
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f E
ng

in
ee

rin
g

Cy
be

rn
et

ic
s

Sondre H
olm

 Fyhn
Learning-Based N

avigation in Cluttered Environm
ents U

sing A D
eep Collision Prediction N

etw
ork

Sondre Holm Fyhn

Learning-Based Navigation in
Cluttered Environments Using A
Deep Collision Prediction Network

Master’s thesis in Cybernetics and Robotics
Supervisor: Prof. Dr. Konstantinos Alexis

June 2021M
as

te
r’s

 th
es

is

Sondre Holm Fyhn

Learning-Based Navigation in
Cluttered Environments Using A Deep
Collision Prediction Network

Master’s thesis in Cybernetics and Robotics
Supervisor: Prof. Dr. Konstantinos Alexis
June 2021

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Engineering Cybernetics

Abstract

Safe and reliable navigation of unmanned aerial vehicles (UAVs) has received increasing atten-

tion over recent years, largely due to a significant price-drop of onboard sensors, actuators and

embedded computers powerful enough to run state-of-the-art technologies. Resilient aerial

robotic autonomy depends on the robot’s capacity to plan actions that efficiently optimize the

robot’s mission objectives while ensuring the safety of the robot.

Current state-of-the-art methods for autonomous exploration use high-dimensionality sen-

sors to perform collision-free path or motion planning by querying an online reconstructed map

of the environment which a) is computationally intensive and b) is increasingly more challeng-

ing in dynamic settings. The motivation behind this thesis is to construct a method that directly

uses raw sensor data to control the drone’s action without needing to reconstruct a map in real-

time. Specifically, from a depth image, the planner presented in this thesis outputs directly from

a forward velocity and a yaw angle command, replacing the need for a mapping module and

a position controller. Moreover, since the planner is realized by a neural network, it can uti-

lize the parallel computing capability of the GPU to speed up the planning time, allowing fast

replanning when dealing with dynamic obstacles or severely cluttered environments.

As such, this thesis proposes a framework for a deep collision prediction model that can be

used for local motion planning of aerial robots. The prediction model, P (ot , at :t+H), provides the

collision probability over an H-long action horizon, at :t+H , and a depth image, ot . Local motion

planning is done by evaluating a set of H-step motion primitives, where the model determines

the best trajectory based on which motion primitive that has the lowest average probability of

colliding with the environment.

Deep learning-based methods may require hundreds of thousands of data samples for train-

ing. Simulation engines are a powerful tool that quickly generates vast amounts of data at a low

cost, enabling the utilization of deep neural networks for resilient aerial robotic autonomy. The

framework presented in this thesis is divided into three components: (i) a self-labeling data gen-

eration method in a simulated environment, (ii) the creation and the training of the collision

prediction network and (iii) a local planner which uses the model to navigate in cluttered en-

vironments while being exclusively motivated by intrinsic objectives. The model is tested with

perfectly simulated depth images, noisy depth images and filtered depth images, as well as with

i

ii

real-life filtered depth images. The model is also studied in different types of environments,

including different levels of difficulty, with unfamiliar obstacles and with unfamiliar environ-

ments. The results from the study are encouraging and present the deep collision prediction

network as a novel method of performing motion planning for aerial robots.

Sammendrag

Trygg og pålitelig navigasjon med ubemannede luftfartøy har de siste årene fått økt oppmerk-

somhet, mye grunnet en betydelig prisreduksjon av ombord-sensorer, aktuatorer og innvevde

datamaskiner kraftige nok til å kjøre toppmoderne teknologi. Motstandsdyktig autonomi for

flyvende roboter avhenger av robotens kapasitet til å planlegge handlinger som effektivt opti-

maliserer robotens oppdragsmålsettinger samtidig som den forsikrer egen sikkerhet.

Dagens toppmoderne metoder for autonom utforskning av omgivelsene bruker høydimen-

sjonalitetsensorer til å gjennomføre kollisjonsfrie baner eller bevegelsesplanlegging ved å søke

gjennom et kontinuerlig oppdatert rekonstruert kart av omgivelsene, noe som a) er beregn-

ingsmessig krevende og b) er økende vanskelig i dynamiske miljøer. Motivasjonen bak denne

masteroppgaven er å konstruere en metode som direkte bruker ubehandlede sensormålinger til

å kontrollere dronens handlinger uten å måtte rekonstruere et kart i sanntid. Mer spesifikt, fra et

enkelt dybdebilde, vil planleggeren som er presentert i denne masteroppgaven gi en bane basert

på en foroverhastighetskommando og en girvinkelkommando, og dermed erstatte behovet for

en kartleggingsmodul og en posisjonskontroller. Dessuten, siden planleggeren er realisert ved

et nevralt nettverk, kan den utnytte den parallelle beregningsevnen til en GPU for å redusere

planleggingstiden. Dette muliggjør raskere omplanlegging i tilfeller med dynamiske objekter

eller i svært tette omgivelser.

Følgelig foreslår denne masteroppgaven et rammeverk for et dypt kollisjonspredikasjon-

snettverk som kan bli brukt for lokal bevegelsesplanlegging av flyvende roboter. Prediksjons-

modellen, P (ot , at :t+H), gir kollisjonssannsynligheten over en H-lang handlingshorisont, at :t+H ,

og et dybdebilde, ot . Lokal bevegelsesplanleggelse blir gjort ved å evaluere et sett med beveg-

elsesprimitiver som er delt i H antall deler, hvor modellen avgjør den beste banen basert på

hvilken bevegelsesprimitiv som har den laveste gjennomsnittlige sannsynlighet til å krasje med

omgivelsene.

Dyp læring-baserte metoder kan kunne kreve hundretusener dataprøver for trening. Simu-

lering er et kraftig verktøy som hurtig kan generere store mengder data til en lav kostnad, og som

muliggjør bruken av dype nevrale nettverk for motstandsdyktig autonomi av flyvende roboter.

Rammeverket presentert i denne masteroppgaven er tredelt og består av: (i) en metode for

generere selv-markerende data i simulerte omgivelser, (ii) dannelsen og treningen av et kol-

iii

iv

lisjonprediksjonsnettverk og (iii) en lokal planlegger som bruker modellen til å navigere i tette

omgivelser mens den er utelukkende motivert av egen sikkerhet. Modellen er testet med per-

fekt simulerte dybdebilder, støyete dybdebilder, filtrerte dybdebilder, og til slutt med filtrerte

dybdebilder fra virkeligheten. Modellen er også studert i forskjellige typer miljøer, med økende

vanskelighetsgrad, ukjente hindringer og i ukjente omgivelser. Resultatene er lovende og pre-

senterer det dype kollisjonspredikasjonsnettverket som en ny metode til å gjennomføre beveg-

elseplanlegging for flyvende roboter.

Preface

This master’s thesis constitutes the culmination of my work completed at the Norwegian Uni-

versity of Science and Technology (NTNU) through the spring of 2021. Supervised by Prof. Dr.

Konstantinos Alexis and with close cooperation with Ph.D. researcher Huan Nguyen, this the-

sis summarizes the methodologies used and presents the corresponding findings. Most of the

proposed methods which are utilized in this thesis have, historically, not existed for a long time

due to limitations in data resources and computational performance, especially regarding the

technological advances of micro aerial vehicles. However, significant progress in recent years is

enabling new technologies and has created a flourishing open-source community. Inspired by

the great advances in relevant technologies, it was desired to create a system that could predict

whether a drone is on a collision course or not based solely on past experiences. As such, this

thesis aims to contribute to the field of motion planning control by applying a deep neural net-

work learning approach. At the time of writing, there are extensive plans for a publication of this

work.

Although this thesis offers a thorough presentation of the theory adopted with a special focus

on supervised learning in artificial neural networks, it has been designed under the assumption

that the reader inhabits prerequisite knowledge with respect to machine learning, control the-

ory, simulation and optimization.

There are several contributions supplementing and assisting the development of this the-

sis. Firstly, the idea behind autonomous navigation of micro aerial vehicles in cluttered envi-

ronments arose during the development of the project thesis written in the fall of 2020, where

waypoint navigation of micro aerial vehicles in obstacle-free space using reinforcement learn-

ing was studied [1]. Secondly, the framework this thesis builds upon is created by various NTNU

Autonomous Robots Lab (ARL) members and has been crucial for the development of this the-

sis. The ARL also provided a powerful computer which the network could train on with different

configurations. Lastly, NTNU has provided an office space and a Dell OptiPlex 7070 i7-9700

computer equipped with Ubuntu 18.04 LTS and ROS Melodic Morenia.

v

Acknowledgment

Throughout this thesis, I have received a great deal of support and assistance. First, I want to

thank my supervisor, Prof. Dr. Konstantinos Alexis, whose expertise and guidance have been

invaluable during the thesis. I also want to thank Ph.D. researcher Huan Nguyen for all the

assistance I have received and for patiently answering all my never-ending questions.

I then want to thank my study friends, who have brightened my day through our regular

lunch and coffee breaks. Finally, I want to thank my friends and family for all of the support I

have received during this work.

vi

Contents

Abstract . i

Sammendrag . iii

Preface . v

Acknowledgment . vi

1 Introduction 1

1.1 Background and Motivation . 1

1.2 Objective and Method . 3

1.3 Outline . 3

2 Related Literature 5

2.1 Motion Planning . 5

2.2 Motion Planning for Advanced Missions . 6

2.3 Learning-Based Navigation . 7

3 Theoretical Background 10

3.1 Supervised Learning . 10

3.1.1 Empirical Risk Minimization . 12

3.1.2 Structural Risk Minimization . 13

3.1.3 Imbalanced Data Sets . 13

3.2 Artificial Neural Networks . 15

3.2.1 Artificial Neural Network and Supervised Learning 18

3.2.2 Backpropagation . 19

3.2.3 The Gradient Descent Algorithm . 22

3.2.4 Dealing With Imbalanced Data Sets in Artificial Neural Networks 23

3.2.5 Monte Carlo Dropout . 25

3.3 Convolutional Neural Networks . 26

3.4 Recurrent Neural Networks . 27

3.4.1 Long Short-Term Memory . 29

3.5 Deep Collision Prediction Networks . 32

vii

CONTENTS viii

4 Experimental Setup 34

4.1 Software Frameworks . 34

4.1.1 Gazebo . 34

4.1.2 ROS . 35

4.1.3 TensorFlow . 35

4.2 Quadrotor Platform . 36

4.2.1 Hardware and Sensors . 36

5 Proposed Approach 38

5.1 Data Generation . 38

5.2 Collision Prediction Network Model . 42

5.2.1 Accounting for Imbalanced Data Set . 44

5.3 Local Motion Planning for Autonomous Navigation 45

6 Evaluation Studies 46

6.1 Model Performance . 46

6.1.1 Local Motion Planning . 50

6.1.2 Model Activation . 52

6.2 Navigating in Simulated Cluttered Environments . 54

6.2.1 With Different Degrees of Obstacle-Density of Known Obstacles 57

6.2.2 With Unknown Obstacles . 62

6.2.3 In an Unknown Environment with Known Obstacles 66

6.2.4 With Added Depth Image Noise . 68

6.3 With Real-Life Depth Images . 72

7 Discussion 75

8 Conclusion and Further Work 79

Bibliography 81

A Acronyms 90

B ROS-graph 92

C Environments 94

C.1 The Environments with Increasing Difficulty . 94

C.1.1 Easy . 95

C.1.2 Medium . 96

C.1.3 Hard . 97

CONTENTS ix

C.2 The Environment With Unknown Obstacles . 98

C.3 The Eight-shaped Environment with Known Obstacles 98

List of Figures

3.1 The learning process of a typical supervised learning scheme 11

3.2 A confusion matrix. 14

3.3 The artificial neural network architecture. 16

3.4 Neuron in artificial neural network. 16

3.5 The ReLU, tanh and sigmoid activation functions. 18

3.6 A subset of an ANN showing the naming convention for activations, weights and

the desired output. 20

3.7 The gradient descent illustration. 22

3.8 Artificial neural network with dropout regularization. 25

3.9 Vertical (2×2)-kernel creating a feature map. 27

3.10 Alternative illustrations of the recurrent loops in a recurrent neural netowrks. . . . 28

3.11 Illustration of a RNN where an input in the past affects an output in the future. . . 29

3.12 Strucutre of simple RNN special unit. 30

3.13 Structure of a LSTM special unit. 30

3.14 A deep neural predictive model with a depth image input and an action sequence

input which may be used as the pipeline for a learning-based navigation policy. . . 33

4.1 The RMF and its digital twin. 36

5.1 The corridor environment. 39

5.2 The shapes used as obstacles in the simulated training environment. 40

5.3 The deep collision prediction network developed in this thesis. 43

5.4 Illustration of the CNN used in the collision prediction network. 44

6.1 Accuracy for the validation data and the training data over 500 epochs. 48

6.2 Recall for the validation data and the training data over 500 epochs. 48

6.3 Precision for the validation data and the training data over 500 epochs. 49

6.4 F 1-score for the validation data and the training data over 500 epochs. 49

6.5 Loss for the validation data and the training data over 500 epochs. 50

6.6 The model’s evaluation of 20 random trajectories. 51

x

LIST OF FIGURES xi

6.7 The model’s evaluation of 20 random trajectories where it is highlighted that the

paths have different velocities and thereby lengths. 52

6.8 Grad-CAM visualization of the trajectory that the model evaluates as the most

likely to cause a collision. 53

6.9 Grad-CAM visualization of the trajectory that the model evaluates as the least likely

to cause a collision. 53

6.10 Another Grad-CAM visualization of the trajectory that the model evaluates as the

most likely to cause a collision. 54

6.11 Another Grad-CAM visualization of the trajectory that the model evaluates as the

least likely to cause a collision. 54

6.12 The three most common types of collisions. 56

6.13 50 episodes with easy difficulty . 59

6.14 50 episodes with medium difficulty. 60

6.15 50 episodes with hard difficulty. 61

6.16 Filtering applied to depth images with unfamiliar obstacles. 62

6.17 50 episodes with unknown obstacles. 64

6.18 50 episodes with unknown obstacles. 65

6.19 50 episodes in an "eight"-shaped structure with known obstacles. 67

6.20 The simulated depth image, the simulated depth image with added noise and the

noisy depth image with applied filtering. 68

6.21 50 episodes with noisy depth images. 70

6.22 50 episodes with filtering of noisy depth images. 71

6.23 RGB-image with the corresponding depth image and the filtered depth image. . . 72

6.24 Grad-CAM visualization of the worst trajectory with a real depth image. 73

6.25 Grad-CAM visualization of the best trajectory with a real depth image. 73

6.26 Local motion planning of a real depth image. 74

7.1 Visualization of a corner collision. 77

B.1 A complete graph over the ROS-topics and the connections between them in the

simulation environment. The RMF-drone is called "delta". 93

C.1 The environment with easy difficulty. 95

C.2 The environment with medium difficulty. 96

C.3 The environment with hard difficulty. 97

C.4 The environment with unknown obstacles. 98

C.5 The "eight"-shaped environment. 99

List of Tables

6.1 Metrics for environments with increasing difficulty. 58

6.2 Metrics for the environment with unfamiliar obstacles. 63

6.3 Metrics for an "eight"-shaped environment. 66

6.4 Metrics for the medium environment with added noise. 69

xii

Chapter 1

Introduction

1.1 Background and Motivation

Safe and reliable navigation of autonomous unmanned aerial vehicles (UAVs) is a challenging

task. The ability to successfully fly and navigate in cluttered environments is crucial for unlock-

ing many robotic applications such as surveillance [2], search and rescue [3], industrial inspec-

tion [4] and so on. The increasing focus of using flying robots is largely due to a recent significant

price-drop of onboard sensors, actuators and embedded computers. State-of-the-art technolo-

gies, like simultaneous localization and mapping (SLAM) [5, 6] and so on, are more available

and easier to implement much due to a growing open-source community.

Resilient aerial robotic autonomy depends on the robot’s capacity to plan actions that effi-

ciently optimize the robot’s mission objectives while ensuring the safety of the robot. This is

referred to as optimizing the robot’s extrinsic goals while ensuring the robot’s intrinsic motiva-

tions. The traditional method of tackling the task of safe and reliable navigation is a two-step

interleaved process consisting of (i) localization and mapping (through aiding measurements,

such as LiDAR or a stereo camera), and (i i) computation of control commands to achieve ob-

stacle avoidance while navigating towards a goal [7].

There are still applications where autonomous navigation is not fully explored due to diffi-

culties caused by the environment [8]. Such applications could be autonomous exploration in

sensor-degraded or dynamic environments, where current state-of-the-art technology (SLAM)

is not thriving. Great appearance changes, homogeneous, long and narrow environments, or

dynamic scenes can constrain even the most advanced SLAM algorithms and cause the system

to make unrecoverable errors. In the case of dynamic environments, the complexity of resilient

aerial robotic autonomy increases severely. Dynamic objects are required to be singled out from

raw sensor data and their motion must be predicted. All the while, there must exist an infor-

mation bridge to the controllers [9]. The task of navigating unknown cluttered environments

requires an efficient combination of spatio-temporal filtering and trajectory optimization [10].

1

CHAPTER 1. INTRODUCTION 2

Depth images are highly affected by measurement noise [11] that depends on the characteris-

tics of the environment. The proposed method needs to be robust to the noisy measurements

so that the robot is able to avoid obstacles successfully.

Current state-of-the-art methods perform collision-free path or motion planning by query-

ing an online reconstructed map of the environment which a) is computationally intensive and

b) is increasingly more challenging in dynamic settings. Due to these reasons, the typical model-

based pipeline for autonomous navigation in cluttered environments either assumes the use

of a reactive planner in combination with a position controller to quickly react to oncoming

obstacles in static environments [12], or tailored systems that have controllers that directly in-

tegrate velocity measurements of the quadrotor into the control formulation [13]. Other ap-

proaches involve fitting a velocity model on dynamic objects as a cost map of a trajectory opti-

mizer [9, 14]. Deep learning-based approaches remove the need for feature engineering. Con-

siderable research has been done in the field of safe and reliable navigation using learning-based

approaches [15, 16, 17, 18]. Recent research have focused on closing the sim-to-real gap with

policy training happens through simulation and synthetically generated depth images. This is

mainly because there is a challenging reality gap, where reality could be much more unpre-

dictable and noisy than in simulation. Deep learning-based methods may require hundreds of

thousands of data samples, and simulation engines are a powerful tool for quickly generating

vast amounts of data at a low cost.

Motion planning is of key importance for advanced applications such as autonomous ex-

ploration. Autonomous exploration of subterranean environments challenges traditional tech-

nologies and the level of resilient autonomy that can be achieved, as the scenes are often long,

narrow and sensor-degrading. Relevant applications for autonomous exploration of subter-

ranean environments might be search and rescue missions, monitoring, inspections and cave

exploring. Traditional approach runs SLAM to simultaneously build the map of the environment

and localize the robot within the map, then a planner uses the map and the robot’s state to plan

collision-free paths. Although excellent under a wide range of conditions [19], this approach re-

quires significant computational time to map the environment, rendering it ineffective to deal

with dynamic obstacles. Moreover, the planner module is also prone to the drift of the map and

the robot’s pose.

State-of-the-art methods for autonomous exploration use high-dimensionality sensors to

create a map of the environment. A planner derives collision-free paths by querying the map

and sends the commands to the robot. The motivation behind this thesis is to construct a

method that directly uses raw sensor data to control the drone’s action without needing to re-

construct a map in real-time. Specifically, from a depth image, the planner presented in this

thesis outputs directly a forward velocity and a yaw angle command, replacing the need for a

mapping module and a position controller. Moreover, since the planner is realized by a neural

CHAPTER 1. INTRODUCTION 3

network, it can utilize the parallel computing capability of the GPU to speed up the planning

time, allowing fast replanning when dealing with dynamic obstacles or severely cluttered envi-

ronments.

1.2 Objective and Method

This master thesis aims to develop a collision prediction model, P (ot , at :t+H), where the inputs

of the model are the current depth image, ot , and some action sequence, at :t+H , where H is the

horizon length, and the action sequence’s corresponding trajectory is within the robot’s field of

view (FoV). The output of the prediction model is the collision probability over the H-long hori-

zon. The probability model is then used to evaluate a set of H-step motion primitives, where

the action sequence with the lowest average collision probability is executed in a receding hori-

zon fashion to enable autonomous navigation in cluttered environments. The thesis encapsu-

lates relevant research and theory for achieving this, in addition to presenting a comprehensive

framework for local motion planning using a deep collision prediction network. The framework

presented in this thesis is divided into three components: (i) a self-labeling data generation

method in a simulated environment, (ii) the creation and the training of the collision prediction

network and (iii) a local planner which uses the model to navigate in cluttered environments

while being exclusively motivated by intrinsic objectives. The model is tested with perfectly

simulated depth images, noisy depth images and filtered depth images, as well as with real-life

filtered depth images.

