
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f E
ng

in
ee

rin
g

Cy
be

rn
et

ic
s

Julia Maria Graham

Geometric change detection in the
context of Digital Twin, leveraging
Dynamic Mode Decomposition,
Object Detection and innovations in
3D technology

Master’s thesis in Cybernetics and Robotics
Supervisor: Adil Rasheed

June 2021

M
as

te
r’s

 th
es

is

Julia Maria Graham

Geometric change detection in the
context of Digital Twin, leveraging
Dynamic Mode Decomposition, Object
Detection and innovations in 3D
technology

Master’s thesis in Cybernetics and Robotics
Supervisor: Adil Rasheed
June 2021

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Engineering Cybernetics

i

Preface

The research carried out in this report is submitted as my Master’s degree that final-
izes the integrated five-year engineering program Cybernetics and Robotics at the
Norwegian University of Science and Technology (NTNU).

During the past two years of my studies, my interest for Data modeling and Ma-
chine Learning have emerged as a result of following courses on these topics. I was
therefore drawn to writing a master thesis that would allow for cultivating these in-
terests, with the possibility of examining novel approaches within their scope. This
work tackles both well-known and established Machine Learning methods, and ex-
amines innovations based on a purely data-driven technique, and a non-Machine
Learning method which is respectively Dynamic Mode Decomposition, and Sparse
Representation Classification. These models, among others, are further used in a
framework for performing Change Detection in the context of a Digital Twin, which
is the main focus of this work. To facilitate the change detection application, an
experimental setup is built.

I want to express my deepest appreciation towards my supervisor, Adil Rasheed,
for his continuous assistance, valuable insights and directions, and for motivating
me along this journey.

Furthermore, I want to thank Glenn Angell for his invaluable assistance in help-
ing me build and design the experimental setup, and for meeting my requests with
patience and efficiency.

Lastly, I want to recognize the HPC group at NTNU for providing me with the
necessary computing power needed to conduct my experiments.

Julia Maria Graham

Trondheim, 20th June, 2021

ii

iii

Contents

Preface . i
List of Figures . vi
List of Tables . vii
Abstract . ix
Sammendrag . xi

1 Introduction 1
1.1 Motivation . 1
1.2 Background and related work . 3
1.3 Research Objectives and research questions 5

1.3.1 Objectives . 5
1.3.2 Research Questions . 5

1.4 Outline of Report . 6

2 Theory 7
2.1 Notation . 7
2.2 Geometric modeling . 7

2.2.1 CAD Modeling . 8
2.3 Dynamic Mode Decomposition . 9

2.3.1 DMD for streaming data and background subtraction 10
2.4 Convolutional Neural Network . 13

2.4.1 Convolution layer . 13
2.4.2 Pooling layer . 14
2.4.3 Fully connected layer . 14
2.4.4 Activation functions . 15

2.5 Compressed Sensing . 16
2.5.1 Time complexity of `1-minimization 16
2.5.2 Sparse Representation based Classification 17

2.6 Object detection using Yolo . 19
2.6.1 Evaluation metrics . 19

2.7 3D machine learning . 20
2.7.1 3D Pose estimation . 20

3 Method and Setup 23
3.0.1 CAD models . 23

3.1 Virtual experimental setup . 24
3.1.1 Synthetic data acquisition . 25

3.2 Experimental set-up . 28

iv

3.2.1 Real data acquisition . 28
3.3 Method . 32

3.3.1 Motion detection using DMD 32
3.3.2 Object detection and Image classification 32
3.3.3 Pose estimation . 36
3.3.4 Full workflow overview . 40

4 Results and Discussions 41
4.1 Motion detection using DMD . 41
4.2 Object detection and Image recognition 44

4.2.1 CNN . 44
4.2.2 SRC . 47
4.2.3 Yolo . 51
4.2.4 Summary of all models . 53

4.3 Pose Estimation . 55

5 Conclusion and future work 61
5.1 Conclusions . 62
5.2 Future Work . 63

Bibliography 65

v

List of Figures

2.2.1Point cloud of a 3D object . 8
2.3.1Re-usable inner products from one time step to the next outlined in

green . 11
2.3.2Background subtraction . 12
2.4.1Convolution operation with a sliding kernel where stride step is two

and padding is valid or zero . 13
2.4.2Max pooling operation with stride 1 and zero padding 14
2.4.3Output y of a single neuron . 14
2.4.4ReLU function . 15
2.4.5Softmax operation to output layer . 15
2.5.1Query image y as a linear combination of the training image set D

with corresponding weights given by c. White entries signify zero-
elements . 18

2.7.1Movement of a rigid body through 3D space will produce a translation
and a rotation component to the body frame from b to b′ 21

