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Abstract

Studies show that the society needs to adapt to the transition related to increased

electrification and renewable energy into the energy mix. The combination of more

electricity consumption and non-dispatchable energy sources will cause higher electricity

price volatility. Consumer flexibility exploiting the volatility will benefit both the

consumers and the society by reduced costs related to the electricity bill and power grid

strains. This thesis investigates and develops models that can be used in a Model Predictive

Controller (MPC) controlling a heat pump system based on the spot price, hence providing

consumer flexibility.

The system that is investigated is part of a household in Trondheim, Norway. It consists

of four rooms with one heat pump in each room. The goal of the model is to estimate

the power consumption of the heat pumps and the heat dynamics of the rooms. The

development of the models is done in four stages. First, the power saturation levels of

the indoor and outdoor units of the system are identified. Secondly, the power models is

developed and analyzed, one by one, building on each other. Then, the same is done for

the temperature models. The last stage is a predictive capability test of the power and

temperature models combined, where a simulation on a new data set is performed in order

to discover strengths and weaknesses of the models.

Each proposed model contains parameters that is unknown. In order to find the parameters

that are best suitable for the system, a model based-parameter estimation with Python and

CasADi is performed. The least-square method is applied where the difference between

the model estimates and measurements is minimized.

The heat pump power models are replicating the internal controller of the heat pumps. The

first model is of a standard proportional(P)-controller. The second model is a P-controller

where a bias term is added. The third power model is also a P-controller with a bias term,

where the relation between the heat pump performance and the outdoor temperature is

investigated. The final heat pump power model is replicating a proportional-integrator

controller.

The temperature models are estimating the temperature in each room. The first model
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calculates the room temperature based on the heat transfer from the heat pump and

outdoor air. The second and third temperature model have added a new state representing

the heat inertia of the walls of each room. The difference between the two models is that

the third neglects the heat transfer from the wall to the outdoor air.

A simulation on two combinations of the most consistent heat pump power and temperature

models was performed to test the predictive capabilities. The results showed that the

models were able to replicate the most significant trends of the system behavior. However,

more testing should be done before implementing them in an MPC.
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Sammendrag

Studier viser at samfunnet må tilpasse seg overgangen knyttet til økt elektrifisering

og fornybar energi til energimiksen. Kombinasjonen av høyere strømforbruk og ikke-

regulerbare energikilder vil føre til høyere variasjon i strømprisen. Forbrukerfleksibilitet

som utnytter variasjon i strømprisen, vil være til fordel for b̊ade forbrukerne og

samfunnet ved reduserte kostnader knyttet til strømregningen og nettbelastningen. Denne

masteroppgaven undersøker og utvikler modeller som kan brukes i en Model Predictive

Controller (MPC) som styrer en varmepumpe basert p̊a spotprisen, noe som bidrar til økt

forbrukerfleksibilitet.

Systemet som undersøkes er en del av en husstand i Trondheim. Den best̊ar av fire rom

med en varmepump i hvert rom. Målet med modellen er å estimere energiforbruket

til varmepumpene og varmedynamikken til rommene. Utviklingen av modellene ble

gjort i fire trinn. Først ble effektmetningsniv̊aene til varmepumpene identifisert.

Deretter ble varmepumpemodellene og temperaturmodellene utviklet og analysert. Til

slutt ble det utført en prediktiv kapabilitetstest av de kombinerte varmepumpe- og

temperaturmodellene, hvor det ble gjort en simulering p̊a et nytt datasett for å avdekke

styrker og svakheter ved modellene.

Hver modell inneholdt parametere som er ukjente. For å finne parametrene som er best

egnet for systemet, ble det utført det en modellbasert parameterestimering i Python og

CasADi. Den minste kvadratiske metode ble benyttet der differansen mellom modellanslag

og målinger ble minimert.

Varmepumpemodellene representerer de interne kontrollerne til varmepumpene. Den første

modellen er av en standard proporsjonal (P)-kontroller. Den andre modellen er en P-

kontroller hvor det ble lagt til en parameter som utgjevner skjevheter i systemet. Den

tredje varmepumpemodellen er ogs̊a en P-kontroller med en skjevhetsparameter, hvor

sammenhengen mellom varmepumpens ytelse og utetemperaturen ble undersøkt. Den

fjerde og siste varmepumpemodellen replikerer en proporsjonal-integratorkontroller.

Temperaturmodellene estimerer temperaturen i hvert rom. Den første modellen beregner

romtemperaturen basert p̊a varmeoverføringen fra varmepumpen og uteluften. Den andre
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og tredje temperaturmodellen har lagt til en ny tilstand som representerer varmetregheten

til veggene i hvert rom. Forskjellen mellom de to siste modellene er at den tredje neglisjerer

varmeoverføringen fra veggen til uteluften.

Det ble gjort en simulering p̊a to kombinasjoner av de mest konsistente varmepumpe- og

temperaturmodellene for å teste prediktive evner. Resultatene viste at modellene klarte å

replikere de viktigste trendene i systemadferden. Flere tester bør imidlertig gjøres før de

implementeres i en MPC.
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1 Introduction

While starting writing this Master’s thesis, Norway set two new power consumption

records. Between 8 and 9 AM January 15th a consumption of 24,536 MWh was measured,

and at the same hours on February 4th a consumption of 25,146 MWh was measured.

According to Statnett, which is the system operator of the Norwegian power system, the

reason for the new records was due to cold weather and increased electrification of the

society. In times of high electricity demand, more user flexibility would benefit both

Transmission System Operators and consumers.[1,2]

1.1 Background

Analyses of the power market in Europe from the present until 2040, carried out by

Statnett, predict a stable average spot price, but higher price volatility. Two reasons

for this are more electrification of the society and more renewable energy in the energy

mix. Ways to lower the average spot price and its volatility can be through more flexibility

of consumers and households. [3]

1.1.1 Electrification

In order to lower the CO2 emissions in Norway, it is planned to replace fossil energy

with electrical energy. This transformation is called electrification and is happening is

in several sectors such as industry, transport and energy production. In a scenario by

Norwegian Water and Energy Directorate (NVE) it is predicted that the electrical energy

consumption will be 23 TWh larger in 2040 than the present due to electrification. Even

though the energy production is also expected to increase, the price of electricity will be

about 7 and 10 øre/KWh higher in 2030 and 2040 respectively, than if the electrification

measures were not implemented.[4]

1.1.2 More Renewable Energy in The Energy Mix

In order to succeed in the electrification transition, it is necessary to increase the renewable

energy production. Due to lowered prices on wind and solar plants, it is expected that

they will be the main energy source in the energy mix in Europe. In the model EU11 by

Statnett it is predicted that wind and solar energy will go from 19 % in 2020 to 46, 67 and

86 % in 2030, 2040 and 2050, respectively.[3]
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Wind and solar power are non-dispatchable energy sources, which means that the energy

produced can not be controlled adjusted to the demand. The power plants are dependent

on wind and sun radiation. With a high portion of non-dispatchable energy sources, the

power prices will be much more volatile. In times of power deficit the prices will go up

and in times with power surplus the prices will fall. There have been examples when the

power price is negative, and this scenario is more likely to happen more often as more

non-dispatchable energy sources is in the power system.[3]

The power price volatility in Norway has been low during the past few years because of

the hydroelectric power plants ability to balance the power price. In Denmark, the price

volatility is higher because of impacts caused of the big portion of wind power in their

energy mix. With more transmission lines to Europe, increased power consumption and

increased portion of non-dispatchable energy sources, the price volatility is expected to

increase, see figure 1.1.[5]

Figure 1.1: Historical and predicted price duration curve for Norwegian power prices. A price

duration curve illustrates a percentage of time in which the price level is over a certain level.[5]

1.1.3 Consumer Flexibility

The energy market depends on other reliable dispatchable energy sources, energy storage

and consumer flexibility in order to balance the production and consumption. Statnett

mentions consumer flexibility to be one of the most important measures. The power

market will develop into a scenario where the consumer must adapt to the producers. In

periods with high renewable energy production and low power prices the consumers should

run high power appliances, such as charging their car and various heating. On the other
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hand, the high power appliances should be turned off in periods with low renewable energy

production and high power prices. This measure is called peak shaving.[3]

There is a big potential of peak shaving amongst households. The introduction of smart

metres (AMS) and smart home technology make it easier for households to adapt to the

power market. By using less power in times of high spot prices, or focusing on lowering

power peaks in considering power tariffs, the consumers can contribute to balancing the

power market in addition to save money.[5]

Flexibility by households will have a different impact on the power grid than flexibility

amongst more power demanding industry. It will be costly for the industry to be more

flexible as this may impact the production etc, but they can in times of power deficit provide

flexibility which can be rewarded by economical incentives. This can help balancing the

frequency and voltage of the transmission grid, which is considered the grid containing

200 kV or above. The power consumption behavior of the households will affect the

distribution grid (22 and 11 kV), both in terms of voltage and bottlenecks. In addition,

the distribution grid has fewer options to regulate the production, which emphasize the

significance of flexible households.[5]

1.1.4 Household Flexibility Potential

There is a substantial potential for households to provide flexibility through power to

heat (P2C) and electric vehicle (EV) charging. Figure 1.2 illustrates that space heating

and heating of water stands for the majority of the electricity consumption in Norwegian

households in 2017. In that period Norway had a 5.11 % share of electrical cars on

the roads. In 2020, 12.06% of the vehicles in Norway were electric cars. The market

share of new car sales were 54.3 %. By including plug-in hybrids, which typically are

charged at households, the total share of new chargeable car sale in 2020 where 74.7

%. The distribution of electrical energy at Norwegian households will therefore grow

substantially.[5–7]
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Figure 1.2: Estimated purpose distribution of electrical energy in Norwegian households in

2017.[5]

Some of the P2C applications with most potential for flexibility in households of the

Northern countries are hot water tanks, heaters and panel heaters, and heat pumps. By

exploiting thermal inertia they can stop or reduce the heating in periods of high electricity

prices while still maintaining sufficient temperature or comfort. A practical example could

be in space heating, where a user can set a comfort level between 19-22 °C. Then a smart

home device would have data on the electricity prices for the next day, and suggest a

heating schedule for the device.[5]

Typical usage of an EV by households today is commuting to work and to other errands

and activities during evenings. A smart charger with inputs of when the user wants the

car fully charged, and the spot price for the following hours can then schedule the charging

to save money without affecting the user. Typically, the charging would be shifted to

nighttime instead of when the user would plug in the charger at afternoon peak hours.[5]

EVs can also function as a balancing energy storage unit. By reversing the energy flow,

they can deliver power from vehicle-to-grid (V2G) or from vehicle-to-home (V2H). The

technology exists, but is more costly than conventional chargers. In addition, studies

show that the expected lifetime of the car battery can be reduced by 50 %. The present

spot prices do not fluctuate enough to make this profitable. By 2030 the technology may

make it profitable, especially in combination with solar panels and bigger volatility in the

electricity prices.[5,8]
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1.1.5 Flexibility Market Development

By 2019 Advanced Metering Systems (AMS) were installed in Norwegian households. An

AMS is an advanced measurement and control system making consumers able to utilize

flexibility in the spot price market. The device measures energy consumption in real

time. By default it reports the hourly consumption of a household. By making consumers

more aware of their pattern of consumption, they can shift consumption from peak hours

benefiting their private economy and the power grid. [5]

1.2 Problem to be addressed

This Master’s thesis investigates different models that can represent the temperature

dynamics in a household with installed heat pumps. The purpose of the models is to

use them in a controller that can minimize costs related to the electricity spot price,

while the heat pumps ensure a comfortable temperature. This can be done by a Model

Predictive Controller in which of the models calculate a optimal temperature setting of

the heat pumps. The problem to be addressed is:

”Develop and investigate power and temperature models of a household that can be used

in a Model Predictive Controller that minimizes the electricity spot price of the heat pump

power consumption while maintaining a desired comfort temperature.”

1.3 Structure of the Thesis

After this introductory section, there is a theory section providing some basic

understanding to the work of this Master’s thesis. The main part of the thesis consists

of the system description and the development and testing of the models. Each model is

analyzed at the time. This means that for each model, the model will first be presented,

thereafter a parameter estimation of the respective model will be carried out, then the

results will be discussed. Some of the models are built on the previous model presented,

so it is advised to read them in chronological order. Finally, some predictive capability

testing on two combinations of the power and temperature models are performed. This

has been done in order to discover strengths and weaknesses on how they may perform as

models in a Model Predictive Controller.
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1.4 Software

All of the model-based parameter estimation and illustrations made in this thesis are done

with Python in Pycharm. For the optimization problem setup and simulations, an open

source, software framework for nonlinear optimization and optimal control called CasADi

are utilized. The class used for solving the optimization problems is called Opti and is

applying the algorithm Ipopt that is an interior-point filter line-search algorithm for large-

scale non-linear programming.[9,10]
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2 Theory

2.1 Nord Pool

Nord Pool is a power market where the prices of electricity are decided in 14 countries

in Northern Europe. Due to bottlenecks in the transmission lines, the market is split in

different bidding areas, whereas the electricity price in each area is called Elspot price. For

instance, Norway is normally divided into 5 Elspot areas called NO1-NO5. See figure 2.1

for several Elspot areas in the Nord Pool Power Market.[11]

Figure 2.1: Map over the different Elspot areas in the Nord Pool power market.[11]

The Elspot price is calculated and determined in a market called the day-ahead market.

