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Preface

Abstract

This thesis presents a fault detection and isolation (FDI) framework for de-
tecting propeller icing, and other propulsion faults of unmanned aerial vehicles
(UAVs). Such faults are among the main causes for incidents and loss of equip-
ment.

A theoretical framework for the proposed FDI is covered extensively. A
tuning methodology and an implementation guide are also covered in detail. The
method has been tested extensively using a software–in–the–loop simulator. The
simulation results have proven to be very successful and this motivates future
testing on real data sets.

Relation to previous work

This is a disclaimer about what is new in this thesis and what has been borrowed
or reused.

Project work

There will be some content-overlap between this thesis and the project work
from the fall of 2020. The project work will be quoted in the relevant parts.

Many of the core FDI ideas were developed during the project work. The
main contribution of the project work was an in-depth analysis of those ideas.
The analysis was aimed at limitations and possibilities. The project left off with
a non-functioning method, with many open ends. This thesis presents a refined
solution.

Software documentation is also covered in this thesis. The software project
was started during the project work. This was not documented in the project
work. By then most of the code has been refactored many times over. Further,
the main data structures were developed after the project work. The project
work is therefore not quoted in the software section (7).

Previous work by others

This project builds on previous projects at NTNU. Most prominent is the use of
the Ardupilot-Simulink simulator. Much of the simulator was developed by A.
W. Wenz, K. Gryte, A. Winter and T. A. Johansen. The simulator is described
in Section 5. My contribution to the simulator was the fault dynamics and the
aircraft speed control.
Some of the core ideas were originally from A. W. Wenz. Wenz never published
these ideas, but the ideas are present in the project work. Thus, Wenz is credited
through the project work citations.
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1 Introduction

This thesis presents a framework for fault detection and isolation (FDI). The
framework is applied to the aerodynamic propulsion system of an unmanned
aerial vehicle (UAV). The main contribution and novelty of this thesis is the
use of aerodynamic propulsion performance models and estimation for propeller
icing within an FDI framework. The problem addressed here is how to automat-
ically detect icing on the propeller of a fixed-wing UAV, and how to isolate this
fault, given that there are several other plausible faults in the electric propulsion
system. Please note the semantic difference between fault detection and fault
isolation. A fault is detected if the system correctly realizes that an error has
occurred. The fault is isolated when the system knows which error has occurred.

The development of this algorithm is motivated by the increased utilization
of UAVs and their integration into non-segregated airspace. This development
comes with multiple key challenges and risks. It is widely recognized that faults
in the propulsion system is one of the main risks that may lead to loss of aircraft
and damage to third parties.
Of particular importance is the risk related to UAV propeller icing. In fact,
icing can cause a propeller to loose up to 75% of its thrust after less than 2 min-
utes of operation [1–3]. Notably, the effects of icing are more critical on small
UAVs. This is because of small air frame sizes and slow air-speeds [4]. Missions
that require beyond visual line of sight (BLOS) operation are especially prone
to encountering icing conditions. This is because the mission planner has no
guarantee of good weather [5, 24].
The detection and diagnosis of several types of propulsion system faults in UAVs
are well studied, e.g., [8–12,19]. However, detection of UAV propeller icing is a
comparably neglected topic.

The presented FDI framework is composed of both parallel and sequential
algorithms. The system utilizes a bank of Kalman and Bayes filters in parallel.
These filters preform the bulk of information processing in both the detection
algorithm and the isolation algorithm. These algorithms execute sequentially.
Specifically, a fault detection will start the isolation algorithm.
The main idea is to employ the propulsion system dynamics [17] to formulate
different models for different faults – hence multiple models. Statistically, the
different models are states in a Markov chain. Each state represents a different
fault hypotheses. The different models are applied to separate Kalman filters.
The algorithms for fault detection and isolation build on comparing the Kalman
filter outputs in a Bayesian framework. The framework combines the Kalman fil-
ter performances with the a priori transition probabilities in the Markov chain.
The method uses measurements of the UAV’s airspeed, and the propulsion mo-
tor’s angular speed and electric current. It is assumed that the measurements
are noisy but bias-free. This is motivated by the reliable nature of sensors for
angular speed and electric current, as well as the existence of methods that can
detect and estimate faults on air speed sensors [19–22].
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This approach has some similarities to methods that have been used for detec-
tion of airfoil icing, which has been studied during the last years using various
methods such as model-based estimation [16], multiple-model estimation [13,14],
and statistical fault diagnosis methods [15].

1.1 Thesis structure

This thesis is organized as follows: Section 2 presents an overview of the relevant
scientific literature. Research materials on propeller icing detection are quite
sparse. Therefore, this section will be brief.

The proceeding sections develop the theoretic framework: Section 3 intro-
duces the propulsion model of an UAV and how icing affects this system. The
model is then developed into a multiple model, state space system.

Section 4 presents the main FDI algorithm. This includes the detection
algorithm, the isolation algorithms and estimators.

A systematic tuning methodology is presented in Section 6.
Section 7 presents the software implementation FDI framework.
The proposed method is tested using simulation of a fixed-wing UAV. The

simulation setup is described in Section 5 and results are given in Section 9.
These results are discussed in Section 10 before the conclusions in Section 11.
The thesis is summarized in Section 12.
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2 Literature Review

This section will outline some of the excising scientific literature on icing and
icing detection. The study will focus on propeller icing detection and propeller
icing dynamics.

Icing detection is a well developed field. However, most solutions are based
on dedicated icing sensors. These solution are typically not feasible for small
UAVs, as they require small, light and cheap sensors [29]. Thus, this study will
focus on approaches that are feasible to UAVs. Furthermore, a distinction must
be made between icing detection on airfoils and propellers. This thesis presents
a method for propeller ice detection. Contrarily, most existing methods are
aimed at airfoils. Another difference is that this project aims at only measur-
ing airspeed, motor current and the propeller rotational speed. Therefore, few
methods are available for a direct comparison.

2.1 Propeller Icing Detection

Detection and identification have become big topics and various methods has
been proposed. Some of the more popular ones are multiple models [32] and
observer-based methods [33] both of which are relevant to this thesis. Icing
detection in UAVs have also made use of aerodynamic coefficient estimators
[16] and statistical methods [31] for diagnosis. More exotic methods, such as
an unknown input observer, described by an uncertainty model [34] works in
simulations. However, most applications have not been applied to real world
settings.
There are very few relevant methods for propeller icing and most of the cited
studies focus on airfoil icing detection. For example, Wenz uses an aerodynamic
coefficient estimator to monitor the icing effect on the lift [16]. Similarly, Ding
[31] uses a Neyman Pearson statistical decision approach to detect airfoil icing.
To achieve this, a dynamic model for icing accretion was used. However, the
given dynamic model [25] is only applicable to airfoils and not to propellers.
Thus, the findings cannot be applied directly to a propeller. However, the
method does serve as an interesting starting point.

2.2 Icing Dynamics: Accretion and Shedding

The icing dynamics describe how the levels of ice change with time. In the litera-
ture, the dynamics are usually referred as three different phenomena - accretion,
shedding and melting. This study will focus on accretion and shedding.

A dynamic icing model can serve a process model for system observers. An
accurate process model offer clear advantages for detection purposes. For ex-
ample, by increasing observability and the convergence rate a Kalman filter.
Many of scientific findings are promising. Furthermore, I expect that most im-
pactful, casual variables have been identified. However, an accurate dynamical
propeller icing model has not been found. This limits us to use casual variables
to determine statistical priors.
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There is a knowledge disparity between accretion on propellers and airfoils
on small aircrafts. For airfoils, a continuous icing accretion model [25] has been
available for 20 years. The model introduces a time dependent ice accretion
rate, η̇ice. The model relates η̇ice to atmospheric conditions and ηice itself.

In comparison, recent work on propeller ice accretion [26, 27] is limited to
quantitative descriptions. Thus, accretion on airfoils is better understood than
that on propellers. The disparity is mainly due to propeller accretion being hard
to model. Propellers and airfoils share all relevant environmental factors such
as temperature, humidity, angle of attack, etc. However, the propeller rotation
introduces centrifugal forces [35] and modulated aerodynamic shear forces [26].
These forces make the icing dynamics substantially more complex.

Icing accretion on propellers is in a quantitative stage [26, 27]. The quan-
titative experiments are limited to measuring different icing measures at fixed
intervals. Quantitative descriptions are then given the recorded data.

The casual relationship between environmental factors and icing such as
temperature and humidity are well understood [29]. Further, temperature and
humidity can also affect the formation of the ice. For example, cold air tends
to form rime ice [26] - an ice layer that adopts the shape of the propeller rime.
Glaze ice occurs in humid air and around the freezing point. This glaze tends
to adopt complex and irregular shapes. Glaze ice has been shown to cause the
largest changes in the aerodynamic surface properties [30]. We also know that
propeller materials, such as wetness, can drastically impact the icing [27].

The centrifugal force also plays a part in the ice accretion as a function of
spatial location. Ice accretion grows monotonically with the distance from the
propeller center [26]. The loss in propeller efficiency as a function of accretion
is also well established [26].

The ice accretion can be reverted by ice shedding. Ice shedding is a process
where fragments of ice fall off the propeller [28]. Thus, shedding is highly rel-
evant for a dynamic icing model. Furthermore, shedding detection is a central
part of our problem space. Ideally, shedding will restore the propeller efficiency.
However, uncontrolled shedding can cause unwanted events. For example, frag-
ments can hit or fall into downstream aircraft components [28, 29]. Shedding
times are related to the accretion time, temperature and de-icing heat flux [29].
Once again, only quantitative research is available. Thus, findings on the accre-
tion and shedding can only serve as statistical priors in our model.
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3 Modelling

This section starts with introducing the electric propulsion model for a fixed-
wing UAV (Section 3.1). This is followed by a discussion of icing in Section
3.2. Subsection 3.2 formalizes icing and its effect on the propulsion model.
Subsection 3.3 then introduces a set of icing models for feasible state estimation.
Then, a state space model is used to formulate different hypotheses about the
propulsion faults and propeller icing in Section 3.4. The section ends with a
parameter estimation model that is formulated with a linear time-variant (LTV)
state-space representation in Section 3.5.

3.1 Propulsion Model

The propulsion model of the UAV is based on modelling of the electrical, me-
chanical and aerodynamic subsystems. We only state the resulting equations
here, and refer to [17] for a more comprehensive description of the model:

Θω̇ = ke(Ie − I0)− cvω −Qa (1)

where in the nominal case we have

Qa = ρ
ω2

4π2
D5CQ(J) (2)

CQ(J) = CQ,0 + CQ,1J + CQ,2J
2 (3)

J = 2π
Va
Dω

(4)

Equation (1) gives the propeller torque balance, where ω is the angular speed,
Θ is the moment of inertia of the shaft and rotor including the propeller, Ie is
the motor electric current, I0 is the zero-load current, cv is the viscous friction
coefficient, and ke is the motor constant. Equation (2) describes Qa which is
the aerodynamic torque created by propeller drag, where D is the propeller
diameter and ρ is the air density. The thrust coefficient, CQ(J) is given by a
second order polynomial. This polynomial is a function of the advance ratio
J , where Va is the airspeed. The use of the propulsion model was originally
introduced in the project work [36].

3.2 Icing

This section introduces the concept of icing, the icing dynamics, and its effect
on the propulsion model. A clear understanding of this is essential for designing
a robust fault detection system. However, the nature of the icing dynamics is
an open research question (as covered in Section 2). Thus, the following will
also highlight the relevant gaps in our understanding. Subsections 3.3 and 3.4
cover how these gaps are compensated for.
Icing accretion refers to the formation of ice on a given surface. There are
multiple ways to quantify this phenomena. For example, the degree of icing, ξ,
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could refer to the mass of the ice mξ ∈ R+ or some icing coefficient cξ ∈ [0, 1].
The literature typically uses icing accretion rate [25], icing severity factor [34]
or the icing edge width [26]. However, choosing a definition is not necessary
here. Instead, the reader must assume that the degree of icing, ξ, refers to some
valid quantity. Further, the Icing dynamics is then the time varying change of
this quantity, ξ̇ = f(·).

