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Abstract

For this project, a real-time capable GPU-accelerated feature-based stereo Visual Simultanous
Localization And Mapping (VSLAM]) solution, capable of fusing measurements from Inertial
Measurement Unit (IMU) and Global Navigation Satellite System (GNSS), is developed. Ini-
tial motion estimates are produced in one thread while concurrently managing 3D points and
performing multi-frame Bundle Adjustment (BAJ]) over short-term windows. Place recognition
is successfully performed without false positives, and loop closures are carried out in a final,
third thread. The concurrent long-term and short-term optimization is solved over a single fac-
tor graph, where iSAM2 is used for the underlying update rule. Preintegrated [MUl and GNSS
measurements are fused with the short-term [VSLAM] estimates by optimization. data
are thus available to correct for drift, while the visual-inertial Simultanous Localization And
Mapping (SLAM]) module provides accurate motion estimates during temporary or permanent
loss of GNSS data. This enables the vehicle to report accurate trajectory estimates relative to a
global reference frame.

The developed system is validated on real world sensor data recorded on-board the autonomous
ferry prototype milliAmpere (mAl). However, as a result of insufficient stereo camera calibration,
the main portion of the testing is rather performed on the publicly available Karlsruhe Institute
of Technology and Toyota Technological Institute (KITTI) dataset. Analysis showed that the
Visual-Inertial Odometry (VIO part of the system outperforms the popular stereo VO system
LIBVISO2 on most tested sequences. When loop closures are extended to the module, the
gap in performance is increased even further. The resulting performance is also measured up
against and compared with one of the current state-of-the-art solutions, ORB-SLAM2, to put
the performance of the developed system in perspective.
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Sammendrag

I denne oppgaven er det utviklet et navigasjonssystem basert pa visuell simultan lokalisering og
kartlegging (VSLAM), som er i stand til & inkludere méalinger fra IMU og GNSS i en samlet
factor graf sensor fusjon. VSLAM systemet er feature-basert og optimalisert for prossessering
pa4 GPU. Initielle bevegelsesestimater produseres mens man parallelt utfgrer multi-frame [BAI
over vinduer med aktive factorer. Stedsgjenkjenning gjennomfgres vellykket uten noen falske
positive deteksjoner, der lukking av den detekterte slgyfen utfgres i en siste, tredje trad. Et
filter og en smoother gjennomfgrer optimaliseringer parallelt over en samlet factor graf, der
iSAM2 brukes som den oppdateringsstrategi nar nye méalinger legges til. Preintegrerte IMU} og
GNSS-maélinger fusjoneres sammen med [VSLAM] estimater i filteret. P& den méaten vil globale
[GNSShdata korrigere for drift nar de er tilgjengelige, mens den visuell-inertiale SLAMImodulen
gir ngyaktige malinger av forflytningen til kjsretgyet i mellomtiden, eller hvis signalet til GNSSen
faller ut. Pa denne maten kan kjgretgyet motta ngyaktige malinger pa sin globale posisjon, selv
ved lavere oppdateringsrate fra GNSSen.

Det utviklede systemet er validert pa innsamlede sensordata fra den autonome ferjeprototypen
milliAmpere. Som et resultat av problemer med kamerakalibreringen ble testingen hovedsake-
lig gjennomfert pa det offentlig tilgjengelige [KITTT-datasettet. Analyse viste at [VIOkdelen
av systemet overgar det populeere stereo VO-algoritmen LIBVISO2 pa de fleste av de testede
sekvensene. Nar lukking av slgyfer ble lagt til VIOFmodulen, gkes gapet i ytelse ytterligere. Pre-
sisjonen til den utviklede algoritmen sammenlignes ogséd med en av de naveerende beste SLAM

algoritmene, ORB-SLAM2, for & understreke svakheter som utlgses i noen spesielle tilfeller.
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CHAPTER 1

Introduction

This introductory chapter serves to give the reader a better understanding of the framework which
the thesis is built upon. First, the background and motivation behind the thesis work is presented,
before targeted contributions are specified. Related work is then elaborated, followed by the thesis’

relation to the specialisation project. Lastly, the structure of the report is outlined.
1.1 Background and Motivation

Autonomous robots have seen considerable advancement in recent years due to an escalating
degree of inter-working, increasingly complex system solutions. There are different degrees of
autonomy, but an autonomous system should in general be capable of operating with little to
no human interaction. A key component of autonomous operations is the ability to accurately
perceive and understand both static and dynamic unknown environments so that the robot can
localize itself with respect to the surroundings, based on sensory information. Modern state-of-
the-art motion estimators differ from classical Bayesian filtering approaches in that they consider
a range of measurements (i.e. smoothing) stored in factor graph containers (Cadena et al.,|2016).
For these approaches it is common to embed exteroceptive sensors such as cameras and Light
Detection and Ranging (LiIDAR)s using [SLAM With state-of-the-art sensor technology, robust
perception systems are more readily available than ever, allowing for more potent motion estima-
tion. Real-Time Kinematic-Global Navigation Satellite System (RTK-GNSS])’ are examples of
highly accurate localization units, being precise down to a few centimeters. However, the GNSS
might not always be available or reliable. For example, it might fail due to hardware errors,
jamming/spoofing, limited coverage, or, most commonly, human errors. In case the
for some reason should fail it is important to have redundancy in a replacement system. One
example of such a potent back-up alternative is the aforementioned approach. Highly
accurate motion estimates could be calculated from up to several exteroceptive sensors, followed
by fusion with sensor data from interoceptive measurements from for example IMUs or magnetic
compasses. Thus, providing a comparable alternative to GNSS in the short term, exampled by
both Campos et al. (2020) and Skjellaug (2020) for cameras and LiDARs respectively. While per-
ceiving the environment, SLAM provides the additional benefit of creating a three dimensional
reconstruction of the scene from exteroceptive sensor data, providing situational awareness of

static objects in the scene.

The autonomous potential in the automotive industry have been extensively researched over
the years (Bimbraw, 2015). An important reason behind this is that at least 90% of vehicle
accidents are estimated to be the result of human error (Singh, 2015). Adopting autonomous
vehicles could therefore have the potential of reducing or even eliminating the largest cause
of car accidents, while also outperforming human drivers in perception, decision-making and

execution. The commercial research has therefore seen a huge spike in interest. An example
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Chapter 1. Introduction

of a key contribution to this field is the KITTI dataset (Geiger, Lenz, Stiller, and Urtasun,
. This is a publicly available dataset intended to serve as a benchmark for development of
computer vision and robotic algorithms, targeted at autonomous driving. This, and many other
publications, has thus lead to a rapid progression in the autonomous car industry.

Another application of autonomy that has received increasing attention is autonomous naviga-
tion by sea. Ever since Autonomous Surface Vehicle [(ASV])s were first introduced by MIT in
1993 (Manley, extensive research has been conducted and several prototypes have been
launched, demonstrating the capabilities of autonomous operation (Liu et al., . One exam-
ple of the application of ASVs is autonomous ferries for passenger transportation. Golden et al.
(2016) states that autonomous ferries have the potential to be more sustainable both in terms
of cost and environmental footprint. More importantly, Jokioinen et al. (2016) explains that
autonomous ships have the potential to match, or even improve, the accuracy of manned ships in
the coming future. Today, human errors are the reason for more than 60% of ferry accidents and
are accountable for more than 70% of the fatalities in these accidents (Golden et al., , hence
autonomous ships could also have the potential to be safer than manned vehicles. The Autoferry
project (Nilsen, at NTNU] is a research project developing a fully autonomous ferry, called
milliAmpere2, which transports passengers between Ravnkloa and Brattgra, in Trondheim. The
passage is not easy to cross and milliAmpere2 will serve as a fully electrical replacement being
able to transport people with just the push of a button. The ferry prototype, milliAmpere, is
displayed in figure [I.1.1] and will be described in more detail in section [6.1

Figure 1.1.1: Image from data logging with milliAmpere in April 2021. Image captured by the
author.
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Chapter 1. Introduction

1.2 Contributions

The following contributions are listed for this master thesis:

1. A tailor-made data set has been recorded with a large variety of sensors using the au-
tonomous ferry prototype, milliAmpere. The recorded data set was compared to suitable
alternative real-world data sets.

2. An efficient GPU-accelerated feature-based VSLAM frontend has been developed for
stereo cameras, largely inspired by Library for Visual Odometry 2 (LIBVISO2) (Geiger,
Ziegler, et al., 2011) and the Stereo Odometry Based on Feature Selection and Tracking
2 (SOFT?2) (Cvisi¢ et al.,2018). The frontend uses bucketed FAST feature detection, Lu-
cas Kanade optical flow feature tracking, circular matching, linear triangulation and both
structure-only and motion only [BA] for initial motion estimates and 3D point detection.

3. Place recognition using DBoW2 (Galvez-Lopez et al.,|2012)) was embedded in the frontend
making the system capable of detecting loops by comparing ORB descriptors.

4. A concurrent short-term smoother and long term smoother solution (S. Williams et al.,
2014) using iISAM2 (Kaess, Johannsson, Roberts, Ila, J. J. Leonard, et al., [2012) as the
underlying update rule.

(a) The short-term smoother performs windowed multi-frame bundle adjustment for
stereo measurements. The short-term smoother is capable of fusing both GNSS and
preintegrated IMU measurements in a modular approach. The modular strategy
makes it easy to replace, improve and add modules, so that other sensors can be
incorporated at a later stage.

(b) The long-term smoother is capable of closing detected loops in a seperate thread,
thus correcting for accumulated drift.

5. The complete system is embedded in ROS, fitting with the existing interface already
placed on milliAmpere.

6. The developed VSLAM system is tested on milliAmpere, thus being one of the first image
based SLAM approaches ever to be tested on a maritime surface vehicle, to the extent of
the author’s knowledge.

1.3 Related work

Preliminary research on estimating a vehicle’s ego-motion using visual input was first described
by Moravec (1980) in the early 1980s. This research was motivated by the desire to provide
rovers the capability to estimate their 6-Degrees of Freedom (DOF) motion in the presence of
wheel slippage and rough terrains. Nistér et al. (2004) later formalized this form of motion
estimation by the term Visual Odometry (V) in the first real-time implementation of a VO
system. VO algorithms can be categorized as either feature-based, which retrieve the relative
pose between images by extracting and matching keypoints from them, or direct methods, which
directly compare pixel intensities to achieve the same result. Feature-based methods are also
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referred to as indirect methods.

is an extension of odometry where drift is removed by recognizing revisited locations and
correcting for the accumulated drift to achieve globally consistent pose estimates rather than
locally consistent, which is the case for VO. As research topics, VO and SLAM have gained a lot
of traction and attention in the last 30 years. Earlier work on SLAM was focused on Bayesian
filtering methods, such as Extended Kalman Filter (EKF), particle filters, etc. Durrant-Whyte
et al. (2006) provide a comparison for methods up til 2006. In the last decade, non-linear filtering
based approaches have been replaced by optimization-based approaches, called [BAl These have
proved to be more accurate and efficient (Strasdat et al., 2010). Cadena et al. (2016) provides
an in-depth description of the development of SLAM throughout history, as well as a survey of
the current state of SLAM together with future directions.