Each day at 10:00 Central European Time (CET) the available capacity on the transmission

lines both between and within the Elspot areas are published. Then buyers and sellers on

the market have to make their bids until 12:00 CET. They bid on the hourly prices from

00:00 and 24:00 CET the next day. The bids are then being matched with the market

prices from surrounding markets in Europe through an algorithm called Euphemia. This

pan-European market coupling process is called the Single Day-Ahead Coupling. Then the

Elspot prices for the next day are announced before 13:00 CET.[12]
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The Elspot price depends mostly on supply and demand, but also on other factors such as

planned maintenance on the transmission lines etc. If the weather forecast predicts a lot

of wind and rain the next day, the hydro and wind energy power plants expect high power

production that leads to a high level of supply, commonly lowering the prices. However, if

the weather forecast predicts low temperatures, the suppliers and consumers expect high

energy usage, pushing both the demand and prices up. A region may also experience high

prices if the transmission lines is out of service resulting in less supply options. This liberal

market form leads to a dynamic where power flows from Elspot areas with low power price

to areas with higher power price.[13]

Electricity consumers in Norway normally have a choice of having a fixed, variable or spot

price-based electricity bill. By choosing spot price, the consumer will have a price that

follows the market price of Nord Pool every hour. This deal gives the consumer the ability

to benefit from user flexibility, unlike having a fixed price from the electrical company.[14]

2.2 Heat Pumps

Heat pumps are a source of heating and cooling of households. A common heat pump

type is air-to-air heat pumps. It uses outside air as heat source to heat up the indoor

air. Further in this thesis, when discussing heat pumps, it is air-to-air heat pumps that

are meant. That is because it is air-to-air heat pumps that are investigated later in this

thesis. [15].

A heat pump consists of two main parts, an indoor and outdoor unit. The outdoor unit

consist of a heat exchanger and a compressor. The heat exchanger gathers heat from the

outside air to a circulating heat medium, called refrigerant. In order to transfer heat from

the outside air to the refrigerant, the refrigerant needs to be colder than the outside air. The

refrigerant is then compressed by the compressor, causing an increase of temperature and

pressure. The refrigerant is then sent to the indoor unit where it passes a heat exchanger,

transferring heat to the indoor air as it condenses. The pressure and temperature of the

refrigerant then drop as it passes through an expansion valve. At last, it returns to the

outdoor unit, completing the cycle.[15]

The heat pump compressor type can affect the power consumption of a heat pump. Some
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heat pumps have a single speed compressor that run with a fixed speed when it is on. The

fixed speed compressor turns on and off as the room temperature is fluctuating below and

above the desired temperature. Some heat pumps, however, runs with an inverter that

makes the speed of the heat pump compressor motor variable. By using an inverter, the

power consumption is ’smoother’ than of a fixed speed compressor.[15]

2.3 Heat Transfer

This Master’s thesis investigates and develops models that identifies the heat transfer

rates between different physical components. In order for heat to transfer a temperature

difference between the components is needed, whereas the heat transfers from the hot to the

cold component. Depending on the components and what is between them, there three

general types of heat transfer exist: conduction, convection and radiation. Conduction

and convection will be further described as these types of heat transfer is modelled in this

thesis.[16]

2.3.1 Conduction

Conduction is a type of heat transfer where the heat transfers through a component that

may be of a solid, liquid or gas. The heat transfers as collisions of atoms and molecules in

the component and is triggered by temperature differences. The heat transfer Q̇[W ] from

the hot to cold side is given as

Q̇ = kA
Th − Tc

∆x
(2.1)

where Th and Tc[K] is the temperature of the hot and cold side, respectively. ∆x[m] is

the thickness of the component between the hot and cold side. A[m2] is the area of the

cross section of which the heat is transferred. k
[
W
mK

]
is the thermal conductivity, which

is a property that describes the resistance of the heat transfer. The thermal conductivity

is positive as of the second Law of Thermodynamics.

2.3.2 Convection

Heat convection is the heat transfer that occurs between a surface of a solid object and its

surrounding fluid that is in motion. The fluid can be both liquid or gas. An example may
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be heat transfer from a house wall to a colder outside air. The heat transfer Q̇ is given by

Newton’s law of cooling

Q̇ = hA(Ts − Tf ), (2.2)

where Ts[K] and Tf [K] is the surface and fluid temperature, respectively. A[m2] is the

surface area, while h
[

W
m2K

]
is the convection heat transfer coefficient.[16]

2.3.3 Heat Capacity

The heat transfer between two components commonly changes the temperature of the

components. A component, such as air or a wall, can be described as a thermal mass with

a heat capacity. The heat capacity is the relation between how much energy is added and

how much the temperature changes in the substance. The temperature change can be

given as

∆T =
Q

Cm
, (2.3)

where Q[J ] is the heat delivered, C
[

J
kgK

]
is the specific heat and m[kg] is the mass of the

system. The heat capacity of air is 700 J
kgK

.[17,18]
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2.4 Optimization Problem

Optimization is a mathematical tool used in areas such as engineering, science and finance.

It can be used to minimize costs, energy or maximize profits to an application or system.

Central terms in optimization is an objective, variables/unknowns and constraints. An

objective is what is being optimized - it could be time, money, energy etc. The objective

f is often referred to as the objective function f(x), as it is a function of the variables x of

the system. The constraints c represent restrictions of the system. Such restrictions may

be that the energy of a system can not be negative.[19]

A typical representation of an optimization problem can be given as

min
x

f(x) (2.4)

subject to ci = 0 i ∈ E , (2.5)

ci ≥ 0 i ∈ I. (2.6)

By this representation, the objective function f(x) is minimized by the state x. Meanwhile,

the system variables ci is constrained, where E and I are sets of indices for equality and

inequality constraints.[19]

Optimization algorithms are used for solving optimization problems. An optimization

algorithm is an iterative method that starts with an initial guess of the variable x0 and

for each iteration it proposes an improved solution. In a case of a successful sequence

of iterations, the algorithm terminates with an optimal solution. The strategy used for

finding the improved solution in each iteration is what separates the different optimization

algorithms.[19]

2.4.1 Least-Squares Problem

Least-squares problems is a useful technique that can be used in many applications. The

way the problem is constructed makes it efficient to estimate unknown parameters of a
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model. The general form of a least-square problem is given as

f(x) =
1

2

N∑
k=1

r2k(x) (2.7)

where r is called the residual. When estimating the parameters of a model φ, the residual

can be given as

rk = φk − yk (2.8)

where yk is the measurement in time step k. By minimizing the residual squared, the

solution will find the optimal parameters for the model. Newton or gradient methods is

typically used for solving least-squares problems.[19]
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3 System Identification

3.1 System Description

The system that is being modelled in this Master’s thesis is of a house located in Trondheim,

Norway. There are four rooms in the house that are of interest. They are referred to as

Living, Livingdown, Main and Studio, and have a volume roughly estimated to 220 m3, 50

m3 66 m3 60 m3, respectively. The models created assume that all the rooms are separated

and do not impact each other, even though the rooms living and main have an opening

between them.

Each room is equipped with one indoor heat pump (HP) unit which is connected to one of

two outdoor heat exchanger units, see figure 3.1. The indoor HP unit of living is connected

to outdoor Unit 1. The indoor HP units of livingdown main and studio are connected to

the outdoor Unit 2. All of the indoor HP units are of the same manufacturer, Mitsubishi.

Note that the HPs are in heating mode. That means that it will not utilize power to cool

down the room if the reference temperature of the heat pump is lower than the measured

temperature. This is because the general temperature conditions of the house is such that

cooling is not needed.

Each unit, both indoor and outdoor experience power saturation effects. That means that

due to electrical limitations in the machines, the units have upper power consumption

limitations. The saturation levels given in figure 3.1 are further described and identified

in section 3.3.
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Living

Livingdown

Main

Studio

Indoor HP units

Unit 1

Unit 2

Outside HP units

1.6 kW

2.5 kW

2.1 kW

1.6kW

1.9 kW

Figure 3.1: Overview of the heat pump system with associated level of power saturation.

The measured properties with associated descriptions of the system are given in table

3.1. The power consumption is measured by a device called Tibber Pulse by the company

Tibber. This device is connected to the Advanced Metering System (AMS) of the house

that can measure the power with high sample frequency.

The settings (reference temperature etc.) of the HP units are externally controlled through

a Rasberry Pi. In addition to the reference temperatures, an MPC controls whether the

heat pumps should be on or off. A heat pump is shut off for the next 30 minutes if the

controller plans to use less than 50 W the next 30 minutes. Details of the internal controller

of the HP units are unknown.(Sebastien Gros, Personal Communication)

There are several aspects of the measured properties that have to be pointed out. One

aspect is that the individual HP power consumption is not given explicitly, as the power

measured is the total consumption of the HP system. However, by isolating the periods

of when only one HP is on at the time, the measured power consumption represents the

one HP that is on. Another aspect of the measured properties, is that the temperature

measured in each room is done by an external sensor - not by the heat pump control

system. That means that the temperature that the heat pump experiences may not be

the same as the temperature measured. One last aspect is that the outside temperature

property is gathered through an API of the Norwegian Meteorological Institute and is not

the exact temperature of the air surrounding the house.
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Table 3.1: Measured properties of the system and associated description.

Variable Name Description

tk Timestamp

Pk Total Power consumed

Tout,k Outdoor Temperature

Troom,k Temperature in each room

Tref,room,k Set Temperature for Heat Pumps in each room

BHP,room,k Boolean telling if Heat Pump is on/off in each room

3.2 System Identification Data Sets

Identification data sets, made by experimental design is made in order to better identify the

behaviour of the system. By for example running one heat pump at the time, the behaviour

of that unit can be analysed properly. By applying steps in the reference temperature, the

step response behaviour can be analysed. Some illustrative examples of the experimental

design is presented in this section. All the system identification data sets, given by table

3.2 are illustrated in Appendix A. The data sets are made and handed out by Professor

Sebastien Gros, the supervisor of this Master’s thesis.

Table 3.2: System identification data sets summarized with associated start and end time.

Data Set Name Start End

Data Set 1 2021-02-19 19:45 2021-02-20 08:35

Data Set 2 2021-02-20 23:15 2021-02-21 09:45

Data Set 3 2021-02-21 18:30 2021-02-22 04:45

Data Set 4 2021-03-02 08:20 2021-03-04 18:00

Data Set 5 2021-03-02 08:20 2021-03-04 18:00

The power consumption measurements from Data Set 3 are illustrated in figure 3.2. It is

observed that the raw measurements fluctuate significantly. In order to better identify the

trends and behavior of the power consumption, the series have been re-sampled from an

approximately 2 seconds sample rate to a frequency of 5 minutes.
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Figure 3.2: Raw power measurements and their 5-minute mean.

The measured temperature and the reference temperature in each room of data set 4 are

illustrated in figure 3.3. The trajectory of living is a good example for the step responses

of both lowering and increasing the reference temperature in the room. The measured

temperature seems to reach the reference temperature. However, in the trajectories of

main, the measured temperature in the room does not reach the reference temperature.

This may be a consequence of the temperature sensor being an external sensor, not affecting

the internal controller of the HP.
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Figure 3.3: Measured and reference temperatures for each room from Data Set 4.

The On/Off state of the different heat pumps from Data Set 4 are illustrated in figure

3.4. This figure illustrates the experimental design of the system identification data sets.

From start until approximately 03-02 18 all HPs are on. After that and until 03-03 06

one heat pump is on at the time, starting with the HP in main. In that way the power

measured is representing the one heat pump that is On at the time. Note that the reference

temperature can be greater than the measured temperature even though the heat pump

is Off.
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Figure 3.4: On/Off status of the heat pumps in each room from Data Set 4.

3.3 Identifying Power Saturation Levels

Before modelling the power consumption of the heat pumps, the power saturation levels of

the indoor units in each room, in addition to Outdoor Unit 2 have to be identified. This

is done by analysing the time series of when a single heat pump unit is On at the time

in all the system identification data sets. The power series analysed is the 5-minute mean

version of the raw data, such that the fluctuation noise of the raw data set is damped. It

may be expected that the saturation levels of the indoor units are at the same level, as the

units are of the same manufacturer.

3.3.1 Living

The distribution of the power consumption of the HP in living when in single operation

is illustrated in figure 3.5. The length N of the power series is 2851. The figure shows six

instances n over 1.6 kW. This means that six times the raw measurements data set had

an average over that level of power. Note that the HP power is over several periods equal

to zero, even though the HP setting is On.
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Figure 3.5: Distribution of the 5-minute mean power measurements of living.

3.3.2 Livingdown

The distribution of the power consumption of the HP in livingdown when in single operation

is illustrated in figure 3.6. The figure shows five instances n over 1.9 kW. This is of a total of

instances N equal to 1254. There are significantly more instances of power measurements

in the interval [1.8 kW, 1.9 kW) than in the intervals of [1.7, 1.8 kW) and [1.9, 2.0 kW].

Figure 3.6: Distribution of the 5-minute mean power measurements of livingdown.

The distribution of the power consumption of the HP in main when in single operation

is illustrated in Figure 3.7. As shown by the distribution plot, there were nine instances
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above 1.6 kW. Most of the instances were in the lower power interval of [0, 0.1 kW).

3.3.3 Main

Figure 3.7: Distribution of the 5-minute mean power measurements of main.

