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Abstract

For this project, a real-time capable GPU-accelerated feature-based stereo Visual Simultanous
Localization And Mapping (VSLAM) solution, capable of fusing measurements from Inertial
Measurement Unit (IMU) and Global Navigation Satellite System (GNSS), is developed. Ini-
tial motion estimates are produced in one thread while concurrently managing 3D points and
performing multi-frame Bundle Adjustment (BA) over short-term windows. Place recognition
is successfully performed without false positives, and loop closures are carried out in a final,
third thread. The concurrent long-term and short-term optimization is solved over a single fac-
tor graph, where iSAM2 is used for the underlying update rule. Preintegrated IMU and GNSS
measurements are fused with the short-term VSLAM estimates by optimization. GNSS data
are thus available to correct for drift, while the visual-inertial Simultanous Localization And
Mapping (SLAM) module provides accurate motion estimates during temporary or permanent
loss of GNSS data. This enables the vehicle to report accurate trajectory estimates relative to a
global reference frame.

The developed system is validated on real world sensor data recorded on-board the autonomous
ferry prototype milliAmpere (mA). However, as a result of insufficient stereo camera calibration,
the main portion of the testing is rather performed on the publicly available Karlsruhe Institute
of Technology and Toyota Technological Institute (KITTI) dataset. Analysis showed that the
Visual-Inertial Odometry (VIO) part of the system outperforms the popular stereo VO system
LIBVISO2 on most tested sequences. When loop closures are extended to the VIO module, the
gap in performance is increased even further. The resulting performance is also measured up
against and compared with one of the current state-of-the-art solutions, ORB-SLAM2, to put
the performance of the developed system in perspective.
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Sammendrag

I denne oppgaven er det utviklet et navigasjonssystem basert på visuell simultan lokalisering og
kartlegging (VSLAM), som er i stand til å inkludere målinger fra IMU og GNSS i en samlet
factor graf sensor fusjon. VSLAM systemet er feature-basert og optimalisert for prossessering
på GPU. Initielle bevegelsesestimater produseres mens man parallelt utfører multi-frame BA
over vinduer med aktive factorer. Stedsgjenkjenning gjennomføres vellykket uten noen falske
positive deteksjoner, der lukking av den detekterte sløyfen utføres i en siste, tredje tråd. Et
filter og en smoother gjennomfører optimaliseringer parallelt over en samlet factor graf, der
iSAM2 brukes som den oppdateringsstrategi når nye målinger legges til. Preintegrerte IMU- og
GNSS-målinger fusjoneres sammen med VSLAM estimater i filteret. På den måten vil globale
GNSS-data korrigere for drift når de er tilgjengelige, mens den visuell-inertiale SLAM-modulen
gir nøyaktige målinger av forflytningen til kjøretøyet i mellomtiden, eller hvis signalet til GNSSen
faller ut. På denne måten kan kjøretøyet motta nøyaktige målinger på sin globale posisjon, selv
ved lavere oppdateringsrate fra GNSSen.

Det utviklede systemet er validert på innsamlede sensordata fra den autonome ferjeprototypen
milliAmpere. Som et resultat av problemer med kamerakalibreringen ble testingen hovedsake-
lig gjennomført på det offentlig tilgjengelige KITTI-datasettet. Analyse viste at VIO-delen
av systemet overgår det populære stereo VO-algoritmen LIBVISO2 på de fleste av de testede
sekvensene. Når lukking av sløyfer ble lagt til VIO-modulen, økes gapet i ytelse ytterligere. Pre-
sisjonen til den utviklede algoritmen sammenlignes også med en av de nåværende beste SLAM
algoritmene, ORB-SLAM2, for å understreke svakheter som utløses i noen spesielle tilfeller.
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CHAPTER 1

Introduction

This introductory chapter serves to give the reader a better understanding of the framework which
the thesis is built upon. First, the background and motivation behind the thesis work is presented,
before targeted contributions are specified. Related work is then elaborated, followed by the thesis’
relation to the specialisation project. Lastly, the structure of the report is outlined.

1.1 Background and Motivation

Autonomous robots have seen considerable advancement in recent years due to an escalating
degree of inter-working, increasingly complex system solutions. There are different degrees of
autonomy, but an autonomous system should in general be capable of operating with little to
no human interaction. A key component of autonomous operations is the ability to accurately
perceive and understand both static and dynamic unknown environments so that the robot can
localize itself with respect to the surroundings, based on sensory information. Modern state-of-
the-art motion estimators differ from classical Bayesian filtering approaches in that they consider
a range of measurements (i.e. smoothing) stored in factor graph containers (Cadena et al., 2016).
For these approaches it is common to embed exteroceptive sensors such as cameras and Light
Detection and Ranging (LiDAR)s using SLAM. With state-of-the-art sensor technology, robust
perception systems are more readily available than ever, allowing for more potent motion estima-
tion. Real-Time Kinematic-Global Navigation Satellite System (RTK-GNSS)’ are examples of
highly accurate localization units, being precise down to a few centimeters. However, the GNSS
might not always be available or reliable. For example, it might fail due to hardware errors,
jamming/spoofing, limited coverage, or, most commonly, human errors. In case the RTK-GNSS
for some reason should fail it is important to have redundancy in a replacement system. One
example of such a potent back-up alternative is the aforementioned SLAM approach. Highly
accurate motion estimates could be calculated from up to several exteroceptive sensors, followed
by fusion with sensor data from interoceptive measurements from for example IMUs or magnetic
compasses. Thus, providing a comparable alternative to GNSS in the short term, exampled by
both Campos et al. (2020) and Skjellaug (2020) for cameras and LiDARs respectively. While per-
ceiving the environment, SLAM provides the additional benefit of creating a three dimensional
reconstruction of the scene from exteroceptive sensor data, providing situational awareness of
static objects in the scene.

The autonomous potential in the automotive industry have been extensively researched over
the years (Bimbraw, 2015). An important reason behind this is that at least 90% of vehicle
accidents are estimated to be the result of human error (Singh, 2015). Adopting autonomous
vehicles could therefore have the potential of reducing or even eliminating the largest cause
of car accidents, while also outperforming human drivers in perception, decision-making and
execution. The commercial research has therefore seen a huge spike in interest. An example
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of a key contribution to this field is the KITTI dataset (Geiger, Lenz, Stiller, and Urtasun,
2013a). This is a publicly available dataset intended to serve as a benchmark for development of
computer vision and robotic algorithms, targeted at autonomous driving. This, and many other
publications, has thus lead to a rapid progression in the autonomous car industry.

Another application of autonomy that has received increasing attention is autonomous naviga-
tion by sea. Ever since Autonomous Surface Vehicle (ASV)s were first introduced by MIT in
1993 (Manley, 2008) extensive research has been conducted and several prototypes have been
launched, demonstrating the capabilities of autonomous operation (Liu et al., 2016). One exam-
ple of the application of ASVs is autonomous ferries for passenger transportation. Golden et al.
(2016) states that autonomous ferries have the potential to be more sustainable both in terms
of cost and environmental footprint. More importantly, Jokioinen et al. (2016) explains that
autonomous ships have the potential to match, or even improve, the accuracy of manned ships in
the coming future. Today, human errors are the reason for more than 60% of ferry accidents and
are accountable for more than 70% of the fatalities in these accidents (Golden et al., 2016), hence
autonomous ships could also have the potential to be safer than manned vehicles. The Autoferry
project (Nilsen, 2017) at NTNU is a research project developing a fully autonomous ferry, called
milliAmpere2, which transports passengers between Ravnkloa and Brattøra, in Trondheim. The
passage is not easy to cross and milliAmpere2 will serve as a fully electrical replacement being
able to transport people with just the push of a button. The ferry prototype, milliAmpere, is
displayed in figure 1.1.1, and will be described in more detail in section 6.1.

Figure 1.1.1: Image from data logging with milliAmpere in April 2021. Image captured by the
author.
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1.2 Contributions

The following contributions are listed for this master thesis:

1. A tailor-made data set has been recorded with a large variety of sensors using the au-
tonomous ferry prototype, milliAmpere. The recorded data set was compared to suitable
alternative real-world data sets.

2. An efficient GPU-accelerated feature-based VSLAM frontend has been developed for
stereo cameras, largely inspired by Library for Visual Odometry 2 (LIBVISO2) (Geiger,
Ziegler, et al., 2011) and the Stereo Odometry Based on Feature Selection and Tracking
2 (SOFT2) (Cvišić et al., 2018). The frontend uses bucketed FAST feature detection, Lu-
cas Kanade optical flow feature tracking, circular matching, linear triangulation and both
structure-only and motion only BA for initial motion estimates and 3D point detection.

3. Place recognition using DBoW2 (Gálvez-López et al., 2012) was embedded in the frontend
making the system capable of detecting loops by comparing ORB descriptors.

4. A concurrent short-term smoother and long term smoother solution (S. Williams et al.,
2014) using iSAM2 (Kaess, Johannsson, Roberts, Ila, J. J. Leonard, et al., 2012) as the
underlying update rule.

(a) The short-term smoother performs windowed multi-frame bundle adjustment for
stereo measurements. The short-term smoother is capable of fusing both GNSS and
preintegrated IMU measurements in a modular approach. The modular strategy
makes it easy to replace, improve and add modules, so that other sensors can be
incorporated at a later stage.

(b) The long-term smoother is capable of closing detected loops in a seperate thread,
thus correcting for accumulated drift.

5. The complete system is embedded in ROS, fitting with the existing interface already
placed on milliAmpere.

6. The developed VSLAM system is tested on milliAmpere, thus being one of the first image
based SLAM approaches ever to be tested on a maritime surface vehicle, to the extent of
the author’s knowledge.

1.3 Related work

Preliminary research on estimating a vehicle’s ego-motion using visual input was first described
by Moravec (1980) in the early 1980s. This research was motivated by the desire to provide
rovers the capability to estimate their 6-Degrees of Freedom (DOF) motion in the presence of
wheel slippage and rough terrains. Nistér et al. (2004) later formalized this form of motion
estimation by the term Visual Odometry (VO) in the first real-time implementation of a VO
system. VO algorithms can be categorized as either feature-based, which retrieve the relative
pose between images by extracting and matching keypoints from them, or direct methods, which
directly compare pixel intensities to achieve the same result. Feature-based methods are also
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referred to as indirect methods.

SLAM is an extension of odometry where drift is removed by recognizing revisited locations and
correcting for the accumulated drift to achieve globally consistent pose estimates rather than
locally consistent, which is the case for VO. As research topics, VO and SLAM have gained a lot
of traction and attention in the last 30 years. Earlier work on SLAM was focused on Bayesian
filtering methods, such as Extended Kalman Filter (EKF), particle filters, etc. Durrant-Whyte
et al. (2006) provide a comparison for methods up til 2006. In the last decade, non-linear filtering
based approaches have been replaced by optimization-based approaches, called BA. These have
proved to be more accurate and efficient (Strasdat et al., 2010). Cadena et al. (2016) provides
an in-depth description of the development of SLAM throughout history, as well as a survey of
the current state of SLAM together with future directions.

More recent work formulates the SLAM in terms of factor graphs, alternatively the closely related
hyper graphs, which are then optimized in batches. There exists many optimization libraries, such
as Georgia Tech Smoothing and Mapping library (GTSAM) (Dellaert, 2012), g2o (Kummerle et
al., 2011), the Ceres-solver (Agarwal et al., n.d.) and miniSAM (Dong et al., 2019). Studies
(Doaa et al., 2013), (Youyang et al., 2020), (Grisetti et al., 2020), tend towards GTSAM and
g2o being the most efficient batch algorithms, with g2o having a slight advantage. However,
research conducted by Kaess, Johannsson, Roberts, Ila, J. J. Leonard, et al. (2012) created an
algorithm for sparse nonlinear incremental optimization, named iSAM2, fitting nicely with the
incremental nature of measurement updates in SLAM problems. The factor graph structure sim-
plifies the integration of measurements in the problem formulation. Factor graphs can also quite
easily embed measurements from other sensors, making it far more likely that the optimization
converges to a consistent and correct estimate. Over the years Dellaert and Kaess (2017) have
added several extension to the optimization library GTSAM (Dellaert, 2012), some of which are
sliding window optimization (Chiu et al., 2013), concurrent filtering and smoothing (S. Williams
et al., 2014) and smart factors (Carlone et al., 2014).

The work by Mouragnon et al. (2006) was the first real-time application of VO using BA. This was
followed by the ground-breaking Parallel Tracking and Mapping (PTAM) by Klein et al. (2007),
where tracking and mapping of features were split into two threads. ORB-SLAM, created by
Mur-Artal, Montiel, et al. (2015), builds on many of the ideas from PTAM. It uses ORB-features
(described in section 3.2.1) for tracking, mapping, relocalization, and loop closing, of which all
except relocalization are run in parallel threads. At the time of release, ORB-SLAM achieved
unprecedented performance with respect to state-of-the-art SLAM systems. Since then, several
direct and indirect SLAM systems have been released matching or outperforming ORB-SLAM,
including new versions of ORB-SLAM (Mur-Artal and Tardós, 2017) and (Campos et al., 2020).
Indirect SLAM methods extract features from images to estimate motion, while direct SLAM
methods directly optimize on the pixel intensities between images. Direct methods have proved
to accurately estimate motion, but it is recognised that indirect methods often outperform the
direct. Current state-of-the-art methods are so-called VIO which include IMU measurements in
the pose estimation. ORB-SLAM3 provides a comparison of many of the best VO, VIO, and
VSLAM methods available (Campos et al., 2020).

Even though both VSLAM and ASVs have been extensively researched, little attention has been
directed towards the application of SLAM in maritime harbor environments. Within the field
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of pose estimation, preliminary research was conducted by Ødven (2019) and Dalhaug (2019)
in their thesis’. The former compared multiple LiDAR-VO and -SLAM algorithms available
from open-source in Robot Operating System (ROS); none of which yield sufficiently accurate
results for autonomous docking (Ødven, 2019). The latter thesis focused on localization using
particle filters. Even though this yield a quite accurate pose estimation, particle filters turned
out to be too computationally inefficient for real-time localization (Dalhaug, 2019). Skjellaug
(2020) developed a feature-based LiDAR-SLAM system using the iSAM2 framework, incorpo-
rating both IMU measurements and the RTK-GNSS. With the RTK-GNSS disabled, this work
presented results that achieved higher accuracy than a standard GNSS receiver, both for the
two-dimensional xy-plane, and for the z-direction, in the short term. Experiences from this sys-
tem forms the basis for further development. The most recent addition to the these research
topics is the contribution from Gerhardsen (2021) which analyses pose estimation using fiducial
markers in marine environments. This research show promising results and should be included
as supplementary measurements for future work.

During the specialization project (Hellum, 2020), several state-of-the-art VO and VSLAM al-
gorithms was studied. None of the existing open-source VO/VSLAM systems were considered
as viable alternatives, mainly because of their tightly coupled structure and that they were not
considered compatible with GTSAM. This would make it difficult to modify and fit such VSLAM
systems with inclusion of other exteroceptive SLAM modules. Additionally the pose optimiza-
tion would have to be performed twice, once for the original system and once where other sensors
were included. The additional refinement from the secondary optimization module should then
ideally be fed back to the original system. This can cause race conditions. The specialization
project therefore concluded that a new VSLAM algorithm rather should be developed.

1.4 Relation to the specialisation project

The practical implementation from the specialisation project (Hellum, 2020) is completely re-
worked. However, experiences and results obtained from this work is of importance when further
investigations are done into the concept of SLAM and sensor fusion in this thesis. Sections from
the specialisation project that are found to be relevant for the master’s thesis will therefore be
included either in their original form or in a modified, redrafted version. Redrafted sections may
include new parts added during the work with this thesis or just be updated with the latest
information.

If a section is included in its original form or redrafted from the specialisation project it will be
clearly stated. The sections these notes applies to are also summarised here for easy identification
by the reader:

• Sections included in their original form include: 3

• Sections included in a modified form include: 2.2, 2.4, 4, 5.2 - 5.3
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1.5 Outline

This master thesis is organized into 11 chapters. After this introductory chapter, the outline of
the report is as follows:

• Chapter 2 introduces background information on pose estimation for both exteroceptive
and interoceptive sensors. This includes cameras, IMUs and GNSS’.

• Chapter 3 introduces background information on feature management in images.

• Chapter 4 introduces fundamental statistics that are used in graph-based SLAM problems.

• Chapter 5 presents SLAM problem formulations in general. Backend formulation of factor
graphs are further depicted, going into more details on the iSAM2 algorithm and concurrent
short-term and long-term smoothing.

• Chapter 6 presents the sensor setup on milliAmpere and on the KITTI dataset, together
forming the consolidated datasets. Then, details of the utilized software are presented in
more detail.

• Chapter 7 goes into details on the structure of the frontend for the developed VSLAM
algorithm. The approach of every developed component are then specified.

• Chapter 8 decribes how concurrent short-term and long-term smoothing is solved in prac-
tice, some of which with marginalization and loop closure. This is followed by more details
on how the different sensors in practice are connected in a joint factor graph optimization.

• Chapter 9 describes results of data logging with milliAmpere and stereo calibration.

• Chapter 10 discusses results achieved by the developed multi-sensor SLAM algorithm on
the consolidated datasets. Here, the results are compared to LIBVISO2 and ORB-SLAM2.

• Chapter 11 concludes the work of the master thesis and presents improvements for future
work.
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CHAPTER 2

Fundamentals of pose estimation from sensor data

This chapter presents the essential background information on pose estimation using different
sensors. First, coordinate frames, rigid-body kinematics and Lie theory are described to explain
motion of an object. Next, fundamentals for pose estimation using various sensors are explained.

2.1 Coordinate frames

It is important to understand how different bodies are oriented relative to each other. To un-
derstand this, one also have to understand how a vehicle body is oriented with respect to an
earth-fixed position. Also, it is often practical to know how a sensor (e.g., a camera) is oriented
relative to the vehicle or other sensors. This section describes the various coordinate systems
used to describe the position and orientation of the vehicle and its sensors.

World frame: The world origin and coordinate basis vector is an arbitrarily chosen pose in
which the state of the vessel is seen in reference to. This center is often referred to as the world
frame, which will be denoted FW . To complete the parameterization of the coordinate frames
the direction of the axes have to be defined. FW is sometimes referred to as a North-East-
Down (NED) coordinate frame, for example in seakeeping theory (Fossen, 2011) or for aerial
vehicles (Beard et al., 2012a). In this frame, x is pointing towards north, y towards east and z
downwards. There are many alternative, for example by inverting the y and z direction compared
to the NED frame, as is done for the GNSS/IMU in the KITTI dataset (Geiger, Lenz, Stiller,
and Urtasun, 2013b).

Body/Vehicle frame: The body frame, FB, also referred to as the vehicle frame, is defined so that
all coordinate frames on the vehicle can be described in relation to each other. The reference
point of the body frame may be placed on an arbitrarily body fixed position but is often set to the
center of orientation. For freestanding objects, this is typically the center of gravity. There are
many choices for the orientation of the coordinate frame, but a common choice is placing x-axis
in the the direction the vehicle is facing. Following the right-hand rule, the z-axis is typically
either pointing upwards or downwards. If z is upwards, then y is pointing to the left, but if z is
downwards, then y is pointing to the right.

Odometry frame: Is another frame that often are formulated for VO and SLAM scenarios, which
will be denoted FO. This reference point is set to the initial pose of the body, which does not
necessarily have to be the same as the world center.

Common sensor frames: Every sensor perceive the environment with respect to their own co-
ordinate frame. For example, with cameras the coordinate frame place the reference point at
the focal point. Following the OpenCV convention this frame places the x-axis pointing to the
right, y downwards and z in the perceived direction of the camera. This is known as the camera
frame, FC , and will be covered in more detail in chapter 2.4.1. Some other examples are the
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LiDAR, which often has the x-axis pointing forward, y to the left, and z upwards, but this is not
set in stone. IMUs and GNSSs, on the other hand, may use either the latter coordinate frame
or inversing the y and z direction such that y is pointing to the right and z points downwards.

The relation between the different coordinate frames are illustrated in fig. 2.1.1. It is evident
that some mathematics have to be formulated in order to relate the different coordinate frames
both to perform sensor fusion and state estimation.

Figure 2.1.1: Illustration of coordinate the different types of frames that are typically referred
to in SLAM scenarios. Sensor frames are illustrated in the image. The red arrow depicts the
x-direction, while yellow is y-direction and z is marked as blue. Image captured by the author.

2.2 Rigid Body Kinematics

A presentation of the necessary background material related to Rigid body kinematics was included
in the specialisation project preceding this thesis. This presentation is deemed valuable also for
this thesis, and the presentation from the project report (Hellum, 2020) is therefore included below
in a redrafted version.

A homogenous transformation matrix is a 4 × 4 matrix, Tab, which describes a change in pose
from coordinate frame Fa to Fb. This transformation can be decomposed into a rotation matrix,
R ∈ R3×3, and a translation vector, t ∈ R3×1. The transformation matrix is an element of the
special Euclidean Lie group in 3D, which can be used to describe motion of vehicles and vessels
in 6 Degrees of Freedom (DOF). Lie groups will be covered in more detail in section 2.3. The
rotation matrix describes rotational motion for roll, pitch and yaw, while the translation vector
describes shift of the specified frame. The rotation matrix has to satisfy a set of properties. This
is because the rotation matrix is part of a special orthogonal Lie group in 3D, falling under the
following SO(3) constraints:

SO(3) =
{
R|R ∈ R3×3,RTR = I,Det(R) = 1

}
(2.2.0.1)
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A relative pose representation has to satisfy the SE(3) property, extending the SO(3) according
to

SE(3) =

{
T |T =

[
R t

0T 1

]
∈ R4×4,R ∈ SO(3), t ∈ R3

}
(2.2.0.2)

For SLAM it is common to track motion over time. A useful property that follows from the
SE(3) constraint is that transformation matrices that are concatenated as the product of a
matrix multiplication still satisfies SE(3). A vector, ξ, can be transformed from coordinate
system FB to FA by first rotating the vector into the orientation of the new frame, FA, and then
adding a translation, yielding

ξa = Rabx
b + taab. (2.2.0.3)

Updates for rotation is simply the matrix product with another rotation matrix. A combination
of such transformations is shown in equation 2.2.0.4. The transformation is described from right
to left starting in frame Fc. First, an object described in Fc is transformed from Fc to Fb. Then
the motion of the object is described in Fa undergoes a transformation from Fb to Fa. The
overall transformation is from Fc to Fa.

Tac = TabTbc =

[
RabRbc taab +Rabt

b
bc

0T 1

]
∈ SE(3) (2.2.0.4)

If a coordinate frame, FB, is attached to the moving vehicle body, then the pose of the body
frame relative to a fixed world coordinate frame, FW , can be captured by a set of transformations
equal to the ones described in equation 2.2.0.4.

2.3 Lie Theory

Orientations, SO(3), and poses, SE(3), lie on manifolds in higher-dimensional spaces (Sola et al.,
2018), which complicates description of perturbations, derivatives and probability distributions
since they do not have the same properties as vectors in vector spaces. This can be seen in
examples 2.3.0.1a and 2.3.0.1b where the orientation and transformation are pushed outside the
special orthogonal/euclidean group after small perturbations, δR and δT , are added. This further
means that derivatives cannot properly be expressed by means of perturbations for rotation
matrices.