For the present case, the surface of interest is that of a propeller. The icing
phenomena can be observed through its negative effect on propeller efficiency.
The energy reduction occurs because icing increases the aerodynamic torque 2.
The negative effect should be clear from equation 1. An increase in Qa will
decelerate the propeller.
The aerodynamic torque increases due to an increase in the thrust coefficient
CQ. CQ increases due to a time varying change in the coefficients CQ,0, CQ,1
and CQ,2 from equation 3.
In this text, the term icing will casually refer to an icing induced change in CQ.
The resulting dynamics is referred to as the Icing fault dynamics. The icing
fault dynamics can then be found as the time derivative of equation 3

ĊQ(ξ, J) = ĊQ,0(ξ) + ĊQ,1(ξ)J + ĊQ,2(ξ)J2 +
dCQ
dJ

J̇ (5)

= ξ̇(
dCQ,0
dξ

+
dCQ,1
dξ

J +
dCQ,2
dξ

J2) + (CQ,1 + 2CQ,2J)J̇ (6)

where the chain rule is used.
There are many ways in which equation 6 could be developed further. A

state space could include only CQ, or CQ,0, CQ,1 and CQ,2. Further, the icing
dergree ξ could be modeled as a state, process noise or as an input. However,
equation 6 is incomplete due to gaps in scientific knowledge. Specifically, ana-
lytical expressions of both ξ̇ and

dCQ,i

dt are missing. Furthermore, the equation

becomes exceedingly complicated the time derivative of the advance ratio J̇ is
considered.
This prohibits the use of equation 6 as process model for a state observer. This
imposes drastic simplifications for the observer design. To tackle this, subsec-
tion 3.4 introduces a random walk process model.
The number of independent variables on the RHS of equation 6 is also un-
known. Specifically, how many parameters are needed to describe the change
in the terms

dCQ,0

dξ ,
dCQ,1

dξ and
dCQ,2

dξ from equation 6? For example, can one
parameter describe the change of all their terms? The answer has important
implications for the design of the state observers. This will determine the di-
mensionality of the estimated state vector.
Investigation with different fault detection and identification methods has shown
that it is difficult, if not impossible, to get reliable online estimates of the three
coefficients of the polynomial CQ(J) when they are estimated as independent
parameters [36]. The reason is that the natural variations in J are relatively
small, and even with extensive airspeed changes and maneuvers designed to in-
crease the observability of these parameters, it turns out to be difficult to get
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sufficiently accurate estimates to reliably detect icing and isolate it from faults.
The implication is that a state observer must use a reduced model to achieve
observability. This is covered in Section 3.3.

3.3 Reduced Model of Aerodynamic Torque

This subsection will describe several methods for approximating the dynamics
of the thrust coefficient CQ, as given in equation 6. All methods are based on
reducing the 2nd order polynomial CQ from three to one or two parameters. The
performance of 1-parameter vs. 2-parameters methods can not be fully deter-
mined without working with real data. Nevertheless, a comparison of methods
can be found in Section 5.3. The model know referred to as the One-parameter
model is used in the final simulations.

Note that understanding the FDI framework can be understood without
reading this subsection. The framework functions for all the presented methods,
in both the scalar and the multivariable cases. The theoretical descriptions in
the reminder of this section and Section 4 are therefore invariant to the choice
of model. The variable θ and state x(1) can refer to all of the models described
here.

3.3.1 One-parameter Scaling Model

This model assumes that icing has a linear scaling effect on CQ(J). The scaling
is determined by the scalar parameterizer θ1 with nominal value θ∗1 = 1. The
aerodynamic torque in equation 2 can then be described as

Qa = Q∗a · θ1 (7)

where Q∗a = ρ ω
2

4π2D
5CQ(J) is defined by the nominal (ice-free) values of the

coefficients in CQ(J). Icing is then characterized by θ1 > 1. This model implies
that the icing fault dynamics of all coefficients CQ,i of CQ are the same:

dCQ,i
dξ

=
dCQ,j
dξ

, i 6= j (8)

Preliminary findings from icing wind tunnel tests suggest that the scalar mul-
tiplicative icing model, as given in equation 7, could be well suited to describe
the icing dynamics when the changes in airspeed are small.

3.3.2 Sub-space Model

This method is aimed at finding a subspace of that approximate the dynamics of
CQ in 1 or 2 dimensions. The dynamics are then parameterized in the resulting
subspace. Mathematically, we have

CQ(J) ≈ θTZ
[
1 J J2

]T
(9)
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where Z is a 2x3 projection matrix and θ = [θ1 θ2]T is a 2-dimensional
parameter vector.

We aim at finding a projection Z that maximize some objective. Specifically,
our aim is to maximize the observability of Θ.
A direct measure of observability can be found using the observability Gramian
W o. Further, W o yields such a measure for all directions in the parameter
space. This can be used to identify the desired sub-space, similar to a principal
component analysis (PCA). The Gramian is approximated using an empirical
Gramian which is given by

W o
k,N = CTk,NCk,N (10)

where Ck,N is given by

Ck,N =

 Hk

...
Hk−N+1

 (11)

where the integer N ≥ 3 defines a data window. The empirical Gramian is a
symmetric positive definite matrix that can be expressed using an eigenvalue
decomposition

W o
k,N = V ΣV T (12)

where V has columns that contain the eigenvectors and Σ is a diagonal matrix
with eigenvalues on the diagonal. This model reduction is done as a part of
the design of the fault detection and identification system. It requires an exten-
sive dataset from the relevant UAV executing typical maneuvers under realistic
conditions, leading to a large data window N . This is the reason why we have
excluded the indices k and N from the matrices V , Σ, and Z.

For a given n ∈ {1, 2}, the most observable n-dimensional subspace is de-
fined by the n×3 projection matrix Z, having rows that contain the eigenvectors
corresponding to the n largest eigenvalues. The rows of Z determine a linear
combination of the original 3 polynomial terms that yield the highest observ-
ability for the given data window. This leads to the projection matrix Z that
is kept constant during the online use of the system.

3.3.3 Linear Approximation

The method aims at reducing the parameter space through linearization around
an operating point J̄ . The second degree polynomial in equation 3 is then
approximated by a linear function as in [17]

CQ(J) = CQ,0 + CQ,1J + CQ,2J
2

≈ C̄Q,0 + C̄Q,1J
(13)

The model has the same form as equation (3), except that its dimension is one
less since the quadratic term is neglected. The equations must be modified
accordingly.

Preliminary results suggest that this method works poorly. It has therefore
not been tested further and no results are presented in this thesis.
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3.4 State Space Representation for Estimation

The parameters are assumed to evolve according to a random walk process.
Thus, any change from time index k to k + 1 is only attributable to process
noise vk. This results in a process model given by

xk+1 = xk + vk (14)

The measurement model of the system is derived from the torque balance in
the system model given by equation 1. The airspeed Va, angular velocity ω and
the motor current Ie are assumed to be measured. Substituting equations 2, 3,
4 and the parameter vector xk into equation 1 yields

yk = [Qa ω ke]xk + wk (15)

with yk = −keIe + Θω̇. In cruise mode the UAV speed controllers will maintain
an almost constant propeller speed. This motivates the simplifying assumption
that

ω̇ = 0 (16)

which leads to yk = −keIe. This assumption will be used in the fault detection
algorithms in this paper. The measurement model 15 forms the basis for the

measurement matrices C
(1)
k = Qa, C

(2)
k = ω and C

(3)
k = ke. This leads to

yk = [C
(1)
k C

(2)
k C

(3)
k ]

x
(1)
k

x
(2)
k

x
(3)
k

+ wk (17)

vk ∼ N (0,Q), wk ∼ N (0, R) (18)

Notice that yk and Ck are time dependant functions of ω, Va and Ie. This
relationship is implicitly assumed throughout the paper. The variables ω, Va
and Ie will often be refereed to as a the measurement zk = [ω, Va, Ie].

3.5 System Faults and Degradation Due to Icing

We will now concretize the meaning of the fault concept. We shall then formalize
the fault states of the system.

System faults and degradation occur whenever any of the parameters of the
system deviate from its nominal value. To represent this, the nominal parameter
vector x∗ is introduced:

x∗ = [θ∗ c∗v I∗o ]T

The nominal vector x∗ gives the parameter values of a fault-free and non-
degraded system, which is related to the actual parameter vector x and the
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deviation ε through the equation x = x∗ + ε. Note that these vectors are
partitioned into:

x =

 x(1)

x(2)

x(3)

 (19)

where x(1) contains the first element, x(2) contains the second- and x(3) contains
the third element. The same notation is also used for ε and similar vectors.

A fault in the propulsion system is present whenever any element in ε is
sufficiently different from zero. However, a simultaneous occurrence of multiple
faults would be exceedingly rare. Thus, it is assumed that only one error can
occur at a time. The propulsion system has 4 possible states related to faults
and degradation. The following will be referred to as the fault states m:

0. No fault: x = x∗

1. Propeller icing: x(1) 6= x(1)∗

2. Change in viscose friction: x(2) 6= x(2)∗

3. Change in static friction: x(3) 6= x(3)∗

Note that we will also refer to the much simpler binary state: healthy vs.
faulty. Both states are modeled as Markov processes. We refer to the two
Markov processes as the

Health Model: health ∈ {Healthy, Faulty}
Fault Model: fault ∈ {0, 1, 2, 3}.

Thus, the health state refers to the state of the Health model. Similarly, the fault
state refers to the Fault model. The Markov chains are illustrated in Figure 1.

Figure 1: Left: The Markov chain of the Health state. Right: The Markov
chain of the Fault state.
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Both models have associated transitions probabilities. These are defined by
a transition matrix

Πi
k,k∆

=

π1,1 . . . π1,n
... . . .

...
πn,1 . . . πn,n

 ∈ Rn×n (20)

where i ∈ {f, h} refers to the given model, and n is the number of states. The
Health state has n = 2 and the Fault state has n = 4. πi,j = p(mk = j|mk∆

= i)
gives the transition probability from state i to j. The first row therefore gives
the transition probability from a fault free state to any other state.
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4 FAULT DETECTION AND ISOLATION

We present a framework for sequentially detecting faults and icing, and then
correctly isolating the fault state. The framework will therefore be presented as
modules. We start by an overview of the main algorithm and the formulation
of multiple relevant hypotheses. The key elements of the algorithm are then
described in more detail: the Kalman filter and the Bayes filter. Then, the
detection and isolation algorithms are presented.

The FDI framework presented here can be generalized and applied to other
FDI problems. This allows the adoption of this algorithm to a wide range of
UAV electric propulsion systems. However, some design decisions in this FDI
algorithm are based on specific model assumptions.

4.1 Main Idea

This section describes the system transitions between the detection step and the
isolation step. This entails giving a descriptive overview of the relevant signals
and how they propagate through the system.

The detection step is concerned with the Markov process, referred to as the
Health model. It aims to detect transitions from healthy to faulty. It therefore
provides a binary hypothesis, transition to fault or no fault. This is formalized
with the detection hypothesis HD:

HD ∈ {true, false} (21)

The isolation step is concerned with the Fault state. It attempts to determine
which transition is the most likely to have occurred. The hypothesis space is
therefore

HI ∈ {0, 1, 2, 3} (22)

where HI = 0 is no fault, HI = 1 is fault 1 (icing), HI = 2 is fault 2, and
HI = 3 is fault 3.

The structure of the algorithm is shown in Figure 2. It is assumed that
the UAV is initially in a fault free state. The detection algorithm is initialized
with the nominal state x(∗) and processes a stream of measurements zk. The
detection algorithm executes until a fault is detected. This can be seen in the
feedback loop shown in Figure 2. If a fault is detected (HD = false), then the
algorithm will start the identification algorithm and send a command for a small
change in airspeed to the autopilot in order to enhance observability through
excitation.

Inputs to the isolation algorithm are the measurement zk and the nominal
state x(∗). The isolation algorithm will after convergence output an hypothesis
HI , where HI = 0 implies that the detection algorithm had a Type I error (false
detection), whereas HI = i > 0 implies that the system is in fault state i.
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Figure 2: The data flow of the FDI algorithm. It can be seen that the detection
algorithm will launch the isolation algorithm if a fault is found. Dashed lines
represent a binary/integer signal. Solid lines represent continuous values.

4.2 Estimation

The Kalman filter and the Bayes Filter will now be introduced [18]. These will
be used by both the detection and the isolation steps. We also formalize the
concept of a static hypothesis models. The use of both the Kalman filter and
the Bayes filter was suggested in the project work [36]. However, this section
offer multiple refinements to the original ideas.