The work in this thesis is inspired by the work done in the preceding semester during the

project thesis [1], where navigation in obstacle-free space using deep reinforcement learning

was studied. The long-term goal of this work is to create safe and reliable navigation that can

be used for autonomous navigation in cluttered environments. This can benefit aerial robotic

autonomy in a multitude of applications, including exploration in challenging environments,

package delivery, target tracking and more.

1.3 Outline

• Chapter 1: Introduction. An introduction to the field of motion planning for aerial vehi-

cles and the motivation behind why an alternative solution is desired, as well as a intro-

ductory note on the objective and the method of this thesis.

• Chapter 2: Related Literature. A presentation of relevant literature in the field of motion

planning and its utilization for advanced missions such as autonomous exploration, and

methods for learning-based navigation, with a focus on aerial vehicles.

CHAPTER 1. INTRODUCTION 4

• Chapter 3: Theoretical Background. A detailed technical summary of supervised learn-

ing, artificial neural networks, convolutional neural networks and recurrent neural net-

works. This chapter includes the theoretical background information required when de-

veloping a deep collision prediction network with a learning-based approach.

• Chapter 4: Experimental Setup. This chapter presents the software frameworks used in

the master and the quadrotor platform.

• Chapter 5: Proposed Approach. The proposed approach for developing a deep collision

prediction model. In-depth detail of the data generation process, the prediction model

training and the model as a means for enabling autonomous navigation through local

motion planning.

• Chapter 6: Evaluation Studies. Evaluation studies of the collision prediction model’s per-

formance during training and during local motion planning, as well as when used as a

trajectory planner for navigating in different types of cluttered environments. Lastly, the

model performance on real-life depth images is presented.

• Chapter 7: Discussion. A discussion around the results from the evaluation studies and

the typical collision causes.

• Chapter 8: Conclusion and Further Work. The conclusion of the thesis and a brief dis-

cussion around what future work should involve.

• Bibliography.

• Appendix A: Acronyms.

• Appendix B: ROS Topics Graph.

• Appendix C: Environments.

Chapter 2

Related Literature

2.1 Motion Planning

There has been extensive work in the field of motion planning for UAVs. The prime approach

of path planning for UAVs involves a policy for searching admissible paths in an online recon-

struction of the local environment that optimizes some specified extrinsic goals while ensuring

intrinsic motivations. For the simplest case of path-planning in cluttered environments, which

is arriving at a pre-defined location while avoiding obstacles on the way, the prevailing methods

involve sampling-based methods where either the robot’s configuration space is sampled [20]

or the robot’s control space is sampled [21]. Karaman and Frazzoli [20] presented in 2011 the

probabilistic roadmaps* (PRM*) algorithm and the rapidly-exploring random trees* (RRT*) algo-

rithm, which are provably asymptotically optimal variations of PRM [22] and RRT [23]. Asymp-

totically optimal variations of the algorithms means that the returned solution’s cost converges

almost surely to the optimum. Their work also showed that the computational complexity of

the new algorithms is within a constant factor of that of their probabilistically complete (but not

asymptotically optimal) counterparts.

Real-world sensors are imperfect as they generate both random and systematic errors due

to the sensor itself and degradation in the environment. Continuous methods like the Gaussian

processes [24] have been widely used. Regular volumetric discretization in occupancy grids,

like the Octomap presented by Hornung et al. [25], is usually sufficiently robust and fast. How-

ever, the octotrees in the octomap have an increasing complexity of O(log(n)) for insertion and

look-up, where n is the tree depth. Recent work in the field addresses this issue and utilizes

voxel hashing for fast look-ups. In 2017, Oleynikova et al. [26] presented Voxblox: a volumetric

mapping library-based mainly on truncated signed distance fields (TSDFs). TSDFs are fast to

build and smooth out sensor noise over many observations and are designed to produce sur-

face meshes. Voxblox was created for micro aerial vehicles (MAVs) that require fast and flexible

local planning and that replans when new parts of the map are explored. This is typical for

5

CHAPTER 2. RELATED LITERATURE 6

MAVs that operate in unstructured and unexplored environments. Euclidean signed distance

fields (ESDF) are combined with trajectory optimization methods to obtain obstacle distance

information. The voxblox algorithm incrementally builds ESDFs from TSFDs.

2.2 Motion Planning for Advanced Missions

The overall problem of resilient planning relates to the UAV’s ability to identify admissible paths

that optimize some extrinsic goals iteratively. An admissible path is regarded as a path that en-

sures some intrinsic objectives, such as the robot’s safety, and accounts for the system’s limita-

tions. Aerial robotics planning has developed from seeking a known goal destination to satisfy-

ing more complex mission objectives like autonomous exploration. This field has received a sig-

nificant amount of attention in recent years. Some of the main areas that have been investigated

include frontier-based exploration, sampling-based methods and learning-based techniques.

Frontier-based exploration is a collision-free motion planning method that guides the robot

and involves identifying frontiers and respective robot configurations. Nuske et al. [27] present

an autonomous exploration method used for river exploration. The MAV navigates purely with

onboard sensing, with no GNSS aiding measurements and no prior map of the environment.

They present a high-level goal-point extraction strategy that uses multivariate cost maps to max-

imize the information obtained during the exploration. The exploration algorithm uses multiple

layers of information to maximize the river area to be explored. They also introduce SPARTAN-

lite, a variation of SPARTAN (sparse tangential network) [28] that exploits geodesic properties

on smooth manifolds of a tangential surface around obstacles. This helps the exploration algo-

rithm to plan rapidly through free space.

In sampling-based methods, a path search is conducted in a sample-based manner to iden-

tify admissible and collision-free paths. Bircher et al. [29] proposed in 2016 a path planning algo-

rithm for autonomous exploration of unknown space using a receding horizon “next–best–view”

(NBVP) scheme. In an online computed tree, the method finds the best branch and the qual-

ity of which is determined by how much of the unmapped area that still can be explored. The

method uses RRT to search for collision-free paths in the environment to find the best path, and

then commands the robot to its first vertex. This is then repeated in a receding horizon manner.

Dang et al. [30] presented in 2020 a novel graph-based subterranean exploration path planning

method that is attuned to key topological properties of subterranean settings. The method is

structured around a bifurcated local- and global-planner architecture. The local planning uti-

lizes an RRT graph to efficiently find collision-free paths that optimize exploration while also

respecting the robots’ traversability constraints and dynamic limitations. The global planner

works alongside the local planner to incrementally build a sparse global graph. The global plan-

ner is engaged when the robot must be repositioned or is commanded to return home. The

CHAPTER 2. RELATED LITERATURE 7

architecture of the global planner is built on the assumption that the subterranean environ-

ment is multi-branched and consists of tunnel-like networks, which often lead to dead-ends.

Dharmadhikari et al. [31] proposed a local planner that uses motion primitives to identify the

admissible paths. The method searches the configuration space while exploiting the dynamic

flight properties of small aerial robots to tailor the combined need for large-scale exploration

and confined environments while having limited endurance. The sampling-based exploration

methods are often prone to be stuck in local minima, resulting in sub-optimal trajectories, and

possibly not reaching global coverage. Inspired by these challenges, Schmid et al. [32] proposed

an RRT*-inspired online informative path planning algorithm that expands a tree of candidate

trajectories. The use of a single objective function allows the algorithm to achieve global cover-

age.

Studies regarding learning-based path planning policies for autonomous exploration have

in recent years received much attention as they are starting to outperform state-of-the-art tech-

nologies. Reinhart et al. [33] utilizes the graph-based path planner presented by Dang et al.

[30] as an expert learning in an imitation learning scheme. The trained policy is capable of au-

tonomously exploring mine drifts and tunnels. The algorithm receives only a short window of

measurements from a LiDAR sensor and achieves behavior similar to the expert learner with

more than a magnitude reduction in computational cost.

2.3 Learning-Based Navigation

Path planning for aerial robots should consider the intrinsic motivations, such as safety or other

objectives that do not relate directly to the specified mission, as well as the extrinsic objectives.

The intrinsic motivations are important for the robot to execute the mission reliably. Achtelik

et al. [34] proposed in 2014 to specifically exploit the information on uncertainty while simulta-

neously accounting for the robot’s dynamics for realistically computing a path. For the path to

be realistic, neither the uncertainty of the robot’s perception nor the vehicle’s dynamics can be

ignored. They make use of rapidly exploring random belief trees (RRBT) to identify paths that

lead to a waypoint. This is done by evaluating offline multiple path hypotheses in a known map

to select the path exhibiting the motion required to estimate the robot’s state accurately while

inherently avoiding motion in unobservable modes.

Kahn et al. [35] implemented uncertainty-aware reinforcement learning to enable complex,

adaptive behavior to be learned automatically for autonomous robotic platforms, such as UAVs

or unmanned ground vehicles (UVGs). The mobile robot learns to navigate in an a priori un-

known environment while avoiding collisions. When the robot knows little to nothing about

the environment during training, high-speed collisions are more likely to occur and can ulti-

mately damage the robot. Therefore, they saw it necessary for a successful learning method

CHAPTER 2. RELATED LITERATURE 8

to proceed cautiously and only to experience low-speed collisions until it gained more con-

fidence. Therefore, they present an uncertainty-aware model-based learning algorithm that

estimates the probability of collisions and a statistical estimate of uncertainty. The predictive

model is based on a neural network and has high-bandwidth sensors such as a camera. The re-

sults achieved are successful in simulation and in real-world applications, both for UAVs and for

UGVs. To realize safe, uncertainty-aware navigation, they proposed a model-based learning ap-

proach where the robot learns a collision probability model and uses the model’s uncertainty to

adjust its navigation strategy. This approach has served as one of the strongest inspirations for

this thesis. A speed-dependent collision cost in combination with uncertainty-aware collision

estimates resulted in a risk-averse navigation strategy. Prior work in the field of autonomous

navigation has considered safety at training time by using an expert learner, such as the motion

predictive control (MPC) algorithm with ground truth state information [36]. This is not advan-

tageous for real-world deployment, as access to the ground truth state can not be assumed. This

especially yields true in the case of GNSS-denied environments such as in subterranean scenes.

Further work has since been done by Kahn et al. [37], and in 2020, they introduced an end-

to-end self-supervised learning-based navigation system called "BADGR". Instead of human

supervision to teach the robot to navigate in the environment, typically by mimicking an expert

learner or providing labeled data, the robot’s own past experience provides retrospective self-

supervision. For several salient navigational objectives, like preferring less cluttered environ-

ments or smooth over bumpy terrain, the robot can use its experience and retrospectively label

it so as to learn a predictive model for these objectives. The robot may therefore learn about the

affordances in the environment using raw visual perception. Mobile robot navigation is usually

regarded as a geometrical problem, where the robot’s objective is to plan a collision-free path in

a perceived environment. This is not desired because a purely geometric view of the world can

be problematic in many navigation applications. An example of this is when a mobile robot is

moving in a field of tall grass and believes that a given path over the grass is untraversable based

on the geometric view of the scene, while in reality, it is feasible. BADGR is trained with self-

supervised off-policy data gathered in real-world environments without the need for simulation

or human supervision and can navigate in urban and off-road environments with geometrically

distracting obstacles. A key feature of the algorithm is that it also incorporates terrain prefer-

ences, generalizes to novel environments and that it continues to improve "on-the-go" while

gathering more data.

In 2018, Loquercio et al. [38] proposed DroNet; a convolutional neural network that can

safely drive a drone through the streets of a city. The network is a fast 8-layers residual network

that produces a steering angle and a collision probability from a single image input. Together,

these two outputs make the UAV recognize dangerous situations and navigate the environment

while avoiding obstacles. A vital aspect in which this work stands out is how they collect the

CHAPTER 2. RELATED LITERATURE 9

training data. There is a significant challenge in collecting enough data in an unstructured out-

door environment, such as a city, without simulation. Having an expert UAV pilot to gather data

is not ideal due to the great amount of data required and, more importantly, the risk of involv-

ing other vehicles, pedestrians or similar in dynamic urban environments. Therefore, the work

presented by Loquercio et al. [38] used data collected by cars and bicycles, which are already

integrated into the urban environments. The results from the study were a highly generalized

model that successfully could fly at relatively high altitudes and in indoor environments, such

as parking lots and corridors as well.

Hoeller et al. [10] presented in March 2021 a method for learning state representation and

navigation in cluttered and dynamic environments. In their work, they present a learning-based

pipeline that realizes local navigation with the quadrupedal robot ANYmal [39] in cluttered en-

vironments with static and dynamic environments. A sequence of filtered depth images and the

current trajectory of the camera are fused, forming a model of the world using state representa-

tion learning. The output of the module is fed into a target-reaching and collision-avoiding pol-

icy training with reinforcement learning. The key factor of their work is the state representation

which helps bridge the reality gap, enabling successful sim-to-real transfer. Their experiments

show that the system handles noisy depth images and successfully avoids dynamic and static

obstacles in simulation and real-life situations. The model is also trained so that it has local

spatial awareness. Situation awareness is obtained from depth images. Other work feeds RGB

images or 2D LiDAR data through a neural network and learns from an expert learner [38, 40, 41],

from a reinforcement learning scheme [42, 35] or from self-supervised learning [37]. RGB-based

methods do not explicitly consider dynamic environments, which cause purely reactive poli-

cies that may be reacting too slowly for approaching obstacles. The use of depth images in a

simulation-based learning setting, as the work presented by Hoeller et al. [10], helps lower the

reality gap and reduces the complexity of the data and thereby the complexity of the neural

network (by lowering the input space). The depth images are encoded through convolutional

variational autoencoder (VAE) [43] and the model is trained with simulation images and depth

images from the real robot. A sequence of processed depth images forms a sequence of latent

vectors, which are fed into a long short-term memory (LSTM) unit with the camera trajectory.

The model is maximizing the log-likelihood of the measured latent vectors. A KL-divergence

term is included to make the predicted distribution consistent. The representation module can

be perceived as a state estimator similar to a non-linear Kalman filter. The next latent can be

predicted based on the current belief state, the previous inferred latent and the action input.

This is commonly referred to as dreaming [44] in the literature.

Chapter 3

Theoretical Background

This chapter aims to present the fundamental theory required for developing a deep collision

prediction network, enabling local obstacle avoidance for navigation in cluttered environments.

As the obstacle avoidance principles used to accomplish this are based on several disciplines

within machine learning and deep neural networks, the subsequent sections aim to present

some of the essential pillars for making this achievable.

In the following sections, artificial neural networks is used as an umbrella term for deep

neural networks, deep networks and other similar variations of this, as all the artificial networks

presented are assumed multilayered and, hence, deep. Special cases of deep neural networks,

such as convolutional neural networks and recurrent neural networks, will be discussed more

in detail.

3.1 Supervised Learning

The defining characteristic of supervised learning is the availability and quality of training data.

As the name invokes, there is an underlying idea of a supervisor that instructs an agent using la-

bels associated with the training data. The labeled training data has clear criteria for the model

optimization, making supervised learning techniques more powerful than unsupervised learn-

ing techniques [45]. Unlike supervised learning, unsupervised learning techniques have no la-

beled training data and must uncover hidden data structure and patterns independently. Su-

pervised learning is analogous to humans learning from past experiences to enablef knowledge

that prepares for the coming situations. Computers learn from data collected in the past to be

capable of making intelligent decisions for the future.

It is common to distinguish supervised learning problems as either classification problems

or regression problems. A classification problem is either a multiclass problem where the output

variables belong in categorical classes or a binary problem with boolean output variables. A re-

gression problem has a real value output variable, which could, for instance, be "dollars", "time"

10

CHAPTER 3. THEORETICAL BACKGROUND 11

or similar. Supervised learning algorithms intend to induce models based on labeled training

data that can be used to classify unlabeled data. After a model is trained with the training data,

it is evaluated with a separate data set referred to as the validation data. This is done to measure

how well the model generalizes to data it has never seen before.

The accuracy of the model is calculated by:

Accuracy = Number of correct classifications

Total number of test cases
(3.1)

One of the fundamental assumptions of machine learning is the relationship between the

training data set and the validation data set. The assumption is that the training data distri-

bution should be identical to the distribution of the validation data [46]. Significant violations

will not surprisingly result in poor accuracy, which is intuitive as the model is not prepared for

understanding the validation data set. High validation accuracy requires training data to be suf-

ficiently representative of the validation data. The learning process of the model with training

and validation can be seen in fig. 3.1.

Figure 3.1: The learning process of a typical supervised learning scheme with training and vali-
dation.

Machine learning represents a field of computer science where machines have the ability to

map an input variable, x, to an output variable, y , without being told explicitly how to do so.

In supervised learning, which is a subset of machine learning, the agent is given training data

from a labeled data set on the form {(x0, y0), (x1, y1), ..., (xN , yN)} ∈ D, where N is the number of

training examples and the data set in contained in D. The overall goal of supervised learning is

to find a mapping function g : X → Y , where X is the set of all possible inputs {x0, x1, ..., x|X | ∈ X }

and Y is the set of all possible classes {y0, y1, ..., y|Y | ∈ Y }. The mapping function, g , exists in what

is usually referred to as the hypothesis space [47] and it is sometimes convenient to represent

using a scoring function f : X ×Y →R, such that

g (x) = argmax
y

f (x, y), (3.2)

where f ∈ F is the space of scoring functions and g ∈G is the space of candidate functions.

Depending on the input, output and the relationship between them, various methods of build-

CHAPTER 3. THEORETICAL BACKGROUND 12

ing these approximators exist. There are two basic approaches to determining g or f : Empirical

risk minimization (ERM) and structural risk minimization (SRM). A loss function L : X ×Y →R≥0

is defined to measure how well a function fits the training data. The loss of predicting the classi-

fication variable, ŷ , of the training data (xi , yi) is defined as L(yi , ŷ). The training data is assumed

to consist of independent and identically distributed pairs. The risk function gives the expected

value of the loss as:

R(g) =
∫

L
(
y, f (x, g)

)
dP (x, y). (3.3)

The goal is to minimize R(g) over the class of functions f (x, g). The joint probability distri-

bution P (x, y) = P (y |x)P (x) is unknown. The development of this risk function is what differen-

tiates the two minimization methods ERM and SRM. The two methods are briefly explained in

the following subsections.

3.1.1 Empirical Risk Minimization

Empirical risk minimization is recognized as a special form of standard convex optimization and

is one of the most powerful tools in applied statistics [48]. It is a fundamental idea within ma-

chine learning, as it seeks the risk function that best fits the training data. The ERM method

resembles many classical minimization methods, such as the least square method [49] and

the maximum likelihood estimation method [50]. Under the assumption that g is a condi-

tional probability distribution, P (y |x), and the loss function is the negative logarithm likelihood,

L(y, ŷ) = − logP (y |x), the ERM equals the maximum likelihood estimation method. It is con-

structed based on the training data and assumes that the function f (x, ĝ) minimizes

Etrain(g) = RERM(g) = 1

N

N∑
i

L
(
yi , g (xi)

)
. (3.4)

This results in a risk value close to its global minimum. The method is referred to as an

empirical method due to the loss function being calculated from a sample of the domain set X ,

where the domain set is assumed to cover every possible input perfectly. As such, there exists a

barrier between empirical error and true error. If the model is trained so that the function f (x, ĝ)

minimizes the empirical error but not the true error, overfitting has occurred. This happens if

the subset of X is not adequately representative for the entire data set or if G contains a vast

amount of candidate functions [51]. If so, the ERM learning algorithm will eventually memorize

the training data without producing a well-generalized model. In other words, the model will

overfit. This could lead ERM to have high variance and poor generalization capabilities. This

barrier between true and empirical error is useful because it allows ERM to guarantee, with a

certain confidence, an upper bound to the error of the model [52].

CHAPTER 3. THEORETICAL BACKGROUND 13

3.1.2 Structural Risk Minimization

Structural risk minimization seeks to prevent overfitting by including a regularization penalty,

λJ (g), to the risk function, Etrain(g). The regularization penalty represents the complexity of the

model. The lower the complexity of J (g) is, the smaller is the value. The method is drawing

inspiration from William of Ockham’s principle of parsimony, meaning that the method prefers

simpler functions over more complex ones. The punishment will force the model into being as

simple as possible. The regularization penalty evaluates the bias-variance trade-off and is often

expressed as the Euclidean distance of the weights (L2-norm) or as the Manhattan distance (L1-

norm).

RSRM(g) = Etrain(g)+λJ (g). (3.5)

λ controls the bias-variance trade-off, meaning it minimizes the training error and the ex-

pected gap between the training error and the validation error. When λ = 0, the empirical risk

minimization has low bias and high variance. When λ is large, the empirical risk minimization

will have high bias and low variance.

