
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f E
ng

in
ee

rin
g

Cy
be

rn
et

ic
s

Viljar Ness

Simulating Ordinary Differential
Equations using the Physics-Guided
Machine Learning Framework

Master’s thesis in Engineering Cybernetics
Supervisor: Adil Rasheed
July 2021

M
as

te
r’s

 th
es

is

Viljar Ness

Simulating Ordinary Differential
Equations using the Physics-Guided
Machine Learning Framework

Master’s thesis in Engineering Cybernetics
Supervisor: Adil Rasheed
July 2021

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Engineering Cybernetics

i

Preface

I want to thank Adil Rasheed for his supervision and help in this thesis, as well
as introducing me to the concepts of big data cybernetics and hybrid analyses
and modeling. I think these are fields of study that can be used in many appli-
cations, also outside of the traditional engineering cybernetics field. Creating
explainable and efficient models that can combine known dynamics and col-
lected data opens up several possibilities for creating trustworthy predictions
for many fields.

- Viljar Ness

ii

Contents

Preface . i
List of Figures . vii
List of Tables . viii
Abstract . ix
Sammendrag . x

1 Introduction 1
1.1 Motivation and Background . 1

1.1.1 Value of AI . 1
1.1.2 The need for Explainable AI 2
1.1.3 The need for efficient AI models 2
1.1.4 The need for generalizable algorithms 3

1.2 State of the art . 3
1.3 Research objectives and research questions 5

1.3.1 Objectives . 5
1.3.2 Research questions . 5

1.4 Outline of Report . 5

2 Theory 6
2.1 Physics-Based Modeling . 6

2.1.1 ODEs . 7
2.2 Data-Driven Modeling . 7

2.2.1 Artificial Intelligence and Machine Learning 8
2.2.2 Neural Network and Deep Learning 9

2.3 Explainable AI . 11
2.4 Big Data Cybernetics and Hybrid Analysis and Modeling 12
2.5 Physics-guide Machine Learning 14

3 Method and Set-Up 17
3.1 Equipment and Programs . 17

3.1.1 Python 3.8 . 17
3.1.2 Computer specifications 18

3.2 Method and program set-up . 18
3.2.1 Tuning the networks . 19

iii

3.2.2 Workflow of code for testing the performance of the NNs . 19
3.2.3 Differential equations . 20
3.2.4 Building and training the NNs 21
3.2.5 Testing the performance of the NNs 21
3.2.6 Plotting and saving results 21

3.3 Unchanging parameter settings 22
3.4 Set-up for the differential equations 22

3.4.1 Set-up for the Duffing equation 23
3.4.2 Set-up for the Rayleigh-Plesset equation 24

3.5 DNN set-up . 25
3.5.1 DNN Set-up for the Duffing equation 26
3.5.2 DNNs for the Rayleigh-Plesset equation 26

3.6 PGNN set-up . 27
3.6.1 Only inserting h(x) . 28
3.6.2 Inserting g(x) early in the network 28
3.6.3 Inserting g(x) in the middle of the network 28
3.6.4 Inserting g(x) late in the network 29

3.7 Reduced PGNN for the Duffing equation 30
3.7.1 Reduced PGNN with g(x) inserted early in the network

and h(x) inserted at output layer 30
3.7.2 Reduced PGNN with g(x) inserted late in the network and

h(x) inserted at output layer. 31
3.7.3 Reduced PGNN with g(x) inserted early in the network

and h(x) Inserted Late in the Network 31
3.7.4 Reduced PGNN with g(x) inserted late in the network and

no h(x) . 32
3.8 Reduced PGNNs for the Rayleigh-Plesset Equation 32

3.8.1 Reduced PGNN with g(x) and h(x) 32
3.8.2 Reduced PGNN with g(x) and Different h(x) 32

4 Results and Discussions 34
4.1 Results for the Duffing equation 34

4.1.1 Results from the DNNs . 34
4.1.2 Results from the PGNNs 35
4.1.3 Results from the reduced PGNNs 37
4.1.4 Comparison of DNNs and PGNNs with same number of

layers . 38
4.2 Results for the Rayleigh-Plesset equation 40

4.2.1 Results from the DNNs . 40
4.2.2 Results for the PGNNs . 40
4.2.3 Results for the reduced PGNNs 41

4.3 Discussion . 45
4.3.1 Discussing the results . 45

iv

4.3.2 Similar work . 47
4.3.3 Use of PGML . 47
4.3.4 Possible value creation of PGML 48

5 Conclusion and future work 51
5.1 Conclusions . 51
5.2 Future Work . 51

v

List of Figures

2.1.1Physics-Based Modeling: For each layer information is lost due
to assumptions and simplifications. 7

2.2.1Data-Driven Modeling: The connection between the data points
(The green circles), found through data driven modeling, creates
a subspace in physical system. 8

2.2.2The hierarchy of AI: This models illustrate the connection be-
tween Artificial Intelligence, Machine Learning, Neural Networks
and Deep Learning. 9

2.2.3Neural Network Architecture: A NN with layers consisting of
nodes that create the input to output relation. The number of
nodes at each layer varies for different model architectures, as
well as number of layers. 10

2.4.1Big Data Cybernetics: Illustration of the workflow in Big Data Cy-
bernetics in a feedback loop. The measurement data is first fitted
to a known physics-based model to represent the main bulk of
behavior. In the next step the residuals from the first step are an-
alyzed and fitted using explainable and transparent data-driven
modeling. The final step of modeling on the leftover residual are
done by black-box methods such as NNs. The combination of
physics-based models, explainable data models, and black box
data models are then combined to a Big Data Cybernetics Model,
which is connected back to the feedback loop. 13

2.4.2Hybrid Analysis and Modeling: Hybrid Analysis and Modeling
combines the use of Physics-Based Modeling, Data-Driven Mod-
eling and Big Data. This figure also shows other combinations of
the fields. 14

2.5.1Physics-Guided Neural Network: Known information of a system
is introduced into the network at various stages, creating a net-
work that consist of both trainable weighted nodes in layers and
information from the known dynamics. 15

vi

2.5.2The workflow of PGML: The measured data is used as input to
NNs at training and initial stage. Among the hidden layers there
is input from the known physics, both in training and when doing
predictions. The output is referenced against measurement. After
training the output is used as new input in the prediction stage. . 16

3.2.1Workflow of the code. 20
3.2.2Test loop for the networks: This loops test how well the net-

works can recreate the solution to an ODE, by solving the double
derivative and update the derivative, and state value based on
this result. 22

3.5.1Architecture of the DNN with 14-layers for the Duffing equation. 26
3.5.2Architecture of the DNN with 18-layers for the Duffing equation. 26
3.5.3Architecture of the DNN with 10-layers for the Rayleigh-Plesset

equation. 27
3.5.4Architecture of the DNN with 36-layers for the Rayleigh-Plesset

equation. 27
3.6.1Architecture of the PGNN where only h(x) was inserted at the

output layer. 28
3.6.2Architecture of the PGNN with h(x) at the output layer and g(x)

inserted early in the network. 29
3.6.3Architecture of the PGNN with h(x) at the output layer and g(x)

inserted in the middle of the network. 29
3.6.4Architecture of the PGNN with h(x) at the output layer and g(x)

inserted late in the network. 30
3.7.1Architecture of the reduced PGNN with h(x) at the output layer

and g(x) inserted early in the network for the Duffing equation. . 30
3.7.2Architecture of the reduced PGNN with h(x) at the output layer

and g(x) late in the network for the Duffing equation. 31
3.7.3Architecture of the reduced PGNN with h(x) inserted late in the

network and g(x) inserted early in the network for the Duffing
equation. 31

3.7.4Architecture of the reduced PGNN with inserted late in the net-
work and no h(x) for the Duffing Equation. 32

3.8.1Architecture of the reduced PGNN with 2-layers for the Rayleigh-
Plesset equation. 33

4.1.1Simulation performance for the different DNN architectures on
the Duffing Equation . 35

4.1.2Loss function values for the different DNNs architectures from
training on the Duffing Equation 35

vii

4.1.3Simulation performance on the Duffing Equation with the differ-
ent PGNN architectures with 6-layers: The h(x) figure has differ-
ent y-axis values as the standard deviation diverges. 36

4.1.4Loss function values for the different PGNN architectures with
6-layers on Duffing Equation. 37

4.1.5Simulation performance of the different PGNN architectures with
3-layers on Duffing Equation. 38

4.1.6Loss function values for the different PGNN architectures with
3-layers on Duffing Equation. 39

4.1.7Comparing the performance of PGNN and DNN at recreating the
Duffing equation: Results from PGNN is shown in blue, DNN is
shown in red, and true value is shown in black. The color fill is
standard deviation for its respective network. 40

4.2.1Simulation performance of the different DNN architectures on
the Rayleigh-Plesset Equation. 41

4.2.2Loss functions values for the DNNs on the Rayleigh-Plesset Equa-
tion. 41

4.2.3Simulation performance of the PGNN architectures with 6-layers
on the Rayleigh-Plesset. 42

4.2.4Loss function values for the PGNN architectures with 6-layers on
the Rayleigh-Plesset Equation. 43

4.2.5Simulation performance of the reduced PGNN architectures with
2-layers on the Rayleigh-Plesset Equation. 43

4.2.6Loss function values for the reduced PGNN architectures with
2-layers on the Rayleigh-Plesset Equation. 44

viii

List of Tables

3.3.1The parameter settings that was kept constant for all tests. 22
3.4.1The coefficients used for the Duffing equation. 23
3.4.2The initial values used for each of the sets used for training and

testing of networks on the Duffing equation. 23
3.4.3Unchanged network settings for Duffing equation. 23
3.4.4The coefficients and ∆P (t) equation used for the Rayleigh-Plesset

equation. The 10−6 in ∆P (t) is to avoid instability at t = 0 24
3.4.5The initial values used for each of the sets used for training and

testing of networks on the Rayleigh-Plesset equation. 25
3.4.6Unchanged networks settings for Rayleigh-Plesset equation.. . . . 25

ix

Abstract

The expanding amount of available data from measurements have made data-
driven modeling and machine learning popular approaches to modeling. How-
ever, these methods often come with the disadvantages of having low explain-
ability and lack generalizability. In this thesis the physics-guided machine learn-
ing framework is used to create neural networks which utilizes information
from physics-based modeling. These hybrid-model neural networks, called physics-
guided neural network in this thesis, are used to predict ordinary differential
equations in a simulation setup. The equations that are used for testing are
the Duffing equation and the Rayleigh-Plesset equation. The results from this
shows that physics-guided neural networks can give higher accuracy and less
uncertainty than deep neural networks even with less layers. This gives accu-
rate networks that are less complex with less trainable parameters, and thus
increasing the explainability of the models. It is also shown that the character-
istics of the ordinary differential equations has effect on how much the insertion
of some known equation knowledge affect the performance.

x

Sammendrag

Den økende mengden med tilgjengelig måledata har gjort at data-drevet mod-
ellering og maskin læring har blitt populære metoder. Disse metodene har noen
svakheter. De har mye uforklarlighet, og er ikke veldig generaliserende. I denne
avhandlingen er fysikk-drevet maskin læring brukt til å lage neurale nettverk
som bruker informasjon fra fysikk-baserte ligninger. De resulterende hybrid-
modell neurale nettverka, kalt fysikk drevet neurale nettverk i denne avhan-
dlingen, er brukt til å simulere ordinære differensiallikninger. Duffing ligningen
og Rayleigh-Plesset ligningen er brukt for å teste nettverka. Resultatene tilsier
at fysikk-drevet neurale nettverk har høyere treffsikkerhet og mindre varians
enn dype neurale nettverk, selv med færre lag enn det tilsvarende dype nettver-
ket. Dette gir nettverk som presterer bra, samtidig som det er mindre trenbare
parametere. Ved å ha mindre trenbare parametere får man nettverk som er
mer forklarbare. Det har også blitt gjennomført utforskning på hvordan egen-
skapene til differensial ligningene påvirker nettverkets prestasjon.