More recent work formulates the SLAM in terms of factor graphs, alternatively the closely related
hyper graphs, which are then optimized in batches. There exists many optimization libraries, such
as Georgia Tech Smoothing and Mapping library (GTSAM]) (Dellaert, 2012), g0 (Kummerle et
al., 2011), the Ceres-solver (Agarwal et al., n.d.) and miniSAM (Dong et al., 2019). Studies
(Doaa et al., 2013)), (Youyang et al., [2020), (Grisetti et al., 2020)), tend towards and
g%0 being the most efficient batch algorithms, with ¢g?o having a slight advantage. However,
research conducted by Kaess, Johannsson, Roberts, Ila, J. J. Leonard, et al. (2012) created an
algorithm for sparse nonlinear incremental optimization, named iISAM2, fitting nicely with the
incremental nature of measurement updates in SLAM problems. The factor graph structure sim-
plifies the integration of measurements in the problem formulation. Factor graphs can also quite
easily embed measurements from other sensors, making it far more likely that the optimization
converges to a consistent and correct estimate. Over the years Dellaert and Kaess (2017) have
added several extension to the optimization library (Dellaert, 2012)), some of which are
sliding window optimization (Chiu et al., 2013|), concurrent filtering and smoothing (S. Williams
et al., 2014) and smart factors (Carlone et al., 2014)).

The work by Mouragnon et al. (2006) was the first real-time application of VO using BA. This was
followed by the ground-breaking Parallel Tracking and Mapping (PTAM) by Klein et al. (2007),
where tracking and mapping of features were split into two threads. ORB-SLAM, created by
Mur-Artal, Montiel, et al. (2015), builds on many of the ideas from PTAM. It uses ORB-features
(described in section for tracking, mapping, relocalization, and loop closing, of which all
except relocalization are run in parallel threads. At the time of release, ORB-SLAM achieved
unprecedented performance with respect to state-of-the-art SLAM systems. Since then, several
direct and indirect SLAM systems have been released matching or outperforming ORB-SLAM,
including new versions of ORB-SLAM (Mur-Artal and Tardoés, 2017)) and (Campos et al., 2020).
Indirect SLAM methods extract features from images to estimate motion, while direct SLAM
methods directly optimize on the pixel intensities between images. Direct methods have proved
to accurately estimate motion, but it is recognised that indirect methods often outperform the
direct. Current state-of-the-art methods are so-called which include IMU measurements in
the pose estimation. ORB-SLAM3 provides a comparison of many of the best VO, VIO, and
VSLAM methods available (Campos et al., 2020)).

Even though both [VSLAM] and ASVs have been extensively researched, little attention has been
directed towards the application of SLAM in maritime harbor environments. Within the field
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of pose estimation, preliminary research was conducted by @dven (2019) and Dalhaug (2019)
in their thesis’. The former compared multiple LIDAR-VO and -SLAM algorithms available
from open-source in Robot Operating System (ROS); none of which yield sufficiently accurate
results for autonomous docking (@Ddven, [2019). The latter thesis focused on localization using
particle filters. Even though this yield a quite accurate pose estimation, particle filters turned
out to be too computationally inefficient for real-time localization (Dalhaug, [2019). Skjellaug
(2020) developed a feature-based LiDAR-SLAM system using the iSAM2 framework, incorpo-
rating both IMU measurements and the With the disabled, this work
presented results that achieved higher accuracy than a standard GNSS receiver, both for the
two-dimensional xy-plane, and for the z-direction, in the short term. Experiences from this sys-
tem forms the basis for further development. The most recent addition to the these research
topics is the contribution from Gerhardsen (2021) which analyses pose estimation using fiducial
markers in marine environments. This research show promising results and should be included

as supplementary measurements for future work.

During the specialization project (Hellum, 2020), several state-of-the-art VO and VSLAM al-
gorithms was studied. None of the existing open-source VO/VSLAM systems were considered
as viable alternatives, mainly because of their tightly coupled structure and that they were not
considered compatible with[GTSAM| This would make it difficult to modify and fit such VSLAM
systems with inclusion of other exteroceptive SLAM modules. Additionally the pose optimiza-
tion would have to be performed twice, once for the original system and once where other sensors
were included. The additional refinement from the secondary optimization module should then
ideally be fed back to the original system. This can cause race conditions. The specialization

project therefore concluded that a new VSLAM algorithm rather should be developed.

1.4 Relation to the specialisation project

The practical implementation from the specialisation project (Hellum, 2020) is completely re-
worked. However, experiences and results obtained from this work is of importance when further
investigations are done into the concept of and sensor fusion in this thesis. Sections from
the specialisation project that are found to be relevant for the master’s thesis will therefore be
included either in their original form or in a modified, redrafted version. Redrafted sections may
include new parts added during the work with this thesis or just be updated with the latest

information.

If a section is included in its original form or redrafted from the specialisation project it will be
clearly stated. The sections these notes applies to are also summarised here for easy identification

by the reader:

e Sections included in their original form include:

e Sections included in a modified form include: 2.4 (4 -
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Chapter 1. Introduction

1.5

Outline

This master thesis is organized into 11 chapters. After this introductory chapter, the outline of

the report is as follows:

Chapter [2| introduces background information on pose estimation for both exteroceptive

and interoceptive sensors. This includes cameras, IMUs and GNSS’.
Chapter [3] introduces background information on feature management in images.
Chapter [4]introduces fundamental statistics that are used in graph-based SLAM problems.

Chapter [p| presents SLAM problem formulations in general. Backend formulation of factor
graphs are further depicted, going into more details on the iISAM2 algorithm and concurrent

short-term and long-term smoothing.

Chapter [0] presents the sensor setup on milliAmpere and on the KITTI dataset, together
forming the consolidated datasets. Then, details of the utilized software are presented in

more detail.

Chapter [7] goes into details on the structure of the frontend for the developed VSLAM
algorithm. The approach of every developed component are then specified.

Chapter [§] decribes how concurrent short-term and long-term smoothing is solved in prac-
tice, some of which with marginalization and loop closure. This is followed by more details

on how the different sensors in practice are connected in a joint factor graph optimization.
Chapter [9] describes results of data logging with milliAmpere and stereo calibration.

Chapter [10] discusses results achieved by the developed multi-sensor SLAM algorithm on
the consolidated datasets. Here, the results are compared to LIBVISO2 and ORB-SLAM2.

Chapter [IT] concludes the work of the master thesis and presents improvements for future

work.
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CHAPTER 2

Fundamentals of pose estimation from sensor data

This chapter presents the essential background information on pose estimation using different
sensors. First, coordinate frames, rigid-body kinematics and Lie theory are described to explain

motion of an object. Next, fundamentals for pose estimation using various sensors are explained.

2.1 Coordinate frames

It is important to understand how different bodies are oriented relative to each other. To un-
derstand this, one also have to understand how a vehicle body is oriented with respect to an
earth-fixed position. Also, it is often practical to know how a sensor (e.g., a camera) is oriented
relative to the vehicle or other sensors. This section describes the various coordinate systems
used to describe the position and orientation of the vehicle and its sensors.

World frame: The world origin and coordinate basis vector is an arbitrarily chosen pose in
which the state of the vessel is seen in reference to. This center is often referred to as the world
frame, which will be denoted Fyy. To complete the parameterization of the coordinate frames
the direction of the axes have to be defined. Fj is sometimes referred to as a North-East-
Down (NED) coordinate frame, for example in seakeeping theory (Fossen, 2011)) or for aerial
vehicles (Beard et al., 2012a)). In this frame, x is pointing towards north, y towards east and z
downwards. There are many alternative, for example by inverting the y and z direction compared
to the frame, as is done for the GNSS/IMU in the KITTI dataset (Geiger, Lenz, Stiller,
and Urtasun, |2013b).

Body/Vehicle frame: The body frame, Fp, also referred to as the vehicle frame, is defined so that
all coordinate frames on the vehicle can be described in relation to each other. The reference
point of the body frame may be placed on an arbitrarily body fixed position but is often set to the
center of orientation. For freestanding objects, this is typically the center of gravity. There are
many choices for the orientation of the coordinate frame, but a common choice is placing x-axis
in the the direction the vehicle is facing. Following the right-hand rule, the z-axis is typically
either pointing upwards or downwards. If z is upwards, then y is pointing to the left, but if z is
downwards, then y is pointing to the right.

Odometry frame: Is another frame that often are formulated for [VO|and [SLAMI scenarios, which
will be denoted Fp. This reference point is set to the initial pose of the body, which does not
necessarily have to be the same as the world center.

Common sensor frames: Every sensor perceive the environment with respect to their own co-
ordinate frame. For example, with cameras the coordinate frame place the reference point at
the focal point. Following the OpenCV convention this frame places the x-axis pointing to the
right, y downwards and z in the perceived direction of the camera. This is known as the camera
frame, F¢, and will be covered in more detail in chapter 2.4.1] Some other examples are the
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[LIDATR], which often has the x-axis pointing forward, y to the left, and z upwards, but this is not
set in stone. [MUk and [GNSSE, on the other hand, may use either the latter coordinate frame
or inversing the y and z direction such that y is pointing to the right and z points downwards.

The relation between the different coordinate frames are illustrated in fig. 1.0} It is evident
that some mathematics have to be formulated in order to relate the different coordinate frames
both to perform sensor fusion and state estimation.

A

= — e .
NLDARHOLAL, -
& wns M N

[— A SEo S

Figure 2.1.1: Illustration of coordinate the different types of frames that are typically referred
to in SLAM scenarios. Sensor frames are illustrated in the image. The red arrow depicts the
x-direction, while yellow is y-direction and z is marked as blue. Image captured by the author.

2.2 Rigid Body Kinematics

A presentation of the necessary background material related to Rigid body kinematics was included
in the specialisation project preceding this thesis. This presentation is deemed valuable also for
this thesis, and the presentation from the project report (Hellum, is therefore included below
in a redrafted version.

A homogenous transformation matrix is a 4 x 4 matrix, Ty, which describes a change in pose
from coordinate frame F, to F;. This transformation can be decomposed into a rotation matrix,
R € R3*3, and a translation vector, t € R3*!. The transformation matrix is an element of the
special Euclidean Lie group in 3D, which can be used to describe motion of vehicles and vessels
in 6 Degrees of Freedom (DOE). Lie groups will be covered in more detail in section [2.3] The
rotation matrix describes rotational motion for roll, pitch and yaw, while the translation vector
describes shift of the specified frame. The rotation matrix has to satisfy a set of properties. This
is because the rotation matrix is part of a special orthogonal Lie group in 3D, falling under the
following SO(3) constraints:

SO(3) = {R|R e R*3 R"R =I,Det(R) = 1} (2.2.0.1)
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A relative pose representation has to satisfy the SE(3) property, extending the SO(3) according
to

R t

SE(3) = {T|T = [‘)T

cRY™ R SO(3),tc R3} (2.2.0.2)

For SLAM it is common to track motion over time. A useful property that follows from the
SE(3) constraint is that transformation matrices that are concatenated as the product of a
matrix multiplication still satisfies SE(3). A vector, &, can be transformed from coordinate
system Fp to F4 by first rotating the vector into the orientation of the new frame, F4, and then
adding a translation, yielding

€% = Rypx’ + 4. (2.2.0.3)

Updates for rotation is simply the matrix product with another rotation matrix. A combination
of such transformations is shown in equation The transformation is described from right
to left starting in frame F.. First, an object described in F, is transformed from F,. to F. Then
the motion of the object is described in F, undergoes a transformation from 7 to F,. The
overall transformation is from F, to Fy.

