ
Y
mi−mj

li+lj
(θīj , φīj)

R
lj+li+1

īj

}. (2.2.43)

Inserting the limits from Eq. (2.2.43) into the integrand in the weak boundary condition from
Eq. (2.2.38) and letting rj approach aj yields

B
(j)
lj ,mj

a
lj
j = −Rj ·E0δ0,lj + ajblj ,mj

+A
(j)
lj ,mj

a
−lj−1
j

+
∑
li,mi

(−1)li+miβA
(j)
li,mi

H(lj ,mj |li,mi)
Y
mi−mj

li+lj
(θj̄j , φj̄j)

R
lj+li+1

j̄j

a
lj
j

+
∑
i 6=j

∑
li,mi

A
(i)
li,mi

H(lj ,mj |li,mi)a
lj
j

Y mi−mj

li+lj
(θij , φij)

R
lj+li+1
ij

+ (−1)li+miβ
Y
mi−mj

li+lj
(θīj , φīj)

R
lj+li+1

īj

 . (2.2.44)

14

Similarly, the second boundary condition, from Eq. (2.1.4), requires the perpendicular component of
the electric displacement field to be continuous at the surface of sphere j, as the sphere is neutrally
charged

lim
rj→a−j

D⊥(r) = lim
rj→a+j

D⊥(r). (2.2.45)

Inserting the relation for the electric displacement field from Eq. (2.1.8) gives

lim
rj→a−j

εjE
⊥(r) = lim

rj→a+j
ε+E⊥(r). (2.2.46)

Furthermore, the component of the electric field perpendicular with respect to the surface of sphere
j, is in a spherical coordinate system with origin in the centre of sphere j, the radial component of
the electric field from Eq. (2.2.25)

lim
rj→a−j

εj
∂ψj(rj)

∂rj
= lim

rj→a+j
ε+
∂ψ+(r)

∂rj
. (2.2.47)

When inserting the potentials into the limits as done in Eq. (2.2.43), and differentiating with respect
to rj , the second set of limits yields

lim
rj→a−j

∑
lj ,mj

εjB
(j)
lj ,mj

ljr
lj−1
j Y

mj

lj
(θj , φj) =

lim
rj→a+j

{
ε+

∑
lj ,mj

blj ,mj
Y
mj

lj
(θj , φj)−

∑
lj ,mj

ε+A
(j)
lj ,mj

(lj + 1)r
−lj−2
j Y

mj

lj
(θj , φj)

+
∑
li,mi

(−1)li+miβε+A
(j)
li,mi

∑
lj ,mj

H(lj ,mj |li,mi)
Y
mi−mj

li+lj
(θj̄j , φj̄j)

R
lj+li+1

j̄j

ljr
lj−1
j Y

mj

lj
(θj , φj)

+
∑
i 6=j

∑
li,mi

ε+A
(i)
li,mi

∑
lj ,mj

H(lj ,mj |li,mi)ljr
lj−1
j Y

mj

lj
(θj , φj)

Y mi−mj

li+lj
(θij , φij)

R
lj+li+1
ij

+(−1)li+miβ
Y
mi−mj

li+lj
(θīj , φīj)

R
lj+li+1

īj

}. (2.2.48)

The weak boundary condition∫ π

0
dθj sin θj

∫ 2π

0
dφj

[
Y m′
l′ (θj , φj)

]∗  lim
rj→a−j

εj
∂ψj(rj)

∂rj
− lim
rj→a+j

ε+
∂ψ+(r)

∂rj

 = 0, (2.2.49)

thus takes the form

εjB
(j)
lj ,mj

lja
lj−1
j = ε+blj ,mj

− ε+A
(j)
lj ,mj

(lj + 1)a
−lj−2
j

+
∑
li,mi

(−1)li+miβε+A
(j)
li,mi

H(lj ,mj |li,mi)
Y
mi−mj

li+lj
(θj̄j , φj̄j)

R
lj+li+1

j̄j

lja
lj−1
j

+
∑
i 6=j

∑
li,mi

ε+A
(i)
li,mi

H(lj ,mj |li,mi)lja
lj−1
j

Y mi−mj

li+lj
(θij , φij)

R
lj+li+1
ij

+ (−1)li+miβ
Y
mi−mj

li+lj
(θīj , φīj)

R
lj+li+1

īj

 .
(2.2.50)

15

Solving Eqs. (2.2.44) and (2.2.50) for B(j)
lj ,mj

and setting them equal to each other results in

blj ,mj
a

1−lj
j

[
ε+

ljεj
− 1

]
= A

(j)
lj ,mj

a
−2lj−1
j

[
1 +

ε+(lj + 1)

εjlj

]

+
∑
li,mi

(−1)li+miβA
(j)
li,mi

H(lj ,mj |li,mi)
Y
mi−mj

li+lj
(θj̄j , φj̄j)

R
lj+li+1

j̄j

[
1− ε+

εj

]

+
∑
i 6=j

∑
li,mi

A
(i)
li,mi

H(lj ,mj |li,mi)

Y mi−mj

li+lj
(θij , φij)

R
lj+li+1
ij

+ (−1)li+miβ
Y
mi−mj

li+lj
(θīj , φīj)

R
lj+li+1

īj

[1− ε+

εj

]
.

(2.2.51)

The coefficients blj ,mj
in Eq. (2.2.21) cause the left-hand-side to be non zero only for lj = 1. A

Kronecker delta can thus be used in order to insert 1 into lj on the left-hand-side. Dividing both
sides by [1− ε+/εj] then leads to the same result as Ref. [2]

− b1,mjδ1lj = A
(j)
lj ,mj

a
−2lj−1
j

[
ljεj + ε+(lj + 1)

lj(εj − ε+)

]

+
∑
li,mi

(−1)li+miβA
(j)
li,mi

H(lj ,mj |li,mi)
Y
mi−mj

li+lj
(θj̄j , φj̄j)

R
lj+li+1

j̄j

+
∑
i 6=j

∑
li,mi

A
(i)
li,mi

H(lj ,mj |li,mi)

Y mi−mj

li+lj
(θij , φij)

R
lj+li+1
ij

+ (−1)li+miβ
Y
mi−mj

li+lj
(θīj , φīj)

R
lj+li+1

īj

 . (2.2.52)

Using vector notation, Eq. (2.2.52) can be shortened down to

bk = C̃
(j)
k A

(j)
k +

∞∑
l=0

C̄
(j)
k,lA

(j)
l +

∑
i 6=j

∞∑
l=0

Ĉ
(i,j)
k,l A

(i)
l . (2.2.53)

The A(i)
l coefficients and the C coefficients are here zero indexed with respect to k and l. The index

k replaces lj and mj , and the index l replaces li and mi. The quantum numbers l and m can be
found from the indices using the conventions

l(k) =
⌊√

k + 1
⌋
, m(k) = k + 1− l(k)[l(k) + 1], (2.2.54)

where b c is the floor function returning the greatest integer less than or equal to its argument. The
vector elements on the left-hand-side are

bk = −b1,mj(k)δ1lj(k), (2.2.55)

16

and the three types of C coefficients can be expressed as

C̃
(j)
k = a

−2lj(k)−1
j

[
lj(k)εj + ε+(lj(k) + 1)

lj(k)(εj − ε+)

]

C̄
(j)
k,l = (−1)li(l)+mi(l)βH

(
lj(k),mj(k)|li(l),mi(l)

) Y mi(l)−mj(k)

li(l)+lj(k) (θj̄j , φj̄j)

R
lj(k)+li(l)+1

j̄j

Ĉ
(i,j)
k,l = H

(
lj(k),mj(k)|li(l),mi(l)

)Y mi(l)−mj(k)

li(l)+lj(k) (θij , φij)

R
lj(k)+li(l)+1
ij

+ (−1)li(l)+mi(l)β
Y
mi(l)−mj(k)

li(l)+lj(k) (θīj , φīj)

R
lj(k)+li(l)+1

īj

 .
(2.2.56)

When solving equation (2.2.52) for all lj and mj at the surface of all N spheres, equation (2.2.53)
compresses into

b = CA, (2.2.57)

where the infinite vectors are defined as

b ≡



−b1,−1

−b1,0
−b1,1

0
...

−b1,−1

−b1,0
−b1,1

0
...



, and A ≡



A
(1)
1,−1

A
(1)
1,0

A
(1)
1,1

A
(1)
2,−2
...

A
(2)
1,−1

A
(2)
1,0

A
(2)
1,1

A
(2)
2,−2
...



, (2.2.58)

and the infinite square matrix is

C ≡



C̄
(1)
0,0 + C̃

(1)
0 C̄

(1)
0,1 . . . Ĉ

(2,1)
0,0 . . . Ĉ

(N,1)
0,0 . . .

C̄
(1)
1,0 C̄

(1)
1,1 + C̃

(1)
1 . . . Ĉ

(2,1)
1,0 . . . Ĉ

(N,1)
1,0 . . .

...
...

. . .
...

. . .
...

. . .
Ĉ

(1,2)
0,0 Ĉ

(1,2)
0,1 . . . C̄

(2)
0,0 + C̃

(2)
0 . . . Ĉ

(N,2)
0,0 . . .

...
...

. . .
...

. . .
...

. . .
Ĉ

(1,N)
0,0 Ĉ

(1,N)
0,1 . . . Ĉ

(2,N)
0,0 . . . C̄

(N)
0,0 + C̃

(N)
0 . . .

...
...

. . .
...

. . .
...

. . .


. (2.2.59)

The coefficients A(i)
0,0 are excluded from A. Consequently, the term −Rj ·E0δ0,lj in Eq. (2.2.44) has

also been excluded from the equations not regarding lj = 0, but is still used for determining the
coefficient B(j)

0,0 in Eq. (2.2.44). The exclusion of A(i)
0,0 is due to the normal derivative of the term

B
(i)
0,0Y

0
0 (θi, φi) vanishing in Eq. (2.2.48). Hence, the coefficient A(i)

0,0 has to be zero, which is related
to the nanoparticles carrying zero net charge [2]. The denominator in equation (2.2.52) would also

17

have blown up if lj had been allowed to be zero. Finally, the coefficient vector A can be represented
as

A = C−1b. (2.2.60)

2.2.9 Expanding the finite set of spheres to an infinite periodic lattice

Figure 2.5: A section of four unit cells from an infinite periodic lattice. In this example the unit cell exists
of 7 nanospheres in a formation of a hexagon with the seventh sphere placed in the centre. The lattice
constant bx is oriented along the x-axis and determines the distance between each unit cell at the same
lattice coordinate j′. The lattice constant by on the other hand, is oriented an angle α up from the x-axis
and determines the distance between each unit cell at the same lattice coordinate i′. The vector ∆R(i′,j′) is
the position vector of lattice point (i′, j′) in a coordinate system with lattice point (0, 0) as origin.

The finite set of N spheres can be repeated periodically as the unit cell of an infinite lattice
as illustrated in Fig. 2.5. The lattice points are denoted as (i′, j′), and the lattice constants are
denoted as bx and by. The lattice constant bx is the distance between two unit cells positioned at
lattice points (i′, j′) and (i′ + 1, j′). Similarly, the lattice constant by is the distance between two
unit cells positioned at lattice points (i′, j′) and (i′, j′ + 1). Here, the lattice points at the same
lattice coordinate i′ fall on a line parallel to the x-axis, while the lattice points sharing the same
lattice coordinate j′ fall on a line oriented an angle α up from the x-axis. The position vector R(i′,j′)

is the position of the centre of the unit cell at lattice point (i′, j′). The relative position vector with
origin in the centre of the unit cell at lattice point (0, 0) becomes

∆R(i′,j′) ≡ R(i′,j′) −R(0,0) = (i′bx + j′by cosα, j′by sinα, 0). (2.2.61)

Furthermore, a position vector with origin in the centre of sphere i, in the unit cell at lattice point
(i′, j′), is denoted as

r
(i′,j′)
i = ri −R(i′,j′) = r− (R(i′,j′) + Ri) ≡ r−R

(i′,j′)
i , (2.2.62)

where R
(i′,j′)
i is the position vector of sphere i in the unit cell at lattice point (i′, j′). Note that

whenever the lattice point index (i′, j′) is dropped it refers to the lattice point (0, 0)

ri ≡ r
(0,0′)
i , Ri ≡ R

(0,0)
i ,Rij ≡ R

(0,0)
ij , etc. (2.2.63)

18

The position vector with origin in the image multipole of sphere i in the unit cell at lattice point
(i′, j′) is denoted as r

(i′,j′)
ī

, and the position of that image multipole is R
(i′,j′)
ī

. The components

of r
(i′,j′)
i in spherical coordinates are r(i′,j′)

i , θ(i′,j′)
i and φ

(i′,j′)
i , and the components of R

(i′,j′)
i in

spherical coordinates are R(i′,j′)
R,i , θ(i′,j′)

R,i and φ
(i′,j′)
R,i . Similarly for r

(i′,j′)
ī

and R
(i′,j′)
ī

. Lastly, the
position vector of sphere i in the unit cell positioned at lattice point (i′, j′), relative to the centre
of sphere j in the unit cell positioned at lattice point (0, 0), is denoted as

R
(i′,j′)
ij ≡ R

(i′,j′)
i −Rj = ∆R(i′,j′) + Rij , (2.2.64)

and its components in spherical coordinates are denoted as R(i′,j′)
ij , θ(i′,j′)

ij and φ(i′,j′)
ij . Similarly for

the position vector of the image multipole from sphere i in the unit cell positioned at lattice point
(i′, j′), relative to the centre of sphere j in the unit cell positioned at lattice point (0, 0), R

(i′,j′)
īj

. For
an infinite and periodic lattice as in Fig. 2.5, the Bloch-Floquet theorem [3] can be applied. Thus,
the potential from sphere i at the unit cell positioned at lattice point (i′, j′), equals the potential
from sphere i in the unit cell positioned at lattice point (0, 0), multiplied by a phase factor

ψ
(i′,j′)
i (r

(i′,j′)
i) = ψ

(0,0)
i (r

(i′,j′)
i)eik‖·∆R(i′,j′)

. (2.2.65)

The component of the incident wave vector parallel to the substrate, in the phase factor, can be
written as

k‖ =
ω

c
sin θ(cosφ, sinφ, 0), (2.2.66)

with c as the speed of light and θ and φ as the polar and azimuthal angle of the incident light,
respectively. Here, the position vectors and the wave length of the plane wave use two different
length scales. The position vectors use a length scale with the radius of a certain sphere as unit
length. The wave length on the other hand, uses the standard SI scale as its length scale, as the
plane wave energies are given in the unit electron volt. In order to include the angular frequency
of the incident wave vector, a value for the radius used as unit length for the position vectors must
be chosen.

With the shorthand notation
∑

i′,l′ =
∑∞

i′=−∞
∑∞

j′=−∞, the potential in the two regions from
Eqs. (2.2.22)–(2.2.23) then become

ψ+(r) = ψ0(r) +
∑
i′,j′

N∑
j=1

ψ
(i′,j′)
j (r

(i′,j′)
j) +

∑
i′,j′

N∑
j=1

ψ
(i′,j′)
j̄

(r
(i′,j′)
j̄

)

= ψ0(r) +
∑
i′,j′

eik‖·∆R(i′,j′)
N∑
j=1

[
ψ

(0,0)
j (r

(i′,j′)
j) + ψ

(0,0)

j̄
(r

(i′,j′)
j̄

)

]
, (2.2.67)

and

ψ−(r) = ψT0 (r) +
∑
i′,j′

N∑
j=1

ψ
T,(i′,j′)
j (r

(i′,j′)
j) = ψT0 (r) +

∑
i′,j′

eik‖·∆R(i′,j′)
N∑
j=1

ψ
T,(0,0)
j (r

(i′,j′)
j). (2.2.68)

19

Similarly, the electric field in the regions from Eqs. (2.2.30)–(2.2.31) becomes

E+(r) = E0 +
∑
i′,j′

N∑
j=1

Ω(θ
(i′,j′)
R,j , φ

(i′,j′)
R,j)E

(i′,j′)
j (r

(i′,j′)
j) +

∑
i′,j′

N∑
j=1

Ω(θ
(i′,j′)
R,j̄

, φ
(i′,j′)
R,j̄

)E
(i′,j′)
j̄

(r
(i′,j′)
j̄

)

= E0 +
∑
i′,j′

eik‖·∆R(i′,j′)
N∑
j=1

[
Ω(θ

(i′,j′)
R,j , φ

(i′,j′)
R,j)E

(0,0)
j (r

(i′,j′)
j) + Ω(θ

(i′,j′)
R,j̄

, φ
(i′,j′)
R,j̄

)E
(0,0)

j̄
(r

(i′,j′)
j̄

)

]
,

(2.2.69)

and

E−(r) = ET
0 +

∑
i′,j′

N∑
j=1

Ω(θ
(i′,j′)
R,j , φ

(i′,j′)
R,j)E

T,(i′,j′)
j (r

(i′,j′)
j)

= ET
0 +

∑
i′,j′

eik‖·∆R(i′,j′)
N∑
j=1

Ω(θ
(i′,j′)
R,j , φ

(i′,j′)
R,j)E

T,(0,0)
j (r

(i′,j′)
j). (2.2.70)

2.2.10 Determining the expansion coefficients for an infinite periodic set of
spheres from the boundary conditions

Due to the interaction with the image multipoles, the symmetry breaks with the xy-plane. For this
reason, there is not much to be gained by the use of a Fourier representation of the lattice sums, even
though the lattice has a discrete translational symmetry [3]. Instead, the approach from Sec. 2.2.8
has to be used. However, as a result of the Bloch-Floquet theorem from Eq. (2.2.65), only the A
coefficients of the N spheres in the unit cell at lattice point (0, 0) need to be solved for. Then, the A
coefficients for the rest of the spheres can be found from the Bloch-Floquet theorem. Starting with
the first boundary condition from Sec. 2.2.8, the potential has to be continuous across the surface
of sphere j as in Eq. (2.2.35). Inserting the potential inside sphere j on the left-hand-side and the
potential in the ambient medium from Eq. (2.2.67) on the right-hand-side, as in Eq. (2.2.36), leads
to

lim
rj→a−j

ψ
(0,0)
j (rj) = lim

rj→a+j
ψ+(r)

= lim
rj→a+j

{
ψ0(r) +

∑
i′,j′

eik‖·∆R(i′,j′)

[
N∑
j=1

ψ
(0,0)
j (r

(i′,j′)
j) +

N∑
j̄=1

ψ
(0,0)

j̄
(r

(i′,j′)
j̄

)

]}
.

(2.2.71)

20

When inserting the potentials from Eqs. (2.2.10), (2.2.11) and (2.2.18) and using the shorthand
notation

∑′

i′,l′ =
∑

(i′,l′) 6=(0,0), the limits take the form

lim
rj→a−j

∑
lj ,mj

B
(j)
lj ,mj

r
lj
j Y

mj

lj
(θj , φj) = lim

rj→a+j

{
r
∑
lj ,mj

blj ,mj
Y
mj

lj
(θ, φ)

+
∑
lj ,mj

A
(j)
lj ,mj

r
−lj−1
j Y

mj

lj
(θj , φj) +

∑
li,mi

A
(j,R)
li,mi

r−li−1
j̄

Y mi
li

(θj̄ , φj̄)

+
∑
i 6=j

∑
li,mi

[
A

(i)
li,mi

r−li−1
i Y mi

li
(θi, φi) +A

(i,R)
li,mi

r−li−1
ī

Y mi
li

(θī, φī)
]

+

′∑
i′,j′

eik‖·∆R(i′,j′)
N∑
i=1

∑
li,mi

[
A

(i)
li,mi

(r
(i′,j′)
i)−li−1Y mi

li
(θ

(i′,j′)
i , φ

(i′,j′)
i)

+A
(i,R)
li,mi

(r
(i′,j′)
ī

)−li−1Y mi
li

(θ
(i′,j′)
ī

, φ
(i′,j′)
ī

)
]}

. (2.2.72)

Expressing the potentials in the coordinate system with origin in the centre of sphere j in the unit
cell located at lattice point (0, 0), by using the identities from Eqs. (2.2.41) and (2.2.39) and the
relation for A(j,R)

li,mi
from the boundary condition at the surface of the substrate from Eq. (2.2.33),

the limits

lim
rj→a−j

∑
lj ,mj

B
(j)
lj ,mj

r
lj
j Y

mj

lj
(θj , φj) =

lim
rj→a+j

{
−Rj ·E0 + rj

∑
lj ,mj

blj ,mj
Y
mj

lj
(θj , φj) +

∑
lj ,mj

A
(j)
lj ,mj

r
−lj−1
j Y

mj

lj
(θj , φj)

+
∑
li,mi

(−1)li+miβA
(j)
li,mi

∑
lj ,mj

H(lj ,mj |li,mi)
Y
mi−mj

li+lj
(θj̄j , φj̄j)

R
lj+li+1

j̄j

r
lj
j Y

mj

lj
(θj , φj)

+
∑
i 6=j

∑
li,mi

A
(i)
li,mi

∑
lj ,mj

H(lj ,mj |li,mi)r
lj
j Y

mj

lj
(θj , φj)

×

Y mi−mj

li+lj
(θij , φij)

R
lj+li+1
ij

+ (−1)li+miβ
Y
mi−mj

li+lj
(θīj , φīj)

R
lj+li+1

īj


+

′∑
i′,j′

eik‖·∆R(i′,j′)
N∑
i=1

∑
li,mi

A
(i)
li,mi

∑
lj ,mj

H(lj ,mj |li,mi)r
lj
j Y

mj

lj
(θj , φj)

×

Y mi−mj

li+lj
(θ

(i′,j′)
ij , φ

(i′,j′)
ij)

(R
(i′,j′)
ij)lj+li+1

+ (−1)li+miβ
Y
mi−mj

li+lj
(θ

(i′,j′)
īj

, φ
(i′,j′)
īj

)

(R
(i′,j′)
īj

)lj+li+1

}, (2.2.73)

allow for fully exploiting the orthonormality of the spherical harmonics in the weak boundary
condition from Eq. (2.2.38). Letting rj approach aj , the first set of equations for the B coefficients

21

then become

B
(j)
lj ,mj

a
lj
j = −δ0,ljRj ·E0 + a

lj
j blj ,mj

+A
(j)
lj ,mj

a
−lj−1
j

+
∑
li,mi

(−1)li+miβA
(j)
li,mi

H(lj ,mj |li,mi)
Y
mi−mj

li+lj
(θj̄j , φj̄j)

(Rj̄j)
lj+li+1

a
lj
j

+
∑
i 6=j

∑
li,mi

A
(i)
li,mi

H(lj ,mj |li,mi)a
lj
j

Y mi−mj

li+lj
(θij , φij)

(Rij)lj+li+1
+ (−1)li+miβ

Y
mi−mj

li+lj
(θīj , φīj)

(Rīj)
lj+li+1


+

′∑
i′,j′

eik‖·∆R(i′,j′)
N∑
i=1

∑
li,mi

A
(i)
li,mi

H(lj ,mj |li,mi)a
lj
j

×

Y mi−mj

li+lj
(θ

(i′,j′)
ij , φ

(i′,j′)
ij)

(R
(i′,j′)
ij)lj+li+1

+ (−1)li+miβ
Y
mi−mj

li+lj
(θ

(i′,j′)
īj

, φ
(i′,j′)
īj

)

(R
(i′,j′)
īj

)lj+li+1

}. (2.2.74)

The second set of equations can be found from the second boundary condition from Sec. 2.2.8. In
Eq. (2.2.45), the perpendicular component of the electric displacement field with respect to the
surface of sphere j has to be continuous across the surface. Using the relation between the electric
displacement field and the electric field from Eq. (2.1.8), and the relation between the potential and
the electric field from Eq. (2.2.25), results in the boundary condition

lim
rj→a−j

εj
∂ψ

(0,0)
j (rj)

∂rj
= lim

rj→a+j
ε+
∂ψ+(r)

∂rj
. (2.2.75)

Differentiating Eq. (2.2.73) with respect to rj and multiplying by the respective permittivites

lim
rj→a−j

∑
lj ,mj

εjB
(j)
lj ,mj

ljr
lj−1
j Y

mj

lj
(θj , φj) = lim

rj→a+j

{
ε+

∑
lj ,mj

blj ,mj
Y
mj

lj
(θj , φj)

−
∑
lj ,mj

ε+A
(j)
lj ,mj

(lj + 1)r
−lj−2
j Y

mj

lj
(θj , φj)

+
∑
li,mi

(−1)li+miβε+A
(j)
li,mi

∑
lj ,mj

H(lj ,mj |li,mi)
Y
mi−mj

li+lj
(θj̄j , φj̄j)

R
lj+li+1

j̄j

ljr
lj−1
j Y

mj

lj
(θj , φj)

+
∑
i 6=j

∑
li,mi

ε+A
(i)
li,mi

∑
lj ,mj

H(lj ,mj |li,mi)ljr
lj−1
j Y

mj

lj
(θj , φj)

Y mi−mj

li+lj
(θij , φij)

R
lj+li+1
ij

+(−1)li+miβ
Y
mi−mj

li+lj
(θīj , φīj)

R
lj+li+1

īj


+

′∑
i′,j′

eik‖·∆R(i′,j′)
N∑
i=1

∑
li,mi

ε+A
(i)
li,mi

∑
lj ,mj

H(lj ,mj |li,mi)ljr
lj−1
j Y

mj

lj
(θj , φj)

×

Y mi−mj

li+lj
(θ

(i′,j′)
ij , φ

(i′,j′)
ij)

(R
(i′,j′)
ij)lj+li+1

+ (−1)li+miβ
Y
mi−mj

li+lj
(θ

(i′,j′)
īj

, φ
(i′,j′)
īj

)

(R
(i′,j′)
īj

)lj+li+1

}, (2.2.76)

22

are the final preparations before the weak boundary condition from Eq. (2.2.49) can be applied

∫ π

0
dθj sin θj

∫ 2π

0
dφj

[
Y m′
l′ (θj , φj)

]∗  lim
rj→a−j

εj
∂ψ

(0,0)
j (rj)

∂rj
− lim
rj→a+j

ε+
∂ψ+(r)

∂rj

 = 0. (2.2.77)

When rj approaches aj , the second set of equations for the B coefficients become

εjB
(j)
lj ,mj

lja
lj−1
j = ε+blj ,mj

− ε+A
(j)
lj ,mj

(lj + 1)a
−lj−2
j

+
∑
li,mi

(−1)li+miβε+A
(j)
li,mi

H(lj ,mj |li,mi)
Y
mi−mj

li+lj
(θj̄j , φj̄j)

R
lj+li+1

j̄j

lja
lj−1
j

+
∑
i 6=j

∑
li,mi

ε+A
(i)
li,mi

H(lj ,mj |li,mi)lja
lj−1
j

Y mi−mj

li+lj
(θij , φij)

R
lj+li+1
ij

+ (−1)li+miβ
Y
mi−mj

li+lj
(θīj , φīj)

R
lj+li+1

īj


+

′∑
i′,j′

eik‖·∆R(i′,j′)
N∑
i=1

∑
li,mi

ε+A
(i)
li,mi

H(lj ,mj |li,mi)lja
lj−1
j

×

Y mi−mj

li+lj
(θ

(i′,j′)
ij , φ

(i′,j′)
ij)

(R
(i′,j′)
ij)lj+li+1

+ (−1)li+miβ
Y
mi−mj

li+lj
(θ

(i′,j′)
īj

, φ
(i′,j′)
īj

)

(R
(i′,j′)
īj

)lj+li+1

 . (2.2.78)

Solving Eqs. (2.2.74) and (2.2.78) for B(j)
lj ,mj

and subtracting one from the other results in a coupled
system of equations for the A coefficients

blj ,mj
a

1−lj
j

[
ε+

ljεj
− 1

]
= A

(j)
lj ,mj

a
−2lj−1
j

[
1 +

ε+(lj + 1)

εjlj

]

+
∑
li,mi

(−1)li+miβA
(j)
li,mi

H(lj ,mj |li,mi)
Y
mi−mj

li+lj
(θj̄j , φj̄j)

R
lj+li+1

j̄j

[
1− ε+

εj

]

+
∑
i 6=j

∑
li,mi

A
(i)
li,mi

H(lj ,mj |li,mi)

Y mi−mj

li+lj
(θij , φij)

R
lj+li+1
ij

+ (−1)li+miβ
Y
mi−mj

li+lj
(θīj , φīj)

R
lj+li+1

īj

[1− ε+

εj

]

+

′∑
i′,j′

eik‖·∆R(i′,j′)
N∑
i=1

∑
li,mi

A
(i)
li,mi

H(lj ,mj |li,mi)

×

Y mi−mj

li+lj
(θ

(i′,j′)
ij , φ

(i′,j′)
ij)

(R
(i′,j′)
ij)lj+li+1

+ (−1)li+miβ
Y
mi−mj

li+lj
(θ

(i′,j′)
īj

, φ
(i′,j′)
īj

)

(R
(i′,j′)
īj

)lj+li+1

[1− ε+

εj

]
. (2.2.79)

23

Inserting a Kronecker delta for lj = 1 on the left-hand-side, due to the plane wave simplification of
the incident photon, and dividing by [1− ε+/εj] then leads to Eq. (2.2.52)

− b1,mjδ1lj = A
(j)
lj ,mj

a
−2lj−1
j

[
ljεj + ε+(lj + 1)

lj(εj − ε+)

]

+
∑
li,mi

(−1)li+miβA
(j)
li,mi

H(lj ,mj |li,mi)
Y
mi−mj

li+lj
(θj̄j , φj̄j)

R
lj+li+1

j̄j

+
∑
i 6=j

∑
li,mi

A
(i)
li,mi

H(lj ,mj |li,mi)

Y mi−mj

li+lj
(θij , φij)

R
lj+li+1
ij

+ (−1)li+miβ
Y
mi−mj

li+lj
(θīj , φīj)

R
lj+li+1

īj


+

′∑
i′,j′

eik‖·∆R(i′,j′)
N∑
i=1

∑
li,mi

A
(i)
li,mi

H(lj ,mj |li,mi)

×

Y mi−mj

li+lj
(θ

(i′,j′)
ij , φ

(i′,j′)
ij)

(R
(i′,j′)
ij)lj+li+1

+ (−1)li+miβ
Y
mi−mj

li+lj
(θ

(i′,j′)
īj

, φ
(i′,j′)
īj

)

(R
(i′,j′)
īj

)lj+li+1

 , (2.2.80)

but with the contributions from all the other unit cells in the lattice included. In the same manner
as in Eq. (2.2.53), Eq. (2.2.80) can be shortened down to

bk = C̃
(j)
k A

(j)
k +

∞∑
l=0

C̄
(j)
k,lA

(j)
l +

∑
i 6=j

∞∑
l=0

Ĉ
(i,j)
k,l A

(i)
l +

N∑
i=1

∞∑
l=0

Č
(i,j)
k,l A

(i)
l , (2.2.81)

with

Č
(i,j)
k,l =

′∑
i′,j′

eik‖·∆R(i′,j′)
H
(
lj(k),mj(k)

∣∣∣li(l),mi(l)
)Y

mi(l)−mj(k)

li(l)+lj(k)

(
θ

(i′,j′)
ij , φ

(i′,j′)
ij

)
(
R

(i′,j′)
ij

)lj(k)+li(l)+1

+(−1)li(l)+mi(l)β
Y
mi(l)−mj(k)

li(l)+lj(k)

(
θ

(i′,j′)
īj

, φ
(i′,j′)
īj

)
(
R

(i′,j′)
īj

)lj(k)+li(l)+1

 . (2.2.82)

The conventions used for lj(k), mj(k), li(l) and mi(l) are the same as from Eq. (2.2.54). When
setting up the matrix system as done in Eq. (2.2.57), the b vector is unchanged from Eq. (2.2.58).
The same unknown coefficients are also contained by the A vector, but their values will most likely
differ from the ones found in Sec. 2.2.8. The C matrix on the other hand, can be written as the one
for the finite set of spheres in the unit cell located at lattice point (0, 0) from Eq. (2.2.59), plus the
matrix containing the contributions from the unit cells located at all the other lattice points

C = C(0,0) + Č, (2.2.83)

24

where

Č ≡



Č
(1,1)
0,0 Č

(1,1)
0,1 . . . Č

(2,1)
0,0 . . . Č

(N,1)
0,0 . . .

Č
(1,1)
1,0 Č

(1,1)
1,1 . . . Č

(2,1)
1,0 . . . Č

(N,1)
1,0 . . .

...
...

. . .
...

. . .
...

. . .
Č

(1,2)
0,0 Č

(1,2)
0,1 . . . Č

(2,2)
0,0 . . . Č

(N,2)
0,0 . . .

...
...

. . .
...

. . .
...

. . .
Č

(1,N)
0,0 Č

(1,N)
0,1 . . . Č

(2,N)
0,0 . . . Č

(N,N)
0,0 . . .

...
...

. . .
...

. . .
...

. . .


. (2.2.84)

The A coefficients for the spheres within the unit cell located at lattice point (0, 0) can then be
presented as

A(0,0) = C−1b. (2.2.85)

The A coefficients for the spheres within the unit cell at lattice point (i′, j′) 6= (0, 0) on the other
hand, can be found by applying the Bloch-Floquet theorem from Eq. (2.2.65)

A(i′,j′) = A(0,0)eik‖·∆R(i′,j′)
. (2.2.86)

2.2.11 Dimensionless dipole moment

The dipole moment of sphere j at angular frequency ω, p(j)(ω), consists of the Cartesian components

p(j)
x =

√
3

8π

A
(j)
1,−1 −A

(j)
1,1

a2
j

, p(j)
y = −i

√
3

8π

A
(j)
1,−1 +A

(j)
1,1

a2
j

, and p(j)
z =

√
3

4π

A
(j)
1,0

a2
j

. (2.2.87)

It may be more convenient to present the dimensionless version of the dipole moment

p̄(j) =
p(j)

a3
jε0E0

. (2.2.88)

As the dipole moment can be a complex vector quantity, it can be useful to display the modulus of
the total dimensionless dipole moment

p̄(ω) ≡ |p̄(ω)| =
√

p̄†p̄, (2.2.89)

where † denotes the Hermitian transpose. As showed in Sec. 2.1.5, the dipole moment has a lower
decay rate than the higher order multipole moments, and thus it dominates the far field potential
when the net charge is neutral. This is the motivation behind the choice of computing the dipole
moment.