3.0.1Selected CAD models . 24
3.1.1Adapting the synthetic environment to match the physical one 25
3.1.2Angles for which the object is rotated w.r.t the camera 25
3.1.3Images sampled for an increasing Azimuth angle 26
3.1.4Examples of renders in ParaView . 27
3.2.1Raspberry Pi Camera mounted on a 3D-printed stand and secured on

a steel arm . 30
3.2.2Complete setup with the camera monitoring the scene 30
3.2.3Example images of black objects from the real test set 31
3.2.4Example images of green objects from the real test set 31
3.2.5Example images from real yolo test set 31
3.3.1Motion detection timeline . 33
3.3.2Architecture of the CNN used . 33
3.3.3Validation performance during training of the two models 34
3.3.4Annotating the synthetic data set in Roboflow 36
3.3.5Pose estimation pipeline . 38
3.3.6Example images of rendered views by Blender 38
3.3.7Camera movement during renderings 39
3.3.8Angle bins used for determining the pose accuracy 39
3.3.9Architecture of change detection method 40

4.1.1DMD motion detection of black boat detected 43

vi

4.1.2DMD motion detection of green chair 43
4.1.3DMD motion detection of white chair with lower detection threshold 43
4.1.4Images of white boat not detected even with lower detection threshold 43
4.2.1Confusion matrices for black figures on real images (right) and syn-

thetic test set for comparison (left) 45
4.2.2Precision recall curves for black test set 45
4.2.3Examples of poor sampling angles for oblong objects 46
4.2.4Confusion matrices for green figures on real images (right) and syn-

thetic test set for comparison (left) 46
4.2.5Precision recall curves for real test set of green objects 47
4.2.6Example residuals and coefficients from black objects of a successful

prediction . 48
4.2.7Non-sparse coefficients leading to no predicted class due to threshold 49
4.2.8SRC confusion matrix for black objects 49
4.2.9Example residuals and coefficients for green objects of a successful

prediction . 51
4.2.10SRC confusion matrix for green objects 51
4.2.11Examples of detected objects in the experimental setup 52
4.2.12Confusion matrix for Yolo with confidence 0.25 of real test set 52
4.2.13F1-curves of test set from same distribution as training data, i.e. syn-

thetic data, and test set of real data only 53
4.2.14Precision-Recall-curves of test set from same distribution as training

data, i.e. synthetic data, and test set of real data only 53
4.2.15Green chair contributing to a low precision at lower confidence levels 53
4.3.1Offset of predicted azimuth angle and real angle 58
4.3.2Offset of predicted elevation angle and real angle 58
4.3.3Offset of predicted in-plane rotation angle and real angle 58
4.3.4Offset of predicted angles and real angles 59
4.3.5Inferred poses of elongated objects rendered in Blender 59

vii

List of Tables

3.1.1Sampling angle offsets for CNN . 26
3.1.2Sampling angle offsets for SRC . 27
3.1.3Sampling angle offsets used in data acquisition scripts 27
3.2.1Raspberry Pi4 model B technical specifications 28
3.2.2Raspberry Pi4 HQ camera specifications 28
3.2.3Number of samples per object category 29
3.2.4Number of samples per object category 29
3.3.1CNN training parameters . 34
3.3.2Yolov5 Training parameters . 35
3.3.3Pose Estimation network training parameters 37

4.1.1Motion detection using Streaming DMD in real time. Results with *
are with a lower motion threshold 42

4.2.1CNN performance on black test set 44
4.2.2CNN performance on green test set 46
4.2.3SRC performance on black test set and threshold set to 0.5 48
4.2.4SRC performance on black test set and threshold set to 0 48
4.2.5SRC performance on green test set and threshold set to 0.5 50
4.2.6SRC performance on green test set and threshold set to 0 50
4.3.1Pose estimation results for black objects 57
4.3.2Pose estimation results for green objects 57

ix

Abstract

With the blooming era of digitalization, Digital Twin technology has emerged as
the prevailing technology for industry. Through simulating, predicting and optimiz-
ing physical manufacturing systems and processes, Digital Twins liberate industry
data providing insightful information while embodying the potential for innovation.
Moreover, the enabling factor for an updated and accurate Digital representation
are large quantities of sensor data that requires sufficient storage and transmission
bandwidth.