3.1.3 Imbalanced Data Sets

The true accuracy and precision of classification predictive modeling are heavily reliant on how

well the data set contains representative class labels for the given examples. An imbalanced

classification problem occurs when the distribution of known class labels within the data set is

skewed or biased. The distribution can be slightly skewed or heavily skewed. For instance, the

distribution of real-life credit card transaction fraud would typically be heavily skewed, as most

transactions are done legally. Given a binary data set where 95% of the samples are negative and

5% of the samples are positive, the model would achieve 95% accuracy by predicting negative for

all samples, which is not desired. Therefore, when dealing with imbalanced data sets that are not

dealt with, accuracy is no longer an interesting metric to measure, as it can be more deceiving

than informative. Measuring the precision and the recall are more relevant when analyzing the

model’s performance on heavily skewed data sets. Precision is measured as the percentage of

predicted positives that were correctly classified and recall is measured as the percentage of

actual positives that were correctly classified. They are given as:

Precision = true positives

true positives+ false positives
, Recall = true positives

true positives+ false negatives
. (3.6)

A true positive (TP) sample is when the predicted class is positive and the true class is also

positive. In contrast, false positive (FP) is when the predicted class is positive, but the true class

CHAPTER 3. THEORETICAL BACKGROUND 14

is negative. This logic also applies to true negative (TN) and false negative (FN) predictions.

Therefore, it is desired to minimize the false positives and the false negatives and maximize the

number of true positives and true negatives. A much-used method of visualizing the perfor-

mance of a classification model is through a confusion matrix, as illustrated in fig. 3.2.

Figure 3.2: Illustration of a confusion matrix, representing the distribution of true and false neg-
atives and positives.

A well-established method of measuring the accuracy of binary classification problems is to

measure the model’s harmonic mean of the precision and the recall. This metric is commonly

referred to as the F 1-score and is given as:

F 1 = 2 · precision · recall

precision+ recall
= TP

TP+ 1
2 (FP+FN)

. (3.7)

When the data set is imbalanced, the model will have adequate information about the ma-

jority class but insufficient information about the minority class. This leads to high misclassifi-

cation errors for the minority class and is a problem as it typically is the minority class on which

predictions are most important. Possibly neglecting or ignoring the minority class completely

could have potentially catastrophic outcomes. Given an imbalanced data set used for training

a collision prediction network, a misclassification of the unrepresented label might lead to the

model predicting "no collision" even though a collision is likely. Class weighting and oversam-

pling are among the most used techniques to tackle the imbalanced data set problem and will

be more discussed in section 3.2.4. If the minority class has few examples, class weighting could

be introduced to make the model "pay more attention" to the underrepresented class. A re-

lated approach is to oversample the minority class. Oversampling the minority class could be

CHAPTER 3. THEORETICAL BACKGROUND 15

achieved by duplicating examples from the minority class in the training data set. As such, class

distribution can be balanced without the need to provide additional information to the model.

3.2 Artificial Neural Networks

Artificial neural networks (ANNs) are adaptive systems inspired by the functioning system of

the biological brain. ANNs are systems that can modify their internal structure to adapt to a

function objective [53]. This property is well suited when implementing machine learning tech-

niques, as the goal is, in most cases, to map some input value to the desired output. ANNs are

particularly well suited for modeling continuous and non-linear problems, as they can recon-

struct the fuzzy logic [54] that governs the optimal behavior of these problems. Therefore, one

could perceive the use of neural networks as an optimization algorithm. The ANN architecture

is inspired by the structure and function of the brain’s neural network. An ANN consists of artifi-

cial neurons which are interconnected and arranged in various layers. Much like the functioning

of the synapses in a biological brain, each artificial neural connection transmits a signal to other

neurons. In the case of ANNs, this signal is always a real scalar, usually within some limit. The

layers are categorized into three parts: the input layer, the hidden layers and the output layer. As

an example of this: Given an image classification problem, the input layer would be the image,

the output layer would be some classification, and the hidden layers would contain the neurons

that discover the patterns in the image that separates the possible classes. The typical artificial

neural network architecture is shown in fig. 3.3, and a closer illustration of the artificial neuron

is shown in fig. 3.4.

CHAPTER 3. THEORETICAL BACKGROUND 16

Figure 3.3: The artificial neural network architecture.

The connection between two neurons is called an edge. The output of each neuron is com-

puted by some non-linear function of the sum of its weighted inputs and a bias term. Each

neuron has weights, w = {w1, w2, ..., wn}T , that corresponds to the neuron’s input signals x =
{x1, x2, ..., xn}T . The weights are the core of the artificial neural networks, as these are the ones

that adapt as the model learns. The information that flows between the neuron layers needs

to be converted so that the output of one neuron can be used as an input in another neuron.

An activation function, ϕ(·), is placed at the output of each neuron and brings the important

property of handling the non-linearity in a neural network.

Figure 3.4: Neuron in artificial neural network.

CHAPTER 3. THEORETICAL BACKGROUND 17

In 1958, Frank Rosenblatt introduced the simplest structure of an artificial neuron called the

perceptron [55]. The activation function in a perceptron is a simple Heaviside step function,

making each neuron either on or off. Therefore, the output of a perceptron is given as

y =
1, if wT x+b > 0

0, otherwise.

The perceptron was mainly used for linear classification problems, where there was a binary

output value. However, structuring these perceptrons in layers would expand its utilization area

into more challenging classification problems. This was first presented by Rumelhart et al. [56]

in 1986. The structured layers of perceptrons were coined a "multilayer perceptron" (MLP) and

enabled higher-level feature extraction from input data. Changing the Heaviside step function

increased the flexibility and limited the number of neurons required. Today, the MLP is the basis

of artificial neurons, and the output is given as

y =ϕ(wT x+b) (3.8)

There exist several different activation functions. Amongst the most popular ones are the

rectified linear unit (ReLU), the sigmoid function and the tanh function. The sigmoid function

is sometimes denoted "σ" in this thesis. The shape of each function is shown in fig 3.5. The

sigmoid and tanh activation functions have a similar structure, especially around x = 0, but

the tanh function is zero-centered and allows negative values, whereas the sigmoid function

does not. The sigmoid function is rarely used as an activation function in the hidden layers of

a deep neural network as it is computationally expensive, not zero-centered and tends to shift

the gradients towards zero. The last property is called the vanishing gradient problem and is

due to the network’s depth and the activation shifting the value to zero. However, the sigmoid

function is more often used as the activation layer between the last hidden layer and the output

layer. This is typically if the output should be some value between [0,1], for instance, in the case

of percentage scores. tanh has similar properties as the sigmoid function, except being zero-

centered. ReLU is computationally efficient and does not cause the vanishing gradient problem.

However, the ReLU activation function can cause neurons to die, as the output is zero for all

inputs less or equal to zero. Another inconvenience with ReLU is that positive inputs are not

saturated, which sometimes can lead to unusable neurons. Several other activation functions

have been introduced to tackle these issues but will not be considered in this thesis. Honourably

mentions are leaky ReLU [57], parametric exponential linear unit [58] and Hard-Swish [59].

CHAPTER 3. THEORETICAL BACKGROUND 18

-1 -0.5 0 0.5 1

-0.5

0

0.5

1

1.5
ReLU

(a) ReLU.

-3 -2 -1 0 1 2 3

-1

-0.5

0

0.5

1

Tanh

(b) tanh.

-5 0 5

-0.2

0

0.2

0.4

0.6

0.8

1

1.2
Sigmoid

(c) Sigmoid.

Figure 3.5: The ReLU, tanh and sigmoid activation functions.

3.2.1 Artificial Neural Network and Supervised Learning

One can think of supervised learning as an optimization problem, where the objective is to op-

timize a mapping function so that the input is categorized to some output in the best possible

manner. Therefore, it is favorable to use artificial neural networks, which essentially is a self-

learning optimization method. The model uses a given algorithm to navigate the space of pos-

sible sets of weights the model may utilize to make good predictions. Typically, the algorithm

used for training the model is some variation of a stochastic gradient descent optimization algo-

rithm, where the weights are updated using backpropagation of an error algorithm. The gradi-

ent descent refers to the error gradient, and the gradient descent algorithm seeks to modify the

weights so that the error between the predicted output and what the actual output should be,

is minimized. To measure this difference, there exists a loss function and a corresponding loss

value, also popularly known as a cost function (with the corresponding cost value). More on the

concepts of the gradient descent algorithm and backpropagation are presented in Section 3.2.2

and Section 3.2.3. In the context of optimization theory, the loss works as an objection function,

where it is used to evaluate a set of weights, which would correspond to a candidate function.

The way the loss function stands out is that it reduces all the various good and bad aspects of

a complex system down to a single scalar value. This allows the possible candidate functions

to be ranked and compared [60]. Choosing a loss function that captures the properties of the

problem can be challenging, although it is essential. It is important that the loss function cho-

sen faithfully represent the design goals. Specifying the goal of the learning scheme is, therefore,

especially important.

The Loss Function

Numerous functions exist to estimate the error of a set of weights in an artificial neural network.

As briefly mentioned in Section 3.1.1, the maximum likelihood estimation (MLE) method seeks

to minimize the dissimilarity between an empirical distribution of the data set with the un-

known validation data set. The MLE method is often a preferred estimator for machine learning

CHAPTER 3. THEORETICAL BACKGROUND 19

applications because it is consistent and efficient [61]. Under appropriate conditions, the MLE

method is assumed consistent because; as the number of training data approaches infinity, the

MLE of a parameter converges to the true value of the parameter.

In regards to classification problems, the goal is to map an input variable to a class label. By

introducing cross-entropy [62], the problem can be modelled as predicting the probability of a

sample. This means the output will be a "score" for how likely it is that the input variable should

be labeled by which classification label. For instance, given an animal recognition model, the

classification output of a blurry image input of a dog could be "75% dog". As such, the model has

the ability to express the output with a certain degree of confidence. In a binary classification

problem, where the output is either true or false, the output would be how likely the model eval-

uates the output as either positive or negative. This could, for instance, be how likely a model

evaluates a trajectory to cause a collision. By using MLE, cross-entropy would seek to find a set

of weights that minimizes the difference between the model’s predicted distribution and the dis-

tribution of the probabilities given in the training data set. For binary classification problems,

this is referred to as binary cross-entropy. Cross-entropy is often referred to as logarithmic loss

because given a distribution q relative to the distribution p over a given set. It is defined as

H(p, q) =−Ep
[

log q
]
. (3.9)

3.2.2 Backpropagation

Backpropagation is a widely used algorithm for training ANNs and is considered to be the "workhorse"

of how neural networks learn. The algorithm works by computing the gradient of the loss func-

tion with respect to each weight. It is computed one layer at a time in a backward fashion, hence

its name. Consider the notation showed in fig. 3.6.

CHAPTER 3. THEORETICAL BACKGROUND 20

Figure 3.6: A subset of an ANN showing the naming convention for activations, weights and the
desired output.

The weight is denoted w (l)
k j for the connection between the k th neuron in the (1−l)th layer to

the j th neuron in the l th layer. Similar notations are used for the biases and the activations. b(l)
j

is the bias for the j th neuron in the l th layer. a(l)
j , where j = {0,1, ..., M }, is the activation of the

j th neuron in the l th layer. The same yields for the activation a(l)
k , where k = {0,1, ..., N }. With

this notation, the activation a(l)
j is related to the activations in the previous layer (1−l). This can

be written as:

a(l)
j =ϕ

(N∑
k=0

(
w (l)

k j a(l−1)
k +b(l)

j

))
, (3.10)

where ϕ is the activation function. By rewriting this into a vectorized form, where each layer is

combined into a vector and the weights as a (k × j) weight matrix, eq. (3.10) can be written as:

a(l) =ϕ(w (l)a(l−1) +b(l)), (3.11)

The weighted input to the neurons in layer l in vecotrized format is calculated as:

z(l) ≡ w (l)a(l−1) +b(l). (3.12)

Or alternatively, as a sum of each neuron:

z(l)
j ≡

N∑
k=0

(
w (l)

k j a(l−1)
k +b(l)

j

)
. (3.13)

However, from here, only the vectorized version will be used. The activation of the output layer

CHAPTER 3. THEORETICAL BACKGROUND 21

can therefore be written as:

a(L) =ϕ(
z(L)), (3.14)

and the candidate function as:

g (a(0)) = a(L) =

a(L)

j=0
...

a(L)
j=M

 , (3.15)

where a(0) is the input layer, referred to as x previously .

The desired output is denoted as y = [y j=0, , y j=1, , y j=M]T . The loss function is denoted

C (a(L), y), as not to confuse with the layer number L. The goal of backpropagation is to compute

the partial derivatives ∂C
∂w and ∂C

∂b of the loss function with respect to any weight w or bias b in

the network. The error in the j th neuron in the l th layer is defined as δ(l)
j . The backpropagation

algorithm is a procedure to calculate δ(l)
j and relate this error to the partial derivatives ∂C

∂w (l)
k j

and

∂C
∂b(l)

j

. The error is defined as:

δ(l) ≡ ∂C

∂z(l)
j

(3.16)

and is expressed in a vectorized form as δ(l). The backpropagation algorithm is based on four

fundamental equations that enables computation of both the error and the gradient of the loss

function:

δ(L) =∇aC ◦ϕ′(z(L)), (3.17a)

δ(l) = (
(w (l+1))Tδ(l+1))◦ϕ′(z(l)), (3.17b)

∂C

∂b
= δ, (3.17c)

∂C

∂w
= ainδout, (3.17d)

where ◦ is element-wise vector multiplication, sometimes referred to as the Hadamard product.

Eq. (3.17a) is for computing the error in the output layer L. ∇aC is the vector whose components

are the partial derivatives ∂C
∂a(L)

j

. Eq. (3.17b) is an equation for the error in the l th layer in terms

of the next layer (l + 1). These two equations are enough for computing all the errors, δ(l), in

the network. This is because eq. (3.17a) gives the error for the last layer and eq. (3.17b) gives

the previous error. This can therefore be repeated in a backward fashion until all errors are

calculated. Eq. (3.17c) is an equation for the rate of change of the loss with respect to any bias

CHAPTER 3. THEORETICAL BACKGROUND 22

in the network, where it is understood that δ is evaluated in the same neuron as the bias b.

Eq. (3.17d) is an equation for the rate of change of the loss with respect to any weight in the

network. It is understood that the subscripts denote that ain refers to the input activations and

that δout refers to the outgoing error.

3.2.3 The Gradient Descent Algorithm

The gradient descent algorithm is an optimization technique that occurs in the backpropaga-

tion phase when training a deep neural network. The goal of the gradient ascent algorithm is

to continuously resample the gradient of the model’s parameter to minimize the loss function.

The gradient descent algorithm works iteratively to find a set of weights, w, that minimizes a cost

function, C (w). Finding the minimum of a function explicitly is not always feasible for concave

functions, especially with increasing complexity. Certainly not when the input space is vast, as

is the case in many deep neural network applications. Given an initial starting point, the gradi-

ent descent algorithm locates a local minimum by moving in the direction of the current point’s

gradient, −∇C (w). There is no guarantee that the local minimum that the gradient descent algo-

rithm finds is the global minimum of the function. The step size is proportional to the gradient

to help the algorithm prevent overshooting. This means that as the weights found provides a

loss value close to a local minimum, the step size becomes smaller. An illustration of how the

gradient descent algorithm iteratively works is shown in fig. 3.7.

Figure 3.7: A simplified illustration of the gradient descent illustration, where the algorithm
seeks to find a local minimum of the cost function C (w), by adjusting the weights w.

CHAPTER 3. THEORETICAL BACKGROUND 23

An important comment regarding the illustration is that it is drastically simplified, as the

input space easily could be in the thousands and that the biases are neglected. These simplifi-

cations are necessary for the sake of the illustration’s value. The loss function in the illustration,

C (w), refers to the loss function given as L(yi , g (xi)) when applied in neural networks. The rea-

son the loss function is written as C (w) in the fig. 3.7 is for the illustrational purposes.

If the algorithm uses a gradient from a subset of the entire data set instead of the data set

as a whole, it is referred to as a stochastic gradient descent method. This is usually the case

since deep neural networks require a large amount of training data, and processing the data in

batches increases computational speed drastically. The stochastic gradient descent algorithm

is presented in algorithm 1.

Algorithm 1: Stochastic Gradient Descent Pseudo Code

Result: Local minima

1 Initialize w := 0m−1, b := 0

2 for t ∈ [1, ...,T] do

3 Draw a random example from the dataset (xi , yi) ∈D

4 Compute g (xi)

5 Compute the loss Li := L(yi , g (xi))

6 Compute the gradients ∇w =∇Li w, ∇b := ∂Li
∂b

7 Update the parameters w := w+∇w, b := b +∇b

3.2.4 Dealing With Imbalanced Data Sets in Artificial Neural Networks

As discussed in section 3.1.3, an imbalanced data set occurs when examples of one class out-

number examples in another class or classes, possibly to a great extent. This could result in the

model predicting biased towards the majority class and perform poorly on the minority class.

An example of this could be when training a model to detect credit card fraud, where some hun-

dreds of transactions are fraudulent, while many thousand are not. As the structure of ANNs is

now more familiar, this subsection aims to discuss some of the methods on how to deal with

imbalanced data sets in supervised learning. The most important aspect in dealing with imbal-

anced data is to know how skewed the data set is. This means counting how many samples there

are of each class in the data set. In the case of a binary problem, this is usually referred to as how

many positive and negative samples that exists in the data set.

An intuitive and rather quick method of dealing with imbalanced data is to set the correct

initial bias to the model’s output layer. Adjusting the last layer’s bias will help speeding up the

convergence. By setting the initial bias, the model does not have to spend time the unnecessary

CHAPTER 3. THEORETICAL BACKGROUND 24

time it takes to learn that whether a positive sample is likely or not. The correct initial bias can

be derived from:

p0 = pos

pos +neg
= 1

1+e−b0
,

b0 =− loge (
1

p0
−1),

b0 = loge (
pos

neg
). (3.18)

With the naive bias initialization, the expected initial loss would be loge (2) ≈ 0.693. However,

with the bias initialization, the initial expected loss would be around:

−p0 loge (p0)− (1−p0) log(1−p0). (3.19)

Another method of dealing with imbalanced data sets is to introduce class weight optimiza-

tion. This makes the model weigh the minority class more heavily than the majority class. Class

weights will cause the model to "pay more attention" to samples from the under-represented

class. This is important as the model has adequate information about the majority class but in-

sufficient about the minority class. The class weights will modify the training algorithm to take

the skewed distribution of the classes into account. Given the imbalanced data set consisting

of fraudulent credit card transactions, as mentioned earlier, the class weights for positive and

negative samples would be very different. There is, however, a trade-off with class weights. Even

though the model (with applied class weights) will predict more true positive samples in the

fraudulent credit card example, it will also predict more false positives, meaning that the model

will have lower accuracy but higher recall. False negatives would cause fraudulent transactions

to go through, while false positives would cause an email to be sent to the customer asking them

to verify their card activity. There is a cost to either type of error, although in this case, the costs

are higher with false negatives. A consideration of the trade-offs should be done given the ap-

plication. In the case of a binary classification problem, the class weights could be set as:

w0 = 1

neg
· (pos +neg)

2
, (3.20a)

w1 = 1

pos
· (pos +neg)

2
. (3.20b)

where scaling by pos+neg
2 helps keep the loss to a similar magnitude.

CHAPTER 3. THEORETICAL BACKGROUND 25

3.2.5 Monte Carlo Dropout

Dropout is a regularization technique used during the training phase of a neural network that

helps prevent overfitting. As stated earlier, overfitting happens when the learning algorithm

memorizes the training data without producing a well-generalized model. Meaning it performs

well on the training data but poorly on unfamiliar data. This occurs if the subset of the labeled

training data, X , is not representative (enough) for the entire data set or if the set of candidate

functions, G , is vast. Dropout is a technique where a different set of neurons, at each step, are

switched off. Each neuron has a probability, p, of being switched off at each time step. The

probability is referred to as the dropout rate and is usually between [0,0.5]. An illustration of

how dropout would be in an ANN during training is shown in fig. 3.8.

Figure 3.8: Artificial neural network with dropout regularization.

There are two main reasons why using dropout is beneficial for training. The first reason is

that the information spreads more evenly in the network, meaning each neuron cannot expect

input from the same neurons every time during training since each of its sources could disap-

pear at any time. As a result, the network becomes less sensitive to input changes and achieves

better generalization. The second reason is that the outcome of the network represents an aver-

aging resemblance of many slightly different neural networks, where each separate network has

trained on a single batch.

Monte Carlo dropout (MCD) is a variation of dropout proposed by Yarin Gal and Zoubin

Ghahramani in 2016 [63]. The MCD method is a dropout method as a Bayesian approximation.