R+ δR /∈ SO(3), R, δR ∈ SO(3) (2.3.0.1a)

T + δT /∈ SE(3), T , δT ∈ SE(3) (2.3.0.1b)

However, as mentioned in section 2.2, SO(3) and SE(3) falls under matrix Lie groups on the
smooth manifold. Lie theory describes the tangent space around elements of a Lie group in
order to define the exact mappings between the tangent space and the manifold. The tangent
space has the same number of dimensions as the number of degrees of freedom of the group
transformations where a separate set of algebraic operations may be applied.
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The tangent space at the identity m = TME is called the Lie algebra of the manifold M.
Elements on the manifold can be mapped to/from the Lie algebra using the exp(·) and log(·)
operations in equation 2.3.0.2.

exp : m→M; Y = exp
(
τ∧
)

(2.3.0.2a)

log :M→ m; τ∧ = log(Y) (2.3.0.2b)

The Lie algebra is a vector space with elements τ∧ ∈ m. The (·)∧ operator expresses the Lie
algebra m as a linear combination of some base elements, Ei, forming the tangent vector space,
Rm. The inverse operation (·)∨ uses basis vectors, ei so that e∧i = Ei, to map the tangent vector
space back to Lie algebra.

Hat : (·)∧ : Rm → m; τ∧ =

m∑
i=1

τiEi (2.3.0.3a)

Vee : (·)∨ : m→ Rm; τ =
(
τ∧
)∨

=

m∑
i=1

τiei (2.3.0.3b)

For notational convenience, a vectorized version of the exponential and logarithmic maps are
adopted that allows to directly map vector elements τ ∈ Rm to group elements Y ∈ M. The
direct mapping is expressed by capitalization

Exp : Rm →M; Y = Exp(τ ) = exp
(
τ∧
)

(2.3.0.4a)

Log :M→ Rm; τ = Log(Y) = log
(
Y∨
)

(2.3.0.4b)

The proper tools to perform operations such as pertubations on the manifold are now available
through Lie theory. After expressing elements on the manifold as tangent space vectors using
the Exp mapping they may be concatenated using the ⊕ or 	 operator, and then transform
compossition back to the group using the Log mapping. Sola et al. (2018) goes into detail on
mathematical operations that can be performed once transformed onto the tangent space.
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2.4 Camera Geometry

A presentation of the necessary background material related to the Pinhole Model and Perspective
Projection and Epipolar Geometry was included in the specialisation project preceding this thesis.
This presentation is deemed valuable also for this thesis, and the presentation from the project
report (Hellum, 2020) is therefore included below in a redrafted version.

In this section the essential background information on camera geometry and pose estimation
using a camera will be presented. First, the geometry of the pinhole camera model explains how
information from a 3D scene are related to the 2D image plane. The geometry that describes
how motion can be estimated between images is detailed in the section about epipolar geometry.
Additionally, the geometry of stereo cameras are explained.

2.4.1 Pinhole Model and Perspective Projection

Cameras are the most important sensor in the field of computer vision. The representation of an
object in sensor data can typically be found through a sensor model which transforms a point
in the world frame to a point in the sensor frame. There exist multiple models that map points
captured from a 3D scene onto a 2D image plane, where the pinhole camera model is the most
widely used (Hartley et al., 2003). Another name for this model is the perspective camera model.
An illustration of the geometry describing this camera model is shown in figure 2.4.1. In the
pinhole model, the camera is imagined as a box with a small hole in the center. Reflected light
from the scene passes through the hole illustrated in figure 2.4.1 and creates an inverted reflection
on the image plane.

Figure 2.4.1: The perspective camera model. The camera is represented by the camera frame
Fc. Points lc in the camera frame are projected through the origin and onto the image plane at a
distance f behind the projective centre, where f is the camera constant. Reprinted by permission
from Haavardsholm (2020). The image is slightly modified to fit the notation of this thesis.

The pinhole model is divided into extrinsic and intrinsic parameters. The extrinsic parameters
define the rigid-body motion, T ccw, between the camera reference frame, Fc and a known world
reference frame, Fw. In homogeneous coordinates this can be expressed as

xc

yc

zc

1

 =

[
Rcw tccw
0T 1

]
︸ ︷︷ ︸

Tcw


xw

yw

zw

1

 (2.4.1.1)
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Next, the intrinsic parameters are necessary to project coordinates given in the camera reference
frame, Fc into pixel coordinates in image plane. The homogeneous representation of the world
points in the camera frame, [xc, yc, zc, 1]T , can further be mapped into the Cartesian space using
the homogeneous perspective projection matrix, Π, i.e.,

xc =

xcyc
zc

 =

 1 0 0 0

0 1 0 0

0 0 1 0


︸ ︷︷ ︸

Π

Tcw


xw

yw

zw

1

 (2.4.1.2)

The image coordinates are represented by the vector u = [u, v]T . Using the law of similar
triangles, the camera coordinates are normalized and further multiplied with the camera constant,
f, of the camera to obtain the correct unit length representation of the pixels. The camera
constant is the distance from the optical center to the image plane as illustrated in figure 2.4.1.
Lastly, the image coordinates are defined with the upper left corner as the origin. The principal
point c = [cu, cv]

T is therefore added to the expression yielding the intrinsic equations below

u = f
xc

zc
+ cx v = f

yc

zc
+ cy (2.4.1.3)

These intrinsic equations are often written on matrix form, yielding the camera calibration
matrix.

K =

fu 0 cu

0 fv cv

0 0 1

 (2.4.1.4)

Putting the extrinsic and intrinsic equations together yields the pinhole model in homogemous
form

ũ = K [Rcw|tccw]︸ ︷︷ ︸
P

lw (2.4.1.5)

This equation projects 3D points in world coordinates, lw, onto homogenous image coordinates,
where P is the projection matrix. The projection function can also be expressed in Euclidean
form. In the camera frame, Fc, this becomes

u = πp(l
c;K) =

[
1 0 0

0 1 0

]
K

1

zc
lc =

[
fu

xc

zc + cu

fv
yc

zc + cv

]
. (2.4.1.6)

In the world frame, Fw, the extrinsics have to be included, yielding

u = πp(l
w;Tcw,K) =

[
1 0 0

0 1 0

]
K

1

zc
ΠTcw l̃

w. (2.4.1.7)

Notice that for the world frame zc is described by the relation in equation 2.4.1.2.

A camera lens may distort images, making straight lines in a scene appear bent in the image.
Radial distortion occurs when light rays are bent closer to the edges of the lens than in the
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center. An ideal pinhole camera does not have a lens, and thus this is not accounted for in the
intrinsic matrix. A distortion model is therefore often applied in addition to equalize distortion
caused by the lens. Let (u, v) be the ideal points and (ud, vd), the radial distortion expressed in
eq. (2.4.1.8).

ud = u+ u
[
k1

(
u2 + v2

)
+ k2

(
u2 + v2

)2
+ k3

(
u2 + v2

)3
. . .
]

vd = v + v
[
k1

(
u2 + v2

)
+ k2

(
u2 + v2

)2
+ k3

(
u2 + v2

)3
. . .
] (2.4.1.8)

The radial distortion coefficients kn express the degree of the radial distortion (Z. Zhang, 2000).

2.4.2 Epipolar geometry

Consider two perspective cameras, represented by the camera frames Fa and Fb. The cameras
are related by a relative transformation, {Rab, t

a
ab} ∈ Tab, as described in section 2.2. Observing

the same world point, l, from the two camera frames puts a geometric constraint on the point
correspondence ũa ↔ ũb in the two normalized image planes Ia and Ib. This is called the
epipolar constraint, and can be expressed as

(ũa)TEabũ
b = 0, where Eab = [taab]

×Rab ∈ R3×3 (2.4.2.1)

where [·]× denotes the skew-symmetric operator. Equation 2.4.2.1 represents the epipolar con-
straint by the essential matrix, Eab. Another representation is by means of the fundamental
matrix, Fab = K−Ta EabK

−1
b , where K represent the calibration matrix of camera frame Fa and

Fb. By this relationship, the essential matrix depends only on extrinsic parameters, thus rep-
resenting the epipolar constraint in normalized image coordinates. The fundamental matrix on
the other hand express correspondence relation in pixel coordinates.

Figure 2.4.2: The image illustrates the epipolar geometry relating two perspective camera frames
Fa and Fb. l describes a world point observed from both camera frames. The camera centers
and the world point forms a triangle called the epipolar plane. The baseline is the line drawn
between the two camera centers, while the epipoles, ea and eb, are the intersection of the baseline
in the image planes. The epipolar lines fall where the epipolar plane intersects the image planes.
The epipolar constraint says that the world point projected onto the image plane, i.e. ua and ub,
must lie on this epipolar line. Reprinted by permission from Haavardsholm (2020). The image
is slightly modified to fit the notation of this thesis.

Dept. of Engineering Cybernetics 13



Chapter 2. Fundamentals of pose estimation from sensor data

Figure 2.4.2 illustrates the epipolar geometry between the two camera frames. The epipolar
plane describes the plane containing the 3D point l. The baseline is the line joining the two
camera centres. Furthermore, the epipoles are the intersection of the baseline in each image
plane. The epipolar lines are then found by drawing a line segment where the epipolar plane
intersects the image planes. The epipolar line in image Ia intersects its epipole ea and the point
ua. The corresponding point in image Ib must then lie on the epipolar line for image Ia. Search
for correspondences is then reduced from a region to the epipolar line. Furthermore, the depth
is directly proportional to the length of the baseline and the distance between the two pixels
capturing the world object.

The fundamental matrix can be estimated from the 7- or 8-point algorithms, while the essential
matrix can be estimated from 5 point correspondences using Nistérs five point algorithm (Nistér,
2004).

2.5 Stereo Vision

When a point in 3D space is projected onto the 2D image plane, the depth dimension is completely
lost. This is intuitively similar to human vision, where it becomes difficult to determine the
distance to objects with one eye kept closed. As a consequence of the lost depth information
will monocular SLAM, i.e. using a single camera, be unable to recover the scale of the scene
and thus the scale of the traversed trajectory. By using stereo cameras, i.e. two rigidly mounted
cameras observing the same scene, the depth information can be recovered by triangulating stereo
matched features at every frame. Consequently, challenges related to scale drift is eliminated.

Two stereo images observing an overlapping scene is related through epipolar geometry described
in the previous section. This way, all point correspondences between the images are constrained
to lie on the epipolar lines associated with the observed 3D point. There follows an uncertainty
for the reconstructed depth of a 3D point. This uncertainty is mainly dependent on the baseline
and image resolution, which generally decreases with an expanding baseline and a higher pixel
intensity. A rule of thumb is that the working distance, i.e. the distance for which the position
of the 3D point can accurately be determined, is 30 times the baseline (Curtis, 2011). However,
more advanced methods can be applied for depth estimating which greatly increases the accuracy
for larger distances (Pinggera et al., 2014).

When stereo cameras are calibrated, extrinsic parameters describing the interrelating transfor-
mation in the camera setup is calculated. In reality there is usually an unwanted vertical rotation
and transformation component in the stereo setup. This can be compensated for by applying the
calibration result in a stereo rectification procedure for captured image pairs. In a rectified stereo
setup the two image planes are perfectly aligned so that the epipolar plane, depicted in fig. 2.4.2,
is horizontal. Additionally are the focal lengths f and optical centers (cu, cv) constrained to be
equivalent for both cameras. As a result of rectification there should be no vertical discrepancies
between two rectified image points, ul = (ul, vl)

T and ur = (ur, vr)
T , in the left and right image

respectively corresponding to the same landmark, l. Consequently, is the search space for stereo
point matches now only restricted to a search along the epipolar lines, where the correspondences
rather can be represented with three parameters (ul ,ur ,v).
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2.6 Inertial Measurement Unit (IMU)

IMUs are interoceptive sensors used for navigation and state estimation, which measure relative
motion in the body frame. An IMU includes a gyroscope and an accelerometer to measure the
body’s angular rate, ω̃b

wb(t), and linear acceleration, ãb(t), in equations 2.6.0.1a and 2.6.0.1b re-
spectively. These measurements are often supplied by magnetic or gyroscopic compasses, m̃b(t),
to obtain the orientation of the body as described in equation 2.6.0.1c. These measurements are
affected by additive white noise, η, and a slowly varying sensor bias, b, both separately specified
for the gyro, accelerometer and magnetometer. A separate superscript convention is used for
the bias and noise, where g, a, m is used to denote measurements for gyro, accelerometer and
magnetometer respectively; All of which are described in the body frame, where the Rbw is the
rotation from the world to body frame.

ω̃b(t) = ωb(t) + bg(t) + ηg(t) (2.6.0.1a)

ãb(t) = Rbw(t) (aw(t)− gw) + ba(t) + ηa(t) (2.6.0.1b)

m̃b(t) = Rbw(t)mw(t) + bm(t) + ηm(t) (2.6.0.1c)

The classic gyroscope is a spinning wheel that utilizes conservation of momentum to detect
rotation, however, modern solutions come in several forms. Optical gyros are a popular choice
for high accuracy strapdown inertial systems. The Microelectromechanical Systems (MEMS)
technology have however made it possible to place an IMU on a small electrical chip, making the
technology available for low and medium cost applications. Accelerometers are either mechanical
or vibratory. The mechanical accelerometer uses Newton’s second law to measure a force acing on
the body, for example a pendulum. The vibratory accelerometer measures frequency shifts in a
string, due to increased or decreased tension caused external forces acting on the body. A stand-
alone IMU solution for pose estimation, where acceleration measurements are integrated twice
and gyro outputs are integrated once to obtain positions and attitude respectively, is insufficient
for long term navigation as the estimates will drift due to sensor biases, misalignments and
temperature variations. However, using sensor fusion, IMU measurements can be a valuable
addition in the overall system configuration by constraining the outcome space of the joint state
estimate.

2.6.1 IMU preintegration

Lupton et al. (2011) introduced IMU preintegration as a method of combining measurements
between two frames into one relative motion constraint, thus being able to calculate the motion
a vehicle over time from a series of IMU measurements. Forster, Carlone, et al. (2015) later
extended this theory to the SO(3) rotation group and fit the mathematics into a factor graph
representation. This will be discussed in section 5.2.1. This representation is the solution that
is currently implemented in GTSAM (Dellaert, 2012). The derivation discussed in this chapter
follows from Forster, Carlone, et al. (2015).
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Before applying the preintegration, the following kinematic model is introduced to describe
motion between frames:

Ṙwb = Rwb ·
[
ωb
]×

(2.6.1.1)

v̇w = aw (2.6.1.2)

ṗw = vw (2.6.1.3)

Here, [·]× describes the skew symetric matrix. To find the relative motion at time t+∆t, between
two IMU measurements, equations 2.6.1.1 are integrated. If aw and ωb are assumed constant
in the time interval [t, t+ ∆t], the states can be written as a function of the measurements as
shown in equation 2.6.1.4.

Rwb(t+ ∆t) = Rwb(t) Exp
{
ωb(t)∆t

}
(2.6.1.4a)

= Rwb(t) Exp
{(
ω̃b(t)− bg(t)− ηg(t)

)
∆t
}

vw(t+ ∆t) = vw(t) + aw(t)∆t (2.6.1.4b)

= v(t) + gw∆t+Rwb(t)
(
ãb(t)− ba(t)− ηa(t)

)
∆t

pw(t+ ∆t) = pw(t) + vw(t)∆t+
1

2
aw(t)∆t2 (2.6.1.4c)

= pw(t) + vw(t)∆t+
1

2
gw∆t2 +

1

2
Rwb(t)

(
ãb(t)− ba(t)− ηa(t)

)
∆t2

where the measurement equations in 2.6.0.1 are inserted after the second equality of each sube-
quation in 2.6.1.4. Exp {·} denotes the lie exponential. The relative motion between two mea-
surements are now known, hence the next step is to concatenate all measurements with ∆t

intervals between two consecutive keyframes at times k = i and k = j.

Rj = Ri

j−1∏
k=i

Exp
((
ω̃k − bgk − η

g
k

)
∆t
)
, (2.6.1.5a)

vj = vi + g∆tij +

j−1∑
k=i

Rk (ãk − bak − ηak) ∆t (2.6.1.5b)

pj = pi +

j−1∑
k=i

[
vk∆t+

1

2
g∆t2 +

1

2
Rk (ãk − bak − ηak) ∆t2

]
. (2.6.1.5c)

In equation 2.6.1.5 the sub- and superscripts for frame description are dropped for readability.
Also, ∆tij =

∑j−1
k=i ∆t and (·)i = (·)(ti). While providing an estimate of the relative motion

between ti and tj , equation 2.6.1.5 has the drawback that the integration has to be repeated
whenever the linearization point at time ti changes. To avoid this recomputation, the relative
motion increments are assumed to be approximately independently of the pose and velocity at
ti giving the expression in eq. (2.6.1.6).
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∆Rij = RT
i Rj =

j−1∏
k=i

Exp
((
ω̃k − bgk − η

g
k

)
∆t
)

(2.6.1.6a)

∆vij = RT
i (vj − vi − g∆tij) =

j−1∑
k=i

∆Rik (ãk − bak − ηak) ∆t (2.6.1.6b)

∆pij = RT
i

(
pj − pi − vi∆tij −

1

2

j−1∑
k=i

g∆t2

)

=

j−1∑
k=i

[
∆vik∆t+

1

2
∆Rik (ãk − bak − ηak) ∆t2

]
(2.6.1.6c)

These equations require knowledge of the bias, however, consider that the bias is slow-varying,
the bias can be assumed to remain constant between two keyframes.

bgi = bgyro,i+1 = . . . = bgyro,j−1, bai = bacc,i+1 = . . . = bacc,j−1

Lie algebra, discussed in (Forster, Carlone, et al., 2015), may further be applied for updat-
ing the rotational group SO(3). An example is the first-order approximation Exp(ζ + ∆ζ) ≈
Exp(ζ) Exp (Jr(ζ)∆ζ), here expressed with a random variable ζ. The jacobian Jr is the right
Jacobian of SO(3) computed using Lie algebra.

Equation 2.6.1.6 should be modified further to isolate the noise. Therefore, starting with the
rotation increment ∆Rij , a first-order approximation is used to rearrange the terms by “moving”
the noise to the end.

∆Rij '
j−1∏
k=i

[
Exp ((ω̃k − bgi ) ∆t) Exp

(
−Jr,kη

g
k∆t

)]
= ∆R̃ij

j−1∏
k=i

Exp
(
−∆R̃>k+1jJr,kη

g
k∆t

)
.
= ∆R̃ij Exp (−δφij)

(2.6.1.7)

with Jkr
.
= Jkr (ω̃k − bgi ). The preintegrated rotation measurement is defined as

∆R̃ij
.
=
∏j−1
k=i Exp ((ω̃k − bgi ) ∆t), and its noise δφij . Substituting equation 2.6.1.7 back into

equation 2.6.1.6b and dropping higher-order noise yields

∆vij '
j−1∑
k=i

∆R̃ik

(
I− δφ∧ik

)
(ãk − bai ) ∆t−∆R̃ikη

a
k∆t

= ∆ṽij +

j−1∑
k=i

[
∆R̃ik (ãk − bai )

∧ δφik∆t−∆R̃ikη
a
k∆t

]
.
= ∆ṽij − δvij

(2.6.1.8)

where the preintegrated velocity measurement is defined as ∆ṽij
.
=
∑j−1

k=i ∆R̃ik (ãk − bai ) ∆t,
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and its noise δvij Similarly, substituting equation 2.6.1.7 into equation 2.6.1.6c, and using a
first-order approximation the following relation is obtained

∆pij '
j−1∑
k=i

3

2
∆R̃ik

(
I− δφ∧ik

)
(ãk − bai ) ∆t2 −

j−1∑
k=i

3

2
∆R̃ikη

a
k∆t2

= ∆p̃ij +

j−1∑
k=i

[
3

2
∆R̃ik (ãk − bai )

∧ δφik∆t
2 − 3

2
∆R̃ikη

a
k∆t2

]
.
= ∆p̃ij − δpij

(2.6.1.9)

Here, ∆p̃ij defines the preintegrated position measurement and its noise δpij . Substituting all
of the expressions 2.6.1.7, 2.6.1.8, 2.6.1.9 back in the original definition in equation 2.6.1.6, the
final expression for the preintegrated measurement model becomes

∆R̃ij = R>i Rj Exp (δφij)

∆ṽij = R>i (vj − vi − g∆tij) + δvij

∆p̃ij = R>i

(
pj − pi − vi∆tij −

1

2
g∆t2ij

)
+ δpij

(2.6.1.10)

So far, the bias bi used to compute the preintegrated measurements has been assumed given.
However, the bias term will likely change during optimization. One solution would be to re-
compute the delta measurements when the bias changes, but that would be computationally
expensive. Instead, given a bias update b ← b̄ + δb, the delta measurements in equation
2.6.1.10 can rather be updated using a first-order expansion, giving

∆R̃ij (bgi ) ' ∆R̃ij

(
b̄gi
)

Exp

(
∂∆R̄ij

∂bg
δbg
)

∆ṽij (bgi ,b
a
i ) ' ∆ṽij

(
b̄gi , b̄

a
i

)
+
∂∆v̄ij
∂bg

δbgi +
∂∆v̄ij
∂ba

δbai

∆p̃ij (bgi ,b
a
i ) ' ∆p̃ij

(
b̄gi , b̄

a
i

)
+
∂∆p̄ij
∂bg

δbgi +
∂∆p̄ij
∂ba

δbai

(2.6.1.11)

where
{
∂∆Rij

∂bg ,
∂∆v̄ij

∂bg , . . .
}

is the jacobians computed at bi. The final formulation in equation
2.6.1.11 is important to fit the factor graph optimization structure described in section 5.2.1.
A description of how preintegrated measurements are added to factor graphs will be covered in
section 8.3.
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2.7 Global Navigation Satellite System (GNSS)

There are several GNSSs that together provide autonomous geospatial positioning with global
coverage. In the United States, the Global Positioning System (GPS) was created in 1995,
followed by the Russian Global Navigation Satellite System (GLONASS) shortly after. The
more recent Galileo by the EU and BeiDou by China provide an improved accuracy to the old
systems. In addition there exists several regional systems. The GNSS system uses satellites for
absolute global positioning. The constellation of the satellites is designed such that any point
on the earth’s surface is observable by at least four satellites at all times. GNSS receivers then
uses the time of flight from a minimum of four satellites the receiver can triangulate, and thus
determine its latitude, longitude and altitude. The fourth satellite is necessary because of clock
synchronization errors between the satellites. The accuracy of the GNSS position is affected by
the geometry of the satellites and the accuracy of the satellite pseudorange measurements. It
is therefore evident that the accuracy of the integrated GNSS receivers benefit from combining
signals from one or more systems. A regular receiver is low-cost, and typically has a specified
Root Square Error (RSE) of about 4 meters (Fossen, 2011). As described by Beard et al. (2012),
the accuracy of the GNSS measurements are affected by:

• Ephemeris data: The mathematical description of its orbit.

• Satellite clock error : Internal clock error of satellite.

• Ionospheric delay of the signal caused by the presence of free electors.

• Troposphere disturbances caused by variations in temperature pressure and humidity affect
the time of flight.

• Multipath reception occurs when signals are reflected on surfaces before reaching the re-
ceiver.

• Receiver measurement errors stem from the computational limits with which the timing of
the satellite signal can be resolved.

Additional types of sensors may also be available to ensure reliability of the positioning system,
forming an Inertial Navigation System (INS). Such sensors may include IMUs, hydro acoustic
position sensors, taut wires and laser sensors. There also exist other types of GNSS systems
that improves the accuracy of the GNSS receiver positioning. This includes the Differential and
Augmented GNSS (DGNSS) which uses stationary stations on the earth surface with known
position to correct for errors, and the even more accurate RTK-GNSS which will be described in
the next section.