1

Chapter 1

Introduction

In this thesis networks based on physics-guided machine learning (PGML) are
tested to predict and simulate ordinary differential equations (ODEs). The tar-
get of the thesis is to create physics-guided neural networks (PGNN) with as
few layers as possible that can make accurate predictions with little uncertainty
and discuss how these types of networks can create value. Networks for both
the Duffing equation and Rayleigh-Plesset equation were created to test perfor-
mance of the different network architectures.

In this thesis PGML is used when describing the method framework, while
PGNN is used when describing the networks created with this framework.

1.1 Motivation and Background

Artificial intelligence (AI) and machine learning (ML) have become widely pop-
ular subjects in multiple fields, such as industry, academics, and governing
agencies, including the European Union(17). This trend has emerged with the
access to more data, in the form of big data, improved computing power and
more easy access programming language ML libraries (29). Many fields have
seen success in implementing ML algorithms to solve problems and analyze
data, and several big companies, including Google, have made investments to-
wards improvements of the field (16). With the growing use of ML there have
also been several research topics that have received more attention, such as ex-
plainable AI. One of the research topics that is part of this trend is how featured
engineering, and physics-based modeling can be combined with ML algorithms
to create more reliable and explainable models.

1.1.1 Value of AI

AI has been used to improve algorithms and find patterns in several fields (29).
These results can be used to make processes more efficient and solve challeng-

Chapter 1. Introduction 2

ing computational problems. With more accessible big data databases more and
more companies try to use data to make progressive decisions and increase their
efficiency. AI has been a popular field for analyzing huge amounts of data (29),
because of its ability to find patterns in large data sets. Yet there are more fields
that could potential benefit from improved AI models(30), and it is therefore
an interesting research subject.

1.1.2 The need for Explainable AI

One of the major challenges of using ML, especially deep learning (DL) algo-
rithms, to fields such as industry regulation, healthcare, and economics is the
lack of explainability (17) for data-driven models. Advanced ML algorithms,
such as Neural Networks (NN), are viewed as black boxes(27). Some input is
sent into the algorithm, which produce some output. The input-output rela-
tionship is built through training, but the resulting relationship is not easily
explainable and interpretable. This is a problem that grows as the network
expands since the number of trainable parameters multiply rapidly(30). This
makes implementation in new scenarios uncertain, as there is not a good un-
derstanding of the underlying mechanics of the system. This problem arises as
the whole concept of NN is the hidden linear relation of parameters. In a safety
critical system such as a nuclear power plant the control-unit must be trans-
parent and explainable. Even though a black box-ML based control-unit could
contribute to better results in normal operation, it could not be used if it was
unknown how it would react in extreme conditions or scenarios that might be
dangerous, such as a core meltdown. This example is purely hypothetical to
illustrate the importance of having explainable algorithms.

Because of this, explainable AI has been a focus of study for many institutes
the last decade (27). This is also one of the focus points of this thesis. The
approach to explainable AI in this thesis will be to insert known dynamic of a
system to remove some of the trainable layers, which can be exploited to create
networks with a smaller number of layers and trainable parameters. This ap-
proach introduces known physical models that are been well understood into
the system, thus increasing explainability and making the model more inter-
pretable. The goal of this work is to create models that are more generalizable
and efficient than what pure physics-based or data-driven methods are sepa-
rately.

1.1.3 The need for efficient AI models

In advanced simulation systems, such as Digital Twins, it is important to have
models that give an accurate prediction with short run time (32) to be able
to represent a real life system in real time. One of the problems using deep

Chapter 1. Introduction 3

neural networks (DNN) in applications like this is their extensive training time,
run time and processing resource requirements(10). The number of trainable
parameters and depth of network needs to be reduced for these AI methods to
be useful in simulations like digital twins and save processing resources in other
applications. One way to do this is by having fewer layers. By using the PGML
framework this thesis aims to create networks with as few layers as possible,
and thus creating minimal number of trainable weights for the network. This
will create more efficient network models.

1.1.4 The need for generalizable algorithms

A prediction algorithm that generalizable will be able to be trained and used for
several similar cases. It needs to be able to make good predictions on different
types of configurations. This is important as the algorithm can then be used on
a new set of configurations, without having to be re-developed. Having good
generalizable models will also open more up for online learning of the models.
Some generalizability was tested with different initial conditions for the differ-
ential equations. When a network is constructed for a differential equation it
should be able to be used for any initial values, within the existing bounds of
the equation.

1.2 State of the art

DNNs used as universal approximators have had success on large complicated
data sets(30).Some example of architectures of DNNs that have had success
are Bayesian neural networks, that includes the Bayesian rule to include un-
certainty (23), and convolutional neural networks, which has had huge success
in image classification problems(7). However, the number of trainable param-
eters quickly grows as the networks become more complex. This makes the
model less explainable, increase the run time, and create longer training times
for new cases that sometimes takes days to run(12). Using these types of mod-
els in a system will both decrease the reliability, and drastically increase the run
time of the whole system. The possibility of using known model dynamics to
reduce the number of necessary trainable parameters could improve reliability,
explainability, generalizability, and run-time of such DNN models.

There are several methods that works towards making the models more ex-
plainable. One such method is to use interpretable surrogate functions for local
approximations of the complex models(27). Examples of this method are Local
Interpretable Model-Agnostic Explanation and SmoothGrad. Drawbacks with
these methods are that they have high computational complexity, and thus in-
creases the run time of algorithms that uses them, and that they try to explain

Chapter 1. Introduction 4

the models by sets of local surrogate functions, and not the whole model. An-
other method is Local Perturbations (27). This method uses response to local
changes in the network to explain the model. This method shares the downside
of being computational complex with the surrogate method. There are also
Propagation-Based approaches that uses the internal structures of the models
to explain model behavior(27). By propagating the prediction using local redis-
tribution from output to input. There are several methods for this propagation,
where the drawbacks and advantages with the methods varies. Such as some
struggle with gradient shattering or explanations discontinuities. These meth-
ods does not necessarily create "true" explanations, but rather axioms(26). The
final method of explaining the behavior of a NN that will be discussed here
is Meta-Explanations(27). This method identifies general patterns of classifier
behavior, and creates representations of the patterns that are identifiable for
humans, such as heat maps. Development of these Meta-Explanation methods
that gives results that are easily understandable for humans is still an subject
being researched on by multiple institutions (27).

There are methods for predictions that do not use ML. Instead, they are
based on the physical known models of a system. These in their full complexity
are however also very demanding to run and therefore are represented with
reduced order models (ROMs) in many applications(30). These models are cre-
ated as projections of the data simulated by the full function onto a lower di-
mensional manifold. The challenge with ROMs is that they require full knowl-
edge of the dynamics of the system and will not work on systems that are not
well defined.

There are several approaches of using physics to improve NN architectures.
One method called Physics-Informed ML which uses physical laws and equa-
tions to give constraints to the networks(31). This method uses custom acti-
vation and loss functions based on the physical system and laws governing it.
While this method has good results in some applications, this thesis will focus
more on a different approach, the PGML framework. The difference between
these two approaches is that the PGML injects the know information of the dy-
namics of the system into the NNs as an featured input(30). This input can be
fed in at different locations of the NNs. This type of NN architecture has been
used to predict lift coefficient of airfoils with great success(30). This method
takes explainable models with known behavior into the NN, which create a NN
with behavior that is easier to interpreter. However, there is still untested areas
for this type of architecture. This thesis will explore the PGML framework being
used to recreate ODEs of second order.

Chapter 1. Introduction 5

1.3 Research objectives and research questions

1.3.1 Objectives

Primary Objective: The primary objective of this thesis is to explore how PGNN
architectures perform at recreating second order ODEs through simulations
compared to more conventional DNN architectures.
Secondary Objectives:

• To discover how the placement of g(x) influence the performance of the
PGNN.

• To uncover how big impact the PGNN architecture has on the number of
layers needed in a NN to get adequate predictions.

• To give an overview of how different types of g(x) and h(x) inputs affect
the performance of the networks.

• Discuss possible value creation based on the results.

1.3.2 Research questions

To the best of our knowledge there is currently no published work that explores
the characteristics of PGNNs used to predict ODE. To this end, the guiding ques-
tions governing the research can be stated as:

• Can a PGNN give better results and less uncertainty than a conventional
DNN when simulating ODEs?

• Can a PGNN make accurate predictions with fewer layers than a DNN?

• How does placement of g(x) affect the results of a PGNN?

• Which type of h(x) and g(x) input functions have a noticeable effect on
the performance of a PGNN?

1.4 Outline of Report

The thesis comprises of the following chapters and content: Chapter 2 which
covers the theories used in this thesis; Chapter 3 dissect the concrete methods
and the setups used; Chapter 4 presents the results and discuss them; Chapter
5 present conclusion and future work.

6

Chapter 2

Theory

This chapter covers the theory used in the work of this thesis, as well as theory
used for discussion of the results. The chapter will cover the overview of the
topics and give a general knowledge of the concepts that are used. Most of
the subjects are covered more deeply in the sources. Several of the figures are
heavily based on (34) and (32), as they create good illustrations of the covered
theory.

2.1 Physics-Based Modeling

Models and equations based on observable and explainable physics have been
the leading approach in engineering (32). In this approach the models are
based on mathematical equations that are found through research and experi-
ments that explain a certain physical behavior, such as Newtons Laws or Euler
equations in fluid mechanics (24). The equations can be solved analytically
or numerically for specific cases, depending on the problem. There are also
some differential equations that are non-solvable. This kind of approach of us-
ing known dynamics can also be used in field with less definitive laws than
physics, such as macroeconomics(6)(8), by using mathematical equations that
explains the behavior of the system.