To circumvent these expensive requirements, the following work implements a
cost-effective approach for updating the digital replica of the physical environment,
without the need for excessive storage, computation power and bandwidth. The core
idea is to have a camera monitor a physical scene in real-time where selected objects
reside. Upon detecting a change in the scenery, more specifically the movement of an
object, this movement is detected, the object is localized and the new orientation of
the object is estimated. This estimated pose can further be used to update the digital
replica by reconstructing the new scene on demand. The enabling technologies are
Dynamic Mode Decomposition for motion detection, Yolo for object detection and
3D machine learning for pose estimation. An alternative non-Deep Learning method
for performing image recognition in the proposed approach is also investigated.

Furthermore, within the realm of 3D technology it is recognized that 3D modeling
and Computer Aided Design are powerful and accessible methods that provide accu-
rate representations of real objects. Thus, advancements of 3D modeling technology
begs the question of how it can be leveraged for use in the real world. This thought
is examined in the following work as well, by programmatically acquire synthetic
data for training various Deep learning and non-Deep Learning models, and further
examine their performance in the real world.

xi

Sammendrag

I takt med den økende digitaliseringen har Digital Tvilling-teknologi vist seg å bli
en betydningsfull teknologi for industri. Ved simulering, prediksjon og optimering
av fysiske produksjonssystemer og prosesser, frigjør Digitale Tvillinger industridata,
og bidrar dermed med innsiktsfull informasjon som også skaper rom for innovasjon.
Den muliggjørende faktoren som sørger for en stadig oppdatert og korrekt Digital
modell er store mengder sensordata, hvilket medfører kravene om tilstrekkelig la-
gringskapasitet og båndbredde over nettverket.
For å møte disse kostbare forbeholdene, vil det følgende arbeidet presentere en kost-
nadseffektiv metode for å oppdatere den digitale kopien av det fysiske miljøet uten
behovet for uforholdsmessige mengder lagring, regnekraft eller båndbredde. Frem-
gangsmåten er å ha et kamera som overvåker en fysisk scene i sanntid hvor utvalgte
objekter oppholder seg. I øyeblikekt et objekt beveger seg, vil bevegelsen bli fanget
opp av kameraet, objektet bli lokalisert og gjenkjent i bildet, og den nye orienterin-
gen av objektet blir estimert. Den estimerte endringen i orientering kan dermed bli
brukt for å oppdatere den digitale tvillingen ved å rekonstruere den endrede sce-
nen på etterspørsel. De muliggjørende teknologiene som blir brukt i denne frem-
gangsmåten er Dynamic Mode Decomposition for detektering av bevegelse, Yolo for
objektgjennkjenning og 3D Maskinlæring for å estimere orientering. Videre vil også
en alternativ metode for å utføre objektgjennkjenning som en del av det foreslåtte
rammeverket, og som ikke er basert på dyp læring, bli undersøkt.
Innen landskapet for 3D-teknologi, er det kjent at 3D-modelering og Computer
Aided Design er kraftige og tilgjengelige metoder som muliggjør presise represen-
tasjoner av fysiske objekter. Fremgang innen 3D-modelering åpner dermed for spørsmålet
om hvordan denne teknologien kan overføres til den fysiske verdenen vi lever i.
Denne tanken blir undersøkt i det følgende arbeidet, ved å lage automatiserte skript
som samler inn et utvalg syntetisk data til bruk som treningsdata for ulike dyp læring-
og ikke dyp læringsmodeller. Deretter blir modellene satt til å testes i den virkelige
verden, og deres prestasjon undersøkt.

1

Chapter 1

Introduction

The concept of Digital Twin (DT) is rapidly transforming the landscape of indus-
tries (Tao et al. (2018)). In order to accurately mirror the physical environment,
frequent updates are required. This implies processing large streams of data, result-
ing in expensive storage and bandwidth demands. Through motion detection, object
detection and 3D machine learning, a pipeline for performing Change Detection to
update the digital scene in a cost-effective way on demand is facilitated. Secondly,
research on the potential value of using synthetic data for training, while testing the
trained model in the real world is also undertaken. Lastly, investigations on non-Deep
Learning methods such as Dynamic Mode Decomposition and Sparse Representation
based Classification are exhibited.

1.1 Motivation

The proposed change detection method is based on the approach presented in Sundby
et al. (2021). The following work aims to perform a more rigorous implementation,
while examining some other directions within the scope of the change detection
framework.