RabRbc tgb + Rabtlgc

Tac = TabTbc = OT 1

€ SE(3) (2.2.0.4)
If a coordinate frame, Fp, is attached to the moving vehicle body, then the pose of the body
frame relative to a fixed world coordinate frame, Fy, can be captured by a set of transformations
equal to the ones described in equation [2.2.0.4

2.3 Lie Theory

Orientations, SO(3), and poses, SE(3), lie on manifolds in higher-dimensional spaces (Sola et al.,
2018]), which complicates description of perturbations, derivatives and probability distributions
since they do not have the same properties as vectors in vector spaces. This can be seen in

examples [2.3.0.1a] and [2.3.0.1b] where the orientation and transformation are pushed outside the

special orthogonal /euclidean group after small perturbations, d R and 6T, are added. This further
means that derivatives cannot properly be expressed by means of perturbations for rotation

matrices.

R+6R ¢ SO(3), R,6R € SO(3) (2.3.0.1a)
T +6T ¢ SE(3), T,0T € SE(3) (2.3.0.1b)

However, as mentioned in section SO(3) and SE(3) falls under matrix Lie groups on the
smooth manifold. Lie theory describes the tangent space around elements of a Lie group in
order to define the exact mappings between the tangent space and the manifold. The tangent
space has the same number of dimensions as the number of degrees of freedom of the group
transformations where a separate set of algebraic operations may be applied.
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The tangent space at the identity m = T Mg is called the Lie algebra of the manifold M.
Elements on the manifold can be mapped to/from the Lie algebra using the exp(:) and log(-)

operations in equation [2.3.0.2

exp:m— M; Y =exp(r") (2.3.0.2a)
log: M —m; 1" =1log(}) (2.3.0.2b)

The Lie algebra is a vector space with elements 7 € m. The ()" operator expresses the Lie
algebra m as a linear combination of some base elements, F;, forming the tangent vector space,
R™. The inverse operation (-) uses basis vectors, e; so that e/ = E;, to map the tangent vector
space back to Lie algebra.

Hat : ()" :R"™ - m; 1/ = ZTiEi (2.3.0.3a)
i=1
Vee : (1) :m —R™ 1= ('T/\)\/ = ZTiei (2.3.0.3b)
i=1

For notational convenience, a vectorized version of the exponential and logarithmic maps are
adopted that allows to directly map vector elements 7 € R™ to group elements ) € M. The
direct mapping is expressed by capitalization

Exp:R™ — M; Y =Exp(r) =exp (7") (2.3.0.4a)
Log: M — R™; 7 =Log(Y) = log (V") (2.3.0.4Db)

The proper tools to perform operations such as pertubations on the manifold are now available
through Lie theory. After expressing elements on the manifold as tangent space vectors using
the Exp mapping they may be concatenated using the @ or © operator, and then transform
compossition back to the group using the Log mapping. Sola et al. (2018) goes into detail on
mathematical operations that can be performed once transformed onto the tangent space.
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2.4 Camera Geometry

A presentation of the necessary background material related to the Pinhole Model and Perspective
Projection and Epipolar Geometry was included in the specialisation project preceding this thesis.
This presentation is deemed valuable also for this thesis, and the presentation from the project

report (Hellum, |2020) is therefore included below in a redrafted version.

In this section the essential background information on camera geometry and pose estimation
using a camera will be presented. First, the geometry of the pinhole camera model explains how
information from a 3D scene are related to the 2D image plane. The geometry that describes
how motion can be estimated between images is detailed in the section about epipolar geometry.
Additionally, the geometry of stereo cameras are explained.

2.4.1 Pinhole Model and Perspective Projection

Cameras are the most important sensor in the field of computer vision. The representation of an
object in sensor data can typically be found through a sensor model which transforms a point
in the world frame to a point in the sensor frame. There exist multiple models that map points
captured from a 3D scene onto a 2D image plane, where the pinhole camera model is the most
widely used (Hartley et al.,|2003). Another name for this model is the perspective camera model.
An illustration of the geometry describing this camera model is shown in figure 2.4.1] In the
pinhole model, the camera is imagined as a box with a small hole in the center. Reflected light
from the scene passes through the hole illustrated in figure[2.4.1]and creates an inverted reflection

on the image plane.

A
A 4

Figure 2.4.1: The perspective camera model. The camera is represented by the camera frame
Fe. Points 1¢ in the camera frame are projected through the origin and onto the image plane at a
distance f behind the projective centre, where f is the camera constant. Reprinted by permission
from Haavardsholm (2020). The image is slightly modified to fit the notation of this thesis.

The pinhole model is divided into extrinsic and intrinsic parameters. The extrinsic parameters
define the rigid-body motion, T, between the camera reference frame, F,. and a known world

reference frame, Fy,. In homogeneous coordinates this can be expressed as

€ zv

yc _ R., t¢ yw

| = [ oT 1CW w (2.4.1.1)
1

1
Tew
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Next, the intrinsic parameters are necessary to project coordinates given in the camera reference

frame, F. into pixel coordinates in image plane. The homogeneous representation of the world
points in the camera frame, [z, y¢, 2¢, l]T, can further be mapped into the Cartesian space using

the homogeneous perspective projection matrix, II, i.e.,

x 1 000 w
2=yl =]010 0|’ (2.4.1.2)
% 0010 ‘
- 1
I
The image coordinates are represented by the vector u = [u,v]T. Using the law of similar

triangles, the camera coordinates are normalized and further multiplied with the camera constant,
f, of the camera to obtain the correct unit length representation of the pixels. The camera
constant is the distance from the optical center to the image plane as illustrated in figure [2.4.1]
Lastly, the image coordinates are defined with the upper left corner as the origin. The principal
point ¢ = [cy, CU]T is therefore added to the expression yielding the intrinsic equations below

C C

u:f%—kcx v:f%—l-cy (2.4.1.3)

These intrinsic equations are often written on matrix form, yielding the camera calibration

matrix.
fu 0 cu
K=|0 f, ¢ (2.4.1.4)
0O 0 1

Putting the extrinsic and intrinsic equations together yields the pinhole model in homogemous
form
u = K [R.yl|te, ] 17 (2.4.1.5)
—_———
P
This equation projects 3D points in world coordinates, 1V, onto homogenous image coordinates,

where P is the projection matrix. The projection function can also be expressed in Euclidean

form. In the camera frame, F., this becomes

100 1 z
u=m,(lK)= K—I°= Ju 2t (2.4.1.6)
010 z¢ fole + ¢
In the world frame, F, the extrinsics have to be included, yielding
w 1 00 1 ~
u=m,(I";Tow, K) = [O ) 0] K;HTcle. (2.4.1.7)

Notice that for the world frame z¢ is described by the relation in equation [2.4.1.2

A camera lens may distort images, making straight lines in a scene appear bent in the image.
Radial distortion occurs when light rays are bent closer to the edges of the lens than in the
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center. An ideal pinhole camera does not have a lens, and thus this is not accounted for in the
intrinsic matrix. A distortion model is therefore often applied in addition to equalize distortion
caused by the lens. Let (u,v) be the ideal points and (ug, vg4), the radial distortion expressed in
eq. (2.4.1.8).

Ug = U+ u k1(u2+v2)—i—kg(u2+v2)2+k3(u2+v2)3... (2418
Vg =v+v kl(u2+v2)—i—kg(u2+v2)2+k3(u2+02)3... o

The radial distortion coefficients k, express the degree of the radial distortion (Z. Zhang, |2000).

2.4.2 Epipolar geometry

Consider two perspective cameras, represented by the camera frames F, and F;,. The cameras
are related by a relative transformation, {Rp, tgb} € T, as described in section Observing
the same world point, 1, from the two camera frames puts a geometric constraint on the point
correspondence 4, <> U in the two normalized image planes Z, and Z;. This is called the
epipolar constraint, and can be expressed as

(@)TEpu® =0, where Eg = [t%] Rap € R®3 (2.4.2.1)

where []* denotes the skew-symmetric operator. Equation represents the epipolar con-
straint by the essential matrix, E,,. Another representation is by means of the fundamental
matrix, Fyp = K TE K b ! where K represent the calibration matrix of camera frame F, and
JFp. By this relationship, the essential matrix depends only on extrinsic parameters, thus rep-
resenting the epipolar constraint in normalized image coordinates. The fundamental matrix on

the other hand express correspondence relation in pixel coordinates.

[

Epipolar plane

: - F
a " S
e:\ Baseline / e? ’

Epipole Epipole

Figure 2.4.2: The image illustrates the epipolar geometry relating two perspective camera frames
Fq and Fp. 1 describes a world point observed from both camera frames. The camera centers
and the world point forms a triangle called the epipolar plane. The baseline is the line drawn
between the two camera centers, while the epipoles, e* and e’, are the intersection of the baseline
in the image planes. The epipolar lines fall where the epipolar plane intersects the image planes.
The epipolar constraint says that the world point projected onto the image plane, i.e. u® and u®,
must lie on this epipolar line. Reprinted by permission from Haavardsholm (2020). The image
is slightly modified to fit the notation of this thesis.
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Figure illustrates the epipolar geometry between the two camera frames. The epipolar
plane describes the plane containing the 3D point 1. The baseline is the line joining the two
camera centres. Furthermore, the epipoles are the intersection of the baseline in each image
plane. The epipolar lines are then found by drawing a line segment where the epipolar plane
intersects the image planes. The epipolar line in image Z, intersects its epipole e® and the point
u®. The corresponding point in image Z, must then lie on the epipolar line for image Z,. Search
for correspondences is then reduced from a region to the epipolar line. Furthermore, the depth
is directly proportional to the length of the baseline and the distance between the two pixels

capturing the world object.

The fundamental matrix can be estimated from the 7- or 8-point algorithms, while the essential

matrix can be estimated from 5 point correspondences using Nistérs five point algorithm (Nistér,

2004).

2.5 Stereo Vision

When a point in 3D space is projected onto the 2D image plane, the depth dimension is completely
lost. This is intuitively similar to human vision, where it becomes difficult to determine the
distance to objects with one eye kept closed. As a consequence of the lost depth information
will monocular SLAM, i.e. using a single camera, be unable to recover the scale of the scene
and thus the scale of the traversed trajectory. By using stereo cameras, i.e. two rigidly mounted
cameras observing the same scene, the depth information can be recovered by triangulating stereo
matched features at every frame. Consequently, challenges related to scale drift is eliminated.

Two stereo images observing an overlapping scene is related through epipolar geometry described
in the previous section. This way, all point correspondences between the images are constrained
to lie on the epipolar lines associated with the observed 3D point. There follows an uncertainty
for the reconstructed depth of a 3D point. This uncertainty is mainly dependent on the baseline
and image resolution, which generally decreases with an expanding baseline and a higher pixel
intensity. A rule of thumb is that the working distance, i.e. the distance for which the position
of the 3D point can accurately be determined, is 30 times the baseline (Curtis, [2011). However,
more advanced methods can be applied for depth estimating which greatly increases the accuracy
for larger distances (Pinggera et al., 2014)).