MCD samples a network from the space of all possible models. Monte Carlo dropout is, contrary

to regular dropout, also kept on during the validation phase. It is kept on so that it can gener-

CHAPTER 3. THEORETICAL BACKGROUND 26

ate multiple different predictions for each subset of the network. MCD can thereby improve

prediction accuracy and can be used to estimate model uncertainty

3.3 Convolutional Neural Networks

A convolutional neural network (CNN) is a deep artificial neural network commonly used for

analyzing two-dimensional or three-dimensional image data. Two-dimensional image data is

typically grayscale images such as depth images, and three-dimensional image data is typically

color images (which has three channels; red, green and blue). The name "convolutional neural

network" indicates that the network applies a convolution, which is a mathematical operation

that produces a third function (f ∗g) that expresses how the shape of one function, f , is modified

by another, g . CNNs has its name since it is a specialized type of a deep artificial neural network

that uses convolution in at least one layer. The motivation for CNNs is to enable machines to

perceive images, much like humans do. This could, for instance, be to classify a handwritten

number. Traditionally, a very challenging problem for machines as each handwritten number

is unique. However, CNNs take advantage of the hierarchical patterns in the data and assemble

patterns of increasing complexity by using smaller patterns discovered by the network. For clas-

sifying handwritten numbers, a CNN would ultimately make a network that recognizes features

in handwritten numbers to make classification possible. These features could be fairly obvious,

such as a straight horizontal line indicating that the number is "1" and so on. The features could

be much more abstract and make little sense for the human eye to perceive.

CNNs are inspired by receptive fields found in biological processes. The optimization func-

tion of a CNN is to optimize the kernels, also referred to as filters. The convolution is a linear

operation that calculates the scalar output of the dot product between an array of input data

(part of the image) and a two-dimensional array of weights, where the weights are the kernel. In

the animal cortex, individual cortical neurons respond to stimuli in restricted regions, called the

receptive fields [64]. The receptive fields of different neurons partially overlap so that they cover

the whole visual field, which is the idea behind the kernels in CNNs. The process of transform-

ing the input to a feature map using a systematically applied kernel is illustrated in fig. 3.9. The

kernel used in the illustration would detect vertical lines. There are numerous different kernels

with respect to both shape and magnitude. Which kernel to use depends on the application.

The objective of a CNN is to find these kernels by itself through training. One alteration to this

process is to include strides, which would make the kernel jump over a step in the input. In the

illustration below, the stride is 1, meaning that the (2×2)-kernel would overlap. With a stride

of 2, there would be no overlap. A brief comment worth noting is that the kernel applied is not

a mathematical convolution, as used in digital signal processing or other related mathematical

fields, but cross-correlation. However, in the community, it is referred to as convolution.

CHAPTER 3. THEORETICAL BACKGROUND 27

Figure 3.9: A vertical (2×2)-kernel applied to a two-dimensional input to create a feature map.
The kernel is applied three times, represented with blue, red and yellow. In reality, it would cover
the entire input. The process has a stride of 1, making the kernel overlap during the feature
retrieval of the input. The overlapping places in the two-dimensional input are colored by the
mix of the kernel colors.

A typical structure of CNNs is to have fully connected layers in the beginning, which creates

a greater depth of the input. It is common to apply the kernels on the multi-dimensional out-

puts of the fully connected layers. This results in multi-channeled feature maps as well since

the kernel must have the same depth as the input image. The convolutional layers are usually

pooling layers. Max-pooling and min-pooling are the most popular pooling layers, where they

extract the maximum value or the minimum value of the subpart of the image, respectively. It

is common to stack these layers multiple times to extract lower-level features deeper into the

network. The deeper into the network, the harder it would be for a human to sense what the

network is abstracting. The first hidden layers could make sense for the human eye, as they

could be more obvious features, like vertical or horizontal lines.

3.4 Recurrent Neural Networks

A recurrent neural network (RNN) is an ANN that allows previous outputs to be used as inputs

while having hidden states, meaning they introduce a sense of memory into the network. RNNs

allow a network not to start from "scratch" at every iteration, meaning it does not throw away ev-

erything it has learned between every new situation. As of now, only traditional neural networks

have been considered, so-called feed-forward ANNs. Feed-forward networks are somewhat lim-

ited, as it takes in a fixed size input that limits its usage in situations where a sequence of inputs

should be considered and where the size of the sequence is not predetermined. RNNs address

this issue by having loops in the networks, allowing information to persist. Consider the network

structure given in fig. 3.10, where the input and output at time t is given as X t and ht respec-

tively. The hidden states of the network given as A, are often referred to as the special units.

CHAPTER 3. THEORETICAL BACKGROUND 28

The illustration presents alternative representations useful when explaining how the RNNs hold

information from the past. RNNs can be thought of as multiple copies of the same network,

where each copy passes a message to its successor. In fig. 3.10 this is presented by unrolling the

recurrent loop into a chain-like structure.

Figure 3.10: Alternative illustrations of the recurrent loops in a recurrent neural netowrks. Illus-
tration inspiration from http://colah.github.io/posts/2015-08-Understanding-LSTMs/.

RNNs are popular for tasks where data is handled sequentially, such as natural language pro-

cessing, image captioning, translation applications, or even generating highly realistic hand-

writing samples or creating Wikipedia1 articles [65]. Consider a model that suggests the next

word in a sentence, as often found in modern devices such as smartphones. If one of the earlier

words reveals that the sentence’s verb should be in the past tense, the model should consider

this word when predicting the next words. Consider the following sentence:

After a long day at school, Timmy ran all the way home.

The correct time clause of the verb is given by the time word "after". The model will therefore

be influenced by what has already occurred earlier in the sequence. This example regarding

grammar is relatively poor since there is a set of given rules and a predefined correct word. RNNs

are more often utilized if the answer is not necessarily correct but likely given in a clue from the

past. An example of this could be:

Timmy misses the time when he was an exchange student in Italy. Next week, he is

going to meet his friends from his exchange time at a restaurant. Timmy’s favourite

dish is pasta.

In this sentence, the model that predicts the next word might guess pasta (or maybe some other

Italian dish) since previous sentences reveal that Timmy has a positive association with Italy.

The RNN is designed to take a series of inputs with no predetermined limit on size, so even

though "Italy" was mentioned two sentences prior, it still affected the predicted word. Fig. 3.11

is an attempt to present this.

1https://www.wikipedia.org/

http://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://www.wikipedia.org/

CHAPTER 3. THEORETICAL BACKGROUND 29

Naturally, the same logic applies in many other fields, where clues from the past may indicate

something about the future.

Figure 3.11: Illustration of a RNN where an input in the past affects an output in the future.

As the gap between the revealing inputs and later predictions grows, the RNN becomes un-

able to connect the information. Although theoretically possible to achieve with simple RNNs,

it is in practice a very challenging problem. This issue is explored in depth by Bengio et al. [66].

Long short-term memory (LSTM) was later introduced by Hochreiter and Schmidhuber [67] as

a method capable of learning long-term dependencies. LSTMs are, as of today, the de-facto

method of implementing RNN.

3.4.1 Long Short-Term Memory

The long short-term memory algorithm was proposed to include long-term memory in RNNs.

RNNs had at the time significant results but suffered from short-term memory, rapidly growing

complexity and time inefficiency. LSTM is a recurrent neural network architecture in conjunc-

tion with a gradient-based learning algorithm that learns to bridge time intervals in few itera-

tions. This is achieved by enforcing a constant error flow through the internal states of special

units. The special units correspond to the modification to the neural network A as presented in

the figures above. To understand how these special units work, it is advantageous first to look

at how simple RNNs are structured. Simple RNNs have simple, special units, hence their name.

An illustration of a simple RNN with output at time ht , is presented in fig. 3.12. The special unit

consists of a tanh-layer, meaning that the activation function of the neurons is tanh. The output

at time t can therefore be written as:

ht = tanh
(
W [ht−1, xt]+b

)
, (3.21)

where b is some bias and W is the trained weights. The notion [ht−1, X t] refers to the two

inputs being concatenated.

CHAPTER 3. THEORETICAL BACKGROUND 30

Figure 3.12: Strucutre of simple RNN special unit. Illustration inspiration from http://colah.github.
io/posts/2015-08-Understanding-LSTMs/

The LSTM has a similar chain-like structure as the simple RNN structure but contains four

network layers and the "cell state". The LSTM special unit architecture can be seen in fig. 3.13

The cell state, C0, ...,Ct ,Ct+1, ..., runs through the entire chain, much like the output, h0, ...,ht ,ht+1,

However, it is much less complex and contains only some minor linear interactions. It is easy

for information to flow unchanged in the cell state, but it can be modified through carefully reg-

ulated gates. These gates consist of a neural network layer, either a sigmoid layer, denoted σ in

fig. 3.13 or a tanh-layer. The major difference between the sigmoid activation function and the

tanh activation function is that the sigmoid function has an output between [0,1], while tanh has

an output between [−1,1]. The activation functions are discussed in more detail in section 3.2.

Figure 3.13: Structure of a LSTM special unit. Illustration inspiration from http://colah.github.io/
posts/2015-08-Understanding-LSTMs/.

Consider the special unit structure shown in fig. 3.13. The neural layers are represented as

yellow quadrilaterals and point-wise linear operations as gray ellipses. The first sigmoid layer

http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/

CHAPTER 3. THEORETICAL BACKGROUND 31

is usually called the "forget gate" and is denoted ft . The forget gate is given in eq. (3.22). This

is the layer where updated information replaces what the model already knows. Consider the

sentence about Timmy’s relation to Italy and the model predicting his favorite dish to be pasta. If

a sentence later mentions something about Timmy’s friend’s positive relation to Spanish cuisine,

the model should forget about the Italian relation and change to Spanish instead. This logic

would happen in the forget state. The reason it is a sigmoid and not a tanh at the forget gate

is that the output should be between [0,1] since there is a point-wise multiplication between

ft and t−1. ft = 1 would mean forget everything and replace with new information and ft = 0,

would mean toss the new information. The forget gate is given as:

ft =σ
(
W f [ht−1, X t]+b f

)
. (3.22)

The two next neural layers determine what to keep in the cell state. The second part is a

tanh-layer which creates a set of candidate values, which are values that could be added to the

cell state. This layer is denoted C̃t and given in eq. (3.23b). The first part, which is similar to

the forget gate, is usually called the "input gate" and is denoted it and given in eq. (3.23a). This

layer decides how much each new candidate value should be used to update the state cell.

it =σ
(
Wi [ht−1, X t]+bi

)
, (3.23a)

C̃t = tanh
(
WC [ht−1, X t]+bC

)
. (3.23b)

The cell state can now be updated. This is done by a linear point-wise operation between

the outputs of the two gates and the previous cell state. The old state is first multiplied with the

forget-gate, essentially forgetting what the sigmoid layer has deemed worth forgetting. Then,

the point-wise product of the input gate and the candidate values are added. This is seen in

eq. (3.24). In terms of the word predictor model mentioned earlier, this would be where the

model forgets about Timmy’s relation to Italy and updates with the friend’s relation to Spain.

Ct = ft ◦Ct−1 + it ◦ C̃t . (3.24)

The last part is called the output layer, denoted ot , and determines the special unit’s output.

The output layer is a filtered and conservative version of the cell state. The output layer is a

sigmoid layer, much like the input state and the forget state and given as:

ot = tanh
(
Wo[ht−1, X t]+bo

)
. (3.25)

Finally, the output of the special unit can be defined as:

ht = ot ◦ tanh
(
Ct

)
. (3.26)

CHAPTER 3. THEORETICAL BACKGROUND 32

3.5 Deep Collision Prediction Networks

A deep collision prediction network, as created in this thesis, determines the possibility of a

collision given relevant information about the moving robot’s current position in respect to the

environment and its planned trajectory. In this thesis, the relevant information is a depth image

at the current time step, ot and an H-long action sequence over the current time step, at :t+H .

Given these inputs, the prediction model provides a prediction of how likely a collision is for

each action in the action sequence. The collision prediction is useful because it allows the

evaluation of several action sequences prior to executing them. This means that a trajectory

planner can choose the trajectory with the lowest possibility of colliding before commanding

the UAV where to go. The previous sections and subsections provide the necessary theoretical

background for understanding how the network works.

A collision prediction network with a depth image and an action sequence as inputs can have

an architecture as shown in fig. 3.14. The neural network takes the current depth image as input

and processes it with a CNN-block and several fully connected layers. This forms the initial

hidden states for a recurrent LSTM layer. The LSTM recurrent unit takes an action horizon with

length H in a sequential fashion. The output of the LSTM is fed through some fully connected

units and has a sigmoid layer between the last hidden layer and the output layer. The prediction

model produces H outputs where each output corresponds to an action in the action sequence

input. The last activation layer is a sigmoid function because the output should be squashed

between [0,1] to represent probability. The output is a collision prediction ranging from 0%−
100% for every action step provided to the network, and each possibility corresponds to the

corresponding action in the action sequence. A possible path-planning algorithm can use this

model to evaluate several different trajectories over a depth image and choose the best trajectory

based on a set of the trajectories’ corresponding action sequences.

CHAPTER 3. THEORETICAL BACKGROUND 33

Figure 3.14: Illustration of a deep collision predictive model with a depth image input and an
action sequence input which may be used as the pipeline for a learning-based navigation policy.
A depth image is fed through a CNN and several fully connected layers (denoted FC in the fig-
ure). This forms the hidden states for an LSTM-block, which takes an H-long action sequence
as input. This is further processed through some fully connected layers and a sigmoid layer. The
output of the model is the collision prediction for each action in the H-long action sequence.

Chapter 4

Experimental Setup

4.1 Software Frameworks

This section aims to present the various software frameworks used in the thesis. Several frame-

works were exploited in order to do underlying tasks such as communication, simulation and

network training. All of the software used in this thesis are open-source.

4.1.1 Gazebo

Gazebo is a three-dimensional dynamic robotics simulator, which builds on the Open Dynam-

ics physics engine [68] and the OpenGL rendering [69]. The simulator engine supports sensor

simulation and actuator control, which is especially important in this thesis as simulated depth

images are used to train the network. Sensors, environmental links, robotic links and joints and

the environmental scenes are represented through universal robot description format (URDF)

files. A URDF file for describing the drone encapsulates a detailed description of physical prop-

erties, such as motor thrust, mass and so on. The files also describe links to the world frame

and a detailed three-dimensional geometrical description of the flying robot, making realistic

visualization and collision handling is possible. Gazebo offers several essential components of

a rigid object at high fidelity, such as inertia, mass, friction and various sensors.

The Gazebo extension RotorS [70] has been a key component throughout the work carried

out in this thesis. RotorS is an extension for Gazebo that is specialized in micro aerial vehicles

(MAVs) and provides packages necessary to simulate the flying robot in cluttered environments.

Gazebo allowed for efficient data generation necessary when training the network and making

efficient testing possible during development without having to risk real-life drones. It allowed

testing of specific situations that would have been significantly more difficult in real-life set-

tings, such as navigating a 10m × 100m corridor filled with obstacles. The similarity between

simulation and real-life applications makes for a more or less seamless transfer when realizing

34

CHAPTER 4. EXPERIMENTAL SETUP 35

the model, with only minor adjustments required.

4.1.2 ROS

The robotic operating system (ROS) [71] is a set of software libraries and tools which are tailored

for developing robotic applications. ROS is an open-source robotics middleware suite and an

essential building block for numerous advances within research and development in today’s

technology. The name "ROS" can be somewhat misleading, as the system is not an operating

system but a collection of frameworks and services for heterogeneous computer clusters, such

as low-lever control, message-passing, package management and hardware abstraction.

The message-passing and package management that ROS offers contribute to seamless and

straightforward communication between processes. The processes are called topics and the dif-

ferent parts of the robotic system may subscribe to or publish to a specific topic. For instance,

sensory measurements are typically subscribed to and low-level control topics are typically be-

ing published on. Low-level control of robotic devices is also facilitated due to the device drivers

and hardware abstractions that ROS provides.

ROS’s core functionality is augmented by various tools that enable visualization, data record-

ing, navigating package structures, automating configuration and setup processes, and flow di-

agrams of topic connections. ROS also supports a variety of programming languages, such as

C++ and Python. This is beneficial since it allows different parts of the system to be programmed

in different languages. Because ROS supports several programming languages, it also provides

rich documentation and has a thriving community.

ROS is also embedded into Gazebo, which allows for a smooth transition between simulation

and real-world applications. Gazebo also provides services like pausing and unpausing the en-

vironment, which is beneficial during training and evaluation. The work done in this thesis has

been conducted based on ROS Melodic Morenia with Ubuntu 18.04 LTS. A ros graph containing

all the ROS topics and their relations used in this thesis are shown in Appendix B.

4.1.3 TensorFlow

TensorFlow [72] is a free end-to-end open-source software library for building, training and de-

ploying machine learning models developed by the Google Brain team. TensorFlow constructs

computational, high-level structured graphs that allow automatic differentiation of neural net-

works. High-level APIs are also available, such as TENSORFLOW.KERAS, which is TensorFlow’s

implementation of the highly popular Keras API [73]. Keras offers the implementation of essen-

tial building blocks in a neural network, such as fully connected layers, pooling layers, dropout

and batch normalization as well as optimizers, objective functions, activation functions, regu-

larizers and several more. Keras also offers functionality such as data pipelines and estimators.

CHAPTER 4. EXPERIMENTAL SETUP 36

4.2 Quadrotor Platform

The quadrotor used in this work is the resilient micro flyer (RMF) created by De Petris et al. [74].

The RMF is a collision-tolerant small aerial robot tailored to traversing and searching within

highly confined environments. The robot is lightweight and agile while still having a collision-

tolerant design. It has a small size with a 0.32m diameter. The physical drone is capable of 14

minutes of endurance while weighing less than 500g. A digital twin of the RMF, has been used in

RotorS in this thesis. The real quadrotor and its digital twin simulated in RotorS are both com-

patible with ROS. The local motion planning system based on the collision prediction network

could be transferred from the simulated drone to the real drone with only minor adjustments

required. The real-life RMF and its digital twin are shown in fig. 4.1.

(a) The real-life RMF. (b) The RMF’s digital twin.

Figure 4.1: The RMF and its digital twin. Images taken from (a) https://www.autonomousrobotslab.com
and (b) https://tiralonghipol.github.io/poldepetris.

4.2.1 Hardware and Sensors

The physical RMF is equipped with NVIDIA Jetson Xavier NX1, which is a lightweight system-

on-module (SOM) capable of running deep neural networks in parallel and processing multiple

high-resolution sensors. The SOM is optimized for running on full artificial intelligence systems.

Included in the SOM are a GPU (NVIDIA Volta with 384 NVIDIA CUDA cores and 48 Tensor

cores), a CPU(6-core NVIDIA Carmel ARM v8.2 64-bit CPU 6 MB L2 + 4 MB L3) and memory (8

GB 128-bit LPDDR4x 51.2GB/s).

The RMF is also supplied with an inertial measurement unit (IMU), consisting of a gyro-

scope, an accelerometer and a magnetometer. The IMU provides measurements in three axes

and provides translational and rotational information essential for flight. The drone is also

equipped with Intel RealSense Depth Camera D4552, which has an ideal range between 0.6m

1https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-xavier-nx/
2https://www.intelrealsense.com/depth-camera-d455/

https://www.autonomousrobotslab.com
https://tiralonghipol.github.io/poldepetris
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-xavier-nx/
https://www.intelrealsense.com/depth-camera-d455/

CHAPTER 4. EXPERIMENTAL SETUP 37

to 6.0m and a field of view of 87◦× 58◦. The depth resolution can be up to 1280× 720 with a

frame rate up to 90fps. The depth accuracy is < 2% at 4m. Even though the depth image resolu-

tion can be high, it is not desired for the neural network as the increased input space would be

more computationally expensive. Due to the increased complexity, the depth image resolution

is (480×270) in this work. The D455 is also equipped with an RGB camera.

Chapter 5

Proposed Approach

This chapter presents the proposed approach for creating the framework that enables learning-

based navigation for MAVs in cluttered environments using local motion planning with a deep

collision prediction network. The proposed framework consists of three parts: (i) a self-labeling

data generation method, (ii) the collision prediction network creation and training and (iii) a

local motion planner that enables navigation in cluttered environments while being exclusively

motivated by intrinsic objectives.

5.1 Data Generation

When generating data for supervised learning, it is essential to gather a sufficiently large and

diverse dataset that facilitates for a well-generalized model and that prevents overfitting. The

data generation method created in this thesis generates data from a given number of episodes,

where the UAV is initialized at a random position within the environment at every episode. The

obstacles within the environment are shuffled at every tenth episode to create a diverse dataset.

An episode is defined from the UAV’s initialization to a collision or a "time-out" has occurred.

The time before the episode is timed out is set to 30 seconds during the data generation. A

10m×100m corridor environment with five different types of obstacles is used as the environ-

ment. During the shuffling of the obstacles, the number of each obstacle in the environment,

their placement, sizes and orientations about the z-axis are randomized within some limita-

tions. The five different shapes used as obstacles during the data generation are spheres, ver-

tical stones-shapes, pyramids, U-shapes and ⊥-shapes. The corridor environment is shown in

fig. 5.1 and the different shapes are shown in fig. 5.2.

38

CHAPTER 5. PROPOSED APPROACH 39

Figure 5.1: The 10m×100m corridor environment randomly cluttered with obstacles. The ob-
stacles inside the corridor are randomly drawn from the set of obstacles found outside the en-
vironment. The UAV is randomly initialized within the environment at every episode and the
environment is shuffled at every tenth episode.

CHAPTER 5. PROPOSED APPROACH 40

(a) Pyramid. (b) Stone. (c) Sphere.