The distribution of the power consumption of the HP in studio when in single operation is

illustrated in figure 3.8. This HP unit has measurement instances larger than of the other

HP units. The data set of this unit provides with 3 and 2 instances in the power interval

of [2.0 kW, 2.1 kW) and [2.1 kW, 2.2kW), respectively. In the power interval [0, 0.1 kW)

there were registered six instances, out of a total of N = 767.
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3.3.4 Studio

Figure 3.8: Distribution of the 5-minute mean power measurements of studio.

Figure 3.9 illustrates the distribution of power measurements when Unit 2 was operating.

That is, all power measurements when the HP unit of living was Off. As seen from the

figure, there were eight instances of power consumption in the interval between [2.5 kW,

2.6 kW).

3.3.5 Outdoor Unit 2

Figure 3.9: Distribution of the 5-minute mean power measurements of Unit 2.
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3.3.6 Discussion

As the HP units in each room are of the same type and manufacturer, one could expect that

the individual level of saturation may be relatively equal. That is not the case according

to these data sets. It is a rather large difference(≈0.5 kW) between the highest power

measurements of both living and main, and studio. The reason for this difference may

be explained by some unknown details of the electrical or heat pump installations. Such

details of the system will not be investigated further.

As such individual differences exists, it is reasonable to have individual saturation levels of

the HPs. Even though there are few instances of the highest power measurements, one can

argue that this represents the level of saturation. As these measurements are a 5-minute

average of the raw data sets, noise should be cancelled out. The saturation levels chosen

for the system is summarised in table 3.3

One aspect that is noticed by the distribution plots is that the number of instances in the

lower power interval varies significantly between the HPs. In particular, the room living

has many samples in the lower interval. There may be two reasons for this. First, that is

gets heating from external sources such as from the open corridor from main, or from the

sun through windows. Secondly, it may be that the room heats up more quickly to the

reference temperature of the HP. However, as living by far is the largest in terms of the

air volume, that is unlikely that it gets heated more quickly.

Table 3.3: Heat pump saturation levels in each room and for Outdoor Unit 2.

Units
Power

Saturation [kW ]

Living 1.6

Livingdown 1.9

Main 1.6

Studio 2.1

Outdoor Unit 2 2.5
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3.4 General Model Based Parameter Estimation Problem

This section presents a general model based parameter estimation problem that is used

in this Master’s thesis. Some changes are done in the different models, but it will be

presented in their respective sections. To cover the most general methods, two versions of

the parameter estimation will be presented, one for static functions and one for dynamic

functions. The constraints of the parameter estimation problem vary whether the model

is static or dynamic. If the model is static, it depends on input states from the same time

step. If the model is dynamic, it depends on input states and its own estimates from earlier

time steps.

The goal of the optimization problem is to find the optimal parameter vector p∗ that makes

the model replicates the real system behaviour. The least-square optimization problem

does that by minimizing the accumulated residual error squared r2 over all time steps k.

The residual is defined as

rk = φk(p)− yk (3.1)

where yk is the measured property in which the model is trying to estimate. φk(p) is the

model estimate trajectory in time step k in function of the parameter vector p.

The optimization problem for parameter estimating the static models is given in equation

3.2. The model trajectory φk in time step k is equal to the model estimates fk(p, zk) in

function of the variable parameters and the input state vector zk in a time step k. For some

of the models, there are optimal parameters p∗i that is defined as positive. The constrained

parameters is presented in the parameter estimation section for each respective model

presented.
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min
p

N∑
k=1

r2k. (3.2a)

subject to for k ∈ [0,N] : (3.2b)

φk = fk(p, zk) (3.2c)

p∗i > 0. (3.2d)

The optimization problem for parameter estimations of dynamic models is given in 3.3.

To ensure that the model estimate trajectory φ is continuous, each time step of the model

estimate trajectory is calculated in function of the previous estimate. Some of the training

data sets contain a longer gap than 5 minutes. This is because several data sets form

separate time periods are merged to achieve longer training data sets. After each gap of

over 5 minutes, the optimization will continue with new initial values.

min
p, φgap

N∑
k=1

r2k, (3.3a)

subject to for k ∈ [1,N] : (3.3b)

if not gap: (3.3c)

φk = fk(p, zk, φk−1) (3.3d)

p∗i > 0. (3.3e)

Since the initial values are free variables decided by the optimization solver for the dynamic

models, the minimizing is done with the parameter vector p and φgap, which is the initial

model estimate.
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3.4.1 Standard Deviation of the Residual

For each parameter estimation that is done later in this thesis, the distribution of the

residual is presented. This is to get a visual presentation of how well the model is

performing. Ideally, the form of the residual distribution will be Gaussian and narrow

around 0. To be able to compare the different parameter estimation results not only

visually, the standard deviation of the residual is calculated by equation 3.4, where r̄ is

the mean value of the residual samples.

σr =

√∑N
k=1(ri − r̄)2
N − 1

(3.4)
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4 Power Models

The purpose of the power models is to estimate the power consumption P̂k of the heat

pump at time step k in each room based on an input state vector z and a parameter vector

p. This section starts with a presentation of the saturation and non-negativity model that

is included in all power models. Then, for each power model the model itself is presented,

followed by an explanation of how the optimal parameter vector p∗ were estimated, and

its results. At last, for each model a discussion of the parameter estimation results is

presented.

Some sorting of the data sets has been done in order to achieve better parameter estimation.

The measured power consumption given by the data set gives the total power consumption

of all the heat pumps, but the model and parameter estimation is representing one heat

pump at the time. Therefore the data sets had to be sorted. The data sets were sorted

such that the the input data of the parameter scheme was the measured data from the time

steps where only one heat pump where On. In this way, the measured power consumption

yP,k is representing the heat pump that is On. The consequence of this method is that it

shrinks the data set, such that the training data becomes relatively small. Therefore the

first four data sets of February and March are combined into one data set called Winter

Data Set. The data set of May is called Spring Data Set. From Spring Data Set, there

was not enough single unit power measurements on the HP units in Main and Studio in

order to estimate the parameters. It is therefore only results from the Winter Data Set in

those rooms.

4.1 Modelling Saturation and Non-negativity

As the level of power saturation for the different rooms and the outdoor units has been

identified, these effects have to be modelled. In addition to an upper limit of the power, it

is desirable that the model has a lower limit equal to zero as the heat pumps (HPs) cannot

draw negative power.

The upper and lower limits of the power consumption are decided to be constrained

in the model itself and not by the constraints in the optimization problem of the

parameter estimation. An example of why, could be if the difference between the measured
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and reference temperature is causing the power to exceed the saturation level limits.

Optimization constraints would then force down the proportional parameter such that

the power consumption is in the feasible set. However, by modelling these effects, the

parameters that are found will be representative for power consumption within and at the

limits of saturation.

To model the saturation and non-negativity, it is desirable to have a model behaviour that

inputs an estimated power P̄ and limits that such that the saturated power estimation P̂

is within the limits of zero and the level of saturation Psat. This model behaviour can be

expressed as

P̂ (P̄ ) ≈


0, for P̄ < 0,

P̄ for 0 < P̄ < Psat,

Psat for P̄ > Psat,

(4.1)

To model the saturation and non-negativity effects in a time step k, a modified Sigmoid

function is used. This function makes the model smooth, which is important for a Newton-

based optimization strategy like Ipopt. The Saturation and Non-negativity model is given

as

αk(P̄k) = ln

(
1 + exp(ReLu P̄k)

ReLu

)
(4.2a)

P̂k(αk(P̄k)) = Psat − ln

(
1 + exp(ReLu (Psat − αk(P̄k))

ReLu

)
(4.2b)

where the constant ReLu is equal to 10, which affects the slope of the saturation curve. To

increase readability, an intermediate calculation is done by the function αk. An example

of the model behaviour with ReLu = 10 and Pmax = 2kW is illustrated in figure 4.1.
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Figure 4.1: The saturation function for power saturation at 2 kW. The illustration is self-made

in Python.

4.2 Power Model 1

Power Model 1, given by equation 4.3 is first calculating the unsaturated power

consumption of a heat pump P̄mod1,k in time step k based on the reference temperature

Tref,k and the measured room temperature Tk. It is done by replicating a proportional (P)

controller, where p1 is equivalent to the proportional term Kp of a standard P-controller.

Finally the model calculates the saturated power estimation P̂mod1,k by the saturation

function given by equation 4.2.

P̄mod1,k = p1 (Tref,k − Tk) (4.3a)

P̂mod1,k = P̂k(P̄mod1,k) (4.3b)

Even though the model is simple, it may give useful results and insight into the system

behavior. Hopefully, this model will to a certain extent replicate the heat pump controller

as the difference between the set temperature and the current temperature in the room

should be a dominant factor of the heat pump power consumption. It is a simple and

static model where the parameter is intuitive, and can be subsequently built on with more

parameters and inputs.
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Ideally, the measured temperature Tk would be the same as the temperature that the actual

internal HP controller experiences. Any bias between these temperatures could affect this

model negatively, especially when the reference temperature is approximately equal to the

measured temperature. In some cases, by the reference temperature being slightly below

the measured one, the model will tell that the power should be zero, when the internal HP

controller experiences a temperature above the reference, making the power consumption

greater than zero.

4.2.1 Parameter Estimation Problem

The parameter estimation of Power Model 1 is based of the general parameter estimation

problem of section 3.4. As Power Model 1 is static, the problem is given by 3.2, where yk

is the power measurements from the winter and spring data sets. The model trajectory

estimates are defined by the constraints in equation 3.2c, where

φk = fk(p, zk) = P̂mod1,k(p, zk), (4.4)

where zk = [Tref,k, Tk]. The parameter vector p is redefined as a scalar p = p1, and is

constrained in equation 3.2d where i = 1. This parameter is positive definite because it is

the proportional gain of the modelled controller.

4.2.2 Parameter Results

The results of the parameter estimation for each room is summarised in table 4.1. p∗1

and σr is the parameter at the solution and the standard deviation of r in the respective

rooms. There was not sufficient single operation samples of the heat pumps main and

studio in Spring Data Set for making good model estimations. The illustrations of the

model estimates presented in this section are included for illustrative purposes, and rest

of the results is presented in appendix B.1.

The parameter at the solution for Winter Data Set - living resulted in more than twice

as large as of the Spring Data Set. The Winter Data Set estimations of livingdown also

resulted in a larger parameter value than for the Spring Data Set, but not as big of a

difference. Both winter sets also gave the biggest σr for both living and livingdown. The
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parameters of main is not too far off the other results and gave a standard deviation of

0.35. p∗1 of Studio resulted in the highest parameter value of 6.38. In addition, this result

gave the highest σr = 0.57.

Table 4.1: The parameter estimation results of Power Model 1 summarised.

Living p∗1 × 101
[
kW
◦C

]
σr

Winter Data Set 5.41 0.45

Spring Data Set 1.59 0.21

Livingdown

Winter Data Set 3.0 0.42

Spring Data Set 2.36 0.25

Main

Winter Data Set 2.71 0.35

Studio

Winter Data Set 6.38 0.57

The parameter estimation of Power Model 1 in living resulted in both the lowest parameter

p1 and standard deviation σr. Figure 4.2 shows that the model estimation φ(p∗) follows

the measurements y, but only at low power levels close or equal to zero. There are two

exceptions, one at the beginning and another at approximately time step 60-70, where the

estimates follow the measurements at higher power levels. The distribution of r is clearly

affected by the fact that the estimation is close to the lowest levels of power.
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Figure 4.2: Upper plot compares the estimate trajectory of Power Model 2 and the power

measurements for Living - Spring Data Set. The lower plot illustrates the distribution of the

residual.

The parameter estimation of Power Model 1 in livingdown, based on Spring Data Set,

resulted in a σ = 0.25 and p1 = 2.36. From figure 4.3 it can be observed that the model

estimation trajectory φ(p∗1) follows the mean of the power measurements y quite well until

approximately time step 50. After that it is lower than the trend of y. The distribution

plot resembles a skew normal distribution with a peak lower than zero. Based on equation

3.1 it verifies that φ(p∗) is generally lower than y.
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Figure 4.3: Upper plot compares the estimate trajectory of Power Model 1 and the power

measurements for Livingdown - Spring Data Set. The lower plot illustrates the distribution of

the residual.

4.2.3 Discussion

The estimation of Power Model 1 in living gave the lowest σ off all estimations, but it is

not necessarily the optimal one for replicating the system behaviour. Since the data set

measurements have a lot of values close to zero, the solution is more satisfied at being

close to the low power levels, rather than the power peaks. The reason for that the model

cannot follow the fluctuations of power, may be that there is a bias between the measured

temperature and the temperature experienced by the indoor HP unit. This model would

not be recommended as a model in a Model Predictive Controller (MPC), as it is rather

inaccurate.

The estimation of Power Model 1 in livingdown by Spring Data set resulted in the second

lowest σr out of the other estimates. Even though it follows the trends at some extent, it

is not sufficiently accurate to utilize it in an MPC. The skew distribution of r indicates

that there is a bias in the system.

The results presented in this section has similar trends as the other estimates presented in

the appendix, and is indicating that a bias is restricting the model. A new proposed model
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should deal with this issue. It may be advantageous to add a new parameter p2 that shifts

the power estimation up, as the results of this model is generally too low.

4.3 Power Model 2

Power Model 2 is a model that builds further on Power Model 1, which is described

in section 4.2. The input states z remains the same, but it is a parameter. The new

parameter p2 is representing the bias in the model - especially with respect to the expected

bias between the measured temperature from the external sensor and the experienced

temperature of the internal controller of the HP.