In its essence, a Digital Twin is a virtual model empowered by big data and the
governing physics of a process, product or service (Wanasinghe et al. (2020)). Fur-
thermore, to obtain an accurate digital representation of an asset, high-quality ge-
ometrical models describing its physics is required. This is typically enabled with
Computer Aided Design (CAD) models, which is software for creating accurate 3D
digital representations of geometry data consisting of parametrized object surfaces
(Dugelay et al. (2008)). Further, a descriptive digital twin is comprised of CAD mod-
els that models the static and dynamic evolution of a physical asset (Zheng et al.
(2019)).

Raw data collected in real-time through sensors and data transmission technolo-
gies can by mined and transformed into valuable information with the use of pow-
erful storage, computing power of cloud computing, and big data analysis models
and algorithms (Tao et al. (2019)). This continuous stream of new information is
required to update the Digital Twin such that the state of the physical asset is close
to real-time mirrored in its digital replica. Certainly, this will result in a large volume
of structured, semi-structured and unstructured data (Qi and Tao (2018)). Central

2 Chapter 1. Introduction

challenges DT technologies face are consequently related to storage as well as band-
width requirements from the extensive transmission of raw sensor data (Rasheed
et al. (2019)).

In an attempt to face these challenges, an approach for detecting changes in a
physical environment for the purpose of updating its digital scene on demand with
the detected changes is presented in this report. The approach is proposed as a
lightweight alternative to continuously storing and processing sensor information
from the physical scene. It is designed with emphasis towards minimizing compu-
tational and storage demands required for continuous and real-time updates of a
Digital Twin.

The proposed change detection method is composed of three modules. Firstly,
motion detection is performed by using Dynamic Mode Decomposition (DMD) for
background subtraction to extract the moving foreground. Secondly, object detec-
tion to localize accurate bounding box estimates of the moving objects is facilitated
by You Only Look Once (Yolo). Lastly, the orientation of the localized object is esti-
mated through a Pose Estimation network. Specifically, this is a Convolutional Neural
Network (CNN) that performs pose estimation using a particular feature extraction
method.

Fundamental for the object detection module in the proposed change detection
approach is the task of image recognition. The most powerful class of models that
have emerged as the standard for performing Computer Vision and image classifi-
cation are deep learning models based on Convolutional Neural Networks (CNNs)
(LeCun et al. (2015)). Yet, in exchange for their high performance are high com-
putational demands requiring computing power from high-end Graphics Processing
Units (GPUs) (He and Sun (2015)). Moreover, CNNs are often described as “Black-
Box”-models (Tzeng and Ma (2005)), in that the underlying decisions that lead to
some output given some input is completely hidden from the observer. This trait
deem them unfit for safety-critical applications such as autonomous driving where
it is essential that the decisions made by the software are predictable and adhere
to the governing ethics consensus. It has been shown that non-deep learning image
recognition inspired by techniques from Compressed Sensing (CS) and dictionary
learning, namely Sparse Representation based Classification, yield state of the art
performance in the task of Face Recognition (Wright et al. (2008)). Feature-based
methods such as Principal Component Analysis (PCA) is another non-deep learning
method that has proven to be successful in image classification (Bajwa et al. (2009)).
These methods are beneficial in terms of being less computationally heavy. SRC also
embody greater transparency as the classifications stems from a simple optimization
problem that is addressed in subsection 2.5.2.

Furthermore, a prerequisite for building a powerful image classifier using deep
learning in particular is the data volume available for training (Shorten and Khosh-
goftaar (2019)). Generating a high quality dataset of sufficient size may however
be costly, time consuming and challenging depending on the data source. Methods
such as data augmentation have been proposed to meet this requirement (Perez and
Wang (2017); Mikołajczyk and Grochowski (2018)), yet more research on this field
is sought.

Therefore, an investigation on whether we can leverage synthetic data for training
image classifiers such as CNN and SRC with the aim of using the trained model in the

Chapter 1. Introduction 3

real world, is conducted in this report. This could alleviate the challenges related to
large-scale high quality data generation. Moreover, the requirement of training data
volume is not necessarily present for SRC as it has even been shown to achieve high
performance in addition to generalising well in the task of face recognition with a
single training image per object category (Deng et al. (2012a)). With these remarks
in mind, SRC is also revised as a competing candidate against CNNs in the task of
image recognition.