The modeled and solved equations for a system do not usually cover all the
physics of a system. This is because to fit the explained physics to the system
approximations must be done. In complex systems that has multiple physical
governing laws interact, information might get lost from simplifications or un-
known influence on the system, as illustrated in figure 2.1.1. In implementation
of this approach on a complex system there can be unexplained residuals that
does not fit with the governing physics equation. Furthermore problems such
as numerical instability, computational complexity and errors from unexplained
uncertainty are often encountered (32). However, there are several advantages
to physics-based models. Firstly they are interpretable as they are based on ex-

Chapter 2. Theory 7

Figure 2.1.1: Physics-Based Modeling: For each layer information is lost due to as-
sumptions and simplifications.

plained physics, and the equations are generalizable to multiple systems with
the same physical laws affecting them (14). This makes them trustworthy to
use in critical system that requires transparency. Furthermore, physics-based
models are in general not affected too much by bias as they are based on phys-
ical laws in the form of mathematical equations. Bias can still be introduced by
model selection and modeling error, but this bias will be transparent from the
documentation of the work. Using the physics-based modeling approach can be
challenging with systems that has a lot of factors affecting it, especially when
those factors can be uncertain and varying (14). This can lead to models that
does not perform well under every circumstance.

2.1.1 ODEs

This thesis will use physics-based ODEs to generate data to test the networks
with. ODEs are equations with an independent variable and its derivatives (28).
This thesis uses second order ODEs with time derivatives.

2.2 Data-Driven Modeling

Data-Driven Models are models that are based on algorithms finding connec-
tions from data and measurements from a system. It has become a popular
approach as the amount of available data has drastically grown, improved com-
puter hardware has been developed, and new programming language libraries
for creating ML models has emerged (19). This approach creates models based
on the data that should represent the whole system, unlike the physics-based
approach that only represent the part of the system that is modeled by explain-
able and testable physical equations. While the physics-based approach goes
layer by layer down to the solved equation, shown in figure 2.1.1, the data-
driven approach creates a subspace that spawns over all of the system that is

Chapter 2. Theory 8

Figure 2.2.1: Data-Driven Modeling: The connection between the data points (The
green circles), found through data driven modeling, creates a subspace
in physical system.

measured. As shown i figure 2.2.1 the data connection between the data-points,
found through data-driven modeling covers a larger spawn of the physical sys-
tem then the solved physics in figure 2.1.1 does. These models can also improve
as more data is given as input to them, as they then get more information about
the system. The resulting models are also in general more numerical stable than
physical-based models.

Even though the data-driven approach has some advantages, such as not
removing information by approximations, it also has some drawbacks compared
to the physics-based approach. The training and use of these models are very
reliant on a large quantity of high-quality data. Errors in the data can carry
into the model making it less reliable. It is important to pre-process the data to
reduce run time of the algorithms, to avoid some features being over weighted,
and removing biases that might alter the result negatively. Finding correlations
between variables, and outlier detection is important parts of the pre-processing
(32). In addition, saving all the necessary data in data-warehouses and clouds
take up resources and increase energy use, and it is therefore important to
analyze which data is important to measure and keep, and not save too much
unnecessary data. In this thesis data handling and pre-possessing is not used
much as the data is generated from a solver with no noise or other disturbances,
and the only parameters are the state value, its derivatives, and time steps.
Another challenge is the explainability of data-driven models as discussed as
motivation in Chapter 1. This topic will be covered in Section 2.3.

2.2.1 Artificial Intelligence and Machine Learning

The use AI and ML has greatly increased the last decade(19). Both advance-
ment in big data, hardware technology and solid programming libraries have
made these fields more accessible and useful. With this growth, and the use of
the words as popular buzzwords, the definition of them has become somewhat

Chapter 2. Theory 9

Figure 2.2.2: The hierarchy of AI: This models illustrate the connection between Arti-
ficial Intelligence, Machine Learning, Neural Networks and Deep Learn-
ing.

blurry in its use. The first thing that will need to be clarified is the difference
between AI and ML. AI is a system that can solve complex problems from hu-
man understandable input and produce a human readable output. For example
speech-to-text technology, where the input is the humans speech, and the out-
put is the text on screen (36).

ML was first coined by Arthur Samuel in 1959 (35).ML algorithms are al-
gorithms that can produce results that are not explicitly programmed by the
developer. A ML algorithm has the ability to learn and have behavior outside
of the developer’s direct control, but still within the bounds of its domain/con-
straints. In Samuels case it was used for a machine playing checkers. This means
that ML algorithms are a subspace of AI algorithms as illustrated in figure 2.2.2.
ML is generally categorized into supervised-, unsupervised- and reinforcement-
learning(18). Supervised learning (SL) is the method that has been utilized in
this work.

SL is learning from a input to a reference output (11). This can be done both
in classification and regression problems. The complexity of SL algorithms can
go from simple linear regression and logistic regression to complex methods
such as artificial neural networks. SL is the ML category that will be utilized in
this thesis, with the use of NNs.

2.2.2 Neural Network and Deep Learning

As illustrated in figure 2.2.2 DL is a subspace of NNs which itself is a subspace
of ML. DNNs have had a lot of success in recent years, especially in pattern

Chapter 2. Theory 10

Figure 2.2.3: Neural Network Architecture: A NN with layers consisting of nodes that
create the input to output relation. The number of nodes at each layer
varies for different model architectures, as well as number of layers.

recognition and classification (10).
A NN consist of layers with nodes, as illustrated in figure 2.2.3, where each

layer has a feedforward connection to the next layer. Each node has a weight
that is trainable as well as an activation function to get non-linear mapping. The
activation function controls when a node is active or not, and how it behaves
when active. The process for training the a NNs weights follows (20):

1. All weights are assigned a start value

2. Input is given to the NN

3. The input is transformed to output by passing through the nodes at each
layer

4. Output from the network is compared with reference in an error function

5. The error is used to update the weight of each node

6. The error is backpropagated in the network such that each layer mini-
mizes error

7. Repeat step 3-6 until end requirements are met

Backpropagation means that the process propagates starting from the output
layer going to the input layer.

There are multiple parameters and algorithm implementation that affects
how a NN initiates, how it updates its weights, and when to end training.
Stochastic gradient decent optimizer is usually used for the process of tun-
ing the weights. In these optimizers the learning rate decides how much the

Chapter 2. Theory 11

weights are changed in response to the error for each iteration. Choosing a
learning rate that is too large might result in sub-optimal weights or unstable
training, whereas choosing a too small learning rate have the danger of getting
stuck in a local minima (20). Furthermore the characteristics of the optimiza-
tion algorithm used will also affect how well the weights are trained (13).

End requirements can be the number of epochs, where epochs are the num-
ber of times the training is done on the training data, and/or it can be early
stop for when the algorithm has not improved its loss or accuracy for a given
number of epochs.

As for starting weights they are made from a random function around zero,
where a seed will decide their start value, and can change the result of the
algorithm. One reason for this stuck at a local minima if the starting weights
places it close to, or in, that minima (21).

2.3 Explainable AI

The complexity and nested non-linearity of the ML models makes them be con-
sidered black boxes, where an input is given, and output is produced, but the
relationship of in-to-out is not explainable. This makes it unreliable in safe crit-
ical applications, and applications where data privacy requires the algorithms
working on the data to be transparent (27). This has led to research into ex-
plainable AI, which works on developing methods of explaining, through visual-
izations or other methods, how the complex algorithms work, such as surrogate
functions (27), or methods that tries to replace parts of the models with more
explainable modules, such as PGML (30). By creating more explainable AI it is
possible to implement AI and ML methods in more situations and create value
at several fields(27).

One of the important topics that explainable AI tries to unravel is to iden-
tify correlation versus causation in an ML algorithm. The image classification
method that won PASCAL VOC was later shown to recognize boats by the pres-
ence of water, and horses by the presence of copyright watermarks (22). If a
crucial application has correlations like this it can have dire consequences. Al-
gorithms with these kind of correlation problems are also not very generalizable
and will not be able to perform well on new applications. For the PASCAL VOC
wining algorithm it would not work in a real time application identifying horses
from photos, since these would not have the watermarks.

Methods such as Surrogate functions, Local Perturbations, Propagations Based
methods, Meta-Explanations (27) and Physics-Informed Neural Networks (31)
have made strides through improving explainability of AI in recent years. How-
ever there are still challenges to improve explainablity and utilize hybrid models
(27) (30).

Chapter 2. Theory 12

2.4 Big Data Cybernetics and Hybrid Analysis and
Modeling

Big data cybernetics (BDC) was first coined by the Norwegian University of Sci-
ence and Technology (25). BDC is a framework that combines principles from
data-Driven modeling, physical-based modeling, and big data. Instead of rep-
resenting data with only the black box Data-Driven models from big data, it
utilizes physical-based information to make hybrid models. An adaptation from
(32) will be used here, and is represented in figure 2.4.1. As shown in this
figure the goal of this framework is to try to model as much of the informa-
tion as possible with the most explainable models. The first step is to fit the
physical-based model to the corresponding data. Since this is a model with ap-
proximations there will be residuals that are not explain by the physical model
that is left over from this model fit. These residuals will then be modeled using
explainable data-driven approaches. From this step there can still be residuals
that are not interpreted by the explainable data-driven approaches. It is at this
stage that black-box algorithms that are not explainable are used to model the
final residuals. By doing this order of modeling one use explainable methods on
as much of the system as possible, making the whole system more trustworthy
and explainable, which is a better alternative than to use black-box methods for
all of the data, or only physical-models that does not cover all of the dynamics.
This framework works towards removing weaknesses of both the physical-based
approaches and the data-driven approaches by using a combination of the two
methods together with big data.

A method of combining physics-based and data-driven modeling with big
data is called Hybrid Analysis and Modeling (HAM) (34) (32). As figure 2.4.2
HAM combines the different approaches and big data to create a method where
the strengths from each of the fields are combined, and thus removes some of
the shortfalls of each approach in isolation. There are multiple approaches to
implement HAM(34):

• Complete replacement of equations with DNNs

• Modeling the unknown using DNNs and imposing sanity check using equa-
tions based on known physics

• Memory embedded reduced order modeling

• Physics / knowledge / regulations informed machine learning

• Dissecting DNNs

This thesis will focus on a similar method to physics/ knowledge/regulations
informed machine learning in the form of PGML, which is covered in Section
2.5.

Chapter 2. Theory 13

Controller System

Big Data

Physical Models and HAM

Interpretable data-driven
models

Black-box data driven
models

Uninterpretable
residuals

Interpretable
residuals

Random
noise

Model fit

Interpretable
model fit

Uninterpretable
model fit

Model
hybridization

Reference

Deviations

System
input

System
output

Figure 2.4.1: Big Data Cybernetics: Illustration of the workflow in Big Data Cybernet-
ics in a feedback loop. The measurement data is first fitted to a known
physics-based model to represent the main bulk of behavior. In the next
step the residuals from the first step are analyzed and fitted using ex-
plainable and transparent data-driven modeling. The final step of mod-
eling on the leftover residual are done by black-box methods such as
NNs. The combination of physics-based models, explainable data models,
and black box data models are then combined to a Big Data Cybernetics
Model, which is connected back to the feedback loop.