2.2.12 Polarisation density and the effective dielectric tensor

The polarisation density of the layer of spheres, defined as the total dipole moment per unit volume
in Eq. (2.1.6), can be found from the susceptibilities as in Eq. (2.1.7) [3]

Pk =
ε0

(2a+ h)bxby sinα

N∑
i=1

3∑
l=1

χ
(i)
kl E0,l, (2.2.90)

25

with Pk as the k-th component of P and E0,l as the l-th component of E0. The susceptibility tensor
is diagonal with the elements

χ(i)
xx =

√
3

2π
A

(i)
1,−1, χ(i)

yy = −i

√
3

2π
A

(i)
1,−1, and χ(i)

zz =

√
3

4π
A

(i)
1,0. (2.2.91)

However, the elements χ(i)
kk are only valid when the electric field is parallel to the axis k. This is the

reason why the elements of χ(i) differ from the ones in Eq. (2.2.87) [3]. If the polarisation density
is inserted back into the electric displacement field from Eq. (2.1.5)

Dk ≡ ε0E0,k + Pk = ε0

E0,k +
1

(2a+ h)bxby sinα

N∑
i=1

3∑
l=1

χ
(i)
kl E0,l


= ε0

3∑
l=1

δkl +
1

(2a+ h)bxby sinα

N∑
i=1

χ
(i)
kl

E0,l = ε0

3∑
l=1

εklE0,l, (2.2.92)

the elements of the effective dielectric tensor of the lattice can be determined

εkl = δkl +
1

(2a+ h)bxby sinα

N∑
i=1

χ
(i)
kl . (2.2.93)

2.2.13 Reflectance and transmittance

The reflectance and transmittance can be defined as the ratio of reflected and transmitted energies
to the incident energy, respectively [16]. When all the reflected energy is reflected in the specular
direction as for the island films considered here in the quasi-static limit, the reflectivity is equal to
the reflectance. The reflectance and transmittance can be expressed in terms of the amplitude of
the reflected and transmitted wave, AR and AT [19], respectively

R = |AR|2, (2.2.94)

T =
n− cos θT
n+ cos θ

|AT |2. (2.2.95)

The refractive indices of the ambient medium and the substrate are denoted as n+ and n−, respec-
tively. The reflection angle is equal to the incident angle, θ, and the transmission angle is given by
Snell’s law

n− sin θT = n+ sin θ. (2.2.96)

Considering a non-magnetic system, the amplitudes can be written in terms of the electric dipole
susceptibilities

γe = ρ〈α‖〉, (2.2.97)

βe = ρ
〈α⊥〉
ε2

+

, (2.2.98)

where γe and βe are the integrated surface polarisation parallel and perpendicular to the surface,
respectively, and ρ is the number of islands per unit surface area. The average dipole polarizabilities

26

parallel, α‖, and normal, α⊥, to the surface can be found from the expansion coefficients

〈α‖〉 = − 4πε+〈A1,1〉√
2π
3 E0 sin θ0 exp(−iφ0)

, (2.2.99)

〈α⊥〉 =
2πε+〈A1,0〉√
π
3E0 cos θ0

, (2.2.100)

with θ0 and φ0 as the polar angle and the azimuthal angle of the electric field from the incident plane
wave in Sec. 2.2.5. The incident photons can be polarised such that the orientation of the electric
field is fixed. For p-polarised light, the electric field is parallel to the scattering plane spanned
by the incident and reflected wave vectors. Similarly, for the s-polarised light, the electric field is
perpendicular to the scattering plane and thus parallel to the substrate. The polar and azimuthal
angle for the electric field for s- and p-polarised are hence related to the angles for the incident
plane wave vector by

θ
(s)
0 =

π

2
, φ

(s)
0 = φ+

π

2
, (2.2.101)

θ
(p)
0 =

π

2
− θ, φ

(p)
0 = φ. (2.2.102)

The amplitudes of reflected and transmitted waves expressed with the dipole susceptibilities by
Bedeaux and Vlieger [19] for s-polarised light are then

A
(s)
R =

n+ cos θ − n− cos θT + iω
c γe

n+ cos θ + n− cos θT − iω
c γe

, (2.2.103)

A
(s)
T =

2n+ cos θ

n+ cos θ + n− cos θT − iω
c γe

, (2.2.104)

and for p-polarised light

A
(p)
R =

(n− cos θ − n+ cos θT)
[
1− ω2

4c2
ε+γeβe sin2 θ

]
− iω

c

[
γe cos θ cos θT − n+n−ε+βe sin2 θ

]
(n− cos θ + n+ cos θT)

[
1− ω2

4c2
ε+γeβe sin2 θ

]
− iω

c

[
γe cos θ cos θT + n+n−ε+βe sin2 θ

] ,
(2.2.105)

A
(p)
T =

2n+ cos θ
[
1 + ω2

4c2
ε+βeγe sin2 θ

]
(n− cos θ + n+ cos θT)

[
1− ω2

4c2
ε+γeβe sin2 θ

]
− iω

c

[
γe cos θ cos θT + n+n−ε+βe sin2 θ

] .
(2.2.106)

2.3 Resonance energies

2.3.1 The resonance energy of an isolated sphere

For the case of a single sphere in vacuum with no substrate, ε− = ε+ = 1, and hence β becomes
zero. The remaining contribution left in equation (2.2.52) becomes

− b1mδ1l = A
(j)
lma
−2l−1
j

lεj + ε+(l + 1)

l(εj − ε+)
. (2.3.1)

27

Solving the equation with respect to A(j)
lm results in

A
(j)
lm = −b1mδ1la

2l+1
j

l(εj − ε+)

lεj + ε+(l + 1)
, (2.3.2)

which will become resonant when the real part of the denominator becomes zero

Re
{
lεj + ε+(l + 1)

}
= 0. (2.3.3)

Isolating the dielectric function of the sphere on the left-hand-side

− Re
{
εj
}

= Re{ε+}
l + 1

l
, (2.3.4)

makes it easier to facilitate the replacement of εj by the Drude model expression. Inserting the
dielectric function of the vacuum and the Drude model for the sphere, letting the free carrier
relaxation time approach infinite, Eq. (2.3.4) becomes

ω2
p

ω2
− 1 =

l + 1

l
. (2.3.5)

Solving with respect to the frequency ω gives

ω = ωp

√
l

2l + 1
, (2.3.6)

and the Mie result is obtained [2]. For l = 1 and ~ωp = 3 eV, the resonance energy becomes
3
√

1/3 eV =
√

3 eV.

2.3.2 The resonance energy at dipole order for a single supported sphere

To find the resonance energy of a coefficient Alm for a single sphere placed a height h above a
substrate, a similar approach to the one in Sec. 2.3.1 can be used. An expression for the coefficient
must be obtained, and the energies resulting in the real part of the denominator in this expression
are the resonance energies. D. Bedeaux and J. Vlieger [1] provided the relation

Al,1 exp{iφ0} = −Al,−1 exp{−iφ0}, (2.3.7)

resulting in the same resonance energies for Al,1 and Al,−1. This combined with the property of
the spherical harmonics being nonzero only for m = 0 when θ = π reduces the problem for a single
sphere to two independent equations

−b1,1 = A1,1a
−3 ε+ 2ε+

ε− ε+
+ βA1,1H(1, 1|1, 1)

Y 0
2 (π, 0)

8(a+ h)3
,

−b1,0 = A1,0a
−3 ε+ 2ε+

ε− ε+
− βA1,0H(1, 0|1, 0)

Y 0
2 (π, 0)

8(a+ h)3
. (2.3.8)

The expressions for the coefficients A1,1 and A1,0 hence take the form

A1,1 =
−b1,1

a−3 ε+2ε+
ε−ε+ + βH(1, 1|1, 1)

Y 0
2 (π,0)

8(a+h)3

,

A1,0 =
−b1,0

a−3 ε+2ε+
ε−ε+ − βH(1, 0|1, 0)

Y 0
2 (π,0)

8(a+h)3

. (2.3.9)

28

The resonance energies for the coefficients A1,1 and A1,0, and thus the dipole moment, will occur
where the real part of the corresponding denominator becomes zero

Re

{
a−3 ε+ 2ε+

ε− ε+
+ βH(1, 1|1, 1)

Y 0
2 (π, 0)

8(a+ h)3

}
= 0,

Re

{
a−3 ε+ 2ε+

ε− ε+
− βH(1, 0|1, 0)

Y 0
2 (π, 0)

8(a+ h)3

}
= 0. (2.3.10)

Assuming the real part of the dielectric function ε is much greater than the imaginary part and

Figure 2.6: The energies required for the real part of the denominators of the coefficients A1,0 and A1,±1

to become zero, for a single sphere of radius a placed a height h above a substrate with dielectric function
ε− = 10. The dielectric function of the sphere is the Drude model with plasma frequency ~ωp = 3 eV and
the inverse of the free carrier relaxation time ~γ = 0.03 eV. The denominators are calculated analytically at
dipole order, and the the resonance energies are plotted for various heights.

using the Drude model, the first term in the two denominators is a decreasing function of ω becoming
zero at the Mie frequency. The second terms in the two denominators thus shift the energies for
which the denominators become zero. The second term in both denominators are negative and
consequently shift the resonance peaks to lower frequencies the greater the absolute value of the
second term. As the second terms follow (a+h)−3, the red shifts will be stronger for lower heights.
The red shift is visualised in Fig. 2.6 for a plasma frequency ~ωp = 3 eV, an inverse of the free
carrier relaxation time ~γ = 0.03 eV, and the dielectric function of the substrate ε− = 10.

2.3.3 The resonance energy at dipole order for a supported dimer

For two spheres, the resonance energy equations become more intricate. The relation from Eq. (2.3.7)
still applies, so the coefficients are reduced from six to four. The second sphere is placed at the
same height h above the substrate as the first sphere and a distance d next to the sphere along
the x-axis. If the heights, h, and dielectric functions of the two spheres, ε, are set equal, the only
differences in the terms for the two spheres in Eq. (2.2.52) are in the spherical harmonics. The first
sphere’s azimuthal angle in the second sphere’s coordinate system is rotated by 180◦. The spherical
harmonics for the second sphere are thus related to the ones for the first sphere by

Y m
l (θ, π) = (−1)mY m

l (θ, 0). (2.3.11)

29

This results in all the interactions with odd m = mi −mj to switch sign. The interactions are the
ones between A(0)

1,±1 and A(1)
1,0, and between A(0)

1,0 and A(1)
1,±1. As a consequence of the two identical set

of equations, except for those interactions with flipped signs, the coefficients of the second sphere
can be related to the ones in the first sphere by

A
(1)
l,m = (−1)m+1A

(0)
l,m. (2.3.12)

Hence, the problem is reduced to a coupled pair of equations with two coefficients to solve for

−b1,1 = A1,1a
−3 ε+ 2ε+

ε− ε+
+ βA1,1H(1, 1|1, 1)

Y 0
2 (π, 0)

R3
⊥

+ (−1)A1,0H(1, 1|1, 0)

Y −1
2 (π2 , 0)

R3
‖

− βY
−1

2 (θ̄, 0)

R̄3
‖


+A1,1H(1, 1|1, 1)

Y 0
2 (π2 , 0)

R3
‖

+ β
Y 0

2 (θ̄, 0)

R̄3
‖


−A1,1H(1, 1|1,−1)

Y −2
2 (π2 , 0)

R3
‖

+ β
Y −2

2 (θ̄, 0)

R̄3
‖

 , (2.3.13)

and

−b1,0 = A1,0a
−3 ε+ 2ε+

ε− ε+
+ βA1,0H(1, 0|1, 0)

Y 0
2 (π, 0)

R3
⊥

+ (−1)A1,0H(1, 0|1, 0)

Y 0
2 (π2 , 0)

R3
‖
− βY

0
2 (θ̄, 0)

R̄3
‖


+A1,1[1 + (−1)−1+1]H(1, 0|1, 1)

Y 1
2 (π2 , 0)

R3
‖

+ β
Y 1

2 (θ̄, 0)

R̄3
‖

 , (2.3.14)

with

R⊥ = 2(a+ h), R‖ = 2a+ d, R̄‖ =
√
R2
⊥ +R2

‖, and θ̄ = arctan

(
R‖

−R⊥

)
. (2.3.15)

Here, R⊥ represents the distance from the sphere’s centre to its image multipole, R‖ is the distance
between the two sphere’s centres, and R̄‖ is the distance between a sphere’s centre and its neighbour’s
image multipole. The angle θ̄ is the polar angle of the neighbours image multipole. The term
(−1)−1+1 in Eq. (2.3.14) comes from Eq. (2.3.7) and from

Y −ml (θ, φ) = −
[
Y m
l (θ, φ)

]∗
, (2.3.16)

and
H(1, 0|1,−1) = H(1, 0|1, 1). (2.3.17)

The values for the spherical harmonics are all real in this case, so the conjugate part is dropped in

30

Eq. (2.3.14). The two coupled equations can be shortened down to

b1 = c10A1,0 + c11A1,1

b0 = c00A1,0 + c01A1,1, (2.3.18)

where

b0 = −b1,0
b1 = −b1,1

c00 = a−3 ε+ 2ε+

ε− ε+
+ βH(1, 0|1, 0)

Y 0
2 (π, 0)

R3
⊥

−H(1, 0|1, 0)

Y 0
2 (π2 , 0)

R3
‖
− βY

0
2 (θ̄, 0)

R̄3
‖


c01 = 2H(1, 0|1, 1)

Y 1
2 (π2 , 0)

R3
‖

+ β
Y 1

2 (θ̄, 0)

R̄3
‖


c10 = −H(1, 0|1, 0)

Y 0
2 (π2 , 0)

R3
‖
− βY

0
2 (θ̄, 0)

R̄3
‖


c11 = a−3 ε+ 2ε+

ε− ε+
+ βH(1, 1|1, 1)

Y 0
2 (π, 0)

R3
⊥

+H(1, 1|1, 1)

Y 0
2 (π2 , 0)

R3
‖

+ β
Y 0

2 (θ̄, 0)

R̄3
‖

−H(1, 1|1,−1)

Y −2
2 (π2 , 0)

R3
‖

+ β
Y −2

2 (θ̄, 0)

R̄3
‖

 . (2.3.19)

Figure 2.7: The energy positions at the two minimums of the modulus of the denominator of the coefficients
A1,m, for two spheres of radius a placed a height h = 0.05a above a substrate with dielectric function ε− = 10.
The dielectric function of the spheres is the Drude model with plasma frequency ωp = 3 eV and the inverse
of the free carrier relaxation time γ = 0.03 eV. The denominator is calculated analytically at dipole order,
and the the resonance energies are plotted for various distances d separating the two spheres. The dashed
line lies close to the real part of the denominator being zero.

31

The solutions to Eq. (2.3.18) yields

A1,0 =
c11b0 − c01b1
c00c11 − c01c10

A1,1 =
c00b1 − c10b0
c00c11 − c01c10

. (2.3.20)

The coefficients A1,0 and A1,1 thus have equal denominators. To find the resonance energies, it is
no longer sufficient to find the roots of the real part of the denominator. The minimums of the
modulus of the denominator now have to be found in order to determine the resonance energies for
the dimensionless dipole moment

min |c00c11 − c01c10|. (2.3.21)

The two minimums are presented in Fig. 2.7, where the plasma frequency is ~ωp = 3 eV and the
inverse of the free carrier relaxation time is ~γ = 0.03 eV. They are red shifted when decreasing
the distance d separating the two spheres as in Fig. 2.6 when decreasing the height h above the
substrate. The dashed line lies close to the root of the real part of the denominator in Eq. (2.3.20),
but in order to find the second resonance energy position the approach in Eq. (2.3.21) was necessary.

2.4 The Discrete dipole approximation

2.4.1 System of equations

The discrete dipole approximation (DDA) [20] deals with scattering and absorption problems by
discretising the volume of the scattering object into a set of cubical subvolumes of volume d3. The
subvolumes can also be referred to as point dipoles on a grid with inter-dipole distance d. Hence, the
scattering objects can have arbitrary shapes, as opposed the special geometries needed in order to
obtain exact solutions to Maxwell’s equations. To solve the scattering and absorption problems, the
dipole moments, also referred to as polarisations, of the point dipoles must be determined from the
set of linear equations which arise from the interaction between the point dipoles and the incident
field. There are multiple methods developed taking advantage of the DDA, and the equations and
unknowns to solve for depend on the chosen method. However, the final equations for the various
derivations are essentially the same [20]. The method developed by B. T. Draine and P. J. Flatau
[7] solves for the unknown polarisations from Eq. (2.1.2)

pj = αjE(Rj), (2.4.1)

where αj and pj are the polarisability and dipole moment of the subvolume at position Rj , respec-
tively. The total electric field evaluated inside the subvolume j consists of two main contributions
and can be written in the following form

E(Rj) = E0(Rj) +
∑
k 6=j

G(Rjk)pk. (2.4.2)

The first term on the right-hand-side represents the electric field from the time dependent incident
plane wave

E0(Rj) = E0 exp
(
ik0 ·Rj − iωt

)
, (2.4.3)

and the second term represents the scattered electric field from all the other N − 1 point dipoles.
The wave vector of the incident wave is k0 ≡ k̂0ω/c, with ω ≡ 2π/λ as the angular frequency, λ as

32

the wave length and c as the speed of light. The contribution to the electric field in subvolume j,
due to interaction with dipole k, including retardation effects, is G(Rjk)pk. The interaction matrix,
with dimensions 3× 3, is also known as the free space dyadic Green’s function [20]

G(Rjk) =

[
I3 +

1

k2
0

∇2

]
exp
(
ik0Rjk

)
Rjk

=
exp
(
ik0Rjk

)
Rjk

[
k2
i

(
I3 − R̂jkR̂jk

)
−

1− ik0Rjk
R2
jk

(
I3 − 3R̂jkR̂jk

)]
, j 6= k. (2.4.4)

The position of point dipole at position Rj relative to the point dipole at position Rk is denoted as

Rjk = Rj −Rk, (2.4.5)

with its length Rjk ≡ |Rjk| and its unit vector R̂jk ≡ Rjk/Rjk. Lastly, the 3 × 3 identity dyad
is written as I3. Inserting Eq. (2.4.2) for the electric field at point dipole j into Eq. (2.4.1) and
dividing by the polarisability αj leads to

α−1
j pj = E0(Rj) +

∑
k 6=j

G(Rjk)pk. (2.4.6)

If defining

G(Rjj) ≡ −α−1
j , (2.4.7)

the equations to solve for p become

−E0(Rj) = G(Rjj)pj +
∑
k 6=j

G(Rjk)pk =
N∑
k=1

G(Rjk)pk. (2.4.8)

As the polarisations consist of three components, there are 3N complex linear equations when
solving Eq. (2.4.8) at all point dipoles j. For periodic structures, the Bloch-Floquet theorem from
Eq. (2.2.65) can be applied

p
(m,n)
k = p

(0,0)
k exp

[
i(mk0 · Lu + nk0 · Lv)

]
, (2.4.9)

where m is the lattice coordinate along lattice vector Lu = Luû, and n is the lattice coordinate
along lattice vector Lv = Lvv̂. The interaction matrix including the contribution from point dipole
k at all the lattice sites (m,n) can then be written as

Ḡ(Rjk) =
∑
m,n

G(R
(m,n)
jk) exp

[
i(mk0 · Lu + nk0 · Lv)

]
, (2.4.10)

where the position vector R
(m,n)
jk = R

(0,0)
j −R

(m,n)
k is the position of point dipole j at lattice site

(0, 0) relative to point dipole k at lattice site (m,n), and only G(R
(0,0)
jj) ≡ −α−1

j . Equation (2.4.8)
expanded to an infinite periodic set of point dipoles thus yields

−E0(Rj) =
N∑
k=1

Ḡ(Rjk)pk. (2.4.11)

33

When the unknown polarisations p are solved for, the electric near field can be determined [9]

E(Rj) =


α−1
j pj , lattice site j is occupied,

E0(Rj) +
N∑
k=1

Ḡ(Rjk)pk, lattice site j is unoccupied.
(2.4.12)

Only the polarisations for the occupied lattice sites are non zero and hence included in the summation
of the scattered electric field.

2.4.2 Polarizabilities

There are several approximations for the polarizabilities, αj , used in Eq. (2.4.7), and the first DDA
methods used the Clausius-Mosotti (CM) polarizabilities [7]

αcm
j =

3d3

4π

εj − 1

εj + 2
, (2.4.13)

with d3 as the cubic subvolume and εj as the dielectric function of subvolume j. These polarizabilities
are excact for an infinite cubic lattice in the dc limit k0d→ 0, but otherwise they do not satisfy the
energy conservation [20]. Thus, the radiative reaction (RR) correction of order O(k0d)3 was added

αrr
j =

αcm
j

1 + (αcm
j /d3)[−(2/3)i(k0d)3]

. (2.4.14)

A few attempts were made at adding a correction term of order O(k0d)2 [7], but either the assump-
tion of the electric field being uniform over the cubical subvolumes lead to errors of order O(k0d)2

itself or the cubical subvolumes were treated as finite spheres of diameter d with modified dielectric
functions. Instead, B. T. Draine and J. J. Goodman [7] found the polarizabilities, α(ω), for which
an infinite lattice of polarisable point dipoles have the same lattice dispersion relation (LDR) as a
continuum with refractive index n(ω) =

√
ε(ω) for non-magnetic materials

αldr
j ≈ αcm

1 + (αcm/d3)[(bldr
1 + εbldr

2 + εbldr
3 S)(k0d)2 − (2/3)i(k0d)3]

,

bldr
1 = −1.891531, bldr

2 = 0.1648469, bldr
3 = −1.7700004, S ≡

3∑
j=1

(k̂0,j êj)
2, (2.4.15)

in the long-wavelength limit k0d � 1. The unit vectors k̂0 and ê are the direction of the incident
plane wave and the polarisation state, respectively. However, this polarizability does not satisfy the
transversality condition [20]. Consequently, B. T. Draine and D. Gutkowicz-Krusin [21] proposed a
corrected LDR (CLDR) such that the polarizability tensor can only be diagonal instead of isotropic
and independent of the incident polarisation

αcldr
µν ≈ αcmδµν

1 + (αcm/d3)[(bldr
1 + εbldr

2 + εbldr
3 a2

µ)(k0d)2 − (2/3)i(k0d)3]
. (2.4.16)

The indices µ and ν corresponds to the component of the polarisation and electric field, respectively,
and δµν is the Kronecker delta. The lattice dispersion relation polarizability, αldr is not correct for
the dipoles near the surface of the scattering object. B. T. Draine together with M. J. Collinge [20]
empirically combined the CLDR polarizability with a method from A. Rahmani, P. C. Chaumet
and G. W. Bryant (RCB), in order to deal with the mistreated surface dipoles. However, the surface
corrected LDR (SCLDR) method is limited to very specific shapes of the scattering object.

34

2.4.3 Cross sections and efficiency factors

When the polarizations are determined, the extinction and absorption cross sections can be evaluated
[7]

Cext =
4πk0

E2
0

N∑
j=1

Im
(
E0(Rj)

∗ · pj
)
, (2.4.17)

Cabs =
4πk0

E2
0

N∑
j=1

[
Im
(
pj · (α−1

j)∗p∗j

)
− 2

3
k3

0p
2
j

]
, (2.4.18)

with the asterisk * denoting the complex conjugate as for the spherical harmonics. The scattering
cross section can be found as the difference between the other two cross sections

Csca = Cext − Cabs. (2.4.19)

The cross sections are probabilities for physical processes to occur when an incident photon intersects
with a particle. A cross section has the same units as area, as the probability can be thought of as
an effective area for the incident photon to intersect. The efficiency factor, Q, is the cross section
divided by the projected area, A, of the scattering object in the direction of the propagation of the
incident photon

Q =
C

A
, (2.4.20)

which is easier to interpret. The projected area of the scattering object in the direction of the
propagation of the incident photon can be difficult to compute for a given set of point dipoles. As
an approximation, an effective radius is defined as [7]

aeff ≡
(

3V

4π

) 1
3

, (2.4.21)

where the total volume, V , of the scattering object is the sum of all the N cubic subvolumes

V = Nd3. (2.4.22)

The efficiency factors then become

Q =
C

πa2
eff
, (2.4.23)

which works great if the shape of the scattering object happens to be a sphere.

2.4.4 Reflectance from Stokes vectors and the Mueller matrix

For a metasurface consisting of a target unit cell (TUC) repeated periodically in two dimensions, the
reflectance as in Sec. 2.2.13 can be defined as the ratio of the reflected beam of photons’ intensity,
Is, to the incident one, I0 [16]

R ≡ Is
I0
. (2.4.24)

35

To find the relation between the incident and scattered intensities, the Stokes vector and the Mueller
matrix can be used [12] 

Is
Qs
Us
Vs

 =
1

n2
+k

2
0r

2


S11 S12 S13 S14

S21 S22 S23 S24

S31 S32 S33 S34

S41 S42 S43 S44



I0

Q0

U0

V0

 , (2.4.25)

where k0 is the length of the wave vector from Eq. (2.4.3), n+ is the refractive index of the ambient
medium, and r is the distance away from the origin of the scattering. The first element of the
Stokes vector, I, is the total intensity of the beam of photons. The second Stokes parameter,
Q, describes the degree of linear polarisation with E perpendicular or parallel to the the scattering
plane. The scattering plane is spanned by the wave vector for the incident and the scattered beams of
photons, k0 and ks, respectively. Similarly, the Stokes parameter, U , describes the degree of linear
polarisation with E perpendicular or parallel to the plane obtained from rotating the scattering
plane 45◦ around the wave vector of the incident beam. Lastly, the Stokes parameter V describes
the degree of circular polarisation. The components of the electric field parallel and orthogonal to
the scattering plane are E‖ = E · ê‖ and E⊥ = E · ê⊥, respectively. The formalism for the electric
field is opposite to the formalism for the wave vector, as the wave vector components are denoted
with respect to the substrate in Sec. 2.2. The incident and scattered polarisation vectors orthogonal
and parallel to the scattering plane are [8]

ê0,⊥ = ês,⊥ ≡
k̂s × k̂0

|k̂s × k̂0|
=

k̂s × k̂0

1− (k̂s · k̂0)2
= −φ̂s,

ê0,‖ ≡ k̂0 × ê0,⊥ =
k̂s − (k̂s · k̂0)k̂0

1− (k̂s · k̂0)2
,

ês,‖ ≡ k̂s × ês,⊥ =
−k̂0 + (k̂s · k̂0)k̂s

1− (k̂s · k̂0)2
= θ̂s, (2.4.26)

with φ̂s and θ̂s as the unit vectors of the azimuthal and polar coordinates of the scattered beam,
respectively. The Stokes parameters can then be written as [12]

I = 〈E‖E∗‖ + E⊥E
∗
⊥〉,

Q = 〈E‖E∗‖ − E⊥E
∗
⊥〉,

U = 〈E‖E∗⊥ + E⊥E
∗
‖〉,

V = 〈E‖E∗⊥ − E⊥E∗‖〉, (2.4.27)

where the angular brackets denote the time average over one period. The intensity of the scattered
beam hence becomes

Is =
1

n2
+k

2
0r

2
(S11I0 + S12Q0 + S13U0 + S14V0) . (2.4.28)

As in Sec. 2.2.13, light with the electric field E perpendicular to the scattering plane, and thus
parallel to the metasurface, is defined as s-polarised light or transverse electric waves. Similarly,
light with the electric field parallel to the scattering plane is defined as p-polarised light or transverse
magnetic waves. The Stokes vector representations of s- and p-polarised light are

S(s) = (1, 1, 0, 0)I,

S(p) = (1,−1, 0, 0)I, (2.4.29)

36

with I as the total intensity of the beam. Inserting the values for the s- and p-polarised light into
the scattered intensity from Eq. (2.4.28) results in the reflectances

R(s) =
(S11 + S12)I0

n2
+k

2r2I0
=
S11 + S12

n2
+k

2r2
0

,

R(p) =
(S11 − S12)I0

n2
+k

2r2I0
=
S11 − S12

n2
+k

2r2
0

. (2.4.30)

The Mueller matrix elements are related to the scattering amplitudes S1, S2, S3 and S4 by [12]

S11 =
1

2

(
|S1|2 + |S2|2 + |S3|2 + |S4|2

)
, S12 =

1

2

(
|S2|2 − |S1|2 + |S4|2 − |S3|2

)
,

S13 = Re(S2S
∗
3 + S1S

∗
4), S14 = Im(S2S

∗
3 − S1S

∗
4),

S21 =
1

2

(
|S2|2 − |S1|2 − |S4|2 + |S3|2

)
, S22 =

1

2

(
|S2|2 + |S1|2 − |S4|2 − |S3|2

)
,

S23 = Re(S2S
∗
3 − S1S

∗
4), S24 = Im(S2S

∗
3 + S1S

∗
4),

S31 = Re(S2S
∗
4 + S1S

∗
3), S32 = Re(S2S

∗
4 − S1S

∗
3),

S33 = Re(S1S
∗
2 + S3S

∗
4), S34 = Im(S2S

∗
1 + S4S

∗
3),

S41 = Im(S4S
∗
2 + S1S

∗
3), S42 = Im(S4S

∗
2 − S1S

∗
3),

S43 = Im(S1S
∗
2 − S3S

∗
4), S44 = Re(S1S

∗
2 − S3S

∗
4), (2.4.31)

where for targets periodic in two dimensions, the 2× 2 scattering amplitude matrix occurs as [8](
Es · ês,‖
Es · ês,⊥

)
= i exp(iks · r− iωt)

(
S2 S3

S4 S1

)(
Ei · ê0,‖
Ei · ê0,⊥

)
. (2.4.32)

The periodic target in two dimensions constitutes a diffraction grating which limits scattering di-
rections, ks in Eq. (2.4.32), to [8]

ks = ±k0,⊥ + k0,‖ +Mu +Nv,

ks,⊥ =
[
k2

0 − |k0,‖ +Mu +Nv|2
] 1

2
, (2.4.33)

also referred to as diffraction orders (M,N). The + sign gives the scattering directions for transmis-
sion and the - sign for reflection. The wave vectors k‖ and k⊥ denote the wave vectors parallel and
perpendicular to the surface, respectively. The notation refers to the surface instead of the scat-
tering plane in order to be consistent with Eq. (2.2.65). The reciprocal lattice vectors are defined
as

u ≡ 2πx̂× Lv
x̂ · (Lu × Lv)

,

v ≡ 2πx̂× Lu
x̂ · (Lv × Lu)

, (2.4.34)

with x̂ as the unit vector for the surface normal. The energy must also be conserved in the scattering
process resulting in the requirement k2

s,⊥ > 0. For short lattice constants Lu and Lv compared to the
wave length of the incident photon, such as it tends to be in the quasi-static limit, only the scattering
order (M,N) = (0, 0) is allowed. Then, the reflectivity will be equal to the reflectance. For the
special case of forward scattering, when the scattered wave vector is equal to the incident wave

37

vector ks = ki and the scattering order is (M,N) = (0, 0), the scattering plane can’t be spanned
by the two vectors anymore. Using the normal vector to the surface instead of the scattered wave
vector, the polarisation vectors can then be defined as

ê0,⊥ = ês,⊥ ≡
k̂0 × k̂s,‖

|k̂0 × k̂s,‖|
,

ê0,‖ ≡ k̂0 × ê0,⊥, ês,‖ ≡ k̂s × ês,⊥. (2.4.35)

For the forward scattering in the limit where r →∞, the scattering amplitude matrix can be written
as [8] (

Es · ês,‖
Es · ês,⊥

)
= i exp(iki · r− iωt)

(
S2 − i 0

0 S1 − i

)(
Ei · ê0,‖
Ei · ê0,⊥

)
. (2.4.36)

The scattering amplitude elements can for an infinite two dimensional periodic metasurface be
written as [8]

S1 =
2π

k2
0ATUC sinαs

ês,⊥ · FTUC(k̂s,E0 = ê0,⊥),

S2 =
2π

k2
0ATUC sinαs

ês,‖ · FTUC(k̂s,E0 = ê0,‖),

S3 =
2π

k2
0ATUC sinαs

ês,‖ · FTUC(k̂s,E0 = ê0,⊥),

S4 =
2π

k2
0ATUC sinαs

ês,⊥ · FTUC(k̂s,E0 = ê0,‖), (2.4.37)

with ATUC = |Lu × Lv| as the area of the target unit cell and

sinα0 ≡
|k0,⊥|
k0

, sinαs ≡
|ks,⊥|
k0

, (2.4.38)

which in the far field for an infinite two dimensional periodic metasurface can replace the fraction
in Eq. (2.4.25)

1

n2
+k

2
0r

2
=

sinαs
sinα0

=
|ks,⊥|
|k0,⊥|

. (2.4.39)

Furthermore, the vector FTUC(k̂s) appears in the equation for the scattered electric field from the
point dipoles [8]

Es(r) =
exp(iks · r− iωt)

k0r
FTUC(k̂s)D(r,ks), (2.4.40)

with

D(r,ks) ≡
∑
m,n

exp(iΦmn), Φmn ≡ m(k0 − ks) · Lu + n(k0 − ks) · Lv

+
1

2k0r

[
m2(k2

0 − k2
u,s)L

2
u + n2(k2

0 − k2
v,s)L

2
v + 2mn(k2

0Lu · Lv − ku,skv,sLuLv)
]
, (2.4.41)

38

where ku,s and kv,s are the components of the scattered wave vector along the lattice vectors Lu
and Lv, respectively. For an infinite periodic metasurface in two dimensions,

D(r,ks) =
2πir

k0ATUC sinαs
, (2.4.42)

which inserted into Eq. (2.4.40) yields

Es(r) =
2πi exp(iks · r− iωt)

k2
0ATUC sinαs

FTUC(k̂s). (2.4.43)

Lastly, the vector FTUC(k̂s) is defined as

FTUC(k̂s) ≡ k3
0[1− k̂sk̂s]

N∑
j=1

p
(0,0)
j exp

(
iωt− iks ·R(0,0)

j

)
. (2.4.44)

2.4.5 Mie cross sections

The scattering and extinction cross sections for spheres can from Mie theory [12] be expressed
analytically by the scattering coefficients an and bn

Csca =
2π

k2
0

∞∑
n=1

(2n+ 1)(|an|2 + |bn|2),

Cext =
2π

k2
0

∞∑
n=1

(2n+ 1) Re(an + b2n), (2.4.45)

and the absorption cross section can be found as the difference

Cabs = Cext − Csca. (2.4.46)