The GNSS measurement equation is given by

zgnsst = hgnss (xt) + ηgnss (2.7.0.1)

where ηgnss is the measurement noise which is assumed Gaussian distributed. hgnss is the
measurement function that relates the measurement zgnsst to the robot’s position.
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2.7.1 Real-Time Kinematic-Global Navigation Satellite System (RTK-GNSS)

A RTK-GNSS receiver is a highly accurate solution which provides accuracy down to a few
centimeters, however the RTK-GNSS is significantly more expensive. The increased accuracy
is achieved by tracking the phase shift of the signal’s carrier wave and output the fractional
phase measurement at each epoch. In order to lock on to this track the RTK-GNSS first has to
determine the integer ambiguity, that is the unknown number of carrier cycles from the time a
satellite signal is placed to the receiver begins an active track. These position measurements of
the RTK-GNSS are, however, not as robust as GNSS and DGNSS (Fossen, 2011).
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CHAPTER 3

Fundamentals of Feature Management

A presentation of the necessary background material related to feature management was included
in the specialisation project preceding this thesis. The applied methods are the same as in the
specialisation project and the theoretical description from the project report (Hellum, 2020) is
therefore included below in its original version.

In this chapter the relevant background information on feature management is presented. These
are essential topics within feature-based VO and SLAM systems. First, detection of features
in images are described, with Features from Accelerated Segment Test (FAST) as the method
of choice. Then, feature descriptors and more specifically Oriented FAST and Rotated BRIEF
(ORB) is covered. Lastly, pyramidal Lucas-Kanade describes how features are tracked from image
to image using optical flow.

3.1 Feature Extraction

As mentioned in section 5.1.1 features is an essential component in indirect SLAM methods.
Features are significant image points that stand out in the texture of a scene. These points
typically include corners or edges. What separates these points from planar areas in an image
is that the pixel intensity typically changes. The intensity typically refers to the brightness or
gradients of the pixel. These types of image points may be used for various tasks such as object
classification, face recognition, etc., but popular demand is feature-based SLAM. The reason
being that features that stand out in the scene can more easily be tracked and compared to
other images capturing features of the same scene from another pose.

3.1.1 FAST

Feature detectors such as SIFT and Harris are accurate methods that yield high-quality features,
however, they are computationally expensive which limits them from real-time applications. The
FAST algorithm was first proposed by Rosten et al. (2006) to provide a faster feature detector
aimed at real-time applications.

The FAST algorithm selects a pixel p in the image. For this interest-point the pixel brightness
is compared to the surrounding 16 pixels, forming a Bresenham circle around p as shown in
figure 3.1.1. The 16 pixels in the circle is classified as either lighter than p, darker than p or
similar to p. The interest-point is selected as a keypoint if more than 8 pixels are either darker or
brighter than p. Non-maximum Suppression is applied to reduce the number of interest points
in adjacent locations. Amongst two adjacent keypoints the interest-point which inhabits a lower
score function, i.e. the sum of the absolute difference between p and the 16 surrounding pixels,
is discarded.
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Figure 3.1.1: The image illustrates the image patch used by FAST to determine if an interest
point satisfy the segment test. The pixel, p, is the centre of a candidate corner, while the
16 highlighted pixels forming the Bresenham circle is the compared pixels. Image courtesy of
(Rosten et al., 2006)

3.2 Feature Descriptors

Feature descriptors encode interesting information about features into a series of numbers. These
descriptions act as numerical “fingerprint” so that features may be differentiated from one an-
other. One alternative is to describe these features in the form of binary bit strings, forming
binary feature vectors for the set of features. There exist a huge variety of feature detectors
and descriptors, and Pire et al. (2017) provide a comparison of combinations applied to a VO
framework.

3.2.1 ORB

ORB was developed by OpenCV Labs (Rublee et al., 2011) as an efficient and viable alternative
to SIFT and SURF. Both of the latter approaches are patented, thus ORB was developed as a
free alternative to these algorithms. In short ORB is a fusion of the FAST keypoint detector,
following the procedure described in section 3.1.1, and the BRIEF descriptor (Calonder et al.,
2010) with some modifications to enhance the performance. For the FAST algorithm robust
features are selected using either FAST or Harris response, while using an image pyramid to
produce multiscale-features. An image pyramid is a multi-scale representation of a single image
at different resolution. As FAST isn’t orientation invariant ORB adds this ability by using first-
order moments. The measure of corner orientation is determined by computing angle between
the intensity weighted centroid and the center of the corner. To determine center of mass for the
patch, that is, the centroid C, the moments of a patch first have to be defined as

mpq =
∑
u,v

upvqI(u, v), (3.2.1.1)

where I(u, v) expresses pixel intensities at a image coordinate, (u, v). p and q furthermore
express the order of the moments as an analogue of the mechanical moments. The centroid C is
then given by

C =

(
m10

m00
,
m01

m00

)
. (3.2.1.2)

By constructing a vector between the centroid and the center of the corner, the orientation of
the patch will be given by

α = atan2(m01,m10). (3.2.1.3)
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When the orientation of the patch is calculated, it can be rotated to a canonical rotation, ob-
taining some rotation invariance. Now, a modified version of BRIEF can be applied to obtain a
description of the keypoints. The features are converted into a binary feature vector so that they
together represent an object. By using a Gaussian kernel the image is smoothed, making the
binary descriptors insensitive to high-frequency noise. Finally, by using the patch orientations
the binary tests produced by BRIEF are rotated such that the descriptions are rotation invariant.

3.3 Pyramidal Lucas-Kanade Feature Tracker

The optical flow feature tracker by Lucas-Kanade (Bouguet et al., 2001) tries to find point
correspondences between two grayscale images Ia and Ib. Consider a pixel ua = [u, v]T in the
first image Ia. The algorithm tries to find the location of ub = ua + d = [u+ du, v+ dv]

T in the
second image Ib, such that Ia(ua) and Ib(ub) are similar. The vector d = [du, dv]

T describes the
image velocity and is known as an optical flow vector. The optical flow algorithm tries to find
the vector solution for d that minimizes the residual function ε defined as:

ε(d) = ε(du, dv) =

u+wu∑
x=u−wu

v+wv∑
y=v−wv

(Ia(x, y)− Ib(x+ du, y + dv))
2 (3.3.0.1)

The similarity function is evaluated over an integration window in an image neighbourhood of
size (2wv + 1)× (2wv + 1). Notice that a smaller integration window will provide a higher local
accuracy, while a larger window would be more robust to larger displacement following from
higher velocity or a lower frame rate. Therefore it follows a natural trade off in this.

A solution to this problem is the pyramidal implementation of the classical iterative Lucas-
Kanade algorithm. The idea of the pyramidal implementation is illustrated in figure 3.3.1.

Figure 3.3.1: Image pyramid of the optical flow algorithm. The image at top of the pyramid
describes the image with the lowest resolution, which estimates the initial optical flow. The
estimate is refined for every level down to the original image.

For each image the pyramidal implementation recursively smoothes and down-samples the orig-
inal image, such that the input image can be evaluated at different scales. The recursive form
computes an initial estimate for optical flow vector, d, for the image at the lowest scale. This
estimate serves as an initial guess when the track is computed the higher resolution images.
Thus, the optical flow vector is continuously refined through the higher resolution levels down to
the original image as shown in image 3.3.1. Going down the pyramid small motions are removed
and large motions becomes small motions, thus returning an optical flow that is more robust to
larger displacements.
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CHAPTER 4

Fundamentals of statistics

A presentation of the necessary background material related to statistical inference was included
in the specialisation project preceding this thesis. This presentation is deemed valuable also for
this thesis, and the presentation from the project report (Hellum, 2020) is therefore included below
in a redrafted version.

This chapter covers fundamental statistics that is essential to understand the SLAM problem
formulation. First, the multivariate gaussian describes the uncertainty model that is used for
measurements. Then, MAP optimization describes how variable assignment may be refined to
find the most likely outcome from a set of condtitional states.

4.1 Multivariate Gaussian Distribution

The multivariate Gaussian generalizes the univariate Gaussian, and is one of the key constructions
that underlies SLAM and virtually all of sensor fusion. The multivariate Gaussian distribution
is given by its expectation vector, µ, and a symmetric positive definite covariance matrix, Σ.
The univariate Gaussian is distributed according to a bell curve with the peak located at the
expectation value and the spread given by the covariance. The distribution follows the same
logic when this is extended to multiple dimensions, and is mathematically described according
to

N (ξ;µ,Σ) =
1

(2π)
n
2 |Σ| 12

exp

(
−1

2
(ξ − µ)TΣ−1(ξ − µ)

)
(4.1.0.1a)

= exp

(
a+ ηT ξ − 1

2
ξTΛξ

)
. (4.1.0.1b)

Here, equation 4.1.0.1b describes the canonical form of a multivariate gaussian Brekke, 2020. The
canonical form is parametrized using the information matrix, Λ, which is the inverse covariance
matrix, and the information vector, η. The parameters of the canonical form is distributed as

Λ = Σ−1

η = Λµ

a = −1

2
n ln(2π)− ln |Λ|+ ηTΛη

(4.1.0.2)

The canonical form is widely used in graph based SLAM, because the canonical form is able
preserve a factor-graph structure that will be explained in section 5.2.1. Another advantage is
that the information matrix remains sparser than the corresponding covariance form (Dellaert
and Kaess, 2017) when the number of variables grows. However, the problem still grows, which
makes memory usage and computation grow unbounded in time. One way to handle this is to
remove older variables without removing information. This process is called marginalization.
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Stated in terms of probability densities, given a joint density p(ξ, γ) for two variables ξ and γ,
then marginalizing out the variable ξ corresponds to integrating over ξ, i.e.,

p(γ) =

∫
x
p(ξ, γ)dξ (4.1.0.3)

If the two variables ξ and γ are expressed on the canonical form, their joint distribution can be
partitioned according to

p(ξ, γ) = N

Λ−1

[
ηξ

ηγ

]
,

[
Λξξ Λξγ

Λ>ξγ Λγγ

]−1
 (4.1.0.4)

The information matrix of y after marginalization can then be obtained by taking the Schur
complement of Λξξ, i.e. Λγγ − Λ>ξγΛ−1

ξξ Λξγ (Brekke, 2020).

4.2 Maximum a Posteriori Optimization

A Maximum a Posteriori (MAP) estimator finds an the most likely value of a state, ξi, given
the mode of its posterior distribution. This mode will be the one that yield the most likely
value based conditionally on a prior distribution. The MAP estimator thus provides a powerful
tool for nonlinear state estimation. This is valueable for SLAM systems, where the true states
of the system are unknown, and conditional on a set of measurements. In order to represent
the uncertainty of the measurements, multivariate Gaussians are normally used, yielding zi =

hi(ξi) + ηi ∼ N (µ, σ2
i ). Here hi(ξi) describes the measurement process of all quantities, ξi,

that contribute to the measurement result, zi. The associated noise, ηi, is often assumed to be
zero-mean Gaussian, so that the measurement error can be expressed as

ei(ξi) = hi(ξi)− zi (4.2.0.1)

From the expression one can see that the error function expresses the state, xi, as a conditional
of the measurement, zi. For SLAM problems, the objective function is typically set to be the
squared Mahalanobis distance (Mahalanobis, 1936), or the Huber Norm (Huber, 1992) of all the
errors. Using the Mahalanobis distance, this yields the MAP problem formulation

ξ∗ = arg min
ξ

g(ξ) = arg min
ξ

∑
i

‖ei‖2Σi (4.2.0.2)

The nonlinear problem, g(ξ), is then solved by applying nonlinear optimization methods such as
Gauss-Newton, Levenberg-Marquardt, or Powell’s Dogleg (Nocedal et al., 2006). These solvers
repeatedly perform perturbations on a succession of linear approximations to equation 5.2.1.4 in
order to approach a minimum. As the number of states grow, the problem grows unbounded.
This may be solved efficiently by graph optimization methods, which we will study in greater
detail in section 5.2.
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Simultanous Localization and Mapping (SLAM)

In this chapter relevant background information related to SLAM and factor graph optimization
will be presented. First, the structure of the SLAM problem formulation is detailed. Next, graph
structures and the incremental update and optimization approach iSAM2 is described. Lastly,
followed by a concurrent approach for short-term and long-term smoothing is explained.

5.1 The SLAM Problem Formulation

Visual odometry is the process of mapping an environment and estimating the motion of which
a robot travels within this local map, typically by using exteroceptive sensors such as LiDAR,
EO- or IR-camera. Customary, VO systems are divided into two main components: the front
end and the back end. The front end associates structures in the image/frame, either in terms
of extracted keypoints, or pixel intensities over the image directly. The back end performs
inference on this data to find the relative poses that yields the most likely association of the
aforementioned structures. The keypoints may also be included in this refinement. These pose
estimates altogether forms the robot’s odometry. Additional measurements from IMU, GNSS,
etc. may be included to improve this estimate. An extension of VO is SLAM. Visual odometry
treats the whole world as an infinite corridor, but SLAM enables place recognition so that the true
topology of the environment can be restored. The accumulated drift are thus corrected within
the loop-enclosed area. The problem formulation of VO and SLAM is commonly divided into
pose estimation and structure estimation. It is common to formulate pose estimation problems
as either direct or indirect. The latter is also referred to as feature-based. Whereas structure
estimation problems is categorized as either dense or sparse. Sparse methods only use a carefully
selected subset of the information in a scene, while dense methods attempt to reconstruct the
entire scene. Direct and indirect methods are discussed in the following subsections.

5.1.1 Indirect Methods

Indirect methods start by extracting a geometric representation of the scene. This typically
includes feature extraction and association of the keypoints through optical flow feature tracking
or descriptor matching. Indirect methods are typically referred to as feature-based methods
because of this intermediate features extraction step. The feature observations can then be used
to estimate the relative motion based on the point correspondences. It is common to estimate the
motion of the body by project 3D points in the world, lw, onto the image plane using eq. (2.4.1.6)
and comparing the reprojected point position to the original corresponding feature position, u.
This is referred to the reprojection error, which minimizes the geometric error in eq. (5.1.1.1)

egeometric(Twc, l
w) = πp(l

w;T−1
wc ,K)− u (5.1.1.1)
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The world points are related to the camera pose by the initial transformation estimate from
the world frame Twc. The reprojection error is calculated for multiple 3D-2D correspondences
and the overall error is minimized using equation 4.2.0.2. This is called BA. If the scale of the
3D points are known, then the actual scale of the motion can be retrieved. The optimization
may be performed by only refining an initial pose estimate, Twc. This is called motion-only
bundle adjustment. Another alternative is structure-only bundle adjustment, which rearranges
the world points lw to minimize the error. The last alternative is full bundle adjustment, which
both optimize the poses and the world points.

There are typically two approaches to keypoint matching before bundle adjustment, either by
sequential frames over a window, or by mutual observability constraints following repojection
from a local map. Respectively, this is exampled by SVO2 (Forster, Z. Zhang, et al., 2016) and
ORB-SLAM (Mur-Artal, Montiel, et al., 2015), where ORB-SLAM uses a combination of the
two. Windowed approaches are often faster, while projecting co-visible points from a local map
can provide a slight boost in performance because more potential correspondences are mapped
from the entire trajectory.

Indirect methods provide robustness to photometric and geometric distortions. However, a dis-
advantage of indirect methods is that extraction and matching of features in low textured and
poorly illuminated environments is difficult. Direct methods partially tackle this problem.

5.1.2 Direct Methods

Direct methods skip the feature extraction step that is considered for indirect methods. Indirect
methods rather optimize directly on pixel intensities. This problem formulation is the same as
minimization equation 4.2.0.2 over the photometric error in equation 5.1.2.1

ephotometric(u
b, zb,Tab) = Ia(w(ub, zb,Tab))− Ib(ub) (5.1.2.1)

where the warp function

ua = w(ub, zb,Tab) = πp(Tab · π−1
p (ub, zb)) (5.1.2.2)

maps pixels ub from image Ib to pixels ua in image Ia. The transformation Tab describes a
motion from camera pose a to pose b, while z describes the depth for the inverse projection.

Well known examples of direct SLAM methods are LSD-SLAM by Engel, Schöps, et al. (2014),
SVO by Forster, Z. Zhang, et al. (2016), and DSO Engel, Koltun, et al. (2017). This work shows
that direct methods are more robust to blurred images and areas that are sparsely textured
since these methods use the image intensity values directly to optimise a photometric error,
and are not dependent on distinct features such as indirect methods. Direct methods may also
provide a denser map reconstruction compared to feature-based methods. There are however
some downsides to these methods as they require photometrically calibrated images and are
more vulnerable to geometric distortions that can originate from bad calibration or rolling shutter
effects.
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5.2 Optimization over Graph Structures

At their core SLAM, and many other estimation problems, are searching for a MAP estimate,
i.e., trying to maximize the posterior probability of some variables, given a set of measurements.
This operation is typically performed in the part of the SLAM system referred to as the backend,
where initial estimates from the frontend or other sensor data from IMUs, GNSS’, etc. are
included. When attempting to act optimally, a performance index is maximized, or conversely a
penalty function is minimized.

The optimized terms of these problem formulations are usually local in nature, meaning that the
terms only depend on a minor subset of the entire set of variables. A flexible and intuitive way
of modelling this locality structure is using the concept of factor graphs. Factor graphs are a
class of graphical models composed of variable and factor nodes. Variables represent unknown
quantities to be estimated. Dependencies between variables are indicated by connecting edges,
where factors represent functions on subsets of the variables for each connecting edge. Aside
from the insightful modelling benefit, they are efficiently solved and provide an easily modular
interface.

In the next subsections different graph structures that are associated to factor graphs and are
of specific importance to the Incremental Smoothing and Mapping 2 (iSAM2) algorithm (sec-
tion 5.3) are described. Details on how the graph structures are related and the act of performing
inference on the graph structures are also explained.

A presentation of the necessary background material related to the graph structures in sec-
tion 5.2.1, section 5.2.2 and section 5.2.3 was included in the specialisation project preceding
this thesis. This presentation is deemed valuable also for this thesis, and the presentation from
the project report (Hellum, 2020) is therefore included below in a redrafted version for the next
subsections.

5.2.1 Factor Graphs

Factor graphs have become the de facto standard for formulating SLAM problems (Cadena et
al., 2016). One of the reasons is that the graph can be factorized if the measurement errors
are assumed statistically independent. New measurements often only have a local effect on the
graph, which enables efficient update algorithms to only evaluate the affected parts of the graph.
iSAM2, described in section 5.3, is an example of an algorithm that efficiently utilizes factor
graph structure.

An example of a factor graph containing poses, x, and landmarks, l, is depicted in fig. 5.2.1.
In addition to being capable of embedding poses and landmarks for state estimation are factor
graphs also suitable for sensor fusion, where measurements from other sensors can be added as
separate nodes to the factor graph. Embedding new sensors in the optimization will not greatly
increase the complexity of the problem, as all measurements are considered independent. It will,
however, make it easier for the optimization to converge to the globally correct solution rather
than a local maximum. The IMU is a good example on how other sensors can provide additional
information on for example the velocities in addition to the poses. IMU measurements can be
inserted as connecting factors between two variable nodes. GNSS is another sensor that easily
can be fused into a factor graph, adding a prior of the pose nodes. Details on practical examples
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of how sensors can be added to the graph is depicted in fig. 8.0.2 and will be discussed in more
detail in section chapter 8. Minimizing the MAP objective function formulated over the factor
graph, with multiple sensors enables, elegantly performs sensor fusion. Another variant to the
connecting factors from odometry measurements is the loop-closing constraints in figure 5.2.1,
which zero out drift for a revisited location. In order of performing all of these operations, the
a general problem formulation for factor graph statistical inference have to be defined.

Figure 5.2.1: Factor graph (Kschischang et al., 2001) formulation of a basic SLAM problem, only
composed of poses and landmarks. Variable nodes are shown as large coloured circles, and factor
nodes (measurements) as small solid squares. The factors shown are odometry measurements
o, a prior p, loop-closing constraints c and landmark measurements m. Inspired by fig. 2 from
Kaess, Johannsson, Roberts, Ila, J. J. Leonard, et al. (2012).

A factor graph is an bipartite probabilistic graphical model that consists of two types of nodes:
variable nodes and factor nodes. Variable nodes, denoted Xj ∈ X , represent the states that are
estimated. For SLAM problems these states are typically the poses and landmarks X = {x, l}
respectively, as shown in figure 5.2.1. Additional variable states such as velocities and biases
are examples of potential extensions to the problem formulation. Factor nodes, denoted fi ∈ f ,
commonly represent measurements that connect the conditional probabilities between states.
Each factor fi is defined as a function of the set of its adjacent variables nodes Xi. Edges eij are
always between factor nodes and variable nodes.

There are two main inference problems for factor graphs, computing marginals, and computing
the mode. Computing marginals is the process of removing older variables without removing
their information, such that computational complexity is reduced. This process is applied during
the smoothing process of SLAM problems. The update step boils down to computing the mode,
which is estimating the most likely variable assignment over a chosen set of states. A common
choice for this estimation is the maximum a posteriori (MAP) estimator, explained in section 4.2,
which maximizes the posterior density of the variables with respect to the factors

X ∗ = arg max
X

f(X ) (5.2.1.1)

where f(X ) is the factorization of the factor graph

f(X ) =
∏
i

fi(Xi). (5.2.1.2)

For SLAM problems it is common to assume Gaussian measurement models, as described in
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section 4.1. This equals

fi(Xi) ∝ exp(−
1

2
‖hi(Xi)− zi‖2Σi

). (5.2.1.3)

The estimated posterior from equation 5.2.1.1 is rewritten as to the nonlinear least-squares
objective function

X ∗ = arg min
X

(− log f(X )) = arg min
X

(
1

2

∑
i

‖hi(Xi)− zi‖2Σi
) = arg min

X

∑
i

‖ei‖2Σi
(5.2.1.4)

where hi(Xi) is a measurement function and zi is a measurement. Furthermore, ‖e‖2Σ = eTΣ−1e

is the squared Mahalanobis distance which weights the residual errors, e, according to the co-
variance Σ of the respective measurement, zi.

The MAP estimate is now in a form that can be solved by using nonlinear optimization methods
such as Gauss-Newton, Levenberg-Marquardt, or Powell’s Dogleg. These solvers repeatedly
perform perturbations on a succession of linear approximations to equation 5.2.1.4 in order to
approach a minimum. Therefore, one typically approximates equation 4.1.0.1 using a Taylor
expansion. With some rewriting this becomes

− log f(∆) =
∑
i

1

2
‖Ai∆i − bi‖2 (5.2.1.5)

where Ai = Σ
−1/2
i Ji is the weighted measurement Jacobian, J , ∆i is the linearized states and

bi = Σ
−1/2
i (zi − hi(∆i)) is the weighted prediction error. In SLAM problems updates arrive

in an incremental order which allows for more efficient solutions; One of which transforms the
factor graph into a Bayes net and further into the Bayes tree as illustrated in figure 5.2.2. Thus,
inference on the factor graph can be understood as converting the factor graph onto the form
of these related graph structures and computing the joint density over these structures instead.
These graph structures are covered in the following sections.
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(a) Factor graph and the associated Jacobian matrix A. Xs mark connections from variable to factor
nodes.

(b) Bayesian network and the associated square root information matrix R. Xs mark connections between
variable nodes.

(c) Bayes tree and the associated square root information matrix R. Colors are used to describe cliques
represented both in terms of the bayes tree structure and the matrix equivalent.

Figure 5.2.2: The graph structures used in the iSAM2 algorithm. The same naming convention
as for fig. 5.2.1 is used. All figures are inspired by fig. 3 from (Kaess, Johannsson, Roberts, Ila,
J. J. Leonard, et al., 2012), but modified to fit conventions for this thesis.