4.2.1 Kalman Filter

For each of the fault modes a Kalman filter is formulated. Since it is assumed
that only one fault can occur at a time, the process noise is only affecting one
of the sub-states x(i), while the other states can be treated as constant. The
state space model can therefore be rewritten as

x
(i)
k+1 = x

(i)
k + v

(i)
k (23)

y
(i)
k = C

(i)
k x

(i) + [C
(j)
k C

(`)
k ]

[
x(j)∗

x(`)∗

]
+ wk (24)

where j and ` denote the two remaining modes other than i. The filters will
have the same form for each mode i ∈ {1, 2, 3}. We refer to the Kalman filter
of model i as KF (i). The prediction step is given by:

x̂
(i)
k|k−1 = x̂

(i)
k−1, ∈Rδi (25)

P
(i)
k|k−1 = P

(i)
k−1 +Q(i), ∈Rδi×δi (26)

ŷ
(i)
k|k−1 = C

(i)
k x̂

(i)
k|k−1, ∈R1 (27)
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The update step is given by

ν
(i)
k = yk − ŷ(i)k|k−1, ∈R1 (28)

S
(i)
k = C

(i)
k P

(i)
k|k−1C

(i)T
k +R, ∈R1×1 (29)

W
(i)
k = P

(i)
k|k−1C

(i)T
k (S

(i)
k )−1, ∈Rδi×δi (30)

x̂
(i)
k = x̂

(i)
k|k−1 +W

(i)
k ν

(i)
k , ∈Rδi (31)

P
(i)
k = (I −W (i)

k C
(i)
k )P

(i)
k|k−1, ∈Rδi×δi (32)

where δi = dim(x(i)) is the dimensionality of the state x(i). Thus, the dimen-
sions of the equations 25 and 26 depend on the mode i. This is illustrated in
Figure 3, which shows 3 filters running in parallel.

Also, note that the covariance of the measurement noise R in the equation
29 is the same for all modes. This follows from the fact that all filters depend
on the same physical measurements.

4.2.2 Static Hypothesis Models

We will introduce the so-called Static Model Hypotheses, which are models that
assume that the model parameters remain fixed. For the fault free case, this
gives

Y
(0)
k = yk − [C

(1)∗
k C

(2)∗
k C

(3)∗
k ]

x
(1)∗
k

x
(2)∗
k

x
(3)∗
k

+ wk

= yk −C∗kx∗k + wk

(33)

Note that we will also make use of static models for fault state i ∈ {1, 2, 3}.
In this case it is assumed that some estimate x̂

(i)
ks

was sampled at time ks ≤ k.
This gives rise to the static measurement model

Y
(i)
k = C

(i)
k x̂

(i)
ks

+ [C
(j)
k C

(`)
k ]

[
x
(j)∗
k

x
(`)∗
k

]
+ wk (34)

The static measurement models directly output the innovation ν
(i)
k . The covari-

ance S
(i)
k of ν

(i)
k is given by the measurement noise:

ν
(i)
k = Y

(i)
k (35)

S
(i)
k = R (36)

R will be the same for all static filters. In the reminder, the context (i.e., the

block diagrams in Figures 3 and 4) should make it intelligible when ν
(i)
k and

S
(i)
k are taken from the static hypothesis model and when they are taken from

a Kalman filter.
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4.2.3 Bayes Filter

The Bayes filter allows us to directly compare the performance of various hy-
potheses Hi corresponding to modes i ∈ {0, 1, 2, 3}. The filter follows directly
from Bayes Theorem [18]:

p(Hi|z0:k) =
N (ν

(i)
k , 0, S

(i)
k )p(Hi|z(i)0:k−1)∑M

j=0N (ν
(j)
k , 0, S

(j)
k )p(Hj |z(j)0:k−1)

(37)

where N (ν
(i)
k , 0, S

(i)
k ) is the (Gaussian) likelihood of the zero-mean innovation

ν
(i)
k given covariance S

(i)
k . The Bayes filter can compare a set of filters Y (i), i ∈

{0, 1, 2, 3} and KF (j), i ∈ {1, 2, 3} based on the likelihood:

`(i) = N (ν(i), 0, S) (38)

where ν(i) varies with the filters. This thesis will be limited to using S
(i)
k = R

for i ∈ {0, 1, 2, 3}, where R is given by equation 36. Further, R will be the same
for every model. This goes for both the Kalman and Bayes filters.

The innovation covariance S determines the Bayes filter sensitivity. To see
this, consider the zero-mean Gaussian probability density functions (PDF) de-
fined by S. Thus, for two (different) innovations, ν(i) > ν(j) would imply

`(ν(i)) < `(ν(j)). The smaller the S
(0)
k is, the more narrow the distribution will

be. This will increase the probability differences between the innovations. For
example, the Gaussian zero mean likelihoods `n(·) and `m(·) have variances, Sn
and Sm. Sn < Sm will then imply that `n(ν(i))− `n(ν(j)) > `m(ν(i))− `m(ν(j)).
Thus, smaller values of S make the algorithm sensitive to differences between
the innovations.

The Bayes filter is recursive and initialized according to the prior p(Hi|z(i)0 ) =
p(Hi). We always assume that the system starts in the fault free case. The prior
is therefore given by the first row of the Markov matrix. Keep in mind that
we are operating with two different Markov models. The Health model will
initialize according to Πh, while the Fault model will use Πf .

The concept of a detection/isolation window L can be introduced at this
point. The window L determines the length of time (or number of samples) the
Bayes filter should process before returning a hypothesis. For example, L = 10
seconds would mean that the Bayes filter would process the data from the last
10 seconds. The mode i with the highest probability would then be returned as
the hypotheses. This paper will make use of both a detection- and an isolation
windows. These are the windows to be used by the respective algorithms.

We conclude our discussion by noting how this filter is different from the

Magill filter [23]. This implementation uses that S
(i)
k = R. This yields a static

measurement covariance. Contrarily, the Magill filter receives S
(i)
k directly from

Kalman filter KF (i), as given in equation 29. Our reasoning is that using equa-

tion 29 for calculating S
(i)
k would make filters probability differ substantially.

This is because the process noise Q(i) will directly affect S
(i)
k . This can be seen
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in equations 26 and 29. The effect is prominent since the process noise will

differ by orders of magnitude between models. Thus, different values of S
(i)
k are

likely to introduce big variations in `(i). However, the magnitude of the process
noise of one filter should not make it more (or less) likely than other filters.

4.3 Fault Detection

The fault detection algorithm aims at detecting faults as defined in equation 21.
The basic idea is to use a Bayes filter to compare the output of a Kalman filter,

KF (i), against the static zero hypothesis model, Y
(0)
k . A fault is detected if

some Kalman filter, KF (i) i ∈ {1, 2, 3} outperforms the fault-free static model

Y
(0)
k during the interval {k − L, ..., k − 1, k}, where the integer L is referred to

as the detection window.

Figure 3: Block diagram with detection algorithm.

A block diagram of the algorithm is given in Figure 3. It can be seen that
the measurement zk is propagated through three computational layers before a
hypothesis HD formed. The layers are as follows:

1. The Kalman filters and static model use the measurement zk as input and
outputs:

(ν
(i)
k )← KF (i)(zk), i ∈ {1, 2, 3}

(ν
(0)
k )← Y

(0)
k (zk)

2. Each Bayes filter receives the data from one Kalman filter and the static
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hypothesis model. They each form a hypothesis based on the L last sam-
ples

Hi ← BF (i)(ν
(0)
k , ν

(i)
k )), i ∈ {1, 2, 3}

3. The hypotheses are combined using a logical OR gate:

HD = H1 ∨H2 ∨H3

Each Kalman filter, KF (i), is initialized to x(i)∗. The estimate x̂
(i)
k will then

be updated as measurements zk are made available.
Note that we use 3 different Bayes filters. Each filter is initialized according

to the transition probability given by the first row of Πh. Each Bayes filter
is designed to detect different faults. This partitioning avoids the situation in
which different filters KF (i) start competing for the probability space. This
could occur because multiple Kalman filters often outperform the static model
Y (0) when an error occurs. In practice, the detection window reinitializes the
filter probabilities to the prior distribution.

4.4 Fault Isolation

The fault isolation algorithm aims at isolating the true system fault after some
fault has been detected. The basic idea of the algorithm is to generate a set
of static model hypotheses, and alter the airspeed to introduce a perturbation.
The static model of the true model hypothesis will then outperform the false
ones that will drift as a consequence of the perturbation. It is important that
the models have static parameters because otherwise the parameter estimation
will eventually mask the faults and not be helpful to isolate them. A block
diagram of the algorithm is given in Figure 4.

The isolation algorithm works as follows:

1. The airspeed Va is increased. All Kalman filters estimates x̂(i) will quickly
change due to the airspeed change. The estimates are then given time to
stabilize. This step can be seen in Figure 2.

2. The algorithm then samples the estimates x̂
(i)
kS

at some time ks. The time
ks is given by a clock signal, as shown in Figure 4. This is used to generate
the static models

Y (i) ← x̂
(i)
ks
, i ∈ {1, 2, 3}

3. The airspeed Va is decreased back to its original value.

4. The innovations ν(i) of the static models are given to a Bayes filter. The
filter generates a hypothesis based on the last L samples. The filter is
initialized according to the first row of Πf .

HI ← BF (ν
(1)
k−L:k), ν

(2)
k−L:k), ν

(3)
k−L:k)) (39)
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Figure 4: Block diagram with fault isolation algorithm

In practice, the isolation algorithm inherits state estimates from the detection
algorithm. That is, the Kalman filters from the detection algorithm are kept
running until the sampling time ks. The isolation models then inherit these
values.
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5 Simulation Setup

5.1 Simulating Aircraft Control and Dynamics

The simulation of aircraft is distributed over two independent systems - Simulink
for flight dynamics and Ardupilot for the UAV control.
Simulink is resposible for simulating the flight dynamics and the physical envi-
ronment. The Simulink model includes the propulsion model (from equations
1 – 4) and aerodynamics of the X8 fixed-wing UAV based on [6, 7]. This work
has been further developed by the inclusion of fault dynamics. Simulink calls
MATLAB scripts to calculate different dynamics.

Ardupilot manages the UAV control systems within a software-in-the-loop
framework. This includes the autopilot. The autopilot is responsible for tak-
ing the UAV through a pre-defined mission. The simplest mission available -
a straight line - is used for testing. Online control of the UAV is achieved us-
ing a set of LUA scripts. These scripts can change the control parameter and
the mission itself during-after take-off. A set of Lua scripts communicate with
Ardupilot using the MAVLINK protocol.

5.2 Fault Simulation

The MATLAB scripts can be altered to simulate fault dynamics. The propulsion
model (equation 1) is used for simulating propeller dynamics. This is done
by a MATLAB script that also stores the parameters of the model. Faults
are implemented by changing these parameters during the simulation. The
propulsion model is called in every simulation loop. Dynamic faults are then
achieved by perturbing the relevant parameters by small increments in every
loop. The size and timing of these perturbations is determined by some fault
dynamic function.

Different faults are achieved by changing different parameters. The transi-
tions are determined by parameters that change value. The implemented faults
have only implemented transitions from a healthy state. The system will either
stay in this state or transition to a specific fault state. This be visually under-
stood by noting that the system always starts in the green circles in Figure 1.
Naturally, future work should encompass all possible transitions. The implica-
tion of this is that transitions from a faulty to a healthy state have not been
tested.

5.2.1 Simulated Fault Dynamics

The fault dynamics are simulated using a sigmoidal function. The sigmoid
function was first introduced in the project work [36]. The function gradually
increases over 50 seconds time span. This occurs after around 90 seconds, as
illustrated in Figure 5. This is a pragmatic choice to model a system where a
mathematical model is lacking. All the system faults are simulated according to
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the same sigmoidal function. This goes for both the rise time and the relative
growth of the fault.

The icing fault dynamics have can be simulated in numerous ways. For
example, all the parameters CQ,0, CQ,1 and CQ,2 from equation 3 could follow
their own trajectories. This would correspond to a 3-dimensional icing model.
Alternativly, a scalar icing model could be used. Which model is a more realistic
one is an open question. Both models have been implemented and tested in
Section 5.3. However, the simulation results in Section 9 are based on a scalar
model. The noise analysis in Section 5.3 analyze both scenarios.

For a given fault, the associated variable reaches a steady state after a pro-
portional change by a factor of 1.1. This is exemplified in Figure 5. The figure
shows the fault development of θ1.

50 100 150

Time [s]

1

1.05

1.1

x
(1)

1
 = 

1

Figure 5: This plot shows simulated fault dynamics of x(1).

5.3 Measurement Noise

The framework relies on measuring ω, Va and Ie. Naturally, these measurements
will be subjected to noise, wi, wVa , and wω. This noise has been simulated as
additive, zero mean, Gaussian noise. A simple block diagram of this is shown if
Figure 6.

Tests have been conducted to evaluate how well the icing parameters can
be estimated for different levels of noise. These tests are given in the following.

Figure 6: This block diagram shows the simple logic behind the experiments.
The noise wk is added to a noiseless measurement sequence zk. This data is
given to a Kalman filter that produces an estimate x̂(1).
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The following noise levels were tested:

• Noise free: R = 0

• Low noise: RVa
= 10−6, Rω = 5 · 10−3, RIe = 10−7

• Moderate noise: RVa = 7 · 10−4, Rω = 5 · 10−1, RIe = 10−5

Where R = diag(RVa
, Rω, RIe).