(d) U-shape. (e) ⊥-shape.

Figure 5.2: The shapes used as obstacles in the simulated training environment.

The UAV’s motion is calculated by sampling a random relative reference yaw angle that is

within the robot’s field of view and a velocity in UAV’s x-direction in the body frame. The UAV’s

relative yaw angle is adjusted to match the randomly sampled one and the randomly selected

velocity is applied generate the motion.

The trajectory is given by the UAV’s initial state, the relative reference yaw angle and the de-

sired motion duration, which is set to 72 action steps. The desired velocity is vx = (1±d) m
s , where

d is a random velocity between [−0.25,0.25] m
s . The random velocity is added for greater varia-

tion in the data set, which helps the trained model generalize better. The length of the trajectory

is also influenced by the velocity, as the number of actions in the trajectory is fixed. The algo-

rithm for the motion primitive trajectory generation is presented in Algorithm 2. An assumption

made is that the algorithm assumes acceleration to be achieved immediately with no regard for

the time constant of the pitch dynamics. The robot’s position at every trajectory generation is

p0 = (0,0,0), as it is defined the robot’s body frame. The action sequence that is fed into the net-

work uses the relative yaw angle and is denoted commandsevaluate in the aglortihm. The actions

which are fed to the UAV uses the reference yaw angle and is denoted commandsexecute.

CHAPTER 5. PROPOSED APPROACH 41

Algorithm 2: Motion Primitive Trajectory Generation

Result: Motion Primitives

1 Draw a random yaw angle within FoV, ψrelative.

2 Measure the robot’s current yaw-angle ψ.

3 Compute the reference yaw-angle ψreference =ψrelative +ψ.

4 Compute a forward velocity with a random disturbance:

vx = (1±0.25) m
s .

5 Define the position, the velocity and the acceleration in body frame:

p0 = (0,0,0)T ,

a0 = (0,0,0)T ,

v0 = Rz(ψrelative) · (vx ,0,0)T , where Rz is the rotation matrix about the z-axis.

6 Initialize the empty states and the commands lists

7 Define the update frequency t = 0.

8 for i ∈ number of steps before replan do

9 t+= 1
15

10 p = a0
2 t 2 + v0t +p0

11 v = a0t + v0

12 a = a0

13 states[i] = (p, v, a)

14 commandsexecute[i] = (vx ,0,0,ψreference)

15 commandsevaluate[i] = (vx ,ψrelative)

Data is saved every 0.4m traveled (referred to as a keyframe) or in the case of a collision. This

is done to avoid redundant data in the data set. The action data is saved at every action executed

as it is desired to inspect the whole action sequence between the keyframes. The data saved are

the robot’s states, the depth images, the actions executed, the collision labels, and the actions

executed that correspond to a keyframe. The relevant states that are saved are the position, the

velocity, the acceleration and the orientation. The collision label is converted to a 72-long list

where the elements in the list correspond to the actions executed. The list contains zeros until

the element which represents the action that caused a collision was executed. From this point,

the list contains the ones. This is done so that the network can know which action in the action

sequence that caused the collision. The states are saved, even though they are not explicitly used

in the network. There are several reasons for saving the states, and the obvious being that if the

model should be changed (for instance, by including some states as the input to the network to

improve prediction accuracy), it should not be necessary to generate the data over, which can

be rather time-consuming. Another reason is that it can be good for data analysis of the data

set. The number of steps in the trajectory is 72. This is chosen based on the maximum depth

CHAPTER 5. PROPOSED APPROACH 42

range, the maximum velocity and the trajectory step frequency. The trajectory step frequency is

set to match the depth image frequency of 15Hz. The number of action steps in the trajectory is

calculated as:

6m

1.25m/s
·15fps = 72. (5.1)

When all the self-labeled data has been generated, they are processed to TensorFlow Records

data type (TF Record) so that they can be used in the network model created with TensorFlow.

However, before doing this, the action sequence list must be fixed. After a collision has occurred,

there are no recorded actions to fill the rest of the 72-long action sequence list. This is an issue

as the network requires a fixed action sequence length during training. This issue is fixed in

the post-processing script of the data generation. As the rest of the 72-long actions sequence

list is empty (unless it collides after exactly 72 steps), random forwarded velocities (x-direction)

and random yaw commands are filled into these empty spaces. The reason for appending these

random actions is to force the network to predict the collision label (’1’) after the real collision,

no matter what are the remaining actions in the action sequence.

5.2 Collision Prediction Network Model

The collision prediction network created during this thesis determines the collision probability

for each action in an action sequence given the robot’s current depth image and some planned

trajectory’s action sequence that is within the robot’s FoV. The trajectory is represented by an

action sequence where each action consists of a forward velocity (x-direction) and a yaw angle,

where both are expressed in the robot’s body frame. The depth image input has a size of 480×270

pixels. Based on the current depth image and several possible trajectories within the robot’s FoV,

local motion planning for navigating the cluttered environment is achieved based on the model

evaluating different trajectories and choosing the one with the lowest average probability of a

collision. The network architecture is illustrated in fig. 5.3 and is inspired by the work done by

Kahn et al. [37]. The convolutional neural network used in this thesis is inspired by the CNN

used by Loquercio et al. [38]. This CNN builds on the ResNet-8 architecture proposed by He

et al. [75]. The CNN which is used in this thesis is illustrated in fig. 5.4. The optimizer used in

the model is the Adam optimizer [76] with a learning rate of 1 ·10−3 and a decay rate of 1 ·10−5.

In order for the model to handle the noisy depth images from the depth camera, online

filtering is required. The filtering algorithm implemented is inspired by the work done by Ku

et al. [77]. In this thesis, however, the kernel size used in the dilation is increased several times

to handle the depth image’s characteristic noise. This noise often has large blind spots caused

by reflecting surfaces like windows or water surfaces. A trade-off with increasing the kernel

size is that smaller objects will appear larger and the navigation in tight environments might be

CHAPTER 5. PROPOSED APPROACH 43

worse. Given the perfect depth measurements in the simulation, the filtering is not done and

the input to the CNN the raw depth image. Different evaluation studies with and without noise

and filtering are done in Chapter 6.

The action horizon input to the network consists of 18 actions, which corresponds to every

fourth action in the 72-long action sequence described in the previous section. The input hori-

zon is shortened because a 72-long input horizon would be too long for the LSTM to handle

properly. By taking every fourth action, the distance represented by the trajectory would still

be the same, meaning that the collision prediction would still be able to predict collisions that

are further away. Taking every fourth action will also remove much of the redundant data in the

action sequence that is fed into the LSTM.

Figure 5.3: An illustration of the deep collision prediction network developed in this thesis. This
model is proposed as a means to perform local motion planning for learning-based navigation
using a depth image and an action sequence as inputs. The depth images are filtered based
on the IP-basic filtering algorithm [77] and the CNN architecture is inspired by the CNN used
by Loquercio et al. [38]. The action sequence input has an 18-long horizon and consists of a
forward velocity (x-direction in the robot frame) and a yaw angle that is within the robot’s field
of view.

CHAPTER 5. PROPOSED APPROACH 44

(a) (b)

Figure 5.4: Illustration of the CNN used in the collision prediction network. (a) is the entire CNN
and how it fits in the network. The shared part of the architecture consists of a ResNet-8 with
three residual blocks. (b) is a closer illustration of the residual blocks, where BN means "batch
normalization". ReLU is the activation and the kernel size and the stride for the Conv-layers are
specified in (a). The notation in the figure refers to the first value being the kernel’s size, the
second being the number of filters, and the third being the stride if it is different from 1.

5.2.1 Accounting for Imbalanced Data Set

The data set generated consists of 60.000 episodes, where 50.000 is used as training data and

10.000 is used as validation data. A total of 4.044.438 actions were executed in the data set, where

655.930 of the actions are associated with a collision and 3.388.508 are not. In other words,

16.22% of all actions executed are associated with collisions and 83.78% actions are not. This

is a rather skewed data set, as discussed in Section 3.1.3 and in Section 3.2.4, and would bring

some issues like high misclassification errors for the minority class, which in this case means

"collision". This is not desired because if not handled properly, the model might easier predict

"no-collision" than "collision" as it is more likely given the data set. Two approaches have been

used to address this in the thesis: i) adjusting the output bias and ii) include class weights. The

output bias is given as (where "pos" refers to "collision" and "neg" refers to "no-collision"):

biasout = loge

(npos

nneg

)
= loge

(655.930

3.388.508

)
≈−1.64, (5.2)

and the class weights are:

wneg = 1

nneg
· ntotal

2
= 1

3.388.508
· 4.044.438

2
≈ 0.597, (5.3a)

wpos = 1

npos
· ntotal

2
= 1

655.930
· 4.044.438

2
≈ 3.08. (5.3b)

The equations are closer discussed in section 3.2.4 and presented in eq. (3.18) and eq. (3.20).

A custom loss function that accounts for the class weights has been created. In addition, custom

CHAPTER 5. PROPOSED APPROACH 45

training and validation functions have also been created.

5.3 Local Motion Planning for Autonomous Navigation

There are several methods of utilizing the collision prediction network to perform local au-

tonomous navigation. The method used in this thesis is to sample several random trajecto-

ries in the robot’s FoV, evaluate each of them with the current depth image and choose the one

that is the least likely to collide with the environment. The trajectory that is the least likely of a

collision could either be chosen as the trajectory with the lowest average probability or the tra-

jectory whose maximum collision probability value is the lowest across the evaluated trajectory

set. Other methods like prioritizing earlier collision probabilities with some exponential func-

tion or similar are possible, yet not explored much in this work. The same trajectory generation

method that was used in the data generation is reused when sampling the random trajectories.

Therefore, every trajectory is 72 action steps long, where every fourth action step is fed into the

network. Every trajectory is fed through the network several times, and the average collision

probability is used when evaluating the trajectories. In this work, the best trajectory is defined

as the trajectory with the lowest average collision probability, and the algorithm for finding this

is shown in Algorithm 3.

Algorithm 3: Motion Planner Algorithm

Result: Best current trajectory

1 Get the current robot states and the depth image st , ot

2 for i ∈ number of paths to evaluate do

3 Compute several random trajectories trajectories[i] ← compute_trajectory(st)

4 for trajectory ∈ trajectories do

5 Run the collision predictor several times and compute the average predictor(ot ,

trajectory)

6 Compute the average probability for each trajectory MEAN(collision probabilities)

7 Find the index that corresponds to the lowest average probability index_best

8 Find the trajectory based on the best index trajectories[index_best]

Chapter 6

Evaluation Studies

The following sections will present the evaluation studies of the model’s performance during

training, the trained model’s ability to perform local motion planning and the model’s ability

to navigating different types of cluttered environments. Lastly, the model will be tested with

real-life depth images. The average computational GPU-time for the CNN-part of the network

is 25ms and 7ms for the RNN-part (with 18 LSTM cells) when evaluating 1024 trajectories ten

times each, using the Nvidia GeForce RTX 2060.

6.1 Model Performance

The model has trained over 500 epochs, meaning it has trained over the entire data set 500 times.

The precision, the recall and the F 1-score metrics for the training and for the validation are

shown in fig. 6.1-6.4. Not surprisingly, the model’s performance had more variation in the ac-

curacy, recall, precision and loss during the validation phase, especially for the earlier epochs.

This is because the validation data set contains unseen data and the model is not yet sufficiently

generalized from the training data set at the early epochs.

As can be seen in fig. 6.1, the accuracy of the model during the training is a lot more con-

sistent than during the validation. However, as the model trains, there is less variation in the

accuracy of the validation data and the accuracy of the validation data becomes similar to the

accuracy of the training data. This means that the model generalizes the categorization of true

positives and true negatives of the validation data well. After 500 epochs, the training accuracy

and the validation accuracy equal (0.990). It is worth noting that the training accuracy is rather

high after a single epoch. This indicates that the training data set should be sufficiently large.

However, this observation should not be mixed with the assumption that the training data set

is sufficiently diverse. The similarity between the training accuracy and the validation accuracy

indicates the sufficient diverseness of the training data set relative to the validation data set.

The recall, as seen in fig. 6.2, converges close to the maximum value after few epochs, indi-

46

CHAPTER 6. EVALUATION STUDIES 47

cating that the model quickly learns to categorize false negatives. The training and validation

recall closely follows each other during nearly all the 500 epochs. The recall value after 500

epochs is 0.979 for the validation data and 0.980 for the training data. This similarity is good

because it suggests that the model generalizes the categorization of false negatives to the val-

idation data well. After one epoch, however, the recall value is still high for the training data

(0.934), while it is much lower for the validation data (0.477). This suggests that the model is not

well-generalized after only one epoch, as is expected.

The precision values are shown in fig. 6.3. The precision metric (sometimes referred to as the

positive predictive value) indicates that the model learns false positives as the epochs increase.

The precision for the validation data has more variations than the precision for the training

data, especially for lower epochs. This is expected as the model is learning new methods of

categorizing false positives during training. The precision value for the validation data varies

between [0.673,0.976] for all epochs. As the epochs increase, the precision becomes more stable

and predictable. After 500 epochs, the precision values are 0.957 for the validation data and

0.956 for the training data, which means that the model generalizes its ability to categorize false

positives well to the validation data set. The precision is especially spiky compared to the recall

because precision measures the false positives and the recall measures the false negatives. There

are more negative cases than positive in the data set, so the ability to categorize false positives

is more difficult than learning to categorize false negatives.

The F 1-score takes both the false positives and the false negatives into account and thereby

represents the learning of an imbalanced data set better than either recall or precision measure-

ments on their own. The F 1-score is given in eq. (3.7) and shown in fig. 6.4. The F 1-score for

the validation data after the first epoch is 0.628 while it is 0.913 for the training data. After 500

epochs, it is 0.968 for the validation data and the same for the training data, 0.968.

CHAPTER 6. EVALUATION STUDIES 48

0 100 200 300 400 500
Epoch

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99
Ac

cu
ra
cy

Training vs. Validation: Accuracy

type
Validation
Training

Figure 6.1: Accuracy for the validation data and the training data over 500 epochs.

0 100 200 300 400 500
Epoch

0.5

0.6

0.7

0.8

0.9

1.0

Re
ca
ll

Training vs. Validation: Recall

type
Validation
Training

Figure 6.2: Recall for the validation data and the training data over 500 epochs.

CHAPTER 6. EVALUATION STUDIES 49

0 100 200 300 400 500
Epoch

0.70

0.75

0.80

0.85

0.90

0.95

Pr
ec

isi
on

Training vs. Validation: Precision

type
Validation
Training

Figure 6.3: Precision for the validation data and the training data over 500 epochs.

0 100 200 300 400 500
Epoch

0.65

0.70

0.75

0.80

0.85

0.90

0.95

F1
-S

co
re

Training vs. Validation: F1-Score

type
Validation
Training

Figure 6.4: F 1-score for the validation data and the training data over 500 epochs.

The training loss and the validation loss for the epochs are shown in fig. 6.5. The model

CHAPTER 6. EVALUATION STUDIES 50

overfits slightly, as can be seen by the training loss still slowly decreasing while the validation

loss is not. The validation loss after 500 epochs is 22.773 and the training loss after 500 epochs

is 21.663. When the validation loss is significantly different from the training loss, as is the case

during the spikes in fig. 6.5, the model on the current epoch has overfitted the training data and

generalizes poorly to the validation data. The spikes of the validation loss gradually decrease in

magnitude and frequency as the number of epochs increases, which indicates that the model is

training well.

0 100 200 300 400 500
Epoch

20

30

40

50

60

70

80

90

Lo
ss

Training vs. Validation: Loss
type
Validation
Training

Figure 6.5: Loss for the validation data and the training data over 500 epochs.

6.1.1 Local Motion Planning

In this subsection, the model’s ability to perform local motion planning will be presented by 3D

images (obtained from Rviz [78]) of the drone with the evaluated trajectories and the evaluated

trajectories displayed over the drone’s current depth image. The model’s trajectory evaluation

in a tight environment can be seen in fig. 6.6. In this case, 20 trajectories are evaluated, which

can be seen in fig. 6.6a. The best possible trajectory is colored green and the worst possible tra-

jectory is colored red. As can be seen from the figure, the model evaluates the best trajectory as

a collision-free path and the worst trajectory as a path with a certain collision into the obstacle

to the right. All of the evaluated trajectories are displayed over the drone’s current depth image

in fig. 6.6b. Every fourth action in the 72-long action sequence is fed into the network, meaning

a total of 18 actions fed into the network per trajectory. This is presented in the figure as 18 tra-

CHAPTER 6. EVALUATION STUDIES 51

jectory segments for every trajectory. Each trajectory segment is colored based on the segment’s

collision probability, where red indicates a high collision probability and green represent a low

collision probability. This allows a greater understanding of when the model predicts a collision

and is illustrated more evidently in the top-down 3D figure in fig. 6.7a, where the same color-

ing scheme applies. The correlation between when in a given trajectory the model suggests a

collision and the actual placement of the obstacles means that the model learns to connect a

forward velocity and a yaw angle to a depth image measurement on its own and thereby learns

a sense of time. Not only is it able to predict whether a collision would occur in a trajectory, but

also when it would occur.

Interestingly, if fig. 6.6b is studied more in detail, one can observe that the collision probabil-

ity is low after the model has predicted a certain collision. This phenomenon is closer discussed

in Section 5.1, and is due to the random completion of the 72-long action sequence during the

data generation that is used in the model training.

(a) The best trajectory colored green
and the worst colored red.

0 100 200 300 400

0

50

100

150

200

250

(b) The 20 random trajectories evaluated over the current
depth image.

Figure 6.6: The model’s evaluation of 20 random trajectories. (a) is a 3D-image showing the
trajectory that the model evaluates as the least likely to cause a collision colored green and the
trajectory with the highest probability of collision colored red. (b) shows all the 20 random tra-
jectories evaluated over the drone’s current depth image. The color of the trajectory segments
represents the collision probability of every fourth action in the 72-long action sequence.

It can be slightly challenging to see in fig. 6.6 that the evaluated trajectories also have an

average velocity between [0.75,1.25] m
s , which affects the trajectory’s length. This can be more

easily seen in the top-down view in fig. 6.7a, where the best trajectory’s length is clearly shorter

than the worst ones. As shown in the figure, the shorter trajectory is advantageous in the current

situation. It can also be seen that the drone has started moving with this trajectory. All trajecto-

ries have the same number of steps, 72, which is why the length of the trajectories represents the

trajectory’s velocity. The different trajectory velocities are not as clearly seen in fig. 6.7b, which

CHAPTER 6. EVALUATION STUDIES 52

is the corresponding depth image view for fig. 6.7a.

The trajectories over the depth image are plotted as they are because it is necessary to trans-

form the 3D trajectory to a 2D plot that can be placed over the depth image and clearly display

the different trajectory angles. It can be argued that the length of the trajectories could be short-

ened as well, but this is not done as it could give a false indication of where the trajectory is

heading as the trajectory, in reality, is into the plane. The different trajectory velocities are the

leading reason why trajectories that have approximately the same angles have different collision

probabilities. This can be seen in fig. 6.7b. The trajectory to the left of the image has a lower col-

lision probability while heading towards the wall like the trajectories nearby. If this is studied

in relation with fig. 6.7a, it can be seen that the specific trajectory’s velocity makes it sufficiently

short enough, so it barely reaches or even fail to reach the wall. In contrast, the trajectories with

similar angles have high velocities, and collision with the wall is likely.

(a) Different trajectory lengths for the
20 evaluated paths.

0 100 200 300 400

0

50

100

150

200

250

(b) The 20 random trajectories evaluated over the current
depth image.

Figure 6.7: The model’s evaluation of 20 random trajectories where it is highlighted that the
paths have different velocities and thereby lengths. (a) is a top-down view of the paths in 3D,
showing that the model chooses the shortest path. (b) is the corresponding depth image with
the 20 trajectories.

6.1.2 Model Activation

Gradient-weighted class activation mapping (Grad-CAM) [79] is used to visualize the model’s

last CNN-layer’s activation. Grad-CAM is a "visual explanation" for decisions from a large class

of CNN-based models, making them more transparent. In short, the Grad-CAM uses the gra-

dients of the target class into the last CNN-layer (which is the max pool layer before the flatten

layer in fig. 5.4) to produce a coarse localization map highlighting the important regions in the

image for predicting the concept. In the case of the collision prediction model used in this the-

CHAPTER 6. EVALUATION STUDIES 53

sis, this would essentially mean: "Which areas of the depth image causes a high collision prob-

ability given the depth image and the action sequence". The heatmap has a resolution of (8,5),

which matches the resolution of the output layer of the CNN. The low resolution compared to

the depth image (which has a resolution of (480,270)) is the reason why the heatmap is coarse.

Fig. 6.8 shows the model activation for a depth image and the trajectory that the model eval-

uates as the most likely to cause a collision. The depth image has a pyramid-shaped obstacle

close to the center and a wall to the right. The trajectory deemed the worst is the one which is

heading straight into the pyramid-obstacle. This means that the area around the pyramid will

significantly impact the collision prediction model more than other areas, given the action se-

quence. Interestingly the ground and the wall are also highlighted as possible collision areas.