When stereo cameras are calibrated, extrinsic parameters describing the interrelating transfor-
mation in the camera setup is calculated. In reality there is usually an unwanted vertical rotation
and transformation component in the stereo setup. This can be compensated for by applying the
calibration result in a stereo rectification procedure for captured image pairs. In a rectified stereo
setup the two image planes are perfectly aligned so that the epipolar plane, depicted in fig.
is horizontal. Additionally are the focal lengths f and optical centers (¢, ¢,) constrained to be
equivalent for both cameras. As a result of rectification there should be no vertical discrepancies
between two rectified image points, u; = (uz,v;)? and u, = (u,,v,)?, in the left and right image
respectively corresponding to the same landmark, 1. Consequently, is the search space for stereo
point matches now only restricted to a search along the epipolar lines, where the correspondences

rather can be represented with three parameters (u; ,u, ,v).
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2.6 Inertial Measurement Unit (IMU)

IMUk are interoceptive sensors used for navigation and state estimation, which measure relative

motion in the body frame. An IMU includes a gyroscope and an accelerometer to measure the

body’s angular rate, c.b};,b(t), and linear acceleration, @’ (t), in equations |2.6.0.1a| and |2.6.0.1b| re-

spectively. These measurements are often supplied by magnetic or gyroscopic compasses, mP (1),
to obtain the orientation of the body as described in equation [2.6.0.1d These measurements are
affected by additive white noise, 1, and a slowly varying sensor bias, b, both separately specified
for the gyro, accelerometer and magnetometer. A separate superscript convention is used for
the bias and noise, where g, a, m is used to denote measurements for gyro, accelerometer and
magnetometer respectively; All of which are described in the body frame, where the Ry, is the
rotation from the world to body frame.

OP(t) = wP(t) + bI(t) +ni(t) (2.6.0.1a)
a’(t) = Ry (t) (@™ (t) — g%) + b%(t) + n°(t) (2.6.0.1b)
mP(t) = Ry ()ym™ (t) + b™(t) + n™(t) (2.6.0.1c)

The classic gyroscope is a spinning wheel that utilizes conservation of momentum to detect
rotation, however, modern solutions come in several forms. Optical gyros are a popular choice
for high accuracy strapdown inertial systems. The Microelectromechanical Systems (MEMS)
technology have however made it possible to place an IMU on a small electrical chip, making the
technology available for low and medium cost applications. Accelerometers are either mechanical
or vibratory. The mechanical accelerometer uses Newton’s second law to measure a force acing on
the body, for example a pendulum. The vibratory accelerometer measures frequency shifts in a
string, due to increased or decreased tension caused external forces acting on the body. A stand-
alone IMU solution for pose estimation, where acceleration measurements are integrated twice
and gyro outputs are integrated once to obtain positions and attitude respectively, is insufficient
for long term navigation as the estimates will drift due to sensor biases, misalignments and
temperature variations. However, using sensor fusion, IMU measurements can be a valuable
addition in the overall system configuration by constraining the outcome space of the joint state

estimate.

2.6.1 IMU preintegration

Lupton et al. (2011) introduced IMU preintegration as a method of combining measurements
between two frames into one relative motion constraint, thus being able to calculate the motion
a vehicle over time from a series of IMU measurements. Forster, Carlone, et al. (2015) later
extended this theory to the SO(3) rotation group and fit the mathematics into a factor graph
representation. This will be discussed in section [5.2.1] This representation is the solution that
is currently implemented in GTSAM (Dellaert, [2012). The derivation discussed in this chapter
follows from Forster, Carlone, et al. (2015).
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Before applying the preintegration, the following kinematic model is introduced to describe

motion between frames:

. X

Ry, = Ry, - [wb} (2.6.1.1)
oV =a" (2.6.1.2)
p=v" (2.6.1.3)

Here, [-]* describes the skew symetric matrix. To find the relative motion at time ¢+ At, between
two IMU measurements, equations [2.6.1.1] are integrated. If @ and w® are assumed constant

in the time interval [t,t + At], the states can be written as a function of the measurements as

shown in equation

Ry (t + At) = Ry (t) Exp {w"( At} (2.6.1.4a)
w () Exp { (&P (8) = b(t) = n?(1)) At}
VY (t+ At) = vV (1) + a” (t) At (2.6.1.4D)
= v(t) + gV At + Ry (1) (db(t) —b(t) — n“(t)) At
pY(t+ At) = p¥(t) + v" () At + %aw(t)AtQ (2.6.1.4c)
=p"(t) + vV (t) At + %gwAtQ + %wa(t) (db(t) —b(t) — n“(t)) At?

where the measurement equations in [2.6.0.1] are inserted after the second equality of each sube-
quation in [2.6.1.4, Exp {-} denotes the lie exponential. The relative motion between two mea-
surements are now known, hence the next step is to concatenate all measurements with At

intervals between two consecutive keyframes at times &k =i and k = j.

j—1
R; = R; [ [ Exp (@ — b, — nf) At), (2.6.1.5a)
k=i
7j—1
v = v; + gAt; + > Ry (ay — bf, — nf) At (2.6.1.5b)
k=i
j—1
k=i

In equation [2.6.1.5] the sub- and superscripts for frame description are dropped for readability.
Also, At;j = Zi;i At and (-); = (-)(¢;). While providing an estimate of the relative motion
between t; and t;, equation [2.6.1.5 has the drawback that the integration has to be repeated
whenever the linearization point at time t; changes. To avoid this recomputation, the relative

motion increments are assumed to be approximately independently of the pose and velocity at
t; giving the expression in eq. (2.6.1.6)).
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j—1
AR;; = Rl R; = [ [ Exp (@ — b] — nf}) At) (2.6.1.62)
k=1
j—1
_ pT _ ~ a a
Avij = R] (v; —v; — gAti;) = Y ARy (@), — b — mff) At (2.6.1.6b)
k=1

-1
1 J
Ap;; = R} (Pj —pi — viltij — ;9At2>
=i

—

1
= Z [AvikAt + iARik (ar — b —n) AtQ} (2.6.1.6¢)
k=i

<

These equations require knowledge of the bias, however, consider that the bias is slow-varying,
the bias can be assumed to remain constant between two keyframes.

g _ — — a _ — —
bi - bgyro,iJrl = .. = bgyro,jfb bz - bacc,i+1 — s = bacc,jfl

Lie algebra, discussed in (Forster, Carlone, et al., [2015), may further be applied for updat-
ing the rotational group SO(3). An example is the first-order approximation Exp(¢ + A() =~
Exp(¢) Exp (J,(¢)AC), here expressed with a random variable . The jacobian J, is the right
Jacobian of SO(3) computed using Lie algebra.

Equation [2.6.1.6| should be modified further to isolate the noise. Therefore, starting with the
rotation increment AR;;, a first-order approximation is used to rearrange the terms by “moving”
the noise to the end.

-1
AR;j ~ H [Exp (@ — bf) At) Exp (—JnkniAt)]
k=1
gl ) (2.6.1.7)
= ARy [] Bxp (—AR[,, 3, mfAt)
k=1

= ARZ] EXp (—5@5”)

with J¥ = J¥ (& — bY). The preintegrated rotation measurement is defined as

~ . 7—1 ~ g . . . . . .
AR;; = [[i—; Exp ((@r — b7) At), and its noise d¢;;. Substituting equation [2.6.1.7 back into
equation [2.6.1.6bl and dropping higher-order noise yields

-1
Avij =~ Y ARy (I—-0¢j)) (ax — bf) At — ARy At

<.

k=i
i1 i (2.6.1.8)
— AV + Y [ARM (ar — b)) ¢ At — ARyl AL
k=1
= A\?z] - 5Vij

where the preintegrated velocity measurement is defined as Av;; = ng;i ARy, (a5, — b?) At,
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and its noise dv;; Similarly, substituting equation into equation [2.6.1.6c¢, and using a
first-order approximation the following relation is obtained

Apij ~ Z 5 AR (- 00))) (ay, — bf) At? — Z SARunAL
k=i

2.6.1.9
= Api; + Z [ ARy, (3 — b)) 5 At — fARzkn At } ( )
= Apjj — 5p¢j

Here, Ap;j defines the preintegrated position measurement and its noise 0p;;. Substituting all

of the expressions 2.6.1.7] 2.6.1.8] 2.6.1.9 back in the original definition in equation [2.6.1.6] the
final expression for the preintegrated measurement model becomes

ARZ‘J‘ = RZTR]' EXp (5¢U)
A{’ij = R.ZT (Vj —V; — gAtij) + (5V,‘j

- 1
Apij = RZT (pj —Pi — ViAtij - 2gAt%> + 5pij

(2.6.1.10)

So far, the bias b; used to compute the preintegrated measurements has been assumed given.
However, the bias term will likely change during optimization. One solution would be to re-
compute the delta measurements when the bias changes, but that would be computationally
expensive. Instead, given a bias update b < b + b, the delta measurements in equation
can rather be updated using a first-order expansion, giving

_ AR,
AR;; (bY) ~ AR, (bY) Exp <a Rjébg)

ObY
~ a ~ g Ta 8AVZ 8AV1 o
Avi; (bY,b}) ~ Av;; (b?,bf) + 8bg35b9 T 1 5be (2.6.1.11)
- . g T 0Ap; OAp;
(B B ~ A (B B i 519 4 ij s1a
Apj; (bi ,bi) =~ Api; (bi ) bz) 15) %4 ob; obo ob;

where {%, %, . } is the jacobians computed at b;. The final formulation in equation

2.6.1.11] is important to fit the factor graph optimization structure described in section [5.2.1]
A description of how preintegrated measurements are added to factor graphs will be covered in

section
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2.7 Global Navigation Satellite System (GNSS)

There are several that together provide autonomous geospatial positioning with global
coverage. In the United States, the Global Positioning System (GPS) was created in 1995,
followed by the Russian Global Navigation Satellite System (GLONASS) shortly after. The
more recent Galileo by the EU and BeiDou by China provide an improved accuracy to the old
systems. In addition there exists several regional systems. The GNSS system uses satellites for
absolute global positioning. The constellation of the satellites is designed such that any point
on the earth’s surface is observable by at least four satellites at all times. GNSS receivers then
uses the time of flight from a minimum of four satellites the receiver can triangulate, and thus
determine its latitude, longitude and altitude. The fourth satellite is necessary because of clock
synchronization errors between the satellites. The accuracy of the GNSS position is affected by
the geometry of the satellites and the accuracy of the satellite pseudorange measurements. It
is therefore evident that the accuracy of the integrated GNSS receivers benefit from combining
signals from one or more systems. A regular receiver is low-cost, and typically has a specified
Root Square Error (RSE) of about 4 meters (Fossen, [2011). As described by Beard et al. (2012),
the accuracy of the GNSS measurements are affected by:

e FEphemeris data: The mathematical description of its orbit.
e Satellite clock error: Internal clock error of satellite.
e Jonospheric delay of the signal caused by the presence of free electors.

o Troposphere disturbances caused by variations in temperature pressure and humidity affect
the time of flight.

o Multipath reception occurs when signals are reflected on surfaces before reaching the re-

celver.

e Receiver measurement errors stem from the computational limits with which the timing of

the satellite signal can be resolved.

Additional types of sensors may also be available to ensure reliability of the positioning system,
forming an Inertial Navigation System ([NS)). Such sensors may include [MUk, hydro acoustic
position sensors, taut wires and laser sensors. There also exist other types of GNSS systems
that improves the accuracy of the GNSS receiver positioning. This includes the Differential and
Augmented GNSS (DGNSS) which uses stationary stations on the earth surface with known
position to correct for errors, and the even more accurate which will be described in

the next section.