The noise levels corresponding to moderate noise levels will be used for the
FDI testing. These levels were found using the following reasoning: the standard
deviation of the given noise has been chosen to lie between 0.1% and 0.2% of
the mean signal values, i.e., ω has noise covariance 5 · 10−1, Va has covariance
7 · 10−4, and Ie has covariance 10−5.

Note that it is permissible for these noise levels to be less than that of real
world sensors. This is because the model is not limited to raw measurements.
For example, the FDI typically runs at a lower sampling rate than the raw mea-
surements, which means that decimating (or averaging) several measurements
would effectively reduce the noise. Moreover, the electrical model from [17]
opens the door to estimating ω or Ie, or both, with a Kalman filter. The model
could then make use of the less noisy ω̂ and Îe.

The square terms in equations 3 and 4 will affect the noise. Specifically,
the squaring of Gaussian noise components will result in the introduction of
χ2 noise terms [36]. Thus, the distribution of the measurement noise wk from
equation 17 will be a mixture of Gaussian and χ2 terms. Thus, the expected
value of wk will be positive. This will introduce a bias to the system. However,
for the given noise levels, this bias is small enough to be ignored.

5.3.1 Noise Testing

This section will test our ability to estimate the icing parameters for different
levels of noise. The tests are conducted for 3 different levels of additive noise.
This gives a picture of the possible operating range of the Kalman filter. In
each scenario, the Kalman filters have been tuned based on the given levels of
noise.

The noise tests have been conducted for two icing models from Section 3.3.
Specifically, the One-parameter method and the reduced sub-space methods will
be tested. A comparison between the two methods follows naturally. However,
as noted in Section 3.3, the comparison is very limited - the models can not be
falsified based on simulations alone. As a consequence, the two methods are
not tested on the same data sets. Instead, they are tested on the data sets
where they are assumed to perform well. Thus, the One-parameter model has
been tested in a simulation where the fault dynamics are 1-dimensional. The
subspace method has been tested in a scenario where the fault is 3-dimensional.

The one parameter model was tuned and tested for the three different noise
levels. The results can be seen in Figure 7. It can be seen that the noiseless sce-
nario is trivial to estimate. However, the low and moderate cases are much more
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challenging. The same result can be found for the reduced sub-space method.
The results can be seen in Figures 8, 9 and 10. This method differs in the fact
that it tries to estimate a 2-dimensional state space. It can be seen that both
dimensions can be estimated in the noiseless case. The method is designed such

that x
(1)
2 is less observable than x

(1)
1 . It is clear from Figure 8 that it is difficult

to estimate x
(1)
2 even in the noiseless case. Figure 9 shows that the estimate

x̂
(1)
2 is very slow to converge in the low noise scenario. Figure 10 shows that the

estimate x̂
(1)
2 fails at converging to the true state. This clearly indicates that a

2 parameter model is unfit if the measurement noise is at a realistic level.
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Figure 7: This figure shows the state estimate for the one-parameter model.
The top row has zero noise, while the bottom row has the highest levels of the
three. The simulated icing dynamics were scalar.
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Figure 8: This figure shows the state estimates of x(1) and x(2) in noiseless
conditions. The simulated icing dynamics were 3 dimensional.
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Figure 9: This figure shows the state estimates of x(1) and x(2) in low noise
conditions. The simulated icing dynamics were 3 dimensional.
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Figure 10: This figure shows the state estimates of x(1) and x(2) in moderate
noise conditions. The simulated icing dynamics were 3 dimensional.
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6 Tuning

The success of the FDI framework depends on rigours tuning. The most im-
portant tuning aspects must therefore be discussed. We will specifically cover
how to tune both the Kalman filter and the Bayes filter.

6.0.1 Kalman Filter Tuning

Tuning the Kalman filters is essential for achieving a good results. However, it
is assumed that the reader is familiar with tuning Kalman filters. Therefore,
the three most important aspects will be covered briefly.

1. The process noise covariance Q
(i)
k of Kalman filter KF (i) should be com-

mensurate with the magnitude and time constant of the fault dynamics.
Furthermore, different faults, e.g., ε(i) and ε(j), will tend to differ in these
respects. Thus, the filters must be tuned independently.

2. The response time of a filter may be more important than its accuracy.
Keep in mind that the purpose of the filters is to detect faults quickly.
Furthermore, the isolation algorithm should not be executed before the
Kalman filters have stabilized around some value. Thus, a quick filter
is desirable. An example of this can be seen in Figure 16. The top plots
show the noisy estimate of x(2). The given filter was excellent at detecting
faults quickly.

3. The goal is not about achieving a perfect estimate. The important point is
that the correct filter outperforms all other filters. Figure 15 exemplifies
this. It is easy to see that the estimate of x(1) is both slow and noisy.
This is due to a low signal to noise ratio. However, the filter still performs
adequately for both identification and isolation.

6.0.2 Bayes Filter Tuning

The tuning of the Bayes filter determines both the success of the detection and
isolation steps. The main tuning parameters are:

1. S
(i)
k : The innovation variance of the Bayes filter (which determine the

sensitivity).

2. Πf and Πd: The Markov matrices (which determine the prior probability
distributions)

3. L: The window length (which determine how many samples the filter
should use)

There will always be an interplay between these parameters, which should be
kept in mind as we discuss them separately. For example, high sensitivity will
allow for a shorter window length. The following will frequently refer to Figure
11. Note that this figure is the result of simulations, as covered in Section 9.
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Figure 11: All plots shows the output of a Bayes filter during the detection
step. The system is healthy (fault = 0) in all the plots in the left column.
The blue line represents the true hypothesis in the left. The system is faulty
(fault = 1) in all the plots in the right column. Thus, the red line represents
the true hypothesis in the right column. The sensitivity of the filters is the
highest in the top row. The sensitivity is the lowest in the bottom row.
The vertical dashed lines illustrate possible values of the detection window, L.
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The sensitivity is the most crucial aspect of the tuning process. Its effect
can be seen in Figure 11. All the plots in the left column show scenarios where
the system is fault free. The right column shows scenarios where the system
is subjected to icing. In this scenario, the icing fault is fully developed for the
whole time range displayed. That is, the fault is not gradually increasing, its
fully developed. Thus, no change in θ1 occurs during the execution. The plots
in the top row have the highest sensitivity. The sensitivity then decreases down
the rows. The innovation ν(1) from Kalman filter KF (1) is exactly the same
within each column.

It should be clear from the top left plot that high sensitivity has obvious
problems: the risk of false positives increases drastically. Notice that the red
line, i.e., the false hypothesis, almost surpasses the blue line multiple times.
High sensitivity also comes with a clear advantage: fast convergence rates. This
can be seen in the top right. The correct hypothesis is isolated in about 10
seconds. The opposite extreme is found in the bottom row. The bottom left
shows that low sensitivity makes a false positive very unlikely. However, the
bottom right shows that detecting the fault would take more than 3 minutes.
A compromise is found in the middle row. This was the sensitivity level which
functioned the best in the simulations.

The detection window length L must be adapted to the sensitivity. The
horizontal lines of Figure 11 show various options for L. Keep in mind that the
algorithm will choose the hypothesis with the highest value. This happens when
the lines reach the end of a detection window. It should be clear that we must
chose a window that is long enough for the correct solution to be chosen. At
the same time, the window must not be too long. This has the aforementioned
problem that a fault would not be detected fast enough. Furthermore, a core
model assumption is that the system does not change state while the Bayes filter
is running. For the simulations, a 100 second window was chosen.

The transition probabilities also play an important role. All the plots
in Figure 11 are initialized with the same prior distribution. However, it should
be easy to imagine the effect on different priors. For example, the top left
plot would in many instances return a false positive if the lines started closer
together. Conversely, the bottom right plot would return a true positive, if the
lines started closer together.

It is straightforward to imagine more sophisticated approaches to determine
both Πh and Πf . The transition probabilities could be, for example, varied
according to environmental factors, such as power load, temperature and hu-
midity. However, in the simulations the Markov matrices, Πh and Πf , were
selected as simple as possible. Furthermore, only the first row of Πh and Πf

are of interest. This follows from the fact that all simulations are initialized in
a healthy state. The first row of both matrices gives the transition probabilities
from healthy states. For the detection step, the first row of Πh was set to:

Πh
1 =

[
2
3

1
3

]
(40)

Thus, remaining in a healthy state is considered twice as likely as transitioning
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to a faulty state. The isolation step assumes a discrete uniform distribution:

Πf
1 =

[
1
4

1
4

1
4

1
4

]
(41)

It is often assumed that the probability of remaining in the current state has
the highest probability. However, it should be accounted for that Πf is only
used if the detection step has found a transition. This transition introduces a
prior that should be accounted for in Πf .
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7 Implementation

The FDI framework from Section 4 has been implemented in MATLAB. This
section will cover the most important features of the design, interface and archi-
tecture of this software. This sections assumes that the reader is familiar with
the algorithms from Section 4. It is also assumed that the reader is familiar
with the MATLAB language and UML diagrams. In its entirety, the software
spans over a thousand lines of code, spread over multiple scripts. Thus, this
review must be limited to high level concepts and explanations. Nevertheless,
a few central topics have received disproportionate attention. This is to equip
future developers with the tools to work with the code.
Section 7.1 explores the design principles behind the software project. This
section will also give the reader a rudimentary understanding of the system
structure. This documentation is a general guide to the FDI framework. The
focus is therefore on the algorithms from Section 4 and not on the propulsion
model from Section 3. A guide on how to implement systems, such as the
propulsion model, is given in Section 3.5.
The model class is covered in Section 7.3. This introduces a data structure that
is essential for understanding the system architecture. The implementation of
the FDI framework can then be introduced in Section 7.4. Limitations and
pitfalls are covered in Section 7.5.

7.1 Design Principles and Overview

The code has been written with scalablity and generality in mind. Specifically,
the idea is to make it very easy to:

1. Augument and modify the existing FDI framework.

2. Adopt the FDI framework to other systems. For example, it might be
worthwhile to test the framework for icing detection on airfoils.

These goals are achieved by working with classes. The FDI framework is
implemented as the FDI class. This class contains all the algorithms from Sec-
tion 4. All the algorithms and support functions are implemented as separate
methods. Further, the low level methods function independently and therefore
are easy to assemble into new arrangements. Such methods are also written to
be invariant of state dimensions. This makes the functions easy to adapt and
apply to different systems. The FDI class is covered extensively in Section 7.4.

The FDI class is compatible with any system that can be expressed in the
state space form. It is therefore system invariant. The invariance is achieved by
separating the system equations (such as the propulsion model) and the FDI-
framework into independent classes. The result is a system class and an FDI
class. This is analogous to the split between the MODELLING Section 3 and
the FDI Section 4 of this text.

The introduction of the system class offers two main advantages:
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• New systems are quickly adopted by writing a system class script for the
given system. The template for this is given in Section 7.2.6.

• Existing systems are easy to modify - without minding the FDI class.

The system class is covered extensively in Section 7.2

7.2 System Class Implementation

This section will present how systems, such as the propulsion model, can be
implemented as multiple models in the FDI framework. For each such system,
a new script must be written. These scripts define system classes. This subsec-
tion will show how to implement such a class. Each script will have the same
structure.

These efforts are somewhat involved. The explanation has therefore been
partitioned into different steps. We start with simple explanations of what
information the system class should contain and how to represent this. Example
cases case 1 and case 2 are then introduced. The subsection is concluded with
a general template.

7.2.1 System Models

The system class defines a set of system models. The system models define the
system equations that underlie a model in the multiple model framework.

The system models define the information needed for running Kalman filters
and computing innovations for the given model. The system models are passed
as types to the FDI class when it generates the model class. This concept will
be elaborated in the Section 7.3.

The the system models contain the following data:

• The fault state that the system model corresponds to. This is given as
a positive integer.

• The method used to model the fault state. This is necessary because
different system models might be used to model the same hypothesis.
This is given as a positive integer.

• The innovation ν(·) given as a function handle. This is used by the
Kalman filter and the Bayes filter.

• The time variant measurement matrix C(·) given as a function handle.
This is used by the Kalman filter.

• The state dimension d of x(·).

Where C is the measurement matrix C(1) and the innovation ν(1) is given by
ν(1) = y − C(1)x(1). This forms the basis for estimation using a Kalman filter.
Keep in mind that the process model A is determined by the state dimension
d. This is because A = I where I ∈ RdXd.
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The difference between the fault state and the method property can be dif-
ficult to grasp. The answer lies in the fact that some faults might have many
possible representations. For example, subsection 3.3 showed how 3 different
methods can model the icing fault state. These methods are implemented as
separate system models. These system models then point to the same fault
state.