Chapter 2. Theory 14

Figure 2.4.2: Hybrid Analysis and Modeling: Hybrid Analysis and Modeling combines
the use of Physics-Based Modeling, Data-Driven Modeling and Big Data.
This figure also shows other combinations of the fields.

2.5 Physics-guide Machine Learning

Physics/knowledge/regulations informed machine learning works by program-
ming information of the system into a NN (34). One way this can be done is
by regularize the cost function using residual of the governing equation. An-
other method is to insert information from known dynamics of the system into
the network. This framework is proposed in (30). This method takes known
dynamics of the system and use it to improve the learning process of the NNs.
The information can be inserted at the input layer, output layer, or between
layers in the NN. From the function 2.5.1 of a system, parts of it such as h(x)
and/or g(x), will be added as input somewhere in the network, as shown in
figure 2.5.1. The output to input function will then be on the form seen in func-
tion 2.5.2, where y is the output, referring to ẋ, g(x) and h(x) is the same as in
function 2.5.1, F represents the nodes and layers in the NN from where g(x)
is inserted, and N is the NN before g(x) is inserted. In this function there is
no unknown information about h(x) which lets it be place at the end of the
network, since there is nothing that the network has to learn about it.

ẋ = f(x)g(x) + h(x) (2.5.1)

y = F(g(x) +N) + h(x) (2.5.2)

The PGML framework constraints the NN and encourage it to learn in a
manner that is consistent with the known information about the model. This
inclusion of the physical-based model in the NN makes the behavior of the

Chapter 2. Theory 15

Figure 2.5.1: Physics-Guided Neural Network: Known information of a system is intro-
duced into the network at various stages, creating a network that con-
sist of both trainable weighted nodes in layers and information from the
known dynamics.

NN more predictable, and also makes it more explainable as parts of the NN
model is based on known, and explainable dynamics, and thus removing some
of the trainable parameters which are not easily explainable (30). PGNNs are
NN that uses the physics-guided principle. Figure 2.5.2 shows the workflow of
the PGML with the contribution from both data-driven method and physics-
based methods.

Chapter 2. Theory 16

Figure 2.5.2: The workflow of PGML: The measured data is used as input to NNs at
training and initial stage. Among the hidden layers there is input from
the known physics, both in training and when doing predictions. The
output is referenced against measurement. After training the output is
used as new input in the prediction stage.

17

Chapter 3

Method and Set-Up

This chapter will cover the method and set-up that are used to generate the
results used in this thesis. First it will cover the equipment and programs used,
this will present the computer pacification and programs used. In method and
program set-up the method of build and testing the experiments are described.
The final part of this chapter covers the build and parameter values for the
ODEs and the networks.

3.1 Equipment and Programs

This section covers the equipment and programs used, which in this works
will be the computer specifications, and programs, including versions, used.
All these can affect the results for the different networks.

3.1.1 Python 3.8

All code used for this thesis is programmed in Python 3.8. Python is an open-
source object-oriented high-level programming language with thousands of li-
braries for different functionalities (1).

The following libraries for Python (aside from the base Python 3.8 libraries)
has been used here:

• numpy 1.19.5

• matplotlib 3.3.4

• tensorflow 2.4.1

• scipy 1.6.2

Chapter 3. Method and Set-Up 18

Numpy has been used for handling use for numerical values, arrays, list, tu-
ples, and other types of structures for saving and handling numbers. Matplotlib
has been used for all plotting. TensorFlow was used for building, training ,and
using the NNs. Scipy was used to solve the differential equations for generating
data.

TensorFlow

This thesis uses TensorFlow for Python as its libraries for creating NNs. Tensor-
Flow is an open-source software library developed by the Google Brain Team
(5). TensorFlow was chosen as the machine learning library in this thesis based
on the implementation of PGML in (30), and its corresponding github reposi-
tory (2). Other possible choices for machine learning libraries, such as PyTorch,
was not explored.

3.1.2 Computer specifications

All of the test were run on the same computer with following specifications:

• CPU - Intel Core i7 8750H 2.2GHz

• GPU - NVIDIA GeForce GTX 1060 8GB

• Motherboard - LENOVO LNVNB161216

• RAM - 2x Samsung M471A1k43CB1 DDR4 8GB

• Windows 10 64 bit

The networks were not run on the graphics card due to difficulties with
instalment of TensorFlow for GPU.

3.2 Method and program set-up

For constructing the tests the following steps were followed for each equation:

1. Create a function that generates the differential equation.

2. Use the function to create different lengths of the equation with different
initial values (size of the time step, δt, was kept constant).

3. Plot the results of the differential equation function to make sure the re-
sults are feasible, and avoid singularities and instabilities.

4. Build, train and test a DNN and a PGNN with a single seeding.

Chapter 3. Method and Set-Up 19

5. Tune learning rate, number of epochs and depth of the networks and
repeat step 4 until the test results do not diverge and give a reasonable
results, in the value range of the original equation.

6. Build, train and test the networks with 30 different seeds.

7. Repeat step 6 with different configurations of g(x) and h(x) for the PGNN,
and different number of layers for both network types.

The reasons for checking the differential equations and avoiding instabili-
ties is that from early testing it was found that sometimes the solver for the
differential equation did not give reasonable results, which might be caused
by a numerical instability. These errors would then be carried down into the
training of the NNs and add potential error in the training process. Further-
more points of instability would create inf values, which in turn would create
problems when being used as an input to a NN.

3.2.1 Tuning the networks

The training and validation loss graphs were studied when tuning the networks.
Epochs would be added to the networks training cycle if they seem the loss val-
ues did not converge around some value that was lower than start value. Other-
wise, the learning rate or depth of the networks was changed in a combination
of test and fail and finding similar cases where NNs had been used and study
the approaches used there. Some of the parameters are just roughly tuned and
it has not been a focus point to optimize these in this thesis, but rather get
them good enough to analyze the difference in performance between DNNs
and PGNNs. Parameters such as learning rate, validation split, shuffle, batch
size, optimizer and loss function was kept the same for both the DNNs and
PGNNs in a run to not give them different initial conditions of performance
outside the insertion of known dynamics and number of layers.

As discussed in Chapter 4 the tuning for the Rayleigh-Plesset equation did
not manage to get accurate results. The reason for the error was not found,
and after a while was not looked further into as the results still showed some
interesting differences in performance for the different architectures.

3.2.2 Workflow of code for testing the performance of the
NNs

Figure 3.2.1 shows the workflow of the code that from generating the data, to
training and testing the networks, and finally returning the interesting results.
The training data contains multiple sets of generated equation data with dif-
ferent initial values, and the testing set was created with a unique set of initial

Chapter 3. Method and Set-Up 20

Figure 3.2.1: Workflow of the code.

values. All the runs with different seeds use the same data sets to train and test
on.

3.2.3 Differential equations

Python SciPy function odeint was used for solving the differential equations
over a given time interval. This function solves an initial value problem for a
stiff or non-stiff system of first order(4). This function switches automatically
between stiff and non-stiff system. For the this function to work with second
order problems the differential equations, shown in equation 3.2.1, was first
transformed into two differential equations of first order, shown in equation
3.2.2 and 3.2.3. The time-steps was created by the NumPy function linespace.

ẍ = f(x)g(x) + h(x) (3.2.1)

Chapter 3. Method and Set-Up 21

ż1 = z2 (3.2.2)

ż2 = f(x)g(x) + h(x) (3.2.3)

The state values, x for the Duffing equation and R for the Rayleigh-Plesset
equation, it’s derivatives and double derivatives solved equation was then sorted
into sets of x for input, y for reference, and h(x) and g(x) for the known dy-
namics, to be used in training and testing of the DNNs and the PGNNs.

3.2.4 Building and training the NNs

As stated in Section 3.1 TensorFlow was used to build the NNs. The keras pack-
ages were used to create the structure and layers of the networks. The net-
works were trained to output the double derivative for the current x (or R for
Rayleigh-Plesset Equation) value. The concatenate function from keras was used
for injecting the known dynamics in the PGNNs. The output for this part was
trained models that was used to find the double derivative of the state in the
testing. In addition, the training and validation loss was plotted and saved.

3.2.5 Testing the performance of the NNs

Separate test functions were created for testing the performance of the NNs in
recreating a differential equation in a simulation setting. This was the reason
that seeds where used instead of dropout to find uncertainty, as dropout would
find the uncertainty in training and validation, but not show the uncertainty
when the networks were used to do predictions in the simulation loop.

The test function started with a set of initial values, with the same dimension
as the sets used to train the network. That mean that if the NNs were trained
with xt to x(t−4) the initial set would be the first 5 x values of the test set.
These where then given as input to the differential equation, in the case of
the PGNNs g(x) and h(x) for that time-step was also given as injection inputs,
which returned the double derivative of the input. The output double derivative
was then used to update the derivative, and next state value. The input then
was updated for the next time step so xt became x(t−1) and so on, and the new
state value was added as xt. For the PGNNs g(x) and h(x) were also updated.
This was repeated for the length of the test set. Figure 3.2.2 illustrate the main
idea for the test loop.

3.2.6 Plotting and saving results

The combined average prediction, error from reference, and standard deviation
for all seeds were then calculated, saved, and plotted. The error was calculated

Chapter 3. Method and Set-Up 22

Figure 3.2.2: Test loop for the networks: This loops test how well the networks can
recreate the solution to an ODE, by solving the double derivative and
update the derivative, and state value based on this result.

as relative error which gave some problems when using a function oscillating
around 0, which made these plots not very helpful in analyzing the results.

3.3 Unchanging parameter settings

There were done multiple tests with different sets of equations and parameter
settings. Some parameters where kept constant in all tests, listed in table 3.3.1

Optimizer Adam
Activation func. Relu
Loss function MSE
Validation split 0.2
Shuffle True
Number of seeds 30

Table 3.3.1: The parameter settings that was kept constant for all tests.

A linear activation function was use instead of Relu for the single node output
layer. Other parameters were tuned and changed depending on equation and
performance of the networks.

3.4 Set-up for the differential equations

This section covers the differential equation used and their parameters. As well
as initial values used in the data sets, and parameters used in the NNs for each
equation.

Chapter 3. Method and Set-Up 23

3.4.1 Set-up for the Duffing equation

One of the equations that was used for testing was the Duffing equation. The
Duffing equation is a oscillating non-linear second-order ODE that models damped
and driven oscillators (9). The Duffing equation is shown in equation 3.4.1,
where δ is the damping coefficient, α is the linear stiffness coefficient, β is the
restoring force coefficient, γ is the amplitude of the periodic driving force, and
ω is the angular frequency of the driving force. The values for each of these
were kept constant for all test on the Duffing equation and are found in table
3.4.1.