The GNSS measurement equation is given by
z{"" = hI" (x4) + Ngnss (2.7.0.1)

where 7gnss is the measurement noise which is assumed Gaussian distributed. h9"% is the

measurement function that relates the measurement z{"** to the robot’s position.
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2.7.1 Real-Time Kinematic-Global Navigation Satellite System (RTK-GNSS)

A receiver is a highly accurate solution which provides accuracy down to a few
centimeters, however the RTK-GNSS is significantly more expensive. The increased accuracy
is achieved by tracking the phase shift of the signal’s carrier wave and output the fractional
phase measurement at each epoch. In order to lock on to this track the RTK-GNSS first has to
determine the integer ambiguity, that is the unknown number of carrier cycles from the time a
satellite signal is placed to the receiver begins an active track. These position measurements of
the RTK-GNSS are, however, not as robust as GNSS and DGNSS (Fossen, 2011]).
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CHAPTER 3

Fundamentals of Feature Management

A presentation of the necessary background material related to feature management was included
i the specialisation project preceding this thesis. The applied methods are the same as in the
specialisation project and the theoretical description from the project report (Hellum, |2020) is

therefore included below in its original version.

In this chapter the relevant background information on feature management is presented. These
are essential topics within feature-based VO and SLAM systems. First, detection of features
in images are described, with Features from Accelerated Segment Test (EAST]) as the method
of choice. Then, feature descriptors and more specifically Oriented FAST and Rotated BRIEF
(ORB) is covered. Lastly, pyramidal Lucas-Kanade describes how features are tracked from image
to image using optical flow.

3.1 Feature Extraction

As mentioned in section features is an essential component in indirect SLAM methods.
Features are significant image points that stand out in the texture of a scene. These points
typically include corners or edges. What separates these points from planar areas in an image
is that the pixel intensity typically changes. The intensity typically refers to the brightness or
gradients of the pixel. These types of image points may be used for various tasks such as object
classification, face recognition, etc., but popular demand is feature-based SLAM. The reason
being that features that stand out in the scene can more easily be tracked and compared to
other images capturing features of the same scene from another pose.

3.1.1 FAST

Feature detectors such as SIFT and Harris are accurate methods that yield high-quality features,
however, they are computationally expensive which limits them from real-time applications. The
[FAST] algorithm was first proposed by Rosten et al. (2006) to provide a faster feature detector
aimed at real-time applications.

The FAST algorithm selects a pixel p in the image. For this interest-point the pixel brightness
is compared to the surrounding 16 pixels, forming a Bresenham circle around p as shown in
figure 3.1.1] The 16 pixels in the circle is classified as either lighter than p, darker than p or
similar to p. The interest-point is selected as a keypoint if more than 8 pixels are either darker or
brighter than p. Non-maximum Suppression is applied to reduce the number of interest points
in adjacent locations. Amongst two adjacent keypoints the interest-point which inhabits a lower
score function, i.e. the sum of the absolute difference between p and the 16 surrounding pixels,
is discarded.
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Figure 3.1.1: The image illustrates the image patch used by FAST to determine if an interest
point satisfy the segment test. The pixel, p, is the centre of a candidate corner, while the
16 highlighted pixels forming the Bresenham circle is the compared pixels. Image courtesy of
(Rosten et al., 2006)

3.2 Feature Descriptors

Feature descriptors encode interesting information about features into a series of numbers. These
descriptions act as numerical “fingerprint” so that features may be differentiated from one an-
other. One alternative is to describe these features in the form of binary bit strings, forming
binary feature vectors for the set of features. There exist a huge variety of feature detectors
and descriptors, and Pire et al. (2017) provide a comparison of combinations applied to a VO

framework.

3.2.1 ORB

[ORBl was developed by OpenCV Labs (Rublee et al., as an efficient and viable alternative
to SIFT and SURF. Both of the latter approaches are patented, thus ORB was developed as a
free alternative to these algorithms. In short ORB is a fusion of the FAST keypoint detector,
following the procedure described in section and the BRIEF descriptor (Calonder et al.,
2010) with some modifications to enhance the performance. For the FAST algorithm robust
features are selected using either FAST or Harris response, while using an image pyramid to
produce multiscale-features. An image pyramid is a multi-scale representation of a single image
at different resolution. As FAST isn’t orientation invariant ORB adds this ability by using first-
order moments. The measure of corner orientation is determined by computing angle between
the intensity weighted centroid and the center of the corner. To determine center of mass for the
patch, that is, the centroid C, the moments of a patch first have to be defined as

Mpg = Zupvql(u,v), (3.2.1.1)

u,v

where Z(u,v) expresses pixel intensities at a image coordinate, (u,v). p and ¢ furthermore
express the order of the moments as an analogue of the mechanical moments. The centroid C' is

then given by

mig m

C = (10, 01) . (3.2.1.2)
moo 1Moo

By constructing a vector between the centroid and the center of the corner, the orientation of

the patch will be given by

a = atan2(mgy, mig). (3.2.1.3)
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When the orientation of the patch is calculated, it can be rotated to a canonical rotation, ob-
taining some rotation invariance. Now, a modified version of BRIEF can be applied to obtain a
description of the keypoints. The features are converted into a binary feature vector so that they
together represent an object. By using a Gaussian kernel the image is smoothed, making the
binary descriptors insensitive to high-frequency noise. Finally, by using the patch orientations
the binary tests produced by BRIEF are rotated such that the descriptions are rotation invariant.

3.3 Pyramidal Lucas-Kanade Feature Tracker

The optical flow feature tracker by Lucas-Kanade (Bouguet et al., 2001) tries to find point
correspondences between two grayscale images Z, and Z,. Consider a pixel u, = [u,v]? in the
first image Z,. The algorithm tries to find the location of up = ugs +d = [u+ dy,v + dU]T in the
second image Ty, such that Z,(u,) and Zy(up) are similar. The vector d = [d,, d,]” describes the
image velocity and is known as an optical flow vector. The optical flow algorithm tries to find
the vector solution for d that minimizes the residual function e defined as:

U+Woy, vH+wy

e(d) =e(du,dy) = Y. > (T — Ty(x 4 dy, y + dy))? (3.3.0.1)

T=U— Wy Y=V—Wy

The similarity function is evaluated over an integration window in an image neighbourhood of
size (2w, + 1) x (2w, + 1). Notice that a smaller integration window will provide a higher local
accuracy, while a larger window would be more robust to larger displacement following from
higher velocity or a lower frame rate. Therefore it follows a natural trade off in this.

A solution to this problem is the pyramidal implementation of the classical iterative Lucas-
Kanade algorithm. The idea of the pyramidal implementation is illustrated in figure [3.3.1

é‘_v}_ - Jm?/ £

,“,:j: "*‘m?!

Figure 3.3.1: Image pyramid of the optical flow algorithm. The image at top of the pyramid
describes the image with the lowest resolution, which estimates the initial optical flow. The
estimate is refined for every level down to the original image.

For each image the pyramidal implementation recursively smoothes and down-samples the orig-
inal image, such that the input image can be evaluated at different scales. The recursive form
computes an initial estimate for optical flow vector, d, for the image at the lowest scale. This
estimate serves as an initial guess when the track is computed the higher resolution images.
Thus, the optical flow vector is continuously refined through the higher resolution levels down to
the original image as shown in image Going down the pyramid small motions are removed
and large motions becomes small motions, thus returning an optical flow that is more robust to
larger displacements.
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CHAPTER 4

Fundamentals of statistics

A presentation of the necessary background material related to statistical inference was included
i the specialisation project preceding this thesis. This presentation is deemed valuable also for
this thesis, and the presentation from the project report (Hellum, 2020) is therefore included below

i a redrafted version.

This chapter covers fundamental statistics that is essential to understand the SLAM problem
formulation. First, the multivariate gaussian describes the uncertainty model that is used for
measurements. Then, MAP optimization describes how variable assignment may be refined to

find the most likely outcome from a set of condtitional states.
4.1 Multivariate Gaussian Distribution

The multivariate Gaussian generalizes the univariate Gaussian, and is one of the key constructions
that underlies SLAM and virtually all of sensor fusion. The multivariate Gaussian distribution
is given by its expectation vector, u, and a symmetric positive definite covariance matrix, X.
The univariate Gaussian is distributed according to a bell curve with the peak located at the
expectation value and the spread given by the covariance. The distribution follows the same
logic when this is extended to multiple dimensions, and is mathematically described according
to

N (€)= exp (—i(e wTE e - m) (4.1.0.1a)

(2m)3 (32
= exp <a +nTe - ;STAﬁ) ) (4.1.0.1b)

Here, equation[4.1.0.1b]describes the canonical form of a multivariate gaussian Brekke, [2020. The
canonical form is parametrized using the information matrix, A, which is the inverse covariance

matrix, and the information vector, . The parameters of the canonical form is distributed as

A=x"!

n=Ap (4.1.0.2)
1

a= —inln(27r) —In|A| +nTAn

The canonical form is widely used in graph based SLAM, because the canonical form is able
preserve a factor-graph structure that will be explained in section [5.2.1] Another advantage is
that the information matrix remains sparser than the corresponding covariance form (Dellaert
and Kaess, 2017) when the number of variables grows. However, the problem still grows, which
makes memory usage and computation grow unbounded in time. One way to handle this is to

remove older variables without removing information. This process is called marginalization.
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Stated in terms of probability densities, given a joint density p(§,~y) for two variables £ and 7,
then marginalizing out the variable £ corresponds to integrating over &, i.e.,

p(v) = /p(& v)d§ (4.1.0.3)

If the two variables £ and 7 are expressed on the canonical form, their joint distribution can be

partitioned according to

-1

Age Mgy
£k

A&v Ay

Ne
Uat

I

p(§,7) =N | A (4.1.0.4)

The information matrix of y after marginalization can then be obtained by taking the Schur

complement of Age,ie. Ay — A;A&IA@ (Brekke, 2020).

4.2 Maximum a Posteriori Optimization

A Maximum a Posteriori (MAP]) estimator finds an the most likely value of a state, &;, given
the mode of its posterior distribution. This mode will be the one that yield the most likely
value based conditionally on a prior distribution. The MAP estimator thus provides a powerful
tool for nonlinear state estimation. This is valueable for SLAM systems, where the true states
of the system are unknown, and conditional on a set of measurements. In order to represent
the uncertainty of the measurements, multivariate Gaussians are normally used, yielding z; =
hi(&) +mi ~ N(u,0?). Here h;(&;) describes the measurement process of all quantities, &;,
that contribute to the measurement result, z;. The associated noise, 7;, is often assumed to be

zero-mean Gaussian, so that the measurement error can be expressed as
€i(&) = hi(&) — 2 (4.2.0.1)

From the expression one can see that the error function expresses the state, x;, as a conditional
of the measurement, z;. For SLAM problems, the objective function is typically set to be the
squared Mahalanobis distance (Mahalanobis, |1936), or the Huber Norm (Huber, 1992) of all the
errors. Using the Mahalanobis distance, this yields the MAP problem formulation

. . . . 12
£ = arggmmg(ﬁ) = arggmmz lle:lls;, (4.2.0.2)
KA

The nonlinear problem, g(&), is then solved by applying nonlinear optimization methods such as
Gauss-Newton, Levenberg-Marquardt, or Powell’s Dogleg (Nocedal et al., 2006)). These solvers
repeatedly perform perturbations on a succession of linear approximations to equation in
order to approach a minimum. As the number of states grow, the problem grows unbounded.
This may be solved efficiently by graph optimization methods, which we will study in greater
detail in section 5.2
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CHAPTER D

Simultanous Localization and Mapping (SLAM)

In this chapter relevant background information related to SLAM and factor graph optimization
will be presented. First, the structure of the SLAM problem formulation is detailed. Next, graph
structures and the incremental update and optimization approach iSAM2 is described. Lastly,

followed by a concurrent approach for short-term and long-term smoothing is explained.
5.1 The SLAM Problem Formulation

Visual odometry is the process of mapping an environment and estimating the motion of which
a robot travels within this local map, typically by using exteroceptive sensors such as LiDAR,
EO- or IR-camera. Customary, VO systems are divided into two main components: the front
end and the back end. The front end associates structures in the image/frame, either in terms
of extracted keypoints, or pixel intensities over the image directly. The back end performs
inference on this data to find the relative poses that yields the most likely association of the
aforementioned structures. The keypoints may also be included in this refinement. These pose
estimates altogether forms the robot’s odometry. Additional measurements from IMU, GNSS,
etc. may be included to improve this estimate. An extension of VO is SLAM. Visual odometry
treats the whole world as an infinite corridor, but SLAM enables place recognition so that the true
topology of the environment can be restored. The accumulated drift are thus corrected within
the loop-enclosed area. The problem formulation of VO and SLAM is commonly divided into
pose estimation and structure estimation. It is common to formulate pose estimation problems
as either direct or indirect. The latter is also referred to as feature-based. Whereas structure
estimation problems is categorized as either dense or sparse. Sparse methods only use a carefully
selected subset of the information in a scene, while dense methods attempt to reconstruct the
entire scene. Direct and indirect methods are discussed in the following subsections.