5.2.2 Bayesian network

Bayesian networks, also called Bayes nets, are directed acyclic graphs (DAGs) that aim to model
probabilistic causality through conditional dependence. In figure 5.2.2b the nodes, Xj , represent
variables while each edge represent a conditional dependency. Furthermore, Bayesian networks
satisfy the local Markov property (Rabiner, 1989), which states that a variable is only condi-
tionally dependent on its prior state. Here, prior state refers to previous poses or associated
landmarks. In other words, if there exist an edge between nodes Xj and Xj−1 their conditional
dependence f(Xj |Xj−1), is a factor in the joint distribution over the network. A variable Xj may
have multiple priors, thus forming a set of variables Sj that the node is conditional dependent
on. Bayesian inference may be applied to analyze the joint distribution over the entire set of
random variables

f(X ) ,
∏
j

f(Xj |Sj). (5.2.2.1)
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The Bayes net can be obtained from a factor graph by QR- or Cholesky factorization, or equiv-
alently by means of a bipartite elimination game, as described by (Heggernes et al., 1996). For
iSAM2 (section 5.3) the latter approach is taken, which proceeds by eliminating one variable
Xj at a time, and follows algorithm 1 in converting it into a node of the Bayes net. The nodes
represent conditionals P (Xj |Sj) for every factor node on its connected variables.

Algorithm 1: Eliminating a variable Xj from the factor graph.

1 Remove from the factor graph all factors fi(Xi) that are adjacent to Xj . Define the
separator Sj as all variables involved in those factors, excluding Xj .

2 Form the (unnormalized) joint density f(Xj ,Sj) =
∏
i fi(Xj) as the product of those

factors.
3 Using the chain rule, factorize the joint density f(Xj ,Sj) = P (Xj |Sj)f(Sj). Add the

conditional P (Xj |Sj) to the Bayes net and the factor f(Sj) back into the factor graph.

An example of a factor graph converted to a Bayes net is shown in figure 5.2.2b. The chain rule
f(Xj ,Sj) = P (Xj |Sj)fnew(Sj) in step 3 of the elimination algorithm can be implemented using
Householder reflections or Gram-Schmidt orthogonalization. Every incoming factor-product is
on the form

f(∆j , sj) ∝ exp

(
−1

2
‖a∆j +ASsj − b‖2

)
(5.2.2.2)

where Aj = [a|AS ] is obtained by concatenating all variables sj that are connected to the variable
that is currently undergoing conversion from factor graph to Bayes net, ∆j . The factor product
can be rewritten according to (Kaess, Ila, et al., 2010) by marginalization of sj as described by
Brekke (2020). Equation 5.2.2.2 is rewritten as

f(∆j , sj) = P (∆j |sj)f(sj) (5.2.2.3)

where

P (∆j |sj) ∝ exp

{
−1

2
(∆j + rsj − d)2

}
f(sj) ∝ exp

(
−1

2

∥∥∥A′
sj − b

′
∥∥∥2
)

(5.2.2.4)

and

r = (aTa)−1aTAS d = (aTa)−1aTb A
′

= AS − ar b
′

= b− ad

The new factor f(sj) in equation 5.2.2.3 is obtained by substituting ∆j = d − rsj into 5.2.2.2.
This yields one iteration of Gram-Schmidt. Thus, the MAP estimate of ∆ is found by recursively
solving ∆j = d− rsj for every variable ∆j .

The Bayes net resulting from algorithm 1 holds the important property of being chordal. A
chordal graph means that any undirected cycle of length greater than three has an additional
edge that is not part of the cycle but connects two of the vertices. This is a necessary property
if the Bayes net is to be further converted into a Bayes tree, as will be discussed in next.
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5.2.3 Bayes tree

Marginalization and optimization of Bayes nets is not easy in general. However, the related tree-
based structure, the Bayes tree, enables new recursive algorithms that simplify and streamlines
this process. A Bayes tree is a directed tree where the nodes represent cliques. This structure
was introduced with the iSAM2 algorithm (Kaess, Johannsson, Roberts, Ila, J. J. Leonard, et
al., 2012) described in section 5.3. If the underlying Bayes net is chordal then the Bayes tree
can be constructed by discovering its cliques using the maximum cardinality search algorithm
(Tarjan et al., 1984). Each clique consists of its separators Sk being the intersection Ck ∩ Πk of
the current clique and its parent respectively, and frontal variables Fk containing the remaining
variables. An example of a Bayes tree is shown in figure 5.2.2c, where the frontal elements of
the left leaf node is {l1, x1} and x2 is the separator. This restructuring of the graph yields the
joint distribution from equation 5.2.2.1 to be rewritten for the Bayes tree accordingly

P (X ) ,
∏
k

P (Fk|Sk). (5.2.3.1)

From section 5.2.2 it is clear that every node of the Bayes net represent the conditional P (Xj |Sj).
The cliques of the Bayes tree therefore contains as set of these nodes of size greater than one as
shown in figure 5.2.2c. The optimal assignment of X ∗ can be computed using algorithm 4.

New measurements often only have a local effect on the Bayes tree, which enables efficient update
algorithms to only evaluate the affected branches of the tree. The update rule of the Bayes tree is
described in algorithm 2 and illustrated in figure 5.2.3. From this update rule it becomes clearer
why iSAM2 uses the elimination game from algorithm 1 over factorization. Due to the local
update it is efficient to only perform partial state update over the affected nodes using algorithm
4.

Algorithm 2: Updating the Bayes tree inclusive of fluid relinearization (section 5.3.3) by
recalculating all affected cliques.
Input: Bayes tree T , nonlinear factors f , affected variables X ′

Output: modified Bayes tree T ′

1 Remove top of Bayes tree, convert to a factor graph:
(a) For each affected variable in X ′ remove the corresponding clique and all parents

up to the root.
(b) Store orphaned sub-trees Torph of removed cliques

2 Relinearize all factors required to recreate top.
3 Add cached linear factors from orphans Torph.
4 Re-order variables of factor graph.
5 Eliminate the factor graph and create a new Bayes tree.
6 Insert the orphans Torph back into the new Bayes tree.
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Figure 5.2.3: The image depicts the Bayes tree update sequence described in algorithm 2. Based
on example from fig. 5.2.2, the nodes that are affected by the update (encircled by a dotted
orange oval) are first converted to a factor graph. A new factor is inserted in the extracted graph,
between pose variables x1 and x3 (dotted blue). The factor graph nodes are then eliminated using
algorithm 1 to obtain the Bayes net representation. Lastly are the updated Bayes tree created
from the chordal Bayes net added back into the original tree. Consequently, the right “orphan”
sub-tree (light green) from the original Bayes tree remains untouched, while the affected section
is updated. The figure is inspired by fig. 3 from (Kaess, Johannsson, Roberts, Ila, J. J. Leonard,
et al., 2012), but modified to fit the notation used in this thesis.

5.3 Incremental Smoothing and Mapping 2 (ISAM2)

A presentation of the necessary background material related to iSAM2 was included in the special-
isation project preceding this thesis. This presentation is deemed valuable also for this thesis, and
the presentation from the project report (Hellum, 2020) is therefore included below in a redrafted
version.

Many inference problems, such as SLAM, are incremental by nature as new measurements arrive
sequentially. Naturally the most efficient solution to a sequential problem is an incremental
algorithm. For SLAM problems the current state is dependent on prior knowledge and reuse is
therefore possible, which allows for more efficient solutions. The iSAM algorithms are examples
of this.

The original iSAM algorithm follows the derivation described in section 5.2.1 and minimizes
equation 5.2.1.4 by applying fast linear solvers. This allows iSAM1 to repeatedly solve the
square root information matrix, R by backsubstitution. Updates are performed using Givens
rotation (Gentleman, 1973) to maintain the efficient upper triangular structure of the R matrix.
However, as new measurements are added the square root information matrix will gradually
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drift further away from the true state. iSAM1 solves this problem by periodically execute re-
linearization and variable reordering at batch steps. This is a sub-optimal solution as refactoring
the whole matrix is expensive.

iSAM2 is a fully incremental, graph-based version of the iSAM algorithm. iSAM2 avoids the
whole issue of periodic batch refraction by introducing the Bayes tree and then utilizes incremen-
tal reordering, partial state updates, and fluid re-linearization. The Bayes tree is discussed in
section 5.2.3, while the remaining topics are covered in the following subsections. By introducing
these topics iSAM2 combines the advantages of the graphical model and sparse linear algebra
to obtain one of the fastest full graph-SLAM methods used today. The iSAM2 algorithm is
captured in algorithm 3.

Algorithm 3: One step of the iSAM2 algorithm, following the general structure of a
smoothing solution.
Input: New nonlinear factors f ′ , new variables X ′

Output: Bayes tree T , nonlinear factors f , linearization point X , update ∆

Initialization: T = ∅, f = ∅, X = ∅

1 Add any new factors f := f ∪ f ′ .
2 Initialize any new variables X ′ and add X := X ∪ X ′ .
3 Fluid relinearization with Alg. 5 yields affected variables.
4 Redo top of Bayes tree with Alg, 2.
5 Solve for delta ∆ with Alg. 4.
6 Current estimate given by X ⊕∆.

From algorithm 3 it can be seen that iSAM2 use several additional strategies to solve specific
sub tasks, all of which are addressed in the next subsections.

5.3.1 Incremental Variable Ordering

It is important to choose a good variable ordering to efficiently find the sparse matrix solution.
An optimal ordering minimizes the fill-in, where fill-in can be seen as the size of the cliques.
Finding the variable ordering that leads to the minimum fill-in is NP-hard. Heuristic methods
such as Column Approximate Minimum Degree (COLAMD) (Davis et al., 2004) provide close to
optimal approximations of the ordering for batch problems. COLAMD was used in the original
iSAM algorithm, but an incremental variable reordering strategy is desirable for the iSAM2
algorithm to allow for faster updates in subsequent steps. This is achieved with the Constrained
COLAMD (CCOLAMD), where the most recently accessed variables to the end of the ordering.
This makes sense for the SLAM problems because a new set of measurements are expected to
connect to the most recent observed states. It is therefore most likely that the most recent
accessed variables are the ones that need reordering.

5.3.2 Partial State Updates

New measurements often only have a local effect of the Bayes tree, which is utilized by the partial
state update. Instead of performing full backsubstitution on the square root information matrix,
R, iSAM2 only include variables that change when computing the update. More specifically,
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iSAM2 begins at the root of the tree and recursively updates all descendant cliques that change
beyond a given threshold. The remaining nodes are marginalized. Except for large loop closures,
this results in a less expensive update rule.

Algorithm 4: Partial state update: Solving the Bayes tree in the nonlinear case returns
an update ∆ to the current linearization point X .
Input: Bayes tree T
Output: Update ∆

1 Starting from the root clique Cr = Fr:
2 For current clique Ck = Fk : Sk, compute update ∆k of frontal variables Fk using

already computed values of parent Sk and the local conditional density P (Fk|Sk).
3 For all variables ∆kj in ∆k that change by more than threshold α: recursively

process each descendant containing such a variable.

5.3.3 Fluid Relinearization

Fluid relinearization is added to the iSAM2 algorithm so that relinearization only is performed
when needed. In order of doing so, the algorithm keeps track of the validity of the linearization
point for each variable. When a variable drift beyond a threshold all relevant information is
removed from the Bayes tree and replaced by relinearizing the corresponding original nonlinear
factor. For all cliques that are relinearized, the marginal factors from their sub-trees also have
to be taken into account.

Algorithm 5: Fluid relinearization: The linearization points of select variables are up-
dated based on the current delta ∆
Input: Linearization point X , delta ∆

Output: Updated linearization point X , marked cliquesM

1 Mark variables in ∆ above threshold β: J = {∆j ∈∆|∆j ≥ β}.
2 Update linearization point for marked variables: Xj := Xj ⊕∆j

3 Mark all cliquesM that involve marked variables Xj and all their ancestors.

5.4 Concurrent Filtering and Smoothing

In contrast to filtering over a single state, even the iSAM2 smoothing solution discussed in
section 5.3 generally is not a constant time operation over a growing number of states (Kaess,
Johannsson, Roberts, Ila, J. J. Leonard, et al., 2012). This is even more evident with occasional
inclusion of loop closures where large amounts of factors have to be recalculated. Smoothing
solutions can however be parallelized, allowing the problem formulation to be split into a high
speed navigation component and a higher latency loop closure component. S. Williams et al.
(2014) proposed an approach that combines short-term filtering and long-term smoothing within
a single Bayes tree, while formulating it in such a way that both are performed concurrently. This
approach enables the filter to operate at constant time where new sensor data are integrated real
time, while updates from the slower smoother are integrated whenever once become available,
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while still achieving an optimal state estimate at any time. Such smoother updates typically
refer to loop closures. While being named a filter, it is in practice rather a short-term smoother
as will be detailed later. The concurrent structure is achieved by splitting the posterior factors
in eq. (5.2.3.1) into three components

P (X | Z) = P
(
XR | X S

)
P
(
X S
)
P
(
X t | X S

)
. (5.4.0.1)

The factors from left to right represent the smoother, the separator and the filter. With this
representation the smoothing over past states is decoupled from filtering on current states. The
posterior p(X | Z) in eq. (5.4.0.1) is equivalent to a Bayes tree with the separator as root, as
illustrated in fig. 5.4.1. By definition, the new factor are directly inserted into the filter clique X t.
Changing a clique also affects all ancestors, which can be seen from the elimination algorithm
(alg. 1), where information is passed upwards towards the root. Because the root is the separator
clique X S , this also has to be recalculated. By the same argumentation, the smoother cliques
XR are eliminated independently up to the separator. Consequently, the smoother clique is
unaffected by updates in the filter. The smoother and filter can therefore be solved in parallel,
with the filter typically performing multiple steps during one smoother iteration, and then joined
at the separator.

Figure 5.4.1: Smoother and filter combined in a single optimization problem and represented as
a Bayes tree. A separator is selected so as to enable parallel computations. The image is inspired
by S. Williams et al. (2014), but modified to fit the notation of this thesis.

To keep the filter operating in constant time, an approximately constant number of factors have
to be maintained. Hence, intermediate states that no longer is referred to by future factors
should be removed. Some factors are marginalized out, while others are moved to the smoother.
Marginalization is equivalent to simply dropping the respective conditionals from the chordal
Bayes net. The smoother updates could be solved by simply performing batch optimization,
however it is cheaper to update the factor graph using the iSAM2 algorithm (Kaess, Johannsson,
Roberts, Ila, J. Leonard, et al., 2011). The iSAM2 update strategy is also chosen for the filter,
but for a smaller window of factors.

Concurrent operations require synchronization of the two independently running processes. Syn-
chronization happens after each iteration of the smoother. In order to keep the filter run time
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constant, it can never wait for the smoother. Hence, upon finishing an iteration, the smoother
waits for the filter to finish its current update. When the processes are synchronized the or-
phaned subtree of the filter is merged back into the updated tree of the smoother. However,
the original separator has changed independently in both the smoother and the filter. This is
solved by only incorporating the change from the filter with respect to the original separator.
In other terms, exactly the information the filter would add had it instead been run in sequence
with the smoother. The inactive key states that are not removed from the filter is transferred
to the smoother; this is done during synchronization by re-eliminated with a variable ordering
(section 5.3.1) that changes the separator closer to the filter and thus transfers the previous
separator and potential intermediate states from the filter into the smoother.
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CHAPTER 6

Overview over Sensor and Software Setup

In this chapter datasets and their sensor setup are first described, followed by a description of
the software that are employed to envision the developed system covered in sections 7 and 8.

6.1 milliAmpere

milliAmpere is a prototype of the autonomous ferry being designed as part the Autoferry project
(Nilsen, 2017). An in-action image of milliAmpere can be found in fig. 1.1.1. The ferry is
intended to transport pedestrians and cyclists between Ravnkloa and Vestre Kanalkai at Brattøra
in Trondheim. This is a ∼ 110m wide passage shown in figure 6.1.1.

Figure 6.1.1: Intended operational region for mA2. The image shows an overview of Brattøra
in Trondheim. The blue oval illustrates mA2 traveling along the striped lines, between the
highlighted dark blue docking areas on Ravnkloa and Vestre Kanalkai.

milliAmpere is equipped with a sensor platform placed on top of the approximately 3-meter tall
vessel. The platform consist of a camera setup of five EO and five IR cameras mounted to cover
a 360° Field of view (FOV). The sensor platform additionally has a 360° LiDAR and an INS
(RTK-GNSS and IMU). The specifications of each sensor are listed below.

• 5 × EO cameras (FLIR BlackFly 2), resolution: 2448 × 2048, max framerate: 22 fps, Kowa
LM6JC lens, focal length 6mm, HFOV: 81.9°

• 5 × IR cameras (FLIR Boson 640), resolution: 640 × 512, max framerate: 9 fps, Kowa
LM6JC lens, focal length 4.9mm, HFOV: 95°

• 1 × Velodyne VLP-16 rotating 3D laser scanner, update rate of 5-20 Hz, 16 channels, 0.1°-
0.4°horizontal angular resolution, 2.0°vertical angular resolution, 3 cm distance accuracy,

Dept. of Engineering Cybernetics 39



Chapter 6. Overview over Sensor and Software Setup

field of view: 360°horizontal, 30°vertical, range: 100 m

• 1 × RTK-GNSS (Hemisphere Vector VS330), gyro stabilizer to measure heading at an
accuracy of 0.05 degrees, horizontal accuracy 0.30m without RTK and 0.01m with RTK,
update rate of 20Hz

• 1 × IMU (Xsens MTI-G-710), update rate of 100Hz

The sensor setup on milliAmpere was supplied by the stereo rig described in Theimann et al.,
2020. The rig uses two identical electro-optical cameras in the stereo setup. They are delivered
by FLIR, and the camera model is Blackfly S GigE. The selected lens was bought from Edmund

• 2 × EO cameras (FLIR Blackfly S GigE) resolution: 2448 × 2048, max framerate: 24 fps,
Edmund Optics C Series lens, focal length 8.5mm

The mounted full sensor setup can be seen in figure 6.1.2

Figure 6.1.2: Illustration of the milliAmpere sensor setup listed below. Sensor frames are illus-
trated in the image. The red arrow depicts the x-direction, while yellow is y-direction and z
is marked as blue. The sensor coordinate frames are denoted by: IR = infrared cameras, EO
= electro optical cameras, L = LiDAR, G = GNSS, and Ci = stereo cameras which is further
denoted left (l) and right(r). Image captured by the author.
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6.2 The KITTI Dataset as an Alternative to the milliAmpere
Dataset

The KITTI dataset is included as an alternative benchmark for testing. The KITTI dataset
(Geiger, Lenz, Stiller, and Urtasun, 2013a) is a publicly available dataset recorded from a car
driving around urban areas in Karlsruhe, Germany. The dataset is split into 11 sequences
(sequence 00-10) where the amount of details and number of objects vary with different locations.
All of the sequences provide a ground truth of the trajectory, while 6 of which contain one or
more loop closure events (revisits a location). The main purpose of the dataset is to provide a
benchmark for development of computer vision and robotic algorithms targeted at autonomous
driving. The variety in content between the sequences allows developers to test algorithms for
stereo vision, visual odometry, 3D/2D object detection and much more, for different scenarios.
The sensor platform is equipped with both grayscale and color stereo configured cameras, LiDAR,
and an INS. Sensor setup with their internal coordinate frame on the vehicle is displayed in figure
6.2.1, while sensor specifications are listed below.

• 2 × PointGray Flea2 grayscale cameras (FL2-14S3M-C), 1.4 Megapixels, 1/2” Sony ICX267
CCD, global shutter

• 2 × PointGray Flea2 color cameras (FL2-14S3C-C), 1.4 Megapixels, 1/2” Sony ICX267
CCD, global shutter

• 4 × Edmund Optics lenses, 4mm, opening angle 90°, vertical opening angle of region of
interest (ROI) 35°

• 1 × Velodyne HDL-64E rotating 3D laser scanner, 10 Hz, 64 beams, 0.09 degree angular
resolution, 2 cm distance accuracy, collecting 1.3 million points/second, field of view:
360°horizontal, 26.8°vertical, range: 120 m

• 1 × OXTS RT3003 inertial and GPS navigation system, 6 axis, 100 Hz, L1/L2 RTK,
resolution: 0.02m / 0.1°

Figure 6.2.1: The sensor platform used in the KITTI dataset. The location of the cameras, lidar
and INS system is illustrated together with their coordinate frame. Reprinted by permission
from Geiger, Lenz, Stiller, and Urtasun (2013).
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6.3 Software

6.3.1 Robotic Operating System (ROS)

Robot Operating System (ROS) (Quigley et al., 2009) is a distributed and modular open-source
middleware for robotic software development. ROS follows a peer-to-peer communication struc-
ture, embedding several different styles of communication such as synchronous services, asyn-
chronous actions, and a publisher-subscriber alternative where nodes communicate over topics.
These nodes are the core of the ROS communication structure. Every node can embed multiple
publishers and subscribers. The subscribers are called whenever new information is available
on the topic that they subscribe to. A callback function is registered to every subscriber where
a set of logical operations are executed every time they are called. The result of the callback
function can then yet again be published to a specified topic. Nodes support both sequen-
tial and multi-thread behaviour by applying either the single-threaded spin() looper or the
MultiThreadedSpinner(). ROS utilizes a set of software libraries, tools, and conventions to
simplify and standardize the task of complex and robust robot behavior. This includes visualiza-
tion packages such as rqt that can visualize the overall system structure as a graph and Rviz for
visualization of data that is published through standard ROS messages. This may include the
pose of the vehicle, point clouds and much more. Another valuable tool included with ROS is
the logging package called rosbags. Rosbags allows the user to store published data, for example
sensor data and robot behavior, with time stamps for each measurement. This is a useful tool
to collect and organize real world sensor data, such that testing may be performed later.

6.3.2 kitti2bag

kitti2bag is a third party python package developed specifically for transforming the raw data
from the KITTI dataset into a rosbag. The library is credited on the KITTI dataset webpage
(Geiger, Lenz, Stiller, and Raquel, 2013).

6.3.3 Trajectory Evaluation Tool

The trajectory evaluation toolbox by Zhang and Scaramuzza (Z. Zhang and Scaramuzza, 2018)
was used to quantify the quality of the estimated trajectory. The toolbox has support for Absolute
Trajectory Error (ATE) and Relative/Odometry Error (RE). ATE is widely used to evaluate
visual odometry/SLAM algorithms because it produces a single number metric which makes it
easy to compare performance. ATE is computed by first aligning the estimated trajectory to
the ground truth, and then calculating the Root-Mean-Square Error (RMSE) over the aligned
estimate and the ground truth. The alignment are typically done either at the beginning of
the trajectory, or more commonly by computing the SE(3) transformation that minimizes the
overall ATE of the trajectory.

6.3.4 OpenCV

Open Source Computer Vision Library (OpenCV) is an open-source software library mainly
aimed at real-time computer vision. OpenCV lists a comprehensive set of more than 2500 algo-
rithms for both classic and state-of-the-art computer vision. This includes optimized algorithms
for feature detection and tracking, and calculation of essential matrix to mention some of which
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are of relevance to this thesis. OpenCV has C++, Python, Java and MATLAB interfaces,
and supports Windows, Linux, Android and Mac OS. Additionally, OpenCV has built-in GPU
support for many of its functions allowing boosted computational performance.

6.3.5 Eigen

Eigen is an open source C++ library for linear algebra. It contains templated headers for
matrices, vectors, numerical solvers, and related algorithms. The library is fast and well-suited
for a wide range of tasks, while being targeted at operations related to transformation matrices
in this thesis.