Fig. 6.9 shows the model activation for a depth image and the trajectory that the model evalu-

ates as the least likely to cause a collision. As can be seen in the figure, there is no activation

in the CNN’s last layer. This means that there is no (or very low) probability of colliding with

obstacles in the depth image given the action sequence.

0 100 200 300 400

0

50

100

150

200

250

Figure 6.8: Grad-CAM visualization of the trajectory that the model evaluates as the most likely
to cause a collision.

0 100 200 300 400

0

50

100

150

200

250

Figure 6.9: Grad-CAM visualization of the trajectory that the model evaluates as the least likely
to cause a collision.

Other Grad-CAM visualizations of the worst and best trajectories are given in fig. 6.10 and

fig. 6.11. In this case, the drone is close to a wall to its left and an obstacle is within the field of

CHAPTER 6. EVALUATION STUDIES 54

view in the middle of the depth image, but at a distance. The worst trajectory crashes into the

wall to the left. This can be seen as a dark red spot in the corresponding heatmap, indicating

that a collision in this area is very likely. Worth noting is that the model also ignores the object

in the middle of the depth image with the best trajectory. In this case, the model is still affected

by the wall to its left. This is probably because the wall is so close that it would affect the model

regardless of the trajectory. The best trajectory is in a collision-free path but close to the obstacle.

Possible reasons why there is no activation for the obstacle in the middle could be that (i) the

trajectory is sufficiently short so that it ends before the obstacle or (ii) the model cares little

about how great of a margin it passes an obstacle with as long as it is not colliding with it. The

latter reason is more discussed in Chapter 7.

0 100 200 300 400

0

50

100

150

200

250

Figure 6.10: Another Grad-CAM visualization of the trajectory that the model evaluates as the
most likely to cause a collision.

0 100 200 300 400

0

50

100

150

200

250

Figure 6.11: Another Grad-CAM visualization of the trajectory that the model evaluates as the
least likely to cause a collision.

6.2 Navigating in Simulated Cluttered Environments

In this section, the model will be used to enable collision-free navigation in cluttered environ-

ments. There are no waypoints or other extrinsic goals for the drone to achieve, only an intrin-

sic motivation of not colliding with the environment. Therefore, the trajectories chosen will be

CHAPTER 6. EVALUATION STUDIES 55

solely based on having the lowest average collision probability at the given time. The follow-

ing subsections will present the model’s performance in different types of environments. Each

environment is tested over 50 episodes. Time-of-flight, distance traveled and the number of ac-

tion steps executed are recorded for each episode and presented for each study. The drone has

a fixed height of 2m above the ground and the (x, y, z)-initialization at each episode is specified

for each given environment. The model evaluates 1024 possible trajectories within the robot’s

FoV and each action sequence is fed through the network 10 times to calculate the average colli-

sion probability. The eight first actions in the 72-long action sequence are executed, imitating a

rollout scheme. Every episode has an upper time limit of 125s, and when the time-of-flight has

passed the time limit, the episode is finished.

There are three main reasons for collisions: (i) the drone does not see the end of a corner due

to its fairly short depth image range (6m), making the model believe that the end of the corner

is the best path. When the drone first discoverers the end of the corner, it does not have the

necessary space to maneuver out of the situation, as every trajectory has a minimum of 0.75 m
s

forward velocity and a yaw angle between [−43◦,43◦]. These collisions are referred to as corner

collisions and are possibly strongly underrepresented in the training data, making them hard for

the model to discover. (ii) the drone changes its course to avoid an obstacle, but as the drone

passes by the obstacle, it replans its trajectory with a new depth image. In this depth image,

the obstacle is barely visible in the side-view of the drone’s limited FoV (86◦) and is possibly lost

in the processing of the depth image, making it invisible to the drone. Therefore, the model

will sometimes choose a trajectory that barely scratches an obstacle as the drone is passing by.

These types of collisions are referred to as pass-by collisions and are a consequence of only using

the current depth image in the network and not a depth image sequence where previous depth

images are also considered. (iii) the drone successfully maneuvers away from an obstacle with

a sharp turn, but as the depth image updates, the drone finds itself in a situation it cannot ma-

neuver out from due to the momentum it gained from the previous sharp turn. These types of

collisions are referred to as blind collisions. The three different types of collisions are illustrated

in fig. 6.12. The different types of collisions and the trade-off between computational efficiency

and better situational awareness will be discussed in greater detail in chapter 7. Other types

of collisions also occur, such as objects being too small for the model to detect or other cases

where the drone suddenly finds itself in a situation it cannot maneuver out from.

CHAPTER 6. EVALUATION STUDIES 56

(a) Corner collision. (b) Pass-by collision. (c) Blind collision.

Figure 6.12: The three most common types of collisions, where the drone’s FoV and movement
are shown. (a) illustrates a typical corner collision where a collision is inevitable, (b) illustrates
a pass-by collision where the model scratches an obstacle as it is passing by as it does not see it
and (c) illustrates a blind collision where the previously rapid turn caused the drone to get into
an inevitable collision which it could not predict with the prior depth image. The reason the last
trajectory in (c) is not all the way to the left in the FoV, as the model’s proposed trajectory prob-
ably would be, is because of the drone’s momentum from the previous turn. The momentum
makes it impossible to change the drone’s course sufficiently fast to escape the collision.

To distinguish the different reasons for an episode to end, each episode is marked as either

reset, other or time out. "Reset" occurs when the model is almost certainly going to collide with

the environment, which in most cases is due to an incoming corner collision. If the best trajec-

tory has an average collision probability of > 20% the episode is stopped and marked as reset.

The reset threshold of 20% is found by trial and error and does not guarantee that a corner colli-

sion is happening but catches corner collisions in most cases. "Other" is for every other type of

collision, which is mainly caused by pass-by collisions or blind collisions. In some cases, these

collisions are also corner collisions but are not marked so because the collision probability is

barely below the reset threshold. An episode is marked as "time out" if the episode lasts 125s,

which is the upper time limit.

In the following subsections, different evaluation studies of the model will be done. The first

study presented is navigation in cluttered environments with different levels of obstacle density.

The objects and the environment will be the same as used when generating data for training,

meaning the environment and the obstacles are known. Perfect depth image measurements

are assumed and no filtering is therefore done. The second study introduces unknown objects

that are more "real-life"-like into the familiar corridor environment. Unknown objects refer to

objects not used during training. This is done to evaluate how well the model generalizes with

obstacles it has never seen before. During this particular study, filtering the depth image will

also be used to generalize the obstacles to simpler shapes and smoothing their details. In the

third evaluative study, there will be an eight-shaped unknown environment with known obsta-

CHAPTER 6. EVALUATION STUDIES 57

cles. This study is interesting because it is desired to look at the performance of the model in

an environment that allows more yaw-movement than the corridor environment. In the fourth

evaluative study, measurement noise will be added to the depth image and filtering will be ap-

plied. The model performance with perfectly simulated depth images, noisy depth images and

filtered depth images is presented and commented on briefly.

6.2.1 With Different Degrees of Obstacle-Density of Known Obstacles

In this study, the model will be evaluated in the same 10m× 100m corridor environment and

with the same obstacles that were used during the model training. Three difficulty levels will

be evaluated where the density of the obstacles determines the degree of difficulty. The three

difficulty levels are hereby referred to as "easy", "medium" and "hard", where each level has an

increased obstacle density. The environments of the three levels can be seen in Appendix C.1.

The paths that the drone chose at each episode for the three different environment difficulties

can be seen in fig. 6.13-6.15.

The drone is initialized in the corridor every episode at (x, y, z) = (−50,0,2) (using the right-

hand convention) and with no orientation. The corridor does not have walls at either of the

ends. This will affect some of the "time out"-marked episodes, as some of the episodes will

spend the last few meters outside of the environment in empty space. However, in most cases,

this is only for some few meters as the "time out"-time is 125s, the corridor is 100m long, the

forward velocity is (1±0.25) m
s and the drone is not moving in a straight line. The latter reason

is especially valid for more cluttered environments, like in fig. 6.15c compared to fig. 6.13c. In

fig. 6.14c and fig. 6.15c the drone does a U-turn once and goes outside the corridor. This type of

time-outs affects the results more than if the drone escapes the corridor at the other end. The

corner collisions are especially easy to notice in fig. 6.14a, where the episodes are marked as

"reset" and finished due to the high collision probability.

The metrics for the easy, the medium and the hard environments are shown in Table 6.1.

The easy environment has the longest time-of-flight, the longest distance traveled and the most

action steps executed, while the hardest environment has the lowest in all metrics. The metrics

for the easy environment and the medium environment are similar, but the easy environment

has more "timed-out"-episodes than the medium one, with 72% and 48% respectively. This in-

dicates that the medium environment, which had an average time-of-flight of 106.46s±23.73s,

usually crashed or was reset not long before the time out would occur. Nearly all of the collisions

for the easy environment are either pass-by collisions or blind collisions. Two blind collisions

triggered the model to reset for the easy environment, as can be seen in fig. 6.13a. The episodes

for the easy and the medium environment also have lower standard deviation than for the hard

environment, meaning that the results were more consistent for the easy and the medium envi-

ronment.

CHAPTER 6. EVALUATION STUDIES 58

The medium environment had eight episodes that triggered a reset, where all were caused

by corner collisions. The majority of the episodes in the medium environment were still marked

as "time-out". The collision under the "other"-category were mainly pass-by collisions or blind

collisions.

The hard environment had the lowest time-of-flight, distance traveled and action steps exe-

cuted and with the highest standard deviation, which was as expected as the environment was

severely cluttered. However, the drone managed to time out six times, where the episode never

reached outside of the environment boundaries due to the heavily cluttered environment. The

drone had the most collisions quite early on in this environment. This affected the high stan-

dard deviation, as it often either managed to pass the first cluttered area in the beginning and

then continued for a while or crashed in this area. The model also triggered reset eight times in

this environment, where most of the cases were due to corner collisions.

Table 6.1: Average time-of-flight, distance traveled and action steps executed with standard de-
viation (denoted std) and the collision type distribution for the easy, the medium and the hard
environments.

Environment Time ± std [s] Distance ± std [m] Steps ± std Reset Other Time Out

Easy 111.71±25.50 107.86±25.44 643.12±150.67 4% 24% 72%
Medium 106.46±23.73 102.99±23.60 624.40±143.07 16% 36% 48%

Hard 51.59±40.83 49.46±41.50 305.92±249.08 16% 72% 12%

CHAPTER 6. EVALUATION STUDIES 59

Easy

(a) Reset. (b) Other. (c) Time out.

Figure 6.13: 50 episodes with easy difficulty

CHAPTER 6. EVALUATION STUDIES 60

Medium

(a) Reset. (b) Other. (c) Time out.

Figure 6.14: 50 episodes with medium difficulty.

CHAPTER 6. EVALUATION STUDIES 61

Hard

(a) Reset. (b) Other. (c) Time out.

Figure 6.15: 50 episodes with hard difficulty.

CHAPTER 6. EVALUATION STUDIES 62

6.2.2 With Unknown Obstacles

In this evaluative study, the familiar 10m×100m corridor environment will be used, but with ob-

stacles that are unknown to the model. The obstacles in this environment are closer to obstacles

found in real life and with more details than the known obstacles. The unknown obstacles used

in this study are trees, water fountains, mailboxes, ambulance cars, fire hydrants, dumpsters,

trashcans, ladders, lamp posts and jersey barriers. The objects have different sizes and orien-

tations. All objects are taken from http://models.gazebosim.org/. The environment can

be seen in Appendix C.2. The environment is evaluated twice, once with raw depth image input

and once with a filtered depth image input. The filtering applied is similar to the work presented

by Ku et al. [77] and consists of dilation, morphology and blurring, but the full-kernel’s size used

in the dilation is increased to (42×42). The reason for introducing the filtering with increased

dilation is to simplify the shapes of the obstacles. Typical shapes in this environment that the

model especially struggles with are leaves on the trees and thin objects like ladders, lamp posts

and so on. The depth images before and after applied filtering are shown in fig. 6.16. The spe-

cific CPU-time (using Intel(R) Core(TM) i7-9700 CPU @ 3.00GHz) of the filtering depends on

the depth image but averaged 5.46ms with a standard deviation of 6.58ms, suggesting there is a

strong variation in the CPU-time required.

(a)

(b)

Figure 6.16: Filtering applied to depth images with unfamiliar obstacles. (a) shows filtering with
large dilation of a tree structure and (b) shows filtering with large dilation of a ladder and a pole.

The average time-of-flight, distance traveled and action steps executed with standard devia-

http://models.gazebosim.org/

CHAPTER 6. EVALUATION STUDIES 63

tion for the 50 episodes with unknown obstacles in a known environment, as well as the collision

type distribution for unfiltered and filtered depth images, can be seen in Table 6.2. The results

are better with the filtered depth images, but not by a great margin. It is necessary to inspect the

paths in the episodes to see what caused the collisions to better understand the model’s behav-

ior. The results of the 50 episodes with unfiltered depth images can be seen in fig. 6.17 and the

results of the 50 episodes with filtered depth images can be seen in fig. 6.18. As expected, the

model struggles with tree structures and specifically the tree’s leaves and branches. Nearly all

collisions with the raw depth images are either caused by a collision with the first or the second

tree, as can be seen in fig. 6.17b. The first tree has a high collision rate, meaning if the drone

is on a collision course with this tree, it does not change its course. An interesting observation

is that the model did not reset itself due to a high collision probability caused by the trees. In

fact, the collision probabilities were low even though a collision with the trees was inevitable.

This is because the model does not know how to deal with this type of depth images, as it has

never seen anything close to it before. It did not have issues navigating around the ambulance,

but that was expected as its shape is not as complicated as the trees’. It had zero time-outs and

triggered a reset once due to a likely collision with the wall.

With the filtering is applied, the drone manages to get past the first tree almost every time but

struggles with the larger trees, such as the second and the third tree. This is because their leaves

and branches reach further, making the filtered depth image more diffuse for the model. When

the tree is sufficiently small, it appears more like a "solid block", as displayed in fig. 6.16a. Reset

also occurs more frequently and are caused by likely collisions in the filtered tree structures.

Table 6.2: Average time-of-flight, distance traveled and action steps executed with standard de-
viation (denoted std) and the collision type distribution when including unfamiliar objects in
the environments for unfiltered and filtered depth images.

Environment Time ± std [s] Distance ± std [m] Steps ± std Reset Other Time Out

Unknown
obstacles

34.47±12.75 34.32±12.98 213.26±79.43 2% 98% 0%

Unknown
obstacles
(filtered)

45.27±20.87 46.10±21.87 287.46±134.31 26% 74% 0%

CHAPTER 6. EVALUATION STUDIES 64

Unknown Obstacles without Filtering

(a) Reset. (b) Other. (c) Time out.

Figure 6.17: 50 episodes with unknown obstacles.

CHAPTER 6. EVALUATION STUDIES 65

Unknown Obstacles with Filtering

(a) Reset. (b) Other. (c) Time out.

Figure 6.18: 50 episodes with unknown obstacles.

CHAPTER 6. EVALUATION STUDIES 66

6.2.3 In an Unknown Environment with Known Obstacles

The model is tested in an "eight"-shaped environment to see how well it generalizes from the

corridor environment to this new type of environment with curved walls. This type of envi-

ronment, as can be seen in Appendix C.3, allows more yaw movement than the corridor envi-

ronment on which the model was trained. The average time-of-flight, distance traveled, action

steps executed and the collision type distribution can be seen in Table 6.3 and the results of 50

episodes of flights in fig.6.19. The drone is initialized at (x, y, z) = (−22,0,2) every episode. The

drone timed out in 44% of the cases. This can be seen in fig. 6.19c. The model generalizes well

to the unfamiliar environment, and most of the collisions are blind collisions, especially caused

by the U -shaped obstacle. This is a rather narrow passage that is not due to the eight-shaped

environment. Guards for the corners are intentionally placed to avoid obvious reset triggers.

Reset was only triggered once (2% of the episodes) and was caused by a blind collision, as can

be seen in fig. 6.19a.

Table 6.3: Average time-of-flight, distance traveled and action steps executed with standard de-
viation (denoted std) and the collision type distribution for the eight-shaped environment with
known obstacles.

Environment Time ± std [s] Distance ± std [m] Steps ± std Reset Other Time Out

Eight-shaped 85.11±41.42 83.66±41.53 515.60±254.13 2% 54% 44%

CHAPTER 6. EVALUATION STUDIES 67

(a
)

R
es

et
.

(b
)

O
th

er
.

(c
)

T
im

e
o

u
t.

F
ig

u
re

6.
19

:5
0

ep
is

o
d

es
in

an
"e

ig
h

t"
-s

h
ap

ed
st

ru
ct

u
re

w
it

h
kn

ow
n

o
b

st
ac

le
s.

CHAPTER 6. EVALUATION STUDIES 68

6.2.4 With Added Depth Image Noise

In this study, noise is added to the depth image and filtering of the noisy image is applied. The

model’s behavior is studied in the medium environment (from Section 6.2.1) and the simulated

depth image, the noisy depth image and the filtered depth image are evaluated and compared.

Depth images are, as discussed earlier in this thesis, highly affected by a characteristic noise.

The measurement noise has been neglected until now as perfect sensory data obtained from

the simulation have been used. Therefore, it is desired to add noise to the depth images and

evaluate the model’s performance with the added noise and with filtering of this noise. The

characteristic noise model is inspired by the SimKinect [80] and the filtering is inspired by the

image-processing algorithm created by Ku et al. [77] (which was also used during Section 6.2.2).

Shortly summarized, the noise model is a combination of the work done by Barron and Malik

[81] and Bohg et al. [82] and creates random offsets to shift the pixel locations in the image and

bilinearly interpolate the ground truth depth values. The filtering consists of dilation, morphol-

ogy and median and Gaussian blurring. The dilation has a full kernel with a size of 32×32 such

that large, noisy areas are filtered out. A simulated depth image with its corresponding noisy

and filtered versions is presented in fig. 6.20. The average CPU time with standard deviation

for filtering the depth images during this study was 5.15ms±7.29ms (Intel(R) Core(TM) i7-9700

CPU @ 3.00GHz).

Two important notes to make are that (i) the model used is trained on perfectly simulated

depth images and has never witnessed noise before, and (ii) realistic depth image noise model-

ing is difficult to imitate and is a challenging field of study on its own.

Figure 6.20: The simulated depth image, the simulated depth image with added noise and the
noisy depth image with applied filtering. The filtering have a dilation kernel size of 32×32.

The average time-of-flight, distance traveled, action steps executed and the collision type

distribution for the perfectly simulated, the noisy and the filtered depth images can be seen in

Table 6.4. The results of 50 episodes for the perfectly simulated are shown in fig. 6.14 (same as

in Section 6.2.1). The results of the noisy and the filtered depth images are shown in fig. 6.21

and fig. 6.22. As expected, the model performs poorly with the added noise. As can be seen in

fig. 6.21a and fig. 6.21b the model rarely detects obstacles or detects objects that are not there.

This results in a low average time-of-flight of 17.61s±7.13s and repetitive collisions in the earlier

CHAPTER 6. EVALUATION STUDIES 69

obstacles. The behavior is expected because of the aggressive noise added, which the model

has never seen before. When introducing filtering of the noisy depth images, the average time-

of-flight, distance traveled and action steps executed are close to the metrics when perfectly

simulated depth images are used. The average time-of-flight was 99.13s±30.80s for the filtered

run and 106.46s±23.73s for the perfectly simulated run. Both also had similar numbers of time-

out episodes, 48% and 44% respectively.

Table 6.4: Average time-of-flight, distance traveled and action steps executed with standard de-
viation (denoted std) and the collision type distribution with simulated depth images, added
depth image noise and with applied filtering for the medium environment.

Depth image Time ± std [s] Distance ± std [m] Steps ± std Reset Other Time Out

Simulated 106.46±23.73 102.99±23.60 624.40±143.07 16% 36% 48%
With noise 17.61±7.13 15.92±6.76 98.84±40.95 22% 78% 0%

Filtered 99.13±30.80 90.55±24.47 561.06±175.10 14% 42% 44%

CHAPTER 6. EVALUATION STUDIES 70

With Added Noise

(a) Reset. (b) Other. (c) Time out.

Figure 6.21: 50 episodes with noisy depth images.

CHAPTER 6. EVALUATION STUDIES 71

With Filtering of Added Noise

(a) Reset. (b) Other. (c) Time out.

Figure 6.22: 50 episodes with filtering of noisy depth images.