5.1.1 Indirect Methods

Indirect methods start by extracting a geometric representation of the scene. This typically
includes feature extraction and association of the keypoints through optical flow feature tracking
or descriptor matching. Indirect methods are typically referred to as feature-based methods
because of this intermediate features extraction step. The feature observations can then be used
to estimate the relative motion based on the point correspondences. It is common to estimate the
motion of the body by project 3D points in the world, I, onto the image plane using eq.
and comparing the reprojected point position to the original corresponding feature position, u.
This is referred to the reprojection error, which minimizes the geometric error in eq.

egeometm'c(Twm lW) = 7'f'p(lu}; T, K) —u (5111)

wWceC
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The world points are related to the camera pose by the initial transformation estimate from
the world frame T,.. The reprojection error is calculated for multiple 3D-2D correspondences
and the overall error is minimized using equation This is called [BAlL If the scale of the
3D points are known, then the actual scale of the motion can be retrieved. The optimization
may be performed by only refining an initial pose estimate, T,.. This is called motion-only
bundle adjustment. Another alternative is structure-only bundle adjustment, which rearranges
the world points I to minimize the error. The last alternative is full bundle adjustment, which

both optimize the poses and the world points.

There are typically two approaches to keypoint matching before bundle adjustment, either by
sequential frames over a window, or by mutual observability constraints following repojection
from a local map. Respectively, this is exampled by SVO2 (Forster, Z. Zhang, et al.,[2016) and
ORB-SLAM (Mur-Artal, Montiel, et al., [2015), where ORB-SLAM uses a combination of the
two. Windowed approaches are often faster, while projecting co-visible points from a local map
can provide a slight boost in performance because more potential correspondences are mapped
from the entire trajectory.

Indirect methods provide robustness to photometric and geometric distortions. However, a dis-
advantage of indirect methods is that extraction and matching of features in low textured and
poorly illuminated environments is difficult. Direct methods partially tackle this problem.

5.1.2 Direct Methods

Direct methods skip the feature extraction step that is considered for indirect methods. Indirect
methods rather optimize directly on pixel intensities. This problem formulation is the same as

minimization equation [4.2.0.2| over the photometric error in equation [5.1.2.1

ephotometric(uba Zba Tab) = Ia (w(ub’ Zb7 Tab)) - Ib(ub) (5121)
where the warp function

u® = wul, 22, Ty) = 7 (T - ng(ub, 2%)) (5.1.2.2)

a

maps pixels u’ from image 7 to pixels u® in image Z,. The transformation T, describes a

motion from camera pose a to pose b, while z describes the depth for the inverse projection.

Well known examples of direct SLAM methods are LSD-SLAM by Engel, Schops, et al. (2014),
SVO by Forster, Z. Zhang, et al. (2016), and DSO Engel, Koltun, et al. (2017). This work shows
that direct methods are more robust to blurred images and areas that are sparsely textured
since these methods use the image intensity values directly to optimise a photometric error,
and are not dependent on distinct features such as indirect methods. Direct methods may also
provide a denser map reconstruction compared to feature-based methods. There are however
some downsides to these methods as they require photometrically calibrated images and are
more vulnerable to geometric distortions that can originate from bad calibration or rolling shutter

effects.
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5.2 Optimization over Graph Structures

At their core SLAM, and many other estimation problems, are searching for a [MAP] estimate,
i.e., trying to maximize the posterior probability of some variables, given a set of measurements.
This operation is typically performed in the part of the SLAM system referred to as the backend,
where initial estimates from the frontend or other sensor data from IMUs, GNSS’, etc. are
included. When attempting to act optimally, a performance index is maximized, or conversely a

penalty function is minimized.

The optimized terms of these problem formulations are usually local in nature, meaning that the
terms only depend on a minor subset of the entire set of variables. A flexible and intuitive way
of modelling this locality structure is using the concept of factor graphs. Factor graphs are a
class of graphical models composed of variable and factor nodes. Variables represent unknown
quantities to be estimated. Dependencies between variables are indicated by connecting edges,
where factors represent functions on subsets of the variables for each connecting edge. Aside
from the insightful modelling benefit, they are efficiently solved and provide an easily modular

interface.

In the next subsections different graph structures that are associated to factor graphs and are
of specific importance to the Incremental Smoothing and Mapping 2 ([SAM2) algorithm (sec-
tion[5.3]) are described. Details on how the graph structures are related and the act of performing

inference on the graph structures are also explained.

A presentation of the necessary background material related to the graph structures in sec-
tion [5.2.1] section and section [5.2.9 was included in the specialisation project preceding
this thesis. This presentation is deemed valuable also for this thesis, and the presentation from
the project report (Hellum, |2020) is therefore included below in a redrafted version for the next

subsections.

5.2.1 Factor Graphs

Factor graphs have become the de facto standard for formulating SLAM problems (Cadena et
al., 2016). One of the reasons is that the graph can be factorized if the measurement errors
are assumed statistically independent. New measurements often only have a local effect on the
graph, which enables efficient update algorithms to only evaluate the affected parts of the graph.
iISAM2, described in section [5.3] is an example of an algorithm that efficiently utilizes factor
graph structure.

An example of a factor graph containing poses, ®, and landmarks, I, is depicted in fig. [5.2.1]
In addition to being capable of embedding poses and landmarks for state estimation are factor
graphs also suitable for sensor fusion, where measurements from other sensors can be added as
separate nodes to the factor graph. Embedding new sensors in the optimization will not greatly
increase the complexity of the problem, as all measurements are considered independent. It will,
however, make it easier for the optimization to converge to the globally correct solution rather
than a local maximum. The IMU is a good example on how other sensors can provide additional
information on for example the velocities in addition to the poses. IMU measurements can be
inserted as connecting factors between two variable nodes. GNSS is another sensor that easily
can be fused into a factor graph, adding a prior of the pose nodes. Details on practical examples
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of how sensors can be added to the graph is depicted in fig. [8.0.2] and will be discussed in more
detail in section chapter [§| Minimizing the MAP objective function formulated over the factor
graph, with multiple sensors enables, elegantly performs sensor fusion. Another variant to the
connecting factors from odometry measurements is the loop-closing constraints in figure [5.2.1
which zero out drift for a revisited location. In order of performing all of these operations, the

a general problem formulation for factor graph statistical inference have to be defined.

Cq Cz

Figure 5.2.1: Factor graph (Kschischang et al.,2001) formulation of a basic SLAM problem, only
composed of poses and landmarks. Variable nodes are shown as large coloured circles, and factor
nodes (measurements) as small solid squares. The factors shown are odometry measurements
0, a prior p, loop-closing constraints ¢ and landmark measurements m. Inspired by fig. 2 from
Kaess, Johannsson, Roberts, Ila, J. J. Leonard, et al. (2012).

A factor graph is an bipartite probabilistic graphical model that consists of two types of nodes:
variable nodes and factor nodes. Variable nodes, denoted X; € X, represent the states that are
estimated. For SLAM problems these states are typically the poses and landmarks X = {x,1}
respectively, as shown in figure [5.2.1] Additional variable states such as velocities and biases
are examples of potential extensions to the problem formulation. Factor nodes, denoted f; € f,
commonly represent measurements that connect the conditional probabilities between states.
Each factor f; is defined as a function of the set of its adjacent variables nodes X;. Edges e;; are

always between factor nodes and variable nodes.

There are two main inference problems for factor graphs, computing marginals, and computing
the mode. Computing marginals is the process of removing older variables without removing
their information, such that computational complexity is reduced. This process is applied during
the smoothing process of SLAM problems. The update step boils down to computing the mode,
which is estimating the most likely variable assignment over a chosen set of states. A common
choice for this estimation is the maximum a posteriori (MAP) estimator, explained in section

which maximizes the posterior density of the variables with respect to the factors

X" = argmax f(X) (5.2.1.1)
X

where f(X) is the factorization of the factor graph
F(x) =] fi(x). (5.2.1.2)

For SLAM problems it is common to assume Gaussian measurement models, as described in
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section [f.1] This equals
1
fi(%) oc eap(— [|ha( %) — Zill%,)- (5.2.1.3)

The estimated posterior from equation [5.2.1.1] is rewritten as to the nomlinear least-squares
objective function

. . 1 :
X* = arg}\r{mn(f log f(X)) = arg;nln(g D 1hi(X) = zilly,) = arg;mnz leill%, (5.2.1.4)

)

where h;(X;) is a measurement function and z; is a measurement. Furthermore, |e]3 = e? S le
is the squared Mahalanobis distance which weights the residual errors, e, according to the co-

variance 3 of the respective measurement, z;.

The MAP estimate is now in a form that can be solved by using nonlinear optimization methods
such as Gauss-Newton, Levenberg-Marquardt, or Powell’s Dogleg. These solvers repeatedly
perform perturbations on a succession of linear approximations to equation in order to
approach a minimum. Therefore, one typically approximates equation using a Taylor
expansion. With some rewriting this becomes

“log £(A) = Y LA — b (5.2.1.5)

(2

where A; = X, Y 2Ji is the weighted measurement Jacobian, J, A; is the linearized states and
by = %, Y 2(z,~ — hi(A;)) is the weighted prediction error. In SLAM problems updates arrive
in an incremental order which allows for more efficient solutions; One of which transforms the
factor graph into a Bayes net and further into the Bayes tree as illustrated in figure[5.2.2] Thus,
inference on the factor graph can be understood as converting the factor graph onto the form
of these related graph structures and computing the joint density over these structures instead.

These graph structures are covered in the following sections.
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(a) Factor graph and the associated Jacobian matrix A. Xs mark connections from variable to factor
nodes.
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b) Bayesian network and the associated square root information matrix R. Xs mark connections between

varlable nodes.

(c) Bayes tree and the associated square root information matrix R. Colors are used to describe cliques
represented both in terms of the bayes tree structure and the matrix equivalent.
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Figure 5.2. 2' The graph structures used in the iSAM2 algorithm. The same naming convention
as for fig. [5 is used. All figures are inspired by fig. 3 from (Kaess, Johannsson, Roberts, Ila,
J. J. Leonard, et al.,2012)), but modified to fit conventions for this thesis.