7.2.2 Enumeration Types

The system class is implemented using MATLAB enumeration types. The enu-
meration types define a set of system models. Each enumeration type maps to a
system model. This makes the implemented system models easy to work with.
For example, if a system class has been saved by the name system_name, then
a system model can be declared by

1 model_1 = System_name.name_of_system_model

Properties of a system model can then be accessed using

1 model_1.some_property

The naming convention should follow from the hypothesis and the system model
itself, for example, the propulsion model

1 fault_2 = propulsion_model.change_in_viscous_friction

Now, the innovation of fault_2 can then be accessed using

1 innovation = fault_2.nu

7.2.3 A General System

We will now look at how to find the necessary properties to define a system
model. It is assumed that a few things have to be done before the implementa-
tion:

• The system equations are reformulated as a zero-mean innovation.

• The nominal parameter values are saved to some local file.

• The different system models and hypothesis have been analytically de-
fined.

• The measurement variables zi are identified.

The system models are then implemented as follows:

Step 1: Formulate the system innovation as a function handle. This is straight
forward in MATLAB and is shown in the code bellow

1 load(’ nominal_values}’, ’ x_1_nom ’ ,...,’ x_m_nom ’, ’ c_1’,

..., ’ c_h’)

2 nu = @(z_1 , ..., z_n , x_1 , ... , x_m) expression

3

Listing 1: Formulating the innovation as function handle
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where ”expression” refers to the system equations. The variables x_1, ..., x_m

are the potentially faulty parameters. The variables c_1, ..., c_h are
the parameters that are guaranteed not to change. These are included in
”expression” and not used further. z_1, ..., z_n represent the time
variant coefficients of the system. These are not estimated by the FDI-
framework but given as inputs.

Step 2: Formulate the innovation nu. Further, generalize the number of time
variant coefficients zi by introducing the vector z = [z1, z2, z3]T .

1 nu = @(z, x_1 , ...,x_m) nu(z(1), ..., z(n), x_1 , ..., x_m)

2

Listing 2: Vectorizing the innovation input.

The new function handle is now a function of the vector z. This allows
the FDI class to be independent of the dimension of z. Notice how the
original function handle can be used to define the new function handle.

Step 3: For each hypothesis, find the innovation ν(·). This is done by parameter-
izing nu. For hypothesis 1 < i < m, we get the following code

1 % x_1_nom and x_m_nom are constants

2 % x_i is a new variable

3 nu_i = @(Z, x_i) nu(Z, x_1_nom , ..., x_i , ..., x_m_nom)

4

5 %nu_i is now a function of Z and x_i!

6

7 system_model.state_dim = length(x_i_nom)

8

Listing 3: Formulating the innovation nu(i) of model i.

Further, the measurement transition C(·) must be found. This amounts to
finding measurement coefficients of the state. This is a bit more involved
- especially in the presence of non-linear terms such as z1xixj . However,
a general solution is found with a simple rule

C(z) = ν(z,x(i) = 1,x(j) = x(j)∗)− ν(z,xi = 0,x(j) = x(j)∗), i 6= j
(42)

Notice that x(i) is substituted with 1 in the first term and 0 in the second.
This solution will be valid as long as x(i) is linear with itself. In terms of
code, this is given by

1 C_i = nu(Z, x_1_nom , ... 1, ..., x_m_nom) - nu(Z, x_1_nom ,

..., 0, ..., x_m_nom)

2

Listing 4: A general approach to finding the measurement coefficients of the
state x(i).

The state dimension is readily obtainable from the nominal values:
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1 state_dim = length(x_i_nom)

2

Listing 5: Formulating the innovation nu(i) of model i.

Step 4: Formulate a switch for assigning each system model to a fault state. The
fault free system model is also defined. This model only necessitates the
the nominal values. The fault free system model is also dimensionless and
does not need the measurement matrix C. A template for formulating the
switch is given in the following code:

1 switch fault_state

2 case 0 %Fault free

3 system_model.nu = @(Z) nu(Z, x_1_nom , ..., x_i_nom , ...,

x_m_nom)

4 ...

5 case 1

6 system_model.C = nu(Z, x_1 , ... x_i_nom , ..., x_m_nom) - nu(Z, 0,

..., x_i_nom , x_m_nom)

7 system_model.nu = @(Z, x_1) nu(Z, x_1 , ..., x_i_nom , ...,

x_m_nom)

8 system_model.state_dim = length(x_1_nom)

9

10 ...

11

12 case i

13 system_model.C = nu(Z, x_1_nom , ... 1, ..., x_m_nom) - nu(Z,

x_1_nom , ..., x_i , x_m_nom)

14 system_model.nu = @(Z, x_i) nu(Z, x_1_nom , ..., x_i , ...,

x_m_nom)

15 system_model.state_dim = length(x_i_nom)

16 ...

17

18 case m

19 system_model.C = nu(Z, x_1_nom , ... x_i_nom , ..., 1) - nu(Z,

x_1_nom , ..., x_i_nom , 0)

20 system_model.nu = @(Z, x_m) nu(Z, x_1_nom , ..., x_i_nom , ...,

x_m)

21 system_model.state_dim = length(x_m_nom)

22 end

Listing 6: Formulating a MATLAB switch for assigning system models to fault
states.

Some system classes might require different methods for representing the
same fault state. For example, Section 3.3 presents 3 methods for tracking icing.
Comparing the different methods is an important part of the experimentation
process. This has therefore been included as part of the class structure.

The code solution is very simple - a switch inside the existing switch. The
fault_state will determine the outer switch, while the method will determine
the inner switch. This is shown in the code bellow:

1 switch fault_state

2 case 0 %Fault free
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3 system.nu = ...

4 case 1

5 switch method

6 case 1

7 system_model.nu = ...

8 system_model.C = ...

9 system_model.state_dim = ...

10 case 2

11 system_model.nu = ...

12 system_model.C = ...

13 system_model.state_dim = ...

14 ...

15 case n

16 ...

17 end

18 case 2

19 ...

20 case m

21 end

Listing 7: This code shows a template for including multiple methods for the
same fault type.

Fault states that do not require a method argument can just ignore the
method type and skip the inner switch case.

7.2.4 Case 1: Multiple Models

The following illustrates a generic example of such a class. We will start by
looking at how to formulate the system equations. For the following example,
the system is given by

z3 − c1z1 = c1c2z2

Let us say that we are trying to detect faults in c1 and c2. Thus, we have two
possible models. These parameters have nominal values c∗i . Further, z1 and z2
are measured state variables. The zero mean innovation is found by moving all
variables to the RHS.

0 = c1z1 + c1c2z2 − z3 (43)

The system can then be described using a MATALB function handle

1 nu = @(z_1 , z_2 , z_3 , c_1 , c_2) c_1*z_1 +c_1*c_2*z_2 -z_3;

The function handle nu can now be evaluated based on function inputs. For
example, h(1,1,1,1,1) returns 1.
The measurement terms should then be zi gathered into a vector z = [z1, z2, z3]T .

1 nu = @(z, c_1 , c_2) nu(z(1), z(2), z(3), c_1 , c_2)

This function handle is the basis for defining a set of new models. We now want
to create a model where only c1 can change with time. c1 is therefore referred
to as the state x(1) of the new system model. The corresponding measurement
model is then given by two new function handles
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1 load(’nominal_values ’, ’c_1_nominal ’, ’c_2_nominal ’)

2

3 nu_1 = @(z, x) nu(z, x, c_2_nominal ,)

4 C_1 = @(z) nu(z, 1 , c_2_nominal) - nu(z, 0, c_2_nominal)

The last line is easy to verify

C(1) = 1 · z1 + 1 · c∗z2 − z3 − (0 · z1 + 0 · c∗2z2 − z3)

= z1 + c∗2z2

The same approach can be applied to c2. This yields multiple system models

1 switch fault_state

2 case 0 %Fault free

3 system_model.nu = @(z) nu(z, c_1_nominal , c_2_nominal)

4 case 1

5 system_model.C = nu(z, 1, c_2_nominal) - nu(z, 0, c_2_nominal)

6 system_model.nu = @(z, x) nu(z, x, c_2_nominal)

7 case 2

8 system_model.C = nu(z, c_1_nominal , 1) - nu(z, c_1_nominal , 0)

9 system_model.nu = @(z,x) nu(z, c_1_nominal , x)

10 end

Listing 8: This code shows the model switch for case 1.

7.2.5 Case 2: Multiple Methods for the Same Model

This subsection will show an example of how to implement different methods
for the same fault state. This example will cover how to implement two of the
methods that were introduced in subsection 3.3. Before reading further, keep in
mind that multiple system models will not be used in a live application. This
step is only necessary in a development phase.

This example assumes a system of the following form

0 = z1:3x
(1) + z4x

(2) (44)

= [z1, z2, z3]

x
(1)
1

x
(1)
2

x
(1)
3

+ z4x
(2) (45)

In this case, faults can occur in either x(1) or x(2). This gives 3 fault states
(including the fault free state).

Equation 44 can be expressed as the function handle

1 nu = @(z, x_1 , x_2) z(1:3)*x_1+z(4)*x_2;

where the step vectorization was skipped.
This function handle works well for making a system model for the full state
space. However, in this case it could be hard to estimate the full state space of
x(1). Therefore, the 1-parameter parametrization and the reduced state-space
system models from subsection 3.3 will also be tested. To reiterate, the 2 system
models do the following:
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1. The 1-parameter scaling model will scale the nominal values x(1)∗ by
the parameter p. Thus, the expression will now be x(1) = x(1)∗ · p ∈ R.

2. The subspace model will estimate the subspace of the transformed vari-
able x̃(1). The subspace is in 1 or 2 dimensional system. The transformed

variable x̃(1) = [x̃
(1)
1 , x̃

(1)
2 , x̃

(1)
3 ] is ordered by observability. For example,

x̃
(1)
1 will be easier to observe than x̃

(1)
3 and so forth. The system model

assumes that only x̃
(1)
1 and x̃

(1)
2 change with time. The transformation is

given by T . For nominal values, we get x(1)∗ = T x̃(1)∗. We assume that
the transformation T is available prior to initialization.

These system models require a different function handles than the one above.
The key to handling this lies in the function handle formulation. The naive
solution is to introduce a new function handle expression for every system model.
Fortunately, this is not necessary. In fact, only one modification is needed for
the function handle - the introduction of a flexible parameter P

1 nu = @(z, P, x_1 , x_2) z(1:3)*P*x_1+z(4)*x_2;

Listing 9: This code introduces the flexible variable P .

The power of this approach arises from the fact that P can be substituted with
scalars, vectors and matrices. This is why P is referred to as flexible. The
1-parameter model will substitute P for the scalar parameter p. In this case,
the parameter P takes the role of the state x(1). Contrarily, the reduced model
will substitute the parameter P for transformation T . In this case, P is simply a
non-changing transformation. We see that P can serve widely different purposes.
Other system models can ignore P by using P=1. This is allowed because the
choice of system model has no effect on the nominal values. That is

p∗x(1)∗ = T x̃(1)∗, with p∗ = 1 (46)

This methodology will now be implemented as code. All the case blocks
bellow are assumed to be within a method switch. This is showed in the code
bellow

1 switch fault_state

2 case 0 %Fault free case

3 system_model.nu = ...

4 case 1

5 load(’nominal_values.m’, ’ x_1_nominal ’, ’ x_2_nominal ’)

6 switch method

7 %All bellow examples are here

8 end

9 end

First, the simplest case - the full state model - x(1) ∈ R3. This gives

1

2 case 1 %Full state space}

3 P_nominal = 1;

4 system_model.nu = @(z, x) nu(z, P_nominal , x, x_2_nominal)
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5 state_dim = 3;

6 system_model.C = @(z) ...

7 [nu(z, P_nominal , [1;0;0] , x_2_nominal)-nu(z, P_nominal ,

[0;0;0] , x_2_nominal), ...

8 nu(z, P_nominal , [0;1;0] , x_2_nominal)-nu(z, P_nominal , [0;0;0] ,

x_2_nominal), ...

9 nu(z, P_nominal , [0;0;1] , x_2_nominal)-nu(z, P_nominal , [0;0;0] ,

x_2_nominal)]

Listing 10: Implementing the full state space.

Note that system_model.C is now a vector valued function. This follows
directly from x(1) being a vector. The 1-parameter system model uses P as a
state and will be substituted with the variable x.

1 case 2 %One -parameter model

2 system_model.nu = @(z, x) nu(z, x, x_1_nominal , x_2_nominal)

3 state_dim = 1;

4 system_model.C = @(z) nu(z, 1, x_1_nominal , x_2_nominal) ...

5 - nu(z, 0, x_1_nominal , x_2_nominal)

Listing 11: Implementing the One-parameter model.

Notice that only the nominal value of x(1)∗ is used. Further, system_model.C
is now a scalar valued function. The subspace model is presented in the code
bellow.