ẍ+ δẋ+ αx+ βx3 = γ cosωt (3.4.1)

δ 1
α 1
β 0.5
γ 3
ω 0.4

Table 3.4.1: The coefficients used for the Duffing equation.

The training and test sets where the same for all tests and seeds, with a
time step length of 0.0025 and start at t = 0. The initial values for each of the
generated data can be found in table 3.4.2.

Set Initial x Initial ẋ End at t =
Training 1 1 0.5 20
Training 2 -2 0.8 10
Training 3 3 -1 15
Test 1.5 0.3 25

Table 3.4.2: The initial values used for each of the sets used for training and testing of
networks on the Duffing equation.

The unchanged settings for all networks on the Duffing equation are listed
in table 3.4.3.

Learning rate 0.00005
Early stop patience 40
Batch size 32

Table 3.4.3: Unchanged network settings for Duffing equation.

Equation 3.4.2 shows the h(x) that was used, equation 3.4.3 shows the g(x)
that was used, equation 3.4.4 shows the y value that was used as output refer-
ence in training, and equation 3.4.5 shows the input set for each time step.

Chapter 3. Method and Set-Up 24

h(x) = γ cosωt (3.4.2)

g(x) = x3t (3.4.3)

y = ẍt (3.4.4)

X =



xt
xt−1

xt−2

xt−3

xt−4

xt−5

xt−6

t


(3.4.5)

3.4.2 Set-up for the Rayleigh-Plesset equation

The Rayleigh-Plesset equation is a non-linear second-order ODE from fluid me-
chanics. The equation describes the dynamics of bubbles in in-compressible
fluids (15). The Rayleigh-Plesset equation is shown in equation 3.4.6, where ρL
is the density of the surrounding liquid, R is the radius of the bubble, νL is the
kinematic viscosity of the bubble, and γ is the surface tension of the bubble-
liquid interface. For the purpose of this project ∆P (t) was set to a exponential
decaying function that started at 300 and converged to 0. The values for each
of these were kept constant, aside from R, and had the values shown in table
3.4.4. These values are not meant to be realistic in this test, but that the values
are chosen in a way that makes smooth results for the networks to train and
test with, without any instabilities or singularities.

RR̈ +
3

2
Ṙ2 +

4νL
R
Ṙ +

2γ

ρLR
+

∆P (t)

ρL
= 0 (3.4.6)

ρL 997
νL 10−6

γ 0.1
∆P (T) 300*(-e

0.1
t+10−6)

Table 3.4.4: The coefficients and ∆P (t) equation used for the Rayleigh-Plesset equa-
tion. The 10−6 in ∆P (t) is to avoid instability at t = 0

Chapter 3. Method and Set-Up 25

Set Initial R Initial Ṙ End at t =
Training 1 3000 -7 2.9
Training 2 1500 1200 5
Training 3 100 600 1.5
Training 4 2000 300 2.5
Training 5 2500 0 2.5
Test 1800 400 3

Table 3.4.5: The initial values used for each of the sets used for training and testing of
networks on the Rayleigh-Plesset equation.

All generated sets for training and testing started from t = 0 and had time
step size of 0.001. The initial values for the sets can be found in table 3.4.5.

The NN settings that was kept constant for all networks are listed in table
3.4.6.

Learning rate 0.0000001
Early stop patience 100
Batch size 32

Table 3.4.6: Unchanged networks settings for Rayleigh-Plesset equation..

Equation 3.4.2 shows the h(x) that was used, equation 3.4.3 shows the g(x)
that was used, and equation 3.4.4 shows the y value used as output reference in
training. The X inputs in the networks for the Rayleigh-Plesset equation were
Rt to Rt−21, and Ṙt to ˙Rt−21, and t.

h(x) =
300 ∗ (−e

0.1
t+10−11)

ρLRt

(3.4.7)

g(x) = Ṙt
2
/Rt (3.4.8)

y = R̈t (3.4.9)

3.5 DNN set-up

Two different sets of DNNs were created for each of the differential equation
to compare results with the PGNNs. One was to get a best possible result with
many layers and no regard for run time. The other had some fewer layers to
the point where the uncertainty got noticeable larger if one more layer was
removed. For the Duffing equation two extra test with reduced DNNs were
done.

Chapter 3. Method and Set-Up 26

3.5.1 DNN Set-up for the Duffing equation

For the Duffing equation there was one DNN with 14-layers and one with 18-
layers. In addition one test was run for a 6-layered DNN and one for a 3-layered
DNN with more epochs to compare with a PGNN with the same number of lay-
ers and epochs. These two are not shown here as they are the same architecture
as their respective PGNN just without g(x) and h(x)(see section 3.6).

14-Layers

Figure 3.5.1: Architecture of the DNN with 14-layers for the Duffing equation.

18-Layers

Figure 3.5.2: Architecture of the DNN with 18-layers for the Duffing equation.

3.5.2 DNNs for the Rayleigh-Plesset equation

The DNN with 36-layers was made early to create a reference to what a DNN
would return with no regards to run time. Then it was reduced step by step
until ending up on 10-layers. At less than 10-layers the DNNs created diverging
results in the test loop.

Chapter 3. Method and Set-Up 27

10-Layers

Figure 3.5.3: Architecture of the DNN with 10-layers for the Rayleigh-Plesset equation.

36-Layers

Figure 3.5.4: Architecture of the DNN with 36-layers for the Rayleigh-Plesset equation.

3.6 PGNN set-up

Several different architectures for PGNNs were created and tested. A PGNN
set-up with 6-layers were created to be used for both equations.The different
architectures used on this 6-layered set-up tested the effect on inserting g(x),
and the effect of the placement of the insertion. After these test were done the
networks were reduced for each equation, and ended up with different number
of layers, these reduced PGNNs are described in Section 3.7 and 3.8. Also,
a couple of different test altering g(x) and/or h(x) were ran on the reduced
network.

There were several reasons to test with a network with the same number
of layers. One being to test generalizability of the network architecture, seeing

Chapter 3. Method and Set-Up 28

from results that this number of layers worked well for both equations, and
saving workload not having to create a new architecture. Note however that
some parameters in the networks, such as learning rate and epochs, had to be
tuned for the specific equation, and used the parameter values listed in Section
3.4.

3.6.1 Only inserting h(x)

Here only h(x) was given as extra input to the network, and it was given at
the output layer. The position at the output layer was chosen because h(x)
contained all information, including coefficients, so it had no information that
had to be trained for by the NNs. The architecture of this network is shown in
figure 3.6.1.

Figure 3.6.1: Architecture of the PGNN where only h(x) was inserted at the output
layer.

3.6.2 Inserting g(x) early in the network

In this case g(x) is inserted early in the network and goes through most layers
to tests its effect on the network performance. In addition, h(x) is given at the
output layer. The architecture of this network is shown in figure 3.6.2.

3.6.3 Inserting g(x) in the middle of the network

With this architecture g(x) is inserted in the middle of the network and goes
through half of the layers to tests effect of this placement on network perfor-
mance. In addition, h(x) is given at the output layer. The architecture of this
network is shown in figure 3.6.3.

Chapter 3. Method and Set-Up 29

Figure 3.6.2: Architecture of the PGNN with h(x) at the output layer and g(x) inserted
early in the network.

Figure 3.6.3: Architecture of the PGNN with h(x) at the output layer and g(x) inserted
in the middle of the network.

3.6.4 Inserting g(x) late in the network

The final shared PGNN has g(x) inserted late in the network and goes through
only one layer to tests the effect of late insertion of g(x) on the network per-
formance. In addition, h(x) is given at the output layer. The architecture of this
network is shown in figure 3.6.4.

Chapter 3. Method and Set-Up 30

Figure 3.6.4: Architecture of the PGNN with h(x) at the output layer and g(x) inserted
late in the network.

3.7 Reduced PGNN for the Duffing equation

Different insertion placements of g(x) were again tested after a reduced PGNN
was found for the Duffing Equation. The middle insertion placement of g(x) was
not tested as the reduced network did not have a natural difference between
early or middle insertion unless g(x) had been a part of the X input. It was also
tested to bring h(x) from the output layer to the layer before the output layer,
as well as a test that removed the h(x) input all together. The following reduced
PGNN architectures were tested for the Duffing Equation:

3.7.1 Reduced PGNN with g(x) inserted early in the network
and h(x) inserted at output layer

Figure 3.7.1: Architecture of the reduced PGNN with h(x) at the output layer and g(x)
inserted early in the network for the Duffing equation.

Chapter 3. Method and Set-Up 31

3.7.2 Reduced PGNN with g(x) inserted late in the network
and h(x) inserted at output layer.

Figure 3.7.2: Architecture of the reduced PGNN with h(x) at the output layer and g(x)
late in the network for the Duffing equation.

3.7.3 Reduced PGNN with g(x) inserted early in the network
and h(x) Inserted Late in the Network

Here it was tested what effect it would have if h(x) was included in a layer
inside the structure of the PGNN instead of at the output layer. Here g(x) was
chosen to be inserted at a layer before h(x).

Figure 3.7.3: Architecture of the reduced PGNN with h(x) inserted late in the network
and g(x) inserted early in the network for the Duffing equation.

Chapter 3. Method and Set-Up 32

3.7.4 Reduced PGNN with g(x) inserted late in the network
and no h(x)

This test was done to see which effect h(x) had on the performance of the
network. By doing this it is possible to do some analysis on how the different
known dynamics influences the system.

Figure 3.7.4: Architecture of the reduced PGNN with inserted late in the network and
no h(x) for the Duffing Equation.

3.8 Reduced PGNNs for the Rayleigh-Plesset Equa-
tion

For the reduced PGNN of Rayleigh-Plesset only one placement of g(x) was tried
because the reduced PGNN only had to layers, where g(x) had to go between
the layer to not be part of input or output layer directly. One test was done with
different h(x) to what effect the different h(x) would have on the performance
of the network.

3.8.1 Reduced PGNN with g(x) and h(x)

Figure 3.8.1 showes the architecture of the reduced PGNN that was used on the
Rayleigh-Plesset equation.

3.8.2 Reduced PGNN with g(x) and Different h(x)

This test is design to test the effect of changing the h(x) for the Rayleigh-Plesset
equation in the 2-layered PGNN. The new h(x) used here is given in equation
3.8.1.

Chapter 3. Method and Set-Up 33

Figure 3.8.1: Architecture of the reduced PGNN with 2-layers for the Rayleigh-Plesset
equation.

h(x) =
−2γ

ρlR2
(3.8.1)

34

Chapter 4

Results and Discussions

The first part of this section will present the results for all setups covered in
Chapter 3.The results are given in two sections, one for each equation, making
it easy to compare the results of the different network architectures. The results
presented will be a used to discuss the use of PGML and possibilities it can
create. These topics will be discussed in the later part of the chapter, in Section
4.3.