The scattering coefficients are

an =
µ+m

2jn(mx)[xjn(x)]′ − µjn(x)[mxjn(mx)]′

µ+m2jn(mx)[xh
(1)
n (x)]′ − µh(1)

n (x)[mxjn(mx)]′
,

bn =
µjn(mx)[xjn(x)]′ − µ+jn(x)[mxjn(mx)]′

µjn(mx)[xh
(1)
n (x)]′ − µ+h

(1)
n (x)[mxjn(mx)]′

, (2.4.47)

where µ and µ+ are the permeabilities of the sphere and the ambient medium, respectively. The
relative refractive index is m = n/n+ and the size parameter x = k0n+a = 2πn+a/λ, with a as the
radius of the sphere and λ as the vacuum wave length of the incident photon. The prime indicates
differentiation with respect to the argument inside the parentheses. The spherical Bessel functions
of first and second kinds are

jn(x) = xn
(
−1

x

d

dx

)n sinx

x
,

yn(x) = −xn
(
−1

x

d

dx

)n cosx

x
, (2.4.48)

and the spherical Hankel function of first kind is

h(1)
n (x) = jn(x) + iyn(x). (2.4.49)

39

2.4.6 Reflectance and transmittance for a thin film

The reflectance and transmittance for a thin film of thickness d and refractive index n, surrounded
by an ambient medium of refractive index n+, can be written as [22]

R =

∣∣∣∣ r2 + r1 exp(2iknd cos θT)

1 + r1r2 exp(2iknd cos θT)

∣∣∣∣2 ,
T =

∣∣∣∣ t1t2 exp(iknd cos θT)

1 + r1r2 exp(2iknd cos θT)

∣∣∣∣2 , (2.4.50)

where the incident photon has a wave number k and an incident angle θ. The transmitted angle,
θT can be found from Snell’s law, n+ sin θ = n sin θT . For p-polarised light, the reflection and
transmission coefficients are

r
(p)
1 =

n cos θ − n+ cos θT
n cos θ + n+ cos θT

, r
(p)
2 =

n+ cos θT − n cos θ

n+ cos θT + n cos θ
,

t
(p)
1 =

2n cos θT
n cos θ + n+ cos θT

, t
(p)
2 =

2n+ cos θ

n+ cos θT + n cos θ
, (2.4.51)

and similarly for s-polarised light

r
(s)
1 =

n cos θT − n+ cos θ

n cos θT + n+ cos θ
, r

(s)
2 =

n+ cos θ − n cos θT
n+ cos θ + n cos θT

,

t
(s)
1 =

2n cos θT
n cos θT + n+ cos θ

, t
(s)
2 =

2n+ cos θ

n cos θT + n+ cos θ
. (2.4.52)

40

Chapter 3

Method

3.1 Truncating the system of equations

3.1.1 Truncating the system of equations for a finite set of spheres

In Eq. (2.2.52) there are two sums over li. Since infinite sums can not be calculated numerically, the
sums are truncated at some finite value of li. The truncation in the first sum is denoted as L⊥ and
the latter as L‖, since they represent the interactions perpendicular and parallel to the surface of the
substrate. Setting L = max(L‖, L⊥) as the largest of those truncations results in M ≡ (L+ 1)2 − 1

unknown coefficients A(j)
l , as the coefficients appear in both summations in Eq. (2.2.53). The −1

contribution originates from A
(j)
0,0 being zero. The truncated version of Eq. (2.2.53) then yields

bk = C̃
(j)
k A

(j)
k +

(L⊥+1)2−2∑
l=0

C̄
(j)
k,lA

(j)
l +

∑
i 6=j

(L‖+1)2−2∑
l=0

Ĉ
(i,j)
k,l A

(i)
l . (3.1.1)

The relative azimuthal angle of an image multipole, φīj , is equal to the relative azimuth angle of
its sphere φij . Furthermore, the polar angle of an image multipole relative to its own sphere, θj̄j ,
is always equal to 180◦ as the image multipole is located directly below its sphere. The spherical
harmonics of θ = 180◦ is only nonzero for m = 0◦, and thus independent of φ. A Kronecker’s delta
can be used to avoid computing C̄(j)

k,l when mi 6= mj . Next, if a sum reaches its truncation before
the other, its C coefficients are simply set to zero by the Heaviside function, u(l). The revised C
coefficients can then be written on the form

C̃
(j)
k = a

−2lj(k)−1
j

[
lj(k)εj + ε+(lj(k) + 1)

lj(k)(εj − ε+)

]

C̄
(j)
k,l = δmimj (−1)li(l)+mi(l)βH

(
lj(k),mj(k)

∣∣∣li(l),mi(l)
) Y 0

li(l)+lj(k)(π, φjj)

R
lj(k)+li(l)+1

j̄j

u(L⊥ − lj(k))

Ĉ
(i,j)
k,l = H

(
lj(k),mj(k)

∣∣∣li(l),mi(l)
)Y mi(l)−mj(k)

li(l)+lj(k) (θij , φij)

R
lj(k)+li(l)+1
ij

+(−1)li(l)+mi(l)β
Y
mi(l)−mj(k)

li(l)+lj(k) (θīj , φij)

R
lj(k)+li(l)+1

īj

u(L‖ − li(l)). (3.1.2)

41

When solving equation (2.2.52) at the surface of all N spheres for all lj ≤ L, the system of equations
becomes closed and finite dimensional

b = CA, (3.1.3)

where

b =



−b1,−1

−b1,0
−b1,1

0
...
0

−b1,−1

−b1,0
−b1,1

0
...
0



, A =



A
(1)
1,−1

A
(1)
1,0

A
(1)
1,1

A
(1)
2,−2
...

A
(1)
L,L

A
(2)
1,−1

A
(2)
1,0

A
(2)
1,1

A
(2)
2,−2
...

A
(N)
L,L



and (3.1.4)

C =



C̄
(1)
0,0 + C̃

(1)
0 C̄

(1)
0,1 . . . C̄

(1)
0,M−1 Ĉ

(2,1)
0,0 . . . Ĉ

(N,1)
0,M−1

C̄
(1)
1,0 C̄

(1)
1,1 + C̃

(1)
1 . . . C̄

(1)
1,M−1 Ĉ

(1,0)
2,1 . . . Ĉ

(N,1)
1,M−1

...
...

. . .
...

...
. . .

...
C̄

(1)
M−1,0 C̄

(1)
M−1,1 . . . C̄

(1)
M−1,M−1 + C̃

(1)
M−1 Ĉ

(2,1)
M−1,0 . . . Ĉ

(N,1)
M−1,M−1

Ĉ
(1,2)
0,0 Ĉ

(1,2)
0,1 . . . Ĉ

(1,2)
0,M−1 C̄

(2)
0,0 + C̃

(2)
0 . . . Ĉ

(N,2)
0,M−1

...
...

. . .
...

...
. . .

...
Ĉ

(1,N)
M−1,0 Ĉ

(1,N)
M−1,1 . . . Ĉ

(1,N)
M−1,M−1 Ĉ

(2,N)
M−1,0 . . . C̄

(N)
M−1,M−1 + C̃

(N)
M−1


.

(3.1.5)
There are a total of NM = N(L+ 1)2 −N unknown coefficients A(i)

k to solve for. The dimensions
of the vectors are thus NM , and the vectors are here indexed by k. The matrix C has dimensions
NM ×NM , and its rows are here indexed by k and columns by l. Using integer division, div, and
its remainder, mod, which satisfy

x = y(x div y) + (xmod y), (3.1.6)

j, i, and their corresponding k′ and l′ can be found from the indices k and l

j(k) = 1 + k divM, i(l) = 1 + l divM, (3.1.7a)
k′ = k modM, l′ = lmodM. (3.1.7b)

The elements of C hence become

Ck,l = C̃
(j(k))
k′ δkl +

C̄
(j(k))
k′,l′ , j(k) = i(l),

Ĉ
(i(l),j(k))
k′,l′ , j(k) 6= i(l),

, (3.1.8)

and the elements of A

Ak = A
(j(k))
lj(k′),mj(k′), (3.1.9)

42

and b

bk = −b1,mj(k′)δ1,lj(k′). (3.1.10)

The vector A can then be found from solving Eq. (3.1.3) with values from Eqs. (3.1.8)–(3.1.10).

3.1.2 Truncating the system of equations for an infinite lattice

For a lattice based on a unit cell repeated periodically infinitely many times as described in Sec. 2.2.9,
the same truncations made in Sec. 3.1.1 still apply for the matrix accounting for the contributions
from the unit cell at lattice point (0, 0), C(0,0), in Eq. (2.2.83). For the matrix accounting for the rest
of the unit cells, Č, the contributions will be truncated by the same truncation as the contributions
from the neighbouring spheres in C(0,0), L‖

bk = C̃
(j)
k A

(j)
k +

(L⊥+1)2−2∑
l=0

C̄
(j)
k,lA

(j)
l +

∑
i 6=j

(L‖+1)2−2∑
l=0

Ĉ
(i,j)
k,l A

(i)
l +

N∑
i=1

(L‖+1)2−2∑
l=0

Č
(i,j)
k,l A

(i)
l . (3.1.11)

Furthermore, the summation over lattice points in
∑′

i′,l′ can’t include an infinite number of lattice

Figure 3.1: An example of a limited section of spheres with radius a from an infinite periodic lattice. The
section is limited by the distance of interaction, Rint, which forms a circle in the xy-plane. The components
of the vector Rint(j

′) depend on which lattice coordinate j′ the vector ends at. The periodicity of the lattice
is given by the lattice vectors bx and by. The distance bx is the spacing between the spheres sharing the
same lattice coordinate j′, and similarly for the distance by and the lattice coordinate i′. In this example
the distance of interaction is set to, 10a, and the lattice spacings are bx = by = 3a. The lattice vector bx is
parallel to the x-axis, and by is oriented an angle α = 60◦ up from the x-axis.

points numerically. Instead, only the unit cells with a distance ∆R(i′,j′) smaller than a given
interaction distance Rint are included as illustrated by Fig. 3.1. To determine the limits for the
sums over the lattice coordinates i′ and j′, the components of the interaction vector Rint(j

′), which

43

has the constant interaction distance Rint as length, can be used. The interaction vector is defined to
start at lattice site (0, 0) and end towards right on the x-axis at lattice coordinate j′. Consequently,
the included lattice sites are contained within a circle of radius Rint with centre in lattice site (0, 0).
The two components of the interaction vector are

Rint,y(j′) = j′by sinα,

Rint,x(j′) =
√
R2
int − (j′by sinα)2, (3.1.12)

where Rint,x(j′) is found from the Pythagorean theorem. Due to the translational symmetry of the
lattice and the interaction vector starting at lattice point (0, 0), the limits for the sum over the
lattice coordinate j′ are anti-symmetric j′end = −j′start ≡ Nj′ . The limit can be found from the
largest j′ such that Rint,y(j′) ≤ Rint. By using the integer division from Eq. (3.1.6), the limit can
be written as

Nj′ = Rint div (by sinα). (3.1.13)

For the limits for the sum over the lattice coordinate i′ on the other hand, the symmetry breaks
down for α 6= 90◦. These limits also depend on the lattice coordinate j′ of the row. As for Nj′ ,
the start limit for the sum over the lattice coordinate i′ at row j′, i′start(j′), can be found from the
smallest i′ such that ∆R

(i′,j′)
x ≥ −Rint,x(j′). Likewise, the end limit for the sum over the lattice

coordinate i′ at row j′, i′end(j′), can be found from the greatest i′ such that ∆R
(i′,j′)
x ≤ Rint,x(j′).

Applying the identities for ∆R(i′,j′) and Rint(j
′) from Eqs. (2.2.61) and (3.1.12), respectively, leads

to the inequalities

i′start(j
′)bx + j′by cosα ≥ −

√
R2
int − (j′by sinα)2,

i′end(j′)bx + j′by cosα ≤
√
R2
int − (j′by sinα)2. (3.1.14)

With the floor function from Eq. (2.2.54), and its complement, the ceiling function d e returning
the smallest integer greater than or equal to its argument, the limits for the sum over the lattice
coordinate i′ at row j′ become

i′start(j
′) =

⌈
1

bx

(
−
√
R2
int − (j′by sinα)2 − j′by cosα

)⌉
,

i′end(j′) =

⌊
1

bx

(√
R2
int − (j′by sinα)2 − j′by cosα

)⌋
. (3.1.15)

The lattice point (0, 0) is still excluded from the summation. The C coefficients then take the form

Č
(i,j)
k,l =

Nj′∑
j′=−Nj′

(i′,j′)6=(0,0)

i′end(j′)∑
i′=−i′start(j′)

eik‖·∆R(i′,j′)
H
(
lj(k),mj(k)

∣∣∣li(l),mi(l)
)
u(L‖ − li(l))

×

Y
mi(l)−mj(k)

li(l)+lj(k)

(
θ

(i′,j′)
ij , φ

(i′,j′)
ij

)
(
R

(i′,j′)
ij

)lj(k)+li(l)+1
+ (−1)li(l)+mi(l)β

Y
mi(l)−mj(k)

li(l)+lj(k)

(
θ

(i′,j′)
īj

, φ
(i′,j′)
īj

)
(
R

(i′,j′)
īj

)lj(k)+li(l)+1

 . (3.1.16)

44

The finite Č matrix accounting for the contributions from the unit cells within a distance of Rint
around the unit cell located at lattice point (0, 0) written out is

Č ≡



Č
(1,1)
0,0 Č

(1,1)
0,1 . . . Č

(1,1)
0,M−1 Č

(2,1)
0,0 . . . Č

(N,1)
0,M−1

Č
(1,1)
1,0 Č

(1,1)
1,1 . . . Č

(1,1)
1,M−1 Č

(2,1)
1,0 . . . Č

(N,1)
1,M−1

...
...

. . .
...

...
. . .

...
Č

(1,1)
M−1,0 Č

(1,1)
M−1,1 . . . Č

(1,1)
M−1,M−1 Č

(2,1)
M−1,0 . . . Č

(N,1)
M−1,M−1

Č
(1,2)
0,0 Č

(1,2)
0,1 . . . Č

(1,2)
0,M−1 Č

(2,2)
0,0 . . . Č

(N,2)
0,M−1

...
...

. . .
...

...
. . .

...
Č

(1,N)
M−1,0 Č

(1,N)
M−1,1 . . . Č

(1,N)
M−1,M−1 Č

(2,N)
M−1,0 . . . Č

(N,N)
M−1,M−1


. (3.1.17)

The matrix Č still has dimensions NM × NM , even if L‖ < L, in order to execute the matrix
addition in Eq. (2.2.83). Consequently, the same conventions from Eqs. (3.1.7a) and (3.1.7b) can
be used to find the elements of the matrix

Čk,l = Č
(i(l),j(k))
k′,l′ . (3.1.18)

Furthermore, the length of the component of the wave vector parallel to the surface, from Eq. (2.2.66),
is assumed to be zero for the solution of the Laplace equation [3]

|k‖| = 0. (3.1.19)

The phase factor in the Bloch-Floquet theorem from Eq. (2.2.65) is then neglected.

3.2 DDSCAT

3.2.1 Choice of method for the discrete dipole approximation

The choice of the method for the discrete dipole approximation was between the two open source
programs DDSCAT written in Fortran by B. T. Draine and P. J. Flatau [7, 8, 9] and ADDA written
in C by M. A. Yurkin and A. G. Hoekstra [23]. The advantage of ADDA over DDSCAT is its "surface
mode" allowing for scattering by particles located above a plane interface [24]. However, ADDA
is limited to finite systems of scatterers whereas DDSCAT allows for infinitely periodic targets [8].
As it makes more sense to compute the reflectance of an infinitely periodic metasurface without
a substrate than one of a finite set of scatterers above a substrate, the choice fell on DDSCAT.
Furthermore, with the high order of inter-particle interaction calculated in the multipole expansion
in Sec. 2.2, the focus on the interaction with a substrate is not as high as for GranFilm. Both
DDSCAT and ADDA require the interdipole separation, d, to be small compared to the structural
lengths of the targets. Moreover, DDSCAT [25] requires |n|kd < 1 and |n − 1| . 3, while ADDA
[23] requires |n|kd < π/5 and |n − 1| < 2, with k as the wave number. The refractive index, n,
for Ag provided by the Sopra database [6], in the interval [2.7 eV, 3.7 eV], has a maximum value
max(|n − 1|) ≈ 2.7, which only satisfies the criteria from DDSCAT. With the largest values for
|n| and k, the product |n|kd ranges from approximately 0.1 to 0.01 depending on the interdipole
separation, d. Consequently, the other criteria is satisfied for both methods.

45

3.2.2 Truncating the system of equations

When numerically solving for the polarisations in Eq. (2.4.11), the number of lattice sites to be
summed over has to be finite as for the approach for the multipole expansion in Sec. 3.1.2. The
truncation is performed by only summing over the point dipoles within the distance R(m,n)

jk ≤
2/(γk0), which is denoted by the prime over the sum

Ḡ(Rjk) ≈
′∑

m,n

G(R
(m,n)
jk) exp

[
i(mk0 · Lu + nk0 · Lv)− (γk0R

(m,n)
jk)4

]
. (3.2.1)

A suppression factor exp
[
−(γk0R

(m,n)
jk)4

]
is added to make the truncation smoother [8]. In the limit

R
(m,n)
jk ≈ 2/(γk0), the suppression factor becomes exp

[
−(γk0R

(m,n)
jk)4

]
≈ e−16. The parameter γ

is chosen to be small enough for the summation over the lattice sites (m,n) to yield representative
results, but large enough to prevent too long computation time, as the computation time is inversely
proportional to gamma squared ∼ γ−2.

3.2.3 Application of discrete Fourier transform to speed up computation

An iterative algorithm to solve Eq. (2.4.8) and (2.4.11) can be used, such as the conjugate-gradient
(CG) algorithm. The algorithm starts with an initial guess for the polarisations, pj , and determines
the next step based on the error, E0(Rj) +

∑N
k=1 G(Rjk)pk, until the steps have converged mono-

tonically towards a result with sufficiently small error. B. T. Draine and P. J. Flatau together with
J. J. Goodman [26] accelerated the computation of this sum, for point dipoles located on a cubic
lattice with spacing d and dimensions Nx, Ny, Nz. Using a three dimensional point dipole indexing

i ≡ (ix, iy, iz), (3.2.2)

and r0 as an arbitrary origin, the relative position vector becomes

Rji = Rj −Ri = (jxd, jyd, jzd) + r0 −
(
(ixd, iyd, izd) + r0

)
= d(jx − ix, jy − iy, jz − iz). (3.2.3)

Thus, the interaction matrix G(Rji) only depends on the difference in the indices. Consequently,
the interaction matrix can be written as a 2-level Block-Toeplitz matrix [20]

G′j−i ≡

{
G(Rji), j 6= i

−α−1
j , j = i

. (3.2.4)

Equation (2.4.8) can then be transformed into a discrete convolution

−E0(Rj) =
N∑
i=1

G(Rji)pi =

(Nx,Ny ,Nz)∑
i=(1,1,1)

G′j−ipi =

(2Nx,2Ny ,2Nz)∑
i=(1,1,1)

G′j−ip
′
i, (3.2.5)

where the polarisations are only non-zero in the occupied lattice sites

p′i ≡

{
pi, site i is occupied
0, site i is unoccupied

. (3.2.6)

46

Both G′j−i and p′i are doubled and periodic in every dimension, with periodicity of twice the dimen-
sions of the lattice

p′(ix,iy ,iz) = p′(ix±2Nx,iy±2Ny ,iz±2Nz),

G′(jx−ix,jy−iy ,jz−iz) = G′(jx−ix±2Nx,jy−iy±2Ny ,jz−iz±2Nz). (3.2.7)

The polarisations p′i are thus zero for all the lattice site coordinates i with components
Nµ < iµ ≤ 2Nµ. The Fourier transform of a convolution of two functions is the element-wise
product of the Fourier transforms of the functions, denoted by ◦

−Ê0(Rn) = Ĝ′n ◦ p̂n, (3.2.8)

with Ê0, Ĝ′ and p̂′ as the discrete Fourier transform of E0, G′ and p′, respectively

Ê0(Rn) ≡
∑
i

E0(Ri) exp

−2πi

(
nxix
2Nx

+
nyiy
2Ny

+
nziz
2Nz

) . (3.2.9)

The computation of the sum in Eq. (2.4.8) can thus be found from the inverse discrete Fourier
transform of the right-hand-side in Eq. (3.2.8)

N∑
j=1

G(Rij)pj =
1

8NxNyNz

∑
n

Ĝ′n ◦ p̂n exp

2πi

(
nxix
2Nx

+
nyiy
2Ny

+
nziz
2Nz

) , (3.2.10)

which for all n point dipole positions can be evaluated in O((NxNyNz) ln
(
NxNyNz

)
) operations,

instead of the O(N2) it would have taken otherwise. If Nx, Ny and Nz aren’t very factorisable, the
amount of operations can be as high as ≈ O((NxNyNz)

4
3) [26]. The FFT method can also be used

for the summation in Eq. (2.4.12) when calculating the electric near field [9].

3.2.4 The parameter file

Appendix B.3 presents the parameter file, "ddscat.par", where DDSCAT reads its input arguments.
Instructions for the parameter file are found in the DDSCAT user guide [27]. The preliminaries
in the parameter file include five parameters. The first one, ’NOTORQ’, tells DDSCAT to skip
radiative torque calculations. Then comes the iterative solution algorithm, where ’PBCGS2’ is
the BiConjugate Gradient with Stabilisation. Third is the Fast Fourier Transform algorithm for
the computation described in Sec. 3.2.3, and ’FFTMKL’ uses the Intel® oneAPI Math Kernel
Library. Next, the approximation for the polarizabilities used in Eq. (2.4.7) is decided. The option
’LATTDR’ is the lattice dispersion relation approximation described in Eq. (2.4.15), and ’GKLDR’
is the corrected lattice dispersion relation approximation described in Eq. (2.4.16). Lastly, the
preliminary ’NOTBIN’ tells DDSCAT to not write the output files in binary.

The memory allocation for target generation is specified by the maximum number of point
dipole sites, Nx, Ny, and Nz, in the three dimensions. The periodic target geometry with the target
unit cell read from a target file is specified by the option ’FRMFILPBC’. In order to specify the
periodic boundary conditions, the polarisation states and the wave vector of the incident light must
be specified in the target frame (TF) and the lab frame (LF). The target frame has unit vectors
x̂TF, ŷTF and ẑTF. The four parameters for the ’FRMFILPBC’ target is the periodicity in ŷTF
and ẑTF, respectively, in the units of the inter-dipole distance, d. The next parameter is a number

47

from 1 to 6, where only 1 is allowed for periodic target. This number specifies two orthogonal unit
vectors â1 and â2, which will be used for orientation of the target frame in the lab frame. The
number 1 specifies â1 ‖ x̂TF and â2 ‖ ŷTF. The third unit vector â3 is found from the cross product
â3 = â1 × â2. The fourth parameter is the file name of the target file.

Appendix B.4 is an example of a snippet of a target file for a sphere generated by the nanoHUB
tool DDSCAT Shape Generator [10]. The second line in the target file specifies the number of
point dipoles, and the next two lines specify the two unit vectors â1 and â2 in the target file.
The fourth line is the relative spacing of point dipoles in the x̂TF, ŷTF and ẑTF directions, and
the fifth line describes the target frame coordinates of the centre of the scattering object. Then,
all the relative point dipole positions in arbitrary units in the target frame and the corresponding
dielectric files for the relative permittivities in the three dimensions are listed. The number of di-
electric files is specified below the target parameters, and then the file names for the corresponding
dielectric files are listed. Appendix B.5 shows an example of a dielectric file made by the function
make_dielectrics_for_DDSCAT in App. B.1, from a dielectric file from the SOPRA database il-
lustrated in App. A.2. The latter file has a header including 4 numbers. The first number is a flag
for whether the refractive indices are given linearly spaced for wave energies (1) or wave lengths
(2). The next two numbers are the start and end energies or lengths in eV or µm, respectively. At
last is the total number of refractive indices minus one. Then, the real and imaginary parts of the
refractive indices are listed. The structure in the dielectric file used by DDSCAT is a bit different.
The first and third lines are just comments not read as input. The second line is five numbers
indicating what is stored in the corresponding five columns after the third line. The number 1
represents the wave lengths. Number 2 and 3 are the real and imaginary parts of the refractive
indices, and 4 and 5 are the real and imaginary parts of the relative permittivities. As only either
of the refractive indices and the relative permittivities are used, the two numbers not used are set
to zero instead.

The near field parameter, NRFLD, can be set to 0 to skip the additional near field calculations.
If only the near field calculations for the electric field are desired, then NRFLD is set to 1. Lastly,
if the near field calculations for both the electric and magnetic fields are desired, NRFLD is set to
2. The next line consists of six non-negative numbers describing the fractional extensions of the
original volume, in which the near field calculations shall take place. The six numbers correspond
to both directions in each of the three dimensions. After the computation is done, a binary .E1 file
containing the values for the electric field is made. The DDSCAT routine ddpostprocess creates a
text file, "ddpostprocess.out", from the binary file. The routine reads from another parameter file
called "ddpostprocess.par" as viewed in App. B.6. The first line in the post processing parameter
file tells which binary file to read the electric near field values from. The second line is the name of
the VTR output file to be made. The third line determines if the VTR output file is to be made, 1
for true and 0 for false. Similarly, the fourth line is whether or not the text file "ddpostprocess.out"
shall be made. If so, the coordinates at which the electric nearfield is evaluated is decided by the
rest of the lines. Each of the following lines consist of seven parameters. The first three are the
x, y and z coordinates of a starting point. Similarly for the next three parameters and an ending
point. The last parameter then determines how many points spaced linearly between the start and
end point at which the electric field will be evaluated. The function DDPOSTPROCESS_file in
App. B.1 modifies such a parameter file to include all the points on a certain grid, and the function
Nearfield processes the output text file "ddpostprocess.out".

The error tolerance for the iterative solver to satisfy is set by the parameter TOL, and it must be
reached within MXITER iterations or else the computation is aborted. GAMMA is the interaction
cutoff parameter, γ, from Sec. 3.2.2. The angular resolution is only used for computation of radiative
torques and the average scattering angle, so the parameter ETASCA is not of significance here. The

48

wave lengths for the incident light are given by four parameters. The first two parameters are the
start and end wave lengths given in microns. Then, the number of wave lengths, and lastly, the
spacing of the wave lengths. The spacing can be linear, inversely linear or logarithmic. The refractive
index of the surrounding ambient medium is set by NAMBIENT. The lattice spacing, d, is not given
as input. Instead, the effective radius, aeff, from Eq. (2.4.21) is given. The lattice spacing can then
be found by supplementing Eq. (2.4.22) with the number of point dipoles, N , from the target file.
The parameters for the effective radius are given in the same manner as for the incident wave
lengths.

The incident wave vector is parallel to the x-axis in the lab frame, x̂LF. The first polar-
isation state to do calculations for is specified by the parentheses (0, 0) (Re(ey,LF), Im(ey,LF))
(Re(ez,LF), Im(ez,LF)), where eLF is the polarisation vector in the lab frame. In order to compute
the Mueller matrix elements, the polarisation state orthogonal to both the incident wave vector and
the polarisation vector specified by the parentheses must be computed for. This is done by setting
the parameter IORTH to 2. Otherwise, the parameter must be set to 1. The functions in App. B.1
making arrays of cross sections and Mueller matrix elements read from the .sca and .avg files. For
these files to be made, the parameter IWRKSC must be set to 1. Then, the DDSCAT output files
are generated for each wave length, orientation and effective radius that are computed for. This
effectively works as a saving mechanism and an indication of computational progress.

The angles β, θ and φ describe the orientation of the target frame relative to the lab frame. The
angle θ is the polar angle of the unit vector â1 relative to the incident wave vector, x̂LF. Similarly,
the angle φ is the azimuthal angle of â1 with respect to x̂LF. Lastly, the angle β is the rotation of
â2 around â1. The unit vectors â1, â2 and â3 can be expressed in terms of the unit vectors of the
lab frameâ1

â2

â3

 =

 cos Θ sin Θ cos Φ sin Θ sinφ
− sin Θ cosβ (cos Θ cosβ cos Φ− sinβ sin Φ) (cos Θ cosβ sin Φ + sinβ cos Φ)
sin Θ sinβ −(cos Θ sinβ cos Φ + cosβ sin Φ) −(cos Θ sinβ sin Φ− cosβ cos Φ)


x̂LF

ŷLF
ẑLF

 .

(3.2.11)

The angles have each their parameters for start angle, end angle and total number of angles. The
starting point for the incident wave lengths IWAV, effective radii, IRAD, and target orientations,
IORI, can be chosen to be different from the first ones specified above. Otherwise, the number zero
indicates to start in normal order. The number of Mueller matrix elements to print is specified by
NSMELTS, and the next line contains the matrix indices for those Mueller matrix elements. The
scattered directions must be specified by the target frame, ’TFRAME’, for targets with periodic
boundary conditions. At last is the number of diffraction orders from Eq. 2.4.33, and the the
corresponding orders (M,N) are listed below. For the quasi-static limit, only the order (0, 0) will
be valid.

3.2.5 The discretisation

The discretisation of the scattering objects can be visualised by displaying the point dipoles as
small touching spheres in the open data analysis and visualisation application, ParaView [11].
DDSCAT has a routine called vtrconvert, which creates .pvd files from the target files as in App. B.4.
The nanoHUB tool DDSCAT Shape Generator [10] can be used to generate a target file for a
pseudosphere, which is a discretisation of a regular sphere. The target file can then be modified by
the python function cut_in_half in App. B.1 to represent a half pseudosphere, or by two_spheres
to represent a dimer. The full and half pseuospheres are shown in Figs. 3.2–3.3, respectively, and
the dimer in Fig 3.4. Furthermore, the directions of the unit vectors specified in the parameter file,

49

â1 and â2, are illustrated as arrows. The pseudosphere created by the DDSCAT Shape Generator
consists of an odd number of point dipole planes. Hence, the half sphere remaining after cut in half
contains one plane of point dipoles more than the half sphere removed. Consequently, the number
of point dipoles in Fig. 3.3 are slightly greater than half of the number of point dipoles in Fig. 3.2.

(a) A pseudosphere made of 523 305 point dipoles. (b) A pseudosphere made of 4169 point dipoles.

Figure 3.2: Two spheres discretized by point dipoles visualised as small spheres. The arrow pointing
upwards is parallel to the unit vector â1, and the other one is parallel to the unit vector â2. The unit vectors
are parallel to the two vectors in the target frame, x̂TF and ŷTF, respectively.

(a) A half pseudosphere made of 265 575 point dipoles. (b) A half pseudosphere made of 2243 point dipoles.

Figure 3.3: Two half spheres discretized by point dipoles visualised as small spheres. The arrow pointing
upwards is parallel to the unit vector â1, and the other one is parallel to the unit vector â2. The unit vectors
are parallel to the two vectors in the target frame, x̂TF and ŷTF, respectively.

3.3 Implementation

To solve the system of equation in Eq. (3.1.3), the python script in App. A.1 is developed. To avoid
overflow in the computation of the binomial coefficients used in H(lj ,mj |li,mi) from Eq. (2.2.42),

50

Figure 3.4: A dimer consisting of two pseudospheres of 523 305 point dipoles each. The spheres are
separated by a distance of 5 lattice sites or a tenth of the radius of the spheres. The arrow pointing upwards
is parallel to the unit vector â1, and the other one is parallel to the unit vector â2. The unit vectors are
parallel to the two vectors in the target frame, x̂TF and ŷTF, respectively.

Scipy’s function binom from the Special functions library is used. The same library also offers a
function to compute spherical harmonics, but the function is limited to l < 86, which limits lj < 43.
Instead, the spherical harmonics are computed using the freely available software, shtools [5]. The
software for the python language is called pyshtools [5], and the function used is the spharm from
the library Expand. The function uses the standard three- term recursion formula with the scaling
approach of S. Holmes and W. A. Featherstone, and the results are accurate to about degree 2800
[5]. Creating the C matrix is sped up with the just-in-time compiler, Numba [4]. The compiler
translates code to machine level, and it allows for parallelisation of loops with the function prange.
The asymptotic time complexity of creating the C matrix on an Intel® Core™ i7-10700 processor
for a finite set of N spheres is 9 · 10−9(MN)2s. To solve for A in Eq. (3.1.3), the iterative solver
gmres from the Scipy library Sparse linear algebra is utilised. The function uses generalised minimal
residual iterations with a start guess based on the solution found from the previous energy of the
incident field. The asymptotic time complexity of the routine gmres is 6 · 10−9(MN)2s on the same
processor when the tolerance chosen is 10−9. An alternative iterative solver is the bicgstab from
the same library, which uses biconjugate gradient stabilised iterations. The iterativ solver bicgstab
has a slightly higher asymptotic time complexity at 7 · 10−9(MN)2s. For the first energy, there
is no previous solution to use as a starting iteration. The solver used then is the standard LU
factorising solve from the Numpy library Linear algebra, which has an asymptotic time complexity
of 7 · 10−12(MN)3s + 2 · 10−9(MN)2s. The asymptotic space complexity of the python script in
App. A.1 is dominated by the matrix C, which has an asymptotic space complexity of 16(MN)2B.
For an infinite lattice, the space complexity for the C matrix and the time complexity for solving
for the A coefficients remain unchanged from the complexities for the finite system, as only the

51

coefficients for one unit cell are solved for. The time complexity for building the C matrix on the
other hand increases considerably with the interaction distance squared, ∼ R2

int.
The Fortran software DDSCAT is compiled using the (classic) Intel® Fortran compiler version

2021.2.0 in order to take advantage of the Intel® oneAPI Math Kernel Library version 2021.2.0
when executing the FFT computations. This is specified in the Makefile as illustrated in App. B.2.
The computations are parallelised by the use of OpenMP. There is an option for using the Intel®

MPI Library as well, but this only allows for multiple target orientations to be computed for
simultaneously. As only two target orientations are computed for here, which are normal incidence
and an angle of incidence at 45◦, the different orientations are run on different computers separately.
The analytical Mie result of the absorption cross section is obtained from the code BHMIE [12]
translated into python by H. Kaiser [13].