5.2.2 Bayesian network

Bayesian networks, also called Bayes nets, are directed acyclic graphs (DAGs) that aim to model
probabilistic causality through conditional dependence. In figure the nodes, &, represent
variables while each edge represent a conditional dependency. Furthermore, Bayesian networks
satisfy the local Markov property (Rabiner, 1989)), which states that a variable is only condi-
tionally dependent on its prior state. Here, prior state refers to previous poses or associated
landmarks. In other words, if there exist an edge between nodes &; and AX;_; their conditional
dependence f(X;|X;_1), is a factor in the joint distribution over the network. A variable X; may
have multiple priors, thus forming a set of variables S; that the node is conditional dependent
on. Bayesian inference may be applied to analyze the joint distribution over the entire set of

random variables

F(X) £ T F(x518)). (5.2.2.1)
i
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The Bayes net can be obtained from a factor graph by QR- or Cholesky factorization, or equiv-
alently by means of a bipartite elimination game, as described by (Heggernes et al., |1996)). For
iISAM2 (section the latter approach is taken, which proceeds by eliminating one variable
AX; at a time, and follows algorithm (1| in converting it into a node of the Bayes net. The nodes

represent conditionals P(X;]S;) for every factor node on its connected variables.

Algorithm 1: Eliminating a variable &; from the factor graph.

1 Remove from the factor graph all factors f;(X;) that are adjacent to Xj. Define the
separator S; as all variables involved in those factors, excluding &.

2 Form the (unnormalized) joint density f(&X;,S;) = [, fi(X};) as the product of those
factors.

3 Using the chain rule, factorize the joint density f(Xj,S;) = P(&;]S;)f(S;). Add the
conditional P(X}|S;) to the Bayes net and the factor f(S;) back into the factor graph.

An example of a factor graph converted to a Bayes net is shown in figure The chain rule
f(X;,8;) = P(X;]8;) fnew(S;) in step 3 of the elimination algorithm can be implemented using
Householder reflections or Gram-Schmidt orthogonalization. Every incoming factor-product is
on the form

1
F(Ag,85) o exp (—2 lad; + Ass; - b||2> (5:2.22)

where A; = [a|Ag] is obtained by concatenating all variables s; that are connected to the variable
that is currently undergoing conversion from factor graph to Bayes net, A;. The factor product
can be rewritten according to (Kaess, Ila, et al., 2010) by marginalization of s; as described by
Brekke (2020). Equation is rewritten as

f(Aj, Sj) = P(Aj|Sj)f(Sj) (5223)
where

1 / !/
(Aj+rsj—d)2} f(s;)  exp (—QHAsj—b

P(Als;) o exp {—; 2) (5.2.2.4)

and

r=(ala) 'a’Ag d = (aTa)"'a’b A =Ag—ar b =b—ad

The new factor f(s;) in equation [5.2.2.3|is obtained by substituting A; = d — rs; into [5.2.2.2]
This yields one iteration of Gram-Schmidt. Thus, the MAP estimate of A is found by recursively

solving A; = d — rs; for every variable A;.

The Bayes net resulting from algorithm [I] holds the important property of being chordal. A
chordal graph means that any undirected cycle of length greater than three has an additional
edge that is not part of the cycle but connects two of the vertices. This is a necessary property
if the Bayes net is to be further converted into a Bayes tree, as will be discussed in next.

Dept. of Engineering Cybernetics 32



Chapter 5. Simultanous Localization and Mapping (SLAM)

5.2.3 Bayes tree

Marginalization and optimization of Bayes nets is not easy in general. However, the related tree-
based structure, the Bayes tree, enables new recursive algorithms that simplify and streamlines
this process. A Bayes tree is a directed tree where the nodes represent cliques. This structure
was introduced with the iSAM?2 algorithm (Kaess, Johannsson, Roberts, Ila, J. J. Leonard, et
al., |2012)) described in section If the underlying Bayes net is chordal then the Bayes tree
can be constructed by discovering its cliques using the maximum cardinality search algorithm
(Tarjan et al.,|1984). Each clique consists of its separators Sy being the intersection Cy N IIj of
the current clique and its parent respectively, and frontal variables F}, containing the remaining
variables. An example of a Bayes tree is shown in figure where the frontal elements of
the left leaf node is {l1, 21} and x9 is the separator. This restructuring of the graph yields the
joint distribution from equation to be rewritten for the Bayes tree accordingly

P(X) & T P(Fi|Sk). (5.2.3.1)
k

From section it is clear that every node of the Bayes net represent the conditional P(Xj;|.S;).
The cliques of the Bayes tree therefore contains as set of these nodes of size greater than one as
shown in figure The optimal assignment of X'* can be computed using algorithm

New measurements often only have a local effect on the Bayes tree, which enables efficient update
algorithms to only evaluate the affected branches of the tree. The update rule of the Bayes tree is
described in algorithm [2| and illustrated in figure [5.2.3] From this update rule it becomes clearer
why iISAM2 uses the elimination game from algorithm [I] over factorization. Due to the local
update it is efficient to only perform partial state update over the affected nodes using algorithm

Hl

Algorithm 2: Updating the Bayes tree inclusive of fluid relinearization (section [5.3.3)) by
recalculating all affected cliques.

Input: Bayes tree 7, nonlinear factors f, affected variables X '
Output: modified Bayes tree T’

1 Remove top of Bayes tree, convert to a factor graph:
(a) For each affected variable in X " remove the corresponding clique and all parents
up to the root.
(b) Store orphaned sub-trees 7o, of removed cliques
Relinearize all factors required to recreate top.
Add cached linear factors from orphans 7o pp,-
Re-order variables of factor graph.
Eliminate the factor graph and create a new Bayes tree.

(<IN L SN I M)

Insert the orphans 7,,,, back into the new Bayes tree.
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Figure 5.2.3: The image depicts the Bayes tree update sequence described in algorithm |2} Based
on example from fig. , the nodes that are affected by the update (encircled by a dotted
orange oval) are first converted to a factor graph. A new factor is inserted in the extracted graph,
between pose variables x1 and x3 (dotted blue). The factor graph nodes are then eliminated using
algorithm [I] to obtain the Bayes net representation. Lastly are the updated Bayes tree created
from the chordal Bayes net added back into the original tree. Consequently, the right “orphan”
sub-tree (light green) from the original Bayes tree remains untouched, while the affected section
is updated. The figure is inspired by fig. 3 from (Kaess, Johannsson, Roberts, Ila, J. J. Leonard,
et al., 2012)), but modified to fit the notation used in this thesis.

5.3 Incremental Smoothing and Mapping 2 (ISAM2)

A presentation of the necessary background material related to iSAM2 was included in the special-
1sation project preceding this thesis. This presentation is deemed valuable also for this thesis, and
the presentation from the project report (Hellum, |2020) is therefore included below in a redrafted

version.

Many inference problems, such as SLAM, are incremental by nature as new measurements arrive
sequentially. Naturally the most efficient solution to a sequential problem is an incremental
algorithm. For SLAM problems the current state is dependent on prior knowledge and reuse is
therefore possible, which allows for more efficient solutions. The iSAM algorithms are examples
of this.

The original iISAM algorithm follows the derivation described in section [5.2.1] and minimizes
equation by applying fast linear solvers. This allows iISAM1 to repeatedly solve the
square root information matrix, R by backsubstitution. Updates are performed using Givens
rotation (Gentleman, |1973) to maintain the efficient upper triangular structure of the R matrix.

However, as new measurements are added the square root information matrix will gradually
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drift further away from the true state. iISAMI solves this problem by periodically execute re-
linearization and variable reordering at batch steps. This is a sub-optimal solution as refactoring

the whole matrix is expensive.

iISAM?2 is a fully incremental, graph-based version of the iISAM algorithm. iSAM2 avoids the
whole issue of periodic batch refraction by introducing the Bayes tree and then utilizes incremen-
tal reordering, partial state updates, and fluid re-linearization. The Bayes tree is discussed in
section while the remaining topics are covered in the following subsections. By introducing
these topics iISAM2 combines the advantages of the graphical model and sparse linear algebra
to obtain one of the fastest full graph-SLAM methods used today. The iSAM2 algorithm is
captured in algorithm [3]

Algorithm 3: One step of the iISAM2 algorithm, following the general structure of a
smoothing solution.

Input: New nonlinear factors f/, new variables X’
Output: Bayes tree T, nonlinear factors f, linearization point X, update A
Initialization: 7 =0, f =0, X =10

1 Add any new factors f := fU f .

2 Initialize any new variables X "and add X ;== XU X'

3 Fluid relinearization with Alg. yields affected variables.
4 Redo top of Bayes tree with Alg,

5 Solve for delta A with Alg.

6 Current estimate given by X & A.

From algorithm [3] it can be seen that iISAM2 use several additional strategies to solve specific

sub tasks, all of which are addressed in the next subsections.

5.3.1 Incremental Variable Ordering

It is important to choose a good variable ordering to efficiently find the sparse matrix solution.
An optimal ordering minimizes the fill-in, where fill-in can be seen as the size of the cliques.
Finding the variable ordering that leads to the minimum fill-in is NP-hard. Heuristic methods
such as Column Approximate Minimum Degree (COLAMD) (Davis et al., 2004) provide close to
optimal approximations of the ordering for batch problems. COLAMD was used in the original
iSAM algorithm, but an incremental variable reordering strategy is desirable for the iISAM2
algorithm to allow for faster updates in subsequent steps. This is achieved with the Constrained
COLAMD (CCOLAMD), where the most recently accessed variables to the end of the ordering.
This makes sense for the SLAM problems because a new set of measurements are expected to
connect to the most recent observed states. It is therefore most likely that the most recent
accessed variables are the ones that need reordering.

5.3.2 Partial State Updates

New measurements often only have a local effect of the Bayes tree, which is utilized by the partial
state update. Instead of performing full backsubstitution on the square root information matrix,

R, iISAM2 only include variables that change when computing the update. More specifically,
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iISAM?2 begins at the root of the tree and recursively updates all descendant cliques that change
beyond a given threshold. The remaining nodes are marginalized. Except for large loop closures,
this results in a less expensive update rule.

Algorithm 4: Partial state update: Solving the Bayes tree in the nonlinear case returns

an update A to the current linearization point X.

Input: Bayes tree T
Output: Update A

1 Starting from the root clique C, = F,:

2 For current clique Cy, = F} : Sk, compute update Ay of frontal variables Fj, using
already computed values of parent Sy and the local conditional density P(Fy|Sy).

3 For all variables Ay; in Ay that change by more than threshold a: recursively

process each descendant containing such a variable.

5.3.3 Fluid Relinearization

Fluid relinearization is added to the iISAM?2 algorithm so that relinearization only is performed
when needed. In order of doing so, the algorithm keeps track of the validity of the linearization
point for each variable. When a variable drift beyond a threshold all relevant information is
removed from the Bayes tree and replaced by relinearizing the corresponding original nonlinear
factor. For all cliques that are relinearized, the marginal factors from their sub-trees also have

to be taken into account.