4.1 Results for the Duffing equation

This section presents the results of the simulation for predicting the Duffing
Equation with the different network types described in Chapter 3. Some train-
ing and validation loss are also presented to discuss the performance of the
networks. The results from the DNNs are first covered, followed by the results
from the different PGNNs, and finally some test results with both type of net-
works with same number of layers are presented.

4.1.1 Results from the DNNs

With the DNN of 14-layers there are large error in the predictions for some of
the seeds. This can be seen by the large standard deviation in figure 1a. As it
gets close to the first top it starts to get oscillating error. This indicates that
the network trains for an oscillating function, but for some seeds it struggles to
follow the new initial value problem and starts to diverge from it. From looking
at the loss during the training phase, figure 2a, it indicates that more than 150
epochs might give be needed.

The network with 18-layers, shown in figure 1b, performs better than the
one with 14-layers, but still has large standard deviation, especially towards
the end of the simulation. It seems that also in this network with 18-layers

Chapter 4. Results and Discussions 35

(1a) Simulation using 14-layered DNN. (1b) Simulation using 18-layered DNN.

Figure 4.1.1: Simulation performance for the different DNN architectures on the Duff-
ing Equation

(2a) Loss using 14-layered DNN.
(2b) Loss from Duffing Equation using 18-

layered DNN.

Figure 4.1.2: Loss function values for the different DNNs architectures from training
on the Duffing Equation

needs more than 150, as seen by the decreasing training loss in figure 2b. How-
ever, the average prediction is following the shape of the reference, with some
inaccuracies.

In both cases the results are not accurate over time, and which makes them
untrustworthy to be used in systems that require accurate predictions. The loss
function values for both networks are fluctuating and reach similar end values.

4.1.2 Results from the PGNNs

The results in figure 3a shows that with the introduction of h(x) at the output
layer of the network the performance in simulating the Duffing equation is
accurate for the first half of the simulation, but has large standard deviation
towards the end, with the simulation for some seeds diverging. Though the
standard deviation is large the average prediction follows close to the reference.

Chapter 4. Results and Discussions 36

(3a) PGNN with only h(x). (3b) PGNN with early insertion of g(x).

(3c) PGNN with insertion of g(x) in the mid-
dle.

(3d) PGNN with late insertion of g(x).

Figure 4.1.3: Simulation performance on the Duffing Equation with the different
PGNN architectures with 6-layers: The h(x) figure has different y-axis
values as the standard deviation diverges.

The average prediction for h(x) follow the reference better than the predictions
form the DNNs.

From the figures 3b, 3c and 3d it can be seen that adding the insertion of g(x)
gives better results with both average prediction and standard deviation, espe-
cially at the later stages. There is still room for improvements, and at the end
the reference is outside of the standard deviation intervals for all three options.
It also shows that for the give g(x) that later insertion gives better accuracy and
less standard deviation than early insertion for the Duffing equation from time
0 to 5 the simulation with g(x) inserted early and in the middle actually has
somewhat worse performance than the simulation with only h(x).

Figure 4.1.4 shows that the validation loss doesn’t change much after the
first 40 epochs for all the PGNNs, but the training loss has a strong declining
curve for the first 80 epochs, that flattens out towards the final epochs. The
training loss is close to smooth, aside for the one with only h(x) from epoch
number 80. The validation loss is fluctuating somewhat for all of the networks,
but less than the fluctuation of validation loss for the DNNs.

Chapter 4. Results and Discussions 37

(4a) PGNN with only h(x). (4b) PGNN with early insertion of g(x)..

(4c) PGNN with insertion of g(x) in the
middle.

(4d) PGNN with late insertion of g(x).

Figure 4.1.4: Loss function values for the different PGNN architectures with 6-layers
on Duffing Equation.

4.1.3 Results from the reduced PGNNs

For the test on the reduced networks the number of epochs were increased
because of the training loss took more epochs to get smaller, and to get to the
same level as validation loss. The loss from training on the reduced PGNNs
are shown in figure 4.1.6. As seen in this figure the training loss curves are
smooth and still declining at the end of epochs. This indicates that more epochs
might have given even better results. However the one with the lowest training
loss, where h(x) is in the middle as shown in figure 6c, does not have the best
prediction results in the differential equation simulation.

The results for early and late injection of g(x) for the reduced (4-layers)
PGNN, figures 5a and 5b, showed accurate predictions for most of the simu-
lation with little standard deviation. There are still some deviations at the top
of the oscillation and the second bottom, however. When h(x) was changed to
the middle of the network the uncertainty increased drastically, but the average
prediction was still close to the reference. Since h(x) was γ cosωt it was a known

Chapter 4. Results and Discussions 38

(5a) Reduced PGNN with early insertion of
g(x).

(5b) Reduced PGNN with late insertion of
g(x).

(5c) Reduced PGNN with late insertion of
g(x) and h(x) in the middle.

(5d) Reduced PGNN with g(x) inserted late,
and no h(x).

Figure 4.1.5: Simulation performance of the different PGNN architectures with 3-
layers on Duffing Equation.

value with no uncertainty or dependencies on early predictions. This might be
the reason this architecture performs worse than with h(x) at the output layer,
as weights gets trained for h(x) where they should really be. The worst results
however were when h(x) was removed altogether. From the top point of the
function in this simulation, figure 5d, the predictions starts to create a new os-
cillating function that does not match the reference function. It seems that the
PGNN in this simulation struggles over time to keep predicting the same func-
tion due to uncertainty that gets carried over from previous predictions, which
leads it to not following the shape of the reference.

4.1.4 Comparison of DNNs and PGNNs with same number of
layers

Figure 4.1.7 shows how DNNs and PGNNs with the same number of layers, and
epoch (here 300) perform on predicting the Duffing equation. In the figure the
filled areas are the standard deviation for its respective network (same color).
As can be seen here the PGNNs has a lot less standard deviation and better
accuracy. The difference between the performance of the DNN and the PGNN
is especially clear when they only have 3-layers.

One interesting observation is that the 3-layered PGNN has less standard

Chapter 4. Results and Discussions 39

(6a) Reduced PGNN with early insertion
of g(x).

(6b) Reduced PGNN with late insertion of
g(x).

(6c) Reduced PGNN with late insertion of
g(x) and h(x) in the middle.

(6d) Reduced PGNN with only g(x).

Figure 4.1.6: Loss function values for the different PGNN architectures with 3-layers
on Duffing Equation.

deviation than the one with 6-layers, and that at some points, especially early
in the simulation its average prediction is actually more accurate. Although at
some points the reference is not covered within the standard deviation interval
of the 3-layered PGNN, while this does not happen with the 6-layered PGNN.

Chapter 4. Results and Discussions 40

(7a) Compared results of DNN and PGNN per-
formance with 6 layers.

(7b) Compared results of DNN and PGNN per-
formance with 3 layers.

Figure 4.1.7: Comparing the performance of PGNN and DNN at recreating the Duffing
equation: Results from PGNN is shown in blue, DNN is shown in red, and
true value is shown in black. The color fill is standard deviation for its
respective network.

4.2 Results for the Rayleigh-Plesset equation

This section presents the results of the simulation for predicting the Rayleigh-
Plesset equation with different network architectures. Some learning rate will
also be presented to discuss the performance of the networks. The results from
the DNNs are first covered, followed by the results from the different PGNN
networks.

In general the predictions did not follow the same curve as the reference, the
reasons for this is not found in this work, but will be discussed in Section 4.3.

4.2.1 Results from the DNNs

As can be seen in figure 4.2.1 the 10-layered DNN has some more standard
deviation in the results than the 36-layered one, but the 10-layerd modeled
used 500 instead of 700 epochs. On both test there are deviation from the
reference curve, with both of the DNNs creating a curve with higher R values.
From the training and validation loss, seen in figure 4.2.2, the networks never
manage to get either of the loss values low, which indicates that the networks
struggles to learn the function from the training data.

4.2.2 Results for the PGNNs

The same deviation from the reference curve that was present with DNNs is
also present in all the test with the 6-layered PGNN, shown in figure 4.2.3.
The interesting results from these tests are that having just h(x), and having
h(x) and late g(x) have very similar prediction and standard deviation. While
insertion of g(x) in the middle of the network or early in the network have

Chapter 4. Results and Discussions 41

(1a) 10-layered DNN. (1b) 36-layered DNN.

Figure 4.2.1: Simulation performance of the different DNN architectures on the
Rayleigh-Plesset Equation.

(2a) 14-layered DNN. (2b) 36-layered DNN.

Figure 4.2.2: Loss functions values for the DNNs on the Rayleigh-Plesset Equation.

less standard deviation. Insertion of g(x) early in the network removes almost
all standard deviation, which indicates that for some ODEs early insertion of a
g(x) can remove variance from initial weight conditions, which are dependent
on the seed.

For the loss during training, seen in figure 4.2.4 the PGNNs had better results
than the DNNs, but they still struggled to get low loss values, and training loss
never reaches the validation loss. More epochs might give better result, as the
training loss is still decreasing at the final epoch.

4.2.3 Results for the reduced PGNNs

With the reduced PGNNs the results have more standard deviation, seen in
figure 4.2.5 than for the 6-layered PGNNs. Although the average predictions
are still similar to the other networks. For the loss functions in figure 4.2.6 the
training loss never properly starts to decline. It is indicated that more epochs
might be need from the training and validation loss. However, it was tested to

Chapter 4. Results and Discussions 42

(3a) PGNN with only h(x). (3b) PGNN with early insertion of g(x).

(3c) PGNN with insertion of g(x) in the
middle.

(3d) PGNN with late insertion of g(x).

Figure 4.2.3: Simulation performance of the PGNN architectures with 6-layers on the
Rayleigh-Plesset.

increase number of epochs drastically, but this only made the simulation have
even larger deviation from the reference.

One interesting observation is that the two different h(x) used in the test for
the reduced PGNN here does not impact the results noticeably. This indicates
the the h(x) that was chosen does not have a large impact on the network in
general, which is differs from what was found on from the tests on the Duffing
equation seen in section 4.1. This indicates that the properties of h(x), as well
as how much it dominates the ODE, has a large impact on how much potential
it has to improve a network.

Chapter 4. Results and Discussions 43

(4a) PGNN with only h(x). (4b) PGNN with early insertion of g(x)..

(4c) PGNN with g(x) inserted in the mid-
dle.

(4d) PGNN with late insertion of g(x).

Figure 4.2.4: Loss function values for the PGNN architectures with 6-layers on the
Rayleigh-Plesset Equation.

(5a) Reduced PGNN. (5b) Reduced PGNN with different h(x).

Figure 4.2.5: Simulation performance of the reduced PGNN architectures with 2-layers
on the Rayleigh-Plesset Equation.

Chapter 4. Results and Discussions 44

(6a) Reduced PGNN. (6b) Reduced PGNN with different h(x).

Figure 4.2.6: Loss function values for the reduced PGNN architectures with 2-layers
on the Rayleigh-Plesset Equation.