Power Model 2 is given by 4.5 where p1 is equivalent to the proportional gain Kp of a

P-controller and is defined as positive definite. p1 is scaling the power proportional to the

difference between the reference temperature of the heat pump Tref and the temperature

measured by the external temperature sensor Tk. The model estimates P̄mod2,k(p, z) is then

an input to the saturation function P̂ in equation 4.5b, which calculates the saturated

power estimates.

P̄mod2,k = p1 (Tref,k − Tk) + p2 (4.5a)

P̂mod2,k = P̂k(P̄mod2,k) (4.5b)

It is expected that this model will perform better than Power Model 1. Ideally, the new

bias term fixes the issue where Power Model 1 estimated too low power consumption. As

Power Model 1 generally estimated too low values, the bias term is expected to shift the

estimates up, hence it should be positive.

4.3.1 Parameter Estimation Problem

The parameter estimation problem is similar to the parameter estimation of Power Model

1. The model is static, which means the problem can be defined by equation 3.2, where

yk is the power measurements from the winter and spring Data Set. The model trajectory
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estimates is defined by the constraints in equation 3.2c, where

φk = fk(p, zk) = P̂mod2,k(p, zk), (4.6)

where the input states zk = [Tref,k, Tk] of time step k and the parameter vector p = [p1, p2].

Parameter p1 is constrained in equation 3.2d where i = 1, because the proportional gain is

defined as positive. Parameter p2 is unconstrained as it can both be positive or negative.

4.3.2 Parameter Results

The results of the parameter estimation for each room are summarised in table 4.2. p∗

and σr are the parameter vector at the solution and the standard deviation of r in the

respective rooms. There was not enough single operation samples of the heat pumps main

and studio in Spring Data Set for generating good model estimates. The illustrations of

the model estimates presented in this section are included for illustrative purposes. The

rest of the results are presented in appendix B.2.

The parameter results of living show that both parameters where larger of the Winter

Data Set results. The bias based parameter p∗2 is nearly twice as large of the Winter Data

Set. The Spring Data Set gave the lowest standard deviation of σr = 0.14. The results

of livingdown also gave the highest parameters of the Winter Data Set results, and lowest

standard deviation. The parameter results of main and studio gave parameters within

reasonable range of the other parameter results. The highest bias term of the parameter

estimation is of studio.
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Table 4.2: The parameter estimation results of Power Model 2 summarised.

Living p∗1 × 101
[
kW
◦C

]
p∗2 × 101[kW ] σr

Winter Data Set 1.57 7.09 0.29

Spring Data Set 1.28 3.89 0.14

Livingdown

Winter Data Set 1.39 5.78 0.32

Spring Data Set 0.8 3.53 0.21

Main

Winter Data Set 1.35 4.35 0.31

Studio

Winter Data Set 1.42 9.65 0.38

The parameter estimation of Power Model 2 of living and Spring Data Set resulted in the

lowest σr. As illustrated in figure 4.4, the model estimation trajectory φ(p∗) follows the

trends of the measurements y. Even though it follows the trends, it does not estimate the

correct amplitude of the power peaks. It usually estimates approximately 0.1 kW higher

or lower. This observation is verified by the distribution plot.
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Figure 4.4: Upper plot compares the estimate trajectory of Power Model 2 and the power

measurements for living - Spring Data Set. The lower plot illustrates the distribution of the

residual.

By figure 4.5 it can be observed that the measurements y fluctuate around the trajectory

of the model estimates φ(p∗). The model estimate trajectory is mostly at an approximate

of the fluctuation mean. The distribution plot of r indicates a Gaussian distribution with

a peak at r ≈ 0. The other results from Power Model 2 parameter estimation presented

in appendix B.2 have similar results as in figure 4.5.
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Figure 4.5: Upper plot compares the estimate trajectory of Power Model 2 and the power

measurements for ivingdown - Winter Data Set. The lower plot illustrates the distribution of the

residual.

4.3.3 Discussion

The estimation results of living - Spring Data Set illustrates the impact of the bias term

in comparison with Power Model 1. As expected p∗2 > 0 for all solutions. Power Model 2

seems to be able to estimate the trends of the power consumption fairly well. It is hard to

conclude whether the estimation of the peaks is good enough if the model is to be used in

an MPC. The predictive capabilities of the model should be tested to verify any strengths

and weaknesses.

The results of livingdown - Winter Data Set show that the model is not capable of

estimating the frequent oscillations of the measurements. However, it seems to estimate

the mean value of these fluctuations, which can be sufficient as a model in an MPC. It can

be argued that the impact the HP power has on the room temperate can be represented

by the mean of the fluctuations as well as the fluctuating measurements. This is because

the heating of the room is a rather slow process. In addition, the fluctuation of the power

consumption may originate from the HP compressor, finding the right pressure and heat

combination of refrigerant. This is also a rather slow process with regard regard to the
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temperature changes in the room. In terms of energy usage per hour, which the electricity

bill is depended on, the model estimate trajectory may have little difference from the

fluctuating power measurements.

4.4 Power Model 3

Power Model 3 builds on Power Model 2, a new term is added that consists of a new

parameter and input state. The purpose of the new term is to model any changes in

performance of the heat pump with regard to the outdoor temperature. It would identify

if the HP uses more power in times of lower outdoor temperatures compared to the indoor

temperature.

The model given by equation 4.7 is first estimating the unsaturated power P̄mod3,k at time

step k, where p1 is equivalent to the proportional gain of a P-controller and p3 is the bias

term. p2 is the new parameter that is related to the performance of the heat pump with

regard to the outdoor temperature Tout,k. Finally, the model calculates the saturated power

estimation P̂mod3,k based on the saturation function given by equation 4.2.

P̄mod3,k = p1 (Tref,k − Tk + p3) (1− p2 (Tout − Tk + p3) (4.7a)

P̂mod3,k = P̂k(P̄mod3,k) (4.7b)

p1 and p2 are defined as positive, but the bias term p3 can be both negative and positive.

The estimation result of this model is expected to give some improvement compared to

Power Model 2. The parameter p2 is expected to be between [0,1]. As the bias term was

positive for all rooms in Power Model 2, it is expected that will be the case of Power Model

3.

4.4.1 Parameter Estimation Problem

The parameter estimation by Power Model 3 is done on the basis of the general estimation

problem described in section 3.4. The model is static and the problem can therefore be

described by equation 3.2 where yk is the power measurements from Winter and Spring
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Data Set. The model estimate at time step k is defined by equation 3.2c where

φk = fk(p, zk) = P̂mod3,k(p, zk). (4.8)

The parameter and input state vectors are defined as

p = [p1, p2, p3], (4.9a)

zk = [Tref,k, Tk, Tout,k]. (4.9b)

Parameter p1 is constrained by equation 3.2d, hence i = 1. The parameters p2 and

p3 are unconstrained. The parameter p2 could be constrained as it is expected to be

greater than 0, but is left unconstrained to test if the parameter estimation identifies the

expected behavior. By having both p2 and p3 unconstrained, there is more freedom in

the optimization problem, hence it strengthens the results if it manages to identify the

expected results.

4.4.2 Parameter Results

The parameter estimation results of Power Model 3 are summarised in table 4.3. p∗ is

the optimal parameters at the solution, and σr is the standard deviation of the residual r

of each room. For all of the rooms and data set combinations, except Spring Data Set -

living, parameter p∗2 was between [0,1]. The unconstrained parameter p∗3 is positive for all

rooms.
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Table 4.3: Parameter estimation results of Model 3.

Living p∗1 × 102
[
kW
◦C

]
p∗2 × 102

[
1

◦C

]
p∗3[

◦C] σr

Winter Data Set 7.43 8.79 4.55 0.27

Spring Data Set 13.3 -0.340 3.02 0.14

Livingdown

Winter Data Set 9.44 3.57 4.27 0.32

Spring Data Set 8.92 2.7 3.78 0.20

Main

Winter Data Set 10.2 2.08 3.26 0.30

Studio

Winter Data Set 4.16 21.3 6.62 0.37

The model trajectories are presented in appendix B.3, and are not included in this section

as they resemble the trajectories from previous model estimates from Power Model 2.

4.4.3 Discussion

The model based parameter estimation identified a relation between the power and the

difference of the outside and inside temperature for all rooms and data set combinations,

except one. This means that the heat pump may require more power when it is cold outside

because it requires more to heat the refrigerant. The results may also be affected by the

fact that there is more heat loss in the room itself. Hence, the heat pump is running at

higher power over longer periods of time.

The standard deviation of the residual is lower compared to Power Model 2 for the rooms

and data set combinations that had p∗2 > 0, except for Winter Data Set - livingdown, they

had the same σr. For Winter Data Set - living it improved by 0.02, while the rest improved

by 0.01.

The fact that p2 and p3 were unconstrained, indicates that the model is identifying the

system behaviour. As p∗3 were positive for all rooms and data set combination indicates

that the bias term from Power Model 2 is also replicating the system behaviour. As it is

positive, it may indicate that the measured temperature is less than temperature that the
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internal controller of the heat pump experiences.

4.5 Power Model 4

The internal controllers of the HPs in the house may be PI-controllers. This is a

common control strategy in systems regarding heating, as the integral term deals with

the disturbance caused by heat loss. Power Model 4 given in equation 4.10 represents such

a controller. The integration term Ik of time step k by equation 4.10c is accumulating

the error between the mean reference temperature T̄ref,k and the mean measured room

temperature T̄k. The mean temperatures of time step k are given by equations 4.10a and

4.10b. By taking the mean of the temperature between time step k and k-1, it is assumed

that the temperature changes linearly between the time steps.

The unsaturated power estimation P̄mod4,k by equation 4.10d is calculated as a PI-controller

where p2 and p3 are equivalent to the proportional gain Kp and the integration gain KI ,

respectively. The parameter p1 is representing the measurement bias between the external

temperature sensor and the experienced temperature of the internal HP controller. The

saturated power estimation P̂mod4,k is given by equation 4.10e, where the function P̂k is

given by equation 4.2.

T̄ref,k =
Tref,k + Tref,k−1

2
(4.10a)

T̄k =
Tk + Tk−1

2
(4.10b)

Ik = Ik−1 + (T̄ref,k − T̄k + p1) ∆tk (4.10c)

P̄mod4,k = p2 (Tref,k − Tk + p1) + p3 Ik (4.10d)

P̂mod4,k = P̂k(P̄mod4,k) (4.10e)

4.5.1 Parameter Estimation Problem

The parameter estimation problem of finding the optimal parameter vector p∗ is based on

the general estimation setup described in section 3.4. Power Model 4 is a dynamic model,

which means that the optimization problem can be given by equation 3.3, where φk is the

model estimates in time step k, and yk is the measured power from the data sets Winter

Data Set and Spring Data Set.
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The model estimate trajectory is defined by the constraints in equation 3.3d where

φk = fk(p, zk, φk−1) = P̂mod4,k(p, zk, φk−1), (4.11)

and the input states and parameter vector are defined as

zk = [Tref,k, Tk, Tref,k−1, Tk−1, Ik,∆tk], (4.12a)

p = [p1, p2, p3]. (4.12b)

Parameters p2 and p3 are defined as positive, hence i = [2,3] in 3.3e. The bias parameter

p1 is unconstrained as it can be both positive and negative. ∆t is given in minutes, and

not seconds to achieve parameter values with lower magnitude.

The initial values of the integration term I0 and Igap are also unconstrained. As it is

unknown if the HP is resetting the integrated error back to zero after each time it has been

turned off, we let the solver find the most appropriate values.

4.5.2 Parameter Results

The parameter estimation results of Power Model 4 are summarised in table 4.4, where p∗

is the parameter vector at the solution and σr are the standard deviation of r. There was

not a sufficient of single operation samples of the heat pumps of main and studio in Spring

Data Set for making good model estimations. It was not found a solution for livingdown

- Winter Data Set. The illustrations of the model estimates presented in this section are

included for illustrative purposes. The remaining results is presented in appendix B.4.

The bias parameter p∗1 is changing signs from room to room. The greatest absolute value

of p∗1 is for living - Spring Data Set and would be equivalent to 0.8 ◦C bias. Parameter p∗2

that is equivalent to the proportional gain is ranging from 0.134 to 0.257. The integrator

gain based parameter p∗3 is varying a bit more. For living the Winter Data Set gave

approximately ten times higher parameter value than from the Spring Data Set. The

lowest standard deviation is of living - Spring Data Set at 0.09.
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Table 4.4: The parameter estimation results of Power Model 2.

Living p∗1 × 101[◦C] p∗2 × 101
[
kW
◦C

]
p∗3 × 103

[
kW

◦Cmin

]
σr

Winter Data Set −1.98 1.37 4.76 0.24

Spring Data Set 8.11 2.40 0.459 0.09

Livingdown

Winter Data Set - - - -

Spring Data Set −3.87 2.57 2.46 0.18

Main

Winter Data Set 5.89 1.34 0.625 0.30

Studio

Winter Data Set 0.777 1.51 2.20 0.36

Figure 4.6 show that the model estimates φ(p∗) track the measurements y. There are a

few exceptions where φ(p∗) fall before y, as y was lagging behind. The distribution plot

verifies that most of the estimates are near the true values.