CHAPTER 6. EVALUATION STUDIES 72

6.3 With Real-Life Depth Images

The model is also tested with real-life depth images obtained from the Intel RealSense Depth

Camera D455. It is essential for the real-life flight that the model is able to make sense of real-

life depth images. To visualize how the depth camera interprets the environment, an RGB image

and its corresponding depth image, as well as the depth image with applied filtering, are shown

in fig. 6.23. This section aims to be a proof-of-concept that the model could have successful sim-

to-real applications if realized. The filtering done in this section is the same as in Section 6.2.4,

but with a full 42×42-kernel used in the dilation. The reason why the kernel size is increased

is due to the large reflecting areas in this specific environment, which is clear to see when com-

paring the reflecting metal plate in fig. 6.23a to the depth image in fig. 6.23b. A type of noise that

is present in real-life environments but not accounted for in Section 6.2.4 is the noise at the end

of the depth image horizon.

(a) RGB-image. (b) Depth image. (c) Filtered depth image.

Figure 6.23: RGB-image with the corresponding depth image and the filtered depth image.

The heatmaps in fig. 6.25 and fig. 6.24 show the CNN’s last layer’s activation of the network

and are presented with a Grad-CAM visualization in the same manner as in Section 6.1.2. The

heatmap with the worst trajectory, shown in fig. 6.24, shows that the combination of the action

sequence and the depth image most likely is going to collide with the obstacle to the right. By

comparing this heatmap with the "best possible" heatmap in fig. 6.25, it can be seen that the

CNN’s last layer’s activation is highly dependant on the given action sequence, as the heatmaps

are dissimilar and the heatmap with the worst action sequence has a collision area which corre-

sponds to the action sequence.

CHAPTER 6. EVALUATION STUDIES 73

Figure 6.24: Grad-CAM visualization of the worst trajectory with a real depth image.

Figure 6.25: Grad-CAM visualization of the best trajectory with a real depth image.

Fig. 6.26b shows the the model’s evaluation of 20 random trajectories over a filtered version

of the depth image shown in fig. 6.26a. The action sequences that correspond to the trajectories

that are going into the obstacle to the right in the depth image have a high collision probability,

and the action sequences that correspond to the trajectories going away from the obstacles have

a low collision probability. Interestingly, the first action steps have a high collision probability

regardless of the trajectory’s angle and velocity. This might be due to the depth camera not being

aligned with the ground when the image was taken. As mentioned earlier, the model assumes

a constant height. It can also be due to the depth camera being held closer to the ground than

what the model is used to.

CHAPTER 6. EVALUATION STUDIES 74

(a) (b)

Figure 6.26: Local motion planning of a real depth image. (a) shows the raw depth image and (b)
shows the model’s evaluation of 20 random trajectories over the filtered depth image, showing
each trajectory’s collision probability.

Chapter 7

Discussion

What to include as inputs to the network was tested several times during the development of

the model. In earlier stages of the thesis, the robot’s states (position, orientation and velocity)

were concatenated with the action sequence input to form the input to the LSTM. This was done

as an attempt to improve the model, as states would influence the chosen trajectory based on

relevant measurements of the robot itself. However, it was found that the inclusion of the states

made the model perform worse than without them. Hence, it was removed from the network. A

possible reason it performed worse with the state input is due to the lack of variation for several

of the states during the data generation. In the corridor environment, the robot has a velocity in

the robot’s x-direction of
(
1±0.25

)m
s , but little variation in the y-direction and no variation in

the z-direction. The same applies to the orientation, as the pitch angle is only non-zero when

the robot is accelerating or decelerating, which rarely induces great pitch angle variation. The

yaw angle has more variations than the other angles, but the corridor environment is not really

suitable for great variations as it is rather narrow and long, forcing the robot to move in a certain

direction. The roll angle also has little to no variation. In future work, the forward velocity and

current yaw rate of the robot, which have large variation in reality, should be fed to the network

to improve the prediction accuracy.

An approach that has been tested during this thesis regarding the action sequence genera-

tion was to calculate the UAV’s motion primitives based on the approach presented by Mueller

et al. [83]. With this method, the UAV’s proposed motion was calculated by the drone’s initial

state, the desired motion duration, and any combination of components of the drone’s position,

velocity, and acceleration at the motion’s end. Meaning that the trajectory would be waypoint-

based instead of directional-based as implemented in this thesis. The UAV would follow a tra-

jectory to a randomly selected goal destination that was within the depth sensor’s FoV. The

goal destination was updated after a certain amount of steps in the trajectory were executed to

achieve a smooth trajectory for the UAV. The number of steps in the trajectory was determined

by the goal distance and the average velocity. An issue with this approach was that the trajectory

75

CHAPTER 7. DISCUSSION 76

sometimes would have steps outside the keyframe’s FoV, which is not ideal. This typically hap-

pened if the UAV had a high velocity in the robot’s y-direction and the computed trajectory was

curved outside the FoV. Because of this issue, the method was not preferable given the depth

camera’s limited FoV of 86◦. When this method was tested, the drone’s yaw angle movement

was disabled and the drone moved sideways by adjusting its roll angle. The model that was cre-

ated with this motion library worked, but results were significantly better when the yaw angle

was used instead of the roll angle.

There are three typical causes for collisions: (i) corner collisions, (ii) pass-by collisions and

(iii) blind collisions, where each type of collision is reasonable given the drone’s limitations and

the trained model. The different types of collisions are illustrated in fig. 6.12. Blind collisions

are the hardest to deal with as the drone does not have sufficient information about the envi-

ronment but is forced to act to avoid an inevitable collision. The result of avoiding the collision

is another unavoidable collision with the environment that it did not see when making the de-

cision. A possible way of minimizing these collisions is to decrease the number of action steps

executed before the trajectory replanning. The drone executes the first 8 steps of the 72-long

action sequence and then replans. If several of the planned trajectories have a large yaw an-

gle because of an oncoming obstacle, the drone will find itself with a rapid change of scenery,

as the FoV is quite limited. By decreasing the number of steps executed, the drone will replan

more often and get a better understanding of the current environment. This is because, at ev-

ery replanning, the model also receives the current depth image (the keyframe). However, by

decreasing the number of steps executed, the pass-by collisions could become more abundant.

This is because when successfully navigating around an obstacle, the model would lose track of

the obstacle it is passing and potentially suggest a trajectory that scratches the tip of the obstacle

as it passes by. This is typical for the sphere obstacle that has been used in this thesis. Another

element that could be included to tackle the blind collisions is to allow the UAV to stop its for-

ward movement and turn around to inspect more of the environment before deciding where to

go. This would allow the UAV to get out of typical blind collision scenes.

A possible way of tackling pass-by collision is to introduce a depth image sequence into the

network instead of the current depth image only. The model would have a better understanding

of where it currently is if this was the case. However, this would increase the input space of the

network drastically, making it computationally expensive. As the height of the drone is assumed

fixed, a possible solution could be only to use the most relevant parts of the depth images. Some

information would be lost by doing this, but the model’s understanding of its current placement

in the environment would increase.

The last type of collisions, corner collisions, are more challenging to deal with as they often

are caused by the depth camera’s limited range. The model is not aware of whether the end of a

corner-like structure would have a safe path or an inevitable collision. This was not something

CHAPTER 7. DISCUSSION 77

that was especially taken into consideration when generating the training data. Therefore, cor-

ner collisions are probably strongly underrepresented in the training data. This can be stated

because, although corners still exist in the training data, the drone does not "seek" them as it is

moving randomly. In contrast, the trained model will seek the corners, as they often are found

at the end of an otherwise feasible path. A 3D image of a corner collision is shown in fig. 7.1.

Here, it can be seen that the trajectory deemed the best possible by the model (colored green)

leads straight into a corner. The trajectory is sufficiently short, so the model does not evaluate it

as a likely collision with the corner. It can also be seen from the visualization that the drone has

enough space to maneuver out of the situation.

Figure 7.1: Visualization of an oncoming corner collision. The green trajectory has the lowest
average collision probability and the red trajectory has the highest.

Another parameter that could be changed for the local motion planning is the velocity, which

could be decreased or increased. If the velocity is decreased, it could potentially avoid more

obstacles, be more stable and have fewer blind collisions as it would have more time to travel the

same distance. It would also be able to adjust its course faster, as its momentum would be lower.

By decreasing the velocity, it would also travel a shorter distance in the same amount of time and

discover less of the environment. This trade-off must be chosen based on the application as the

endurance of a UAV is limited.

As can be seen from the evaluation studies in the simulated environments presented in Sec-

tion 6.2, the model will nearly every time choose a trajectory that does not alter its course except

if it is necessary to avoid an obstacle. Due to this, the model will often move in straight lines.

This is not enforced or prioritized but is a result of the training of the model. The model finds

that the path with the lowest probability of colliding is the one that does not apply a change to

CHAPTER 7. DISCUSSION 78

its yaw angle. This could possibly be a defense mechanism for blind collisions, as the model is

conservative to changing the depth image scenery. The model does not want to build momen-

tum for a turn as it does not want to move in unseen environments. A related observation is

that the model does not really seem to care whether a trajectory is barely avoiding an obstacle

(avoiding it by less than a meter distance) or by a great margin as long as the proposed trajec-

tory does not collide. Therefore, the model is not conservatively risk-averse and does not want

to pass the obstacle with a "safety distance". This is one of the main reasons for the pass-by col-

lisions. The behavior is related to the model’s desire to move in a direction that does not induce

a change in its course. A possible way of handling this potential issue is to give different scores

to the collisions during the data generation, where "barely passing the obstacle" would have a

lower score than colliding with the obstacle but higher than avoiding it with a great margin. This

would transform the problem from a binary classification problem to a multiclass classification

problem. As mentioned earlier, including a depth image sequence in the network would pro-

vide the model with better situational awareness and could be a better solution for handling the

pass-by collisions. A possible "quick fix" to this issue could be to introduce large dilation or an-

other type of image processing of the depth image before feeding it into the network. By doing

this, the model would believe that an obstacle is larger than it actually is and would choose a

safer path around it. This is similar to what happened in Section 6.2.2 with the unknown ob-

stacles and in Section 6.2.4 with the filtering of the added noise. The unknown obstacles had

more details and finer structures that the model had never seen before. By introducing filter-

ing of the depth image prior to the model’s interpretation, the unknown objects appeared larger

and with fewer details than without the filtering. This is why after the filtering was done, it was

able to fly past the first tree structure, while it could not do so without the filtering done. Much

of the same applies in the case with the filtering of the added noise. The objects appear larger

than what they actually are, making the drone move with a "safer" distance around them. A

drawback with this method is that it performs worse in tight areas where the filtering removes

possible feasible paths.

Chapter 8

Conclusion and Further Work

This thesis introduces a method and a framework for motion planning using a deep collision

prediction network with a depth image and an action sequence as inputs. The thesis also presents

the relevant literature in motion planning and learning-based navigation, as well as the cur-

rent state-of-the-art technology in these fields. A presentation of the theoretical background of

this thesis is also presented in detail. A review of the experimental setup is presented, and a

thorough evaluation study of the model’s performance in different simulated settings and when

using real-life depth images is done.

The framework presented in this thesis is divided into three components: (i) a self-labeling

data generation method in a simulated environment, (ii) the creation and the training of the col-

lision prediction network and (iii) a local planner which uses the model to navigate in cluttered

environments while being exclusively motivated by intrinsic objectives. The model is tested

with perfectly simulated depth images, noisy depth images and filtered depth images, as well as

with real-life filtered depth images. The model is also studied in different types of environments,

including different levels of difficulty, with unfamiliar obstacles and in unfamiliar environments.

The results from the study are encouraging and present a deep collision prediction network as a

novel method of performing motion planning for aerial robots.

In future work, the model should be tested in different real-life environments using a phys-

ical drone. There was a hope to do so at the end of the thesis, but it was postponed as the

physical drone materials required to build the drone were still on the way to ship to NTNU. The

depth camera (Intel RealSense Depth Camera D455) and the SOM (NVIDIA Jetson Xavier NX)

were shipped in time and the development with running the model on the SOM using NVIDIA

TensorRT1 was progressing as the thesis was finalized. In this thesis, the states and the model

parameters have been assumed to be perfect measurements. This is not the case in real-life sys-

tems and the model should be tested with uncertainty in the drone’s states and model param-

eters. Online out-of-distribution detection should be implemented to study when the model is

1https://developer.nvidia.com/tensorrt

79

https://developer.nvidia.com/tensorrt

CHAPTER 8. CONCLUSION AND FURTHER WORK 80

unable to generalize to new inputs, either due to covariate shifts or anomalous data.

Dynamic obstacles should also be introduced into the environment, and the model should

be tested with different types of dynamic obstacles. However, creating a well-generalized model

with dynamic data gathered from simulation could be challenging, due to the increased com-

plexity of the system, especially for sim-to-real applications. The motion planner should evalu-

ate the different trajectories in parallel to reduce the computational time required when running

the system. This is beneficial when applying the model on a physical drone and would enable

the planner to replan more often, which could be vital in dynamic environments. The parallel

computation advantage of the proposed learning-based planner would be that the computa-

tional time required would not scale linearly with the number of trajectories evaluated.

Instead of the current depth image only, a depth image sequence should also be imple-

mented as it would provide the model with greater situational awareness. For this to be realistic,

in regards to the increased input space of the network, the depth images should be processed

and only the most essential parts of the depth images should be fed into the network.

A motion planning algorithm with extrinsic objectives, such as waypoint navigation, should

also be implemented and compared to other traditional sample-based path planning algorithms

such as PRM*, RRT* or similar. This will allow a comparison between the model-based path

planner with the optimal path in an environment. Another area that should be investigated is

to use of the collision prediction model as a cost function for a reinforcement learning scheme.

This could allow a planner to learn to navigate the environment, possibly to some waypoint or

similar, based on the collision-aware model. Lastly, the model could be used as a core function

for more advanced motion planning missions, such as autonomous exploration and similar.

Bibliography

[1] Sondre Holm Fyhn. Reinforcement learning for waypoint navigation of a flying robot in

obstacle-free space. Project report in TTK4550. Department of Engineering Cybernetics,

NTNU - The Norwegian University of Science and Technology, December 2020.

[2] Ben Grocholsky, James Keller, Vijay Kumar, and George Pappas. Cooperative air and ground

surveillance. Robotics Automation Magazine, IEEE, 13:16 – 25, 10 2006. doi: 10.1109/MRA.

2006.1678135.

[3] Teodor Tomić, Korbinian Schmid, Philipp Lutz, Andreas Dömel, Michael Kassecker, El-

mar Mair, Iris Grixa, Felix Ruess, Michael Suppa, and Darius Burschka. Toward a fully

autonomous uav: Research platform for indoor and outdoor urban search and rescue.

Robotics Automation Magazine, IEEE, 19:46 –56, 09 2012. doi: 10.1109/MRA.2012.2206473.

[4] Matteo Fumagalli, Roberto Naldi, Alessandro Macchelli, Raffaella Carloni, Stefano Strami-

gioli, and Lorenzo Marconi. Modeling and control of a flying robot for contact inspec-

tion. In IROS, pages 3532–3537. IEEE, 2012. ISBN 978-1-4673-1737-5. URL http://dblp.
uni-trier.de/db/conf/iros/iros2012.html#FumagalliNMCSM12.

[5] H. Durrant-Whyte and T. Bailey. Simultaneous localization and mapping: part i. IEEE

Robotics Automation Magazine, 13(2):99–110, 2006. doi: 10.1109/MRA.2006.1638022.

[6] T. Bailey and H. Durrant-Whyte. Simultaneous localization and mapping (slam): part

ii. IEEE Robotics Automation Magazine, 13(3):108–117, 2006. doi: 10.1109/MRA.2006.

1678144.

[7] Shaojie Shen, Yash Mulgaonkar, Nathan Michael, and Vijay Kumar. Multi-sensor fusion for

robust autonomous flight in indoor and outdoor environments with a rotorcraft mav. In

2014 IEEE International Conference on Robotics and Automation (ICRA), pages 4974–4981,

2014. doi: 10.1109/ICRA.2014.6907588.

[8] R. Reinhart, T. Dang, E. Hand, C. Papachristos, and K. Alexis. Learning-based path plan-

ning for autonomous exploration of subterranean environments. In 2020 IEEE Inter-

81

http://dblp.uni-trier.de/db/conf/iros/iros2012.html#FumagalliNMCSM12
http://dblp.uni-trier.de/db/conf/iros/iros2012.html#FumagalliNMCSM12

BIBLIOGRAPHY 82

national Conference on Robotics and Automation (ICRA), pages 1215–1221, 2020. doi:

10.1109/ICRA40945.2020.9196662.

[9] Dave Ferguson, Michael Darms, Chris Urmson, and Sascha Kolski. Detection, prediction,

and avoidance of dynamic obstacles in urban environments. In 2008 IEEE Intelligent Vehi-

cles Symposium, pages 1149–1154, 2008. doi: 10.1109/IVS.2008.4621214.

[10] David Hoeller, Lorenz Wellhausen, Farbod Farshidian, and Marco Hutter. Learning a state

representation and navigation in cluttered and dynamic environments. IEEE Robotics and

Automation Letters, PP:1–1, 03 2021. doi: 10.1109/LRA.2021.3068639.

[11] Avishek Chatterjee and Venu Madhav Govindu. Noise in structured-light stereo depth cam-

eras: Modeling and its applications. ArXiv, 2015.

[12] Alexander C. Woods, Hung M. Lay, and Quang P. Ha. A novel extended potential field con-

troller for use on aerial robots. In 2016 IEEE International Conference on Automation Sci-

ence and Engineering (CASE), pages 286–291, 2016. doi: 10.1109/COASE.2016.7743420.

[13] J. Borenstein and Y. Koren. Real-time obstacle avoidance for fast mobile robots. IEEE Trans-

actions on Systems, Man, and Cybernetics, 19(5):1179–1187, 1989. doi: 10.1109/21.44033.

[14] Thomas Eppenberger, Gianluca Cesari, Marcin Dymczyk, Roland Siegwart, and Renaud

Dubé. Leveraging stereo-camera data for real-time dynamic obstacle detection and track-

ing. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),

pages 10528–10535, 2020. doi: 10.1109/IROS45743.2020.9340699.

[15] Sergey Levine and Fereshteh Sadeghi. Cad2rl: Real single-image flight without a single real

image. 2017. doi: 10.15607/rss.2017.xiii.034.

[16] Mark Pfeiffer, Michael Schaeuble, Juan Nieto, Roland Siegwart, and Cesar Cadena. From

perception to decision: A data-driven approach to end-to-end motion planning for au-

tonomous ground robots. 2017 IEEE International Conference on Robotics and Automation

(ICRA), May 2017. doi: 10.1109/icra.2017.7989182. URL http://dx.doi.org/10.1109/
ICRA.2017.7989182.

[17] P. Long, Tingxiang Fan, X. Liao, Wenxi Liu, H. Zhang, and Jia Pan. Towards optimally de-

centralized multi-robot collision avoidance via deep reinforcement learning. 2018 IEEE

International Conference on Robotics and Automation (ICRA), pages 6252–6259, 2018.

[18] Lei Tai, Jingwei Zhang, Ming Liu, and Wolfram Burgard. Socially compliant navigation

through raw depth inputs with generative adversarial imitation learning. In 2018 IEEE In-

ternational Conference on Robotics and Automation (ICRA), pages 1111–1117, 2018. doi:

10.1109/ICRA.2018.8460968.

http://dx.doi.org/10.1109/ICRA.2017.7989182
http://dx.doi.org/10.1109/ICRA.2017.7989182

BIBLIOGRAPHY 83

[19] Simon Lynen, Bernhard Zeisl, Dror Aiger, Michael Bosse, Joel Hesch, Marc Pollefeys,

Roland Siegwart, and Torsten Sattler. Large-scale, real-time visual–inertial localization

revisited. The International Journal of Robotics Research, 39(9):1061–1084, 2020. doi:

10.1177/0278364920931151. URL https://doi.org/10.1177/0278364920931151.

[20] Sertac Karaman and Emilio Frazzoli. Sampling-based algorithms for optimal motion

planning. International Journal of Robotic Research - IJRR, 30:846–894, 06 2011. doi:

10.1177/0278364911406761.

[21] Sikang Liu. Motion planning for micro aerial vehicles. Publicly Accessible Penn Disserta-

tions, 2018. URL https://repository.upenn.edu/edissertations/3146.

[22] L.E. Kavraki, P. Svestka, J.-C. Latombe, and M.H. Overmars. Probabilistic roadmaps for

path planning in high-dimensional configuration spaces. IEEE Transactions on Robotics

and Automation, 12(4):566–580, 1996. doi: 10.1109/70.508439.

[23] S. LaValle. Rapidly-exploring random trees : a new tool for path planning. The annual

research report, 1998.

[24] Wennie Tabib, Kshitij Goel, John Yao, Mosam Dabhi, Curtis Boirum, and N. Michael. Real-

time information-theoretic exploration with gaussian mixture model maps. In Robotics:

Science and Systems, 2019.

[25] Armin Hornung, Kai M. Wurm, Maren Bennewitz, Cyrill Stachniss, and Wolfram Burgard.

Octomap: An efficient probabilistic 3d mapping framework based on octrees. Auton.

Robots, 34(3):189–206, 2013. URL http://dblp.uni-trier.de/db/journals/arobots/
arobots34.html#HornungWBSB13.