6.3.6 Georgia Tech Smoothing and Mapping (GTSAM)

The GTSAM toolbox is an open-source C++ library that performs large scale optimization.
GTSAM uses factor graphs and Bayes networks as the underlying computing paradigm rather
than sparse matrices. The factor graphs can be converted to a, typically, sparse matrix equivalent
which can be solved using multiple different approaches. What separates GTSAM from many
other optimization libraries is that it has multiple predefined factors for standard application
which simplifies the implementation. In addition to the predefined factors, GTSAM also supports
implementation of customized factors. GTSAM uses Values as initial estimates for the state
variables in the factors. However, what most uniquely seperates GTSAM from other optimization
libraries is the inclusion of algorithms such as iSAM and iSAM2 for back end optimization
in SLAM problems. GTSAM do also support filtering, smoothing and batch optimization for
sequences of factors. Building on this, the library has support for concurrent behaviour of batch
filtering and smoothing solution, where the iSAM2 algorithm is used to update the factor graph
(S. Williams et al., 2014).

6.3.7 Pitch Yaw Roll (PYR)

PYR is an approach developed by Barnada et al. (2015), that estimate angular changes from
monocular visual data, by analysing distant points. This strategy is based on the fact that the
motion of distant points is not dependent on translation, but only on the rotation perceived by
the camera. PYR does not require features to be extracted, but rather use phase correlation
to estimate the optical flow. The algorithm also estimate the illumination changes between the
compared frames, which allows to largely stabilize the estimation of image correspondences and
motion vectors. Phase correlation can also be made robust against multiple motion, occlusions
and other typical sources of failure for feature-based or photometric matching.

In practice are several predefined sub-regions of the image extracted where distant points are
expected to be found, i.e. not in the sky or at the bottom of the image. Phase correlation is
then applied independently to each sub-regions of the image to obtain a sparse set of optical
flow vectors. Then, the relative rotation angles of the camera are inferred from the individual
components of the flow vectors. PYR is significantly less complex and much faster than a full
egomotion computation from features. PYR may therefore provide a useful prior to reduce search
spaces of optimization schemes.
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6.3.8 Joint Epipolar Tracking (JET)

Joint Epipolar Tracking is a sparse direct bundle adjustment algorithm developed by Bradler
et al. (2017), for optimizing relative pose transformations and feature correspondences. Tradi-
tionally, pose estimation is considered as a two step problem. First, feature correspondences
are determined and in a second step the relative pose is estimated, often by minimizing the
reprojection error. JET rather introduce a loss function that allows to simultaneously optimize
the unscaled relative pose, as well as the set of feature correspondences directly in a one-step
approach. This is solved by considering the image intensities of the feature correspondences
rather than their position only. At the time this algorithm was introduced it outperformed the
classical reprojection error optimization on two synthetic datasets and on the KITTI dataset.
This, while running in real-time on a single CPU thread.

The developed VSLAM frontend algorithm described in section 7 would greatly benefit from this
software. However, after spending some time trying to integrate the software into the system it
was in the end not accomplished. The reason being that JET uses older versions of OpenCV
and other libraries, and even more importantly is based on an old Microsoft C++ compiler.

6.3.9 DBoW2 and DLoopClosure

A key feature that separates SLAM from VO is the ability to re-localize whenever previously
mapped environments are recognized. This is useful both to correct for accumulated drift and
re-localize in case of tracking failures. Storing, and comparing entire images to previous entries
is very computationally inefficient, but using image regions surrounding features reduce the
complexity. Still, a naive brute force approach which matches features against all previously
detected features quickly becomes impractical. As the system has to perform in real-time, a
place recognition module has to be very effective.

Dynamic Bags of Words 2 (DBoW2) is a visual place recognition module developed by Gálvez-
López et al. (2012), which uses binary descriptors such as ORB (Rublee et al., 2011) or Binary
Robust Independent Elementary Features (BRIEF) (Calonder et al., 2010), with an efficient
search structure to find correspondences. Bag of Words (BoW)-algorithms uses a tree structure
called visual vocabulary to convert an image into a sparse numerical vector. The visual vocabu-
lary is constructed in an offline training step by discretizing the descriptor space into W visual
words. Training a good vocabulary requires thousands of images captured in a wide range of
conditions. At run time, DBoW2 builds database of images from previously visited locations and
uses the vocabulary for fast matching and retrieval of potential correspondences. An implemen-
tation of the DBoW2 database and vocabulary that is built on OpenCV is available open-source
(Gálvez-López et al., 2014a). This implementation is furthermore templated, so it can work with
any type of descriptor at the users convenience.

In practice visual vocabularies are constructed by first discretizing the descriptor space into kW
binary clusters by performing k-means clustering using k-means++ seeding (Arthur et al., 2006).
These clusters form the first level of nodes in the vocabulary tree. Subsequent levels are created
by repeating this operation with the descriptors associated with each node, up to LW times.
This process generates a tree withW leaves, called the vocabulary words. Each word is weighted
according to its relevance in the training set, decreasing the weight of very frequent and, thus, less
discriminative, words. This weighting strategy is called the Term Frequency-Inverse Document
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Frequency (tf-idf).

An image It taken at time t is converted into a BoW vector vt ∈ RW by traversing the binary
descriptors of the features from the root to the leaves. At each level the intermediate nodes that
minimize the Hamming distance is selected.

Each BoW vector is stored in a database together with an inverse index and a direct index. The
inverse index stores, for every word Wi, a list of images It in which it appears, together with
the corresponding weight of the word in the image vit. The inverse index is updated when a
new image It is added to the database, and accessed when the database is searched for some
image. This allows to perform comparisons only against those images that have some word in
common with the query image. The direct index is not used as often, and stores the nodes
which are ancestors to the words present in It, as well as the list of local features utj associated
to each node. This allows to speed up geometrical verification between images by computing
correspondences only between those features that belong to the same words.

Loop Detection Algorithm
Gálvez-López et al. (2012) also describes a four step algorithm to verify loop closing candidates,
which is available open-source (Gálvez-López et al., 2014b). Using ORB features, this algorithm
has been tested on several real datasets, yielding an execution time of 9 ms to detect a loop a
in a sequence with more than 19000 images (without considering the feature extraction).

The algorithm starts by querying the database with the BoW vector vt, resulting in a list of
potential matches {< vt,vt1 >,< vt,vt2 >, ...} associated with their similarity scores s(vt,vtj ) ∈
[0, 1] are measured with the L1-score

s
(
vt,vtj

)
= 1− 1

2

∣∣∣∣∣ vt
|vt|
− vtj∣∣vtj ∣∣

∣∣∣∣∣ (6.3.9.1)

The potential match scores are then normalized with the best score that could be expected to
obtain in this sequence for the vector vt. This is approximated with the previous image processed,
yielding the normalized similarity score

η
(
vt,vtj

)
=

s
(
vt,vtj

)
s (vt,vt−1)

. (6.3.9.2)

Matches whose normalized similarity score, η
(
vt,vtj

)
, does not achieve a minimum threshold

are then discarded.

The second step is to group images that are close in time into islands, and treat them as one
match, to prevent them competing among themselves whenever the database is queried. I.e. if It
and It′ represent a real loop closure, then It is very likely to be similar to It′+∆t, It′+2∆t, .... The
notation Ti = {tni , ..., tmi} is therefore introduced to represent the interval of timestamps for an
island VTi =

{
vtni

, ...,vtmi

}
. Several matches, {< vt,vt1 >,< vt,vt2 >, ...}, is thus converted

into a single match < vt, VTi > ranked according to the score

H (vt, VTi) =

mi∑
j=ni

η
(
vt,vtj

)
. (6.3.9.3)
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The island yielding the highest score is selected as a matching group and continue to the the
third step, called the temporal consistency check.

After obtaining the matching island VT ′ , it is checked for temporal consistency with previous
queries. The match < vt, VT ′ > must be consistent with k previous matches,
{< vt − 1, VT1 >, ...,vt − k, VTk} to be accepted. If so, the vector vt′ ∈ VT ′ that maximizes
the score η is considered a loop closing candidate and passes to the final step, the geometrical
verification stage.

The geometrical consistency checks applies Random Sample Consensus (RANSAC) to find a
fundamental matrix, F ∈ R3×3, between images It, and the matching candidate It′ supported
by at least 12 correspondences. Local features of the query image and the matched image must
be compared and F can then be computed as described in section 2.4.2. Using the direct index in
the database, the features correspondences of It and It′ is quickly extracted. Only the features
associated with the same nodes at level l in the vocabulary tree needs to be compared, thus
speeding up the process. Finally, if the fundamental matrix was successfully computed, the
match is accepted.
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Implementation of Frontend

This chapter will cover the frontend of the stereo VSLAM solution. An illustration of the pipeline
is illustrated in figure 7.0.1, while an algorithmic description is detailed in algorithm 6. The
initial outline of the implementation was to develop an efficient multiframe semi-direct SLAM
algorithm, closely linked to SVO2 (Forster, Z. Zhang, et al., 2016). However, due to issues
described in section 6.3.8, the JET library that was going to be used for sparse photometric
optimization was not successfully integrated. Therefore, a sequential multiframe fully feature
based SLAM algorithm was developed. OpenCV is used for feature management and Eigen is
used for pose representation and transformations. GTSAM is used for bundle adjustment, while
ROS connects the complete system.

The system detects FAST features (Rosten et al., 2006) in the left stereo image using a bucketed
approach and matches them using the circular matching algorithm (Geiger, Ziegler, et al., 2011).
Features in the two images are then linearly triangulated Hartley et al., 2003, ch.12.2 and the
landmark positions are refined using structure-only bundle adjustment with a known stereo
baseline from calibration. An initial estimate of the relative transformation between the two
sequential image pairs is obtained up-to-scale by using Nistér’s five-point algorithm (Nistér, 2004)
while also employing RANSAC to remove feature outliers. It was observed that Nistér sometimes
struggle when there are small feature displacements from frame to frame. Consequently, whenever
the scaled motion relative from previous frames drops significantly, the rotation is replaced by
PYR (Barnada et al., 2015). The initial relative transformation is then refined using motion-only
bundle adjustment, returning a scaled estimate of the relative transformation. Keyframes are
decided if the body has moved more three meters, rotated more than 20 degrees, or more than
20 frames have passed. ORB descriptors are computed whenever a keyframe is decided. DBoW2
is then queried for loop closure matches using the ORB descriptors. If a loop is detected, the
relative transformation between the current keyframe and the loop frame is found. The relative
transformation is published to the backend for every frame, while stereo features, landmarks and
loop closures are published every keyframe.

Figure 7.0.1: Pipeline for visual odometry algorithm. Boxes indicate algorithmic processes and
arrows shows the data flow. Red boxes indicate input or output, while blue boxes describe
algorithmic processes. Green boxes indicate data buffers of different types.
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Algorithm 6: Main body of VSLAM frontend pipeline
Input: Image pair from both previous and current left and right stereo camera, Il,n−1,

Ir,n−1, Il,n and Ir,n respectively. Features in previous left frame (ul,n−1).
Triangulated refined features from previous frame {ln−1}∗. The former refined
relative transformation

{
Tn−1/n−2

}∗.
Output: Refined relative transformation estimate

{
Tn/n−1

}∗. Refined landmarks position
{ln}∗. Features for stereo image pair {ul,n,ur,n}. Loop detection container with

boolean if loop closure is detected and the relative transformation
{

Tiloop/n

}∗
.

Nomenclature: The features in the current frame: uj,n = u−j,n ∪ u+
j,n.

• u−j,n: Features that were matched to frame n. Subscript j denotes left or right image.
• u+

j,n: New detections in the current frame.
Nomenclature: iloop denotes the iterator value for the keyframe loop closure match.
Nomenclature: Tn/n−1 subscripts are separated by forward slash for clarity.

Initializaiton:
1 PreprocessImages(Il,n, Ir,n)
2 ul,n ← BucketedFeatureDetection(Il,n, _)
3 ur,n ← CircularMatching(_, _, Il,n, Ir,n, ul,n)
4 ln ← Triangulate(ul,n, ur,n)
5 {ln}∗ ← StructureOnlyBundleAdjustment(ul,n, ur,n, ln)

Locked in state:
1 while Il,n, Ir,n ← ReadSyncronizedImagePair() do
2 PreprocessImages(Il,n, Ir,n)
3 u−l,n ← ProjectLandmarks({ln−1}∗,

{
Tn−1/n−2

}∗)
4 u−l,n ← calcOpticalFlowPyrLK(Il,n−1, Il,n, ul,n−1, u−l,n)
5 Tn/n−1 ← Nistér5Point(ul,n−1, u−l,n)
6 if norm(tn−1/n−2) < α then
7 Tn/n−1 ← Rn/n−1 ← PYR(Il,n−1, Il,n)
8 u+

l,n ← BucketedFeatureDetection(Il,n, u−l,n)
9 ur,n ← CircularMatching(Il,n−1, Ir,n−1, Il,n, Ir,n, ul,n)

10 ln ← Triangulate(ul,n, ur,n, Pl, Pr)
11 {ln}∗ ← StructureOnlyBundleAdjustment(ul,n, ur,n, ln)
12

{
Tn/n−1

}∗ ← MotionOnlyBundleAdjustment(Tn/n−1, ul,n, ur,n, {ln−1}∗)
13 Tkeyframe = Tkeyframe ·

{
Tn/n−1

}∗
14 if IsKeyframe(Tkeyframe) then
15 dl,n ← computeDescriptor(Il,n, ul,n)
16 iloop ← queryDLoopDetector(ul,n, dl,n)
17 if iloop 6= −1 then
18 ul,iloop , ur,iloop ← CircularMatching(Il,n, Ir,n, Il,iloop , Ir,iloop ul,n)
19 Tiloop/n ← Nistér5Point(ul,n, ul,iloop)

20
{

Tiloop/n

}∗
←MotionOnlyBundleAdjustment(Tiloop/n, ul,iloop , ur,iloop , {ln}∗)

21 Tkeyframe = I;
return: {Output}
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7.1 Preprocessing

The preprocessing of the image ensures that new images have a format that fits for analysis.
Firstly, the stereo image pairs are rectified if this was not done beforehand. To obtain the rectified
images, two different rectification algorithms were tried: OpenCV’s StereoRectify() and ROS’
stereo_image_proc software. The latter achieved the best results. Then, the stereo image pair
are syncronized using the ROS message_filters::Synchronizer to ensure that the incoming
image pair match. These two operations combined equals ReadSyncronizedImagePair() in
algorithm 6. Next, the PreprocessImages() is defined. The images are converted to grayscale
mainly because the algorithms used for feature extractors and descriptors are designed to analyse
the intensity of pixels. If necessary, for example to remove static body-fixed items, the images
are then cropped. A mask would serve the same purpose, but are harder to define correctly.
For high resolution images, the resolution was considered dropped for two reasons. Firstly to
improve computational time, and secondly to improve feature detection because an unnecessarily
large amount of features could then be detected within a small region. Adjusting the resolution
was ignored because the images at the end were read at maximum resolution of 1224 × 1024.
Lastly, it was experimented with adjusting the brightness of the images, but this showed small
to no improvement for the tested scenarios, while increasing processing time. This adjustment
was therefore skipped.

7.2 Feature management

7.2.1 Bucketed feature detection

In this section the developed procedure for BucketedFeatureDetection() is described. The
preprocessed left image is divided into a grid of 10 × 10 grid cells. Before new features are
detected, an existing set of features are first stored in buckets. The bucket index of each feature
is determined by the grid for which the image coordinate is placed. For each grid features are
extracted using the FAST feature extractor provided by OpenCV. This is to ensure that the
extracted features get an approximately uniform distribution over the entire image domain. By
analysis, this shows that features are matched better following the bucketed approach than when
they are placed closer to each other. By experimentation the default parameters of FAST yielded
good result. The detected features in each grid are then sorted based on their response, a metric
that compares the feature’s quality. Non-max suppression is then performed where the tracked
features are given the highest priority. For each newly detected feature it was check whether the
coordinates of the feature are too close, in the image space, to any existing features coordinates.
If not, the feature are accepted and added to the respective bucket. The feature acceptance
procedure is repeated while the number features in the grid cell bucket is lower than a threshold,
set to three. An example of the uniformly distributed feature detections is displayed in the left
current image of fig. 7.2.1.
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Algorithm 7: Bucketed feature detection
Input: Image I. A set of existing features u−.
Output: New feature detections in image u+.
Nomenclature: Subscript, {·}x,y, denotes vector or matrix extracted at sliced image, Ix,y,

where [x, y ] is the location in the original image, I.

Function BucketedFeatureDetection(I, u−):
1 Allocate N ·M buckets for u−N,M and u+

N,M

2 for ui ∈ u− do
3 Place u−i in bucket of u−N,M

4 for In,m ← SliceImage(I, n ∈ N, m ∈M) do
5 u+

n,m ← extractor→DetectFASTFeatures(In,m)
6 SortByRespone(u+

n,m)
7 for u+

j ∈ u+
n,m do

8 if u+
j /∈ u−n,m and u+

j /∈ u+
n,m then

9 u+
n,m ← u+

j

10 return u+

7.2.2 Feature tracking

From the specialisation project (Hellum, 2020) it was experienced that the Lucas Kanade optical
flow yielded better matches between sequential images than descriptor based matching. The
Lucas Kanade optical flow tracking algorithm described in section 3.3 benefits from having initial
estimates of the features coordinates. An initial estimate can potentially reduce the geometrical
search space for the correct displacement of the optical flow vector for the correspondences.
These initial guesses of the feature location can be obtained by projecting triangulated 3D
points onto the image using equation 2.4.1.6 where the previous relative transformation are used
for extrinsic parameters. This equals ProjectLandmarks() in algorithm 6. The features are
then tracked from the previous left image to the current left image using the OpenCV function
calcOpticalFlowPyrLK().

7.2.3 Feature Matching in Stereo Image Pairs

For feature matching between stereo images, both descriptor based matching and optical flow
based feature tracking were explored. For descriptor based matching, features and their ORB
descriptor were detected in both stereo images. ORB was chosen because the descriptors are
efficient to work with, which is essential for SLAM systems. This is argued by Mur-Artal, Montiel,
et al., 2015. The other reason that the ORB descriptor were used is that ORB-SLAM provides a
well defined pre-trained vocabulary for loop closure detection based on ORB descriptors, which
will be discussed in section 7.4. ORB uses binary descriptors, therefore the Hamming distance,
dh, is recommended distance metric for feature matching. This distance is equivalent to count
the number of different elements for binary strings. The shorter the distance, the better the
features match.
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Feature matches the stereo images were found using the cross check approach, i.e. the descriptor
was matched both from the left image to the right and the opposite. The match is accepted
if the descriptor is matched both ways. The other descriptor based matching method that was
explored is called the ratio test, by Lindeberg, 2012. This test algorithm compares a descriptor
da in image Ia to the two closest descriptors db1 and db2 for image Ib. Then the ratio test,
dh(da, db1)/dh(da, db2) is performed. For a low distance ratio db1 is set to be a good match, while
for a high distance ratio db2 may be incorrect or ambiguous. By experimentation, Lindeberg
(2012) found 0.8 to be a good distance threshold in order to accept a feature. Without more
advanced procedures for prediction the descriptor position of the correspondence it was experi-
enced that a large amount of features have to be detected in both images to ensure that correct
matches in fact are present. This greatly increase the computational complexity, not only for the
detection and matching, but also for operations such as bundle adjustment. Another downside is
that a large amount of features that are closely spaced, by experimentation, showed small false
displacements for the tracked features in section 7.2.2. Descriptor based matching was therefore
ignored, and descriptors were rather only used for loop closure detection as will be detailed in
section 7.4.

Visual odometry and VSLAM aims towards real-time operations. For real-time use-cases the
goal of the feature management is rather to maintain a minimal set of robust features while
providing sufficient information for the motion estimation. Here, robust refers to strong corners
or edges that are uniformly spread across the image. The Lucas Kanade optical flow algorithm is
a matching algorithm that fits this set of specifications. Geiger, Ziegler, et al. (2011) proposed an
efficient sparse matching procedure called circular matching. This approach has also been used
in the work of Cvišić et al. (2018), which is the current top contender for VO performed on the
KITTI VO benchmark. The circular matching algorithm uses the sparse Lucas Kanade optical
flow algorithm to match features between consecutive images pairs as detailed and illustrated in
figure 7.2.1. This provides an efficient matching solution for stereo cameras that also maintain
consistent features. From experimentation it was experienced that the circular matching proce-
dure always yielded correct matches. Additionally, because it benefits for the uniformly spaced
feature detections the CircularMatching() procedure was chosen to be implemented for the
developed system.

Figure 7.2.1: Circular feature matching. The procedure starts with an initial feature in the
current left image. The feature is tracked consecutively in the previous left image, the previous
right image, then to the current right image, and lastly to the current left image. Only if the
tracked feature coordinates coincides with the initial location the match is accepted.
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Algorithm 8: Circular matching
Input: Image pair from both previous and current left and right stereo camera, Il,n−1,

Ir,n−1, Il,n and Ir,n respectively. Features in the current left image, ul,n.
Output: New feature detections in the right image ur.

Function CircularMatching(I, u−):
1 ul,n−1 ← calcOpticalFlowPyrLK(Il,n, Il,n−1, ul,n)
2 ur,n−1 ← calcOpticalFlowPyrLK(Il,n−1, Ir,n−1, ul,n−1)
3 ur,n ← calcOpticalFlowPyrLK(Ir,n−1, Ir,n, ur,n−1)
4 ûl,n ← calcOpticalFlowPyrLK(Ir,n, Il,n, ur,n)
5 CheckDisplacement(ul,n, ûl,n)
6 return ur,n

7.2.4 Triangulation

In this section the Triangulate() process is described. Triangulation is the problem of de-
termining a point’s 3D position from a pair of feature correspondences and a known relative
transformation of the camera poses. The 3D point is often referred to as a landmark. There are
multiple ways of performing triangulation. A popular choice is the linear triangulation method
described in Hartley et al., 2003, ch.12.2, which is used by SLAM algorithms such as ORB-SLAM
(Mur-Artal and Tardós, 2017). This method takes a feature that appears in both images, ul and
ur, and tries to find a landmark that satisfy equation 2.4.1.5 for the two views. For stereo
configurations the projection matrices, Pl and Pr, are calculated beforehand during calibration,
while for monocular cases they have to be computed with the relation in equation 2.4.1.5. In this
context subscipts l and r are used to reference the left and right camera respectively. The actual
image coordinate of the feature is found by dividing by the third component of the projection

u =
pT1 l̃

pT3 l̃
and v =

pT2 l̃

pT3 l̃
(7.2.4.1)

where pi is the i’th row of P, l̃ is the homogenous coordinates of the landmark, while u and v
are the horizontal and vertical image coordinate respectively. This can be done for both views,
giving a total of four equations. By multiplying both sides with the denominator and collecting
terms, this can be written as a linear homogeneous system of equations

A · l̃ =


ulp

T
l,3 − pTl,1

vlp
T
l,3 − pTl,2

urp
T
r,3 − pTr,1

vrp
T
r,3 − pTr,2



x̃

ỹ

z̃

w̃

 = 0 (7.2.4.2)

which can be solved using the Singular Value Decomposition (SVD) (Golub et al., 1965). The
solution corresponds to the smallest singular value of A. This method is closely related to the
Direct Linear Transformation algorithm (Hartley et al., 2003).

The linear triangulation is performed for each feature match. Because not all landmarks are
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correctly triangulated, their validity have to be checked before they are accepted. The checks
that are used to confirm that the landmarks are the following:

• Check that the reprojection error does not surpass 0.5 pixels in either images.

• Check that the depth of the landmarks in fact is positive.

• Check that the depth of the landmark does not surpass a threshold, given by a scale factor
times the baseline. The reason being that when the baseline decreases the accuracy of
distant/far away landmarks decreases. Furthermore, far away landmarks only provide
information about the rotation of the body. For a generalized solution where landmarks
are used to estimate both rotation and translation these have to be filtered out.

Algorithm 9: Triangulation procedure
Input: Matched features in left and right image, ul and ur. Projection matrix for left and

right camera, Pl and Pr.
Output: Triangulated landmarks, l.