1.2 Background and related work

Motion detection and DMD: Application areas in motion detection such as video
surveillance, traffic analysis and robot navigation, demonstrates it to be a key topic in
the field of computer vision. Traditional approaches of motion detection is generally
comprised of the categories Background Subtraction, Frame differencing, Temporal
Differencing and Optical Flow (Kulchandani and Dangarwala (2015)). Moreover,
the leading and most reliable approach among these is considered to be Background
Subtraction. The idea is based on estimating a model of the background to further
subtract it from the raw video frame. Based on the pixel intensities of the resulting
frame, moving foreground objects can be isolated (Shaikh et al. (2014)). The use of
DMD for background subtraction and its variants is successfully proposed in Grosek
and Kutz (2014), Kutz et al. (2017), Erichson et al. (2019), Kutz et al. (2016). In Kutz
et al. (2017), methods for applying DMD to streaming data, thus enabling real-time
background subtraction, along with measures for optimizing the DMD algorithm is
proposed. A variant leveraging the storage optimization enabled by sparse sampling
and Compressed Sensing is proposed in Erichson et al. (2019), namely compressed
DMD or cDMD. Furthermore, an approach that enables detection of moving objects
at different speeds, namely Multi-Resolution DMD or mrDMD, is proposed in Kutz
et al. (2016), which is related to Wavelet theory.

Object detection: The task of object detection can be posed as both localizing ob-
ject instances as well as assigning their true class from images (Liu et al. (2020)).
Using SRC for image classification, and specifically achieving state-of-the-art Face
Recognition was first presented in Wright et al. (2008). The proposed face recog-
nition system is inspired by Compressed Sensing theory and sparse representation
dictionary learning, leading to the Sparse Representation Classifier (SRC). It is mo-
tivated by the notion of natural sparsity in the face recognition problem, in trying
to classify a single subject from a large database of faces. Thus, only a few training
samples from a single category is needed in order to describe a query image. This
implies that a sparse representation of a query image can be sought by posing the
problem as an `1-minimisation problem.

Attempts at improving the SRC algorithm is done with the Kernel Sparse Rep-
resentation Classifier (KSRC) proposed in Yin et al. (2012). A kernel is utilized for
mapping features into a high-dimensional feature space prior to classification, which
enable the extraction of non-linear features. The aim of KSRC is to find an appropri-
ate kernel that projects the linearly inseparable samples in the original feature space
into a linearly separable higher dimensional feature space. A test sample can con-
sequently be more accurately described as a linear combination of training samples

4 Chapter 1. Introduction

from the same class.
Yet another improvement of SRC that advances the KSRC algorithm is the one

proposed in Xu et al. (2013). In SRC, all training samples are weighted equally as a
linear combination to represent a new test sample. Therefore, it does not consider
correlation between training samples from the same class. In kernel based weighted
group sparse classifier (KWGSC), the Kernel trick is not only used for mapping the
original feature space into a high dimensional feature space, but also as a measure
to select or weight members of each group. The weight thus reflects the degree of
importance of training samples in different groups.

With the recent years advent of powerful Deep Learning methods, the leading ob-
ject detection frameworks are based on the following; RCNN (Girshick et al. (2014)),
Fast RCNN (Girshick (2015)), Faster RCNN (Ren et al. (2016)), YOLO (Redmon et al.
(2016)) and Single shot detector (SSD) (Liu et al. (2016)). Common for these frame-
works are their back-bone architectures, which are powered by CNNs (Girshick et al.
(2014)). CNNs facilitate the learning of complex features from images and seem to
excel at producing the most relevant feature maps for images that both help in ob-
ject localization as well as recognition (Wu et al. (2020)). Although this may be a
computationally heavy process, recent innovations such as Yolov5 is a lightweight
and fast Yolo model variant that is said to obtain an accuracy on par with its pre-
decessor Yolov4 (Bochkovskiy et al. (2020); Jocher et al. (2020)). Additionally, the
Yolo model family are shown to best qualify for real-time applications, as they only
need to process an image once, hence the name "You Only Look Once" (Redmon
et al. (2016)). Thus, with both speed and size in mind, the model choice for object
detection in the following presented framework is Yolov5.