1 case 3 %Square subspace system_model

2 load(’nominal_values.mat’, ’ T’)

3

4 %Find the nominal transformed variable

5 x_nom_trf = T * x_1_nominal;

6

7 system_model.nu = @(z, x) nu([z, T, [x;x_1_nom_trf (3)],

x_2_nominal)

8 state_dim = 2;

9

10 subtraction_term = nu([z;0], P_nominal , [0;0; x_1_tld (3)],

x_2_nominal)

11

12 system_model.C = @(z) ...

13 [nu([z;0], P_nominal , [1;0; x_1_nom_trf (3)], x_2_nominal)-

subtraction_term , ...

14 nu([z;0], P_nominal , [0;1; x_1_nom_trf (3)], x_2_nominal)-

subtraction_term]

Listing 12: This codes show how the sub-space model has been implemented.

The nominal values of the transformed variable x̃(1) are calculated after
loading T . x̃

(1)∗
3 is a fixed value in both expressions. The resulting state space

is two dimensional. Note that this state space should be initialized accordingly

to x̃
(1)∗
1:2 . The scalar variant of the model reduction is implemented in a similar

way. The difference is that x̃
(1)
2 is also held constant.
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7.2.6 Implementing the MATLAB Enumeration Type

The exact way to implement the system class using MATLAB enumeration
types is covered here. The script has three segments: enumeration, properties
and the constructor.

• Enumeration: A lists of all allowed system models. Each system model
is specified by its unique name. Each name has a set of input arguments.
These arguments are enclosed in parenthesis on the same line.

1 name_of_model (argument_1 , argument_2)

These are used by the class constructor in the given order.

• Properties: A list of all variables that can be associated with each system
model. This includes the function handles.

• The Constructor assigns properties values to the different enumeration
types. The constructor takes the enumeration arguments as inputs.

1 system_name(argument_1 , argument_2)

A template is given bellow:

1

2 classdef system_name % <- pick a name

3 enumeration

4 %Type_name (fault_state , method)

5 fault_free (0, 1) % <- Constructor arguments

6 name_1 (1, NaN) % <- Fill in a name

7 ...

8 name_mn (m, n)

9 end

10 properties

11 %Constants

12 system_model_idx; hypothesis_idx; state_dim; innovation_dim

13 %Function handles

14 nu; C

15 end

16 methods

17 function system_model = system_name(hypothesis ,

system_model_idx)

18 load(’ nominal_values ’, ’ x_1_nom ’ ,...,’ x_m_nom ’, ’ c_1’,

..., ’ c_h’)

19

20 nu_orginal = @(z_1 , ..., z_n , x_1 , ... , x_m) expression

21 nu = @(z, x_1 , ...,x_m) nu_orginal(z(1), ..., z(n), x_1 , ...,

x_m)

22

23 switch fault_state

24 case 0 %Fault free

25 system_model.nu = @(Z) nu(Z(1), ..., Z(n), x_1_nom ,

..., x_i_nom , ..., x_m_nom)

26 case 1

27 system_model.C = nu(Z, x_1 , ... x_i_nom , ..., x_m_nom)

...
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28 - nu(Z, 0, ..., x_i_nom , x_m_nom)

29 system_model.nu = @(Z, x_1) nu(Z(1), ..., Z(n), x_1 ,

..., x_i_nom , ..., x_m_nom)

30 system_model.state_dim = length(x_1_nom)

31 ...

32 case m

33 switch method

34 case 1

35 ...

36 case n

37 end

38 end

39 system_model.index_idx = system_model_idx;

40 system_model.hypothesis_idx = hypotheses;

41 % The innovation dimension is the same for all system_models

42 system_model.innovation_dim = some number; % <- set the

innovation dimension

43 end

44 end

45 end

Listing 13: This code gives a template for implementation of the enumeration
types.

The template assumes that some fault states only have one method. For exam-
ple, fault_state=1 only uses one method. The first system model, name_1, has
the fault state argument fault_state=1. The method argument has therefore
been set to NaN. This is not the case for the fault state m witch has n types. The
system model name_mn has the fault state m and the method type n.

7.3 Model Class and Models Container

The model class and models container will now be presented. In this context,
model has an extended meaning from what we saw in Section 4. In this con-
text, model refers to a class that stores all data associated with the model. For
example, a detection model is associated to the state estimate x̂(i). Thus, the
corresponding model stores both the state x̂(i) and the the fault state i.
The models container stores all the models that the FDI class has stored.
models is a data structure within the FDI class. A model is itself a super
class and it contains a system model (from the system class) and a model type.
The model types are independent of the system class. The different types are
fault free, detection and isolation. The model class structure has been visual-
ized as an UML class diagram in Figure 7.3. It can be seen that the model class
has an aggregated relationship with the system class and the model type. An
instance of the model class is required to contain one system model and one
model type. The figure also shows the relationship between the model class and
the models container. It can be seen that there is a composition relationship
between the model class and the models container - if the container is deleted,
then all the model instances are deleted as well. Further, the container can con-
tain an unlimited number of instances. It is important to note that the models
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Figure 12: A UML class diagram. The diagram shows the structure of the model
class.

46



container is owned by the FDI class. It can be seen in Figure 7.3 that the model

super class has 4 main properties:

• id: A unique ID for every model.

• init_time: The time when the model was spawned.

• model_type: An aggregated class.

• system_class: An aggregated class (as discussed in subsection 7.2).

The model types, detection and isolation, are used in the detection or isolation
steps, respectively. The fault free model is used in both steps. The different
steps require different data. That is why the different model types have different
sets of properties. All the properties and methods needed for the fault free model
are embedded in system_type. The fault free model type is empty.

The detection type is the most involved. It includes everything needed to
initialize a Kalman filter:

• x: The state (which starts at the initial value).

• Q and R: The process and measurement noise covariances.

• P and S: The state and innovation covariance.

In fact, one Kalman filter is spawned for every detection model. The isolation
class is comparably sparse. It only contains the static estimate x. The isolation
model doesn’t need its own Kalman filter - it is initialized based on the estimates
contained in previous detection models.

The models container has no limit to the amount model instances it can
store. Further, the FDI class will function with any number of model. The FDI
method from Section 4 would only require 3 detection models and 3 isolation
models. Thus, the FDI class gives flexibility beyond the presented method.
The flexibility has multiple advantages. From a tuning perspective, this allows
for rapid development. For example, many model with the same system type

can be spawned concurrently. The only difference may be the Kalman tuning
parameters Q and R. It is easy to compare different tuning options when the
algorithm terminates. This simplifies the tuning effort drastically. Furthermore,
different system types, with the same model id, are also easy to compare.

The flexibility also makes the FDI class is easy to modify. For example,
a new FDI algorithm might require 3 detection models for possible fault, e.g.
three icing models. This new feature can be added by initializing the FDI class
differently. No changes needed.

7.4 FDI class

This section will focus on the methods of the FDI class. This involves seeing
how the algorithms from section 4 has been structured into separate functions.
The interaction between these functions has been detailed as UML sequence
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diagrams. These can be seen in figure 7.4.1 and 7.4.1. After this, we’ll look at
how the main tuning parameters of the FDI class. the section is finished with
a brief overview of how to the FDI class is initialized and run.

7.4.1 FDI functions and sequencing

The main functions of the FDI class is given in the 2 lists bellow. The list
bellow covers the interface of the FDI class. These functions are responsible for
implementing the algorithms covered in sections 4.1, 4.3 and 4.4.

• update_model: This is the main function of the FDI class. It implements
the logic from section 4.1. It is responsible for coordinating all the other
functions during execution. This function is given the measurement z
from the UAV interface. The innovation of all model classes is computed
every time a measurement z is received. The function will also executes
the Kalman filters associated to the detection models. The function will
periodically update the detection or isolation models by executing the FDI
algorithm. The length of this period is determined by the update_rate.

• runDetection: This function is responsible for detecting faults in the
system. This answers to the algorithm presented in section 4.3.

• runIsolation: This function is responsible for isolating faults in the sys-
tem. This answers to the algorithm presented in section 4.4.

• state_transition: This function is responsible for handling the transi-
tion between algorithm states. For the current implementation, the only
transition is from detection to isolation. For this transitions, the function
is responsible for initializing new isolation models when a fault has been
detected. This is done by calling the function add_model. The function
also determine the constant ks (as covered in 4.4).

The main calculations are done by the following functions:

• kalmanFilter: An implementation of the Kalman filter equations as given
in section 4.2.1. Note that the function is general. It adapts to the system
type, as specified in the system class. Thus, the function is not rewritten
for every new model.

• likelihoods: A function that calculates the likelihoods of all models,
based their innovations. The function assumes a multivariate Gaussian
distribution.

• bayesFilter: An implementation of the Bayes filter equation as given in
section 4.2.3.

The interaction between the functions can be seen in the two UML sequence
diagrams in figure 7.4.1 and 7.4.1. The sequence diagrams follow each other,
such that the content of figure 7.4.1 should be understood as the continuation
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of figure 7.4.1. The diagrams have been split to ensure readability. However,
the partition follows naturally from the structure of update_detection. The
logic in figure 7.4.1 is executed every time a new measurement is available.
Contrarily, the contents of figure 7.4.1 only execute periodically.

run_detection and run_isolation are not detailed at length here. These
functions are the same as what was presented in section 4.

7.4.2 FDI tuning parameters

The main tuning parameters of FDI algorithm must be specified before initial-
ized. Most of these tuning were detailed in section 4. They will therefore just
be briefly covered here:

1. update_rate: The frequency that the FDI class should run detection and
isolation algorithms. Specified as the number of samples.

2. detection_window: The length of the detection window Ld. Specified as
the number of samples.

3. isolation_window: The length of the isolation window Li. Specified as
the number of samples.

4. S_sensitivity: The covariance used by the Bayes Filter. This gives the
sensitivity. Defined as a square matrix or scalar.

5. transition_prob: The transition probability between fault states. This
is given by a square matrix.

7.4.3 Initialization and execution

It will now be shown how the FDI algorithm can be initialized and executed.
Initialization will be covered first. The main functions involved during initial-
ization is are

• FDI_class: The constructor function

• add_nominal_model: A function for adding the a fault free model to the
models container.

• add_model: A function for adding new model to the models container.
This function is also used by the state_transition function - after ini-
tialization.

FDI_class constructor require all the tuning parameters are given as inputs.
Further, the constructor needs information about the system class being used.
Specifically, the fault free model, as specified in subsection 7.2. The constructor
will call add_nominal_model and pass the fault free type and system model. An
example initialization can then be done as follows:
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Figure 13: This figure shows a the first part of a UML sequence diagram. The
diagram shows the FDI class handle incoming measurements from the UAV
interface. The actions are executed every time a measurement is received.
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Figure 14: This figure shows the second part a UML sequence diagram. The di-
agram shows how the FDI class react to a measurement from the UAV interface.
The actions are only executed periodically
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1 FDI_prop = FDI_class(update_rate , detection_window ,

isolation_window , S_sensitivity , transition_prob ,

propulsion_model.fault_free , mission_length)

Listing 14: Initialization of the FDI class. All the FDI tuning parameters are
given as constructor inputs.

FDI_prop is now an instance of the FDI_class. Now, the possible system
faults must be added. add_model takes care of this. The model_type and
system_model must be specified for each model. At initialization, all models
will be of type detection. As seen in section 7.3, the detection model require
the specifications for a Kalman filter - Q, R and P0. In code, new models are
added as displayed bellow.

1 % Icing scalar param

2 Q = 2e-4; R = 5e-4; P = 1;

3 FDI_prop.add_model(FaultType.icing_scalar_param , HypothesisType.

detection , Q, R, P, p_nominal , start_index);

4

5 % Air viscosity

6 Q = 1e-14; R = 3e-11; P = 1e-15;

7 FDI_prop.add_model(FaultType.air_viscosity , HypothesisType.

detection , Q, R, P, phi_nominal (4), start_index);

8

9 % Zero load current

10 Q = 1e-6; R = 3e-9; P = 5e-4;

11 FDI_prop.add_model(FaultType.zero_load_current , HypothesisType.

detection , Q, R, P, phi_nominal (5), start_index);

Listing 15: An example of how to add new models to the FDI class - prior to
execution.

The system can now be executed in a loop

1 while some_condition

2 if UAV.new_measurements_received ()

3 z = UAV.get_current_measurement ();

4 FDI_prop.update_model(z);

5

6 if FDI_prop.fault_detected

7 UAV.export(FDI_prop.k_s);

8 end

9 end

10 end

Listing 16: This code exemplify of how the FDI framework can be executed.

Note that there is currently no UAV class. As a consequence, all mission data is
prerecorded and ks is set in advance. Thus, the code above is not implemented
in its entirety.

7.5 Limitations and drawbacks

The presented software framework has its limitations and drawbacks. This
follows naturally from resource constraints and the size the project. This in-
formation is vital for future development. Naturally, knowing every bug and

52



limitation is impossible in advance. However, the following will present the
most important drawbacks that are currently understood.