Function DLT(ul, ur, Pl, Pr):
1 Construct A matrix in equation 7.2.4.2
2 l̃i ← smallest value of SVD(A)
3 return HomogenousToCartesian(l̃i)

Function Triangulate(ul, ur, Pl, Pr):
1 for ul,i ∈ ul, ur,i ∈ ur) do
2 li ← DLT(ul,i, ur,i, Pl, Pr)
3 {ûl,i, ûr,i} ← ReprojectLandmark(li, Pl, Pr)
4 if ValidTriangulation(ul,i, ur,i, ûl,i, ûr,i) then
5 l ← li

6 return l

7.2.5 Structure-only Bundle Adjustment

In this section the algorithmic process for StructureOnlyBundleAdjustment is explained. Be-
cause the extrinsic of the stereo pinhole model is known from calibration, it is not necessary
to include the stereo transformation in the bundle adjustment. Therefore, structure-only bun-
dle adjustment is used rather than local full bundle adjustment, to refine only the landmark
positions.

Using the intrinsic and extrinsic parameters obtained from calibration, the triangulated land-
marks in the current frame are re-projected onto the current left and right image using equation
2.4.1.7. The reprojection error is formulated as the difference between the re-projected fea-
ture position and the original feature position. This essentially describes one iteration of the
structure-only bundle adjustment in equation 7.2.5.1. Using a non-linear solver such as the
Levenberg-Marquardt, the re-projection error is iteratively minimized with respect to the world
landmark position. This procedure thus refines the world landmark position from the linear
triangulation.

Dept. of Engineering Cybernetics 53



Chapter 7. Implementation of Frontend

{lw∗} = argmin
lw

∑
i

‖πl (lwi ; Tclw,Kl)− ui‖2 + ‖πr (lwi ; Tcrcl ·Tclw,Kr)− ui‖2 (7.2.5.1)

In practice this was done with GTSAM by deriving a new class from the built-in class
NoiseModelFactor1<T>. This essentially means that a factor is created where one templated
parameter of type T is optimized. For this to be done an error term has to be defined, and a
parameter to be optimized has to decided. The reprojection error described in equation 7.2.5.1
was implemented as the error term, which was optimized with respect to each individual land-
mark position. All landmark-to-feature correspondences in the current left and right image were
added to a non-linear factor. The factor graph were then solved using the Levenberg-Marquardt
optimizer, yielding the refined transformation. An illustration of a factor graph constructed for
full bundle adjustment is displayed in Figure 7.2.2. For structure-only bundle adjustment, only
the landmarks are optimized.

Figure 7.2.2: Example factor graph constructed with GTSAM run-time. The graph depicts a
factor graph formulation for full-bundle adjustment of the reprojection error where both poses,
x, and landmarks, l, are optimized. x0 additionally has a prior in the top right of the graph.

7.3 Motion Estimation

7.3.1 Initial Estimate of Relative Transformation

In this section the process of finding initial motion estimates using the Nistér5Point() algorithm
and PYR() is explained. To estimate the essential matrix between two frames Nistérs five-point
algorithm is used (Nistér, 2004). This algorithm is used in conjunction with RANSAC (Fischler
et al., 1981). More specifically, the algorithm calculates the essential matrix for a number
of random five point subsets. The essential matrix that coincides with the largest number of
RANSAC inliers is returned. OpenCV provides an implementation of this algorithm in their
function findEssentialMat(). An advantage of this algorithm is that feature outliers may be
removed while simultaneously computing the essential matrix. Features that do not coincide
with the general motion of the body is thus ignored. RANSAC thus works, to some extent, as a
filter to remove tracked features of moving objects. The relative pose from the essential matrix is
only computed up-to scale, as shown by Longuet-Higgins (Longuet-Higgins, 1981). This means
that the L2 norm of the recovered translation in each direction adds up to 1. From the essential
matrix, R and t is decided using Singular Value Decomposition (SVD). The SVD will return
four possible solutions for R and t. To determine what combination gives the correct pose, some
keypoints are triangulated to ensure that the Cheirality constraint (Longuet-Higgins, 1981) is
satisfied, i.e. all points are in front of both cameras. OpenCV provides an implementation
of this procedure in their function recoverPose(). Because these algorithms only are capable
of determining the relative transformation up-to-scale, the scale has to be provided another
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way. Smooth motion is assumed because of the vehicle’s large moment of inertia. Therefore,
the initial motion estimate are scaled according to the scale following from the previous frame.
This limits the uncertainty of the motion estimate to be proportional to the acceleration of the
vehicle opposed to just being set as a static unknown from the up-to-scale estimate. This scaled
motion estimate works as an initial guess for the current relative frame motion. The initial
transformation estimate then has to be refined according to the procedure that will be discussed
in section 7.3.2. findEssentialMat() were ignored whenever the vehicle were moving slowly.
This is because it was experienced that this function needs distinct motion to correctly find the
exact RANSAC match. In other words, because the translation has unit length 1 there should
be a more dominant component to the translation, which is not the case when standing still.
Therefore, whenever the vehicle was moving slowly, the translation was set equal to the optimized
relative translation from the previous frame. The rotation was replaced by the one produced by
the PYR() algorithm. It was also tried always using PYR(), but generally findEssentialMat()
yielded better results when there only were a small rotation component. The algorithmic process
of this algorithm is described in section 6.3.7.

7.3.2 Motion-only Bundle Adjustment

In this section the algorithmic process for MotionOnlyBundleAdjustment() is explained. Using
an initial approximation of the relative transformation, the landmarks discovered in the previous
frame are reprojected onto the current frame according to equation 2.4.1.7 and compared the
corresponding features in both the current left and right image. The resulting error forms the
reprojection error. This essentially describes one iteration of the motion-only bundle adjustment
in equation 7.3.2.1. Using a non-linear solver such as the Levenberg-Marquardt, the re-projection
error is iteratively minimized with respect to the relative transformation, T, gradually adjusting
the rotation, T, and translation, t, until the overall re-projection error of all landmarks cannot
be improved any further. When this is the case the optimization has hit a local minimum. The
more information that is available improves the likelihood of the optimization hitting a global
minimum, i.e. the correct solution. This procedure thus refines the motion estimate and, because
the scale of the landmarks are available from the stereo configuration, the returns the scale of
the motion.

{T∗clw} = argmin
Tclw

∑
i

‖πl (lwi ; Tclw,Kl)− ui‖2 + ‖πr (lwi ; Tcrcl ·Tclw,Kr)− ui‖2 (7.3.2.1)

In practice this was done with GTSAM by deriving a new class from the built-in class
NoiseModelFactor1<T>. This essentially means that a factor are created where one templated
parameter of type T is optimized. For this to be done an error term has to be defined, and
a parameter to be optimized has to be decided. The reprojection error described in equation
7.3.2.1 was implemented as the error term, which was optimized with respect to the affine 6 DOF
relative transformation. All landmark-to-feature correspondences from the previous to current
left and right image were added to a non-linear factor. Then, the factor graph were solved using
the Levenberg-Marquardt optimizer, yielding the refined transformation. An illustration of a
factor graph constructed for full bundle adjustment is displayed in Figure 7.2.2. For motion-only
bundle adjustment, only the poses are optimized.
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7.4 Loop Closure Detection

The DBoW2 algorithm described in section 6.3.9 was chosen for place recognition in order to
detect loop closures. In their survey, B. Williams et al. (2009) concludes that image-to-image
based matching techniques seemed to scale better than map-to-map or image-to-map methods.
The choice were then between DBoW2 and FAB-MAP 2.0. These solutions achieves similar recall
performance, but DBoW2 has much lower computational complexity. During testing, DBoW2
were found to be very reliable and no false positives were encountered.

The DBoW2 library is also used with the ORB-SLAM family. Similarly to ORB-SLAM the
ORB descriptor were chosen, as the descriptor is more invariant to changes in scale and rotation
compared to BRIEF Mur-Artal, Montiel, et al., 2015 and is more computationally efficient
Gálvez-López et al., 2012. Furthermore, ORB-SLAM2 has a readily available pre-trained visual
vocabulary at their Github repository (Mur-Artal, Montiel, et al., 2017). The vocabulary was
downloaded and converted from text to binary format which reduced the initial load period with
a degree of approximately twenty.

To limit the computational complexity, the descriptor dl,n of the features ul,n was computed for
the left current image Il,n using OpenCV function computeDescriptor() only for keyframes.
The descriptor was then added to the DBoW2 database and, by using the DLoopDetector algo-
rithm described in section 6.3.9, loop closure matches were queried. This equals the function
queryDLoopDetector(). What should be noted is that loop closure matches doesn’t necessar-
ily have to be an exact match in pose. There is usually a rotation and translation component
between the pose matches that have to found.

If a loop closure was detected, matches between the current image Il,n and the loop closure
frame Il,iloop was found by applying the circular matching algorithm discussed in section 7.2.3,
returning ul,iloop and ur,iloop . Descriptor based matching were also experimented with, however
the matches found by DBoW2 were never returned, thus the descriptor matches would have to be
found all over again. In this situation, better results were rather found by the circular matching
approach. Using the feature matches the relative transformation, Tiloop/n, was computed up-
to-scale following the procedure described in section 7.3. This was followed by the motion-only
optimization described in section 7.3.2 using the landmarks of the current frame {ln}∗ and the
matched loop features, ul,iloop and ul,iloop , to get an optimized scaled estimate,

{
Tiloop/n

}∗
Using the features of the current frame, ul,n and ur,n, and the features of the loop closure frame,
ul,iloop and ur,iloop , the relative transformation were found following following the procedure in
section 7.3.
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A modular backend strategy was built such that multiple sensors, hereunder GNSS, IMU and
VSLAM frontend measurements, could be embedded into a larger factor graph optimization
scheme. The backend has a multi-threaded structure as detailed in section 5.4, where the opti-
mization scheme is divided into a short-term filter and a long-term smoother. The backend spins
a rosnode that sequentially searches for new measurements from each sensor. When receiving
new measurements they are added as factors together with an initial estimate of the state’s value,
following individual callback strategies specified in sections 8.1, 8.2 and 8.3. As illustrated in
figure 8.0.1, the new factors are first stored in a temporary factor graph container, before they
are jointly added to the short-term filter. These factors may include pose estimates from GNSS,
IMU preintegration and the VSLAM frontend, as well as projection factors of landmarks. A
main backend callback function is also spun which searches for updates to the temporary factor
graph container at a rate of 100Hz. Whenever updates are registered, the temporary factor graph
container is added to the main filter factor graph, hence, because of the high callback frequency
factors are in practice directly added to the filter.

Figure 8.0.1: Data flow diagram for backend. Boxes indicate algorithmic processes and arrows
shows the data flow. Red boxes indicate input or output, while blue boxes describe algorithmic
processes. Green boxes indicate data buffers of different types.

Whenever the filter is updated three operations are performed. Firstly, new factors are added to
the filter as they become available. Next, the complexity of the filter has to be kept constant.
Therefore, inactive factors in the filter - i.e. intermediate states that no longer is referred to by
future factors - are identified. Key factors have to be chosen amongst the inactive factors. The
relative motion factors, BetweenFactor<Pose3>, was chosen as key factors for this purpose. The
second operation that is performed during the filter update is then to remove the factors that is
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not considered being key factors. Lastly, the key factors are moved to the long-term smoother.
The latter operation is only performed when the filter and smoother is synchronized following
the approach described in section 5.4. An example of the constructed filter factor graph, with
all sensors enabled, is illustrated in fig. 8.0.2.

(a) Multisensor factor graph example for the short-term filter. There is only a seperator on the leftmost
pose, while velocities and biases rather have a prior factor.

(b) Loop closing factor graph example for the long-term smoother. There is only a seperator on the
rightmost pose.

Figure 8.0.2: The a practical example of the concurrent filter and smoother as solved in the
developed system. x, v, b, and l describe variable values for pose, velocity, bias and landmarks
respectively. Filled black squares related by f denotes factors. The superscript of f describes
the factor/measurement type.

The long-term smoother is updated every time the filter and smoother is synchronized. The
identified key factors in the filter are integrated into the smoother using variable re-ordering
where a new separator is chosen amongst the key factors. Loop closures can be added to smoother
when both loop pose indices exist in the graph. Therefore, whenever a loop is detected all existing
BetweenFactor<Pose3>s in the filter is chosen as key factors, while the remaining factors are
marginalized out. The loop factor is added according to the procedure that will be described in
section 8.1.

Every time the filter and smoother is updated the multiple iterations of an optimization is
repeated until the estimate hits a minimum. The current value of the system state are extracted
and stored after every filter update before the pose is published over a ros topic.
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It was first experimented with only using the iSAM2 algorithm. This works well until a loop
closure was detected. In this case the runtime increases drastically for the optimization because
the factor graph now performs a full bundle adjustment with both landmarks and poses. The
optimization run time took a while to stabilize after this because a large amount of new factors
are added for the next iteration. Hence, the next optimization takes a while to. It was therefore
experimented with marginalizing all landmarks whenever a loop was detected, however the opti-
mization together with the marginalization still took a while, thus allowing multiple new factors
to be added. This resulted in a stable, but inefficient solution. An alternative was using pose
graph optimization, but this sacrificed a lot of precision. The aforementioned concurrent filtering
and smoothing approach was therefore chosen. The concurrent solution yielded much faster and
stable optimization run times, even during loop closures.

Algorithm 10: Main body of VSLAM backend. The algorithm serves as a summary of
the full description in this section.
Input: New factors, f ′ , and new values, X ′ . Potentially, a loop factor, f loop

Output: Optimized world pose {xw}∗. Refined landmarks position in world frame {lw}∗.
Nomenclature: f t denotes filter factors and fR denotes smoother factors.
Nomenclature: X t denotes filter values and XR denotes smoother values.
Nomenclature: X S separator of filter and smoother.

1 while f t,X t ← UpdateFilter(f ′ , X ′) do
2 fK ,XK ← IdentifyKeyFactors(f t, X t)
3 MarginalizeNonActiveFactors(f t, X t)
4 if ∆t > 1second then
5 fR,XR ← UpdateSmoother(fK ,XK)
6 if Loop is detected then
7 MarginalizeAllNonKeyFactors(f t, X t)
8 UpdateSmoother(f loop, _)

9 X S ← Synchronize(f t,X t,fR,XR)
10 {xw}∗ , {lw}∗ ← getCurrentEstimate(X t)

return: {Output}

8.1 VSLAM Factor Processing

The callback function subscribes to relative pose estimates between sequential image pairs from
the frontend. These relative pose esimates are inserted into the pending factor graph container as
a BetweenFactor<Pose3> before they are added to the filter. This equals fV O in fig. 8.0.2. The
factor is connected to the previous visual odometry pose in the factor graph and uses the relative
motion to create an estimate of the of the current pose. The noise of the BetweenFactor<Pose3>
was approximated based on the RMSE for the pose relatives compared to the associated relative
of the ground truth, followed by some additional tuning.

Landmarks are inserted into the factor graph for every keyframe. This balance is chosen to ensure
that a computationally sustainable amount of features are added, while still relating a sufficient
number of landmarks across keyframes. Before landmarks are added, they first have to be trans-
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formed into the world frame using the current estimate of the pose, yielding lw. The uncertainty
of the pose grows over time, therefore the pose in which the landmarks was first detected should
provide the most accurate estimate of the position for the landmark. This assumption is not
necessarily always true, for example if the distance to the landmark is very large and the baseline
is small, but the assumption should however hold based on the triangulation procedure described
in section 7.2.4. The world position of the landmark is then stored in a temporary container
together with the feature position in both the left and right image. Features that only reside
in one keyframe may fortify the pose estimate of that frame without necessarily improving it.
On the other hand, features that reappear in multiple keyframes provide a lot more information
that connects the motion over multiple frames. Therefore, before landmarks are added to the
factor graph they are first compared to the previous keyframe to ensure that they appear in the
previous frame. If this is the first time the landmark appear, an initial estimate of the landmark
position is first added to the values. Then, using the GenericStereoFactor<Pose3, Point3>
the landmark, lw, is reprojected with the extrinsic poses of both stereo cameras, yielding the
factor operation expressed in eq. (8.1.0.1). This factor minimizes the reprojection error of lw

compared to the associated feature position, u in both left and right images.

f stereo (Tclw, l
w) = ‖π (lw; Tclw,Kl)− ul‖2Σleft

+ ‖π (lw; Tcrcl ·Tclw,Kr)− ur‖2Σright
(8.1.0.1)

This is the stereo specific factor equivalent of equation 5.2.1.4 inserted into the factor graph.
Opposed to the optimizations problems described in sections 7.2.5 and 7.3.2 this factor takes two
arguments that are optimized, i.e. both the landmark position and the pose. This optimization
strategy is called full bundle adjustment.

As an alternative to stereo factor, the smart factor projection equivalent were also experimented
with. The smart factor is a concept introduced by Carlone et al. (2014), developed to provide a
general framework for variable elimination in factor graphs. The idea requires the factor graph
to be divided into variables that are of explicit interest and variables that are only necessary for
inference. Thus providing an efficient structure in addition to being robust to unstable factors
as they are simply ignored. However, having a different formatting than regular factors, smart
factors ended up not being used as it was never worked out how the smart factors were removed
from the concurrent filter. Because smart factors and loop closures do not comply, it was therefore
chosen to rather use GenericStereoFactor<Pose3, Point3> and handle unstable landmarks by
removing them. The noise of the GenericStereoFactor<Pose3, Point3> was approximated to
the reprojection error for every 3D point followed by some fine tuning.

A loop closure constraint is also added to the factor graph whenever this is detected with the
frontend. The loop closure constraint connects a prior pose match to the current pose using
the BetweenFactor<Pose3>. The relative transformation between the loop matches is computed
in the frontend and inserted with the factor. The factor is then inserted into the long-term
smoother.
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8.2 GNSS Factor Processing

The GNSS measurement function is given by equation 2.7.0.1. Since only one state variable is
involved in the measurement function, the equation below defines a unary factor

fgnss (xt) , ‖zgnsst − hgnss (xt)‖2Σgnss
(8.2.0.1)

which is the factor equivalent of equation 5.2.1.4 inserted into the factor graph. GTSAM has a
prebuilt GPSFactor<Point3>, however, this only supports translation and not rotation. Because
the RTK-GNSS system contains accurate information on both the translation and rotation, the
PriorFactor<Pose3> is therefore preferred.

The GNSS is assumed to be online for the factor graph to be initialized, thus the GNSS mea-
surement corresponding to the first image pair is inserted to the backend as a PriorFactor. This
defines the world frame, FW . After the initial measurement is inserted, if the GNSS is online,
each GNSS measurements are associated to the current world pose in the factor graph with the
closest matching timestamp. The noise added to the PriorFactor will be a very small multivariate
Gaussian noise as the RTK-GNSS is accurate down to a few centimeters.

8.3 IMU Factor Processing

GTSAM has implemented the IMU preintegration procedure described in section 2.6.1 under
the PreintegratedCombinedMeasurements class. To initialize this class the covariance of the
accelerometer and gyroscope, as well as the covariance of their biases have to be defined. An
initial estimate of the bias values also have to be placed. The noise was initially based on sensor
data, but had to be increased by tuning. Lastly, the transformation from the IMU to the body
frame, often referred to as the IMU lever arm, has to be provided. The body frame was set to
the left camera of the stereo setup for the lever arm.

The preintegration procedure integrates linear acceleration and angular velocity measurements
from the IMU by embedding the measurements into the kinematic model in equation 2.6.1.1.
An approximation of the relative rotation, translation and velocity is thus obtained which can
be inserted into the factor graph as the prebuilt CombinedImuFactor. The mathematics that
facilitates the preintegration operation is described in section 2.6.1. However, to embed the
preintegrated measurement model in equation 2.6.1.10 into the factor graph, the residuals of
equation 5.2.1.4 have to be defined. Since measurement noise is assumed zero-mean and Gaussian

up to first order
[
δφ>ij , δv

>
ij , δp

>
ij

]>
∼ N (09×1,Σij), the residual errors can be defined as
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(8.3.0.1)

in which the bias updates of equation 2.6.1.11 was also included. The bias can be readily included
in the factor graph, as an additive residual to equation 5.2.1.4 for all consecutive keyframes as

∥∥ebij

∥∥2

Σ

.
=
∥∥∥bgj − bgi

∥∥∥2

Σg
+
∥∥baj − bai

∥∥2

Σa . (8.3.0.2)

These estimates are then refined with the iSAM2 optimization scheme and the optimized states
will work as priors for the next iteration. For the first iteration the prior values of the velocity
and bias does not exist. The velocity is approximated as the relative pose of the preintegrated
interval divided by the elapsed time, i.e. velocity = dx

dt . The result is then rotated into the world
frame and inserted as a PriorFactor<Vector3>. The initial bias’ does however have to be tuned
and inserted as a PriorFactor<imuBias::ConstantBias>. A constant bias model is assumed,
however the magnitude of the bias is gradually adjusted with the factor graph optimization. A
reasonable initial guess of the bias may therefore be determined by running the entire system
and setting the bias as the stabilized result.

Figure 8.3.1: Different rates for visual odometry, GNSS and IMU. These are not the exact rates
used in this system, however it represents how keyframes, GNSS measurements and preintegra-
tion is used in the system.

There is a small processing delay with slam frontend solutions. The newest IMU measurements
will therefore most likely not correspond to the relative motion estimated by the odometry. The
IMU measurements are rather stored. Whenever the factor graph is updated with a measurement
from another sensor, for example GNSS or VSLAM, the stamps of the previous pose and the
recently added pose are then compared to the stored IMU measurements. All measurements that
exist within this time interval is then preintegrated and inserted into the factor graph.
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Data was logged in the area of Brattøra in Trondheim illustrated in figure 9.0.1. This is a harbor
for small boats in the outlet of Nidelva. The area is surrounded by docked boats with a train line
on one side of the harbor and buildings on the other side. milliAmpere2 is intended to traverse
the passage of region 1 in figure 9.0.1 between Brattørskaia and Ravnkloa. Sequences recorded
within this area was directed at testing the intended traversed path. Several more sequences
was also logged in the surrounding area of this passage (region 2) to analyze motion over larger
regions. Lastly, region three was also included as this basin spans a larger and more open scenery.

Figure 9.0.1: The image shows an overview of the area surrounding Brattøra in Trondheim.
Three regions are marked in map retrieved from Kartverket.no to illustrate where the data
was recorded. Region one, marked in red, depicts the area of the intended operational region for
milliAmpere2. This area is marked with more details in fig. 6.1.1. Region two covers Kanalhavna,
which is the area with the most closely related typology to the operational region. Region three
is Ytre Basseng, which is a more spacious basin.
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Data was recorded throughout a whole week in April. Preparations and testing of sensors
and other equipment was the focus for Monday-Wednesday. On Thursday eight sequences was
recorded that was directed at SLAM scenarios. Consequently, approximately static environments
was a priority for these scenarios - no large moving objects in the foreground of the scene. On
Friday data was recorded for two other thesis’ (Gerhardsen, 2021) and (Auestad, 2021), where
the focus was directed at fiducial markers and a detection of a GNSS-tagged vessel with known
position. Figure 9.0.2 captures the scene that was recorded, together with the setup that was
used. Figure 1.1.1 illustrates the scene facing the other side of the harbor.

Figure 9.0.2: Situational image that captures milliAmpere in the harbor environment together
with the setup that was used during the data collection for the other thesis’. Image captured by
the author.

9.1 Camera Calibration

Camera calibration is the process of estimating the intrinsic, extrinsic, and lens-distortion param-
eters of a camera. Extrinsic parameters have to be determined if multiple cameras are available
and facing the same direction. Using the intrinsic and extrinsic parameters, lens distortion can
be correct for. There exist different calibration techniques, where the two main ones are:

• Photogrammetric calibration: This method uses a calibration object whose geometry in 3D
space is known. The object usually consists of two or three orthogonal planes. Alterna-
tively, a plane undergoing a precisely known translation can sometimes also be used.