[26] Helen Oleynikova, Zachary Taylor, Marius Fehr, Roland Siegwart, and Juan Nieto. Voxblox:

Incremental 3d euclidean signed distance fields for on-board mav planning. In IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS), 2017.

[27] Stephen Nuske, Sanjiban Choudhury, Sezal Jain, Andrew Chambers, Luke Yoder, Sebastian

Scherer, Lyle Chamberlain, Hugh Cover, and Sanjiv Singh. Autonomous exploration and

motion planning for an unmanned aerial vehicle navigating rivers: Autonomous explo-

ration and motion planning for a uav navigating rivers. Journal of Field Robotics, 32, 06

2015. doi: 10.1002/rob.21596.

[28] Hugh Cover, Sanjiban Choudhury, Sebastian Scherer, and Sanjiv Singh. Sparse tangential

network (spartan): Motion planning for micro aerial vehicles. In 2013 IEEE International

Conference on Robotics and Automation, pages 2820–2825, 2013. doi: 10.1109/ICRA.2013.

6630967.

https://doi.org/10.1177/0278364920931151
https://repository.upenn.edu/edissertations/3146
http://dblp.uni-trier.de/db/journals/arobots/arobots34.html#HornungWBSB13
http://dblp.uni-trier.de/db/journals/arobots/arobots34.html#HornungWBSB13

BIBLIOGRAPHY 84

[29] Andreas Bircher, Mina Kamel, Kostas Alexis, Helen Oleynikova, and Roland Siegwart. Re-

ceding horizon "next-best-view" planner for 3d exploration. In 2016 IEEE International

Conference on Robotics and Automation (ICRA 2016), pages 1462 – 1468, Piscataway, NJ,

2016. IEEE. ISBN 978-1-4673-8026-3. doi: 10.1109/ICRA.2016.7487281. IEEE International

Conference on Robotics and Automation (ICRA 2017); Conference Location: Stockholm,

Sweden; Conference Date: May 16-21, 2016.

[30] Tung Dang, Marco Tranzatto, Shehryar Khattak, Frank Mascarich, Kostas Alexis, and Marco

Hutter. Graph-based subterranean exploration path planning using aerial and legged

robots. Journal of Field Robotics, 37(8):1363–1388, 2020. doi: https://doi.org/10.1002/rob.

21993. URL https://onlinelibrary.wiley.com/doi/abs/10.1002/rob.21993.

[31] Mihir Dharmadhikari, Tung Dang, Lukas Solanka, Johannes Loje, Huan Nguyen, Nikhil

Khedekar, and Kostas Alexis. Motion primitives-based path planning for fast and agile

exploration using aerial robots. In 2020 IEEE International Conference on Robotics and

Automation (ICRA), pages 179–185, 2020. doi: 10.1109/ICRA40945.2020.9196964.

[32] Lukas Schmid, Michael Pantic, Raghav Khanna, Lionel Ott, Roland Siegwart, and Juan Ni-

eto. An efficient sampling-based method for online informative path planning in unknown

environments. IEEE Robotics and Automation Letters, 5:1–1, 01 2020. doi: 10.1109/LRA.

2020.2969191.

[33] Russell Reinhart, Tung Dang, Emily Hand, Christos Papachristos, and Kostas Alexis.

Learning-based path planning for autonomous exploration of subterranean environments.

In 2020 IEEE International Conference on Robotics and Automation (ICRA), pages 1215–

1221, 2020. doi: 10.1109/ICRA40945.2020.9196662.

[34] Markus Achtelik, Simon Lynen, Stephan Weiss, Margarita Chli, and Roland Siegwart.

Motion- and uncertainty-aware path planning for micro aerial vehicles. Journal of Field

Robotics, 31, 07 2014. doi: 10.1002/rob.21522.

[35] Gregory Kahn, Adam Villaflor, Vitchyr Pong, Pieter Abbeel, and Sergey Levine. Uncertainty-

aware reinforcement learning for collision avoidance. 02 2017.

[36] Gregory Kahn, Tianhao Zhang, Sergey Levine, and Pieter Abbeel. Plato: Policy learning

using adaptive trajectory optimization. In 2017 IEEE International Conference on Robotics

and Automation (ICRA), pages 3342–3349, 2017. doi: 10.1109/ICRA.2017.7989379.

[37] Gregory Kahn, Pieter Abbeel, and Sergey Levine. Badgr: An autonomous self-supervised

learning-based navigation system. IEEE Robotics and Automation Letters, 6(2):1312–1319,

2021. doi: 10.1109/LRA.2021.3057023.

https://onlinelibrary.wiley.com/doi/abs/10.1002/rob.21993

BIBLIOGRAPHY 85

[38] Antonio Loquercio, Ana I. Maqueda, Carlos R. del Blanco, and Davide Scaramuzza. Dronet:

Learning to fly by driving. IEEE Robotics and Automation Letters, 3(2):1088–1095, 2018. doi:

10.1109/LRA.2018.2795643.

[39] Péter Fankhauser and Marco Hutter. Anymal: A unique quadruped robot conquering harsh

environments. Research Features, 126:54 – 57, 05 2018. doi: 10.3929/ethz-b-000262484.

[40] Elia Kaufmann, Antonio Loquercio, Rene Ranftl, Alexey Dosovitskiy, Vladlen Koltun, and

Davide Scaramuzza. Deep drone racing: Learning agile flight in dynamic environments.

In Aude Billard, Anca Dragan, Jan Peters, and Jun Morimoto, editors, Proceedings of The

2nd Conference on Robot Learning, volume 87 of Proceedings of Machine Learning Re-

search, pages 133–145. PMLR, 29–31 Oct 2018. URL http://proceedings.mlr.press/
v87/kaufmann18a.html.

[41] Alessandro Giusti, Jérôme Guzzi, Dan C. Cireşan, Fang-Lin He, Juan P. Rodríguez, Flavio

Fontana, Matthias Faessler, Christian Forster, Jürgen Schmidhuber, Gianni Di Caro, Davide

Scaramuzza, and Luca M. Gambardella. A machine learning approach to visual perception

of forest trails for mobile robots. IEEE Robotics and Automation Letters, 1(2):661–667, 2016.

doi: 10.1109/LRA.2015.2509024.

[42] Linhai Xie, Sen Wang, Andrew Markham, and Niki Trigoni. Towards monocular vision

based obstacle avoidance through deep reinforcement learning. In RSS 2017 workshop

on New Frontiers for Deep Learning in Robotics, 2017.

[43] Diederik P. Kingma and Max Welling. Auto-Encoding Variational Bayes. In 2nd Interna-

tional Conference on Learning Representations, ICLR 2014, Banff, AB, Canada, April 14-16,

2014, Conference Track Proceedings, 2014.

[44] Aj Piergiovanni, Alan Wu, and Michael S. Ryoo. Learning real-world robot policies by

dreaming. In 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems

(IROS), pages 7680–7687, 2019. doi: 10.1109/IROS40897.2019.8967559.

[45] Pádraig Cunningham, Matthieu Cord, and Sarah Jane Delany. Supervised Learning, pages

21–49. Springer Berlin Heidelberg, Berlin, Heidelberg, 2008.

[46] Bing Liu. Supervised Learning, pages 63–132. Springer Berlin Heidelberg, Berlin, Heidel-

berg, 2011. ISBN 978-3-642-19460-3. doi: 10.1007/978-3-642-19460-3_3. URL https:
//doi.org/10.1007/978-3-642-19460-3_3.

[47] Froduald Kabanza, Julien Filion, Abder Benaskeur, and Hengameh Irandoust. Controlling

the hypothesis space in probabilistic plan recognition. pages 2306–2312, 08 2013.

http://proceedings.mlr.press/v87/kaufmann18a.html
http://proceedings.mlr.press/v87/kaufmann18a.html
https://doi.org/10.1007/978-3-642-19460-3_3
https://doi.org/10.1007/978-3-642-19460-3_3

BIBLIOGRAPHY 86

[48] Chin Ho and Panos Parpas. Empirical risk minimization: probabilistic complexity and

stepsize strategy. Computational Optimization and Applications, 73, 06 2019. doi: 10.1007/

s10589-019-00080-2.

[49] WilliamH.Jefferys. On the method of least squares. The Astronomical Journal, 85(2), 1980.

[50] L. Le Cam. Maximum likelihood: An introduction. International Statistical Review / Revue

Internationale de Statistique, 58(2):153–171, 1990. ISSN 03067734, 17515823. URL http:
//www.jstor.org/stable/1403464.

[51] Shai Shalev-Shwartz and Shai Ben-David. Understanding Machine Learning - From Theory

to Algorithms. Cambridge University Press, 2014. ISBN 978-1-10-705713-5.

[52] Pascal Massart and Élodie Nédélec. Risk bounds for statistical learning. The Annals of

Statistics, 34(5), Oct 2006. ISSN 0090-5364. doi: 10.1214/009053606000000786. URL http:
//dx.doi.org/10.1214/009053606000000786.

[53] Enzo Grossi and Massimo Buscema. Introduction to artificial neural networks. Euro-

pean journal of gastroenterology hepatology, 19:1046–54, 01 2008. doi: 10.1097/MEG.

0b013e3282f198a0.

[54] Lofti A. Zadeh. Fuzzy sets. Information and Control, 8:338–353, 1965. URL http:
//www-bisc.cs.berkeley.edu/Zadeh-1965.pdf.

[55] F. Rosenblatt. The perceptron: A probabilistic model for information storage and orga-

nization in the brain. Psychological Review, 65(6):386–408, 1958. ISSN 0033-295X. doi:

10.1037/h0042519. URL http://dx.doi.org/10.1037/h0042519.

[56] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning internal repre-

sentations by error propagation. In David E. Rumelhart and James L. Mcclelland, editors,

Parallel Distributed Processing: Explorations in the Microstructure of Cognition, Volume 1:

Foundations, pages 318–362. MIT Press, Cambridge, MA, 1986.

[57] Andrew L Maas, Awni Y Hannun, and Andrew Y Ng. Rectifier nonlinearities improve neural

network acoustic models. In in ICML Workshop on Deep Learning for Audio, Speech and

Language Processing, volume 30, page 3, 2013.

[58] L. Trottier, P. Giguere, and B. Chaib-draa. Parametric exponential linear unit for deep con-

volutional neural networks. In 2017 16th IEEE International Conference on Machine Learn-

ing and Applications (ICMLA), pages 207–214, 2017. doi: 10.1109/ICMLA.2017.00038.

http://www.jstor.org/stable/1403464
http://www.jstor.org/stable/1403464
http://dx.doi.org/10.1214/009053606000000786
http://dx.doi.org/10.1214/009053606000000786
http://www-bisc.cs.berkeley.edu/Zadeh-1965.pdf
http://www-bisc.cs.berkeley.edu/Zadeh-1965.pdf
http://dx.doi.org/10.1037/h0042519

BIBLIOGRAPHY 87

[59] R. Avenash and P. Viswanath. Semantic segmentation of satellite images using a modified

cnn with hard-swish activation function. In Alain Trémeau, Giovanni Maria Farinella, and

José Braz, editors, VISIGRAPP (4: VISAPP), pages 413–420. SciTePress, 2019. ISBN 978-989-

758-354-4. URL http://dblp.uni-trier.de/db/conf/visapp/visapp2019-1.html#
AvenashV19.

[60] Russell D. Reed and Robert J. Marks. Neural Smithing: Supervised Learning in Feedforward

Artificial Neural Networks. MIT Press, 1999.

[61] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. Adaptive computation and ma-

chine learning. MIT Press, 2016. ISBN 9780262035613. URL https://books.google.co.
in/books?id=Np9SDQAAQBAJ.

[62] P. De Boer, Kroese, S. Mannor, and R. Y. Rubinstein. A tutorial on the cross-entropy method.

In Annals of Operations Research, volume 134, pages 19–67, 2004.

[63] Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: Representing

model uncertainty in deep learning. In Maria Florina Balcan and Kilian Q. Weinberger,

editors, Proceedings of The 33rd International Conference on Machine Learning, volume 48

of Proceedings of Machine Learning Research, pages 1050–1059, New York, New York, USA,

20–22 Jun 2016. PMLR. URL http://proceedings.mlr.press/v48/gal16.html.

[64] David H. Hubel and Torsten N. Wiesel. Receptive fields and functional architecture of mon-

key striate cortex. Journal of Physiology (London), 195:215–243, 1968.

[65] Alex Graves. Generating sequences with recurrent neural networks. CoRR,

abs/1308.0850, 2013. URL http://dblp.uni-trier.de/db/journals/corr/corr1308.
html#Graves13.

[66] Y. Bengio, P. Simard, and P. Frasconi. Learning long-term dependencies with gradient

descent is difficult. IEEE Transactions on Neural Networks, 5(2):157–166, 1994. doi:

10.1109/72.279181.

[67] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation,

9(8):1735–1780, 1997.

[68] Russell Smith. Open dynamics engine, 2008. URL http://www.ode.org/.

[69] Dave Shreiner and The Khronos OpenGL ARB Working Group. OpenGL Programming

Guide: The Official Guide to Learning OpenGL, Versions 3.0 and 3.1. Addison-Wesley Pro-

fessional, 7th edition, 2009. ISBN 0321552628.

http://dblp.uni-trier.de/db/conf/visapp/visapp2019-1.html#AvenashV19
http://dblp.uni-trier.de/db/conf/visapp/visapp2019-1.html#AvenashV19
https://books.google.co.in/books?id=Np9SDQAAQBAJ
https://books.google.co.in/books?id=Np9SDQAAQBAJ
http://proceedings.mlr.press/v48/gal16.html
http://dblp.uni-trier.de/db/journals/corr/corr1308.html#Graves13
http://dblp.uni-trier.de/db/journals/corr/corr1308.html#Graves13
http://www.ode.org/

BIBLIOGRAPHY 88

[70] Fadri Furrer, Michael Burri, Markus Achtelik, and Roland Siegwart. Robot Operating System

(ROS): The Complete Reference (Volume 1), chapter RotorS—A Modular Gazebo MAV Sim-

ulator Framework, pages 595–625. Springer International Publishing, Cham, 2016. ISBN

978-3-319-26054-9. doi: 10.1007/978-3-319-26054-9_23. URL http://dx.doi.org/10.
1007/978-3-319-26054-9_23.

[71] Stanford Artificial Intelligence Laboratory et al. Robotic operating system (ros), May .

[72] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro,

Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Good-

fellow, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz

Kaiser, Manjunath Kudlur, Josh Levenberg, Dandelion Mané, Rajat Monga, Sherry Moore,

Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever,

Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol

Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng.

TensorFlow: Large-scale machine learning on heterogeneous systems, 2015. URL https:
//www.tensorflow.org/. Software available from tensorflow.org.

[73] Francois Chollet et al. Keras, 2015. URL https://github.com/fchollet/keras.

[74] Paolo De Petris, Huan Nguyen, Tung Dang, Frank Mascarich, and Kostas Alexis. Collision-

tolerant autonomous navigation through manhole-sized confined environments. In 2020

IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR), pages 84–89,

2020. doi: 10.1109/SSRR50563.2020.9292583.

[75] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image

recognition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),

pages 770–778, 2016. doi: 10.1109/CVPR.2016.90.

[76] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. CoRR,

abs/1412.6980, 2015.

[77] Jason Ku, Ali Harakeh, and Steven L. Waslander. In defense of classical image processing:

Fast depth completion on the cpu. In 2018 15th Conference on Computer and Robot Vision

(CRV), pages 16–22, 2018. doi: 10.1109/CRV.2018.00013.

[78] HyeongRyeol Kam, Sung-Ho Lee, Taejung Park, and Chang-Hun Kim. Rviz: a toolkit for

real domain data visualization. Telecommunication Systems, 60:1–9, 10 2015. doi: 10.1007/

s11235-015-0034-5.

http://dx.doi.org/10.1007/978-3-319-26054-9_23
http://dx.doi.org/10.1007/978-3-319-26054-9_23
https://www.tensorflow.org/
https://www.tensorflow.org/
https://github.com/fchollet/keras

BIBLIOGRAPHY 89

[79] Ramprasaath R. Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi

Parikh, and Dhruv Batra. Grad-cam: Visual explanations from deep networks via gradient-

based localization. In 2017 IEEE International Conference on Computer Vision (ICCV),

pages 618–626, 2017. doi: 10.1109/ICCV.2017.74.

[80] Ankur Handa, Thomas Whelan, John McDonald, and Andrew J Davison. A benchmark for

rgb-d visual odometry, 3d reconstruction and slam. ICRA, 2014.

[81] Jonathan T. Barron and Jitendra Malik. Intrinsic scene properties from a single rgb-d image.

CVPR, 2013.

[82] Jeannette Bohg, Javier Romero, Alexander Herzog, and Stefan Schaal. Robot arm pose esti-

mation through pixel-wise part classification. ICRA, 2014.

[83] M. W. Mueller, M. Hehn, and R. D’Andrea. A computationally efficient motion primitive for

quadrocopter trajectory generation. IEEE Transactions on Robotics, 31:1294–1310, 2015.

Appendix A

Acronyms

ANN Artificial neural network

CNN Convolutional neural network

DNN Deep neural network

ERM Empirical risk minimization

FoV Field of view

GNSS Global navigation Satellite Systems

MAV Micro aerial vehicle

ML Machine learning

MLE Maximum likelihood estimation

MPC Model predictive control

PRM Probabilistic roadmaps

LSTM Long short-term memory

RRT Rapidly-exploring random trees

ROS Robot operating system

RNN Recurrent neural network

RMF Resilient micro flyer

SLAM Simultaneous localization and mapping

90

APPENDIX A. ACRONYMS 91

SRM Structural risk minimization

UAV Unmanned aerial vehicle

Appendix B

ROS-graph

92

APPENDIX B. ROS-GRAPH 93

Figure B.1: A complete graph over the ROS-topics and the connections between them in the
simulation environment. The RMF-drone is called "delta".

Appendix C

Environments

C.1 The Environments with Increasing Difficulty

94

APPENDIX C. ENVIRONMENTS 95

C.1.1 Easy

(a) (b)

Figure C.1: The environment with easy difficulty.

APPENDIX C. ENVIRONMENTS 96

C.1.2 Medium

(a) (b)

Figure C.2: The environment with medium difficulty.

APPENDIX C. ENVIRONMENTS 97

C.1.3 Hard

(a) (b)

Figure C.3: The environment with hard difficulty.

APPENDIX C. ENVIRONMENTS 98

C.2 The Environment With Unknown Obstacles

(a) (b)

Figure C.4: The environment with unknown obstacles.

C.3 The Eight-shaped Environment with Known Obstacles

APPENDIX C. ENVIRONMENTS 99

(a
)

(b
)

F
ig

u
re

C
.5

:T
h

e
"e

ig
h

t"
-s

h
ap

ed
en

vi
ro

n
m

en
t.

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f E
ng

in
ee

rin
g

Cy
be

rn
et

ic
s

Sondre H
olm

 Fyhn
Learning-Based N

avigation in Cluttered Environm
ents U

sing A D
eep Collision Prediction N

etw
ork

Sondre Holm Fyhn

Learning-Based Navigation in
Cluttered Environments Using A
Deep Collision Prediction Network

Master’s thesis in Cybernetics and Robotics
Supervisor: Prof. Dr. Konstantinos Alexis

June 2021M
as

te
r’s

 th
es

is

	Abstract
	Sammendrag
	Preface
	Acknowledgment
	Introduction
	Background and Motivation
	Objective and Method
	Outline

	Related Literature
	Motion Planning
	Motion Planning for Advanced Missions
	Learning-Based Navigation

	Theoretical Background
	Supervised Learning
	Empirical Risk Minimization
	Structural Risk Minimization
	Imbalanced Data Sets

	Artificial Neural Networks
	Artificial Neural Network and Supervised Learning
	Backpropagation
	The Gradient Descent Algorithm
	Dealing With Imbalanced Data Sets in Artificial Neural Networks
	Monte Carlo Dropout

	Convolutional Neural Networks
	Recurrent Neural Networks
	Long Short-Term Memory

	Deep Collision Prediction Networks

	Experimental Setup
	Software Frameworks
	Gazebo
	ROS
	TensorFlow

	Quadrotor Platform
	Hardware and Sensors

	Proposed Approach
	Data Generation
	Collision Prediction Network Model
	Accounting for Imbalanced Data Set

	Local Motion Planning for Autonomous Navigation

	Evaluation Studies
	Model Performance
	Local Motion Planning
	Model Activation

	Navigating in Simulated Cluttered Environments
	With Different Degrees of Obstacle-Density of Known Obstacles
	With Unknown Obstacles
	In an Unknown Environment with Known Obstacles
	With Added Depth Image Noise

	With Real-Life Depth Images

	Discussion
	Conclusion and Further Work
	Bibliography
	Acronyms
	ROS-graph
	Environments
	The Environments with Increasing Difficulty
	Easy
	Medium
	Hard

	The Environment With Unknown Obstacles
	The Eight-shaped Environment with Known Obstacles