52

Chapter 4

Results and discussion

In this chapter the results obtained on the basis of the formulation presented in Ch. 2 is presented.
The chapter is divided into three sections. The first section regards systems of finite number of
particles. The second section regards the transition to systems of particles repeated infinitely on a
lattice. The third section regards the comparison of DDSCAT to the multipole expansion method
and GranFilm. The aim is to verify the results obtained from App. A.1 and compare them to the
results obtained from the software DDSCAT.

4.1 Finite systems

In order to quality check the implementations of App. A.1, the results from Figs. 2–5 from Ref. [2]
are reproduced in Figs. 4.1–4.4. The dipole moments from Eq. (2.2.89) are only computed for three
incident electric fields, each parallel to one of the three Cartesian axes. Any incident field will be a
linear combination of those three and likewise for the corresponding dipole moments. Furthermore,
the shifts in energy positions of the resonances are studied along with the near fields. The near
field obtained from the multipole expansion method is compared to the near field obtained from
DDSCAT.

4.1.1 Dimensionless dipole moments

Figure 4.1 presents the dimensionless dipole moment for a single Drude sphere with a height h =
0.05a above a substrate with different dielectric functions in the three subplots. The first function
equals the one of the ambient medium, ε− = ε+ = 1. The resonance occurs at ~ω =

√
3 eV ≈

1.73 eV, which agrees with the Mie result from Sec. 2.3.1. The dipole moment is also completely
independent of the direction of the incident electric field. Next, when increasing the dielectric
function of the substrate, the resonance peaks are red shifted. The dipole moment now depends on
the azimuthal angle of the incident electric field, φ0. The amplitudes of the peaks decrease, and
more peaks occur with the stronger substrate interaction. The dipole moment red shifts more in the
case of an incident electric field parallel to the z-axis than for the x-axis. This can be understood in
terms of the results presented in Sec. 2.1.5. When the incident field is orthogonal to the substrate,
the dipole moments from the sphere and the substrate line up in series and thus add in strength
as presented in Fig. 2.1. In the case where the incident electric field is parallel to the substrate on
the other hand, the dipole moments from the sphere and the substrate end up pointing in opposite
directions. The field strength is then reduced to quadrupole order.

In Fig. 4.2 another sphere is added on the x-axis, separated by a distance d = 0.1a from the

53

Figure 4.1: The dimensionless dipole moment, p̄(ω), for a single nanosphere of radius a, placed a height
h = 0.05a above a substrate with dielectric function (a) ε− = 1, (b) ε− = 2 and (c) ε− = 10. The ambient
medium surrounding the sphere is vacuum with a dielectric function ε+ = 1. The dielectric function of
the sphere follows the Drude model with plasma frequency ~ωp = 3 eV and the inverse of the free carrier
relaxation time ~γ = 0.03 eV. The orthogonal sum truncation in the multipole expansion used is L⊥ = 50.

54

Figure 4.2: The dimensionless dipole moment, p̄(ω), for two nanospheres of radius a, separated by a
distance d = 0.1a along the x-axis and placed a height h = 0.05a above a substrate with dielectric function
(a) ε− = 1, (b) ε− = 2 and (c) ε− = 10. The ambient medium surrounding the spheres is vacuum with
a dielectric function ε+ = 1. The dielectric functions of the spheres are modelled by the Drude form with
plasma frequency ~ωp = 3 eV and the inverse of the free carrier relaxation time ~γ = 0.03 eV. Both the
orthogonal and parallel sum truncations in the multipole expansion used are L = 50.

55

Figure 4.3: The dimensionless dipole moment, p̄(ω), plotted against energies of the incident wave for two
nanospheres of radius a, separated by a distance d = 0.1a along the x-axis and placed a height (a) h = 2a,
(b) h = 0.3a and (c) h = 0.05a above a substrate with dielectric function ε− = 10. The ambient medium
surrounding the spheres is vacuum with a dielectric function ε+ = 1. The dielectric functions of the spheres
are modelled by the Drude form with plasma frequency ~ωp = 3 eV and the inverse of the free carrier
relaxation time ~γ = 0.03 eV. Both the orthogonal and parallel sum truncations in the multipole expansion
used are L = 30.

56

one in Fig. 4.1. The choice of these positions results in the distance between a sphere’s multipole
and its image multipole matching the distance between a sphere’s multipole and its neighbour’s
multipole, d = 2h. This time, the no substrate case is only symmetric around the x-axis. The
resonance energy position is not located at ~ω =

√
3eV ≈ 1.73 eV as previously, but instead blue

shifted to ~ω ≈ 1.79 eV. For all three subplots in Fig. 4.2, the resonance peaks, when the incident
electric field is parallel to either the z- or y-axis, are quite similar to Fig. 4.1, but they are blue
shifted slightly and decreased in amplitude. This is caused by the induced charge concentrations in
the neighbour sphere being symmetric instead of anti-symmetric and thus having the same sign as
illustrated later in Sec. 4.1.4. Consequently, the local field enhancements would be smaller than for
the single sphere case. The Coulomb force from the neighbour’s charge concentrations will then act
as a restoring force. When the incident electric field is parallel to the x-axis on the other hand, the
red shift is much larger and more peaks appear. The higher dielectric function of the substrate, the
larger red shift and more peaks occur. The dipole moments for the spheres here line up in series as
they did in Fig. 2.2. Hence they somewhat double in strength.

The red shifts in the resonance peaks follow from stronger interactions with either the substrate
or with the other sphere. When the dipole moments line up in series the interactions are at their
strongest. Similarly, they’re at their weakest when they face opposite directions, as they turn to
quadrupole order in strength. The interactions result in higher induced charge concentrations, which
again may lead to a stronger local electric field than the external incident electric field. Hence, with
a stronger electric force from the local electric field, the resonance can occur for lower wave energies
of the incident plane wave. The reason for the interaction between the spheres to be greater than
the interaction with the substrate comes from the image charges not being equal to the ones of the
spheres. The image charges depend on the dielectric function of the substrate, as the boundary
condition on the surface of the substrate must be satisfied. Hence, the two dipole moments for the
spheres add up to more than for the sphere and the substrate, and are consequently red shifted
more even though they are separated by the same distance.

The substrates in Fig. 4.3 have all dielectric functions ε− = 10, but the heights of the spheres
above the substrate vary. When h = 2a, the dipole moments are almost identical to the ones with no
substrate, but very slightly red shifted. For h = 0.3a, the dipole moments with incident electric field
along the z- and y-axis, separately, are still quite similar to Fig. 4.2(b), but also slightly red shifted.
For the height h = 0.05a, the case is the same as for Fig. 4.2(c), but computed to order L = 30
instead of 50. As the plots seem identical, the dipole moment has converged for eye precision.

The origin of the leftmost resonance peak in Figs. 4.2(a) and 4.3(a), where there is little to no
substrate interaction, may be assumed to be the inter-particle interaction. The peak remains as
the leftmost peak, even when increasing the substrate interaction to Figs. 4.2(c) and 4.3(c). During
this increase, a new peak begins to arise in Figs. 4.2(b) and 4.3(b) next to the leftmost peak. The
peak may be assumed to originate from the substrate interaction and can be related to the leftmost
peak in Fig 4.1(c). The rest of the peaks in Figs. 4.2 and 4.3 are more difficult to determine. The
resonances are spaced more closely such that their evolutions coincide when increasing the substrate
interaction as for the two peaks in Fig. 4.3(b). The left one is fading away and the right one is
growing larger for increasing substrate interaction. As the same peak is not split into two yet in
Fig. 4.3(b), the substrate interaction may be weaker there than in Fig. 4.2(b). This agrees with
the red shifts of the peaks with incident electric field parallel to the other two axes being greater in
Fig. 4.3(b) than in Fig. 4.2(b).

57

4.1.2 Visualisation of the red shifts

Figure 4.4 shows the energy positions of the lowest energy resonances for the dipole moments
with incident electric field orthogonal to the substrate when varying the height h. For the lowest
truncation, L = 1, the energy positions are greater than the other ones at all heights. At the second
truncation order, the resonances occur at the same energies as the other orders, except for L = 1,
for large values of h, but then they go astray. The higher the truncation order, the lower values of
h are required to separate the energy positions from even higher orders of truncation. The plot is
quite informative for detecting when a certain order of truncation will definitely not yield converged
results.

The dipole moments from Fig. 4.1(c) are computed for 50 heights, h, and presented as a contour
plot by Fig. 4.5. The heights are logarithmically spaced from 0.05a to a. As h decreases, the
resonance peaks are red shifted, become narrower and of smaller amplitude. For h < 0.15a, a
second resonance peak appears. Similarly, the contour plot shown by Fig. 4.6 includes the dipole
moments from Fig.4.2(c) computed for 50 distances d logarithmically spaced from 0.1a to 2a. For
the incident electric field parallel to the y- and z-axis, separately, the resonance peaks demonstrate
the blue shifts from comparing Fig. 4.2 (a) to Fig. 4.1 (a). For the field parallel to the x-axis on the
other hand, the resonance peaks red shift significantly. The second peak ceases around d = 0.6a,
where a new peak appears to the left of the first one. For d < 0.2a up to four peaks are present.

A major contribution to the red shifts of the resonance peaks in Figs. 4.5 and 4.6(b) can be
found from writing out the denominators for the coefficients A1,m at dipole order. For a single
sphere above a substrate, this is done in Sec. 2.3.2. Figure 2.6 presents the required energies for
the real part of these denominators to become zero for different heights above the substrate. The

Figure 4.4: The lowest resonance energy positions of the dimensionless dipole moment, p̄(ω), for two
nanospheres of radius a separated by a distance d = 0.1a along the x-axis. The energy positions are plotted
for the height, h, above a substrate with dielectric function ε− = 10. The incident electric field is parallel
to the z-axis, and the ambient medium surrounding the spheres is vacuum with a dielectric function ε+ = 1.
The dielectric functions of the spheres are modelled by the Drude form with plasma frequency ωp = 3 eV
and the inverse of the free carrier relaxation time γ = 0.03 eV. The orthogonal and parallel sum truncations
in the multipole expansion are set equal and are denoted by L.

58

Figure 4.5: The dimensionless dipole moment, p̄(ω), of a single nanosphere of radius a plotted at the
first axis against energies of the incident wave and at the second axis against heights h above a substrate
with dielectric function ε− = 10. The ambient medium surrounding the sphere is vacuum with a dielectric
function ε+ = 1. The dielectric function of the sphere is modelled by the Drude form with plasma frequency
~ωp = 3 eV and the inverse of the free carrier relaxation time ~γ = 0.03 eV. The direction of the incident
electric field is parallel to (a) the z-axis and (b) the x-axis. The orthogonal sum truncation in the multipole
expansion used is L⊥ = 70.

dielectric parameters used are the same as in Fig. 4.5, and the red shift from decreasing the height
is evident. The resonance peaks for the single sphere in Fig. 4.5 closely follow the resonance energy
positions in Fig. 2.6 for large values of h. When decreasing h, the resonance peaks computed at
high order red shift more than the analytical values at dipole order. This may be a consequence of
the dipole order dominating the far field region, and the higher order strengthen more at shorter
distances as shown in Sec. 2.1.5. When the incident electric field is orthogonal to the substrate, the
resonance peak in Fig. 4.5(a) follows closest to the one found from the denominator of A1,0. They
are very close until the height becomes smaller than 0.4a. Similarly for when the incident field is
parallel to the substrate, the resonance peak in Fig. 4.5(b) follows closest to the one found from
A1,±1, and they are very close until the height becomes smaller than 0.3a. This agrees well with
the Cartesian components of the dipole moment, as the dipole moment in z-direction only depends
on A1,0, and for the x- and y-direction, the dipole moments depend on both A1,1 and A1,−1. The
dipole order approximation holding for lower heights when the incident electric field is parallel to

59

Figure 4.6: The dimensionless dipole moment, p̄(ω), of two nanospheres of radius a plotted at the fist axis
against energies of the incident wave and at the second axis against the distance d separating the spheres
along the x-axis. They are placed a height h = 0.05a above a substrate with dielectric function ε− = 10.
The ambient medium surrounding the spheres is vacuum with a dielectric function ε+ = 1. The dielectric
functions of the spheres are modelled by the Drude form with plasma frequency ~ωp = 3 eV and the inverse
of the free carrier relaxation time ~γ = 0.03 eV. The direction of the incident electric field is parallel to
(a) the z-axis, (b) the x-axis and (c) the y-axis. The orthogonal and parallel sum truncations in the multipole
expansion are set equal at L = 60.

60

the substrate also agrees with the substrate interactions being weaker than the ones for the incident
electric field orthogonal to the substrate.

Figure 4.7: The dimensionless dipole moment, p̄(ω), of a single nanosphere of radius a plotted at the first
axis against energies of the incident wave and on the second axis against the orthogonal sum truncation in
the multipole expansion. The sphere is placed a height h = 0.05a above a substrate with dielectric function
ε− = 10. The ambient medium surrounding the sphere is vacuum with a dielectric function ε+ = 1. The
dielectric function of the sphere is modelled by the Drude form with plasma frequency ~ωp = 3 eV and the
inverse of the free carrier relaxation time ~γ = 0.03 eV. The direction of the incident field is parallel to
(a) the z-axis and (b) the x-axis.

For two spheres placed a height h = 0.05a above the substrate as in Fig. 4.6(b), the denominator
of the coefficients A1,m is written out at dipole order in Sec. 2.3.3. The coefficients all share the
same denominator this time, and it has two minimums causing resonances. The energy positions
of these resonances are plotted in Fig. 2.7 as a function of the distance d separating the spheres
along the x-axis. The dashed line lies close to the solution for the real part of the denominator
being zero. The drawn line however is far away from the solution for the imaginary part being
zero. In Fig. 4.6(b), the largest resonance peak starts following the drawn line from Fig. 2.7. For
lower values of d, the peak in Fig. 4.6(b) red shifts more as in the case with a single sphere. The
dashed line however misses the second resonance peak in Fig. 4.6(b) for all distances d. This could
be caused by the strong interaction with the substrate, as the spheres are placed h = 0.05a above
it. The dipole order hence does not give the same representation even when the spheres are far

61

Figure 4.8: The dimensionless dipole moment, p̄(ω), of two nanospheres of radius a plotted at the first axis
against energies of the incident wave and on the second against the parallel sum truncation in the multipole
expansion. The spheres are placed a height h = 0.05a above a substrate with dielectric function ε− = 10,
and are separated by a distance d = 0.1a along the x-axis. The ambient medium surrounding the spheres is
vacuum with a dielectric function ε+ = 1. The dielectric functions of the spheres are modelled by the Drude
form with plasma frequency ~ωp = 3 eV and the inverse of the free carrier relaxation time ~γ = 0.03 eV. The
direction of the incident field is parallel to (a) the z-axis, (b) the x-axis and (c) the y-axis. The orthogonal
sum truncation in the multipole expansion is L⊥ = 30.

62

apart from each other. With dipole order in the interactions between the two spheres, increasing
the multipole order of the substrate interactions could be used to determine where the dipole order
approximation in parallel truncation breaks down. For the case in Fig. 4.6(b), that would have been
at d ≈ 0.5a, which in a hexagonal lattice would correspond to a surface density of ≈ 58%. The
new peaks appearing for low values of d are coming from the higher order terms. Only the dipole
moment with the incident electric field parallel to the axis through the centres of the two spheres
appears to be affected by the distance separating the spheres. This shows the interaction between
the spheres are only significant when their dipole moments line in series. The neighbour interactions
for the other two directions of incidence compared to the substrate interactions are quite weak and
induce the same blue shift as discussed in Sec. 4.1.1 when comparing Figs. 4.2–4.3 to Fig. 4.1.

Figure 4.7 presents the dipole moments from Fig. 4.1(c) computed for various truncations L⊥
in the orthogonal multipole expansion. The resonance peaks red shift when the order increases,
and the red shifts occur faster the earlier the sum is truncated. When the slopes of the curves
connecting the resonance peaks become vertical and thus very little shifted from the last truncation,
the dipole moment is close to the convergence. Similarly, Fig. 4.8 presents the dipole moments
from Fig. 4.2(c) computed for various truncations L‖ in the parallel multipole expansion with
the orthogonal truncation, L⊥ = 30. For the incident electric field parallel to the y- and z-axis,
separately, the resonance peaks stabilise for very low parallel truncations, L‖. For the electric field
incident along the y-axis, there is some red shift for the lowest truncations. For incident electric field
parallel to the z-axis on the other hand, there appear to some blue shift for the lowest truncations.
Lastly, for the incident electric field parallel to the x-axis, there is a strong red shift all the way up
to L‖ = 8. The dipole moment does not seem to converge until L‖ = 13 because of the resonance
peak on the right appearing after L‖ = 10. There is not much physics related to which way these
peaks shift as function of truncation. It is the rates at which the peaks shift that are of importance,
as they give a hint of how fast the solution converges.

4.1.3 Ring structures

The spheres can be placed to form a ring in the xy-plane such as illustrated in Fig. 4.10(a). There,
24 spheres are placed with a centre to centre distance of 2.1a. The ring structure has a rotational
symmetry around the z-axis, which intercepts the centre of the ring. In order to obtain a split ring,
one of the spheres are removed as in Fig. 4.10(b). If the ring is oriented such that two spheres
are placed on each axis, and one of those four are removed, there will still be a mirror symmetry
with respect to the axis where the sphere is removed from. In Fig. 4.10(b) the sphere is removed
from the x-axis at the right end. The dimensionless dipole moment for the spheres in Fig. 4.10
are presented in Fig. 4.9. For the full ring in Fig. 4.9(a), it is apparent that the dipole moments
are linear combinations of the the two dipole moments with incident electric field parallel to the
x-axis and to the y-axis. For the other directions of incidence the dipole moments are contained
within those two. Furthermore, there are only seven unique outcomes, as the dimensionless dipole
moments are invariant under a 180◦ rotation of the incident electric field around any axis. The
dimensionless dipole moments for the spheres mirrored by either the x- or the y-axis are hence
identical as indicated by the colours of the spheres in Fig. 4.10. The largest and leftmost peak
is caused by the interaction with the closest neighbours. Consequently, the resonance is strongest
when the incident electric field is parallel to the axis through the centres of the two neighbouring
spheres, and thus the resonance is weakest when the incident electric field is perpendicular to this
axis.

When removing one of the spheres at the x-axis in Fig. 4.9(b)–(c), the mirror symmetry with
respect to the y-axis breaks down as illustrated by the colours of the spheres in Fig. 4.10. However,

63

Figure 4.9: The dimensionless dipole moment, p̄(ω), plotted for incident wave energies for each sphere in
(a) a full ring and in (b)–(c) a split ring. The incident electric field is parallel to the x-axis in (a)–(b) and the
y-axis in (c). The rings are placed in vacuum a height h = 0.05a above a substrate with dielectric function
ε− = 10, where a is the radius of the spheres. There are 24 spheres in the full ring and 23 in the split ring.
Both structures have centre in (x, y) = (0, 0), and the spheres are separated by a distance d = 0.1a. The
dielectric function of the spheres follows the Drude model with ~ωp = 3 eV and ~γ = 0.03 eV. The split ring
is a full ring without one of the spheres at y = 0. The multipole order used is L = 30. The colours of dipole
moments correspond to the colours of the spheres in Fig. 4.10.

64

Figure 4.10: The structure of (a) a full ring and (b) a split ring. The structures consist of (a) 24 and
(b) 23 spheres with radius a. The centre of the structures are located at (x, y) = (0, 0). The spheres are
separated by a distance d = 0.1a. The split ring is equal to the full ring except for missing one of the two
spheres located at the x-axis. The spheres with same colours share the same dimensionless dipole moment
for incident electric field parallel to either the x- or the y-axis.

there is still a mirror symmetry with respect to the x-axis resulting in 12 unique outcomes contrary
to 23. When the incident electric field is parallel to the x-axis in Fig. 4.9(b), the dipole moments are
quite similar to the ones for the full ring. The asymmetry is present in the slight variations in the
pairs of spheres mirrored by the y-axis. The dipole moment of the leftmost sphere is barely affected
at all, as it is the furthest one away from the gap. When the spheres are closer to the gap, the
difference with respect to Fig. 4.9(a) increases. The resonance peak second from the right is where
the dipole moments are changed the most. This suggests the peak is caused by interactions along
the diameter of the ring. When the electric field is incident along the y-axis as in Fig. 4.9(b), the
leftmost resonance peak is completely distorted. Even the dipole moment for the sphere furthest
away from the gap is drastically changed from Fig. 4.9(a). The gap interrupting the neighbour
coupling at its strongest point affects the rest of the ring much more than it did at its weakest point
as one would expect. This demonstrates how the expansion coefficients are strongly coupled to each
other.

4.1.4 Near field calculations

The near fields for the system in Figs. 4.2(c) and 4.3(c), with the incident wave energy ~ω = 1.35 eV
and the incident electric field parallel to the x-axis, are presented in Fig. 4.11. The electric field
enhancements from Eqs. (2.2.30)–(2.2.32) are in Fig. 4.11(a) a recreation of Fig. 7(a) in Ref. [2]
for verification. The numerical values appear to agree well, especially in the hot spots between the
spheres and the substrate and between the spheres. The electric field is discontinuous at the surface
of the spheres and of the substrate as expected from Eq. (2.1.4). The electric field has a mirror

65

Figure 4.11: The (a) field enhancement, the (b) real and (c) imaginary part of the potential enhancement
of a supported dimer. The dielectric function of the spheres follows the Drude model with ~ωp = 3 eV and
~γ = 0.03 eV, and the dielectric function of the substrate is ε− = 10. The spheres are separated by a distance
of d = 0.1a and placed a height h = 0.05a above the substrate, where a is the radius of the spheres. The
substrate is located at z = 0, and the centre of the left sphere is located at x = 0. The centres of the two
spheres lie parallel to the x-axis as per the electric field from the incident plane wave. The ambient medium
is vacuum and the incident wave energy is ~ω = 1.35 eV. The multipole order used is L = 30.

66

Figure 4.12: The squared field enhancement of a supported dimer scanned for incident wave energies. The
orange line is evaluated at the middle point between the centres of the two spheres and the blue line is
evaluated at the middle point between one sphere and the substrate. The dielectric function of the spheres
follows the Drude model with ~ωp = 3 eV and ~γ = 0.03 eV, and the dielectric function of the substrate
is ε− = 10. The spheres are separated by a distance d = 0.1a and placed a height h = 0.05a above the
substrate, where a is the radius of the spheres. The substrate is located at z = 0, and the centre of the left
sphere is located at x = 0. The centres of the two spheres lie parallel to the x-axis as per the electric field
from the incident plane wave. The ambient medium is vacuum, and the multipole order used is L = 30.

symmetry with respect to the plane x = 1.05a, where the distance to each sphere is equal.
When scanning the electric field enhancements squared, between the two spheres and between

a sphere and the substrate, for an energy spectre as in Fig. 4.12, not many incident wave energies
result in greater substrate induced field enhancement than the enhancement between the spheres.
This was pointed out in Ref. [2], where the figure is recreated from Fig. 6. A such scanning allows
for more precise verification, as a contour plot is not as easy to compare precisely. The two figures
are indistinguishable. The field enhancements can also be used to further determine the origin
of the resonances in the dipole moments. As previously, the most left peak originates from the
inter-particle interaction, and the second left peak originates from the substrate interaction. The
third and fourth peak appear to originate from the inter-particle interaction, but the last one is still
difficult to determine. Even though the field enhancement between the spheres is greatest, it may
still be a result of the substrate interaction, and vice versa.

The real and imaginary parts of the potential enhancement from Eqs. (2.2.10), (2.2.22)–(2.2.23),
for the same system as in Fig. 4.11(a), are shown in Figs. 4.11(b)–(c), respectively. The potential is
continuous everywhere as expected from the boundary conditions in Eqs. (2.2.33)–(2.2.35). More-
over, the the potential is completely anti-symmetric with respect to the separating plane, x = 1.05a,
where the zero potential is defined. The anti-symmetric potential is a consequence of the incident
electric field being parallel to the axis through the centres of the spheres. For the incident elec-
tric field parallel to the other two Cartesian axes, the potential enhancements become completely
symmetric as illustrated in Fig. 4.13. When the incident electric field is parallel to the z-axis in

67

Figure 4.13: The potential enhancements for a supported dimer positioned on (a)–(b) the y-axis and
(c)–(f) the x-axis. The real parts of the potential enhancements are presented in (a), (c) and (e), while the
imaginary parts are presented in (b), (d), and (f). The cross sections in (a)–(d) are positioned at x = 0, and
the cross sections in (e)–(f) are positioned at x = 2.1a. The incident electric field is parallel to the z-axis
in (a)–(b) and to the y-axis in (c)–(f). The energy of the incident wave in (a)–(b) is ~ω = 1.43 eV and in
(c)–(f) ~ω = 1.58 eV. The dielectric function of the spheres follows the Drude model with ~ωp = 3 eV and
~γ = 0.03 eV, and the dielectric function of the substrate is ε− = 10. The spheres are separated by a distance
d = 0.1a and placed a height h = 0.05a above the substrate, where a is the radius of the spheres. The ambient
medium is vacuum, and the multipole order used is L = 30. In (a)–(b) the centres of the spheres are located
at (x, y, z) = (0,−1.05a, 1.05a) and (x, y, z) = (0, 1.05a, 1.05a), and in (c)–(f) at (x, y, z) = (0, 0, 1.05a) and
(x, y, z) = (0, 2.1a, 1.05a).

68

Figure 4.14: The field enhancement of a freestanding Ag dimer in vacuum, ε+ = ε− = 1. The dielectric
function of the spheres are provided from the Sopra database, and the spheres are separated by a distance
d = 0.1a, with a as the radius. The incident wave energy for (a)–(c) is ~ω = 2.96 eV and for (d)–(f) is
~ω = 3.2 eV. The left colour bar corresponds to both the contour plots (a) and (b), and likewise for the
right colour bar and the contour plots (d) and (e). The results in (a) and (d) are obtained from DDSCAT,
while the results in (b) and (e) are obtained from the multipole expansion. For DDSCAT, each sphere is
discretised by 523 305 point dipoles and the spheres are separated by 5 point dipoles. The centre of the
left sphere is located at x = 1.05a, and the axis through the centre of the spheres is parallel to the x-axis.
Similarly, the electric field of the incident plane wave is also parallel to the x-axis, and in the results obtained
from DDSCAT the incident wave vector is parallel to the z-axis. Lastly, the field enhancements in (c) and
(f) are scanned along the axis (x, z) = (0, 1.09a).

69

Figs. 4.13(a)–(b), the potential enhancements are mirrored by the separation plane y = 0. The po-
tential enhancements are largest on the side of the spheres facing the substrate as in Figs. 4.11(b)–
(c), due to the resonances originating mainly from the substrate interactions. However, the hot
spots closest to the substrate are not attracted to each other in the same manner. The potential
enhancements in Figs. 4.13(c)–(d) are identical to the potential enhancements in Figs. 4.13(e)–(f),
as the potential is symmetric when mirrored by the plane x = 1.05a, which is placed equally far
away from the two spheres. The hot spots are now positioned on the vertical sides of the spheres,
but shifted a bit towards the substrate.

The electric field enhancement for an Ag dimer in vacuum is presented in Fig. 4.14. As opposed to
the dimer in Fig. 4.11, there is no substrate present due to the limitations of DDSCAT. The electric
field enhancements are calculated for incident energies ~ω = 2.96 eV in Figs. 4.14(a)–(c) and for
~ω = 3.2 eV in Figs. 4.14(d)–(f). The first incident energy corresponds to the global maximum of
the dipole moment for the two spheres, while the second energy corresponds to a local minimum.
Consequently, the field enhancements in Figs. 4.14(a)–(c) are greater than the ones in Figs. 4.14(d)–
(f), especially in the vicinity around the spheres and near the hot spot between the spheres. The
incident electric field is parallel to the x-axis as in the near field calculations from Fig. 4.11. Due to
the absence of a substrate, the electric field enhancements obtained from the multipole expansion in
Figs. 4.14(b) and 4.14(e) are symmetric around the axis through the centres of the two spheres. The
near field enhancements obtained from DDSCAT specifies the incident wave vector parallel to the
z-axis as well. Hence, the symmetry for the electric field enhancements in Figs. 4.14(a) and 4.14(d)
are reduced to a mirror symmetry with respect to the plane x = 1.05a as in Fig. 4.11(a). The break
in symmetry is caused by DDSCAT including retardation in the calculations.

The discretisation of the dimer used for the DDSCAT near field calculations in Figs. 4.14(a) and 4.14(d)
is displayed in Fig. 3.4. DDSCAT is limited to a constant inter-dipole spacing for each axis. Con-
sequently, the point dipole resolution in the areas with the greatest field enhancements is limited
to the overall resolution. The electric field enhancements obtained from DDSCAT are thus not
as accurate in the hot spots as the enhancements obtained from the multipole expansion. This
is particularly illustrated when scanning through the axis (y, z) = (0, 1.09a). The difference in
enhancements increases when approaching the gap between the spheres, and in the gap there is
more than a third in relative difference. The numerical noise for DDSCAT is much greater for
~ω = 2.96 eV than for ~ω = 3.2 eV. The choice of the axis (y, z) = (0, 1.09a) over the axis through
the centres of the spheres was to reduce this numerical noise considerably. Overall, the two methods
agree well except for in the hot spot.

4.2 Infinite systems

So far the systems consisting of a few spheres have been studied. In this section, systems made
of an infinite number of supported particles will be considered. Such systems can come in many
forms, for instance, as a random or regular (periodic) array of spheres. Here the focus will mostly
be on systems consisting of a regular array of spheres, both square and hexagonal lattices. To
quality check the implementations of App. A.1 regarding systems of infinite lattices, the results
from Figs. 2 and 4–5 from Ref. [3] are reproduced in Figs. 4.15 and 4.18. Moreover, the validity of
the quadrupole order of inter-particle interaction is studied for various surface densities.

4.2.1 Dimensionless dipole moments

The dimensionless dipole moments from Fig. 2 in Ref. [3] are recreated as Fig. 4.15, and the results
are indistinguishable, which testifies to the correctness of the implementation. The material of the

70

Figure 4.15: The dimensionless dipole moment, p̄(ω), as a function of incident wave energies for (a) a
single freestanding nanosphere, (b) a single supported nanosphere, (c) a supported dimer and (d) an infinite
lattice of nanospheres. All the spheres are made of Ag and have the same radius a. The supported spheres
in (b)–(d) are placed a height h = 0.01a above an Al2O3 substrate with dielectric function ε− = 2.76. The
dimer in (c) is separated by a distance d = 0.2a, and the lattice in (d) has lattice constants bx = 2.2a and
by = 4bx. The dielectric function for Ag is provided from the Sopra database, and the ambient medium is
vacuum. The multipole order used is L = 30. The lattice sites within an interaction distance Rint = 30a are
included in the calculations.

spheres is Ag, and the dielectric function is provided by the Sopra database [6]. The experimental
data for the dielectric function does not result in as smooth curves as the Drude model did in
Figs. 4.1–4.3. The isolated sphere in Fig. 4.15(a) reaches the Mie resonance at ~ = 3.5 eV. Support-
ing the sphere with an Al2O3 substrate induces a slightly greater red shift in the dipole moment
when the incident field is parallel to the z-axis, than in Fig. 4.1(b) where a substrate with a dielectric
function ε− = 2 was used. The greater red shift agrees with the larger dielectric function of the
substrate at ε− ≈ 2.76 as illustrated in Fig. 4.16. The sphere is placed closer to the substrate as well.
The deformation of the resonance peak at ~ω ≈ 3.3 eV can be explained from the distortion of the
dielectric function of Ag provided by the Sopra database in Fig. 4.16. For comparison, the Drude
model for Ag, with ~ωp = 9.17 eV and ~γ = 0.018 eV, and the Drude model from Secs. 4.1.1-4.1.3
are included. Clearly, the Drude model for Ag with the given parameters is not very accurate.

71

Figure 4.16: The dielectric functions for (a) and (b) Ag provided by Sopra and by the Drude model,
respectively, and for (c) and (d) Al2O3 and TiO2 provided by Sopra, respectively. The parameters for the
Ag Drude model used are ~ωp = 9.01 eV and ~γ = 0.018 eV. The other Drude model used has ωp = 3 eV
and ~γ = 0.03 eV. The real values are displayed in (a) and (c), and the complex ones in (b) and (d). The
dielectric functions are plotted for incident wave energies.

The dimer in Fig. 4.15(c) induces a red shift of the resonance peak, for the incident field parallel
to the x-axis, a bit weaker than the red shift in Figs. 4.2(b) and 4.3(b), which agrees with the
longer separation distance d = 0.2a between the spheres. Moreover, there is only one resonance
peak present. The high damping caused by the imaginary part of the dielectric function for Ag in
Fig. 4.16(b) may suppress the resonances such that only the strongest one makes it through. The
large imaginary part of the dielectric function is also the reason for the lower amplitudes observed
in Fig. 4.15. The amplitudes for the dipole moments with incident electric field parallel to the
other axes decrease in the transition from a single sphere to a dimer as for Figs. 4.1–4.3. Again, the
presence of another sphere appears to disturb the enhancements when the incident field is orthogonal
to the axis through the centres of the spheres.

The lattice in Fig. 4.15(d) has the same separation distance between the spheres along the x-axis
as for the dimer in Fig. 4.15(c), bx = 2.2a. Along the y-axis on the other hand, the inter-particle
distance, from centre to centre, is four times the one along the x-axis, by = 4bx. As expected, the
dipole moment for incident electric field parallel to the x-axis has a very pronounced red shifted

72

Figure 4.17: The relative difference in dimensionless dipole moment between multipole orders in parallel
direction L‖ = 2 and L‖ = 30. The dimensionless dipole moments are computed for a supported hexagonal
Ag lattice in vacuum. The Ag spheres are placed a height h = 0.01a above a substrate made of (a) Al2O3

and (b) TiO2, where a is the radius of the spheres. The differences are plotted for the incident wave energies
along the first axis and for the surface density π/ρ along the second axis, where ρ is the area per sphere
in units of a2. The contour plot presents all the relative differences above 5% as the same colour. The
dielectric functions of the spheres and the substrates are provided by the Sopra database. Only the lattice
sites within an interaction distance Rint = 30 from the centre site are included in the calculations. The
orthogonal multipole order in all cases is L⊥ = 30. The incident electric field is parallel to one of the lattice
vectors.

resonance peak of larger amplitude. The incident electric field induces a collective resonance along
the arrays of spheres. Along the y-axis on the other hand, the spheres are separated sufficiently
to not change the dipole moment much relative to the result presented in Fig. 4.15(c). The dipole

73

moment for the incident field parallel to the z-axis is flattened more. The Coulomb forces appear
to be more restoring when the dipole moments of the spheres align in series with the image dipole
moments.