• Self-calibration: No calibration object is used for this procedure. The camera is rather
moved in a static scene where the rigidity of the scene constraints the camera parameters.
Assuming fixed internal parameters, correspondences between three images are used to
recover the intrinsic and extrinsic parameters so that 3D structure can be reconstructed
up to a similarity.
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Zhangs method is a calibration technique developed by Z. Zhang (2000) at Microsoft Research.
It combines ideas from both of the two main calibration strategies described above, where only
2D metric information is used rather than 3D or purely implicit one. The technique only requires
the camera to observe a planar pattern, typically a checkerboard, at a minimum of two different
orientations. For both images features are detected. Because the plane z = 0 is given by the
pattern itself, only 2D metric information is needed. Linear transformation between planes are
computed so that an initial estimate of the intrinsic parameters can be computed using Singular
Value Decomposition. Onwards, the parameters are refined by minimizing the algebraic error
using the Levenberg-Marquardt algorithm. The same procedure is applied to find an estimate of
the extrinsic parameters. For the lens distortion the tangential distortion is ignored. An estimate
of the radial distortion parameters is calculated by comparing the real pixel values and the ideal
ones given by the pinhole model. The reprojection error often used as a measure of the quality
of the calibration.

9.1.1 Camera Calibration for the milliAmpere Stereo Rig

The stereo camera rig was calibrated both Thursday and Friday prior to the data recording using
the ROS stereo camera calibration tool (Wise, 2009). However, when the image data was later
analysed it was found that the calibration was insufficient. The intrinsic and distortion param-
eters varied a lot between the cameras, and a large reprojection error of > 2 were experienced
when the calibration was retried with the original data on a later occasion. In comparison, when
working with the KITTI data the reprojection error is < 0.02. Thus, this rendered the mil-
liAmpere stereo calibration from the harbor utterly useless. It was therefore decided that a new
calibration should be performed at NTNU approximately a week after the data logging. This
calibration was performed successfully, giving a reprojection error of 0, 04. It should however be
noted that the stereo rig had been exposed to several transportation stages in between the data
logging and the second calibration. The potential consequence of this will be discussed in more
detail in section 10.1. The extrinsic and intrinsic parameters resulting from the final calibration
can be seen in table 9.1 and table 9.2 followed by the uncertainty of each parameter.

Extrinsic Parameters
Translation [mm] Rotation [deg]

X Y Z X Y Z

−1740.235± 0.114 −9.591± 0.028 87.338± 0.597 0.688± 0.001 5.712± 0.001 0.733± 0.001

Table 9.1: Extrinsic calibration parameters for milliAmpere stereo rig in camera coordinates.

Intrinsic Parameters
Left Camera Right Camera

fu 1236.1239± 0.2641 1236.7399± 0.2676

fv 1235.4177± 0.2636 1236.9865± 0.2662

u0 620.1205± 0.6002 642.7828± 0.5872

v0 534.8395± 0.1968 530.3827± 0.1881

Rad.dist. −0.398 0.234 −0.113 −0.400 0.243 −0.131

Tan.dist. −0.0002 −0.0005 −0.0003 0.0005

Table 9.2: Intrinsic calibration parameters for milliAmpere stereo rig.
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CHAPTER 10

Experimental Results and Discussion

In this chapter, the results from the application of the milliAmpere and KITTI data are discussed.
First the developed system applied to milliAmpere in the harbor environment is detailed. This is
followed by an analysis of the developed system tested on the KITTI dataset for different urban
environments. The analysis using the KITTI dataset involves discussion of the system with dif-
ferent sensor configurations, succeeded by a comparison of the results obtained from other SLAM
algorithms. The results are presented for several scenarios, where one representative sequence
is discussed in detail for a direct visual comparison. For the remaining results, tendencies from
metric results are compared and discussed. All analysis of the developed algorithm were generated
on a laptop with an octa-core AMD Ryzen 7 4800H processor running at 2,9 GHz with 16 GB of
memory. The laptop is also equipped with a NVIDIA GeForce RTX 2070 GPU. The results was
generated from running experiments once on every sequence, with only one application running
on the computer. All plots were generated using the trajectory evaluation toolbox (Z. Zhang and
Scaramuzza, 2018).

10.1 Developed System Evaluated on the milliAmpere Dataset

In this section, discussions are provided on the developed VSLAM algorithm, described in sec-
tions 7 and 8, applied to the logged milliAmpere data. The sequences are recorded in the
harbor environment as described in chapter 9, where all recorded sequences starts and ends in
approximately the same position. The ground truth of these data sequences are generated by
5Hz RTK-GNSS measurements. IMU measurements are extrapolated from the previous GNSS
measurement following the alpha beta-filter procedure described by Bar-Shalom et al. (2004).
Ground truth data is thus provided at a frequency of 100Hz.

The resulting trajectory from one of the sequences is depicted in fig. 10.1.1. The result show
promising tendencies of correct motion, but the trajectory is however of too poor quality to be
useful in its current state. It is seen that the algorithm particularly struggles with estimating
rotation. The translation estimate from frame to frame is not perfect, but at the same time not
the main weakness of the final estimate. However, the erroneous rotation estimates propagate
throughout the entire trajectory, causing an overall drift, thus giving a final error of 55 meters.
Drift is common for visual odometry, however not to the extent experienced with this scenario,
where the end result is insufficient. When analysing the developed VSLAM system applied
specifically to the milliAmpere setting, several reasons for the insufficient trajectory result were
discovered. However, the main issue is rooted in an incorrect stereo camera calibration. This,
and other error sources along with attempts to fix symptoms of the errors will be discussed next.

It is argued that the main issue experienced with the milliAmpere sequences is caused by the
stereo calibration. In section 9.1.1 the original stereo calibration at the day of recording was
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Figure 10.1.1: Results from a representative sequence from the milliAmpere data. The estimated
trajectory by the VSLAM and the ground truth RTK-GNSS date are aligned at the beginning.
The latitude and longitude from the GNSS are transformed to meters, setting the world frame
of the motion.

rendered completely useless, thus necessitating the second calibration performed at NTNU. Even
though this second calibration achieves a reprojection error of 0, 04 during calibration, this was
not the case when the second calibration result was applied to the recorded slam sequences. In
reality the rectified images had a reprojection error of 〈0.4, 1.0〉 for all triangulated stereo matches.
An interesting observation was that the reprojection error was by far most dominant vertically
in the image. For the left image the reprojection showed a positive vertical displacement, while
for the right image the displacement was the same. but negative. Because the reprojection
error furthermore varied between feature correspondences it is most likely caused by a vertical
offset in the rotation of the calibration, perhaps in combination with the vertical translation error
between the stereo cameras. To pinpoint the exact reason for this discrepancy more time would be
required than available. However, a direct complication is that the stereo cameras were exposed
to several transportation stages in between the data logging and the second calibration. The
stereo rig was removed from the ferry every evening and remounted every morning in addition to
being transported to and from NTNU. Stereo calibration is an extremely sensitive matter, thus
(small) mechanical shocks and vibrations from car transportations may impact the calibration.

A bad calibration affects several of the submodules composing the VSLAM motion estimate.
Aside from the triangulation, the bundle adjustment procedures are greatly affected. Because
the discrepancies in all calibration matrix, projection matrices and relative transformation are
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affecting the bundle adjustment, the basis for these optimizations are wrong. Both the multi-
frame bundle adjustment and IMU fusion was tried in the backend, but GTSAM quickly returned
IndeterminantLinearSystemExceptions for unstable factors. The reason being inaccurate land-
marks that were compared over multiple frame and inaccurate initial motion estimates. For the
frontend, the optimization sometimes completed successfully so that a simple frame-to-frame
estimate of the trajectory could be calculated. When the optimization were unsuccessful, the
previous relative motion was used, argued by smoothness in section 7.3.1. This simplification
did however not hold when the motion estimate failed over multiple sequential frames as can be
seen during the turn at the position [−575,−455] in fig. 10.1.1. This was also the case for at
the position [−545,−355], where milliAmpere was angled to the left in this frame. Even though
the heading was corrected in the next frame, the motion estimate failed, thus never correcting
the heading estimate. Because optimization problems generally are very prone to wrong calibra-
tions, a potential improvement that should be researched is including the camera calibration in
the factor graph optimization of the backend. GTSAM provides predfined factors for this pur-
pose. Doing online self calibration, the system should improve its overall robustness to changes
in calibration caused by mechanical shocks, etc. That being said, it would probably not solve
the initial calibration discrepancies of this magnitude.

The estimated trajectory also appears jagged. The reason for this is that the frame rate originally
was recorded at 20Hz. Because milliAmpere is moving very slowly at ≈ 3m/s the initial feature
based motion estimate, calculated using the findEssentialMat(), is not easily distinguishable
when the relative transformation shows such small displacements. Therefore it was tried to drop
the frame rate to 5Hz which stabilized this issue to some extent, however resulting in more
jagged motion caused by larger steps for each relative. A better alternative would be to skip the
findEssentialMat() procedure all together and rather replace it with a motion prediction model.
This will be listed as a potential improvement to the system. Because the motion prediction only
serve as an initial estimate to be refined with the bundle adjustment it could serve as a more
stable prior, especially with low velocities. What also could be even more interesting would be
to refine this model based motion prior using JET, described in section 6.3.8. JET achieved
state-of-the-art rotation estimates at the time of release. These two improvements should in
theory together both improve the initial motion estimate and the feature tracking. It should be
noted that the initial intention of this thesis was to solve the feature tracking and initial motion
estimate this way, but due to compatibility issues caused by outdated software versions of JET,
this plan was never fulfilled.

Another complication that had to be accounted for was non-static content in the harbor envi-
ronment. During the data logging it was ensured that no moving objects was situated in the
foreground of the scene. Water, and more specifically waves, was however an issue. Most feature
that were incorrectly tracked from the previous to the current image in the water were generally
filtered out using the findEssentialMat() function, where RANSAC caught outliers. However,
potentially as a result of the insufficient calibration, some of the incorrectly tracked features in
the water remained. It was observed that such scenarios destabilized the bundle adjustment.
The first and most obvious fix would be a recalibration so that RANSAC would have the poten-
tial to only remove moving objects. Furthermore, segmentation could be applied to mask out
the water of the image. Segmentation is however prone to illumination changes, but alterna-
tive segmentation techniques such as U-Net (Ronneberger et al., 2015) using deep learning have
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achieves great segmentation results. This is however a more computationally extensive task. A
completely different approach could be to use keypoints from LiDAR scans to obtain the 3D
landmarks and then reproject these onto the images in a similar matter as V-LOAM (J. Zhang
et al., 2015). This is proposed because LiDAR scans requires hard surfaces to reflect the laser
scans. Consequently, water and waves would not be reflected. This was however not tested
because it would require a complete restructure of the system, but will rather be included as a
very interesting modification to be explored.

Lastly, in addition to the recalibration there are two additional adjustments that should be
considered the next time data logging is performed. Firstly, the loop closure in fig. 10.1.1 was
never discovered. The reason for this was simply how the data was recorded. The vehicle has
to be facing approximately the same direction over some sequential frames. Because neither
were the case, the loop closure was never discovered. To facilitate appearance based place
recognition, the recorded trajectory should be reappearing over approximately the same area,
with approximately the same heading over some sequential frames. An alternative adjustment
to the algorithm would be to search for loop closures using the full 360 °camera rig mounted
on milliAmpere. The second adjustment that should be considered is the baseline of the stereo
rig. The baseline was set very large (see table 9.1) to facilitate a higher accuracy of features
detected at long ranges (Pinggera et al., 2014). However, this comes at the expense of feature
matching for objects closer in the scene. With a large baseline it is much harder to find these
feature correspondences. A smaller baseline between 0.5m and 1m is therefore proposed. To
compensate for the reduced resolution for feature displacements a more accurate stereoscopic
method for distance estimation of landmarks should be included, for example as proposed by
Pinggera (2018). Either way, it is argued that a more robust depth estimation procedure should
be included, to ensure that the basis for scaled motion estimates are correct for both close and
distant 3D points.

Mainly as a result of bad calibration the full multi-frame visual-inertial SLAM system was re-
duced to a simple frame-to-frame visual odometry module in the milliAmpere setting. It would
be very interesting to evaluate the performance of the developed system with a proper stereo
calibration, but because the simplified module did not achieve very satisfying results with the
current calibration, additional evaluation of the other recorded sequences will not be included
in the discussion. The described improvements are still relevant and will therefore be included
under future work section 11.2.
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10.2 Developed System Evaluated on the KITTI Dataset

Evaluation was also conducted on the KITTI dataset to enlighten the actual potential of the
developed algorithm. Because of the similarity in sensor configuration between milliAmpere and
the KITTI dataset, and the fact that the data comes pre-calibrated, rectified, and synchronized,
the KITTI dataset was considered as a good substitution to the milliAmpere dataset as an
alternative benchmark for testing. The similarity in sensor configuration should prove valuable
when other sensors such as LiDARs are added to the multi-sensor SLAM system in future work.
All modifications discussed in section 10.1 are ignored and the system is included in its entirety
as detailed in sections 7 and 8. The ground truth of the dataset is provided by the on board
INS-system at a rate of 10Hz.

First, the result from different sensor configurations are included to demonstrate and discuss
their effect on the overall trajectory. The VSLAM solution will be active for all scenarios, hence
the frontend thread described in chapter 7 will be active for all sensor configurations. The
general backend threads of the filter and smoother will also be active for all scenarios, where the
availability of each sensor will vary. First only the VSLAM is enabled, then both VSLAM and
IMU are online, before the GNSS is finally added to the joint sensor configuration. The sensor
configuration will be detailed in each of the following subsections. Lastly, the developed system
is compared to two other visual odometry/SLAM systems for comparability, LIBVISO2 and
ORB-SLAM2. It was decided to only visualize one representative sequence so that the different
sensor configurations and SLAM/VO-systems could be easily compared visually. Metric results
are also available for all sequences to evaluate additional general tendencies.

10.2.1 VSLAM

In this section only the VSLAM factors detailed in section 8.1 will be embedded in the factor
graph. The traversed trajectory is depicted in fig. 10.2.1, where the error of the translation and
rotation are individually depicted in figures 10.2.2a and 10.2.2b. All generated trajectories are
transformed with the SE3 transformation that minimizes the overall ATE, before the error is
calculated.

From the figures it is observed that a quite accurate estimate of the motion is achieved, par-
ticularly considering the extent of the traversed distance. The scale and the translation part of
the transformation are generally estimated very well. The position error in the plane, i.e. for x
and y, depicted in fig. 10.2.2a is a bit jagged where the trajectory follows a general curve with
additive perturbations. One of the reasons this happens is the uncertainties of the landmarks
and features when their reprojection error is minimized at every keyframe. It is also observed
some inaccuracies in the calculated alignment used by the trajectory evaluation software, causing
some of the spikes in fig. 10.2.2b.

From fig. 10.2.2b it can be seen that erroneous rotation is triggered at a few frames. The
erroneous rotation estimate then propagates to the rotation and position over the next frames
until a loop closure is found. A very visual example of the propagating error is seen over the
last stretch to the left in fig. 10.2.1 from coordinate [−20, 450] to [0, 20]. In fig. 10.2.2b it is seen
that a wrong roll and pitch estimate causes the vehicle to be traversing upwards, thus affecting
the scale of the motion in the plane. The scenarios that trigger the rotation errors is isolated to
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Figure 10.2.1: VSLAM

the following:

• As stated in section 7.3.1, motion estimates by the Nistér-5-point algorithm was replaced
by the previous transformation in combination with new rotation estimates by PYR, when
the vehicle was moving very slowly. However it was still observed that RANSAC sometimes
filtered out very many features when the vehicle was moving slowly, but was still active.
This happens at approximately 700m in fig. 10.2.2b, equaling [180, 350] in fig. 10.2.1, and
triggers the rotation error as a result of a poor optimization with fewer features. This issue
was discussed in the previous section, and an exact threshold on the velocity for when
RANSAC should be disabled was never precisely determined. This issue could however
be avoided by rather using a model based motion prediction. The model based pose
prediction could for example be used to find feature correspondences in a similar matter
as ORB-SLAM (Mur-Artal, Montiel, et al., 2015). ORB-SLAM uses the predicted motion
to initiate search regions for descriptor based matches individually. The predicted motion
could then be optimized using motion-only bundle adjustment. The alternative previously
mentioned would be using JET to find correspondence matches jointly under an epipolar
constraint and thus refine the predicted motion estimate simultaneously.

• While RANSAC generally excluded features from moving objects, it was observed that
slowly moving objects in the distance not always were ignored. For example, after approxi-
mately 2700m in fig. 10.2.2b, equaling [300,−50] in fig. 10.2.1, two slow moving cyclists are
traversing the scene from left to right; consequently provoking the a left shift compared to
the true yaw estimate. In the trajectory this equals the bottom right corner of fig. 10.2.1.
This also happens just before the top left corner of the trajectory, with yet another bi-
cycle. The bicycle is moving towards the vehicle, thus causing the shift in roll and pitch
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(a) Translation error in millimeters. x, y and z denotes motion in the body frame with respect
to the world frame as described in section 2.1.
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(b) Rotational error in degrees for yaw, pitch and roll.

Figure 10.2.2: Propagating errors throughout the 00 sequence of KITTI using only VSLAM.

for > 5500m in fig. 10.2.2b. This equals the stretch from [−20, 450] to [0, 20] to the left
in fig. 10.2.1. Alternatively to RANSAC, more careful feature detection could be applied,
so that moving objects rarely or never are detected. This could for example be done by
checking the feature detection against the phase shift of the optical flow at different sub
regions of the frame. The computational complexity of such a modification should however
be considered. Another alternative would be to use object detection, for example using
deep learning. Deep learning algorithms achieves very accurate results for object detection,
but to operate with minimal delay they should be combined with an object tracker (Zhao
et al., 2019). A proposed solution to this is included in future work (section 11.2). It should
also be noted that inclusion of other sensors might reduce the error of the wrong estimate,
but the cause of the issue then still remains. Object detection is therefore considered one
of the key improvements that should be performed.

• The last issue that was observed was small erroneous shifts in pitch when the car hit speed
bumps. This could have been avoided by identifying and ignoring frames which contains
speed bumps, for example by using PYR to identify abrupt changes in pitch. This could
also be relevant in the ferry scenario to avoid waves causing discrepancies in pitch.

Loop closures are successfully identified with no false positives. They are furthermore successfully
integrated in the long-term smoother and correctly closing loops in the separate smoother thread.
It is seen that all accumulated drift is removed and the pose is set equal to the prior. The overall
execution time of the backend depicted in fig. 10.2.3a is observed as approximately constant
with an average execution time of 0.0226s. The execution time do show some spikes occurring
at loop closures. This is simply because the filter and smoother is synchronized one second
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after a loop closure. Thus, if the smoother execution exceeds one second the filter is delayed
until the smoother has completed the optimization. The filter and smoother was synchronized
regularly with one second delay to quickly update the separator of the factor graph in case of loop
closures. The delay from the small waiting period did not affect subsequent filter updates either,
but the spikes of the execution time could be removed by synchronizing at a lower frequency.
The execution time of the frontend, also depicted in fig. 10.2.3a, remains fairly constant with an
average processing of 0.0608s. Some spiking are observed whenever large amounts of new features
have to be detected, for example with the first frame. With GPU enabled the spiking of the
frontend was largely reduced and the average processing time was down to 0.0429s. A reduction of
spikes for the backend was also observed, but this may be caused by minor discrepancies between
the two runs or because the GPU takes some of the general load from the CPU. Regardless, it
is seen that the system overall has a very efficient structure with an average execution time of
0.0655s with GPU enabled.
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Figure 10.2.3: Execution time for frontend and backend of the VSLAM system.

10.2.2 VSLAM and IMU

In this section the both the VSLAM factors detailed in section 8.1 and the IMU preintegration
detailed in section 8.3 was embedded in the factor graph. The traversed trajectory is depicted
in fig. 10.2.4, where the error of the translation and rotation are individually depicted in figures
10.2.5a and 10.2.5b.

With the IMU extending the factor graph configuration discussed in the previous section, much
more consistent motion estimates were observed. The estimated trajectory now follows the
ground truth with minimal errors throughout almost the entire trajectory. In fig. 10.2.5a fewer
spikes in the position estimates are observed, since the additional sensor information from the
IMU reduces the uncertainty of the joint estimate. Furthermore, the IMU preintegrates angular
rates so that additional information is provided for the rotation. Consequently, the rotation
error observed in fig. 10.2.5b is somewhat more centered around zero compared to when only the
VSLAM was active.

Rotation estimation, especially at low velocities has been one of the main challenges for the VO
backbone of the developed system. The inclusion of additional information on rotation from
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the IMU is therefore very welcomed. Additionally it is seen that the erroneous impact from
speed bumps and low motion estimates are largely ironed out. Still, the impact from the slow
moving objects discussed in section 10.2.1 remain. Even with the IMU activated, the two cyclist
scenarios still affect the estimated trajectory in fig. 10.2.4. The reoccurring error of moving
objects is therefore considered one of the key improvements that have to be made. In table 10.1
and table 10.2 the ATE and standard deviation of the trajectory in fig. 10.2.5a is listed. It is
seen that the score is lower than expected, considering the demonstrated accuracy throughout the
major part of the trajectory in fig. 10.2.5a. This clearly demonstrates the propagating influence
caused by disturbances from moving objects.
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Figure 10.2.4: Estimated trajectory when VSLAM and IMU i activated.
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(a) Translation error in millimeters. x, y and z denotes motion in the body frame with respect
to the world frame as described in section 2.1.
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(b) Rotational error in degrees for yaw, pitch and roll.

Figure 10.2.5: Propagating errors throughout the 00 sequence of KITTI using both VSLAM and
IMU .

10.2.3 VSLAM, IMU and GNSS

In this section the all of the factors detailed in sections 8.1, 8.3 and 8.2 was embedded in the factor
graph. The traversed trajectory is depicted in fig. 10.2.6. The trajectory is perfectly estimated,
which makes sense as GNSS measurements are frequently added at 1 Hz. Consequently, the
global measurements are frequently correcting local drift, while the visual-inertial SLAM module
provides accurate motion estimates in between. This enables the vehicle to report accurate
trajectory estimates relative to a global reference frame. No further analysis will be conducted
on this sensor configuration, but the illustration were rather included to demonstrate that GNSS
factors are successfully added to the sensor configuration. One improvement that however will
be advertised is embedding a motion model that are used to connect factors if the IMU is
not available. Currently, if the IMU is offline, odometry and GNSS measurements are rather
associated to the closest odometry measurement.
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Figure 10.2.6: Estimated trajectory when VSLAM, IMU and GNSS i activated.

Figure 10.2.7 depicts the point cloud of all the individual landmarks that were detected through-
out the traversed trajectory. Note that landmarks only shortly exist within the filter window,
meaning that all the landmarks depicted in fig. 10.2.7 are stored in a separate point cloud con-
tainer when they are removed from the filter. Landmarks that were removed from the filter are
only stored for visualization purposes, and displayed in a separate thread.