Algorithm 5: Fluid relinearization: The linearization points of select variables are up-

dated based on the current delta A
Input: Linearization point X, delta A

Output: Updated linearization point X', marked cliques M

1 Mark variables in A above threshold 5: J = {A; € A|A; > 5}
2 Update linearization point for marked variables: X; := &X; ® A;

3 Mark all cliques M that involve marked variables X; and all their ancestors.

5.4 Concurrent Filtering and Smoothing

In contrast to filtering over a single state, even the iISAM2 smoothing solution discussed in
section generally is not a constant time operation over a growing number of states (Kaess,
Johannsson, Roberts, Ila, J. J. Leonard, et al., 2012)). This is even more evident with occasional
inclusion of loop closures where large amounts of factors have to be recalculated. Smoothing
solutions can however be parallelized, allowing the problem formulation to be split into a high
speed navigation component and a higher latency loop closure component. S. Williams et al.
(2014) proposed an approach that combines short-term filtering and long-term smoothing within
a single Bayes tree, while formulating it in such a way that both are performed concurrently. This
approach enables the filter to operate at constant time where new sensor data are integrated real
time, while updates from the slower smoother are integrated whenever once become available,
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while still achieving an optimal state estimate at any time. Such smoother updates typically
refer to loop closures. While being named a filter, it is in practice rather a short-term smoother
as will be detailed later. The concurrent structure is achieved by splitting the posterior factors
in eq. ((5.2.3.1)) into three components

P(X|2Z)=P X% 2% Px%)Px| &%), (5.4.0.1)

The factors from left to right represent the smoother, the separator and the filter. With this
representation the smoothing over past states is decoupled from filtering on current states. The
posterior p(X | Z) in eq. (5.4.0.1) is equivalent to a Bayes tree with the separator as root, as
illustrated in fig. By definition, the new factor are directly inserted into the filter clique X
Changing a clique also affects all ancestors, which can be seen from the elimination algorithm
(alg. , where information is passed upwards towards the root. Because the root is the separator
clique X°, this also has to be recalculated. By the same argumentation, the smoother cliques
X are eliminated independently up to the separator. Consequently, the smoother clique is
unaffected by updates in the filter. The smoother and filter can therefore be solved in parallel,
with the filter typically performing multiple steps during one smoother iteration, and then joined
at the separator.

p(X?)

Seperator

p(XR1X%) p(X*X5)

Smoother

Figure 5.4.1: Smoother and filter combined in a single optimization problem and represented as
a Bayes tree. A separator is selected so as to enable parallel computations. The image is inspired
by S. Williams et al. (2014), but modified to fit the notation of this thesis.

To keep the filter operating in constant time, an approximately constant number of factors have
to be maintained. Hence, intermediate states that no longer is referred to by future factors
should be removed. Some factors are marginalized out, while others are moved to the smoother.
Marginalization is equivalent to simply dropping the respective conditionals from the chordal
Bayes net. The smoother updates could be solved by simply performing batch optimization,
however it is cheaper to update the factor graph using the iSAM?2 algorithm (Kaess, Johannsson,
Roberts, Ila, J. Leonard, et al.,2011)). The iSAM2 update strategy is also chosen for the filter,
but for a smaller window of factors.

Concurrent operations require synchronization of the two independently running processes. Syn-
chronization happens after each iteration of the smoother. In order to keep the filter run time
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constant, it can never wait for the smoother. Hence, upon finishing an iteration, the smoother
waits for the filter to finish its current update. When the processes are synchronized the or-
phaned subtree of the filter is merged back into the updated tree of the smoother. However,
the original separator has changed independently in both the smoother and the filter. This is
solved by only incorporating the change from the filter with respect to the original separator.
In other terms, exactly the information the filter would add had it instead been run in sequence
with the smoother. The inactive key states that are not removed from the filter is transferred
to the smoother; this is done during synchronization by re-eliminated with a variable ordering
(section that changes the separator closer to the filter and thus transfers the previous
separator and potential intermediate states from the filter into the smoother.
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CHAPTER O

Overview over Sensor and Software Setup

In this chapter datasets and their sensor setup are first described, followed by a description of

the software that are employed to envision the developed system covered in sections[7 and [§

6.1 milliAmpere

milliAmpere is a prototype of the autonomous ferry being designed as part the Autoferry project
(Nilsen, 2017). An in-action image of milliAmpere can be found in fig. m The ferry is
intended to transport pedestrians and cyclists between Ravnkloa and Vestre Kanalkai at Brattgra
in Trondheim. This is a ~ 110m wide passage shown in figure [6.1.1]

Figure 6.1.1: Intended operational region for mA2. The image shows an overview of Brattgra
in Trondheim. The blue oval illustrates mA2 traveling along the striped lines, between the
highlighted dark blue docking areas on Ravnkloa and Vestre Kanalkai.

milliAmpere is equipped with a sensor platform placed on top of the approximately 3-meter tall
vessel. The platform consist of a camera setup of five EO and five IR cameras mounted to cover
a 360° Field of view (EQV]). The sensor platform additionally has a 360° [LIDAR] and an
(RTK=GNSS| and [MU]). The specifications of each sensor are listed below.

e 5 x EO cameras (FLIR BlackFly 2), resolution: 2448 x 2048, max framerate: 22 fps, Kowa
LM6JC lens, focal length 6mm, HFOV: 81.9°

e 5 x IR cameras (FLIR Boson 640), resolution: 640 x 512, max framerate: 9 fps, Kowa
LM6JC lens, focal length 4.9mm, HFOV: 95°

e 1 x Velodyne VLP-16 rotating 3D laser scanner, update rate of 5-20 Hz, 16 channels, 0.1°-

0.4°horizontal angular resolution, 2.0°vertical angular resolution, 3 c¢m distance accuracy,
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field of view: 360°horizontal, 30°vertical, range: 100 m

e 1 x RTK-GNSS (Hemisphere Vector VS330), gyro stabilizer to measure heading at an
accuracy of 0.05 degrees, horizontal accuracy 0.30m without RTK and 0.0lm with RTK,
update rate of 20Hz

e 1 x IMU (Xsens MTI-G-710), update rate of 100Hz

The sensor setup on milliAmpere was supplied by the stereo rig described in Theimann et al.,
2020, The rig uses two identical electro-optical cameras in the stereo setup. They are delivered
by FLIR, and the camera model is Blackfly S GigE. The selected lens was bought from Edmund

e 2 x EO cameras (FLIR Blackfly S GigE) resolution: 2448 x 2048, max framerate: 24 fps,
Edmund Optics C Series lens, focal length 8.5mm

The mounted full sensor setup can be seen in figure

g2 < /__ﬁ.

LEAJ T

. HIGEE 1§53

Figure 6.1.2: Illustration of the milliAmpere sensor setup listed below. Sensor frames are illus-
trated in the image. The red arrow depicts the x-direction, while yellow is y-direction and z
is marked as blue. The sensor coordinate frames are denoted by: ZR = infrared cameras, £O
= electro optical cameras, £L = LiDAR, G = GNSS, and C; = stereo cameras which is further
denoted left (1) and right(r). Image captured by the author.
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6.2 The KITTI Dataset as an Alternative to the milliAmpere
Dataset

The KITTI dataset is included as an alternative benchmark for testing. The KITTI dataset
(Geiger, Lenz, Stiller, and Urtasun, is a publicly available dataset recorded from a car
driving around urban areas in Karlsruhe, Germany. The dataset is split into 11 sequences
(sequence 00-10) where the amount of details and number of objects vary with different locations.
All of the sequences provide a ground truth of the trajectory, while 6 of which contain one or
more loop closure events (revisits a location). The main purpose of the dataset is to provide a
benchmark for development of computer vision and robotic algorithms targeted at autonomous
driving. The variety in content between the sequences allows developers to test algorithms for
stereo vision, visual odometry, 3D /2D object detection and much more, for different scenarios.
The sensor platform is equipped with both grayscale and color stereo configured cameras, LiDAR,
and an INS. Sensor setup with their internal coordinate frame on the vehicle is displayed in figure

while sensor specifications are listed below.

e 2 x PointGray Flea2 grayscale cameras (FL2-14S3M-C), 1.4 Megapixels, 1/2” Sony ICX267
CCD, global shutter

e 2 x PointGray Flea2 color cameras (FL2-14S3C-C), 1.4 Megapixels, 1/2” Sony ICX267
CCD, global shutter

e 4 x Edmund Optics lenses, 4mm, opening angle 90°; vertical opening angle of region of
interest (ROI) 35°

e 1 x Velodyne HDL-64E rotating 3D laser scanner, 10 Hz, 64 beams, 0.09 degree angular
resolution, 2 cm distance accuracy, collecting 1.3 million points/second, field of view:
360°horizontal, 26.8°vertical, range: 120 m

e 1 x OXTS RT3003 inertial and GPS navigation system, 6 axis, 100 Hz, L1/L2 RTK,
resolution: 0.02m / 0.1°

Velodyne HDL-64E Laserscanner

Point Gray Flea 2

Figure 6.2.1: The sensor platform used in the KITTI dataset. The location of the cameras, lidar
and INS system is illustrated together with their coordinate frame. Reprinted by permission
from Geiger, Lenz, Stiller, and Urtasun (2013).
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6.3 Software

6.3.1 Robotic Operating System (ROS)

Robot Operating System (ROS) (Quigley et al., 2009) is a distributed and modular open-source
middleware for robotic software development. ROS follows a peer-to-peer communication struc-
ture, embedding several different styles of communication such as synchronous services, asyn-
chronous actions, and a publisher-subscriber alternative where nodes communicate over topics.
These nodes are the core of the ROS communication structure. Every node can embed multiple
publishers and subscribers. The subscribers are called whenever new information is available
on the topic that they subscribe to. A callback function is registered to every subscriber where
a set of logical operations are executed every time they are called. The result of the callback
function can then yet again be published to a specified topic. Nodes support both sequen-
tial and multi-thread behaviour by applying either the single-threaded spin() looper or the
MultiThreadedSpinner (). ROS utilizes a set of software libraries, tools, and conventions to
simplify and standardize the task of complex and robust robot behavior. This includes visualiza-
tion packages such as rqt that can visualize the overall system structure as a graph and Rviz for
visualization of data that is published through standard ROS messages. This may include the
pose of the vehicle, point clouds and much more. Another valuable tool included with ROS is
the logging package called rosbags. Rosbags allows the user to store published data, for example
sensor data and robot behavior, with time stamps for each measurement. This is a useful tool
to collect and organize real world sensor data, such that testing may be performed later.

6.3.2 kitti2bag

kitti2bag is a third party python package developed specifically for transforming the raw data
from the KITTI dataset into a rosbag. The library is credited on the KITTI dataset webpage
(Geiger, Lenz, Stiller, and Raquel, 2013)).

6.3.3 Trajectory Evaluation Tool

The trajectory evaluation toolbox by Zhang and Scaramuzza (Z. Zhang and Scaramuzza, [2018)
was used to quantify the quality of the estimated trajectory. The toolbox has support for Absolute
Trajectory Error (ATE]) and Relative/Odometry Error (REl). ATE is widely used to evaluate
visual odometry/SLAM algorithms because it produces a single number metric which makes it
easy to compare performance. ATE is computed by first aligning the estimated trajectory to
the ground truth, and then calculating the Root-Mean-Square Error (RMSE]) over the aligned
estimate and the ground truth. The alignment are typically done either at the beginning of
the trajectory, or more commonly by computing the SFE(3) transformation that minimizes the
overall ATE of the trajectory.

6.3.4 OpenCV

Open Source Computer Vision Library is an open-source software library mainly
aimed at real-time comp