Chapter 4. Results and Discussions 45

4.3 Discussion

This section will discuss the results, other similar work on PGML, what kind of
algorithms PGML are suited to be used in, and how PGML can create value for
different fields, such as engineering and economics.

4.3.1 Discussing the results

In context of the motivation and research question there are some parts of the
results that are worth discussing. Firstly, the differences in performance, both in
accuracy and uncertainty, between DNNs and PGNNs, as a major motivation for
this thesis was to study if PGNNs can outperform DNNs, also in reduced forms
for ODEs. Furthermore, it is interesting to compare the results for different
architectures of PGNN and performance on different functions. From the results
there are some differences in performance based on architecture, and for all
networks performance was better on the Duffing equation than the Rayleigh-
Plesset equation.

Performance differences between DNNs and PGNNs

From the results for the Duffing equation, it is clear that the PGNNs performs
better than then DNNs in both accuracy and standard deviation. This is becomes
especially clear in figure 4.1.7 where DNNs and PGNNs with same number of
layers are compared. A reduced version of the PGNN with only 3-layers out-
performs 3-layered, 6-layered, 14-layered and 18-layered DNNs. This means
that the extra input given from known physics drastically improve performance
in the case of the Duffing equation, especially the insertion of h(x). However,
the same conclusion cannot be drawn from the results for the Rayleigh-Plesset
equation. Both the DNNs and PGNNs did not performed well in the simulations
for the Rayleigh-Plesset equation. Although the PGNNs had in general less stan-
dard deviation than the DNNs, which indicates that the extra information about
the dynamics remove some of the variation that comes from the weight’s initial
conditions.

Performance of the different PGNN architectures

From the Duffing equation the results shows that all PGNN architectures that
included both g(x) and h(x) performed well. The 3-layered and 6-layered net-
works had different strengths and weaknesses, where the 3-layered one had
less standard deviation, but also did not always have the real value inside the
standard deviation bounds. On the other hand, the 6-layered one has some-
what more standard deviation, but the real value was always in range of the
simulations standard deviation bound. The reason for the 3-layered one having

Chapter 4. Results and Discussions 46

less standard deviation might be that with less nodes there are less difference
between seeds, as the amount of initial weight that gets changed are less, since
there are less weights with 3-layers than 6-layers.

The location of the insertion of g(x) did not have significant effect on the
results for the Duffing Equation, but the test without g(x) shows the simulation
diverging for some seeds towards the end. Changing the location of h(x) on
the other hand had major implications on the performance. By inserting h(x) in
the middle of the network instead of the end increased the standard deviation,
and completely removing h(x) made the simulation prediction deviate from the
reference and simulating a oscillating function that did not follow the shape of
the reference, and thus had high error.

For the Rayleigh-Plesset equation changes to g(x) have a clearer effect. By
having g(x) early the standard deviation based on seeds are drastically de-
creased. Furthermore, the effect of changing h(x) in the simulations on the
Rayleigh-Plesset equation were small, which indicates that the h(x) chosen for
the Rayleigh-Plesset equation did not have enough information to have large
impact on the performance of networks.

All this indicates that the performance of the PGNNs are very dependent on
the properties of the function it is predicting, g(x), and h(x). From the Duffing
equation is seems that adding in oscillating functions, such as cosine or sine,
will improve the network drastically. Also, from the results it shows that differ-
ent amount of layer has different advantages and disadvantages when it comes
to accuracy and standard deviation. In general, the training loss for fewer layers
has a somewhat slower decline and might require more epochs, but in return it
can in certain instances remove some of the variation that comes from seeding.

The deviation in simulations for the Rayleigh-Plesset equation

For all networks tested there were some deviations between the reference and
network simulated curve for the Rayleigh-Plesset equation. As seen from the
loss plots for these tests the networks never quite managed to learn the input
to output properly. There can be several reasons for this:

• Training data might be inadequate

• Learning rate might be non-optimal

• Input to networks might not be enough to learn the full function

• Architectures of the networks might not be optimal for the Rayleigh-
Plesset Equation

Several of these points where somewhat tested, but there was not set aside
time to test them properly and structurally to find the exact reason for the

Chapter 4. Results and Discussions 47

deviation and resolve it. This is something that has to be worked more on to
use PGNNs efficiently on the Rayleigh-Plesset equation.

4.3.2 Similar work

From research on the topic only two other instances of PGML being used was
found. One uses PGML on calculating lift and drag coefficients on airfoils (30),
and the other uses PGML in long-shot term memory network with the Galerkin
projection model(33). Both these papers shows that PGML can be used to make
more generalizable network models and give decrease uncertainty in predic-
tions. The results from these matches well with the results for the Duffing equa-
tion found in this thesis, as well as the decreased standard deviation for both of
the ODEs. The uncertainty is reduced, the PGML approach handles better new
initial conditions than the DNNs, and the PGNNs can be reduced in layers, thus
being more appropriate to be used in online functionalities. From the results
and other work there are strong indications that the PGML framework can be
used to create NNs that are more explainable, generalizable, and more efficient
than conventional DNNs.

Use of PGML to calculate wind-coefficient in windmill airfoils.

In this paper it is shown that the use of PGML works well in predicting the
lift coefficients for airfoils. The networks with PGML especially thrive in the
areas where the simplified physical models are valid, which is at small angles
of attack.

Use of PGML in Model Fusion

This paper uses PGML to run faster simulations of vortexes than the full physical
equation would. By using simplified physical models and introducing them into
the network it creates networks that solves the problem faster than a solver for
the full physical system. This opens up opportunities in simulations and digital
twins. The results from this paper shows that PGML handles oscillations better
than DNNS, which is also shown with the results from the simulation on the
Duffing equation.

4.3.3 Use of PGML

PGML can be used to create more accurate networks with less layers than DNNs,
as shown by the results, primarily on the Duffing equation, and the other work
done on PGML. This opens up possibilities where PGML can efficiently be used
and create good results. Two of these possibilities are to use PGML to use PGML
on real life system with data from measurements and some known dynamics,

Chapter 4. Results and Discussions 48

the other possibility that will be discussed here is to use PGML together with
ROMs to create models that can be used in digital twins or other efficiency
dependent applications.

Use PGML to do predictions of systems with partially known dynamics

Some complicated systems consist of some known dynamics, and some un-
known dynamics that affects it. The known dynamics can be from physical-
based modeling, but there is also possibilities to use dynamics from explainable
data-driven modeling approaches. The PGNNs does still use some layers with
little explainability, but it gives an accurate prediction with as much explain-
ability as possible. This makes it easier to construct meta-models to explain the
layers in the network. This can be used in several fields where there is a lot of
measured data, not just in the engineering field, more on this in section 4.3.4.

Using PGML in combination with ROMs to get efficient simulators

The known physics information that is inserted into a PGNN can be on the
form of ROMs. Using this combination one can simplify advanced solvers for
complex equations that uses high amount of processing resources and run-time
to simulate a system, as shown from the results on the Duffing equation, and
in (30) and (33). As well as having the advantage of being able to handle non-
modeled disturbances or factors that act on and have a impact on the system.
As mentioned in these papers, as well the results from this thesis, PGML can be
a powerful tool to be used in online monitoring and simulations.

4.3.4 Possible value creation of PGML

There are multiple areas where PGML can create value, based the results of this
thesis, and the other two papers on this subject. With more explainablility from
PGNNs than DNNs, and the reduced number of layers it opens up possibilities
in many fields as this can give accurate, explainable and fast predictors and
simulators.

Digital Twins

Using the PGML framework together with ROMs can be used in digital twins
as digital twins relay on fast and accurate calculations, with a lot of differ-
ent factors, some that does not have well defined models(32). When using the
PGML framework in this setting it can, together with ROM or other simplified
models, replace more complex differential equations solvers, both for ODE and
PDE, and thus increase the efficiency of the calculations. This makes it possible
for the digital twin to calculate more factors and use less computing resources

Chapter 4. Results and Discussions 49

while still being accurate enough to be a digital representation of a system. In
addition, it is also more suited to handled factors that are not well modeled.

Engineering

In real world applications of engineering for dynamic systems there is often
unknown or not modeled parameters and disturbances. Some of these can be
filtered out as noise, but some of these might have an impact on prediction and
model accuracy. PGML can be used to model the system and creating the right
controller, or other engineered systems, to create the best possible solutions. In
these cases PGML can be described as a system for the combination of all the
steps of modeling to create a hybrid model of the system, as described for BDC
in Chapter 2.

Macro-Economics

As some research on of macro-economics are starting to use dynamic models,
such as (8), there is a possibility to use these models to specific problems/re-
search cases, together with PGML to get a better prediction and understanding
of the dynamics and effects in macro-economics. If used correctly this could
help different type of institutes to understand the dynamics of the given macro-
economic system as well as do good economic decisions and create more value
for society.

Micro-Economics

One example for the use of PGML in micro-economics challenges is prediction
of the sales of seasonal products. A store can sell some seasonal product that
they know has a general absolute value of sine shape depending on week in
the season, and some other factors that makes it not a perfect sine. By first
finding the general sine behavior, and then using PGML with the other mea-
sured factors it could be possible to get better predictions of weekly sales of the
given product. This can increase the efficiency of the store, and make sure it
has enough product in stock, while not ordering too much which could result
in a sale to empty the storage.

Epidemiology

In 2020 there were a lot of different models predicting the spread of COVID-19
and possible effects of restrictions. Several of these models uses the SIR-model
for spread of diseases(3). There was a lot of uncertainty and inaccuracies with
these models, and their predictions had large variation depending on the source
of the model. There could be possibilities to use the PGML framework together

Chapter 4. Results and Discussions 50

with data from COVID-19 and other epidemics to create models that could give
better predictions in the event of a new pandemic or epidemic, that can take
the SIR model, or other models for the spread of diseases, and better combine it
with the collected data. However further research is required to find how well
PGML would perform at this task, and what kind of value it could create.

51

Chapter 5

Conclusion and future work

5.1 Conclusions

The major conclusions of the thesis are:

• PGNNs can give better results than DNNs. As shown with the results on
the Duffing equation.

• A PGNN can make accurate predictions with fewer layers than a DNN.
As shown with the comparison between PGNNs and DNNs with the same
number of layers.

• The insertion placement of g(x) can influence the results of the PGNN,
and that the effect of where g(x) is placed is dependent on the system it
is simulating. For the Rayleigh-Plesset the early insertion of g(x) gave less
standard deviation, while for the Duffing equation the early insertion of
g(x) increased standard deviation for some intervals.

• The results, and other work, indicate that the h(x) or g(x) that improve
a PGNN the most are oscillating functions, such as cos. This was clearly
shown by in the test on the Duffing equation with the performance dif-
ferences between when the h(x), which includes cos, was inserted versus
when it was not inserted.