Figure 10.2.7: Point cloud of all detected landmarks throughout the traversed trajectory.
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10.2.4 Developed System Compared to LIBVISO2 and ORB-SLAM2

To evaluate the performance of the Visual-Intertial sensor combination of the developed SLAM
system, it was compared with the well known frame-to-frame VO method, LIBVISO2 (Geiger,
Ziegler, et al., 2011). LIBVISO2 was chosen because of the resembling approach for the vi-
sual odometry part of the system. The ATE for the position estimates by ORB-SLAM2 is also
included to demonstrate the performance of one of the the current state-of-the-art VSLAM algo-
rithms available, and thus put the performance of the developed system in perspective. Tables
10.1 and 10.2 compares the Absolute Trajectory Error (ATE)/RMSE of aligned trajectories and
standard deviation computed using the trajectory evaluation tool by Z. Zhang and Scaramuzza
(2018). The results were generated for the 10 training sequences from the KITTI dataset (Geiger,
Lenz, Stiller, and Urtasun, 2013b), that had public ground-truth available. Sequence 03 did not
have available IMU data and was therefore not included in the evaluation. The results were
generated for the developed system, and for LIBVISO2. The ATEs of ORB-SLAM2 were pulled
from the ORB-SLAM2 publication (Mur-Artal, Montiel, et al., 2017).

10.2.4.1 LIBVISO2

LIBVISO2 (Geiger, Ziegler, et al., 2011): is a fast feature-based VO library for both monocular
and stereo cameras. It extract features by filtering the images with a corner and blob mask fol-
lowed by non-maximum and non-minimum suppression on the filtered images. Features are then
matched on subsequent frames using the circular matching procedure described in section 7.2.3.
Outliers are removed using RANSAC and the egomotion is then estimated by minimizing the
reprojection error from frame to frame using Gauss-Newton on the remaining matches.
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Figure 10.2.8: Estimated trajectory by LIBVISO2. The trajectory is aligned with the ground
truth using the SE3 transformation that minimizes the overall ATE.
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(a) Translation error in millimeters. x, y and z denotes motion in the body frame with respect
to the world frame as described in section 2.1.

(b) Rotational error in degrees for yaw, pitch and roll.

Figure 10.2.9: Propagating errors of LIBVISO2 throughout the 00 sequence of KITTI.

Figure 10.2.8 depicts the estimated trajectory by LIBVISO2 for the 00 sequence. When compared
to the trajectory computed by the developed VSLAM in fig. 10.2.1, it is seen that the developed
system is far better at estimating the rotation compared to LIBVISO2. One of the key reasons is
that the developed system includes multiframe bundle adjustment in the backend. The addition
of IMU to the developed system in fig. 10.2.4 also improves the result substantially. There are
seen some spikes in both of the compared estimates. It is assumed that they are rooted in
alignment inaccuracies with the ground truth because the spike stabilize to the prior error after
the spike. Being a frame-to-frame algorithm there is no reason why LIBVISO2 should first get a
large error and then return to the prior error afterwards. During testing it was also experienced
an error in the ground truth of the 00 sequence, with repeated measurements from the INS
system on the vehicle. It is therefore not unrealistic that this may happen on more than one
occasion. From fig. 10.2.9 it is furthermore seen that LIBVISO2 has a constant bias in the yaw
estimates adding to in the overall displacement.

From figures 10.1 and 10.2 it is seen that the developed visual-inertial SLAM algorithm outper-
forms the ATE of LIBVISO2 for almost all sequences, both containing loop closures and not.
For most sequences the developed system has a far lower positional ATE and a slightly smaller
ATE on the rotation. There are however two main exception where LIBVISO2 wins by a large
margin: sequence 01 and 04. These sequences have two similar characteristics in that they are
following a more sparsely textured, approximately straight highway. There is additionally a lot
traffic along these highways. On sequence 01, the developed system and LIBVISO2 accumulate
a large error, but the developed system shows much larger errors. This is mainly rooted in
the fact that when cars pass by a lot of features gets detected on those objects. Consequently,
the algorithm includes passing objects in the motion estimate. Because the scene is so sparsely
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textured, features attached to vehicles are not always filtered out using RANSAC. This leads
to several events where the developed VO system under-estimates the translation, or calculates
a slightly wrong rotation. For the developed system the overall impact increases because the
erroneous stereo features are included over multiple frames. This is a related issue to the one
discussed in section 10.2.1, now happening at a larger scale. The same thing happens with the
04 sequence, but for this sequence the camera is stuck behind a large truck, obstructing much of
the scene.

While generally outperforming LIBVISO2 on all other marks, it was seen that the standard
deviation of the rotation in table 10.2 generally is lower for LIBVISO2 than the developed system.
One of the reasons being that the rotation estimates for LIBVISO2 "oscillates" less. The reason
for these perturbations for the developed system were discussed in section section 10.2.1. An
additional reason for the larger standard deviation is that the developed system is very prone to
moving objects, which happens in all sequences to a varying degree. Loop closures is a factor that
reduces the overall ATE, but does not affect the standard deviation to the same extent. Thus,
when loop closures then corrects the accumulated drift of the developed system the standard
deviation still remains. This should therefore be considered when observing that the rotation
ATE was lower for the developed system, but that the standard deviation generally was lower
for LIBVISO2.

Developed System LIBVISO2 ORB-SLAM2
Sequence Length [m] ATE pos [m] σ[m] ATE pos [m] σ[m] ATE pos [m]

00* 3724 8.38 3.95 30.88 15.16 1.3
01 2454 56.98 23.57 38.37 7.96 10.4
02* 5066 31.33 17.64 39.23 16.42 5.7
03 560 − − − − −
04 392 5.235 2.49 0.94 0.39 0.2
05* 2204 4.54 2.96 12.10 6.99 0.8
06* 1232 3.16 1.88 4.63 1.93 0.8
07* 694 2.34 1.53 5.54 3.51 0.5
08 3222 10.46 7.69 21.32 8.76 3.6
09 1704 11.26 4.58 16.91 10.52 3.2
10 918 3.78 2.29 4.07 1.79 1.0

Table 10.1: ATE and standard deviation of the position estimates for 10 of the training sequences
from the KITTI dataset (Geiger, Lenz, Stiller, and Urtasun, 2013b). The results were generated
for the developed system and LIBVISO2. Sequences followed by a star marks trajectories that
contain loop closures. The developed system is compared to LIBVISO2 where the better result
is marked as bold. For ORB-SLAM2 the ATE were retrieved from Mur-Artal and Tardós (2017)
and reprinted by permission from ©[2017] IEEE.
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Developed System LIBVISO2
Sequence Length [deg] ATE rot [deg] σ[deg] ATE rot [deg] σ[deg]

00* 3724 4.93 2.15 7.53 3.15

01 2454 9.86 3.34 8.62 4.01

02* 5066 6.19 3.83 8.88 3.47

03 560 − − − −
04 392 4.92 2.28 1.50 0.10

05* 2204 5.01 3.77 6.46 2.28

06* 1232 3.39 2.19 3.66 1.76

07* 694 3.56 2.74 4.78 1.75

08 3222 6.46 4.74 7.67 2.75

09 1704 7.44 4.55 8.01 2.81

10 918 4.63 2.91 3.98 1.50

Table 10.2: ATE and standard deviation of the rotation estimates for 10 of the training sequences
from the KITTI dataset (Geiger, Lenz, Stiller, and Urtasun, 2013b). The results were generated
for the developed system and LIBVISO2. For ORB-SLAM2 they were retrieved from Mur-Artal
and Tardós (2017). Sequences followed by a star marks trajectories that contain loop closures.
The developed system is compared to LIBVISO2 where the better result is marked as bold.

10.2.4.2 ORB-SLAM2

ORB-SLAM2 (Mur-Artal and Tardós, 2017): is another feature-based VSLAM library for both
monocular and stereo cameras, capable of real-time operations. The library has one thread that
localizes the camera at every frame and also decides when to add new keyframes. This is done
by an initial feature matching between two frames using FAST features and ORB descriptors,
followed by motion-only bundle adjustment. A second thread performs local mapping, which
processes new keyframes and performs local bundle adjustment over covisible points. New cor-
respondences are updated in a covisibility graph, while older keypoints with few matches are
marginalized out. The last thread searches for, and performs, loop closures following the proce-
dure described in section 6.3.9. Whenever a loop is detected the pose matches and landmarks
are connected by a similarity transform, before a pose graph optimization is performed. This
thread launches a fourth thread to perform full BA after the initial pose graph optimization.
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Figure 10.2.10: Estimated trajectory by ORB-SLAM2 retrieved from Mur-Artal and Tardós
(2017) and reprinted by permission from ©[2017] IEEE.

ORB-SLAM2 was included in the discussion mainly to demonstrate the performance of one of
the best VSLAM algorithms available, and thus put the performance of the developed system in
perspective. The results are gathered from Mur-Artal and Tardós (2017). From fig. 10.2.10 it is
seen that ORB-SLAM2 estimates the trajectory very well. This coincides with their calculated
translation ATE in table 10.1. It is seen that ORB-SLAM2 performs better by a good margin
on the position ATE for all sequences. It should however be noted that Krombach et al. (2018)
performed a comparison their own algorithm to ORB-SLAM2. In their analysis ORB-SLAM2
achieved slightly worse results that presented in the original paper. Regardless, ORB-SLAM2 is
one of the best algorithms available and the better precision is therefore expected.

The second reason why ORB-SLAM2 is included is to emphasize two weaknesses of the developed
system. ORB-SLAM2 separates detected 3D points based on their depth. They use far points
(40 × baseline) only for information on rotation while closer points are used for both rotation
and translation. This could stabilize the uncertainty of 3D points greatly. The other inspiration
would be to not marginalize out inactive landmarks that are no longer tracked. Similarly as
ORB-SLAM2, inactive key points that has a lot of associations could be stored in a map and
potential correspondences could be search for in this map. In doing so the system could be
able to associate key points over larger traversed distances. From table 10.1 it is seen that also
ORB-SLAM2 struggle with sequence 01 compared to the other sequences. This is also rooted in
many moving objects in the sparsely textured scene. However, erroneous estimates is perhaps
stabilized to a larger extent by these two approaches.
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Conclusions

11.1 Concluding Remarks

In this thesis, a GPU-accelerated feature-based stereo VSLAM frontend was developed utilizing
both structure-only and motion-only bundle adjustment for initial frame-to-frame motion rel-
atives. Both stereo measurements and initial motion estimates are embedded in a short-term
smoother using iSAM2 as the underlying optimization paradigm, thus incrementally performing
full multi-frame bundle adjustment over a confined window. Measurements from IMU preinte-
gration and GNSS are furthermore fused with the VSLAM data in the factor graph optimization.
Concurrently, loop closures are detected and included in a long-term smoother. The full system
is embedded in ROS, thus fitting nicely with the milliAmpere sensor and software interface.

The developed system was validated on the renowned KITTI dataset (Geiger, Lenz, Stiller, and
Urtasun, 2013b). Analysis showed that the VIO part of the system outperforms the popular
stereo VO system LIBVISO2 (Geiger, Ziegler, et al., 2011) on most tested sequences. When loop
closures are extended to the VIO module, the performance was improved further, and in most
cases greatly exceeded the performance of LIBVISO2. The trajectory estimates were additionally
compared to one of the current state-of-the-art solutions, ORB-SLAM2 (Mur-Artal and Tardós,
2017), to emphasize weaknesses demonstrated by some edge cases. While achieving good results,
it was seen that developed system struggles more during lower motion and was sometimes unable
to ignore features from slow moving objects.

A new dataset was recorded using an extended sensor setup on milliAmpere, descibed in section
section 6.1, where an additional stereo camera rig was included. Unfortunately, the developed
system was unsuccessfully tested in its proper state mainly due to problems with the stereo
calibration. It was experienced that the inaccuracy of the calibration propagated through many
subsequent submodules of the frontend. Consequently, the initial motion estimate and 3D point
positions were too inaccurate, thus destabilizing inclusion of additional sensors in the factor
graph optimization of the backend. Some stable initial motion estimates were produced by the
frontend, but these were to few for a precise estimate of the motion of the vehicle. To the extent
of the authors knowledge, the analysis presented in this thesis is however one of the first surveys
of visual SLAM applied in a maritime harbor environment.

11.2 Future Work

Based on the results and discussions from chapter 10, several improvements, extensions and
profoundly interesting complementary future research topics to this thesis can be identified. A
list containing summaries of the most prominent research topics for the developed system, both
directed specifically to the milliAmpere setting and general remarks, that should be the subject
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of future work is included.

• Stereo calibration: In order to utilize stereo cameras for navigation in the milliAmpere
setting, correct stereo calibration is a necessity. This can be obtain by recalibrating the
cameras in the harbor environment if new data are collected. A larger chessboard should the
printed as trouble with range specific part of the calibration was experienced. Alternatively,
an online calibration of the camera parameters be could embedded in the factor graph
optimization as proposed by Elisha et al. (2017). This would be a very relevant and
interesting improvement regardless of the recalibration. The latter alternative enables
reuse of the collected data. If new data should be recorded it is furthermore suggested
that a smaller baseline is used to simplify feature matching of stereo matches closer to the
vehicle.

• The stereo projection factors could be replaced by the smart factor equivalent (Carlone
et al., 2014). Smart factors provides a more robust alternative, where unstable 3D points
are ignored. While overall sacrificing some precision, the exclusion of unstable 3D points
might stabilize jagged motion in the overall trajectory estimate.

• Currently only poses are transferred to the long-term smoother. It is rather proposed
that not all 3D points are culled, but that essential 3D points that are observed in many
keyframes are also transferred to the long-term smoother. This matches the approach
taken by ORB-SLAM (Mur-Artal, Montiel, et al., 2015). In this case the execution time
of loop closures performed by the long-term smoother would increase. The rate of the
synchronizations would in this case have to be reduced so that the the short-term smoother
wouldn’t have to wait for the loop closure to finish.

• False loop closure detections were never experienced throughout this thesis. However, a
false loop closure could potentially have fatal results for the overall trajectory estimate.
Sünderhauf et al. (2012) proposed switchable factor constraints that are able to recognize
and reject outliers during the optimization, both in cases of general data association errors
and for false positive loop closure detections. The rejection is achieved by making the
topology of the underlying factor graph representation subject to the optimization rather
than keeping it fixed. The software is avaliable for both GTSAM v2.0 and g2o, but should
be updated to fit the newest version of GTSAM.

• Stereo features could be triangulated in a more robust fashion. There are multiple ways of
doing so. One, is by using the disparity to identify far 3D points. The 3D points should then
be categorized based on depth. Far points provide good information changes in orientation,
but provide weak information for translation and scale. As an example, ORB-SLAM2
(Mur-Artal and Tardós, 2017) separates far points from closer points by depth higher than
40 times the stereo baseline. This separation could largely improve the stability of the
optimization where far points may provide false information on the translation. This is
particularly important in the milliAmpere situation where the view stretches over larger
areas. In addition the fundamental depth estimation should be improved, for example by
taking inspiration from Pinggera (2018).

• The estimation of the noise models should be improved. The measurement noise for both
the IMU and GNSS is available through data sheets, but for the VSLAM, the noise model,
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or covariance matrices, for both relative poses and 3D points were approximated. The
noise was set to the reprojection error for every 3D point, while the noise model of the
relative transformations in the frontend was approximated based on the RMSE for the pose
relatives compared to the associated relative of the ground truth. The noise models could
be better estimated by only specifying the pixel uncertainty, and thus let that uncertainty
propagate to the relative pose constraints estimated by a windowed BA procedure. An
interesting alternative would be to use MLPnP (Urban et al., 2016), currently used for
motion-only bundle adjustment in ORB-SLAM3 (Campos et al., 2020). MLPnP has the
additional advantage of estimating the uncertainty of the motion.

• Both the frontend and backend would greatly benefit from having a motion model for pose
estimation. For the frontend it should prove valuable to have a motion model that pre-
dict the relative transformation between frames, rather than assuming and approximately
smooth motion which is refined. In the backend, measurements are currently associated
either based on interconnecting factors using IMU preintegration or by the finding the
timestamp matches. To account for scenarios where the time stamps does not match,
and the IMU is not online, a much better solution would be to use a motion model that
estimates an approximate motion relative between VSLAM poses and GNSS poses. If a
constant velocity model is used these measurements could be embedded using the GTSAM
ConstantVelocityFactor. This would also be even more relevant if other measurements
such as LiDAR odometry are added to the factor graph.

• At the time of release PMO by Fanani et al. (2017) was ranked as the best monocular
method on the KITTI odometry benchmark (Geiger, Lenz, Stiller, and Urtasun, 2012).
This was achieved without loop closing mechanism, without RANSAC and also without
multiframe bundle adjustment. The results were however achieved using a combination of
model based pose prediction and sparse direct bundle adjustment through JET (Bradler
et al., 2017), discussed in section 6.3.8. The JET software is available, but require updates
to fit newer versions of softwares like OpenCV. Because rotation estimates is considered
one of the main weaknesses of the system, JET would therefore serves as a significant
improvement to the VSLAM system.

• Modify the code by Skjellaug (2020) to fit with the developed backend. The frontend of
this system can be extracted with some small modifications, but the backend of this system
have to be completely restructured to fit the concurrent structure.

• Non-static objects in the scene should be removed from the image. In the milliAmpere
situation this includes segmentation of water and clouds. Classical color based segmentation
techniques could be applied, but deep learning based segmentation approaches like U-
Net (Ronneberger et al., 2015) have demonstrated better results and more robustness
towards illumination changes. Other non-static objects should also be detected and ignored.
This includes cars, cyclists, trains, humans and, in the milliAmpere setting, boats. In
the maritime setting this could for example be solved similar to Schöller et al. (2019) or
Hermann et al. (2015). Deep learning based object detectors are currently considered the
state-of-the-art approach for images (Zhao et al., 2019). Detections should be confirmed by
radar or LiDAR detection to avoid false positives in a joint target tracker as demonstrated
by Helgesen (2019) or Wolf et al. (2010). To provide real time capabilities, the approved
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detections should be tracked separately in the images, for example using Lucas Kanade.
To account for the processing delay of the deep learning, all current object tracks should
be back annotated to the newest processed deep learning frame to verify if there are any
new detection. New detections should then be forwarded to the newest frame containing
the newest tracks. This should provide an efficient detection and tracking solution that
potentially could operate concurrently with the SLAM system.

• The DBOW2 module inherently has the problem that the database structure grows over
the explored area. If this is not handled, it can eventually cause problems with memory
overflow and execution time.

• Relocalization in case of lost motion track could quite easily be included using the place
recognition module. Whenever a location was recognized, rather than performing loop
closure, a new track could simply be initiated.

In addition to the aforementioned improvements some interesting complementary research topics
are suggested.

• V-LOAM (J. Zhang et al., 2015), which currently achieves the second best results on
the KITTI odometry benchmark, is a SLAM system that estimates the motion of the
vehicle by projecting LiDAR points onto monocular images. To avoid complications by
triangulation a similar approach could be taken. Detection of LiDAR keypoints could
be done similarly as Skjellaug (2020). The 3D keypoints could then be reprojected onto
two consequtive frames where the initial point position in the new frame is initiated by a
motion model. The estimate could then be refined using JET. Using MLPnP the scale and
uncertainty of the motion is obtained. This estimate could then be refined over a windowed
full bundle adjustement where additional sensor measurements could also be fused in a
factor graph optimization scheme. Loop closures could be detected either as performed by
Skjellaug (2020) using 3D-3D matching, or using appearance based approaches as done in
this thesis. Loop closures should then be performed concurrently as done in this thesis. A
3D point culling procedure similar to the previously discussed improvement should be taken
to maintain a limited amount of features in a map over the traversed area. An additional
interesting extention of this approach could be to project the 360°LiDAR scans onto images
from the 360°camera rig mounted on milliAmpere. This procedure was initially considered
for this thesis, but ignored due to the complications with the JET software discussed in
section 6.3.8.

• A milliAmpere-specific research topic is a module that is targeted only at searching for place
recognition within the enclosed harbor. It separates from other loop closing solutions in that
potential loop matches should only be searched against a predefined/pre-recorded database
of GNSS tagged images within the enclosed area. A small extension of the DBoW2 database
would suffice for this purpose. To improve the robustness of potential loop candidates a
majority vote can be applied using the same approach applied to all five cameras of the
milliAmpere (described in section 6.1) covering a 360°field of view. The transformation
from the loop detection to the GNSS tagged loop match would then be computed for all
five cameras and the transformation is then added as a GNSS-like factor to the factor
graph.
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Abbreviations

Several abbreviations are used throughout this thesis, all of which are summarized here.

ASV Autonomous Surface Vehicle

ATE Absolute Trajectory Error

BA Bundle Adjustment

BoW Bag of Words

BRIEF Binary Robust Independent Elementary Features

DBoW2 Dynamic Bags of Words 2

DOF Degrees of Freedom

FAST Features from Accelerated Segment Test

FOV Field of view

GNSS Global Navigation Satellite System

GTSAM Georgia Tech Smoothing and Mapping library

IMU Inertial Measurement Unit

INS Inertial Navigation System

iSAM2 Incremental Smoothing and Mapping 2

KITTI Karlsruhe Institute of Technology and Toyota Technological Institute

LiDAR Light Detection and Ranging

mA milliAmpere

MAP Maximum a Posteriori

NED North-East-Down

NTNU Norwegian University of Science and Technology

OpenCV Open Source Computer Vision Library

ORB Oriented FAST and Rotated BRIEF

RANSAC Random Sample Consensus

RE Relative/Odometry Error

RMSE Root-Mean-Square Error

ROS Robot Operating System
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RTK-GNSS Real-Time Kinematic-Global Navigation Satellite System

SLAM Simultanous Localization And Mapping

VIO Visual-Inertial Odometry

VO Visual Odometry

VSLAM Visual Simultanous Localization And Mapping
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Mathematical Notations

Most of the relevant mathematical notations and symbols used throughout this thesis are summa-
rized here. The remaining symbols are explained where they appear.

Physical constants

g Gravitational constant 9.81m/s2

Entity formats

s Scalars (lowercase letters in italic)

b Vectors (lowercase letters in boldface)

A Linear matrices (uppercase letters in boldface)

g(·) Functions (lowercase letters)

{·}∗ Optimized variable, vector or matrix

∆ Linearized state vector. Sometimes followed by a descriptive symbol to specify the
linearized variable. ∆t is the exception, describing time between the current and
previous time step.

Entry set content

Rm×n Real Numbers of m times n entries

∅ Empty set

I Identity matrix

Mathematical operations

AT Matrix and vector transpose

A−1 Matrix inverse

[v]× Skew symmetric form of vector

‖v‖ Vector norm

A⊕B Lie plus operator

A	B Lie minus operator

∪ Union

∩ Intersection

Det(·) Determinant of matrix

exp(·) Exponential of variable

Dept. of Engineering Cybernetics 97



arg min The input argument that gives the function’s minimum

arg max The input argument that gives the function’s maximum

Frame and transformation representations

Fa Frame a is the coordinate frame of which an object’s pose or motion is described

va Vector expressed in Fa
Rab Rotation from frame Fb to frame Fa
taab Translation from frame Fb to frame Fa as expressed by the subscript. Superscript

denotes the frame which the motion is expressed in.

Tab Transformation from frame Fb to frame Fa
Symbol representations specific to this thesis

ξ Random variable

p Position, consisting of {x, y, z}

v Velocity

a Acceleration

Θ Orientation, consisting of {φ, θ, ψ} representing roll, pitch and yaw respectively

ω Angular rate

x Pose, consisting of both position and orientation

R Rotation

t Translation

T Transformation

I Image

l 3D point - also referred to as landmark

u Image point, consisting of the horizontal and vertical coordinate {u, v}

K Calibration matrix of pinhole model

P Projection matrix

z Measurement

b Bias

η Noise

µ Mean

σ Standard deviation

Σ Covariance matrix

Λ Information matrix
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R Square root information matrix

X Set of variables in factor graph. A single entry is denoted by indent.

f Set of factors in factor graph. Single entry denoted by indent.

Operations specific to this thesis

πp(l) Projection of point in 3D space l onto image plane

h(ξ) Measurement function

I(u) Image intensity at pixel

N (ξ;µ,Σ) Normal distribution of random variable ξ with mean µ and covariance matrix Σ

f(X ) Factor described by set variables
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