Figure 4.6: Upper plot compares the estimate trajectory of Power Model 4 and the power

measurements for Living - Spring Data Set. The vertical grey dotted lines indicate gaps in the

time series. The lower plot illustrates the distribution of the residual.
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The model estimates φ(p∗) of livingdown are compared with the measurements y in figure

4.7. y has an oscillating tendency. This tendency seems to be replicated by the model in

some instances at around time steps 20-27 and 50-58. The model estimate trajectory is

mostly able to follow an approximately average of the fluctuations in measurements. The

distribution of r has a block shape with edges slightly larger than ±0.2kW . The results

presented in appendix B.4 show the same trends as in figure 4.7.

Figure 4.7: Upper plot compares the estimate trajectory of Power Model 4 and the power

measurements for livingdown - Spring Data Set. The vertical grey dotted lines indicate gaps in

the time series. The lower plot illustrates the distribution of the residual.

Figure 4.8 and 4.9 illustrate the evolution of the integration term I. For each gap in the

data set, the new initial values steps up or down significantly. I of living ranges from

approximately ±2000, while I of livingdown ranges from approximately -130 to 400.
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Figure 4.8: The integration evolution

term over the time step k from the

parameter estimation of living - Spring

Data Set results. The vertical grey

dotted lines indicate gaps in the time

series.

Figure 4.9: The integration evolution

term over the time step k from the

parameter estimation of livingdown -

Spring Data Set results. The vertical

grey dotted lines indicate gaps in the

time series.

4.5.3 Discussion

Power Model seems to identify the system behaviour, as it does a proper job of tracking

the measurements. Comparing the standard deviation with the ones from Power Model 3,

it improves for all rooms and data set combinations. The largest improvements have been

made in living, where it reduced from 0.28 to 0.24 and from 0.14 to 0.09. The remaining

standard deviations have been reduced from 0.01 and 0.02.

Some of the improved results may be explained by the fact that the solver finds the optimal

initial integration values for each gap in the time series. This helps the model estimates

towards the measurement values, even though it might not replicate the true integration

behaviour of the internal controller of the HPs. The different amplitudes of the integration

terms presented, may be an indication of that it ”exploits” the initial values, instead of

replicating the behaviour of the internal HP controller. It can not be verified however that

the HP resets the accumulated integration term after it has been shut off, or if it saves it

until it is turned on again.

This model has a high potential, and has unlike the previous models been able to identify
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some of the faster fluctuations of the power measurements. However, the parameters

are quite varying, such as the trajectory of the integration terms. It is recommended to

investigate and analyse this model further before implementing it in an MPC.
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5 Temperature Models

The purpose of the temperature models is to estimate the temperature T̂k at the time step

k in each room based on an input state vector zk and a parameter vector p. This section

will first cover common aspects about the temperature models. Then, each model will

be presented with a description, parameter estimation method and results and at last, a

discussion section.

One common input state for all the temperature models is the heat pump power

consumption. This input state is calculated by Power Model 2. Power Model 2 is chosen

based on the discussions in section 4. It is a simple model, yet it follows the trends

of the measurements well. If the PI-controller based Power Model 4 where to be used,

uncertainties would arise in terms of the initial value of the integration term. Even though

the model did not estimate all the fast fluctuation of the measurements, an approximate

mean value of these were found. As the thermal system is expected to be slower, the

estimations of Power Model 2 should should be sufficient.

The power model function used to calculate the input power to the temperature models is

defined as

P̄k = p1 (Tref,k − Tk) + p2, (5.1a)

Pk = on P̂k(P̄k), (5.1b)

where P̄k is the unsaturated power estimate and Pk is the saturated power estimate

calculated by the saturation function P̂k given by equation 4.2. The variable inputs of

the function is defined as zP,k = [Tref , Tk, on]. Tref is the reference temperature of the

heat pump internal controller and Tk is the room temperature. On is a Boolean value that

activates the function when the heat pump is on. This is necessary because the estimated

power output is depended on the difference between Tref and Tk that may vary, even

though the system HP is Off. The parameters p for each room is given by table 5.1. They

are found by the parameter results of table 4.2. These parameters were chosen based on

how well they performed in the parameter estimation.
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Table 5.1: Power Model parameters used in the temperature models.

Rooms p1 × 101
[
kW
◦C

]
p2 × 101[◦C]

Living 1.28 3.98

Livingdown 0.80 3.53

Main 1.35 4.35

Studio 1.42 9.65

An alternative way to get the power input state could be directly from the data sets. But

then, as in the system identification data sets of the parameter estimation of the power

models, the data would have been severely limited. As the power measurements from the

data sets are the total combined power consumption of all the heat pumps (HPs), the

power measurements would be from whether the HP is the only one ’On’ and when it is

’Off’. Any other instances where a HP is running at the same time as another, the actual

power consumption of the HP would be unknown. Another reason for using calculations of

the power model to get the power measurements is that the temperature models will ’fit’

with the power model. This way may make the model perform better, than if the power

and temperature models were parameter estimated separately.

5.1 Temperature Model 1

Temperature Model 1 uses the principles of heat transfer to calculate the temperature

dynamics of the rooms. The HP is considered a heat source, while the outside air is

considered a heat source/sink, depending on whether the outside air temperature is lower

or higher than the room temperature. The energy flow between the outdoor and indoor

air is depends on the heat conduction through the windows and walls of the rooms.

The temperature model is given by equation 5.2. First, it calculates the rate of change in

temperature ∆Tmod1,k in the time step k by the power usage of the HP heat source and

the heat conduction between the outside air Tout,k−1 and the room temperature Tk−1 of

the previous time step k − 1. The parameter p1 is the relation between the power used

and the rate of temperature change in the room. The parameter p2 includes the thermal

conductivity of the walls and windows, in addition to the specific heat capacity of the air
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in the room. Both parameters are defined as positive definite because of the Second Law

of Thermodynamics and Newton’s Law of cooling. The inside air is treated as a thermal

mass where Tmod1,k is the estimated temperature at time step k. Tk−1 is the temperature

in the room at the previous time step and ∆tk is the time difference between time step k

and k-1, and is given in days.

∆Tmod1,k = p1 Pk−1(Tref,k−1, Tk−1) + p2 (Tout,k−1 − Tk−1) (5.2a)

Tmod1,k = Tk−1 + ∆Tmod1,k ∆tk (5.2b)

5.1.1 Parameter Estimation Problem

The parameter estimation of Temperature Model 1 is done on the basis of the optimization

scheme described in section 3.4. The temperature model is a dynamic model, and

therefore the problem of the estimation can be described by equation 3.3, where φk is

the model estimate trajectory and yk is the temperature measurements at time step k.

The measurements are from the Winter and Spring Data Set.

The model estimate trajectory is defined by the constraints in equation 3.3d, where

φk = fk(p, zk, φk−1) = Tmod1,k(p, zk, φk−1), (5.3)

where φk−1 is the model estimates in previous the time step. This input makes the

trajectory continuous. The input state and parameter vectors zk and p are defined as

zk = [Tref,k−1, Tout,k−1, Tk−1, on,∆tk], (5.4a)

p = [p1, p2], (5.4b)

where both parameters are constrained to be positive definite, hence i = [1, 2] by equation

3.3e.
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5.1.2 Parameter Results

The parameter estimation results of Temperature Model 1 are summarised in table 5.2. p∗

is the parameter vector at the solution and σr is the standard deviation of the residual r.

The model estimation trajectory and the residual of living - Winter Data Set and main -

Winter Data Set is presented in this section for illustrative reasons. The other resulting

trajectories and residuals is presented in Appendix C.1.

The parameter results in table 5.2 show that for the Winter Data Sets, both p∗1 and p∗2 are

higher than for the Spring Data Sets. Within some of the rooms, the same parameters

differ with over 100 %. For living and livingdown the Winter Data Set resulted in the

lowest standard deviation of 0.40 and 0.37. For main and studio, Spring Data Set resulted

in the lowest standard deviation of 0.47.

Table 5.2: The parameter estimation results of Temperature model 1.

Living p∗1

[
◦C

kW day

]
p∗2
[

1
day

]
σr

Winter Data Set 35.4 0.617 0.40

Spring Data Set 16.5 0.502 0.64

Livingdown

Winter Data Set 35.3 0.448 0.37

Spring Data Set 12.6 0.373 0.69

Main

Winter Data Set 17.1 0.438 0.48

Spring Data Set 9.00 0.133 0.47

Studio

Winter Data Set 11.8 0.359 0.59

Spring Data Set 4.82 0.174 0.47

Figure 5.1 shows that the optimal model estimate trajectory φ(p∗) follows closely the

measurements y, both in times of temperature rise with contribution of the heat pump,

and in times of temperature drops. Notice that the temperature drop of the system is

nonlinear, while the model is approximately linear. The distribution of the residual r has

a Gaussian shape and illustrates that most of the model estimates are within ±1 ◦C.
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Figure 5.1: Upper plot compares the optimal model trajectory in black with the temperature

measurements in red of Winter Data Set - living. The grey vertical dotted lines mark the gaps

in the time series of over five minutes. The lower plot illustrates the distribution of the residual.

Figure 5.2 show that the optimal model estimate trajectory φ(p∗) is following the trends

of the measured temperature y. However, the transient responses of the temperature

changes differ more at the last half of the time series. The model estimates a more linear

temperature response than the real system measurements indicate. The distribution of the

residual r resembles a subgaussian form and illustrates that most of the model estimates

are within ±1 ◦C.
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Figure 5.2: Upper plot compares the optimal model trajectory in black with the temperature

measurements in red of Winter Data Set - main. The grey vertical dotted lines mark the gaps in

the time series of over five minutes. The lower plot illustrates the distribution of the residual.

5.1.3 Discussion

Both of the estimation results presented in this section shows that the temperature model

follows the trends of the system. Some of the other results given in appendix C.1 show that

the model follows the trends, but is inaccurate in terms of the amplitude of the temperature

fluctuations. This may be explained by the fact that the time series of these current results

are twice the length of the better ones. The optimal solution for the long series would then

be to be at a level close to the mean of the fluctuations. This could explain the resulting

parameters of Spring Data sets are lower than the ones from the winter data sets.

Another cause for the lower parameters of the spring data sets could be explained by the

outdoor temperature. As the outdoor temperature of the spring is higher than the winter,

the HP requires less power to compress the refrigerant. In addition, there is less heat loss

through the shell of the house.

By analysing the temperature changes of the measurements, it seems that the room

temperature is experiencing thermal inertia. This could be either from the room shell,

but also furniture and air from other rooms in the house. A new proposed model could
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add a state that identifies the suspected thermal inertia.

5.2 Temperature Model 2

Temperature Model 2 is based on Temperature Model 1 described in section 5.1. As the

previous model did not manage to recreate the system behaviour in the temperature step

responses, a model may perform better by adding a new state that replicates a thermal

inertia of the room. This thermal inertia could be the temperature of the shell of the

rooms, furniture and air temperature of the other rooms.

Temperature Model 2 is given by equation 5.5, where the new thermal inertia state is given

as the thermal mass temperature TI,k at time step k. The rate of temperature change in the

thermal inertia ∆TI,k is calculated with the principles of heat transfer and heat capacity.

The heat transfers between the inertia mass and the surrounding inside and outside air.

The transfer depends on the temperature difference between the temperature of the inertia

mass TI,k−1 and the temperature of the room Tk−1 and outside air Tout,k−1. The parameters

p1 and p2 include the convection coefficients, the conductivity and the physical dimensions

of the system. As of Thermodynamics Second Law and Newton’s Law of Cooling the

parameters are defined positive.

The rate of change in the room temperature depends on three terms, see equation 5.5c. The

first term is providing heat from the HP heat source that is proportional to the parameter

p3 and the estimated power Pk−1. The second term includes the convective heat transfer

between the room air and the thermal inertia of the room that is proportional to the

parameter p4. The third term is the term from Temperature Model 1 where there is a heat

transfer related to the indoor and outdoor air temperature. The parameter p5 includes the

conductivity, convection coefficient and the specific heat of the walls, windows ventilation,

etc. All parameters are defined as positive. ∆tk is the time difference between time step k

and k-1, and is given in days.
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∆TI,k = p1 (Tk−1 − TI,k−1) + p2 (Tout,k−1 − TI,k−1) (5.5a)

TI,k = TI,k−1 + ∆TI,k ∆tk (5.5b)

∆Tmod2,k = p3 Pk−1(Tref,k−1, Tk−1, on) + p4 (TI,k−1 − Tk−1) + p5 (Tout,k−1 − Tk−1)

(5.5c)

Tmod2,k = Tk−1 + ∆Tmod1,k ∆tk (5.5d)

5.2.1 Parameter Estimation

The parameter estimation of the Temperature Model 2 parameters are based on the general

problem described in section 3.4. The model is dynamic, which means that the optimization

problem can be given by equation 3.3, where rk is the residual of the model estimate φk

and the temperature measurements yk in time step k. The measurements are from Winter

Data Set and Spring Data Set. The model trajectory is defined in the constraints by

equation 3.3d, where

φk = fk(p, zk, φk−1) = Tmod2,k(p, zk, φk−1), (5.6)

where φk−1 is the model estimates in previous time step k − 1. This input makes the

trajectory continuous. The input state and parameter vectors zk and p are defined as

zk = [Tref,k−1, Tout,k−1, Tk−1, TI,k−1, on,∆tk], (5.7a)

p = [p1, p2, p3, p4, p5]. (5.7b)

All parameters is constrained to be positive, hence i = [1, 2, 3, 4, 5] in equation 3.3e. The

initial temperature of both the inertia heat mass TI,gap and the room air temperature TI,gap

is calculated by the solver to find the optimal temperature.