In doing so we answer all the research questions mentioned in 1.3.2 thereby
realizing all the secondary and primary objectives

5.2 Future Work

There are still more research questions that can be explored, both on the net-
works and equations used in this thesis, as well as other subjects where PGML

Chapter 5. Conclusion and future work 52

can be used, as mentioned in the discussion part. From the results and discus-
sion the following research questions are left unanswered:

• What is the reason for the deviation between prediction and reference for
the simulations on the Rayleigh-Plesset equation?

• What type of oscillating functions has a large impact on PGNN perfor-
mance, and why do these have this impact?

• What other ODEs can use PGNNs for efficient and accurate predictions?

• How can PGML be combined with explainable data-driven models where
no physical-based models are available?

• What is the possible value creation for PGML and which problems can
they be used for in fields such as medicine, economics and epidemiology?

• How would PGNN perform with online training capabilities?

Several of these research questions can be one or multiple theses by them-
selves, and some of these questions are currently being researched by the Insti-
tute for Engineering Cybernetics.

53

Bibliography

[1] About python. https://www.python.org/about/ Accessed 10-June-
2021.

[2] github repository for pgml aerodynamic forces prediction. https://

github.com/surajp92/PGML Accessed 5-April-2021.

[3] Maa: Sir-model. https://www.maa.org/press/periodicals/loci/joma/
the-sir-model-for-spread-of-disease-the-differential-equation-model

Accessed 17-June-2021.

[4] odeint documentation. https://docs.scipy.org/doc/scipy/

reference/generated/scipy.integrate.odeint.html Accessed 13-
March-2021.

[5] Why tensorflow. ://www.tensorflow.org/about Accessed 10-June-2021.

[6] ACHDOU, Y., BUREA, F. J., LASRY, J.-M., LIONS, P.-L., AND MOLL, B. Par-
tial differential equation models in macroeconomics. Philosophical Trans-
action of Royal Society a Mathematical, Physical and Engineering Science
(2014).

[7] ALBAWI, S., MOHAMMAD, T. A., AND AL-ZAWI, S. Understanding of a
convolutional neural network. International Conference on Engineering
and Technology (ICET) (2017).

[8] ANDRESEN, T. On the dynamics of money circulation, creation and debt
– a control systems approach. Thesis for the degree of Doctor Philosophiae,
NTNU (2018).

[9] BRENNAN, M. J. The Duffing Equation. John Wiley Sons, 2011.

[10] CAPRA, M., BUSSOLINO, B., MARCHISIO, A., MASERA, G., MARTINA, M.,
AND SHAFIQUE, M. Hardware and software optimizations for accelerating
deep neural networks: Survey of current trends, challenges, and the road
ahead. IEEE Access Volume 8 (2020).

https://www.python.org/about/
https://github.com/surajp92/PGML
https://github.com/surajp92/PGML
https://www.maa.org/press/periodicals/loci/joma/the-sir-model-for-spread-of-disease-the-differential-equation-model
https://www.maa.org/press/periodicals/loci/joma/the-sir-model-for-spread-of-disease-the-differential-equation-model
https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.odeint.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.odeint.html

Bibliography 54

[11] CARUANA, R., AND NICULESCU-MIZIL, A. An empirical comparison of su-
pervised learning algorithms. ICML ’06: Proceedings of the 23rd interna-
tional conference on Machine learning (2006).

[12] CHENG, Y., WANG, D., ZHOU, P., AND ZHANG, T. Model compression
and acceleration for deep neural networks: The principles, progress, and
challenges. IEEE Signal Processing Magazine (2018).

[13] CHOI, D., SHALLUE, C. J., NADO, Z., LEE, J., MADDISON, C. J., AND

DAHL, G. E. On empirical comparisons of optimizers for deep learning.
arXiv:1910.05446v3 (2020).

[14] FATICHI, S., VIVONI, E., OGDEN, F. L., AND IVANOV, V. Y. An overview of
current applications, challenges, and future trends in distributed process-
based models in hydrology. Journal of Hydrology (2016).

[15] FRANC, J.-P. The rayleigh-plesset equation: a simple and powerful tool
to understand various aspects of cavitation. CISM International Centre for
Mechanical Sciences (2007).

[16] GOOGLE. Google ai experiments, 2021. https://experiments.

withgoogle.com/collection/ai Accessed 12-Mai-2021.

[17] HOLZINGER, A., KIESEBERG, P., WEIPPL, E., AND TJOA, A. M. Current ad-
vances, trends and challenges of machine learning and knowledge extrac-
tion: From machine learning to explainable ai. International Cross-Domain
Conference for Machine Learning and Knowledge Extraction (2018).

[18] HU, J., SASAKAWA, T., HIRASAWA, K., AND ZHENG, H. A hierarchical
learning system incorporating with supervised, unsupervised and rein-
forcement learning. Advances in Neural Networks – ISNN 2007 (2007).

[19] JORDAN, M., AND MITCHELL, T. Machine learning: Trends, perspectives,
and prospects. Science vol. 349 (2015).

[20] JOSHI, A. V. Machine Learning and Artificial Intelligence. Springer, 2020.

[21] KHANDELWAL, R. How to solve randomness in an artificial neural net-
work? Toward Data Science (2020).

[22] LAPUSCHKIN, S., BINDER, A., AND MÜLLER, K.-R. Analyzing classifiers:
Fisher vectors and deep neural networks. IEEE Conference on Computer
Vision and Pattern Recognition (CVPR) (2016).

[23] LAURET, P., FOCK, E., RANDRIANAIVONY, R. N., AND MANICOM-RAMSAMY,
J.-F. Bayesian neural network approach to short time load forecasting.
Energy Conversion and Management Volume 49 (2008).

https://experiments.withgoogle.com/collection/ai
https://experiments.withgoogle.com/collection/ai

Bibliography 55

[24] LEVERMORE, C. D., AND OLIVER, M. Analyticity of solutions for a general-
ized euler equation. Journal of Differential Equations Volume 133 (1997).

[25] MARTENS, H. Big data cybernetcis, 2016. https://folk.ntnu.no/

martens/?BigDataCybernetics Accessed 5-June-2021.

[26] MONTAVON, G. Gradient-based vs. propagation-based explanations: An
axiomatic comparison. Lecture Notes in Computer Science book series
(LNCS, volume 11700) (2019).

[27] MÜLLER, K.-R., AND SAMEK, W. Towards explainable artificial intelli-
gence. Lecture Notes in Computer Science book series (LNCS, volume 11700)
(2019).

[28] NAGY, G. Ordinary differential equations, 2021. https://users.math.

msu.edu/users/gnagy/teaching/ode.pdf Accessed 5-June-2021.

[29] O’LEARY, D. E. Artificial intelligence and big data. IEEE Intelligent Systems
(Volume: 28, Issue: 2) (2013).

[30] PAWAT, S., RASHEED, A., SAN, O., AKSOYLU, B., AND KVAMSDAL, T.
Physics guided machine learning using simplified theories. Physics of Flu-
ids volume 33 (2021).

[31] RAISSI, M., PERDIKARIS, P., AND KARNIADAKIS, G. Physics-informed neu-
ral networks: A deep learning framework for solving forward and inverse
problems involving nonlinear partial differential equations. Journal of
Computational Physics Volume 378 (2019).

[32] RASHEED, A., SAN, O., AND KVAMSDAL, T. Digital twin: Values, challenges
and enablers from a modeling perspective. IEEE Access (2020).

[33] RASHEED, A., SAN, O., PAWAR, S., NAIR, A., AND KVAMSDAL, T. Model
fusion with physics-guided machine learning. arXiv:2104.04574 (2021).

[34] RASHEED, A., SAN, O., ROBINSON, H., AND KVAMSDAL, T. Hybrid analysis
and modeling as an enabler for big data cybernetics. 32nd Nordic Seminar
on Computational Mechanics (2019).

[35] SAMUEL, A. L. Some studies in machine learning using the game of check-
ers. IBM Journal of Research and Development (1959).

[36] SHADIEV, R., HWANG, W.-Y., CHEN, N.-S., AND HUANG, Y.-M. Review of
speech-to-text recognition technology for enhancing learning. Educational
Technology Society vol. 17 (2014).

https://folk.ntnu.no/martens/?BigDataCybernetics
https://folk.ntnu.no/martens/?BigDataCybernetics
https://users.math.msu.edu/users/gnagy/teaching/ode.pdf
https://users.math.msu.edu/users/gnagy/teaching/ode.pdf

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f E
ng

in
ee

rin
g

Cy
be

rn
et

ic
s

Viljar Ness

Simulating Ordinary Differential
Equations using the Physics-Guided
Machine Learning Framework

Master’s thesis in Engineering Cybernetics
Supervisor: Adil Rasheed
July 2021

M
as

te
r’s

 th
es

is

	Preface
	List of Figures
	List of Tables
	Abstract
	Sammendrag
	Introduction
	Motivation and Background
	Value of AI
	The need for Explainable AI
	The need for efficient AI models
	The need for generalizable algorithms

	State of the art
	Research objectives and research questions
	Objectives
	Research questions

	Outline of Report

	Theory
	Physics-Based Modeling
	ODEs

	Data-Driven Modeling
	Artificial Intelligence and Machine Learning
	Neural Network and Deep Learning

	Explainable AI
	Big Data Cybernetics and Hybrid Analysis and Modeling
	Physics-guide Machine Learning

	Method and Set-Up
	Equipment and Programs
	Python 3.8
	Computer specifications

	Method and program set-up
	Tuning the networks
	Workflow of code for testing the performance of the NNs
	Differential equations
	Building and training the NNs
	Testing the performance of the NNs
	Plotting and saving results

	Unchanging parameter settings
	Set-up for the differential equations
	Set-up for the Duffing equation
	Set-up for the Rayleigh-Plesset equation

	DNN set-up
	DNN Set-up for the Duffing equation
	DNNs for the Rayleigh-Plesset equation

	PGNN set-up
	Only inserting h(x)
	Inserting g(x) early in the network
	Inserting g(x) in the middle of the network
	Inserting g(x) late in the network

	Reduced PGNN for the Duffing equation
	Reduced PGNN with g(x) inserted early in the network and h(x) inserted at output layer
	Reduced PGNN with g(x) inserted late in the network and h(x) inserted at output layer.
	Reduced PGNN with g(x) inserted early in the network and h(x) Inserted Late in the Network
	Reduced PGNN with g(x) inserted late in the network and no h(x)

	Reduced PGNNs for the Rayleigh-Plesset Equation
	Reduced PGNN with g(x) and h(x)
	Reduced PGNN with g(x) and Different h(x)

	Results and Discussions
	Results for the Duffing equation
	Results from the DNNs
	Results from the PGNNs
	Results from the reduced PGNNs
	Comparison of DNNs and PGNNs with same number of layers

	Results for the Rayleigh-Plesset equation
	Results from the DNNs
	Results for the PGNNs
	Results for the reduced PGNNs

	Discussion
	Discussing the results
	Similar work
	Use of PGML
	Possible value creation of PGML

	Conclusion and future work
	Conclusions
	Future Work