7.5.1 Application for real time systems

The FDI class is optimized for rapid development and prototyping - not for exe-
cution speed. Further, the developed software has been used with pre-recorded
data and never in a real time environment. Applying the FDI class to real time
data is straight forward with the instructions from section 7.4. However, in
doing so, the execution times might not be fast enough. This is a direct result
of the flexibility of the software. Thus, speed has been traded for flexibility.

For example, the current implementation allows for quick generation of any
number of hypotheses. This makes tuning and testing very easy. Oppositely, a
real time system should operate with a fixed number of models. This makes it
difficult to optimize the the matrix multiplications, e.g. through vectorization.
Similarly, using a fixed amount of models would allow for parallelization of the
computations. Both vectorization and parallelization would yield high perfor-
mance gains. However, this is difficult with the current implementation.
The FDI class also stores a lot of data. This data is used for analyzing and
plotting the algorithm performance data. A real time system would spend
significantly less resources on such storage. Such resources is better spent on
increasing execution speeds.
There are some ways to increase the code performance without changing the
overall structure. For example by building a minimal version of the current im-
plementation. Another way would be to translate the MATLAB code to some
faster language, e.g. C++. However, state of the art solution would require a
redesign of the system architecture.

7.5.2 Ardupilot interface

The current MATLAB implementation does not interface with the Ardupilot
autopilot. This makes the FDI framework unable to access the UAV motion
control. Thus, the airspeed changes, as described in section 4.4, are not executed
by the FDI algorithm. Instead this airspeed changes were pre-timed in an
external LUA script and executed during simulation. The FDI-class was then
executed on using the recorded data. The problem is therefore that the interface
around the FDI class is incomplete. For example, the FDI class can determine
a propper sampling time ks, but this cannot be used to control the airspeed.
Thus, a communication package must be developed before real time projects
can be undertaken.
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8 Evaluation Criteria

Specific evaluation criteria has been set to evaluate the algorithm. The criteria
specify a baseline for what the algorithm must achieve in order to be considered
functional.

The evaluation criteria define a binary set of requirements: These are as
follows:

1. False Alarm rate should be zero: The algorithm should not conclude that
a healthy system has transitioned to a faulty state.

2. Fault detection rate should be 100%: The algorithm should always con-
clude that a faulty system has transitioned to a faulty state.

3. Fault Isolation should have 100% accuracy: The algorithm should always
isolate the correct fault state of the system.

The presented algorithm is still at low technology readiness level. The pre-
sented results is therefore focused on satisfying these criteria using simulations.
This allow us to determine proof of concept. Future work should focus on find-
ing the operating range in witch these criteria are met. For example, how much
noise the system can be subjected to.

9 Simulation results

The FDI framework has been tested vigorously in the simulation environment.
This section will detail the main results from this testing.

Four different simulation scenarios are used to illustrate the performance
of the presented fault detection and isolation system, one for each of the fault
states listed in Section 3.5. For the given implementation, the system satisfies
the criteria we defined in section 8 for all four scenarios.

The results of the detection and isolation are covered separately. However,
one should keep in mind that the FDI algorithm is only successful if both steps
succeed. In the results we show a series of probability plots over time. Such
plots can be seen in Figure 11, for example. These plots show the result of the
Bayes filter iterating over a window of length L. The graph with the highest
value at the end of the window is chosen as the most likely hypothesis. Note
that the Bayes filter is generally not run over the entire data set. Instead, it is
reinitialized to its priors and executed periodically.

9.1 Detection

It has been found that all fault scenarios can be detected using our method. We
also found that false positives can be avoided through good tuning.
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9.1.1 No-fault scenario

The algorithm was successful in avoiding false alarms. The algorithm did not
show any false alarms in the chosen scenario. Note that this is the result of
tuning for this scenario and should be analyzed over a wider range of scenarios.

9.1.2 Propeller icing scenario

The propeller icing x(1) was successfully detected. This can be seen in the bot-
tom row of Figure 15. The plots shows various Bayes Filter outputs throughout
the simulation. The columns represent slices in time. Each row shows the prob-
ability of a particular Kalman filter. The goal here is for the red line to climb
above the blue line (no fault). This signifies a successful detection. It can be
seen that the it takes over 100 seconds (after the fault occur) before the error is
detected. The slow detection time is in large part due to the slow convergence
of the state estimate x(1), as can be seen in the top plot of 15. It can be seen
in the top plots of Figure 16 and 17 that x̂(2) and x̂(3) converge much faster.
This results in shorter detection times.

An overview of KF (1) can be seen in the top plots of Figure 15. The top
plot shows the true parameter and the Kalman filter estimates. The plot also
show the Fault free (nominal) parameters. It should be evident that the filter

estimates ˆx(1) with moderate success. This is a result of the low signal to noise
ratio between aerodynamic thrust coefficients and the measurement noise. The
middle plot show that the error covariance P (1) stops decreasing after about
300 seconds.

9.1.3 Change in viscous friction scenario

The detection algorithm detected the change in viscose friction x(2) quickly.
This can be seen in Figure 16. The top plot shows the dynamics of x(2) and
the estimate x̂(2). It can be seen that the estimate x̂(2) responds quickly to the
change. This allows the fault to be detected very quickly. The fast detection
can be seen in the 3 bottom plots of Figure 16. The Bayes filter becomes very
confident 30 seconds after the error occurs.

Note that the estimate x̂(2) looks noisier than the estimate x̂(3) (see figure
17). However, x(2) is many orders of magnitude smaller than x(3). Furthermore,
both estimates are subjected to the same measurement noise.

9.1.4 Change in static friction scenario

The change in static friction x̂ was successfully detected. The results of the
estimation can be seen in Figure 17. Note that both the results and their plots
are more or less the same as that of the change in viscous friction in Section
9.1.3.
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9.2 Isolation

The isolation algorithm manages to find the correct fault for all fault scenarios.
This can be seen in Figure 18. The plot shows the output of the Bayes filter.
It can be seen that the algorithm was successful in every case. However, it is
clear that the icing fault is the hardest one to isolate. This can be seen in the
top plot of Figure 18. Notice that Y (1) only marginally outperforms Y (0). This
means that the icing was hard to isolate from the fault free case. The two plots
below show Y (2) and Y (3). The Bayes filter was executed 40 seconds after the
second air speed change (see Figure 19).

The effectiveness of the isolation algorithm can also be seen in Figure 19.
The true fault is given by HI = 2. The left most bottom plot shows that finding
the correct hypothesis, prior the identification step, is a challenging problem.
In this plot, we see that the wrong hypothesis would have been chosen. One
should also note the horizontal green lines in the two plots in the middle. The
two horizontal green lines shown in the two plots indicate the parameter values
chosen in the static models Y (2) and Y (3). These are generated right before the

decrease in airspeed. Observe that the estimate x̂
(2)
k ≈ x̂(2)

ks
and thus remains

stable for all k > ks. Contrary to this, it is found that both x̂
(3)
k diverges from

x̂
(3)
ks

and x̂
(1)
k diverges from x̂

(1)
ks

. It is these divergences that results from the
perturbation of Va that allows the isolation algorithm to find the true fault.
The bottom right plot shows how the Bayes Filter confidently isolate returns
HI = 2. Note that this scenario, the fault dynamics only gave a 1% increase in
x(2).
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Figure 15: Fault scenario 1: Top plots show state and its estimate. The middle
plot show the error covariance P . The bottom row display detection probabili-
ties at different slices in time.
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Figure 16: Fault scenario 2. Top: True value and estimate of x(2). Bottom:
Probability plots from Bayes Filter at various time instances.
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Figure 17: Fault scenario 3. Top: True value and estimate of x(3). Bottom:
Probability plots from Bayes Filter at various time instances.
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Figure 18: Results of isolation algorithm for all faults. Left: True Fault = 1,
Isolation hypothesis = 1. Middle: True Fault = 2, Isolation Hypothesis = 2,
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Figure 19: Illustration of the isolation algorithm. The top plot shows the air-
speed and its reference. The plots in the middle shows dynamic and static
estimates. The bottom plots show outputs of the Bayes filter before and after
the static filters are generated.
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10 Discussion

This section offers a give a brief discussion of the results. This will include
an interpretation of the results and its implications. The limitations of these
findings are then discussed. The section ends with recommendations for future
work.

10.1 Interpretation

The results warrants a positive interpretation. In every scenario, both the detec-
tion and isolation algorithm were successfully. Furthermore, all the evaluation
criteria were satisfied.
It is clear that icing was the slowest to detect. However, icing isolation was
achieved once it had been detected. Isolating icing from the other fault mod-
els was much easier than isolating the icing from the fault free case. This is
probably because the fault free case is unaffected by changes in airspeed.

10.2 Implications

The results have two main implications. First, the results is strong validation
of the theoretical correctness of the FDI framework. The methodology does
inded work as predicted. Second, such results warrants further exploration of
the method.

Such exploration can take two forms

1. The method can be tested on real data. This would be straight forward,
given that the system dynamics for the X8 fixed wing UAV have been
implemented. Further, real wind tunnel data is already available. The
only challenge is the to format this data to fit the framework.

2. The method can be applied to new systems. This could include similar
systems, such as airfoils, or different systems, such as the wheel of a car.

10.3 Limitations

The results does suggest some limitations. It is quite clear that the method is
sensitive to measurment noise. In fact, noise is expected to be the main limi-
tation of the FDI framework. The result strongly suggest that the drifts with
the greatest magnitude were the easiest to detect. Thus, upper limits to noise
will depend on both the noise and the magnitude on the parameter drift, that
is, the signal to noise ratio.
Both of the noise levels and drift magnitude are currently uncertian. The
amount of noise in the system will depend on both the measurment equipment
and our ability to filter the measurement. The drift magnitudes will hopefully
be better understood when a real data set is analyzed.
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10.4 Recomendations

Future development on this project should be focused on testing the FDI frame-
work on real data. A substantial part of this work should be devoted to a
rigours analysis of noise. These effors should also be directed towards filtering
the measurements. Further, the motor current Ie should receive the bulk of this
attention. This is because the of Ie has the biggest effect on the system.

63



11 Conclusion

This thesis set out to detect and isolate icing on a UAV propulsion system. This
is a difficult problem. My own project work [36] found that propulsion model has
limited obeservability of icing when in cruising speed. The project also found
that it is impossible to tell icing apart from other faults while in cruising mode.
An initial literature study also found that icing detection on UAV propellers
is underdeveloped. Among the problems is the absence of dynamic models of
propeller icing accretion. This thesis has presented solutions and workarounds
to these challenges. Part of the solution lies in novel system modeling, airspeed
control and the introduction of a FDI framework.

It has been shown that a Random walk model can substitute for a dynamic
icing model. The random walk models has been integrated into a different
Kalman filters. These filters has been shown to successfully track many different
types of parameter drifts - including icing. The fault dynamics was based on
a Sigmoid function. It is fair to assume that other dynamic responses could
be tracked as well. Thus, propeller icing can be tracked, without an dynamic
icing model. However, a dynamic icing model would still be useful and could
potentially improve performance further. The inclusion of such a model would
not change the structure of the FDI algorithm.

The propulsion model has limited observability and imposes estimation re-
strictions - at most 2 dimensions of a state space can be estimated [36]. This
thesis shows that such reduction still allows for icing detection. However, this
conclusion is based simulating icing using a scalar model. The result might be
different if the icing is significantly more complex. However, preliminary find-
ings at NTNU suggest that a 1 parameter model is adequate. If so, then the
presented results should be well suited for accurate estimation.

Icing is not the only fault that can occur in the propulsion system. A multiple
models approach has therefore been used - one model for each fault. Each model
is tracked using a separate Kalman filter. The performance of the Kalman
filters were compared to a the performance a static fault free model (the null
hypothesis). The fault free model outperformed the Kalman filters when no fault
had occurred. Furthermore, it was found that the Kalman filters outperformed
the static model when a fault occurred. Thus, the detection algorithm was a
success for the given set of faults.

In all fault scenarios, all the Kalman filters would, after some time, outper-
form the static model. This is because all models were excited at by an error
occur. This supports the conclusion that the correct fault is not guaranteed
to outperform other models, while in during speed [36]. However, well tuned
filters resulted in the correct model having the highest performing Kalman fil-
ter. Thus, the correct fault could be identified running the isolation algorithm.
However, this results is of limited usefulness - the filters were individually tuned
to faults know in advance. The faults cannot be know in advance. Therefore,
the filters cannot be expected to be as well tuned. Nevertheless, the result is
positive. For example, in some cases there might not be enough time to run the
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isolation algorithm.
The isolation step was found to be successful in every scenario. This was the

case for all the fault magnitudes that were tested. Furthermore, the isolation
step is very good at correcting false positives from the detection step. This
allows for the use of a sensitive detection algorithm. It is better to allow the
detection step ”detect” one fault to many, than to not detect anything at all.
The isolation steps then serve as a good tool for correcting potential mistakes.