The GranFilm software is limited to quadrupole order in the multipole expansion regarding
interaction with neighbouring spheres, L‖ = 2. However, for the interaction with the substrate,
the multipole expansion can be truncated at an arbitrary order L⊥ similar to what is done for the
methodology presented in this thesis. To gain more insight in which surface density the quadrupole
approximation in the parallel multipole expansion is valid for, the relative difference in dipole
moment from one calculated with a high multipole order, L‖ = 30, is presented in Fig. 4.18 for a
range of surface densities. The multipole order regarding interaction with the substrate is kept at
L⊥ = 30 in both cases. The dipole moments are calculated for a hexagonal Ag lattice with lattice
vectors bx and by. The vectors are of equal length, b, and the angle between them is 60◦. The
area per sphere thus becomes ρ = |bx × by| =

√
3b2/2. The surface density is then obtained from

dividing the area of one sphere by the area per sphere, and in units of radii the area of a sphere is
π.

Such a hexagonal lattice of Ag spheres is placed a height h = 0.01a above an Al2O3 substrate
in Fig. 4.18(a) and a TiO2 substrate in Fig. 4.18(b). The dielectric functions of the substrates are
shown in Fig. 4.16(c) and (d), where the dielectric function for TiO2 is much greater than for Al2O3.
Consequently, the surface density allowed before reaching a relative difference of 5% is higher for
an Al2O3 substrate than a TiO2 substrate. For Al2O3 the surface density can be at 55% and still
yield decent results. For TiO2 on the other hand, the relative difference will be much higher around
the resonance. The surface density limit for TiO2 is at 45%, and still the relative difference around
the resonance will be near 5%. The colour bar used presents all relative differences greater than
5% as the same colour in order to gain better resolution in the interval of interest, [0%, 5%]. The
red shifts of the resonance peaks are also visualised as the inter-particle distance decreases. The
relative difference for TiO2 around the resonance decreases evenly as the surface density decreases.
The case is different for Al2O3 around ~ω ≈ 3.2 eV. Here the two dipole moments intercept and
give a somewhat misrepresenting image. The low relative differences from the interceptions are
especially unrepresentative for the surface densities above 60%.

4.2.2 Reflectivities

The reflectivity from Eq. (2.2.94) is presented for an Ag lattice in Fig. 4.18, which is recreated
from Figs. 4–5 in Ref. [3]. The blue lines are the reflectivities for s-polarised light based on the
amplitudes from Eq. (2.2.103), and the red lines are the reflectivities for p-polarised light based on
the amplitudes from Eq. (2.2.105). The black line is where the reflectivities for s- and p-polarised
light coincide. The lattice is placed a height h = 0.01a above an Al2O3 substrate, but the lattice
structure in Figs. 4.18(a)–(b) differs from the structure in Figs. 4.18(c)–(d). In Figs. 4.18(a)–
(b) the lattice has a square structure with inter-particle distance bx = by = 2.2a. As expected,
the reflectivities for the s- and p-polarised light coincide for the normal incidence in Fig. 4.18(a).
Moreover, the reflectivity for s-polarised light is greater than for p-polarised light for all incident
wave energies in Fig. 4.18(b), where the incidence is θ = 45◦. The peak of the s-polarised light is
also slightly more red shifted than for the p-polarised light. The electric field from the s-polarised
light is parallel to the lattice vector by and will thus be able to induce collective resonances along
the lattice vector. In contrast, the electric field from the p-polarised light has only a component with√

2/2 of the one from the s-polarised light along the surface dividing plane. For both directions of
incidence, the peaks of the reflectivities occur approximately at the resonance energy for the dipole
moment with incident electric field along the x-axis in Fig. 4.15(d) as anticipated.

74

Figure 4.18: The reflectivities as functions of incident wave energies for supported Ag nanospheres in (a)
and (b) a square lattice with lattice constants bx = by = 2.2a and (c) and (d) a rectangular lattice with
lattice constants bx = 2.2a and by = 2bx. The dielectric function of Ag is obtained from the Sopra database.
The spheres are placed a height h = 0.01a above a Al2O3 substrate with dielectric function ε− = 2.76,
with a = 10 nm as the radius of the spheres. The angles of the incident wave vector are for (a) and (c)
(θ, φ) = (0◦, 0◦), and for (b) and (d) (θ, φ) = (45◦, 0◦), where s-polarised light is defined to be polarised
along the y-axis. The ambient medium is vacuum, and the multipole order used is L = 30. The lattice sites
within an interaction distance Rint = 30a are included in the calculations.

The lattice structure in Figs. 4.18(c)–(d) is rectangular with bx = 2.2a and by = 2bx. The
reflectivities no longer coincide for the normal incidence in Fig. 4.18(c), as the four fold symmetry
of the lattice is reduced to two fold. The shape of the reflectivity is still quite similar for the
p-polarised light, but the amplitude is noticeably lower with the lower surface density. For the s-
polarised light, the shape of the reflectivity resembles more of the dipole moment with the incident
electric field parallel to the y-axis in Fig. 4.15(d). The resemblance indicates the inter-particle
distance is sufficiently large enough for dampening the interaction between the spheres along the y-
axis. When changing the incidence to θ = 45◦, the reflectivity increases for the s-polarised light and
decreases for the p-polarised light. For the p-polarised light, the component of the incident electric
field along the densely packed x-axis is decreased by a portion 1−

√
2/2. For the s-polarised light,

the increase in reflectivity is caused by the general increase from the substrate when increasing the

75

polar angle of the incident wave vector, θ. The results from the paper [3] differ slightly from
the ones obtained in Fig. 4.18, where the reflectivities in Fig. 4.18 are generally higher. The
paper used another approach for determining the reflectivities than through the susceptibilities
in Eqs. (2.2.98) and (2.2.97) proposed by D. Bedeaux and J. Vlieger [1]. Instead, Ref. [3] based the
reflectivities on the effective displacement field in Eq. (2.2.92).

4.3 The Discrete Dipole Approximation Method

In the last section of this chapter, the results obtained from the software DDSCAT is tested against
two analytical solutions. The first is the Mie theory for the absorption efficiency factor, and the
second is the reflectivity of a finite, thin film in vacuum. Lastly, the reflectivities for various
unsupported square Ag lattices obtained from DDSCAT are compared to the ones obtained from
the multipole expansion implemented here and grom GranFilm.

4.3.1 Verification

Figure 4.19: The absorption efficiency factor for an Ag sphere with radius a = 10 nm in vacuum plotted
for incident wave energies. The blue dots are the Mie result, and the other lines are obtained from DDSCAT
calculations with various number of point dipoles.

To verify the results from DDSCAT, the absorption efficiency factor, Qabs, in Eqs. (2.4.18) and
(2.4.23) for an Ag sphere in vacuum is compared to the exact Mie theory result in Eqs. (2.4.46) and
(2.4.20). The discretisation of the sphere with radius a = 10 nm ranges from N = 515 to N =
949 514 point dipoles and is visualised in Fig. 3.2 for N = 4169 and N = 523 305. The efficiency
factor calculated on the basis of N = 515 point dipoles is quite far away from the Mie result.

76

Figure 4.20: The reflectivity of a thin, finite film of thickness d = 100 nm in vacuum plotted for the angle
of incidence. The incident wave energy is ~ω = 2.48 eV and the refractive index of the film is n = 1.5+0.02i.
In the DDSCAT calculations, the film is discretised by 20 point dipoles in thickness. The interaction cutoff
parameter used is γ = 0.01.

At N = 4169 point dipoles, the shape of the curve is much more similar to the Mie result, but
still somewhat far off. As the discretisation resolution increases, the results converge towards the
analytic theory. However, the convergence slows down as the number of point dipole increases, and
there is barely any difference between N = 523 305 and N = 949 514 point dipoles, except for almost
twice as long simulation time for the latter case compared to the former. For those dipole densities,
the absorption efficiency factor is very close to the Mie result except for at the resonance. When the
field enhancements are at their greatest, the dipole densities are insufficient for an accurate result.
Outside the resonance, the number of point dipoles N = 523 305 suffices.

To verify the reflectivity obtained from DDSCAT in Eq. (2.4.30), the reflectivity of a thin film
in vacuum is compared to the analytic reflectivity from Eq. (2.4.50) in Fig. 4.20. The reflectivities
are calculated for incident angles ranging from θ = 0◦ to almost 80◦. The unit cell of the film is
an array of 20 point dipoles along the z-axis. The point dipoles in the unit cell form the thickness
of the film, d = 100 nm. The unit cell is then repeated periodically in the xy-plane, with the same
inter-dipole spacing as within the unit cell, and the interaction parameter γ = 0.01 is used. The
results start out accurate, but as θ increases, the results oscillate around the analytic result. The
greater the angle of incidence, the more the results deviate from the solution. As the numerical
solver used is iterative, the computation time depends on how close the solution is to the previous
result. The rapid oscillation causes large variations and thus long computation times, which is why

77

the data points stop before θ = 80◦. The reflectivity for s-polarised light deviates more and earlier
than for p-polarised light. However, for both polarisations, the results obtained from DDSCAT are
still rather accurate at θ = 45◦.

4.3.2 DDSCAT compared to multipole expansion and GranFilm

The reflectivities obtained for a square Ag lattice with the multipole expansion are compared to
the corresponding results obtained from DDSCAT in Figs. 4.21(a)–(c) under normal incidence and
in Figs. 4.22(a)–(c) with an angle of incidence θ = 45◦. The discretisation of the spheres is demon-
strated in Fig. 3.2. Due to the limitations of DDSCAT, there is no substrate present. Apart from
the substrate, the systems assumed to produce the results in Figs. 4.21(a) and 4.22(a) are identical
to those assumed in obtaining the results in Figs. 4.18(a)–(b), respectively. The reflectivities with-
out substrate are generally lower, but at the resonance the differences are not as noticeable. The
reflectivity caused by the substrate is relatively small compared to the reflectivity caused by the
spheres at resonance. Nevertheless, the substrate induces a stronger resonance and a slightly larger
red shift of the resonance energy positions. The computation time for DDSCAT was two weeks for
the 11 data points for the reflectivities in Fig. 4.22(a), with N = 523 305 and γ = 0.01 on an Intel®

Core™ i7-8700K processor. This was the longest computation time for the DDSCAT simulations,
as they depend on the periodicity of the lattice and the direction of the incident plane wave. The
reflectivities obtained by the multipole method in the same figure took a half hour on the same
processor for L = 30 and Rint = 30a. The interaction cutoff parameter γ could probably have been
a bit higher without much loss of accuracy.

The lattice spacing in Figs. 4.21(a)–(c) and 4.22(a)–(c) are bx = by = 2.2a, 3a and 4a. The data
points obtained from DDSCAT distant from the resonances fit very well with the results from the
multipole expansion. Around the resonance on the other hand, DDSCAT struggles to achieve high
enough reflectivity as it did with the absorption efficiency factor in Fig. 4.19. As the discretisation
of the sphere at N = 523 305 point dipoles is not sufficient to obtain a highly accurate result,
the reflectivities obtained from a discretisation of N = 4169 point dipoles are included as well to
indicate the degree of convergence. The greater the difference between the reflectivities obtained for
the two discretisations, the further away are the results from convergence. As the lattice spacing
increases, the resonance weakens and becomes narrower in the energy spectrum. Consequently, the
data points from DDSCAT fit better with the results from the multipole expansion. Furthermore,
the data points fit best for p-polarised light at an incidence θ = 45◦, second best for normal incidence
and last comes the s-polarised light at incidence θ = 45◦. The deviation being greater for s-polarised
light than p-polarised light agrees with the evolution in Fig. 4.20. The smaller discrepancy for p-
polarised light at incidence θ = 45◦ than the discrepancy for normal light indicates the electric
field being directed completely along a lattice vector has greater impact on the accuracy than the
incidence of the wave vector. The data points from DDSCAT appear to be slightly above the data
points obtained from the multipole expansion to the left of the resonance peak and vice versa on the
right side. Hence, there appears to be a minuscule red shift of the DDSCAT data points compared
to the ones from the multipole expansion.

The reflectivities for a lattice of Ag half spheres in vacuum are presented in Figs. 4.21(d)–
(f) and 4.22(d)–(f). The lattice vectors are the same as for Figs. 4.21(a)–(c) and 4.22(a)–(c). The
half spheres are oriented with the dome facing upwards from the xy-plane as if they were spheres
intercepted by a substrate. The discretisation of the half spheres are illustrated in Fig. 3.3. The
reflectivities for the half spheres are red shifted a lot compared to the full spheres. Furthermore, the
amplitudes are smaller for the half spheres. As the scattering object is smaller and its shape is trun-
cated at the middle, the resonance may be assumed to be weaker. In Figs. 4.21(e)–(f) and 4.22(e)–(f),

78

Figure 4.21: The reflectivities as a function of incident wave energies, for square lattices of Ag (a)–(c)
spheres and (d)–(f) half spheres hovering in vacuum. The radius of the full and half spheres is a = 10 nm,
and the lattice constants are for (a) and (d) bx = by = 2.2a, for (b) and (e) bx = by = 3a and for (c) and (f)
bx = by = 4a. The dielectric function for Ag is provided by the Sopra database. In the multipole calculations,
the truncation order is L = 30, and the lattice sites included are within the interaction distance Rint = 30a.
For DDSCAT the cutoff parameter is γ = 0.01. The GranFilm calculations are done for a substrate
with dielectric function ε− = 1.0201. The truncation in parallel multipole expansion for GranFilm is at
quadrupole order, L‖ = 2, and the truncation in orthogonal multipole expansion is L⊥ = 32. The angles of
incidence are (θ, φ) = (0◦, 0◦).

79

Figure 4.22: The reflectivities as a function of incident wave energies, for square lattices of Ag (a)–(c)
spheres and (d)–(f) half spheres hovering in vacuum. The radius of the full and half spheres is a = 10 nm,
and the lattice constants are for (a) and (d) bx = by = 2.2a, for (b) and (e) bx = by = 3a and for (c) and (f)
bx = by = 4a. The dielectric function for Ag is provided by the Sopra database. In the multipole calculations,
the truncation order is L = 30, and the lattice sites included are within the interaction distance Rint = 30a.
For DDSCAT the cutoff parameter is γ = 0.01. The GranFilm calculations are done for a substrate
with dielectric function ε− = 1.0201. The truncation in parallel multipole expansion for GranFilm is at
quadrupole order, L‖ = 2, and the truncation in orthogonal multipole expansion is L⊥ = 32. The angles of
incidence are (θ, φ) = (45◦, 0◦).

80

the reflectivities obtained from GranFilm [14] behave very similarly to the reflectivities obtained
from the multipole method when compared to DDSCAT. For GranFilm, the reflectivities appear
slightly blue shifted, and near the resonances the amplitude is greater. The differences in amplitudes
are even greater than between DDSCAT and the multipole expansion. The total number of point
dipoles is halved, which may result in less accurate resonances even though the inter-dipole spacing
is the same. The discretisation of the half spheres in Fig. 3.3 aren’t perfectly halved either, as the
full spheres consists of an odd number of point dipole planes. The software GranFilm being limited
to quadrupole order in interaction with neighbouring islands could be a minuscule factor, but the
surface densities for sub plots (e) and (f) are 35% and 20%, respectively. Recalling from Fig. 4.17,
the quadrupole approximation in interaction with neighbouring spheres was valid for at least up to
50% surface density with less than one percent relative error, even with an Al2O3 substrate. For
Figs. 4.21(d) and 4.22(d) on the other hand, the surface density is at 65%, where the quadrupole
approximation probably is insufficient to properly account for the interaction between particles.
Consequently, the resonances obtained from GranFilm are much more blue shifted compared to
DDSCAT. However, outside of the resonance region the data points fit better than anticipated. The
general red shift of the resonances obtained with DDSCAT compared to the multipole expansion
and GranFilm may be speculated to be due to DDSCAT including retardation in the calculations.

81

Chapter 5

Conclusion

A code (see App. A.1) is implemented based on a multipole expansion of the scalar potential,
for performing simulations of dimensionless dipole moments, electric field enhancements, potential
enhancements and reflectivities for s- and p-polarised light. The the code is validated by comparison
with multiple references.

The expansion coefficients determined from the multipole expansion for a finite and infinite set
of spheres are verified through the comparison of the dimensionless dipole moments computed in
Secs. 4.1.1 and 4.2.1 and Refs. [2, 3], respectively. The validity of the results is thus supported
by the work of P.A. Letnes, I. Simonsen and D. L. Mills. The observations made include stronger
interactions causing stronger red shifts of the energy position of the resonance. This is particularly
visualised in Sec. 4.1.2. The largest red shift occurs from the inter-particle interaction, but only
when the incident electric field is parallel to a short lattice vector or the axis through the centres of
the dimer. For the other Cartesian axes, the potential in the spheres becomes symmetric instead of
anti-symmetric, which results in the Coulomb force acting as a restoring force. Hence, the electric
field enhancements weaken resulting in a slight blue shift in the resonance energy positions. The
substrate interactions on the other hand, induce red shifts for all polar angles of incidence of the
electric field, and the largest substrate induced red shift occurs for normal incidence of the electric
field.

The near field calculations of the electric field enhancements in Sec. 4.1.4 is verified against the
results presented in Ref. [2], which again supports the calculations of the potential enhancements.
The potential enhancements are continuous everywhere and anti-symmetric for the incident electric
field parallel to the axis through the centres of the dimer, but symmetric for the other two Cartesian
axes. The near field calculations for DDSCAT are more characterised by numerical noise, and the
deviations from the results obtained from the multipole expansion increase more the closer they are
evaluated to the hot spot. The same trend occurs for the verification of the absorption efficiency
factor in Sec. 4.3.1. Near the resonance, and thus largest field enhancements, the discretisation of
the sphere at N = 523 305 point dipoles is insufficient for great accuracy.

The reflectivities are only halfway verified in Sec. 4.2.2 when compared to the results from
Ref. [3], as another approach is used there. Consequently, the reflectivities in Sec. 4.2.2 are somewhat
higher. However, when compared to the results obtained with DDSCAT in Sec. 4.3.2, the data
points fit exceptionally well outside of the resonances. Again, the discretisation for the spheres
at N = 523 305 point dipoles appears to be insufficient when the reflectivities are evaluated near
the resonances. Furthermore, the reflectivites obtained for a lattice of half spheres by GranFilm
behave very similarly to the reflectivities obtained from the multipole expansion of full spheres when
compared to DDSCAT. The only differences when the surface density is below 40% are slightly

82

greater blue shifts of the GranFilm results when compared to the DDSCAT results and slightly
greater amplitudes around the resonances. For the surface density at 65% on the other hand,
the quadrupole approximation in inter-particle interaction breaks down even without a substrate.
In Sec. 4.2.1, the surface density limit for the quadrupole approximation is determined as 55%
supported by an Al2O3 substrate and as 45% by an TiO2 substrate.

The storage of the matrix C from Eq. (3.1.5) during the computation of the dipole moments for
24 spheres at multipole order L = 30 in Sec. 4.1.3 required 8 GB of RAM based on the asymptotic
space complexity 16(MN)2B. The python code in App. A.1 is thus not suitable for computation
of such large unit cells on computers with 8 GB of RAM or less. The total execution time for 221
incident wave energies was almost 40 hours on an Intel® Core™ i7-8700K processor with 6 cores.
For an infinite lattice, the space complexity for the C matrix and the time complexity for solving
for the A coefficients remain unchanged from the complexities for the finite system, as only the
coefficients for one unit cell are solved for. The time complexity for building the C matrix on the
other hand increases considerably with the interaction distance squared, ∼ R2

int.
Further improvements could be implementing the "surface mode" from ADDA to DDSCAT.

The alternative would be to implement periodic boundary conditions for ADDA. As the method
developed here and GranFilm are mainly focused on supported particles, the "surface mode"
would allow for more relevant comparisons. Another useful implementation would be to vary the
inter-dipole spacing for higher resolutions near the hot spots. The near field results obtained from
the multipole expansion could be a useful initial guess for the discretisation of the spheres. Lastly,
a DDSCAT-simulation with more point dipoles could be run on a computer with more cores for a
higher interaction cutoff parameter γ for only the data points near the resonance. Perhaps then the
results could be accurate also for energies in the immediate vicinity of the resonance.

83

Bibliography

[1] D. Bedeaux and J. Vlieger. Optical properties of surfaces. World Scientific Publishing, 2014.

[2] P. A. Letnes, I. Simonsen, and D. L. Mills. Substrate influence on the plasmonic response of
clusters of spherical nanoparticles. Phys. Rev. B, 83(7):075426, Feb 2011.

[3] P. A. Letnes, I. Simonsen, and D. L. Mills. Plasmonic resonances at interfaces patterned by
nanoparticle lattices. unpublished, Aug 2012.

[4] S. K. Lam, A. Pitrou, and S. Seibert. Numba: A LLVM-based python JIT compiler. In LLVM
’15: Proceedings of the Second Workshop on the LLVM Compiler Infrastructure in HPC, New
York, NY, USA, Nov 2015. Association for Computing Machinery.

[5] M. A. Wieczorek and M. Meschede. Shtools: Tools for working with spherical harmonics.
Geochem. Geophy. Geosy., 19(8):2574–2592, Aug 2018.

[6] Sopra database. http://www.sspectra.com/sopra.html. Accessed: 2021-06-07.

[7] B. T. Draine and P. J. Flatau. Discrete-dipole approximation for scattering calculations. J.
Opt. Soc. Am. A, 11(4):1491–1499, Apr 1994.

[8] B. T. Draine and P. J. Flatau. Discrete-dipole approximation for periodic targets: theory and
tests. J. Opt. Soc. Am. A, 25(11):2693–2703, Nov 2008.

[9] P. J. Flatau and B. T. Draine. Fast near field calculations in the discrete dipole approximation
for regular rectilinear grids. Opt. Express, 20(2):1247–1252, Jan 2012.

[10] M. Seeram, G. T. Forcherio, and D. K. Roper. Shape generator for DDSCAT. https://
nanohub.org/resources/22758, Mar 2016.

[11] U. Ayachit. The ParaView Guide: A Parallel Visualization Application. Kitware, 2015.

[12] C. F. Bohren and D. R. Huffman. Absorption and Scattering of Light by Small Particles. John
Wiley & Sons, Ltd, 1998.

[13] BHMIE. http://scatterlib.wdfiles.com/local--files/codes/bhmie.py. Accessed: 2021-
06-09.

[14] R. Lazzari and I. Simonsen. Granfilm: a software for calculating thin-layer dielectric properties
and fresnel coefficients. Thin Solid Films, 419(1):124–136, Jul 2002.

[15] E. Aursand. Optical properties of truncated and coated spheroidal nanoparticles on a substrate.
Master thesis, NTNU, 2012.

84

http://www.sspectra.com/sopra.html
https://nanohub.org/resources/22758
https://nanohub.org/resources/22758
http://scatterlib.wdfiles.com/local--files/codes/bhmie.py

[16] D. J. Griffiths. Introduction to electrodynamics; 4th ed. Pearson, 2013.

[17] Spherical harmonics. https://brilliant.org/wiki/spherical-harmonics/. Accessed: 2021-
02-11.

[18] W. Bosch. On the computation of derivatives of legendre functions. Phys. Chem. Earth Pt. A,
25(9):655–659, Dec 2000.

[19] D. Bedeaux and J. Vlieger. A phenomenological theory of the dielectric properties of thin films.
Physica, 67(1):55–73, Jul 1973.

[20] M. A. Yurkin and A. G. Hoekstra. The discrete dipole approximation: An overview and recent
developments. J. Quant. Spectrosc. Ra., 106(1):558–589, Jul 2007.

[21] D. Gutkowicz-Krusin and B. T. Draine. Propagation of electromagnetic waves on a rectangular
lattice of polarizable points. unpublished, Apr 2004.

[22] O. S. Heavens. Optical properties of thin films. Rep. Prog. Phys, 23(1):1–65, Jan 1960.

[23] M. A. Yurkin and A. G. Hoekstra. The discrete-dipole-approximation code adda: Capabilities
and known limitations. J. Quant. Spectrosc. Ra., 112(13):2234–2247, Mar 2011.

[24] M. A. Yurkin and M. Huntemann. Rigorous and fast discrete dipole approximation for particles
near a plane interface. J. Phys. Chem. C, 119(52):29088–29094, Dec 2015.

[25] B. T. Draine and J. Goodman. Beyond Clausius-Mossotti: Wave Propagation on a Polarizable
Point Lattice and the Discrete Dipole Approximation. Astrophys. J., 405(2):685–697, Mar
1993.

[26] J. J. Goodman, B. T. Draine, and P. J. Flatau. Application of fast-fourier-transform techniques
to the discrete-dipole approximation. Opt. Lett., 16(15):1198–1200, Aug 1991.

[27] B. T. Draine and P. J. Flatau. User guide for the discrete dipole approximation code DDSCAT
7.3. https://arxiv.org/pdf/1305.6497.pdf, Jul 2020.

85

https://brilliant.org/wiki/spherical-harmonics/
https://arxiv.org/pdf/1305.6497.pdf

Appendix A

Multipole expansion method

A.1 Python script

1 #
2 # The MultiPole Expansion Software (MPES)
3 #
4 # by
5 #
6 # Fredrik Knapskog
7 #
8 # Trondheim, 28-May-2021
9 #

10 # --- o0o ---
11 #
12 # Routines: get_spherical_coords
13 # get_l
14 # get_m
15 # H
16 # get_C
17 # get_b
18 # get_k
19 # get_B
20 # get_B_0
21 # get_p
22 # get_i1
23 # get_j1
24 # get_length
25 # E_angles
26 # susceptibilities
27 # s_polarization
28 # p_polarization
29 # is_outside
30 # coord_table
31 # spherical_harm
32 # potential_grid

86

33 # field_grid
34 #
35 # main
36 #
37

38

39 # ===
40 # Importing libraries
41 # ===
42

43 import numpy as np
44 import scipy
45 from matplotlib import pyplot as plt
46 from scipy.special import sph_harm, binom
47 from scipy import constants
48 from scipy.sparse.linalg import gmres #Iterative solver
49 import warnings
50 from time import *
51 from pyshtools import expand
52 from numba import jit, prange
53 from IPython.core.display import display, HTML
54 display(HTML("<style>.container { width:100% !important; }</style>"))
55 from IPython.display import clear_output
56 from pysopra import EpsilonSOPRA, micron2eV, eV2micron
57

58 # --
59 # --- end importing libraries
60 # --
61

62 # ===
63 # Implementing functions
64 # ===
65

66 #Returns five coordinates. The first two are the polar and azimuthal
67 #angles of point p_2 relative to point p_1. Third is the polar angle
68 #of p_2s image multipole relative to p_1. Fourth is the distance between
69 #p_1 and p_2 and fifth is the distance between p_2s image multipole
70 #and p_1.
71 @jit(nopython=True)
72 def get_spherical_coords(p_1, p_2):
73 polar_angle = np.arctan2(np.sqrt((p_2[0]-p_1[0])**2 + (p_2[1]-p_1[1])**2),

p_2[2]-p_1[2])↪→

74 azimuthal_angle = np.arctan2(p_2[1]-p_1[1], p_2[0]-p_1[0])
75 image_polar_angle = np.arctan2(np.sqrt((p_2[0]-p_1[0])**2 +

(p_2[1]-p_1[1])**2), -p_2[2]-p_1[2])↪→

76 R = np.sqrt((p_2[0]-p_1[0])**2 + (p_2[1]-p_1[1])**2 + (p_2[2]-p_1[2])**2)
77 image_R = np.sqrt((p_2[0]-p_1[0])**2 + (p_2[1]-p_1[1])**2 + (p_2[2]+p_1[2])**2)
78 return polar_angle, azimuthal_angle, image_polar_angle, R, image_R

87

79

80 # --
81

82 #Returns the index l from matrix index ind (with numba)
83 @jit(nopython=True)
84 def get_l(ind):
85 return np.sqrt(ind+1)//1
86

87 # --
88

89 #Returns the index m from matrix index ind (with numba)
90 @jit(nopython=True)
91 def get_m(ind):
92 l = get_l(ind)
93 return ind + 1 -l*(l+1)
94

95 # --
96

97 #Returns the index l from matrix index ind (without numba)
98 def get_l1(ind):
99 return np.sqrt(ind+1)//1

100

101 # --
102

103 #Returns the index m from matrix index ind (without numba)
104 def get_m1(ind):
105 l = get_l(ind)
106 return ind + 1 -l*(l+1)
107

108 # --
109

110 #Computes H(l_j, m_j | l_i, m_i) for an array of indices k
111 def H(k, M):
112 k1 = k//M
113 l1 = k%M
114 l_i, m_i, l_j, m_j = get_l1(l1), get_m1(l1), get_l1(k1), get_m1(k1)
115 l = l_i + l_j
116 m = m_i - m_j
117 return np.sqrt(4*np.pi)*(-1)**(l_i+m_j)*np.sqrt((2*l_i+1)/((2*l_j+1)*(2*l+1)))

* np.sqrt(binom(l+m, l_i+m_i)*binom(l-m, l_j+m_j))↪→

118

119 # --
120

121 #Computes H(0, 0 | l_i, m_i) for an array of indices k
122 def H1(k):
123 l_j, m_j = 0, 0
124 l_i, m_i = get_l1(k), get_m1(k)
125 l = l_i + l_j

88

126 m = m_i - m_j
127 return np.sqrt(4*np.pi)*(-1)**(l_i+m_j)*np.sqrt((2*l_i+1)/((2*l_j+1)*(2*l+1)))

* np.sqrt(binom(l+m, l_i+m_i)*binom(l-m, l_j+m_j))↪→

128

129 # --
130

131 #Builds C matrix
132 @jit(nopython=True, parallel = True)
133 def get_C(C, L_parallel, L_orthogonal, M, N_cell, lattice_points, centre_point,

lattice_vectors, epsilon, r, beta, epsilon_plus, coords, spherical_harmonics,
image_spherical_harmonics, Hs, k_vec, b_x, b_y, alpha):

↪→

↪→

134 M_parallel = (L_parallel+1)**2 - 1
135 for k in range(N_cell*M):
136 j, k1 = k//M, k%M
137 l_j, m_j = get_l(k1), get_m(k1)
138 C[k,k] += r[j]**(-2*l_j-1)*(l_j*epsilon[j] +

epsilon_plus*(l_j+1))/(l_j*(epsilon[j] - epsilon_plus))↪→

139 for point in range(lattice_points):
140 phase_factor = np.exp(1j*(k_vec[0]*lattice_vectors[point, 0] +

k_vec[1]*lattice_vectors[point, 1]))↪→

141 if point != centre_point:
142 for l in prange(N_cell*M_parallel):
143 i, l1 = l//M_parallel, l%M_parallel
144 l_i, m_i = get_l(l1), get_m(l1)
145 l2, m2 = l_i+l_j, m_i-m_j
146 ind = int(l2*(l2+1)/2+np.abs(m2))
147 element1 = Hs[k1,l1]/coords[j,i,point,3]**(l2+1)
148 element2 = Hs[k1,l1]/coords[j,i,point,4]**(l2+1)
149 if m2 >= 0:
150 C[k,M*i+l1] += phase_factor *

(element1*spherical_harmonics[j,i,point,ind] +
element2*(-1)**(l_i+m_i)*beta *
image_spherical_harmonics[j,i,point,ind])

↪→

↪→

↪→

151 else:
152 C[k,M*i+l1] += phase_factor * (element1*(-1)**m2 *

np.conj(spherical_harmonics[j,i,point,ind]) +
element2*(-1)**(l_i+m_i +m2)*beta *
np.conj(image_spherical_harmonics[j,i,point,ind]))

↪→

↪→

↪→

153 else:
154 for l in prange(N_cell*M):
155 i, l1 = l//M, l%M
156 l_i, m_i = get_l(l1), get_m(l1)
157 if i != j:
158 if l_i <= L_parallel:
159 l2, m2 = l_i+l_j, m_i-m_j
160 ind = int(l2*(l2+1)/2+np.abs(m2))
161 element1 = Hs[k1,l1]/coords[j,i,point,3]**(l2+1)
162 element2 = Hs[k1,l1]/coords[j,i,point,4]**(l2+1)

89

163 if m2 >= 0:
164 C[k,l] += element1 *

spherical_harmonics[j,i,point,ind] +
element2*(-1)**(l_i+m_i)*beta *
image_spherical_harmonics[j,i,point,ind]

↪→

↪→

↪→

165 else:
166 C[k,l] += element1*(-1)**m2 *

np.conj(spherical_harmonics[j,i,point,ind]) +
element2*(-1)**(l_i+m_i +m2)*beta *
np.conj(image_spherical_harmonics[j,i,point,ind])

↪→

↪→

↪→

167 else:
168 if l_i <= L_orthogonal and m_j == m_i:
169 l2, m2 = l_i+l_j, m_i-m_j
170 ind = int(l2*(l2+1)/2)
171 C[k,l] += Hs[k1,l1] / coords[j,i,point,4]**(l2+1) *

beta*(-1)**(l_i+m_i) *
image_spherical_harmonics[j,i,point,ind]

↪→

↪→

172 return C
173

174 # --
175

176 #Creates b-vector from electric field direction
177 def get_b(theta_0, phi_0, M, N):
178 b = np.zeros(M, dtype = np.complex128)
179 b[0] = np.sqrt(2*np.pi/3)*np.sin(theta_0)*np.exp(1j*phi_0)
180 b[1] = np.sqrt(4*np.pi/3)*np.cos(theta_0)
181 b[2] = -np.sqrt(2*np.pi/3)*np.sin(theta_0)*np.exp(-1j*phi_0)
182 return np.tile(b,N)
183

184 # --
185

186 #Creates k-vector from incident wave direction and wave number
187 def get_k(omega, theta_0, phi_0, length_scale):
188 HC = 2 * np.pi * 0.1973269631
189 return