5.2.2 Parameter Results

The parameter estimation results of Temperature Model 2 are summarised in table 5.3.

The table includes the parameter p∗ at the solution and the standard deviation σr of
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the residual r for each room and data set combination. The resulting trajectories and

residual distribution that are presented in this section are for livingdown - Winter Data

Set, main - Spring Data Set and studio - Winter Data Set. The remaining room and data

set combinations are given in appendix C.2.

Table 5.3 shows that five out of eight p∗2 were zero. The model based parameter estimation

only identified p∗2 greater than zero for livingdown - Spring Data Set and studio. Three

other p∗ equal to zero, one for p∗1 and two for p∗5. Studio - Winter Data Set were also found

and were the only result where none of the optimal parameters were zero.

The parameter p∗1 is significantly deviating between the data sets for each room, while p∗3

and p∗4 show less variation between the data sets. The standard deviation is lowest for

Winter Data Set for living, livingdown and main, while greater for Spring Data Set for the

room studio.

Table 5.3: The parameter estimation results of Temperature model 2.

Living p∗1
[

1
day

]
p∗2 × 10−1

[
1

day

]
p∗3 × 101

[
◦C

kW day

]
p∗4 × 101

[
1

day

]
p∗5 × 10−1

[
1

day

]
σr

Winter Data Set 9.42 -0.0 7.08 1.1 12.12 0.24

Spring Data Set 0.02 -0.0 3.7 0.72 27.22 0.33

Livingdown

Winter Data Set 3.93 -0.0 7.4 1.2 9.53 0.2

Spring Data Set 1.22 1.75 4.8 1.01 -0.0 0.28

Main

Winter Data Set -0.0 -0.0 2.43 0.51 7.5 0.26

Spring Data Set 4.53 -0.0 3.44 1.71 4.7 0.34

Studio

Winter Data Set 2.76 0.82 5.9 2.76 9.84 0.29

Spring Data Set 1.99 1.41 2.59 1.27 -0.0 0.21

Figure 5.3 show that the model estimates φ(p∗) track the measurements y. For these model

estimates the optimal parameter p∗2 was zero. The temperature of the inertia thermal mass

TI stays within the lower and upper peaks of the temperature fluctuations. The distribution

of r has a Gaussian form and has lower and upper values at approximately ±0.4 ◦C.
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Figure 5.3: Upper plot compares the optimal model trajectory in black with the temperature

measurements in red of Winter Data Set - livingdown. The grey solid trajectory illustrates the

temperature of the inertia thermal mass, while the grey vertical dotted lines mark gaps in the

time series of over five minutes. The lower plot illustrates the distribution of the residual.

Figure 5.4 shows that the model estimates φ(p∗) follow y, with a few exceptions. At some

periods, such as at time step 500, the measured room temperature suddenly peaks. These

peaks is synchronous with the temperature rise in figure C.8 given in Appendix C.2. This

model also has an optimal parameter p2 equal to zero. The distribution of r has a somewhat

Gaussian form, but is clearly impacted by the peaks of disturbance.
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Figure 5.4: Upper plot compares the optimal model trajectory in black with the temperature

measurements in red of Spring Data Set - main. The grey solid trajectory illustrates the

temperature of the inertia thermal mass, while the grey vertical dotted lines mark gaps in the

time series of over five minutes. The lower plot illustrates the distribution of the residual.

Figure 5.5 shows that the model estimates φ(p∗) track the temperature measurements y.

None of the optimal parameters of this model was equal to zero. The distribution of r

is a bit shifted to the right, caused by a period around time step 500 to 800 where the

estimates are significantly greater than the measurements.
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Figure 5.5: Upper plot compares the optimal model trajectory in black with the temperature

measurements in red of Spring Data Set - main. The grey solid trajectory illustrates the

temperature of the inertia thermal mass, while the grey vertical dotted lines mark gaps in the

time series of over five minutes. The lower plot illustrates the distribution of the residual.

5.2.3 Discussion

The fact that there were several optimal parameters p∗2 that were equal to zero may indicate

two things. Firstly, it may indicate that the model has trouble identifying the behaviour

of the system. Secondly, it may also indicate that the heat transfer between the inertia

thermal mass and the outside air is negligible. This may be be caused by that the shell of

the rooms is significantly less exposed to the outside air than to the rest of the house. In

addition, the model already has a term that depends on the room temperature and outside

temperature. A proposed new model may neglect the term containing p2.

Both living and main experience this unexpected temperature rise that happened seven

times and with a fixed interval. It may result from sun radiation as the data set time

series of seven days. Both rooms may experience the same temperature rise as they are

not physically separated, or they both have sun exposed windows. The house also contains

a chimney, which may have been used at the time, causing the temperature peaks.

The parameter estimation of Winter Data Set - studio was the only estimation where the
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optimal parameter vector p∗ was greater than zero. The model tracked the measurements,

and the inertia thermal mass was reasonable. Unfortunately, the other rooms and data

set combinations could not identify the same behaviour that for this room and data set

combination. Again, a new proposed model could neglect the p2 term in order to identify

all the parameters properly.

5.3 Temperature Model 3

Temperature Model 3 is based on Temperature Model 2 described in section 5.2. The

difference between the two models is that Temperature Model 3 is neglecting the term

that included the heat transfer between the inertia thermal mass and the outside air. The

main reason for this is that the previous parameter estimations did not recognize that

behaviour of the system, leaving the associated parameter equal to zero.

Temperature Model 3 is given by equation 5.8, where the inertia thermal mass of the room

in time step k is given as TI,k. The rate of change of the inertia thermal mass ∆TI,k depends

on the temperature difference between the inertia thermal mass and the temperature of

the air in the room and the parameter p1, which includes the convection coefficient, the

heat capacity and the physical dimensions.

The rate of change in the room temperature depends on three terms, see equation 5.8c. The

first term is providing heat from the HP heat source that is proportional to the parameter

p2 and the estimated power Pk−1. The second term is the heat transfer between the room

air and the thermal inertia of the room that is proportional to parameter p3. The third

term is modelling the heat transfer between the indoor and outdoor air. The parameter

p4 contains the conductivity, convection coefficient, the heat capacity and the physical

properties of the walls, windows, ventilation, etc. All parameters are defined as positive

as of The Second Law of Thermodynamics and Newton’s Law of Cooling.
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∆TI,k = p1 (Tk−1 − TI,k−1) (5.8a)

TI,k = TI,k−1 + ∆TI,k ∆tk (5.8b)

∆Tmod3,k = p2 Pk−1(Tref,k−1, Tk−1, on) + p3 (TI,k−1 − Tk−1) + p4 (Tout,k−1 − Tk−1)

(5.8c)

Tmod3,k = Tk−1 + ∆Tmod3,k ∆tk (5.8d)

5.3.1 Parameter Estimation Problem

The parameter estimation of Temperature Model 3 is based on the general optimization

problem described in section 3.4. Since the model is dynamic, its problem can be described

by equation 3.3 where yk is the temperature measurements from the data sets.

The model state trajectory is defined in the constraints in equation 3.3d, where

φk = fk(p, zk, φk−1) = Tmod3,k(p, zk, φk−1), (5.9)

where φk−1 is the model estimates in previous time step k-1. This input makes the

trajectory continuous. The input state and parameter vectors zk and p is defined as

zk = [Tref,k−1, Tout,k−1, Tk−1, TI,k−1, on,∆tk], (5.10a)

p = [p1, p2, p3, p4]. (5.10b)

All of the parameters are constrained to be positive, hence i = [1, 2, 3, 4] in equation 3.3e.

The initial temperature of both the inertia heat mass TI,gap and the room air temperature

TI,gap are calculated by the solver to find the optimal temperature.

5.3.2 Parameter Results

The parameter estimation results of Temperature Model 2 are summarised in table 5.3.

The table includes the parameter p∗ at the solution and the standard deviation σr of the

residual r for each room and data set combination. The resulting trajectories and residual
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distribution presented in this section is for living - Spring Data Set, livingdown - Winter

Data Set. The remaining rooms and data set combinations are presented in Appendix C.3.

Table 5.4 that two parameters were equal to zero: p∗4 of Spring Data Set - livingdown and

p∗1 of Winter Data Set - Main. The remaining parameters are within reasonable range of

each other. The lowest standard deviation is of Winter Data Set - livingdown. Each room

has at least one optimal parameter vector that is positive.

Table 5.4: The parameter estimation results of Temperature Model 3.

Living p∗1
[

1
day

]
p∗2 × 101

[
◦C

kW day

]
p∗3 × 101

[
1

day

]
p∗4 × 10−1

[
1

day

]
σr

Winter Data Set 9.42 7.08 1.10 12.1 0.24

Spring Data Set 6.89 5.42 2.07 15.6 0.48

Livingdown

Winter Data Set 3.93 7.40 1.20 9.53 0.20

Spring Data Set 0.110 4.49 0.910 -0.00 0.32

Main

Winter Data Set -0.00 2.43 0.510 7.50 0.26

Spring Data Set 4.53 3.44 1.71 4.70 0.34

Studio

Winter Data Set 3.11 5.96 2.72 17.4 0.29

Spring Data Set 1.69 2.34 1.20 7.33 0.29

Figure 5.6 shows that the optimal model estimates trajectories φ(p∗) are tracking the

measurements y, with some exceptions. There are some peaks of temperature that the

model do not manage to identify at approximately time step 200, 500, 1400 and 1600. The

inertia thermal mass temperature TI trajectory is lagging behind φ(p∗) throughout the

time series. The distribution of the residual r has a Gaussian form.

63



NTNU 2021 5.3 Temperature Model 3

Figure 5.6: Upper plot compares the optimal model trajectory in black with the temperature

measurements in red of Spring Data Set - living. The grey solid trajectory illustrates the

temperature of the inertia thermal mass. The lower plot illustrates the distribution of the residual.

Figure 5.7 shows that the optimal model estimates φ(p∗) track the temperature

measurements y. The inertia thermal mass temperature is approximately at the mean

of the room temperature fluctuations. The distribution of the residual r has a Gaussian

form with edges at approximately ±0.4 ◦C.
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Figure 5.7: Upper plot compares the optimal model trajectory in black with the temperature

measurements in red of Winter Data Set - livingdown. The grey solid trajectory illustrate the

temperature of the inertia thermal mass, while the grey vertical dotted lines mark gaps in the

time series of over five minutes. The lower plot illustrates the distribution of the residual.

The resulting trajectory of Spring Data Set main and studio(figures C.15, C.16 and C.17)

also got similar behavior as presented in this section. From Winter Data Set - living the

initial temperature of the thermal inertia was higher than of the other parameter estimation

results. The model trajectories of Spring Data Set livingdown and Winter Set main was

different from the others as one of the parameters in the model where equal to zero.

5.3.3 Discussion

Compared to Temperature Model 2, it seems that the parameter estimation of Temperature

Model 3 identified the system behavior in a better way, as more of the parameters were

greater than zero and relatively consistent. As the thermal inertia temperature is within

the fluctuations of the room temperature, the second order transient response is as desired.

Indications of that the model is capable of replicating the system behaviour is that the

distribution of the residual has an approximate Gaussian form.

As discussed in section 5.2 the reason for the unexpected peaks of the measured

temperature in the results of Spring Data Set in living and main could be from an
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unknown heat source that may be from sun exposed windows. The rooms are not physically

separated, which could be the reason for the rooms to experience the same temperature

peaks. The house also contains a chimney, which may have been used at the time, causing

the temperature peaks.

The initial temperature of the thermal inertia was usually within a mean of the modelled

room temperature, which is reasonable, as it is supposed to replicate an inertia of the

air mass. However, the result of Winter Set living had two initial values of the inertia

temperature were it was a bit higher than the room temperature. This could be for two

reasons. One reason could be that the temperature was descending from previous time

period. A more likely explanation, may be that the initial temperature of the thermal

inertia was set this high in order to shift the room temperature up in order to fit the

measurements better.

Before implementing this model in an MPC, more testing should be done. It could be

advantageous to estimate the parameters over different seasons, as the parameters tends

to be different from winter to spring. The model predictive capabilities should also be

tested as it is important in an MPC.
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6 Predictive Capability Review

It is of to analyze the predictive capabilities of a system model as this is their most

important task in a Model Predictive Controller (MPC). The better a model can predict

the states, the better the MPC will perform. This may lead to reduced costs and increased

comfort in an MPC scheme with the objective of controlling the heat pumps with regard

to the spot price market.

6.1 Models

The predictive capabilities of two combined power and temperature models are be analysed.

The first model, M1 consists of a combination of Power Model 2 from section 4.3 and

Temperature Model 1 of section 5.1. The second model, M2, consists of Power Model 2

and of Temperature Model 3 from section 5.3. Each model will has distinctive parameters,

depending on which room they represent. Power Model 2 were chosen as it was used in

the estimation of the parameters of the temperature models. Temperature Model 1 and 2

were chosen based on the results and discussions in sections 5.1 and 5.3.

M1 is given by equation 6.1. The predicted power consumption P̂1,k is calculated by

equation 6.1a and 6.1b, while the predicted temperature in time step k is given by equation

6.1c and 6.1d. The power related parameters for each room p1,1 and p1,2 are given in table

5.1, while the temperature related parameters p1,3 and p1,4 are given in table 6.2. Psat,k is

the saturation and non-negativity function given by equation 4.2.