The FDI framework was found to satisfy all the criteria that were introduced
in Section 8. Thus, the isolation step never had to correct for false positives.

The biggest drawback of the method is noise sensitivity. The method is
highly dependent of good estimates of Va, ω and Ie. Noisy estimates can disrupt
our ability to detect icing. This will be among the primary challenges when
working with real data.

In conclusion, the FDI framework must be considered a success. At least
from a theoretical stand point. The results are positive. Nevertheless, a healthy
dose of skepticism encouraged. In the simulation the propulsion model and the
icing dynamics are perfectly described by equation 1 and the One-parameter
icing model. Thus, the system implementation and tuning process was based
on perfect system knowledge. Naturally, real data will introduce much more
model uncertainties. The FDI framework might not perform as well in such
circumstances. Consequently, the acquired results might not extrapolate well
to real data.
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12 Summary

This project introduced a fault detection and isolation (FDI) framework for
detecting propeller icing, and other propulsion faults of UAVs. Icing accretion
is among the leading sources of UAV system failures.

12.1 Literature Study

This thesis focuses on detecting icing on a propeller UAV. Within the field of
aeronautics, icing is short hand for icing accretion - the formation and accu-
mulation of ice. Icing detection is well studied in aeronautics, but this is not
the case for the propellers of small UAVs. Propeller icing is both a difficult and
relatively underdeveloped topic. It is therefore natural to look for solutions in
related domains.
The closest relation can be found to airfoil icing on UAVs which is a comparably
well developed topic. Here, we find many methods for icing detection. Some
methods of interest include the use of multiple models [32], observer-based meth-
ods [33], aerodynamic coefficient estimators [16] and statistical methods [31].
However, the mechanics of airfoil are comparably simple. In the propeller case,
both centrifugal forces and modulated aerodynamic shear forces act on the ice.
Tellingly, icing accretion on propellers is currently poorly understood and cur-
rent research is limited to quantitative analysis. This makes the mechanics
difficult and direct comparisons infeasible. Nevertheless, studying published
work on airfoil icing is highly useful.

12.2 Modeling

The presented method is based on working with a propulsion model for fixed
wing UAVs. The model relates the propeller angular acceleration ω̇ to variables
such as airspeed Va, motor electric current Ie, rotational speed ω̇ and the aero-
dynamic torque Qa. Aerodynamic torque will increase as icing accrete. This
offers the possibility to detect icing by only measuring ω, Va and Ie.

Propeller icing and its effect on the aerodynamic torque are open research
questions. The chosen approach is to model the icing as random walk processes.
Further, aerodynamic torque could in theory be a high degree polynomial, as
a function of icing. This method demands a low order system due to limited
observability.

Therefore, many models were available to model it. The best candidates are
reduced state space model and a scalar parameterization. The majority of the
text assumes that the one parameter model is used. The reason for this is two
fold. Firstly, this seems to fit well with preliminary results from experimental
data. Secondly, a scalar model yields a very simple system. The other faults
are much easier to model and are therefore given less attention.

A fault occurs whenever a parameter drifts from its nominal value. Many
such errors can occur in a system. This framework uses a multiple models
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approach to model different faults. The goal is to determine which model out
of the many is correct. In each model, the associated parameter represents the
state. All other parameters are kept constant. The exception is the fault free
model. This model holds all parameters constant.

The framework assumes that only one model can be true at a time. Thus,
multiple models can be referred to as the states of a state machine. In this
machine, the current state will only depend on the previous state. Further,
transitions between states is a statistical question. This results in a Markov
process.

The prior probability that a fault will occur can now be considered as the
transition probability in the state machine. The goal is then to predict when
the Markov process transitions.

The model can be represented as state space systems. The process model
of the state space is then given by the random walk model. The measurement
model of the system is derived from the propulsion model. This allows for state
observers to estimate the state. The state space can then be estimated using
Kalman filters. The state of model i is denoted by x̂(i). Generally, ·(i) denotes
any variable associated to model i. For example, the Kalman filter of model i
is denoted as KF (i).

It is important to realize that every model is based on the same set of system
equations. In this case, all models use the same propulsion model to derive the

measurement equation, y
(i)
k = C

(i)
k x̂

(i)
k + static terms. For model i the static

terms are the terms that do not depend on x(i).

12.3 The Fault Detection and Isolation Framework

The FDI framework is partitioned into two separate steps, detection and iso-
lation. The detection step is the default algorithm. In this step, the goal is
limited to detecting that a fault has occurred. This is done while the UAV
is operating in cruise mode, i.e., at a constant speed. If a fault is detected,
then the algorithm will issue two commands concurrently. 1. The UAV will
be requested to make a series of jumps in the airspeed. 2. The isolation will
be activated. The isolation algorithm aims at determining which fault that has
occurred. The jump in airspeed is necessary in order to tell the different faults
apart.

12.3.1 Estimation

Both steps of the isolation and the detection algorithms depend on state ob-
servers for states estimation. In this case, Kalman filters are used. Each Kalman
filter maps to exactly one model. Thus, if a models assumes that some parame-
ter α is varying with time, then a Kalman filter will estimate α. The filters are
tuned based on the characteristics of the parameters they are estimating. For
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example, if a parameter tends to have large drifts, then the filter process noise
covariance Q must be large as well. Thus, different Kalman filters will be tuned
differently.

The filter performance is determined by the innovation ν
(i)
k = y

(i)
k − C

(i)
k x̂

(i)
k +

static terms. The innovation gives the difference between the measurement and
the predicted measurement.
Not all models require a Kalman filter. The fault free model assumes that
parameters are fixed and thus do not require estimation. This motivates the
introduction of static hypotheses models. Static hypotheses models are used to
represent models that assume all parameters to be static. Static hypothesis are
initialized according to a set of parameters and these do not change. A static

model will still return an innovation: ν
(i)
k = y

(i)
k − static terms. Thus, dynamic

and static models can be compared by their innovations. The model with the
smallest innovation will tend to represent the best hypothesis.

Both the detection and isolation algorithms use a Bayes filter to chose be-
tween competing hypotheses. The detection step aims to find the detection
hypothesis HD ∈ {healthy, faulty}. Similarly, the isolation step aims to find the
isolation hypothesis HI ∈ {no fault, icing, ...}.

Using a Bayesian framework follows naturally from the probabilistic nature
of the problem. Furthermore, using Bayes reasoning allows us get the most out
of the available information. From before, the Markov process defines a set of
transition probabilities. This corresponds to prior probabilities. Further, the
conditional model probability, given the measurements, can be found based on
the Kalman filter performance.

The Bayes filter always initializes with a prior and receives innovations from
a set of models. The filter then calculates which model has the highest proba-
bility based on Bayes rule. The filter will terminate after receiving a specified
number of innovation samples. This number is referred to as the window.

12.3.2 The Detection Algorithm

The detection algorithm is aimed at answering a binary question: Is the system
faulty? This is formulated as the detection hypothesis HD ∈ {healthy, faulthy}.
In this case, the number of models will not equal the possible detection out-
comes. Instead, one model is generated for each possible fault. These models
have associated state spaces and Kalman filters. A static model is spawned for
the fault free scenario.

A fault is detected if any of fault models become statistically more probable
than the fault free model. This comparison is done using a set of Bayes filters.
The ith Bayes filter, BF (i) takes the innovations from the fault free model ν(0)

and the ith Kalman filter ν(i) ← KF (i). This gives the ith hypothesis Hi =
BF (i)(ν(0), ν(1)) ∈ {0, 1}. The detection hypothesis can then be determined by
a Boolean summation:

HD = H1 ∨H2 ∨H3
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12.3.3 Isolation

The isolation algorithm is aimed at answering the question: What is the system
fault? This is formulated as the isolation hypothesisHI ∈ {fault free, icing etc...}.
In this case, the number of models equals the possible isolation outcomes. The
isolation algorithm will only execute if a fault has been detected. The FDI
framework will also command the airplane to execute a set of airspeed jumps.
These jumps are designed to make the faults easier to isolate.

The isolation algorithm assumes that all models are static. The static models
initialize according to the estimates from the existing Kalman filters. These
are Kalman filters that were used by the dynamic models in the detection step.
Naturally, the inheritance occurs between models of the same type. For example,
the static model for icing will inherit its estimate from the model that estimated
icing. The isolation algorithm also includes the fault free model from before.

The probability of the different models can then be compared. All models
are compared using one Bayes filter. The filter takes in the innovation from all
the models and returns the isolation hypothesis directly. The propulsion model
has 3 possible faults and a fault free scenario. This gives four models. The
detection hypothesis can then be found directly using:

HI = BF (i)(ν(0), ν(1), ν(2), ν(3))

12.4 Simulation Environment

The simulation of a propulsion system is distributed over two independent sys-
tems - Ardupilot and Simulink. Ardupilot manages the UAV control using a
software-in-the-loop framework. Simulink is responsible for simulating the phys-
ical environment. This includes the Aerodynamic properties of the UAV.
Faults are also simulated within Simulink. This is done by altering the param-
eters of the propulsion model.
Measurement noise is added to the recorded data. The added noise was Gaus-
sian.

12.5 Tuning

The FDI framework is dependent on a rigours tuning process. This amounts to
tuning Kalman filters and Bayes filters.

12.5.1 Kalman Filter Tuning

Well-tuned Kalman filters are essential for achieving good results. This process
is the same as that of tuning any other Kalman filters. However, 3 points are
important for the present case:

1. The process noise covarianceQ
(i)
k of Kalman filterKF (i) must be updated

to the expected magnitude of fault i. The filters will therefore tend to be
differently tuned.
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2. The estimate response time is often more important than the quality. This
is because faults most often can be detected quickly.

3. The goal is not about achieving a perfect estimate. The important point
is that the correct filter outperforms all other filters.

12.6 Bayes Filter Tuning

The Bayes filter has the following tuning parameters:

1. S
(i)
k : The innovation variance of the Bayes filter (which determines the

sensitivity). This parameter will determine how sensitive the filter is to
differences in the model innovation. Let us consider two models with the
same prior probability. For a given time step, model i has a very small
innovation ν(i) ≈ 0 and j has a large innovation ν(j) >> 0. If the filter
is sensitive, then the Bayes filter will update the probabilities such that
model i has a much larger probability. Contrarily, an insensitive filter will
barely update the probabilities. The sensitivity must be sufficiently high
for the models to converge in time. At the same time, too high sensitivity
makes the filter vulnerable to measurement outliers.

2. Πf and Πd: The Markov matrices (which determine the prior probability
distributions) of the Markov processes.

3. L: The window length (which determines how many samples the filter
should use). The window must be long enough for the Bayes filter to
converge to the true model. However, the window should be much longer
than the response times of the faulty parameters. For example, if ice
accretion builds up the time scale of minutes, then an hour long window
would catch the fault too slowly.

12.7 Implementation

The FDI framework has been implemented in MATLAB. It is written to be gen-
eral and highly flexible. This allows for quick development and experimentation.
The two main classes of the system are:

1. The system class: This class implements the system specific equations. For
example, for the current project, this class contains the propulsion model.
The class also contains the state space formulations of the different models.
New systems can be added by following the template in 7.2.6.

2. The model class: This class implements the different models. The class
contains all the data that a model needs to function in the FDI framework.
The class receives a state space from the system class. It also inherits many
properties based on the sub-types detection, isolation, fault free.
For example, a detection model stores the specifications for tuning a
Kalman filter.
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3. The FDI class: This class implements the FDI framework. This includes
the detection algorithm, isolation algorithm, the Kalman filter and the
Bayes filter.

The code implementation comes with two main drawbacks:

1. The code is not optimized for speed. This might be problem when working
with real time systems.

2. Real time execution demands that the FDI framework communicates with
the internal control unit of the UAV. However, the required communica-
tion package has not been developed.

12.8 Simulation Results

The FDI framework is found to work satisfactory for all the simulated scenarios.
The faults in these scenarios are 10% of the nominal parameter values. These
results are found while applying moderate noise levels.

12.9 Detection

The detection algorithm function is satisfactory in all scenarios. When no fault
is present, the algorithm avoids false positives. Further, a fault is detected in
all fault scenarios.
The icing scenario takes the longest to detect. This is because the underlying
parameters have the smallest magnitude. A 10% drift in these parameters is
therefore smaller than a change in other parameters.

12.10 Isolation

The isolation algorithm function is satisfactory in all scenarios. The algorithm
is capable of isolating the true fault in every scenario.

12.11 Conclusion

All evaluation criteria for the FDI framework were met. The framework is ready
for testing on real data sets.
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