2*np.pi/(HC/omega)*length_scale*1e3*np.sin(theta_0)*np.array([np.cos(phi_0),
np.sin(phi_0), 0])*0

↪→

↪→

190

191

192 # --
193

194 #Computes B coefficients from solved A coefficients
195 @jit(nopython=True, parallel = True)
196 def get_B(M, N, A, b, beta, r, Hs, coords, spherical_harmonics,

image_spherical_harmonics, L_parallel, L_orthogonal):↪→

197 B = np.zeros(M*N, dtype = np.complex128)
198 for k in prange(M*N):
199 j, k1 = k//M, k%M

90

200 l_j, m_j = get_l(k1), get_m(k1)
201 B[k] += -r[j]**(1-l_j)*b[k] + A[k]*r[j]**(-2*l_j-1)
202 for l in prange(M*N):
203 i, l1 = l//M, l%M
204 l_i, m_i = get_l(l1), get_m(l1)
205 if i != j and l_i <= L_parallel:
206 l2, m2 = l_i+l_j, m_i-m_j
207 ind = int(l2*(l2+1)/2+np.abs(m2))
208 element1 = Hs[k1,l1]/coords[j,i,3]**(l2+1)
209 element2 = Hs[k1,l1]/coords[j,i,4]**(l2+1)
210 if m2 >= 0:
211 B[k] += A[l]*(element1*spherical_harmonics[j,i,ind] +

element2*(-1)**(l_i+m_i)*beta*image_spherical_harmonics[j,i,ind])↪→

212 else:
213 B[k] +=

A[l]*(element1*(-1)**m2*np.conj(spherical_harmonics[j,i,ind])
+ element2*(-1)**(l_i+m_i
+m2)*beta*np.conj(image_spherical_harmonics[j,i,ind]))

↪→

↪→

↪→

214 elif i == j and l_i <= L_orthogonal and m_j == m_i:
215 l2= l_i+l_j
216 ind = int(l2*(l2+1)/2)
217 B[k] += A[l]*Hs[k1,l1]/coords[j,j,4]**(l2+1) *

beta*(-1)**(l_i+m_i)*image_spherical_harmonics[j, j, ind]↪→

218 return B
219

220 # --
221

222 #Computes the B coefficient for m = l = 0
223 @jit(nopython=True)
224 def get_B_0(B_0, H_0, M, N, A, beta, r, coords, spherical_harmonics,

image_spherical_harmonics, L_parallel, L_orthogonal, origin, b):↪→

225 for j in range(N):
226 for l in range(M*N):
227 i, l1 = l//M, l%M
228 l_i, m_i = get_l(l1), get_m(l1)
229 if i != j and l_i <= L_parallel:
230 l2, m2 = l_i, m_i
231 ind = int(l2*(l2+1)/2+np.abs(m2))
232 element1 = H_0[l1]/coords[j,i,3]**(l2+1)
233 element2 = H_0[l1]/coords[j,i,4]**(l2+1)
234 if m2 >= 0:
235 B_0[j] += A[l]*(element1*spherical_harmonics[j,i,ind] +

element2*(-1)**(l_i+m_i)*beta*image_spherical_harmonics[j,i,ind])↪→

236 else:
237 B_0[j] +=

A[l]*(element1*(-1)**m2*np.conj(spherical_harmonics[j,i,ind])
+ element2*(-1)**(l_i+m_i
+m2)*beta*np.conj(image_spherical_harmonics[j,i,ind]))

↪→

↪→

↪→

91

238 elif i == j and l_i <= L_orthogonal and m_i == 0:
239 l2= l_i
240 ind = int(l2*(l2+1)/2)
241 B_0[j] += A[l]*H_0[l1]/coords[j,j,4]**(l2+1) *

beta*(-1)**(l_i+m_i)*image_spherical_harmonics[j, j, ind]↪→

242 if j != origin:
243 B_0[j] += -np.sqrt(4*np.pi)*coords[origin, j,

3]*(-b[0]*np.conj(spherical_harmonics[origin, j, 2]) +
b[1]*spherical_harmonics[origin, j, 1] +
b[2]*spherical_harmonics[origin, j, 2])

↪→

↪→

↪→

244 return B_0
245

246 # --
247

248 #Compute dimensionless dipole moment from A coefficients
249 def get_p(A, i, M, r):
250 k = i*M
251 p_x = np.sqrt(3/(8*np.pi))*(A[k]-A[k+2])/r[i]**2
252 p_y = -1j*np.sqrt(3/(8*np.pi))*(A[k]+A[k+2])/r[i]**2
253 p_z = np.sqrt(3/(4*np.pi))*A[k+1]/r[i]**2
254 return np.real(np.sqrt(p_x*np.conj(p_x) + p_y*np.conj(p_y) + p_z*np.conj(p_z)))
255

256 # --
257

258 #Compute positions for split ring of N spheres,
259 #separated by a distance d and radius r a height
260 #h above the substrate
261 def split_ring(N, d, r, h):
262 dtheta = 2*np.pi/(N+1)
263 R = (r+d/2)/np.sin(dtheta/2)
264 ring_pos = np.zeros([N, 3])
265 theta = 0
266 for i in range(N):
267 theta += dtheta
268 ring_pos[i] = (R*np.cos(theta), R*np.sin(theta), r+h)
269 return ring_pos
270

271 # --
272

273 #Compute positions for full ring
274 def full_ring(N, d, r, h):
275 dtheta = 2*np.pi/N
276 R = (r+d/2)/np.sin(dtheta/2)
277 ring_pos = np.zeros([N, 3])
278 theta = 0
279 for i in range(N):
280 ring_pos[i] = (R*np.cos(theta), R*np.sin(theta), r+h)
281 theta += dtheta

92

282 return ring_pos
283

284 # --
285

286 #Finds all i1 lattice coordinates to be included
287 #at lattice coordinate j1
288 def get_i1(R, b_x, b_y, alpha, j1):
289 R1 = np.abs(j1*np.sin(alpha)*b_y)
290 if R1 < R:
291 i1_2 = int(np.floor(1/b_x*(np.sqrt(R**2 - (j1*np.sin(alpha)*b_y)**2) -

j1*np.cos(alpha)*b_y)))↪→

292 i1_1 = int(np.ceil(1/b_x*(-np.sqrt(R**2 - (j1*np.sin(alpha)*b_y)**2) -
j1*np.cos(alpha)*b_y)))↪→

293 return np.arange(i1_1, i1_2+1)
294 elif R1 == R:
295 i1_1 = int(1/b_x*(-j1*np.cos(alpha)*b_y))
296 return np.arange(i1_1, i1_1+1)
297 else:
298 return np.array([])
299

300 # --
301

302 #Finds all lattice coordinates j1 to be included
303 #based on the interaction distance R and
304 #lattice distance b_y
305 def get_j1(R, b_y, alpha):
306 j1_1 = R//(b_y*np.sin(alpha))
307 return np.arange(-j1_1, j1_1+1)
308

309 # --
310

311 #Returns number of lattice sites to be included
312 def get_length(R, b_x, b_y, alpha):
313 length = 0
314 j1s = get_j1(R, b_y, alpha)
315 for j1 in j1s:
316 length += len(get_i1(R, b_x, b_y, alpha, j1))
317 return length
318

319 # --
320

321 #Returns the electric field angles for p- and s-polarized
322 #light from incident wave angles
323 def E_angles(theta_0, phi_0):
324 return np.pi/2 - theta_0, phi_0, np.pi/2, np.pi/2 + phi_0
325

326 # --
327

93

328 #Computes the susceptibilities gamma and beta from A coefficients
329 def susceptibilities(A, M, theta_0, phi_0, epsilon_plus, d, rho):
330 if np.abs(np.cos(theta_0)) < 1e-6:
331 alpha_ort_0 = 0
332 alpha_ort_10 = 0
333 alpha_par_0 =

-4*np.pi*epsilon_plus*A[2]/(np.sqrt(2*np.pi/3)*np.sin(theta_0)*np.exp(-1j*phi_0))↪→

334 alpha_par_10 =
-4*np.pi*epsilon_plus*A[6]/(np.sqrt(6*np.pi/5)*np.sin(theta_0)*np.exp(-1j*phi_0))↪→

335 elif np.abs(np.sin(theta_0)) < 1e-6:
336 alpha_par_0 = 0
337 alpha_par_10 = 0
338 alpha_ort_0 = -2*np.pi*epsilon_plus*A[1]/(np.sqrt(np.pi/3)*np.cos(theta_0))
339 alpha_ort_10 = np.pi*epsilon_plus*A[5]/(np.sqrt(np.pi/5)*np.cos(theta_0))
340 else:
341 alpha_par_0 =

-4*np.pi*epsilon_plus*A[2]/(np.sqrt(2*np.pi/3)*np.sin(theta_0)*np.exp(-1j*phi_0))↪→

342 alpha_ort_0 = 2*np.pi*epsilon_plus*A[1]/(np.sqrt(np.pi/3)*np.cos(theta_0))
343 alpha_par_10 =

-4*np.pi*epsilon_plus*A[6]/(np.sqrt(6*np.pi/5)*np.sin(theta_0)*np.exp(-1j*phi_0))↪→

344 alpha_ort_10 = np.pi*epsilon_plus*A[5]/(np.sqrt(np.pi/5)*np.cos(theta_0))
345

346 gamma_e = rho*alpha_par_0
347 beta_e = rho*alpha_ort_0/epsilon_plus**2
348

349 return gamma_e, beta_e
350

351 # --
352

353 #Returns the reflection and transmission coefficients
354 #for s-polarized light
355 def s_polarization(theta, omega, gamma_e, epsilon_plus, epsilon_minus, scale):
356 n_plus, n_minus = np.sqrt(epsilon_plus), np.sqrt(epsilon_minus)
357 theta_t = np.arcsin(n_plus/n_minus*np.sin(theta))
358 HC = 1.97e-7/scale
359 cos_theta, cos_theta_t = np.cos(theta), np.cos(theta_t)
360 r_s = n_plus*cos_theta - n_minus*cos_theta_t + 1j*(omega/HC)*gamma_e
361 t_s = 4*(n_minus*cos_theta)**2
362 D_s = n_plus*cos_theta + n_minus*cos_theta_t - 1j*(omega/HC)*gamma_e
363 return r_s/D_s, t_s/D_s
364

365 # --
366

367 #Returns the reflection and transmission coefficients
368 #for p-polarized light
369 def p_polarization(theta, omega, gamma_e, epsilon_plus, epsilon_minus, beta_e,

scale):↪→

370 n_plus, n_minus = np.sqrt(epsilon_plus), np.sqrt(epsilon_minus)

94

371 theta_t = np.arcsin(n_plus/n_minus*np.sin(theta))
372 HC = 1.97e-7/scale
373 cos_theta, cos_theta_t = np.cos(theta), np.cos(theta_t)
374 r_p = (n_minus*cos_theta -

n_plus*cos_theta_t)*(1-(omega/(2*HC))**2*epsilon_plus*gamma_e*beta_e*np.sin(theta)**2)
- 1j*omega/HC*gamma_e*cos_theta*cos_theta_t +
1j*omega/HC*n_plus*n_minus*epsilon_plus*beta_e*np.sin(theta)**2

↪→

↪→

↪→

375 t_p = 2*n_minus*cos_theta
376 D_p = (n_minus*cos_theta +

n_plus*cos_theta_t)*(1-(omega/(2*HC))**2*epsilon_plus*gamma_e*beta_e*np.sin(theta)**2)
- 1j*omega/HC*gamma_e*cos_theta*cos_theta_t -
1j*omega/HC*n_plus*n_minus*epsilon_plus*beta_e*np.sin(theta)**2

↪→

↪→

↪→

377 return r_p/D_p, t_p/D_p
378

379 # --
380

381 #Determines whether a point is contained by a sphere or not.
382 #If contained then the sphere containing it is returned too.
383 @jit(nopython=True)
384 def is_outside(point, N, r, p):
385 status = True
386 sphere = -1
387 for i in range(N):
388 if np.sqrt((point[0]-p[i,0])**2 + (point[1]-p[i,1])**2 +

(point[2]-p[i,2])**2) < r[i]:↪→

389 status = False
390 sphere = i
391 break
392 return status, sphere
393

394 # --
395

396 #Returns the x and z coordinates for the nearfield grid.
397 #Also computes the five coordinates from get_spherical_coords
398 #for all the spheres relative to all the grid points,
399 #and relative to all the image positions of the grid.
400 # @jit(nopython=True) #, parallel = True)
401 @jit(nopython=True) #, parallel = True)
402 def coord_table(table, p, N, x0, x1, z0, z1, Nx, Nz, y):
403 x = np.linspace(x0, x1, Nx)
404 z = np.linspace(z0, z1, Nz)
405

406 image_positions = p.copy().T
407 image_positions[-1] *= -1
408 image_positions = image_positions.T
409 image_table = table.copy()
410

411 for k in range(N):

95

412 for i in range(Nz):
413 for j in range(Nx):
414 point = np.array([x[j], y, z[i]])
415 table[k,i,j,0], table[k,i,j,1], table[k,i,j,2], table[k,i,j,3],

table[k,i,j,4] = get_spherical_coords(p[k], point)↪→

416 image_table[k,i,j,0], image_table[k,i,j,1], image_table[k,i,j,2],
image_table[k,i,j,3], image_table[k,i,j,4] =
get_spherical_coords(image_positions[k], point)

↪→

↪→

417 return x, z, table, image_table
418

419 # --
420

421 #Computes the spherical harmonics for the angles given by the
422 #positions and the corresponding image positions on the grid
423 #from coord_table
424 def spherical_harm2(coords, image_coords, L, N, Nx, Nz):
425 spherical_harmonics = np.zeros([N, Nz, Nx, (L+2)*(L+1)//2], dtype =

np.complex128)↪→

426 image_spherical_harmonics = np.zeros([N, Nz, Nx, (L+2)*(L+1)//2], dtype =
np.complex128)↪→

427 for k in range(N):
428 for i in range(Nz):
429 for j in range(Nx):
430 spherical_harmonics[k,i,j] = expand.spharm(L,

np.real(coords[k,i,j,0]), np.real(coords[k,i,j,1]),
normalization = 'ortho', kind = 'complex', csphase = -1, packed
= True, degrees = False)[0]

↪→

↪→

↪→

431 image_spherical_harmonics[k,i,j] = expand.spharm(L,
np.real(image_coords[k,i,j,0]), np.real(image_coords[k,i,j,1]),
normalization = 'ortho', kind = 'complex', csphase = -1, packed
= True, degrees = False)[0]

↪→

↪→

↪→

432

433 return spherical_harmonics, image_spherical_harmonics
434

435

436 # --
437

438 #Computes the spherical harmonics for the angles given by the
439 #positions and the corresponding image positions on the grid
440 #from coord_table (uses scipy instead of shtools, is 15
441 #times faster for the near field calculations, but is
442 #limited to L<43.)
443 def spherical_harm(sph, coords, image_coords, L, N, Nx, Nz):
444 imsph = sph.copy()
445 k = (L+2)*(L+1)//2
446 l = np.floor(np.sqrt(2*np.arange(k)+0.25)-0.5)
447 m = np.arange(k) - l*(l+1)/2
448

96

449 ls = np.tile(l.astype(int), N*Nz*Nx)
450 ms = np.tile(m.astype(int), N*Nz*Nx)
451

452 sph = np.reshape(sph_harm(ms, ls, np.repeat(np.reshape(coords[:,:,:,1],
N*Nz*Nx), k), np.repeat(np.reshape(coords[:,:,:,0], N*Nz*Nx), k)), [N, Nz,
Nx, k])

↪→

↪→

453 imsph = np.reshape(sph_harm(ms, ls, np.repeat(np.reshape(image_coords[:,:,:,1],
N*Nz*Nx), k), np.repeat(np.reshape(image_coords[:,:,:,0], N*Nz*Nx), k)),
[N, Nz, Nx, k])

↪→

↪→

454

455 return sph, imsph
456

457 # --
458

459 #Evaluates the complex scalar potential divided by the
460 #potential from the electric field from the incident
461 #wave at each point on the grid from coord_table
462 @jit(nopython=True, parallel = True)
463 def potential_grid(pot, origin, x, y, z, Nx, Nz, coord_table, image_coord_table,

spherical_harmonics, image_spherical_harmonics, A, r, N, M, beta, b, positions,
B, beta2, epsilon_plus, epsilon_minus, B0, theta):

↪→

↪→

464 for i in prange(Nz):
465 for j in prange(Nx):
466 point = np.array([x[j], y, z[i]])
467 outside, sphere = is_outside(point, N, r, positions)
468 if outside:
469 if point[2] >= 0:
470 pot[i, j] += coord_table[origin,i,j,3] *

b[0]*np.conj(spherical_harmonics[origin,i,j,2])↪→

471 pot[i, j] += -coord_table[origin,i,j,3] *
b[1]*spherical_harmonics[origin,i,j,1]↪→

472 pot[i, j] += -coord_table[origin,i,j,3] *
b[2]*spherical_harmonics[origin,i,j,2]↪→

473 for k in range(N*M):
474 j1, k1 = k//M, k%M
475 l = get_l(k1)
476 m = get_m(k1)
477 ind = int(l*(l+1)/2+np.abs(m))
478 if m >= 0:
479 pot[i, j] += A[k] * (coord_table[j1,i,j,3]**(-l-1) *

spherical_harmonics[j1,i,j,ind] + (-1)**(l+m)*beta
* image_coord_table[j1,i,j,3]**(-l-1) *
image_spherical_harmonics[j1,i,j,ind])

↪→

↪→

↪→

480 else:

97

481 pot[i, j] += (-1)**m*A[k] *
(coord_table[j1,i,j,3]**(-l-1) *
np.conj(spherical_harmonics[j1,i,j,ind]) +
(-1)**(l+m)*beta *
image_coord_table[j1,i,j,3]**(-l-1) *
np.conj(image_spherical_harmonics[j1,i,j,ind]))

↪→

↪→

↪→

↪→

↪→

482 else:
483 pot[i, j] += coord_table[origin,i,j,3] *

b[0]*np.conj(spherical_harmonics[origin,i,j,2])↪→

484 pot[i, j] += -coord_table[origin,i,j,3] *
b[1]*spherical_harmonics[origin,i,j,1] *
epsilon_plus/epsilon_minus

↪→

↪→

485 pot[i, j] += -coord_table[origin,i,j,3] *
b[2]*spherical_harmonics[origin,i,j,2]↪→

486 pot[i, j] += -positions[origin,2] * (epsilon_plus/epsilon_minus
-1) * np.cos(theta)↪→

487 for k in range(N*M):
488 j1, k1 = k//M, k%M
489 l = get_l(k1)
490 m = get_m(k1)
491 ind = int(l*(l+1)/2+np.abs(m))
492 if m >= 0:
493 pot[i, j] += beta2*A[k] * coord_table[j1,i,j,3]**(-l-1)

* spherical_harmonics[j1,i,j,ind]↪→

494 else:
495 pot[i, j] += beta2*(-1)**m*A[k] *

coord_table[j1,i,j,3]**(-l-1) *
np.conj(spherical_harmonics[j1,i,j,ind])

↪→

↪→

496 else:
497 pot[i, j] += np.sqrt(1/(4*np.pi))*B0[sphere]
498 for k in range(M):
499 l = get_l(k)
500 m = get_m(k)
501 ind = int(l*(l+1)/2+np.abs(m))
502 if m >= 0:
503 pot[i, j] += B[sphere*M+k] * coord_table[sphere,i,j,3]**l *

spherical_harmonics[sphere,i,j,ind]↪→

504 else:
505 pot[i, j] += (-1)**m * B[sphere*M+k] *

coord_table[sphere,i,j,3]**l *
np.conj(spherical_harmonics[sphere,i,j,ind])

↪→

↪→

506 return pot
507

508 # --
509

510 #Evaluates the length of the electric field divided by
511 #the electric field from the incident wave for
512 #each point on the grid from coord_table

98

513 @jit(nopython=True)
514 def field_grid(E, origin, x, y, z, Nx, Nz, coord_table, image_coord_table,

spherical_harmonics, image_spherical_harmonics, A, r, N, M, beta, b, positions,
B, beta2, epsilon_plus, epsilon_minus):

↪→

↪→

515 for i in range(Nz):
516 for j in range(Nx):
517 x1, y1, z1 = 0, 0, 0
518 point = np.array([x[j], y, z[i]])
519 outside, sphere = is_outside(point, N, r, positions)
520 if outside:
521 dSH0_theta = 1/np.tan(coord_table[origin,i,j,0]) *

np.conj(spherical_harmonics[origin,i,j,2]) +
np.sqrt(2)*np.exp(-1j*coord_table[origin,i,j,1]) *
spherical_harmonics[origin,i,j,1]

↪→

↪→

↪→

522 dSH1_theta = np.sqrt(2) * np.exp(-1j*coord_table[origin,i,j,1]) *
spherical_harmonics[origin,i,j,2]↪→

523 dSH2_theta = spherical_harmonics[origin,i,j,2] /
np.tan(coord_table[origin,i,j,0])↪→

524 dSH0_phi = 1j*np.conj(spherical_harmonics[origin,i,j,2])
525 dSH2_phi = 1j*spherical_harmonics[origin,i,j,2]
526 dSH0_r = -np.conj(spherical_harmonics[origin,i,j,2])
527 dSH1_r = spherical_harmonics[origin,i,j,1]
528 dSH2_r = spherical_harmonics[origin,i,j,2]
529 if point[2] >= 0:
530 x1 += np.sin(coord_table[origin,i,j,0]) *

np.cos(coord_table[origin,i,j,1]) * (b[0]*dSH0_r +
b[1]*dSH1_r + b[2]*dSH2_r)

↪→

↪→

531 x1 += np.cos(coord_table[origin,i,j,0]) *
np.cos(coord_table[origin,i,j,1]) * (b[0]*dSH0_theta +
b[1]*dSH1_theta + b[2]*dSH2_theta)

↪→

↪→

532 x1 += -np.sin(coord_table[origin,i,j,1]) /
np.sin(coord_table[origin,i,j,0]) * (b[0]*dSH0_phi +
b[2]*dSH2_phi)

↪→

↪→

533

534 y1 += np.sin(coord_table[origin,i,j,0]) *
np.sin(coord_table[origin,i,j,1]) * (b[0]*dSH0_r +
b[1]*dSH1_r + b[2]*dSH2_r)

↪→

↪→

535 y1 += np.cos(coord_table[origin,i,j,0]) *
np.sin(coord_table[origin,i,j,1]) * (b[0]*dSH0_theta +
b[1]*dSH1_theta + b[2]*dSH2_theta)

↪→

↪→

536 y1 += np.cos(coord_table[origin,i,j,1]) /
np.sin(coord_table[origin,i,j,0]) * (b[0]*dSH0_phi +
b[2]*dSH2_phi)

↪→

↪→

537

538 z1 += np.cos(coord_table[origin,i,j,0]) * (b[0]*dSH0_r +
b[1]*dSH1_r + b[2]*dSH2_r)↪→

539 z1 += -np.sin(coord_table[origin,i,j,0]) * (b[0]*dSH0_theta +
b[1]*dSH1_theta + b[2]*dSH2_theta)↪→

99

540

541 for k in range(N*M):
542 j1, k1 = k//M, k%M
543 l = get_l(k1)
544 m = get_m(k1)
545 ind = int(l*(l+1)/2+np.abs(m))
546 dSH_theta, dISH_theta = 0, 0
547 dSH_phi, dISH_phi = 0, 0
548 dSH_r, dISH_r = 0, 0
549 if m >= 0:
550 dSH_theta += m*spherical_harmonics[j1,i,j,ind] /

np.tan(coord_table[j1,i,j,0])↪→

551 dISH_theta += m*image_spherical_harmonics[j1,i,j,ind] /
np.tan(image_coord_table[j1,i,j,0])↪→

552 dSH_phi += 1j*m*spherical_harmonics[j1,i,j,ind]
553 dISH_phi += 1j*m*image_spherical_harmonics[j1,i,j,ind]
554 dSH_r += spherical_harmonics[j1,i,j,ind]
555 dISH_r += image_spherical_harmonics[j1,i,j,ind]
556 if m != l:
557 dSH_theta += np.sqrt((l-m)*(l+m+1)) *

np.exp(-1j*coord_table[j1,i,j,1]) *
spherical_harmonics[j1,i,j,ind+1]

↪→

↪→

558 dISH_theta += np.sqrt((l-m)*(l+m+1)) *
np.exp(-1j*image_coord_table[j1,i,j,1]) *
image_spherical_harmonics[j1,i,j,ind+1]

↪→

↪→

559 else:
560 dSH_theta += (-1)**m*m *

np.conj(spherical_harmonics[j1,i,j,ind]) /
np.tan(coord_table[j1,i,j,0]) +
(-1)**m*np.sqrt((l-m)*(l+m+1)) *
np.exp(-1j*coord_table[j1,i,j,1]) *
np.conj(spherical_harmonics[j1,i,j,ind-1])

↪→

↪→

↪→

↪→

↪→

561 dISH_theta += (-1)**m*m *
np.conj(image_spherical_harmonics[j1,i,j,ind]) /
np.tan(image_coord_table[j1,i,j,0]) +
(-1)**m*np.sqrt((l-m)*(l+m+1)) *
np.exp(-1j*image_coord_table[j1,i,j,1]) *
np.conj(image_spherical_harmonics[j1,i,j,ind-1])

↪→

↪→

↪→

↪→

↪→

562 dSH_phi += (-1)**m*1j*m *
np.conj(spherical_harmonics[j1,i,j,ind])↪→

563 dISH_phi += (-1)**m*1j*m *
np.conj(image_spherical_harmonics[j1,i,j,ind])↪→

564 dSH_r += (-1)**m *
np.conj(spherical_harmonics[j1,i,j,ind])↪→

565 dISH_r += (-1)**m *
np.conj(image_spherical_harmonics[j1,i,j,ind])↪→

566

100

567 x1 += (l+1)*A[k]*np.sin(coord_table[j1,i,j,0]) *
np.cos(coord_table[j1,i,j,1]) *
coord_table[j1,i,j,3]**(-l-2)*dSH_r

↪→

↪→

568 x1 += (l+1)*A[k]*np.sin(image_coord_table[j1,i,j,0]) *
np.cos(image_coord_table[j1,i,j,1]) *
(-1)**(l+m)*beta*image_coord_table[j1,i,j,3]**(-l-2) *
dISH_r

↪→

↪→

↪→

569

570 x1 += -A[k]*np.cos(coord_table[j1,i,j,0]) *
np.cos(coord_table[j1,i,j,1]) *
coord_table[j1,i,j,3]**(-l-2)*dSH_theta

↪→

↪→

571 x1 += -A[k]*np.cos(image_coord_table[j1,i,j,0]) *
np.cos(image_coord_table[j1,i,j,1]) *
(-1)**(l+m)*beta*image_coord_table[j1,i,j,3]**(-l-2) *
dISH_theta

↪→

↪→

↪→

572

573 x1 += A[k]*np.sin(coord_table[j1,i,j,1]) /
np.sin(coord_table[j1,i,j,0]) *
coord_table[j1,i,j,3]**(-l-2)*dSH_phi

↪→

↪→

574 x1 += A[k]*np.sin(image_coord_table[j1,i,j,1]) /
np.sin(image_coord_table[j1,i,j,0]) *
(-1)**(l+m)*beta*image_coord_table[j1,i,j,3]**(-l-2) *
dISH_phi

↪→

↪→

↪→

575

576

577 y1 += (l+1)*A[k]*np.sin(coord_table[j1,i,j,0]) *
np.sin(coord_table[j1,i,j,1]) *
coord_table[j1,i,j,3]**(-l-2)*dSH_r

↪→

↪→

578 y1 += (l+1)*A[k]*np.sin(image_coord_table[j1,i,j,0]) *
np.sin(image_coord_table[j1,i,j,1]) *
(-1)**(l+m)*beta*image_coord_table[j1,i,j,3]**(-l-2) *
dISH_r

↪→

↪→

↪→

579

580 y1 += -A[k]*np.cos(coord_table[j1,i,j,0]) *
np.sin(coord_table[j1,i,j,1]) *
coord_table[j1,i,j,3]**(-l-2)*dSH_theta

↪→

↪→

581 y1 += -A[k]*np.cos(image_coord_table[j1,i,j,0]) *
np.sin(image_coord_table[j1,i,j,1]) *
(-1)**(l+m)*beta*image_coord_table[j1,i,j,3]**(-l-2) *
dISH_theta

↪→

↪→

↪→

582

583 y1 += -A[k]*np.cos(coord_table[j1,i,j,1]) /
np.sin(coord_table[j1,i,j,0]) *
coord_table[j1,i,j,3]**(-l-2)*dSH_phi

↪→

↪→

584 y1 += -A[k]*np.cos(image_coord_table[j1,i,j,1]) /
np.sin(image_coord_table[j1,i,j,0]) *
(-1)**(l+m)*beta*image_coord_table[j1,i,j,3]**(-l-2) *
dISH_phi

↪→

↪→

↪→

101

585

586

587 z1 += (l+1)*A[k]*np.cos(coord_table[j1,i,j,0]) *
coord_table[j1,i,j,3]**(-l-2)*dSH_r↪→

588 z1 += (l+1)*A[k]*np.cos(image_coord_table[j1,i,j,0]) *
(-1)**(l+m)*beta*image_coord_table[j1,i,j,3]**(-l-2) *
dISH_r

↪→

↪→

589

590 z1 += A[k]*np.sin(coord_table[j1,i,j,0]) *
coord_table[j1,i,j,3]**(-l-2)*dSH_theta↪→

591 z1 += A[k]*np.sin(image_coord_table[j1,i,j,0]) *
(-1)**(l+m)*beta*image_coord_table[j1,i,j,3]**(-l-2) *
dISH_theta

↪→

↪→

592

593 else:
594 x1 += np.sin(coord_table[origin,i,j,0]) *

np.cos(coord_table[origin,i,j,1]) * (b[0]*dSH0_r +
b[1]*dSH1_r*epsilon_plus/epsilon_minus + b[2]*dSH2_r)

↪→

↪→

595 x1 += np.cos(coord_table[origin,i,j,0]) *
np.cos(coord_table[origin,i,j,1]) * (b[0]*dSH0_theta +
b[1]*dSH1_theta*epsilon_plus/epsilon_minus +
b[2]*dSH2_theta)

↪→

↪→

↪→

596 x1 += -1*np.sin(coord_table[origin,i,j,1]) /
np.sin(coord_table[origin,i,j,0]) * (b[0]*dSH0_phi +
b[2]*dSH2_phi)

↪→

↪→

597

598 y1 += np.sin(coord_table[origin,i,j,0]) *
np.sin(coord_table[origin,i,j,1]) * (b[0]*dSH0_r +
b[1]*dSH1_r*epsilon_plus/epsilon_minus + b[2]*dSH2_r)

↪→

↪→

599 y1 += np.cos(coord_table[origin,i,j,0]) *
np.sin(coord_table[origin,i,j,1]) * (b[0]*dSH0_theta +
b[1]*dSH1_theta*epsilon_plus/epsilon_minus +
b[2]*dSH2_theta)

↪→

↪→

↪→

600 y1 += np.cos(coord_table[origin,i,j,1]) /
np.sin(coord_table[origin,i,j,0]) * (b[0]*dSH0_phi +
b[2]*dSH2_phi)

↪→

↪→

601

602 z1 += np.cos(coord_table[origin,i,j,0]) * (b[0]*dSH0_r +
b[1]*dSH1_r*epsilon_plus/epsilon_minus + b[2]*dSH2_r)↪→

603 z1 += -1*np.sin(coord_table[origin,i,j,0]) * (b[0]*dSH0_theta +
b[1]*dSH1_theta*epsilon_plus/epsilon_minus +
b[2]*dSH2_theta)

↪→

↪→

604 for k in range(N*M):
605 j1, k1 = k//M, k%M
606 l = get_l(k1)
607 m = get_m(k1)
608 ind = int(l*(l+1)/2+np.abs(m))
609 dSH_theta = 0

102

610 dSH_phi = 0
611 dSH_r = 0
612 if m >= 0:
613 dSH_theta += m*spherical_harmonics[j1,i,j,ind] /

np.tan(coord_table[j1,i,j,0])↪→

614 dSH_phi += 1j*m*spherical_harmonics[j1,i,j,ind]
615 dSH_r += spherical_harmonics[j1,i,j,ind]
616 if m != l:
617 dSH_theta += np.sqrt((l-m)*(l+m+1)) *

np.exp(-1j*coord_table[j1,i,j,1]) *
spherical_harmonics[j1,i,j,ind+1]

↪→

↪→

618 else:
619 dSH_theta += (-1)**m*m *

np.conj(spherical_harmonics[j1,i,j,ind]) /
np.tan(coord_table[j1,i,j,0]) +
(-1)**m*np.sqrt((l-m)*(l+m+1)) *
np.exp(-1j*coord_table[j1,i,j,1]) *
np.conj(spherical_harmonics[j1,i,j,ind-1])

↪→

↪→

↪→

↪→

↪→

620 dSH_phi += (-1)**m*1j*m *
np.conj(spherical_harmonics[j1,i,j,ind])↪→

621 dSH_r += (-1)**m *
np.conj(spherical_harmonics[j1,i,j,ind])↪→

622

623 x1 += (l+1)*beta2*A[k] * np.sin(coord_table[j1,i,j,0]) *
np.cos(coord_table[j1,i,j,1]) *
(coord_table[j1,i,j,3]**(-l-2)*dSH_r)

↪→

↪→

624 x1 += -beta2*A[k] * np.cos(coord_table[j1,i,j,0]) *
np.cos(coord_table[j1,i,j,1]) *
(coord_table[j1,i,j,3]**(-l-2)*dSH_theta)

↪→

↪→

625 x1 += beta2*A[k] * np.sin(coord_table[j1,i,j,1]) /
np.sin(coord_table[j1,i,j,0]) *
(coord_table[j1,i,j,3]**(-l-2)*dSH_phi)

↪→

↪→

626

627 y1 += (l+1)*beta2*A[k] * np.sin(coord_table[j1,i,j,0]) *
np.sin(coord_table[j1,i,j,1]) *
(coord_table[j1,i,j,3]**(-l-2)*dSH_r)

↪→

↪→

628 y1 += -beta2*A[k] * np.cos(coord_table[j1,i,j,0]) *
np.sin(coord_table[j1,i,j,1]) *
(coord_table[j1,i,j,3]**(-l-2)*dSH_theta)