P̄1,k = p1,1 (Tref,k − T1,k) + p1,2 (6.1a)

P̂1,k = Psat,k(P̄1,k) (6.1b)

∆T1,k = p1,3 P̂1,k−1(Tref,k−1, T1,k−1) + p1,4 (Tout,k−1 − T1,k−1) (6.1c)

T1,k = T1,k−1 + ∆T1,k ∆tk (6.1d)

M2 is given by equation 6.2, where the power related parameters p2,1 and p2,2 are the

same as in M1 and is given by table 5.1. The temperature related parameters p2,3 to

p2,6 are given in table 6.3. Equation 6.2a and 6.2b, which originate from Power Model
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2, calculate the predicted power P̂2,k of time step k. Equations 6.2c-6.2f calculate the

predicted temperature T2,k in time step k and are based on Temperature Model 3. Psat,k

is the saturation and non-negativity function given by equation 4.2.

P̄2,k = p2,1 (Tref,k − T2,k) + p2,2 (6.2a)

P̂2,k = Psat,k(P̄2,k) (6.2b)

∆TI,k = p2,3 (T2,k−1 − TI,k−1) (6.2c)

TI,k = TI,k−1 + ∆TI,k ∆tk (6.2d)

∆T2,k = p2,4 P2,k−1(Tref,k−1, T2,k−1) + p2,5 (TI,k−1 − T2,k−1) + p2,6 (Tout,k−1 − T2,k−1)

(6.2e)

T2,k = T2,k−1 + ∆T2,k ∆tk (6.2f)

There are two true state trajectories that are input to the simulations. The first is the

outdoor temperature, that in an MPC scheme would be known through weather forecasts.

The second state vector is the reference temperature, which would be calculated by the

MPC. Other than the initial temperature, the remaining states are estimated by the power

and temperature models.

6.2 Parameters

As M1 and M2 consist of Power Model 2 they both use the same parameters and are given

in table 6.1. These are the same parameters that were used in the parameter estimation

of the temperature models.

Table 6.1: Power Model parameters originating from the parameter estimation of Power Model

2 used in M1 and M2.

Rooms pi,1 × 101
[
kW
◦C

]
pi,2 × 101[kW ]

Living 1.28 3.98

Livingdown 0.80 3.53

Main 1.35 4.35

Studio 1.42 9.65
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The temperature related parameters of M1 are given in table 6.2. These parameters

originate from the previous parameter estimation of Temperature Model 1. The decision

of utilizing these parameters is based on the discussions in section 5.1.3, with the purpose

of developing accurate predictive models.

Table 6.2: Parameters of Temperature Model 1 used in the simulation.

Rooms p1,3

[
◦C

kW day

]
p1,4

[
1

day

]
Living 35.4 0.617

Livingdown 35.3 0.448

Main 17.2 0.438

Studio 11.8 0.359

The temperature related parameters of M2 are given by table 6.3. These parameters

originate from the previous parameter estimation of Temperature Model 3. The decision

of utilizing these parameters is based on the discussions in section 5.3.3, with the purpose

of developing accurate predictive models.

Table 6.3: Parameters of Temperature Model 3 used in the simulation.

Rooms p2,3
[

1
day

]
p2,4 × 101

[
◦C

kW day

]
p2,5 × 101

[
1

day

]
p2,6 × 10−1

[
1

day

]
Living 9.42 7.08 1.10 12.1

Livingdown 3.93 7.40 1.20 9.53

Main 4.53 3.44 1.71 4.70

Studio 3.11 5.96 2.72 17.4

6.3 Simulation Results

The simulations were done on a test data set that are from a different time period than the

system identification data sets. This is to prevent potential overfitting. The time horizon

of the simulations was set to 35 hours. This is the longest horizon of the known spot

price. The shortest horizon for known spot prices is 11 hours. It can be argued that for

a use in an MPC the predictive capability performance of the models is more relevant at

shorter horizons than 35 hours. However, by utilizing longer simulations, more valuable
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information on whether the models can predict different scenarios can be analysed, even

though it loses track of the measured state trajectory by an accumulated error.

The saturation effect of Unit 2 is included in this simulation. If the indoor heat pump units

of Unit 2 requests more power than 2.5 kW, the power is restricted. An even proportion

of the power of the indoor units is then reduced such that the total power consumption is

equal to the saturation level. The saturation level of 2.5 kW is found in section 3.3.

The starting inertia temperature of Model 2 is set to the previous mean temperature in

the room. This is done based on the behaviour observed on the parameter estimation and

the illustrations of the inertia temperature of the room.

6.3.1 Power

The power prediction of Model 1 and Model 2, P̂1 and P̂2 is based on the same power model,

but is receiving different input temperatures. As seen from figure 6.1 the two models do not

deviate significantly from each other. They start off by being approximately 1 kW higher

than the measured power yP . After about 1 hour, the three trajectories are approximately

the same, and both models predict the drop in power consumption after 3 hours. The

models keep tracking yP until about 7 hours, where yP peaks at 2 kW and shortly after

drops to slightly above 0 kW. Meanwhile, P̂1 and P̂2 predict a relatively stable power

consumption at 1 kW. Between 10 and 15 hours the models predict a power that seems

to be slightly below the mean yP fluctuations. From 15 to 29 hours the models track yP .

However, between 29 and until the end of the simulation, yP is at zero before it peaks

at almost 3 kW, while the models predict a power consumption of slightly above zero,

followed by a peak at 1 kW.
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Figure 6.1: The predictive capabilities of power by M1 in green and M2 in black, compared to

the measured power yP in red.

6.3.2 Living

The temperature predictive capabilities of the models of room living are illustrated by figure

6.2, where T1 is the estimated temperature of M1 and T2 is the estimated temperature of

M2. During the three first hours of the simulation, both models track the measured room

temperature yT . The following hours, until about 7 h, yT drops down to 19 ◦C with some

smaller peaks. The two models predict the peaks (T1 with smaller amplitude), but drop

to 21.1 and 21.7 ◦C.

Between 7-12 h there is a bigger peak in temperature followed by a temperature drop. yT

rises from approximately 1 ◦C, the same as T1 predicts, while T2 predict an increase of

about 2 ◦C. The amplitude of the drop of yT is slightly above 2 ◦C, T1 slightly less than 2

◦C and T2 approximately 2.5 ◦C.

Between 12-27 h yT increases gradually with some minor peaks. The models predict

approximately the same through this period, correctly predicting some of the minor peaks.

However, the temperature does not rise with the same magnitude of yT . After 27 h, yT

drops about 3 ◦C, T1 drops about the same, while T2 drops almost 4 ◦C.
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Figure 6.2: The predictive capability test of the temperature of M1 and M2 in living. The

temperature estimation of Model 1 T1 in green and the temperature estimation of Model 2 T2 in

black are compared to the measured temperature of the room yT .

6.3.3 Livingdown

The temperature predictive capabilities of the models of room living are illustrated by figure

6.2, where T1 is the estimated temperature of M1 and T2 is the estimated temperature of

M2. The first three hours of the simulation, T2 is tracking the measured temperature yT .

T1 has the same trend, but has a slower increase rate. Between 3-11 h the yT drops 3 ◦C.

T2 mostly followed but decreased at a slower rate. T1 shows a more linear decrease, and

even at a lower rate than T2, dropping 1 ◦C.

Between 11-16 h there was an increase of temperature. yT changes approximately 3 ◦C,

which is about the same as T1 and T2. After 16 hours, and until 27 hours there was an

decrease in temperature. yt dropped approximately 4 ◦C. Again, T2 has the about the

same trajectory form, but dropped slower than yT . T1 dropped more linearly and like T2,

it dropped approximately 3 ◦C.

From 27 hours and until the end of the simulation, yT of livingdown showed an increase

of almost 4 ◦C, followed by a drop of about 3 ◦C. T1 has at the same time predicted both

an increase and decrease of slightly above 1 ◦C. T2 predicted an increase of 1.5 ◦C and a

decrease of about 2 ◦C.
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Figure 6.3: The predictive capability test of the temperature of M1 and M2 in livingdown. The

temperature estimation of Model 1 T1 in green and the temperature estimation of Model 2 T2 in

black are compared to the measured temperature of the room yT .

6.3.4 Main

The temperature predictive capabilities of the models in room main are illustrated by figure

6.4, where T1 is the estimated temperature of M1 and T2 is the estimated temperature of

M2. The first 10 hours of the simulation show that the three trajectories have three

distinctive behaviours. The measured room temperature of main yT first experienced a

slight increase of temperature, before it dropped 2 ◦C. T1 dropped 2.5 ◦C linearly, while

T2 dropped approximately 1 ◦C. Between 10-27 hours yT experienced a period of 1.5 ◦C

increase, followed by a period of stable temperatures. Both models predict an increase of

1 ◦C and is both stable like yT . From 27 h until the end of the simulation, yT dropped 1.5

◦C, while T1 dropped more than 2 ◦C, and T2 dropped slightly less than 1 ◦C.
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Figure 6.4: The predictive capability test of the temperature of M1 and M2 in main. The

temperature estimation of Model 1 T1 in green and the temperature estimation of Model 2 T2 in

black are compared to the measured temperature of the room yT .

6.3.5 Studio

The temperature predictive capabilities of the models of room studio are illustrated in

figure 6.5, where T1 is the estimated temperature of M1 and T2 is the estimated temperature

of M2. The first 5 hours of the simulation showed that the different models have distinctive

behaviour. The increase of T1 is more linear than T2, which has more similar trajectory

form to the measured temperature of studio yT . T1 and T2 are predicting 0.5 and 1 ◦C

higher than yT at 5 hours. The next five hours, until 10 h, the measured temperature

dropped 2 ◦C. Meanwhile, T1 dropped 1 ◦C linearly and T2 dropped 2.5 ◦C with the same

transient response as yT .

Between 10-15 h yT increased by 2 ◦C. T2 predicted approximately the same increase with

the same form of the trajectories. T1 is at the same time a little off with an increase of

approximately 1 ◦C. From about 16 h to 27 h there is a decrease of temperature. Again,

T2 and yT have similar magnitude of the change and with same transient response. The

last part of the simulation, from 27 to 35 h, T2 and yT showed the same transient response,

while T1 had less magnitudes, and was linear.
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Figure 6.5: The predictive capability test of the temperature of M1 and M2 in studio. The

temperature estimation of Model 1 T1 in green and the temperature estimation of Model 2 T2 in

black are compared to the measured temperature of the room yT .

6.4 Discussion

The analyses of the predictive capability test of both models, show that they perform

relatively good by predicting the power consumption of the heat pumps. The biased

proportional controller based model seems to identify the most significant triggering factors

and characteristics of the system. Even though the measured power fluctuated more, the

models stayed at an approximate mean, which is important in an hourly priced based

MPC. However, as the results show, there are some periods where the error between the

model and measurements is up to 2 kW.

The reason for any significant errors between the power prediction and the measured

power can be of several reasons. One can argue that the accumulated temperature error

in each rooms gets larger and this will impact the power prediction error. However, in

the start of the simulation, both models predicts 1 kW too high power consumption when

the temperature error of each room is minimal. It is hard to conclude what causes this

deviation, but it may be that the power model is not able to identify a triggering factor in

that specific scenario.

As the known power consumption is for the whole system combined and not for each unit

isolated, it is hard to identify and analyze the performance of the model and associated

parameter for each room. It may be that the models and parameters chosen are more
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suitable for one room than another. However, the magnitude of the individual error of

each room should be constrained by the saturation and non-negativity properties of the

models. One indicator of how the power model performs in each room could be found by

analyses of the temperature dynamics in each room.

The Predictive Capability Test of living illustrated that the temperature estimation by

Model 1 and Model 2 was relatively equal. The most noticeable deviation was that Model

1 was more linear and slower. The transient responses of the measured temperature was

more equal to the estimated temperature of Model 2. This is due to the inertia term from

Temperature Model 3.

Both models struggled to predict the rate of the first temperature drop in the trajectory

of figure 6.2, causing a large prediction error. However, they were more accurate during

other temperature changes in the same time series. The cause of the error may be that the

model parameters were not tuned for that scenario, or it could be caused by some external

properties not factored in the model. Such a factor could be that some of the heat being

transported to the room main. As observed by the early stages of main, the temperature

increased, while the models predicted a decrease. The temperature dynamic of living and

main may also have affected each other. The rise of temperature could also have been

caused by sun radiation through windows.

The Predictive Capability Test of livingdown illustrated clearly the differences of the two

models. Due to the temperature inertia term in Model 2, the transient response of the

temperature was similar to the measured one. This means that Model 2 and its parameters

related to both power and temperature, replicate the real system to a certain extent. Both

models did accumulate some prediction error, estimating too high temperatures. This

could be that the parameters scaling the heat loss should be higher, or the parameters

scaling the heat pump power effect should be lower for this scenario. Model 1 did replicate

the system behavior to some degree, but not as good as Model 2, as it was too linear in

the transient responses.

The Predictive Capability Test of main had lower measured temperature fluctuations,

spanning from slightly above 19 ◦C to slightly above 21 ◦C. It is interesting to see how well

the model performs under more stable conditions, as this will most likely be the operation
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scenario in use in an MPC of a household.

As previously discussed, the reason for the early peak of the measured temperature could

be of heat being transported from the room of living, or it could originate from another

source, such as the sun. After this peak, the prediction followed the measured temperature

trajectory well. The predictions of Model 2 were more damped, but also followed the trends

in the measured temperature.

The Predictive Capability Test of studio illustrates the different dynamics of the two

models. Model 1 is more linear than Model 2 that includes the thermal inertia of the

room. The transient response of Model 2 is very similar to the measured temperature

trajectory. This means that the model and parameters are well suited for the system of

this time period.

To verify if the models developed are sufficiently good for implementation in an MPC more

testing should be done. This section only did one test, which may discover weaknesses

and rule away models, but to verify if the models are sufficiently good, other scenarios

from example different seasons should be done. Other combinations of the power and

temperature model may also be analyzed. Another way to improve the models may be by

choosing other parameters, and/or tuning them manually.

New models could also be proposed to achieve better accuracy. One could be where it is

implemented a term that connects the heat mass of living and main, as it is a physical

opening there. Another model could implement the COP factor in the temperature

function, where the relation between the heat pump power and temperature changes

depend on the outside and indoor air temperature. A model could also investigate if

there is a relation between the unexpected temperature peaks in living and main is caused

by sun radiation.

A source of error in the simulations done in this section could be that the initial temperature

of the inertia heat mass is set equal to the mean temperature of the room. This is only

a thought based on the parameter estimations, and may vary from room to room. By

running the model on the previous historic data, one could find a more likely starting

temperature.
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7 Conclusion

By the predictive capability tests completed, it is Model 2, which is a combination of

Power Model 2 and Temperature Model 3, that perform best, especially regarding the

temperature prediction, replicating the transient response in the rooms livingdown and

studio. As Model 2 is only tested on one data set, it is too early to conclude whether it

would perform well if implemented in an MPC driven system. There are some weaknesses

with the model that need to be further investigated, as there are some unknown factors

that lead to prediction error in both the power prediction and the temperature predictions.

Model 1, by the predictive capability tests done, does not replicate the system behaviour

as accurate as Model 2. As the model does not consider thermal inertia, the transient

response was more linear then the system behaviour. As this model contains Temperature

Model 1, it is not recommended to use that model in an MPC.

Power Model 4, which is a proportional-integrator controller based model, performed well

by the parameter estimation results. It managed to identify some of the faster fluctuations

of the power measurements. This model is a good candidate for implementation in future

model combinations of the system.

Temperature Model 2 is also a good candidate for future models. However, by the

parameter estimation of this thesis, it struggled to identify a consistent behaviour for

all the rooms. The one room where all of the parameters where found to be greater than

zero gave good results.
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8 Further Work

There is a potential for improvement of both parameter estimation and model developing

for this project. Based on the results and experiences of working with this thesis, following

future tests are proposed:

• Run several predictive capability tests with different starting points and investige

statistical errors at different future times.

• Investigate heat transfers between the different rooms

• Investigate the impact of sun radiation

• Investigate the impact of COP and season-varying parameter values

• Perform a parameter estimation of the entire system at once, and not each room

individually. The results from the individual parameter estimates can be used as initial

values
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Appendix A: System Identification Data Sets

This appendix contains illustrations of the data sets that are used for the model based

parameter estimation. First, the power measurements are presented, then the reference

and measured temperature are given. Finally, the heat pump setting ”On/Off” and the

outdoor temperature are presented. An overview of the data sets with time of start and

end are given in table A.1.

Table A.1: An overview of the intervals of the measurements associated with the various data

sets.

No. Data set Start End

1 2021-02-19 19:45 2021-02-20 08:35

2 2021-02-20 23:15 2021-02-21 09:45

3 2021-02-21 18:30 2021-02-22 04:45

4 2021-03-02 08:20 2021-03-04 18:00

5 2021-03-02 08:20 2021-03-04 18:00

A.1 Power

Figure A.1: Raw and 5-minute mean power measurements of data set 1 used in the model

based parameter estimation.
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Figure A.2: Raw and five-minute-mean power measurements of data set 2 used in the model

based parameter estimation.

Figure A.3: Raw and 5-minute mean power measurements of data set 3 used in the model

based parameter estimation.
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Figure A.4: Raw and 5-minute mean power measurements of data set 4 used in the model

based parameter estimation.

Figure A.5: Raw and 5-minute mean power measurements of data set 5 used in the model

based parameter estimation.
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A.2 Measured and Reference Temperature

Figure A.6: The reference temperature in stippled red and the measured temperature in black

for each room from Data Set 1.

A-IV



NTNU 2021 Appendix A: System Identification Data Sets

Figure A.7: The reference temperature in stippled red and the measured temperature in black

for each room from Data Set 2.
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Figure A.8: The reference temperature in stippled red and the measured temperature in black

for each room from Data Set 3.
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Figure A.9: The reference temperature in stippled red and the measured temperature in black

for each room from Data Set 4.
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Figure A.10: The reference temperature in stippled red and the measured temperature in black

for each room from Data Set 5.
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A.3 On/Off

Figure A.11: Boolean representation of the ”On/Off” setting of the heat pump in each room

from Data Set 1.

Figure A.12: Boolean representation of the ”On/Off” setting of the heat pump in each room

from Data Set 1.
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Figure A.13: Boolean representation of the ”On/Off” setting of the heat pump in each room

from Data Set 1.

Figure A.14: Boolean representation of the ”On/Off” setting of the heat pump in each room

from Data Set 1.
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Figure A.15: Boolean representation of the ”On/Off” setting of the heat pump in each room

from Data Set 1.

A.4 Outdoor Temperature

Figure A.16: The outdoor temperature trajectory from Data Set 1.
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Figure A.17: The outdoor temperature trajectory from Data Set 2.

Figure A.18: The outdoor temperature trajectory from Data Set 3.

Figure A.19: The outdoor temperature trajectory from Data Set 4.
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Figure A.20: The outdoor temperature trajectory from Data Set 5.
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Appendix B: Parameter Estimation Results of the

Power Models

This section presents the results of the model based parameter estimation of the Power

Models. Each figure compares the measured values with the solution of the optimal model

trajectory. In addition the distribution of the residual is presented.

B.1 Power Model 1

Figure B.1: Upper plot compares the optimal model trajectory of Power Model 1 in black and

the power measurements in red at time step k for Winter Data Set - living. The lower figure

presents the distribution of the residual.
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Figure B.2: Upper plot compares the optimal model trajectory of Power Model 1 in black and

the power measurements in red at time step k for Winter Data Set - livingdown. The lower figure

presents the distribution of the residual.

Figure B.3: Upper plot compares the optimal model trajectory of Power Model 1 in black and

the power measurements in red at time step k for Winter Data Set - main. The lower figure

presents the distribution of the residual.
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Figure B.4: Upper plot compares the optimal model trajectory of Power Model 1 in black and

the power measurements in red at time step k for Winter Data Set - studio. The lower figure

presents the distribution of the residual.
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B.2 Power Model 2

Figure B.5: Upper plot compares the optimal model trajectory of Power Model 2 in black and

the power measurements in red at time step k for Winter Data Set - living. The lower figure

presents the distribution of the residual.

Figure B.6: Upper plot compares the optimal model trajectory of Power Model 2 in black and

the power measurements in red at time step k for Spring Data Set - livingdown. The lower figure

presents the distribution of the residual.
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Figure B.7: Upper plot compares the optimal model trajectory of Power Model 2 in black and

the power measurements in red at time step k for Winter Data Set - main. The lower figure

presents the distribution of the residual.

Figure B.8: Upper plot compares the optimal model trajectory of Power Model 2 in black and

the power measurements in red at time step k for Winter Data Set - studio. The lower figure

presents the distribution of the residual.
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B.3 Power Model 3

Figure B.9: Upper plot compares the optimal model trajectory of Power Model 3 in black and

the power measurements in red at time step k for Winter Data Set - living. The lower figure

presents the distribution of the residual.

Figure B.10: Upper plot compares the optimal model trajectory of Power Model 3 in black

and the power measurements in red at time step k for Spring Data Set - living. The lower figure

presents the distribution of the residual.
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Figure B.11: Upper plot compares the optimal model trajectory of Power Model 3 in black

and the power measurements in red at time step k for Winter Data Set - livingdown. The lower

figure presents the distribution of the residual.

Figure B.12: Upper plot compares the optimal model trajectory of Power Model 3 in black

and the power measurements in red at time step k for Spring Data Set - livingdown. The lower

figure presents the distribution of the residual.
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Figure B.13: Upper plot compares the optimal model trajectory of Power Model 3 in black

and the power measurements in red at time step k for Winter Data Set - main. The lower figure

presents the distribution of the residual.

Figure B.14: Upper plot compares the optimal model trajectory of Power Model 3 in black

and the power measurements in red at time step k for Winter Data Set - studio. The lower figure

presents the distribution of the residual.
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B.4 Power model 4

Figure B.15: Upper plot compares the optimal model trajectory of Power Model 4 in black and

the power measurements in red at time step k for Winter Data Set - living. The vertical grey

dotted lines mark where it is a time gap of over 5 minutes in the time series. The lower figure

presents the distribution of the residual.
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Figure B.16: Upper plot compares the optimal model trajectory of Power Model 4 in black

and the power measurements in red at time step k for Winter Data Set - main. The vertical grey

dotted lines marks where it is a time gap of over 5 minutes in the time series. The lower figure

presents the distribution of the residual.
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Figure B.17: Upper plot compares the optimal model trajectory of Power Model 1 in black and

the power measurements in red at time step k for Winter Data Set - studio. The vertical grey

dotted lines mark where it is a time gap of over 5 minutes in the time series. The lower figure

presents the distribution of the residual.
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Appendix C: Parameter Estimation Results of the

Temperature Models

This section presents the results of the model based parameter estimation of the

Temperature Models. Each figure compares the measured values with the solution of

the optimal model trajectory. In addition the distribution of the residual is presented.

C.1 Temperature Model 1

Figure C.1: Upper plot compares the optimal model trajectory in black with the temperature

measurements in red of Spring Data Set - living. The lower plot illustrates the distribution of

the residual.
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Figure C.2: Upper plot compares the optimal model trajectory in black with the temperature

measurements in red of Winter Data Set - livingdown. The grey vertical dotted lines mark where

it is a gap in the time series of over five minutes. The lower plot illustrates the distribution of

the residual.

Figure C.3: Upper plot compares the optimal model trajectory in black with the temperature

measurements in red of Spring Data Set - livingdown. The lower plot illustrates the distribution

of the residual.
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Figure C.4: Upper plot compares the optimal model trajectory in black with the temperature

measurements in red of Spring Data Set - main. The lower plot illustrates the distribution of the

residual.

Figure C.5: Upper plot compares the optimal model trajectory in black with the temperature

measurements in red of Winter Data Set - studio. The grey vertical dotted lines mark where it

is a gap in the time series of over five minutes. The lower plot illustrates the distribution of the

residual.
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Figure C.6: Upper plot compares the optimal model trajectory in black with the temperature

measurements in red of Spring Data Set - living. The lower plot illustrates the distribution of

the residual.
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C.2 Temperature Model 2

Figure C.7: Upper plot compares the optimal model trajectory in black with the temperature

measurements in red of Winter Data Set - living. The grey vertical dotted lines mark where it

is a gap in the time series of over five minutes. The lower plot illustrates the distribution of the

residual.
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Figure C.8: Upper plot compares the optimal model trajectory in black with the temperature

measurements in red of Spring Data Set - living. The lower plot illustrates the distribution of

the residual.

Figure C.9: Upper plot compares the optimal model trajectory in black with the temperature

measurements in red of Spring Data Set - livingdown. The lower plot illustrates the distribution

of the residual.
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Figure C.10: Upper plot compares the optimal model trajectory in black with the temperature

measurements in red of Winter Data Set - main. The grey vertical dotted lines mark where it

is a gap in the time series of over five minutes. The lower plot illustrates the distribution of the

residual.

Figure C.11: Upper plot compares the optimal model trajectory in black with the temperature

measurements in red of Spring Data Set - studio. The lower plot illustrates the distribution of

the residual.
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C.3 Temperature Model 3

Figure C.12: Upper plot compares the optimal model trajectory in black with the temperature

measurements in red of Winter Data Set - living. The grey solid trajectory illustrates the

temperature of the inertia thermal mass, while the grey vertical dotted lines mark where it

is a gap in the time series of over five minutes. The lower plot illustrates the distribution of the

residual.
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Figure C.13: Upper plot compares the optimal model trajectory in black with the temperature

measurements in red of Spring Data Set - livingdown. The grey solid trajectory illustrates the

temperature of the inertia thermal mass. The lower plot illustrates the distribution of the residual.
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Figure C.14: Upper plot compares the optimal model trajectory in black with the temperature

measurements in red of Winter Data Set - main. The grey solid trajectory illustrates the

temperature of the inertia thermal mass, while the grey vertical dotted lines mark where it

is a gap in the time series of over five minutes. The lower plot illustrates the distribution of the

residual.
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Figure C.15: Upper plot compares the optimal model trajectory in black with the temperature

measurements in red of Spring Data Set - main. The grey solid trajectory illustrated the

temperature of the inertia thermal mass. The lower plot illustrates the distribution of the residual.
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Figure C.16: Upper plot compares the optimal model trajectory in black with the temperature

measurements in red of Winter Data Set - studio. The grey solid trajectory illustrates the

temperature of the inertia thermal mass, while the grey vertical dotted lines mark where it is

a gap in the time series of over five minutes. The lower plot illustrates the distribution of the

residual.
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Figure C.17: Upper plot compares the optimal model trajectory in black with the temperature

measurements in red of Spring Data Set - studio. The grey solid trajectory illustrates the

temperature of the inertia thermal mass. The lower plot illustrates the distribution of the residual.
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