↪→

↪→

629 y1 += -beta2*A[k] * np.cos(coord_table[j1,i,j,1]) /
np.sin(coord_table[j1,i,j,0]) *
(coord_table[j1,i,j,3]**(-l-2)*dSH_phi)

↪→

↪→

630

631 z1 += (l+1)*beta2*A[k] * np.cos(coord_table[j1,i,j,0]) *
(coord_table[j1,i,j,3]**(-l-2)*dSH_r)↪→

632 z1 += beta2*A[k] * np.sin(coord_table[j1,i,j,0]) *
(coord_table[j1,i,j,3]**(-l-2)*dSH_theta)↪→

633

103

634 else:
635 for k in range(M):
636 l = get_l(k)
637 m = get_m(k)
638 ind = int(l*(l+1)/2+np.abs(m))
639 dSH_theta = 0
640 dSH_phi = 0
641 dSH_r = 0
642 if m >= 0:
643 dSH_theta += m*spherical_harmonics[sphere,i,j,ind] /

np.tan(coord_table[sphere,i,j,0])↪→

644 dSH_phi += 1j*m*spherical_harmonics[sphere,i,j,ind]
645 dSH_r += spherical_harmonics[sphere,i,j,ind]
646 if m != l:
647 dSH_theta += np.sqrt((l-m)*(l+m+1)) *

np.exp(-1j*coord_table[sphere,i,j,1]) *
spherical_harmonics[sphere,i,j,ind+1]

↪→

↪→

648 else:
649 dSH_theta += (-1)**m*m *

np.conj(spherical_harmonics[sphere,i,j,ind]) /
np.tan(coord_table[sphere,i,j,0]) +
(-1)**m*np.sqrt((l-m)*(l+m+1)) *
np.exp(-1j*coord_table[sphere,i,j,1]) *
np.conj(spherical_harmonics[sphere,i,j,ind-1])

↪→

↪→

↪→

↪→

↪→

650 dSH_phi += (-1)**m*1j*m *
np.conj(spherical_harmonics[sphere,i,j,ind])↪→

651 dSH_r += (-1)**m *
np.conj(spherical_harmonics[sphere,i,j,ind])↪→

652

653 x1 += -l*B[sphere*M+k] * coord_table[sphere,i,j,3]**(l-1)*dSH_r
654 y1 += -B[sphere*M+k] *

coord_table[sphere,i,j,3]**(l-1)*dSH_theta↪→

655 z1 += -B[sphere*M+k] * coord_table[sphere,i,j,3]**(l-1)*dSH_phi
/ np.sin(coord_table[sphere,i,j,0])↪→

656

657 E[i, j] = np.sqrt(x1*np.conj(x1) + y1*np.conj(y1) + z1*np.conj(z1))
658 return E
659

660 # --
661 # --- end implementing functions
662 # --
663

664 # ===
665 # Main
666 # ===
667

668 #Returns a dictionary with the elements specified by the argument output.
669 #Parameters:

104

670 #
671 #output - array or list of strings to be used as dictionary keys
672 #for the output dictionary. Possible options are:
673 #"p_x" is the dimensinoless dipole moment with incident electric field
674 #parallel to the x-axis. Similarly for "p_y" and "p_z". "p_c" has an
675 #incident field spesified by the arguments theta_0 and phi_0. The
676 #dipole moments have dimensions [N_cell, N_ohm].
677 #Likewise for the potentials "pot_x, "pot_y", "pot_z" and "pot_c",
678 #and the electric fields "E_x", "E_y", "E_z" and "E_c". The
679 #potentials and fields have dimensions [N_ohm, N_x, N_z].
680 #Lastly, the reflectance "R_s" for s-polarized light and "R_p" for
681 #p_polarised light can be computed.
682 #
683 #omega - array of energies in eV for the incident wave
684 #N_cell - number of spheres in the unit cell
685 #p - list of positions of sphere centres (x,y,z)
686 #r - corresponding relative radiuses for spheres in p
687 #L_parallel - multipole order of sphere interaction
688 #L_orthogonal - multipole order of substrate interaction
689 #epsilon_minus - dielectric function of the substrate.
690 #Can be a string with a material in the SOPRA database,
691 #a single value or an array of values corresponding to the
692 #incident wave energies in omega
693 #
694 #epsilon_plus - dielectric function of the ambient medium.
695 #Must be a single value
696 #
697 #epsilons - dielectric function of the spheres given as
698 #an array of dielectric values corresponding to the
699 #incident wave energies in omega. The dielectric values
700 #can be N_cell long arrays corresponding to the spheres
701 #in p, or a single value which will be applied to
702 #all the spheres.
703 #
704 #material - dielectric function of the spheres given as
705 #a string of the material from the SOPRA database. If
706 #only a single string is present it will be applied for
707 #all the spheres, otherwise an array of N_cell strings
708 #must be used corresponding to each sphere in p
709 #
710 #omega_p and gamma - the two parameters for the Drude
711 #model. If single values, they're applied for all spheres.
712 #Otherwise, an array of N_cell values must be submitted.
713 #
714 #grid_specs - an array of 7 parameters used for the
715 #grid where the potential and electric field is
716 #evaluated. First two are start and end x coordinates.
717 #Next two are start and end z coordinates. Next two

105

718 #are number of x and z points. Last is y coordinate.
719 #
720 #origin - which sphere to be used as an origin in
721 #the potential plots
722 #
723 #periodic - whether or not the unit cell shall be
724 #repeated periodically. If True, nearfield calculations
725 #are not calculated. If False, reflectances are not
726 #calculated.
727 #
728 #theta and phi - polar and azimuthal angles of
729 #the incident plane wave.
730 #
731 #theta_0 and phi_0 - polar and azimuthal angles of
732 #the electric field for custom calculations of
733 #dipole moment, potential and electric field
734 #(p_c, pot_c and E_c).
735 #
736 #R_interaction - interaction distance. Only unit cells
737 #within this distance will be included in calculations
738 #
739 #length_scale - conversion for the sphere radiuses in r
740 #to metres
741 #b1_x and b1_y - the two lattice spacings between the
742 #unit cells
743 #
744 #alpha - the angle between b1_x and b1_y
745 #verbose - If computation times shall be printed
746 #freq - Number of energies between each printing
747 #tolerance - tolaerance for the iterative solver
748 def main(output, omega, N_cell, p, r, L_parallel, L_orthogonal, epsilon_minus,

epsilon_plus = 1, epsilons = None, material = None, omega_p = None, gamma =
None, grid_specs = None, origin = 0, periodic = False, theta = None, phi =
None, theta_0 = None, phi_0 = None, R_interaction = None, length_scale = None,
b1_x = None, b1_y = None, alpha = np.pi/2, verbose = True, freq = 10, tolerance
= 1e-6):

↪→

↪→

↪→

↪→

↪→

749 start1 = time()
750 start0 = time()
751 L = max(L_parallel, L_orthogonal) #Largest truncation
752 M = (L+1)**2 - 1 #Number of unknowns per sphere
753 N_ohm = len(omega)
754

755 #Control input parameters related to periodic boundary conditions
756 if periodic:
757 if np.any([theta == None, phi == None, R_interaction == None, length_scale

== None, b1_x == None, b1_y == None, alpha == None]):↪→

758 print("Error: Some of the parameters theta, phi, R_interaction,
length_scale, b1_x, b1_y and alpha are unspecified.")↪→

106

759 return {}
760 else:
761 rho = N_cell/(b1_x*b1_y*np.sin(alpha))
762 theta_p, phi_p, theta_s, phi_s = E_angles(theta, phi)
763 else:
764 b1_x = b1_y = 1000
765 alpha = np.pi/2
766 R_interaction = 1
767 length_scale = 1
768 theta = phi = 0
769

770 #Prepare the dielectric functions
771 if epsilons != None:
772 if np.shape(epsilons) != (N_ohm, N_cell) and np.shape(epsilons) !=

(N_ohm,):↪→

773 print("Error: epsilons wrongly defined. Must either have dimensions
(N_ohm, N_cell) or (N_ohm,).")↪→

774 return {}
775 elif np.shape(epsilons) != (N_ohm,):
776 epsilons = np.reshape(np.tile(epsilons, N_cell), [N_cell, N_ohm]).T
777 elif material != None:
778 if np.shape(material) == ():
779 SOPRA_obj = EpsilonSOPRA(material)
780 epsilons = SOPRA_obj.getepsilon(omega)
781 epsilons = np.reshape(np.tile(epsilons, N_cell), [N_cell, N_ohm]).T
782 elif np.shape(material) == (N_cell,):
783 epsilons = np.zeros([N_cell, N_ohm], dtype = np.complex128)
784 for i in range(N_cell):
785 SOPRA_obj = EpsilonSOPRA(material[i])
786 epsilons[i] = SOPRA_obj.getepsilon(omega)
787 epsilons = epsilons.T
788 else:
789 print("Error: material wrongly defined. Must either be string or

list/array of strings.")↪→

790 return {}
791 elif omega_p != None and gamma != None:
792 epsilons = 1 - omega_p**2/(omega*(omega + 1j*gamma))
793 epsilons = np.reshape(np.tile(epsilons, N_cell), [N_cell, N_ohm]).T
794 else:
795 print("Error: Dielectric function must be defined either by epsilons,

material or omega_p and gamma.")↪→

796 return {}
797

798 if type(epsilon_minus) == str:
799 SOPRA_obj = EpsilonSOPRA(epsilon_minus)
800 epsilon_minus = SOPRA_obj.getepsilon(omega)
801 else:
802 if type(epsilon_minus) != np.ndarray:

107

803 epsilon_minus = np.array([epsilon_minus]).flatten()
804 if len(epsilon_minus) != N_ohm and len(epsilon_minus) != 1:
805 print("Error: epsilon_minus must either be a string of a material, a

number or a list/array of numbers with length N_ohm.")↪→

806 return {}
807 elif len(epsilon_minus) == 1:
808 epsilon_minus = epsilon_minus*np.ones(N_ohm, dtype = np.complex128)
809

810 beta = (epsilon_plus - epsilon_minus)/(epsilon_plus + epsilon_minus)
811 beta2 = 2*epsilon_plus/(epsilon_plus + epsilon_minus)
812

813 #Allocate memory
814 contours = np.array(["pot_x", "pot_y", "pot_z", "pot_c", "E_x", "E_y", "E_z",

"E_c"])↪→

815 if np.any(np.isin(output, contours)):
816 if not periodic:
817 if grid_specs != None:
818 if L > 42 and grid_specs[4]*grid_specs[5] > 1e4:
819 print("Runtime warning: Nearfield calculations with high

resolution has long initialisation time for the spherical
harmonics.")

↪→

↪→

820

821 table = np.zeros([N_cell, grid_specs[5], grid_specs[4], 5], dtype =
np.complex128)↪→

822 x, z, grid_coords, grid_image_coords = coord_table(table, p,
N_cell, grid_specs[0], grid_specs[1], grid_specs[2],
grid_specs[3], grid_specs[4], grid_specs[5], grid_specs[6])

↪→

↪→

823 if L < 43:
824 grid_spherical_harmonics, grid_image_spherical_harmonics =

spherical_harm(np.zeros([N_cell, grid_specs[5],
grid_specs[4], (L+2)*(L+1)//2], dtype = np.complex128),
np.real(grid_coords).astype(np.float64),
np.real(grid_image_coords).astype(np.float64), L, N_cell,
grid_specs[4], grid_specs[5])

↪→

↪→

↪→

↪→

↪→

825 else:
826 grid_spherical_harmonics, grid_image_spherical_harmonics =

spherical_harm2(grid_coords, grid_image_coords, L, N_cell,
grid_specs[4], grid_specs[5])

↪→

↪→

827 H0s = H1(np.arange(M))
828

829 if np.isin("pot_x", output):
830 pot_x = np.zeros([N_ohm, grid_specs[5], grid_specs[4]], dtype =

np.complex128)↪→

831 if np.isin("pot_y", output):
832 pot_y = np.zeros([N_ohm, grid_specs[5], grid_specs[4]], dtype =

np.complex128)↪→

833 if np.isin("pot_z", output):

108

834 pot_z = np.zeros([N_ohm, grid_specs[5], grid_specs[4]], dtype =
np.complex128)↪→

835 if np.isin("pot_c", output):
836 pot_c = np.zeros([N_ohm, grid_specs[5], grid_specs[4]], dtype =

np.complex128)↪→

837

838 if np.isin("E_x", output):
839 E_x = np.zeros([N_ohm, grid_specs[5], grid_specs[4]], dtype =

np.complex128)↪→

840 if np.isin("E_y", output):
841 E_y = np.zeros([N_ohm, grid_specs[5], grid_specs[4]], dtype =

np.complex128)↪→

842 if np.isin("E_z", output):
843 E_z = np.zeros([N_ohm, grid_specs[5], grid_specs[4]], dtype =

np.complex128)↪→

844 if np.isin("E_c", output):
845 E_c = np.zeros([N_ohm, grid_specs[5], grid_specs[4]], dtype =

np.complex128)↪→

846 else:
847 print("Error: grid_specs undefined")
848 return {}
849 else:
850 print("Error: Nearfield calculations only works for finite systems in

this code. Set finite to True.")↪→

851 output = np.setdiff1d(output, contours)
852

853 dipole_moments = np.array(["p_x", "p_y", "p_z", "p_c"])
854 if np.any(np.isin(output, dipole_moments)):
855 if np.isin("p_x", output):
856 p_x = np.zeros([N_cell, N_ohm])
857 if np.isin("p_y", output):
858 p_y = np.zeros([N_cell, N_ohm])
859 if np.isin("p_z", output):
860 p_z = np.zeros([N_cell, N_ohm])
861 if np.isin("p_c", output):
862 p_c = np.zeros([N_cell, N_ohm])
863

864 reflectances = np.array(["R_s", "R_p"])
865 if np.any(np.isin(output, reflectances)):
866 if periodic:
867 if np.isin("R_p", output):
868 R_p = np.zeros(N_ohm, dtype = np.complex128)
869 if np.isin("R_s", output):
870 R_s = np.zeros(N_ohm, dtype = np.complex128)
871 else:
872 print("Error: The calculations must be done for a periodic infinite

system in order to determine reflectances. Set 'finite' to False.")↪→

873 output = np.setdiff1d(output, reflectances)

109

874

875 computations = np.array(["p_x", "p_y", "p_z", "p_c", "R_s", "R_p", "pot_x",
"pot_y", "pot_z", "pot_c", "E_x", "E_y", "E_z", "E_c"])↪→

876 if not np.any(np.isin(output, computations)):
877 print("No optional computations specified")
878 return {}
879

880

881 #Compute values independent of the dielectric functions of the spheres:
882 #These are faster to just look up than to compute each time, and do
883 #only have to be computed once. Numba is also not as cooperative with
884 #pyshtools and binomial coefficients.
885

886 #coords[i, j, p, k] is the kth coordinate from get_polar_coords
887 #of sphere j at lattice point p relative to sphere i in centre
888 #lattice point. The lattice point's corrdinates are retrieved by
889 #lattice_vectors[p].
890

891 #spherical_harmonics[i, j, p] is an array of all the spherical harmonics
892 #for sphere j at lattice point p relative to sphere i in the centre
893 #lattice point. This is on compact form so the
894 #elements are indexed by ind = int(l*(l+1)/2+np.abs(m)),
895 #such that only for m>=0 are contained.
896

897 lattice_points = get_length(R_interaction, b1_x, b1_y, alpha)
898 coords = np.zeros([N_cell, N_cell, lattice_points, 5])
899 spherical_harmonics = np.zeros([N_cell, N_cell, lattice_points,

(2*L+2)*(2*L+1)//2], dtype = np.complex128)↪→

900 image_spherical_harmonics = np.zeros([N_cell, N_cell, lattice_points,
(2*L+2)*(2*L+1)//2], dtype = np.complex128)↪→

901 lattice_vectors = np.zeros([lattice_points, 2])
902

903 lattice_point = 0
904 centre_point = 0
905 j1s = get_j1(R_interaction, b1_y, alpha)
906 for j1 in j1s:
907 i1s = get_i1(R_interaction, b1_x, b1_y, alpha, j1)
908 for i1 in i1s:
909 lattice_vectors[lattice_point] = np.array([i1*b1_x +

j1*b1_y*np.cos(alpha), j1*b1_y*np.sin(alpha)])*r[0]↪→

910 if j1 == 0 and i1 == 0:
911 centre_point = lattice_point
912 for j in range(N_cell):
913 for i in range(N_cell):
914 coords[j,i,lattice_point] = get_spherical_coords(p[j],

p[i]+np.concatenate((lattice_vectors[lattice_point],
np.array([0]))))

↪→

↪→

110

915 spherical_harmonics[j,i,lattice_point] = expand.spharm(2*L,
coords[j,i,lattice_point,0], coords[j,i,lattice_point,1],
normalization = 'ortho', kind = 'complex', csphase = -1,
packed = True, degrees = False)[0]

↪→

↪→

↪→

916 image_spherical_harmonics[j,i,lattice_point] =
expand.spharm(2*L, coords[j,i,lattice_point,2],
coords[j,i,lattice_point,1], normalization = 'ortho', kind
= 'complex', csphase = -1, packed = True, degrees =
False)[0]

↪→

↪→

↪→

↪→

917 lattice_point += 1
918

919 #Compute H(l_j, m_j | l_i, m_i) for all the M*M outcomes
920 #and store them in a table indexed by k and l
921 Hs = np.reshape(H(np.arange(M**2), M), [M, M])
922

923

924 end0 = time()
925 if verbose:
926 print("Initialization complete. Excecution time taken: ", end0-start0)
927 print("Frequency number: Excecution time: Expected excecution time [hrs]:

")↪→

928

929 #First energy, LU-factorisation is used to solve for A
930 k = get_k(omega[0], theta, phi, length_scale)
931 C = np.zeros([M*N_cell, M*N_cell], dtype = np.complex128)
932 C = get_C(C, L_parallel, L_orthogonal, M, N_cell, lattice_points, centre_point,

lattice_vectors, epsilons[0], r, beta[0], epsilon_plus, coords,
spherical_harmonics, image_spherical_harmonics, Hs, k, b1_x, b1_y, alpha)

↪→

↪→

933

934

935 x_computations = np.array(["p_x", "pot_x", "E_x"])
936 x_nearfields = np.array(["pot_x", "E_x"])
937 if np.any(np.isin(output, x_computations)):
938 b_x = get_b(np.pi/2, 0, M, N_cell)
939 A_x = np.linalg.solve(C, b_x)
940 A_x_prev = A_x.copy()
941

942 if np.isin("p_x", output):
943 for n in range(N_cell):
944 p_x[n,0] = get_p(A_x, n, M, r)
945

946 if np.any(np.isin(x_nearfields, output)):
947 B_x = get_B(M, N_cell, A_x, b_x, beta[0], r, Hs,

coords[:,:,centre_point,:], spherical_harmonics[:,:,centre_point],
image_spherical_harmonics[:,:,centre_point], L_parallel,
L_orthogonal)

↪→

↪→

↪→

948 if np.isin("pot_x", output):

111

949 B0_x = get_B_0(np.zeros(N_cell, dtype = np.complex128), H0s, M,
N_cell, A_x, beta[0], r, coords[:,:,centre_point,:],
spherical_harmonics[:,:,centre_point],
image_spherical_harmonics[:,:,centre_point], L_parallel,
L_orthogonal, origin, b_x)

↪→

↪→

↪→

↪→

950 pot_x[0] = potential_grid(np.zeros([grid_specs[5], grid_specs[4]],
dtype = np.complex128), origin, x, grid_specs[6], z,
grid_specs[5], grid_specs[4], grid_coords, grid_image_coords,
grid_spherical_harmonics, grid_image_spherical_harmonics, A_x,
r, N_cell, M, beta[0], b_x, p, B_x, beta2[0], epsilon_plus,
epsilon_minus[0], B0_x, np.pi/2)

↪→

↪→

↪→

↪→

↪→

951 if np.isin("E_x", output):
952 E_x[0] = field_grid(np.zeros([grid_specs[5], grid_specs[4]], dtype

= np.complex128), origin, x, grid_specs[6], z, grid_specs[5],
grid_specs[4], grid_coords, grid_image_coords,
grid_spherical_harmonics, grid_image_spherical_harmonics, A_x,
r, N_cell, M, beta[0], b_x, p, B_x, beta2[0], epsilon_plus,
epsilon_minus[0])

↪→

↪→

↪→

↪→

↪→

953

954

955 y_computations = np.array(["p_y", "pot_y", "E_y"])
956 y_nearfields = np.array(["pot_y", "E_y"])
957 if np.any(np.isin(output, y_computations)):
958 b_y = get_b(np.pi/2, np.pi/2, M, N_cell)
959 A_y = np.linalg.solve(C, b_y)
960 A_y_prev = A_y.copy()
961

962 if np.isin("p_y", output):
963 for n in range(N_cell):
964 p_y[n,0] = get_p(A_y, n, M, r)
965

966 if np.any(np.isin(y_nearfields, output)):
967 B_y = get_B(M, N_cell, A_y, b_y, beta[0], r, Hs,

coords[:,:,centre_point,:], spherical_harmonics[:,:,centre_point],
image_spherical_harmonics[:,:,centre_point], L_parallel,
L_orthogonal)

↪→

↪→

↪→

968 if np.isin("pot_y", output):
969 B0_y = get_B_0(np.zeros(N_cell, dtype = np.complex128), H0s, M,

N_cell, A_y, beta[0], r, coords[:,:,centre_point,:],
spherical_harmonics[:,:,centre_point],
image_spherical_harmonics[:,:,centre_point], L_parallel,
L_orthogonal, origin, b_y)

↪→

↪→

↪→

↪→

970 pot_y[0] = potential_grid(np.zeros([grid_specs[5], grid_specs[4]],
dtype = np.complex128), origin, x, grid_specs[6], z,
grid_specs[5], grid_specs[4], grid_coords, grid_image_coords,
grid_spherical_harmonics, grid_image_spherical_harmonics, A_y,
r, N_cell, M, beta[0], b_y, p, B_y, beta2[0], epsilon_plus,
epsilon_minus[0], B0_y, np.pi/2)

↪→

↪→

↪→

↪→

↪→

112

971 if np.isin("E_x", output):
972 E_y[0] = field_grid(np.zeros([grid_specs[5], grid_specs[4]], dtype

= np.complex128), origin, x, grid_specs[6], z, grid_specs[5],
grid_specs[4], grid_coords, grid_image_coords,
grid_spherical_harmonics, grid_image_spherical_harmonics, A_y,
r, N_cell, M, beta[0], b_y, p, B_y, beta2[0], epsilon_plus,
epsilon_minus[0])

↪→

↪→

↪→

↪→

↪→

973

974

975 z_computations = np.array(["p_z", "pot_z", "E_z"])
976 z_nearfields = np.array(["pot_z", "E_z"])
977 if np.any(np.isin(output, z_computations)):
978 b_z = get_b(np.pi, 0, M, N_cell)
979 A_z = np.linalg.solve(C, b_z)
980 A_z_prev = A_z.copy()
981

982 if np.isin("p_z", output):
983 for n in range(N_cell):
984 p_z[n,0] = get_p(A_z, n, M, r)
985

986 if np.any(np.isin(z_nearfields, output)):
987 B_z = get_B(M, N_cell, A_z, b_z, beta[0], r, Hs,

coords[:,:,centre_point,:], spherical_harmonics[:,:,centre_point],
image_spherical_harmonics[:,:,centre_point], L_parallel,
L_orthogonal)

↪→

↪→

↪→

988 if np.isin("pot_z", output):
989 B0_z = get_B_0(np.zeros(N_cell, dtype = np.complex128), H0s, M,

N_cell, A_z, beta[0], r, coords[:,:,centre_point,:],
spherical_harmonics[:,:,centre_point],
image_spherical_harmonics[:,:,centre_point], L_parallel,
L_orthogonal, origin, b_z)

↪→

↪→

↪→

↪→

990 pot_z[0] = potential_grid(np.zeros([grid_specs[5], grid_specs[4]],
dtype = np.complex128), origin, x, grid_specs[6], z,
grid_specs[5], grid_specs[4], grid_coords, grid_image_coords,
grid_spherical_harmonics, grid_image_spherical_harmonics, A_z,
r, N_cell, M, beta[0], b_z, p, B_z, beta2[0], epsilon_plus,
epsilon_minus[0], B0_z, np.pi)

↪→

↪→

↪→

↪→

↪→

991 if np.isin("E_z", output):
992 E_z[0] = field_grid(np.zeros([grid_specs[5], grid_specs[4]], dtype

= np.complex128), origin, x, grid_specs[6], z, grid_specs[5],
grid_specs[4], grid_coords, grid_image_coords,
grid_spherical_harmonics, grid_image_spherical_harmonics, A_z,
r, N_cell, M, beta[0], b_z, p, B_z, beta2[0], epsilon_plus,
epsilon_minus[0])

↪→

↪→

↪→

↪→

↪→

993

994

995 c_computations = np.array(["p_c", "pot_c", "E_c"])
996 c_nearfields = np.array(["pot_c", "E_c"])

113

997 if np.any(np.isin(output, c_computations)):
998 if theta_0 != None and phi_0 != None:
999 b_c = get_b(theta_0, phi_0, M, N_cell) #Build B-vector

1000 A_c = np.linalg.solve(C, b_c) #Solve for A
1001 A_c_prev = A_c.copy() #Copy solution to start iteration
1002

1003 if np.isin("p_c", output):
1004 for n in range(N_cell): #Find dipole moment of sphere n
1005 p_c[n,0] = get_p(A_c, n, M, r)
1006

1007 if np.any(np.isin(c_nearfields, output)):
1008 B_c = get_B(M, N_cell, A_c, b_c, beta[0], r, Hs,

coords[:,:,centre_point,:],
spherical_harmonics[:,:,centre_point],
image_spherical_harmonics[:,:,centre_point], L_parallel,
L_orthogonal)

↪→

↪→

↪→

↪→

1009 if np.isin("pot_c", output):
1010 B0_c = get_B_0(np.zeros(N_cell, dtype = np.complex128), H0s, M,

N_cell, A_c, beta[0], r, coords[:,:,centre_point,:],
spherical_harmonics[:,:,centre_point],
image_spherical_harmonics[:,:,centre_point], L_parallel,
L_orthogonal, origin, b_c)

↪→

↪→

↪→

↪→

1011 pot_c[0] = potential_grid(np.zeros([grid_specs[5],
grid_specs[4]], dtype = np.complex128), origin, x,
grid_specs[6], z, grid_specs[5], grid_specs[4],
grid_coords, grid_image_coords, grid_spherical_harmonics,
grid_image_spherical_harmonics, A_c, r, N_cell, M, beta[0],
b_c, p, B_c, beta2[0], epsilon_plus, epsilon_minus[0],
B0_c, theta_0)

↪→

↪→

↪→

↪→

↪→

↪→

1012 if np.isin("E_c", output):
1013 E_c[0] = field_grid(np.zeros([grid_specs[5], grid_specs[4]],

dtype = np.complex128), origin, x, grid_specs[6], z,
grid_specs[5], grid_specs[4], grid_coords,
grid_image_coords, grid_spherical_harmonics,
grid_image_spherical_harmonics, A_c, r, N_cell, M, beta[0],
b_c, p, B_c, beta2[0], epsilon_plus, epsilon_minus[0])

↪→

↪→

↪→

↪→

↪→

1014

1015 else:
1016 print("Error: theta_0 and phi_0 must be specified for custom angle

input computations.")↪→

1017 output = np.setdiff1d(output, c_computations)
1018

1019

1020 if np.any(np.isin(output, reflectances)):
1021 if np.isin("R_s", output):
1022 b_s = get_b(theta_s, phi_s, M, N_cell)
1023 A_s = np.linalg.solve(C, b_s)
1024 A_s_prev = A_s.copy()

114

1025 gamma_s, beta_s = susceptibilities(A_s, M, theta_s, phi_s,
epsilon_plus, p[0,2], rho)↪→

1026 R_s[0] = s_polarization(theta, omega[0], gamma_s, epsilon_plus,
epsilon_minus[0], length_scale)[0]↪→

1027

1028 if np.isin("R_p", output):
1029 b_p2 = get_b(theta_p, phi_p, M, N_cell)
1030 A_p2 = np.linalg.solve(C, b_p2)
1031 A_p2_prev = A_p2.copy()
1032 gamma_p, beta_p = susceptibilities(A_p2, M, theta_p, phi_p,

epsilon_plus, p[0,2], rho)↪→

1033 R_p[0] = p_polarization(theta, omega[0], gamma_p, epsilon_plus,
epsilon_minus[0], beta_p, length_scale)[0]↪→

1034

1035

1036 #For the rest of the energies an iterative solver is used
1037 for o in range(1, N_ohm):
1038 start2 = time()
1039 k = get_k(omega[o], theta, phi, length_scale)
1040 C = np.zeros([M*N_cell, M*N_cell], dtype = np.complex128)
1041 C = get_C(C, L_parallel, L_orthogonal, M, N_cell, lattice_points,

centre_point, lattice_vectors, epsilons[o], r, beta[o], epsilon_plus,
coords, spherical_harmonics, image_spherical_harmonics, Hs, k, b1_x,
b1_y, alpha)

↪→

↪→

↪→

1042

1043

1044 if np.any(np.isin(output, x_computations)):
1045 A_x, info = gmres(C, b_x, A_x_prev, tol = tolerance)
1046 A_x_prev = A_x.copy()
1047

1048 if np.isin("p_x", output):
1049 for n in range(N_cell):
1050 p_x[n,o] = get_p(A_x, n, M, r)
1051

1052 if np.any(np.isin(x_nearfields, output)):
1053 B_x = get_B(M, N_cell, A_x, b_x, beta[o], r, Hs,

coords[:,:,centre_point,:],
spherical_harmonics[:,:,centre_point],
image_spherical_harmonics[:,:,centre_point], L_parallel,
L_orthogonal)

↪→

↪→

↪→

↪→

1054 if np.isin("pot_x", output):
1055 B0_x = get_B_0(np.zeros(N_cell, dtype = np.complex128), H0s, M,

N_cell, A_x, beta[o], r, coords[:,:,centre_point,:],
spherical_harmonics[:,:,centre_point],
image_spherical_harmonics[:,:,centre_point], L_parallel,
L_orthogonal, origin, b_x)

↪→

↪→

↪→

↪→

115

1056 pot_x[o] = potential_grid(np.zeros([grid_specs[5],
grid_specs[4]], dtype = np.complex128), origin, x,
grid_specs[6], z, grid_specs[5], grid_specs[4],
grid_coords, grid_image_coords, grid_spherical_harmonics,
grid_image_spherical_harmonics, A_x, r, N_cell, M, beta[o],
b_x, p, B_x, beta2[o], epsilon_plus, epsilon_minus[o],
B0_x, np.pi/2)

↪→

↪→

↪→

↪→

↪→

↪→

1057 if np.isin("E_x", output):
1058 E_x[o] = field_grid(np.zeros([grid_specs[5], grid_specs[4]],

dtype = np.complex128), origin, x, grid_specs[6], z,
grid_specs[5], grid_specs[4], grid_coords,
grid_image_coords, grid_spherical_harmonics,
grid_image_spherical_harmonics, A_x, r, N_cell, M, beta[o],
b_x, p, B_x, beta2[o], epsilon_plus, epsilon_minus[o])

↪→

↪→

↪→

↪→

↪→

1059

1060

1061 if np.any(np.isin(output, y_computations)):
1062 A_y, info = gmres(C, b_y, A_y_prev, tol = tolerance)
1063 A_y_prev = A_y.copy()
1064

1065 if np.isin("p_y", output):
1066 for n in range(N_cell):
1067 p_y[n,o] = get_p(A_y, n, M, r)
1068

1069 if np.any(np.isin(y_nearfields, output)):
1070 B_y = get_B(M, N_cell, A_y, b_y, beta[o], r, Hs,

coords[:,:,centre_point,:],
spherical_harmonics[:,:,centre_point],
image_spherical_harmonics[:,:,centre_point], L_parallel,
L_orthogonal)

↪→

↪→

↪→

↪→

1071 if np.isin("pot_y", output):
1072 B0_y = get_B_0(np.zeros(N_cell, dtype = np.complex128), H0s, M,

N_cell, A_y, beta[o], r, coords[:,:,centre_point,:],
spherical_harmonics[:,:,centre_point],
image_spherical_harmonics[:,:,centre_point], L_parallel,
L_orthogonal, origin, b_y)

↪→

↪→

↪→

↪→

1073 pot_y[o] = potential_grid(np.zeros([grid_specs[5],
grid_specs[4]], dtype = np.complex128), origin, x,
grid_specs[6], z, grid_specs[5], grid_specs[4],
grid_coords, grid_image_coords, grid_spherical_harmonics,
grid_image_spherical_harmonics, A_y, r, N_cell, M, beta[o],
b_y, p, B_y, beta2[o], epsilon_plus, epsilon_minus[o],
B0_y, np.pi/2)

↪→

↪→

↪→

↪→

↪→

↪→

1074 if np.isin("E_x", output):

116

1075 E_y[o] = field_grid(np.zeros([grid_specs[5], grid_specs[4]],
dtype = np.complex128), origin, x, grid_specs[6], z,
grid_specs[5], grid_specs[4], grid_coords,
grid_image_coords, grid_spherical_harmonics,
grid_image_spherical_harmonics, A_y, r, N_cell, M, beta[o],
b_y, p, B_y, beta2[o], epsilon_plus, epsilon_minus[o])

↪→

↪→

↪→

↪→

↪→

1076

1077

1078 if np.any(np.isin(output, z_computations)):
1079 A_z, info = gmres(C, b_z, A_z_prev, tol = tolerance)
1080 A_z_prev = A_z.copy()
1081

1082 if np.isin("p_z", output):
1083 for n in range(N_cell):
1084 p_z[n,o] = get_p(A_z, n, M, r)
1085

1086 if np.any(np.isin(z_nearfields, output)):
1087 B_z = get_B(M, N_cell, A_z, b_z, beta[o], r, Hs,

coords[:,:,centre_point,:],
spherical_harmonics[:,:,centre_point],
image_spherical_harmonics[:,:,centre_point], L_parallel,
L_orthogonal)

↪→

↪→

↪→

↪→

1088 if np.isin("pot_z", output):
1089 B0_z = get_B_0(np.zeros(N_cell, dtype = np.complex128), H0s, M,

N_cell, A_z, beta[o], r, coords[:,:,centre_point,:],
spherical_harmonics[:,:,centre_point],
image_spherical_harmonics[:,:,centre_point], L_parallel,
L_orthogonal, origin, b_z)

↪→

↪→

↪→

↪→

1090 pot_z[o] = potential_grid(np.zeros([grid_specs[5],
grid_specs[4]], dtype = np.complex128), origin, x,
grid_specs[6], z, grid_specs[5], grid_specs[4],
grid_coords, grid_image_coords, grid_spherical_harmonics,
grid_image_spherical_harmonics, A_z, r, N_cell, M, beta[o],
b_z, p, B_z, beta2[o], epsilon_plus, epsilon_minus[o],
B0_z, np.pi)

↪→

↪→

↪→

↪→

↪→

↪→

1091 if np.isin("E_z", output):
1092 E_z[o] = field_grid(np.zeros([grid_specs[5], grid_specs[4]],

dtype = np.complex128), origin, x, grid_specs[6], z,
grid_specs[5], grid_specs[4], grid_coords,
grid_image_coords, grid_spherical_harmonics,
grid_image_spherical_harmonics, A_z, r, N_cell, M, beta[o],
b_z, p, B_z, beta2[o], epsilon_plus, epsilon_minus[o])

↪→

↪→

↪→

↪→

↪→

1093

1094

1095 if np.any(np.isin(output, c_computations)):
1096 A_c, info = gmres(C, b_c, A_c_prev, tol = tolerance)
1097 A_c_prev = A_c.copy()
1098

117

1099 if np.isin("p_c", output):
1100 for n in range(N_cell):
1101 p_c[n,o] = get_p(A_c, n, M, r)
1102

1103 if np.any(np.isin(c_nearfields, output)):
1104 B_c = get_B(np.zeros(N_cell, dtype = np.complex128), H0s, M,

N_cell, A_c, b_c, beta[o], r, Hs, coords[:,:,centre_point,:],
spherical_harmonics[:,:,centre_point],
image_spherical_harmonics[:,:,centre_point], L_parallel,
L_orthogonal)

↪→

↪→

↪→

↪→

1105 if np.isin("pot_c", output):
1106 B0_c = get_B_0(M, N_cell, A_c, beta[o], r,

coords[:,:,centre_point,:],
spherical_harmonics[:,:,centre_point],
image_spherical_harmonics[:,:,centre_point], L_parallel,
L_orthogonal, origin, b_c)

↪→

↪→

↪→

↪→

1107 pot_c[o] = potential_grid(np.zeros([grid_specs[5],
grid_specs[4]], dtype = np.complex128), origin, x,
grid_specs[6], z, grid_specs[5], grid_specs[4],
grid_coords, grid_image_coords, grid_spherical_harmonics,
grid_image_spherical_harmonics, A_c, r, N_cell, M, beta[o],
b_c, p, B_c, beta2[o], epsilon_plus, epsilon_minus[o],
B0_c, theta_0)

↪→

↪→

↪→

↪→

↪→

↪→

1108 if np.isin("E_c", output):
1109 E_c[o] = field_grid(np.zeros([grid_specs[5], grid_specs[4]],

dtype = np.complex128), origin, x, grid_specs[6], z,
grid_specs[5], grid_specs[4], grid_coords,
grid_image_coords, grid_spherical_harmonics,
grid_image_spherical_harmonics, A_c, r, N_cell, M, beta[o],
b_c, p, B_c, beta2[o], epsilon_plus, epsilon_minus[o])

↪→

↪→

↪→

↪→

↪→

1110

1111

1112 if np.any(np.isin(output, reflectances)):
1113 if np.isin("R_s", output):
1114 A_s, info = gmres(C, b_s, A_s_prev, tol = tolerance)
1115 A_s_prev = A_s.copy()
1116 gamma_s, beta_s = susceptibilities(A_s, M, theta_s, phi_s,

epsilon_plus, p[0,2], rho)↪→

1117 R_s[o] = s_polarization(theta, omega[o], gamma_s, epsilon_plus,
epsilon_minus[o], length_scale)[0]↪→

1118

1119 if np.isin("R_p", output):
1120 A_p2, info = gmres(C, b_p2, A_p2_prev, tol = tolerance)
1121 A_p2_prev = A_p2.copy()
1122 gamma_p, beta_p = susceptibilities(A_p2, M, theta_p, phi_p,

epsilon_plus, p[0,2], rho)↪→

1123 R_p[o] = p_polarization(theta, omega[o], gamma_p, epsilon_plus,
epsilon_minus[o], beta_p, length_scale)[0]↪→

118

1124

1125

1126 end2 = time()
1127 if verbose and o % freq == 0:
1128 print(o, end2-start2, (end2-start2)*N_ohm/3600)
1129

1130

1131 #Creating the output dictionary
1132 dict_out = {}
1133

1134 if np.any(np.isin(output, contours)):
1135 if np.isin("pot_x", output):
1136 dict_out["pot_x"] = pot_x
1137 if np.isin("pot_y", output):
1138 dict_out["pot_y"] = pot_y
1139 if np.isin("pot_z", output):
1140 dict_out["pot_z"] = pot_z
1141 if np.isin("pot_c", output):
1142 dict_out["pot_c"] = pot_c
1143

1144 if np.isin("E_x", output):
1145 dict_out["E_x"] = E_x
1146 if np.isin("E_y", output):
1147 dict_out["E_y"] = E_y
1148 if np.isin("E_z", output):
1149 dict_out["E_z"] = E_z
1150 if np.isin("E_c", output):
1151 dict_out["E_c"] = E_c
1152

1153 if np.isin("x", output):
1154 dict_out["x"] = x
1155 if np.isin("z", output):
1156 dict_out["z"] = z
1157

1158 if np.any(np.isin(output, dipole_moments)):
1159 if np.isin("p_x", output):
1160 dict_out["p_x"] = p_x
1161 if np.isin("p_y", output):
1162 dict_out["p_y"] = p_y
1163 if np.isin("p_z", output):
1164 dict_out["p_z"] = p_z
1165 if np.isin("p_c", output):
1166 dict_out["p_c"] = p_c
1167

1168 if np.any(np.isin(output, reflectances)):
1169 if np.isin("R_p", output):
1170 dict_out["R_p"] = np.absolute(R_p)**2
1171 if np.isin("R_s", output):

119

1172 dict_out["R_s"] = np.absolute(R_s)**2
1173

1174 if np.isin("epsilon",output):
1175 dict_out["epsilon"] = epsilons
1176

1177 end1 = time()
1178 if verbose:
1179 print("Task complete: ", end1-start1)
1180 return dict_out
1181

1182 # --
1183 # --- end main
1184 # --
1185

1186 # ===
1187 # Examples
1188 # ===
1189

1190 h = 0.05
1191 d = 0.1
1192 N_cell = 2
1193 r = np.ones(N_cell)
1194 p2 = np.array([[0,0,1+h], [2+d,0,1+h]], dtype = np.float64)
1195 omega = np.linspace(2.6, 3.8, 121)
1196 omega2 = np.linspace(1.43, 1.43, 1)
1197 gridspecs = (-1.4499, 3.5501, -1.4499, 3.5501, 301, 301, 0)
1198

1199 output1 = np.array(["R_s", "R_p"])
1200 output2 = np.array(["pot_z"])
1201 out1 = main(output1, omega, 1, p2, r, 10, 10, epsilon_minus = 2.76, material =

"ag", periodic = True, theta = np.pi/4, phi = 0, R_interaction = 30,
length_scale = 1e-8, b1_x = 2.2, b1_y = 2.2)

↪→

↪→

1202 out2 = main(output2, omega2, N_cell, p2, r, 30, 30, epsilon_minus = 10, omega_p =
3, gamma = 0.03, periodic = False, grid_specs = gridspecs)↪→

1203

1204 # --
1205 # --- end examples
1206 # --

120

A.2 Dielectric file for Ag in SOPRA database

 1 .6 6.6 120
 1.064 14.4
 .987875 13.155
 .844 12.2
 .672625 11.445
 .514 10.8
 .438563 10.11437
 .396 9.48
 .36 8.95375
 .329 8.49
 .287375 8.060625
 .251 7.67
 .235375 7.31375
 .226 6.99
 .212625 6.6975
 .198 6.43
 .179875 6.183125
 .163 5.95
 .151938 5.720624
 .145 5.5
 .142563 5.28875
 .143 5.09
 .145875 4.908125
 .148 4.74
 .144313 4.58625
 .14 4.44
 .140063 4.293125
 .14 4.15
 .136125 4.010625
 .131 3.88
 .
 .
 .

121

Appendix B

DDSCAT

B.1 Python script for processing results

1 import numpy as np
2 from matplotlib import pyplot as plt
3 import os
4 #Written by Bohren and Huffman, translated by Herbert Kaiser
5 from BHMIE import bhmie
6 #python wrapper for SOPRA values
7 from pysopra import EpsilonSOPRA, micron2eV, eV2micron
8

9 #Computes reflectance from a slab of thickness d and refractive index n for
10 #s- and p-polarised light with wave number k in an ambient medium of refractive
11 #index n_amb for an array of angles in radians
12 def Ref_slab(n, n_amb, theta, k, d):
13 c_0 = np.cos(theta)
14 c_t = np.cos(np.arcsin(n_amb/n*np.sin(theta)))
15 pf = np.exp(2*1.j*k*n*d*c_t)
16

17 r1_s = (n*c_t - n_amb*c_0)/(n*c_t + n_amb*c_0)
18 r2_s = (n_amb*c_0 - n*c_t)/(n_amb*c_0 + n*c_t)
19

20 r1_p = (n*c_0 - n_amb*c_t)/(n*c_0 + n_amb*c_t)
21 r2_p = (n_amb*c_t - n*c_0)/(n_amb*c_t + n*c_0)
22

23 R_s = (r2_s + r1_s*pf)/(1 + r1_s*r2_s*pf)
24 R_p = (r2_p + r1_p*pf)/(1 + r1_p*r2_p*pf)
25

26 return np.absolute(R_s)**2, np.absolute(R_p)**2
27

28 #Computes the absorption efficiency factor from Mie theory for a sphere of
29 # radius R, dielectric function epsilon and for incident wave energies omega
30 def sigma_abs_mie(omega, epsilon, R):
31 sigmas = np.zeros(len(omega))
32 HC = 2 * np.pi * 0.1973269631

122

33 lamda = HC/omega
34 x = 2*np.pi*R/lamda
35 for i in range(len(omega)):
36 vals = bhmie(x[i], np.sqrt(epsilon[i]), 20)
37 sigmas[i] = vals[2]#-vals[3]
38 return sigmas
39

40 #Creates file with dielectric values compatible for DDCSAT from a SOPRA file.
41 #The file to read from is filename_SOPRA and the new filename is filename_DDSCAT.
42 def make_dielectrics_for_DDSCAT(filename_SOPRA, filename_DDSCAT, description):
43 header = np.loadtxt(filename_SOPRA, delimiter=None, skiprows=0, max_rows = 1,

dtype = str)↪→

44 print(header)
45 wave = np.linspace(float(header[1]), float(header[2]), int(header[3])+1)
46 vals = np.loadtxt(filename_SOPRA, delimiter=None, skiprows=1, dtype =

np.float64)↪→

47 n_real = vals.T[0]
48 n_imag = vals.T[1]
49 if int(header[0]) == 1:
50 wave = eV2micron(wave[::-1])
51 n_real = n_real[::-1]
52 n_imag = n_imag[::-1]
53 header1 = "1 2 3 0 0 = columns for wave, Re(n), Im(n), eps1, eps2"
54 header2 = "wave(um) Re(n) Im(n) eps1 eps2"
55 file_header = description + "\n" + header1 + "\n" + header2
56 np.savetxt(filename_DDSCAT + ".txt", np.array([wave, n_real ,n_imag,

np.real(n_real+n_imag*1.0j)**2, np.imag(n_real+n_imag*1.0j)**2]).T,
fmt="%s", header = file_header, comments = '')

↪→

↪→

57

58 #Example:
59 description = "Dielectric values for aluminium oxide from SOPRA database"
60 make_dielectrics_for_DDSCAT("Database/al2o3.nk", "Al2O3", description)
61

62 #Creates an array of N wave energies from DDSCAT output files in directory
63 def waves(directory, N):
64 HC = 2 * np.pi * 0.1973269631
65 wave = np.zeros(N)
66 for i in range(N):
67 num = str(i)
68 fname = directory + 'w' + num.zfill(3) + "r000.avg"
69 text = float(np.loadtxt(fname, delimiter=None, skiprows=12, max_rows = 1,

dtype = str)[1])↪→

70 wave[i] = HC/text
71 return wave
72

73 #Creates an array of N dielectric values from DDSCAT output files in directory
74 def epsilons(directory, N):
75 epsilon = np.zeros(N, dtype = np.complex128)

123

76 for i in range(N):
77 num = str(i)
78 fname = directory + 'w' + num.zfill(3) + "r000.avg"
79 text = np.loadtxt(fname, delimiter=None, skiprows=15, max_rows = 1, dtype =

str)[[2,4]]↪→

80 re = float(text[0])
81 im = float(text[1][:-2])
82 epsilon[i] = (re+im*1.0j)**2
83 return epsilon
84

85 #Creates a tensor of all the Mueller elements from the DDSCAT outut files.
86 #The function assumes only two Mueller elements are computed (S_11 and S_12).
87 #Tensor has dimensions [2 (transmission and reflection), N_waves wave energies,
88 # and 2 Mueller elements].
89 def Mueller_elements(directory, N_waves):
90 mat = np.zeros([2,N_waves,2])
91 for i in range(N_waves):
92 num = str(i)
93 fname = directory + 'w' + num.zfill(3) + "r000.avg"
94 text = np.loadtxt(fname, delimiter=None, skiprows=35)
95 mat[0,i] = text[0,3:]
96 mat[1,i] = text[1,3:]
97 return mat
98

99 #Finds number of DDSCAT output files in directory
100 def get_N(directory):
101 files = os.listdir(directory)
102 N = 0
103 for file in files:
104 if file[4:8] == "r000" and int(file[1:4]) > N:
105 N = int(file[1:4])
106 return N+1
107

108 #Creates an array of all the wave energies, transmission and reflection Mueller
109 #elements from the DDSCAT output files in directory
110 def get_values(directory):
111 N = get_N(directory)
112 wave = waves(directory, N)
113 M_t, M_r = Mueller_elements(directory, N)
114 return wave, M_t, M_r
115

116 #Creates an array of N_waves absorption efficiency factors from DDSCAT
117 # output files in directory
118 def Q_abs(directory, N_waves):
119 Q = np.zeros(N_waves)
120 for i in range(N_waves):
121 num = str(i)
122 fname = directory + 'w' + num.zfill(3) + "r000k000.sca"

124

123 text = np.loadtxt(fname, delimiter=None, skiprows=39, max_rows = 1, dtype =
str)↪→

124 Q[i] = float(text[2])
125 return Q
126

127 #Creates an array of N_waves extinction efficiency factors from DDSCAT
128 #output files in directory
129 def Q_ext(directory, N_waves):
130 Q = np.zeros(N_waves)
131 for i in range(N_waves):
132 num = str(i)
133 fname = directory + 'w' + num.zfill(3) + "r000k000.sca"
134 text = np.loadtxt(fname, delimiter=None, skiprows=39, max_rows = 1, dtype =

str)↪→

135 Q[i] = float(text[1])
136 return Q
137

138 #Creates an array of N_angles angles in radians, a matrix of dimensions
139 #[N_angles, 2 (Mueller elements S_11 and S_12)] and a an array of
140 #refractive inices from DDSCAT output files in directory
141 def substrate(directory, N_angles):
142 mat = np.zeros([N_angles,2])
143 angles = np.zeros(N_angles)
144 n = np.zeros(N_angles, dtype = np.complex128)
145 for i in range(N_angles):
146 num = str(i)
147 fname = directory + 'w000r000k' + num.zfill(3) + ".sca"
148 text = np.loadtxt(fname, delimiter=None, skiprows=40)
149 text2 = float(np.loadtxt(fname, delimiter=None, skiprows=32, max_rows = 1,

dtype = str)[1])↪→

150 text3 = np.loadtxt(fname, delimiter=None, skiprows=19, max_rows = 1, dtype
= str)[[2,4]]↪→

151 re = float(text3[0])
152 im = float(text3[1][:-2])
153 n[i] = re + 1.0j*im
154 mat[i] = text[1,3:]
155 angles[i] = text2
156 return angles, mat, n
157

158 #Interchanges x and z coordinates in target file filename in directory and writes
159 #new file to newname in directory
160 def interchange(directory, filename, newname):
161 fname = directory + filename
162 description = ""
163 for i in range(7):
164 description += '\t'.join(np.loadtxt(fname, delimiter=None, skiprows = i,

max_rows = 1, dtype = str))↪→

165 if i != 6:

125

166 description += "\n"
167 table = np.loadtxt(fname, delimiter=None, skiprows = 7, dtype = str)
168 table = table.T[[0,3,2,1,4,5,6]].T
169 np.savetxt(directory + newname, table, fmt='%s', delimiter='\t', newline='\n',

header=description, comments='')↪→

170

171 #Cuts target file filename in directory in half along x-axis and saves new file
172 #to newname in directory
173 def cut_in_half(directory, filename, newname):
174 fname = directory + filename
175 table = np.loadtxt(fname, delimiter=None, skiprows = 7, dtype = str)
176 indices = np.where(table.T[1].astype(np.int) >=

int((np.amax(table.T[1].astype(np.int))-np.amin(table.T[1].astype(np.int)))/2))[0]↪→

177 table = table[indices]
178 N = len(indices)
179 table = table.T
180 table[0] = np.arange(N).astype(str)
181 table = table.T
182 description = ""
183 for i in range(7):
184 string = np.loadtxt(fname, delimiter=None, skiprows = i, max_rows = 1,

dtype = str)↪→

185 if i == 1:
186 string[0] = str(N)
187 description += '\t'.join(string)
188 if i != 6:
189 description += "\n"
190 np.savetxt(directory + newname, table, fmt='%s', delimiter='\t', newline='\n',

header=description, comments='')↪→

191

192 #Creates a dimer of the two spheres filename1 and filename2 in
193 # directory and separates them by d times the radius of sphere
194 #filename1. The dimer is stored as newname in directory
195 def two_spheres(directory, filename1, filename2, newname, d):
196 fname1 = directory + filename1
197 fname2 = directory + filename2
198 table1 = np.loadtxt(fname1, delimiter=None, skiprows = 7, dtype = str).T
199 table2 = np.loadtxt(fname2, delimiter=None, skiprows = 7, dtype = str).T
200 N = len(table1[0]) + len(table2[0])
201 D = np.amax(table1[1].astype(np.int)) - np.amin(table2[1].astype(np.int)) +

int(np.round(d*0.5*(np.amax(table1[1].astype(np.int)) -
np.amin(table1[1].astype(np.int))))) - 2

↪→

↪→

202 table2[1] = np.array(table2[1].astype(np.int) + D, dtype = str)
203 table2[0] = np.arange(len(table1[0]), N).astype(str)
204 table = np.concatenate((table1, table2), axis = 1)
205 description = ""
206 for i in range(7):

126

207 string = np.loadtxt(fname1, delimiter=None, skiprows = i, max_rows = 1,
dtype = str)↪→

208 if i == 1:
209 string[0] = str(N)
210 description += '\t'.join(string)
211 if i != 6:
212 description += "\n"
213 np.savetxt(directory + newname, table[[0,2,1,3,5,4,6]].T, fmt='%s',

delimiter='\t', newline='\n', header=description, comments='')↪→

214

215 #Modifies the parameter file ddpostprocess.par in directory
216 #to evaluate the electric near field on the N_y points
217 # spaced linearly between the two points (x, y_a, z) and
218 #(x, y_b, z). This is done for all the N_x values linearly
219 #spaced from x_a to x_b.
220 def DDPOSTPROCESS_file(directory, x_a, x_b, y_a, y_b, z, N_x, N_y):
221 N_y -= 1
222 fname = "ddpostprocess.par"
223 description = ""
224 for i in range(4):
225 description += ' '.join(np.loadtxt(directory + fname, delimiter=None,

skiprows = i, max_rows = 1, dtype = str))↪→

226 if i != 3:
227 description += "\n"
228 table = np.zeros([7, N_x], dtype=object)
229 table[2] = np.ones(N_x, dtype = np.float64)*z
230 table[5] = np.ones(N_x, dtype = np.float64)*z
231 table[1] = np.ones(N_x, dtype = np.float64)*y_a
232 table[4] = np.ones(N_x, dtype = np.float64)*y_b
233 table[6] = np.ones(N_x, dtype = int)*N_y
234 table[0] = np.linspace(x_a, x_b, N_x)
235 table[3] = np.linspace(x_a, x_b, N_x)
236 np.savetxt(directory + fname, table.T, fmt='%s', delimiter='\t', newline='\n',

header=description, comments='')↪→

237

238 #Returns a matrix of dimensions [N_x, N_y] of all the values
239 #for the electric field |E|/|E_0| stored in the file
240 #"ddpostprocess.out" in directory.
241 def Nearfield(directory, N_x, N_y):
242 indices = np.zeros(N_x, dtype = int)
243 index = 0
244 for i in range(N_x):
245 if i % 1000 == 0:
246 print(i)
247 found = False
248 while found == False:
249 text = np.loadtxt(directory + "ddpostprocess_P.out", delimiter=None,

skiprows = index, max_rows = 1, dtype = str).T↪→

127

250 if text[0] == "x_TF":
251 indices[i] = index + 1
252 found = True
253 index += 1
254

255 Field = np.zeros([N_x, N_y], dtype = np.complex128)
256 for i in prange(N_x):
257 if i % 1000 == 0:
258 print(i)
259 table = np.loadtxt(directory + "ddpostprocess.out", delimiter=None,

skiprows = indices[i] + N_y*i, max_rows = N_y, dtype = np.float64).T↪→

260 E_x, E_y, E_z = table[3] + 1.j*table[4], table[5] + 1.j*table[6], table[7]
+ 1.j*table[8]↪→

261 Field[i] = np.sqrt(E_x*np.conj(E_x) + E_y*np.conj(E_y) + E_z*np.conj(E_z))
262 return Field

128

B.2 Snippet of the Makefile

#--------- do NOT alter the following definitions: -------------------------
MPI_f = mpi_subs.f90 \
 mpi_bcast_char.f90 mpi_bcast_cplx.f90 mpi_bcast_int.f90\
 mpi_bcast_int2.f90 mpi_bcast_real.f90
MPI_o = mpi_subs.o \
 mpi_bcast_char.o mpi_bcast_cplx.o mpi_bcast_int.o\
 mpi_bcast_int2.o mpi_bcast_real.o
MKL_f = cxfft3_mkl.f90 mkl_dfti.f90
MKL_o = cxfft3_mkl.o mkl_dfti.o
MKL_m = mkl_dfti.mod
#---

7. ifort compiler
sp + MKL + OpenMP + no MPI

on some systems, before compiling, type
module purge
module load intel-mkl

define the following:
PRECISION = sp
CXFFTMKL.f = $(MKL_f)
CXFFTMKL.o = $(MKL_o)
MKLM = $(MKL_m)
DOMP = -Dopenmp
OPENMP = -qopenmp
MPI.f = mpi_fake.f90
MPI.o = mpi_fake.o
DMPI =
FC = ifort
FFLAGS = -O2
LFLAGS = -lmkl_intel_thread -lmkl_core -lpthread -lmkl_intel_lp64

129

B.3 The parameter file

'========= Parameter file for v7.3; created: 21_04_11 =========='
'**** Preliminaries ****'
'NOTORQ' = CMTORQ*6 (NOTORQ, DOTORQ) -- either do or skip torque calculations
'PBCGS2' = CMDSOL*6 (PBCGS2, PBCGST, PETRKP) -- select solution method
'FFTMKL' = CMDFFT*6 (GPFAFT, FFTMKL)
'GKDLDR' = CALPHA*6 (GKDLDR, LATTDR)
'NOTBIN' = CBINFLAG (NOTBIN, ORIBIN, ALLBIN)
'**** Initial Memory Allocation ****'
200 200 200 = dimensioning allowance for target generation
'**** Target Geometry and Composition ****'
'FRMFILPBC' = CSHAPE*9 shape directive
110 110 1 'target_100r1_0r2_523305N.txt' (quotes must be used)
1 = NCOMP = number of dielectric materials
'../diel/Ag_evap.txt'
'**** Additional Near field calculation? ****'
0 = NRFLD (=0 to skip, 1 to calculate nearfield E)
0.5 0.5 0.5 0.5 0.5 0.5 (fract. extens. of calc. vol. in -x,+x,-y,+y,-z,+z)
'**** Error Tolerance ****'
1e-05 = TOL = MAX ALLOWED (NORM OF |G>=AC|E>-ACA|X>)/(NORM OF AC|E>)
'**** Maximum number of iterations allowed ****'
2000 = MXITER
'**** Interaction cutoff parameter for PBC calculations ****'
0.008 = GAMMA (1e-2 is normal, 3e-3 for greater accuracy)
'**** Angular resolution for calculation of <cos>, etc. ****'
2 = ETASCA (number of angles is proportional to [(3+x)/ETASCA]2)
'**** Vacuum wavelengths (micron) ****'
0.335 0.459 11 'INV' = wavelengths (first,last,how many,how=LIN,INV,LOG)
'**** Refractive index of ambient medium ****'
1 = NAMBIENT
'**** Effective Radii (micron) ****'
0.00999813 0.00999813 1 'LIN' = eff. radii (first, last, how many, how=LIN,INV,LOG)
'**** Define Incident Polarizations ****'
(0,0) (1,0) (0,0) = Polarization state e01 (k along x axis)
2 = IORTH (=1 to do only pol. state e01; =2 to also do orth. pol. state)
'**** Specify which output files to write ****'
1 = IWRKSC (=0 to suppress, =1 to write ".sca" file for each target orient)
'**** Prescribe Target Rotations ****'
0 0 1 = BETAMI, BETAMX, NBETA (beta=rotation around a1)
45 45 1 = THETMI, THETMX, NTHETA (theta=angle between a1 and k)
0 0 1 = PHIMIN, PHIMAX, NPHI (phi=rotation angle of a1 around k)
'**** Specify first IWAV, IRAD, IORI (normally 0 0 0) ****'
0 0 0 = first IWAV, first IRAD, first IORI (0 0 0 to begin fresh)
'**** Select Elements of S_ij Matrix to Print ****'
2 = NSMELTS = number of elements of S_ij to print (not more than 9)
11 12 = indices ij of elements to print
'**** Specify Scattered Directions ****'
'TFRAME' = CMDFRM (LFRAME, TFRAME for Lab Frame or Target Frame)
1 = number of scattering orders
0 0 = M, N (diffraction orders)

130

B.4 The target file

---Sphere target---
523305 = Number of dipoles
1 0 0 = target vector X-Axis
0 1 0 = target vector Y_Axis
1 1 1 = dx/d dy/d dz/d (normally 1,1,1)
50 0 0 = location in lattice of target origin
ID x y z icx icy icz
1 50 0 -50 1 1 1
2 46 -9 -49 1 1 1
3 47 -9 -49 1 1 1
4 48 -9 -49 1 1 1
5 49 -9 -49 1 1 1
6 50 -9 -49 1 1 1
7 51 -9 -49 1 1 1
8 52 -9 -49 1 1 1
9 53 -9 -49 1 1 1
10 54 -9 -49 1 1 1
11 45 -8 -49 1 1 1
12 46 -8 -49 1 1 1
13 47 -8 -49 1 1 1
14 48 -8 -49 1 1 1
15 49 -8 -49 1 1 1
16 50 -8 -49 1 1 1
17 51 -8 -49 1 1 1
18 52 -8 -49 1 1 1
19 53 -8 -49 1 1 1
20 54 -8 -49 1 1 1
21 55 -8 -49 1 1 1
22 43 -7 -49 1 1 1
23 44 -7 -49 1 1 1
24 45 -7 -49 1 1 1
25 46 -7 -49 1 1 1
26 47 -7 -49 1 1 1
27 48 -7 -49 1 1 1
28 49 -7 -49 1 1 1
29 50 -7 -49 1 1 1
30 51 -7 -49 1 1 1
.
.
.

131

B.5 The dielectric file

Dielectric values for evaporated silver from SOPRA database
1 2 3 0 0 = columns for wave, Re(n), Im(n), eps1, eps2
wave(um) Re(n) Im(n) eps1 eps2
0.1878548295848922 0.995 1.13 0.990025 1.2768999999999997
0.1892888359176013 1.00425 1.149375 1.0085180625 1.3210628906250002
0.19074490388619822 1.012 1.16 1.024144 1.3456
0.1922235465519827 1.0195 1.168125 1.0393802500000002 1.3645160156250002
0.19372529300942007 1.028 1.18 1.056784 1.3923999999999999
0.19525068901736828 1.0375 1.194375 1.0764062500000002 1.426531640625
0.19680029766036325 1.048 1.21 1.0983040000000002 1.4641
0.19837470004164615 1.059625 1.225625 1.1228051406250001 1.502156640625
0.19997449600972395 1.072 1.24 1.1491840000000002 1.5376
0.2016003049203721 1.084812 1.25125 1.1768170753440002 1.5656265624999999
0.20325276643611287 1.098 1.26 1.2056040000000001 1.5876000000000001
0.20493254136533695 1.111625 1.265625 1.2357101406250002 1.601806640625
0.20664031254338142 1.125 1.27 1.265625 1.6129
0.20837678575803167 1.137188 1.275 1.2931965473440001 1.6256249999999999
0.21014269072208278 1.149 1.28 1.320201 1.6384
0.21193878209577582 1.161438 1.285312 1.3489382278439999 1.652026937344
0.2137658405621187 1.173 1.29 1.3759290000000002 1.6641000000000001
0.21562467395831103 1.181875 1.292813 1.396828515625 1.671365452969
.
.
.

132

B.6 The postrocessing parameter file

'w000r000k000.E1' = name of file with E stored
'VTRoutput' = prefix for name of VTR output files
1 = IVTR (set to 1 to create VTR output)
1 = ILINE (set to 1 to evaluate E along a line)
-0.02500 -0.0045 0.0 -0.02500 0.0455 0.0 5000
-0.02499 -0.0045 0.0 -0.02499 0.0455 0.0 5000
-0.02498 -0.0045 0.0 -0.02498 0.0455 0.0 5000
-0.02497 -0.0045 0.0 -0.02497 0.0455 0.0 5000
-0.02496 -0.0045 0.0 -0.02496 0.0455 0.0 5000
-0.02495 -0.0045 0.0 -0.02495 0.0455 0.0 5000
-0.02494 -0.0045 0.0 -0.02494 0.0455 0.0 5000
-0.02493 -0.0045 0.0 -0.02493 0.0455 0.0 5000
-0.02492 -0.0045 0.0 -0.02492 0.0455 0.0 5000
-0.02491 -0.0045 0.0 -0.02491 0.0455 0.0 5000
-0.02490 -0.0045 0.0 -0.02490 0.0455 0.0 5000
-0.02489 -0.0045 0.0 -0.02489 0.0455 0.0 5000
-0.02488 -0.0045 0.0 -0.02488 0.0455 0.0 5000
-0.02487 -0.0045 0.0 -0.02487 0.0455 0.0 5000
-0.02486 -0.0045 0.0 -0.02486 0.0455 0.0 5000
-0.02485 -0.0045 0.0 -0.02485 0.0455 0.0 5000
-0.02484 -0.0045 0.0 -0.02484 0.0455 0.0 5000
-0.02483 -0.0045 0.0 -0.02483 0.0455 0.0 5000
.
.
.

133

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f N

at
ur

al
 S

ci
en

ce
s

D
ep

ar
tm

en
t o

f P
hy

si
cs

Fredrik Knapskog
Plasm

onic response of supported and interacting spherical nanoparticles

Fredrik Knapskog

Plasmonic response of supported
and interacting spherical
nanoparticles

Master’s thesis in Applied Physics and Mathemathics
Supervisor: Ingve Simonsen

June 2021M
as

te
r’s

 th
es

is

	Abstract
	Preface
	Acknowledgements
	Introduction
	Theory
	Bulk theory
	Induced dipole moment in a metallic sphere
	Boundary conditions on the interface between two media
	The Drude model
	Method of images
	Multipole expansion of the Coulomb potential

	Optical properties for a metasurface of supported and interacting nanospheres
	The metasurface
	Maxwell's equations and the quasistatic approximation
	The solution to Laplace's equation
	Spherical harmonics
	External incident electric field
	The potential in the various regions
	The electric field
	Determining the expansion coefficients for a finite set of spheres from the boundary conditions
	Expanding the finite set of spheres to an infinite periodic lattice
	Determining the expansion coefficients for an infinite periodic set of spheres from the boundary conditions
	Dimensionless dipole moment
	Polarisation density and the effective dielectric tensor
	Reflectance and transmittance

	Resonance energies
	The resonance energy of an isolated sphere
	The resonance energy at dipole order for a single supported sphere
	The resonance energy at dipole order for a supported dimer

	The Discrete dipole approximation
	System of equations
	Polarizabilities
	Cross sections and efficiency factors
	Reflectance from Stokes vectors and the Mueller matrix
	Mie cross sections
	Reflectance and transmittance for a thin film

	Method
	Truncating the system of equations
	Truncating the system of equations for a finite set of spheres
	Truncating the system of equations for an infinite lattice

	DDSCAT
	Choice of method for the discrete dipole approximation
	Truncating the system of equations
	Application of discrete Fourier transform to speed up computation
	The parameter file
	The discretisation

	Implementation

	Results and discussion
	Finite systems
	Dimensionless dipole moments
	Visualisation of the red shifts
	Ring structures
	Near field calculations

	Infinite systems
	Dimensionless dipole moments
	Reflectivities

	The Discrete Dipole Approximation Method
	Verification
	DDSCAT compared to multipole expansion and GranFilm

	Conclusion
	Multipole expansion method
	Python script
	Dielectric file for Ag in SOPRA database

	DDSCAT
	Python script for processing results
	Snippet of the Makefile
	The parameter file
	The target file
	The dielectric file
	The postrocessing parameter file