Pose estimation: When the object-shape is known, approaches for estimating the
pose of a 3D object can be broadly categorized into feature-matching and template-
matching methods (Xiao et al. (2019a)). Feature-matching methods commonly seek
to extract local features of an image and match them to the a 3D model of the
depicted object. Matching on the pixel-level rather than using features is a vari-
ant of this approach (Park et al. (2019)). A Perspective-n-Point (PnP) algorithm
for extracting the camera 6D viewpoint comprised of both orientation and transla-
tion coordinates can further be applied to the estimated 2D-3D correspondences.
These methods perform poorly on texture-less and low resolution images as the
task of matching 2D-3D correspondences become increasingly difficult (Xiang et al.
(2017)). Template-based methods have been developed to meet these challenges by
matching the target object in an image to a similar template of the object (Lee and
Hong (2012)). However, these methods are not robust when faced with occluded
objects or objects in cluttered scenes. Recently, deep learning models, specifically
CNNs, have been successfully employed for the task of Pose Estimation (Xiang et al.
(2017); Peng et al. (2019); Li et al. (2018)). They have shown to be robust to the
mentioned challenges while being able to perform Pose Estimation from a single RGB
(Red Green Blue)-image. Common for these deep models are that they are category-
specific in that they may only estimate poses of object categories known at the time
of training. In the context of Digital Twins, the physical environment may alternate
with the introduction of novel objects. The ability to generalize in the mapping from
the physical to the virtual environment is a necessity if complete autonomy is to

Chapter 1. Introduction 5

be realized for an autonomous Digital Twin. A method of performing Pose Estima-
tion that is not restricted to specific categories is therefore deemed relevant for the
Change Detection framework. Moreover, a recent deep learning method for perform-
ing Pose Estimation with the possible extension to novel objects is presented in Xiao
et al. (2019a). With these remarks in mind, it is therefore deemed the appropriate
model for performing Pose Estimation in the proposed framework.

Empowered by these technologies, a full change detection framework can come
alive.

1.3 Research Objectives and research questions

1.3.1 Objectives

Primary Objective: To develop a cost-effective approach to detect geometrical changes
in descriptive digital twins.
Secondary Objectives:

• Develop a virtual environment for synthesizing data for training and an experi-
mental set up for evaluating the effectiveness of the change detection approach
proposed in this work.

• Evaluate the potential of utilizing synthetic data for training various models to
be later used in the real world.

• Evaluate the potential of algorithms with mathematically sound foundation
like dynamic mode decomposition for motion detection, and compressed sens-
ing as an alternative to Deep Learning methods for image classification.

1.3.2 Research Questions

To the best of our knowledge there is currently no published work on the following
approach for conducting change detection in the context of Digital Twins. To this
end, the guiding questions governing the research can be stated as:

• With pedagogical purpose in mind, what kind of experimental setup can be
built for the purpose of testing a cost-effective change detection approach in a
Digital Twin ?

• Can synthetic data programmatically acquired in a virtual environment be used
for training image classifiers so that they can be used in the real world with
confidence ?

• How effective are DMD for motion detection, and SRC for image classification
in comparison to Deep Learning ?

6 Chapter 1. Introduction

1.4 Outline of Report

The thesis is comprised of the following sections and content: chapter 2 presents
the theory which comprise the foundation for the technical methods used; chapter 3
dissect the concrete methods and implementation details as well as introducing the
two experimental setups considered for the for the change detection application;
section 3.1 presents more specifically how synthetic data acquisition is performed,
while chapter 4 presents the results which are evaluated and discussed, and the
thesis is concluded in chapter 5.

7

Chapter 2

Theory

2.1 Notation

The following practises are applied in this report:

• Vectors and Matrices are marked in bold. Matrices are capitalized (Φ, A, W),
while vectors are in lower-case (x, y, c)

• A vector, x, is given as a column vector, and its transpose, xT denotes a row-
vector

• Scalar values are written in lower-case letters with no formatting (a, b, c)

• The symbols Φ, Θ and Ψ, denotes matrices in the theory sections for DMD and
Compressed Sensing in section 2.3 and section 2.5, and are not to be confused
with the same lower-case scalar symbols denoting the Euler angles (φ, θ, ψ) in
subsection 2.7.1. From this section and throughout the report, these lower-case
symbols will refer to the Euler angles as defined in this section

2.2 Geometric modeling

Geometric modeling is the mathematical representation of an object’s geometry and
shape. The modeling of a geometric shape begins with outlining its surfaces. Surfaces
can be mathematically described using curves that are essentially analytic functions
or a set of points. These curves are what will ultimately result in a visual representa-
tion of a 3D object. Geometric modeling is a tool of great importance in mechanical
engineering for visualising mechanical parts, compute mass properties, create pro-
grams to drive NC machine tools to cut out shapes from materials, etc. It is also used
in architecture, geology and medical image processing (Gallier and Gallier (2000)).

Computer Aided Modeling or CAD is computer geometric modeling that uses soft-
ware to store the data of the geometric properties of an object, thereby giving a
digital 3D representation of the object.

8 Chapter 2. Theory

Figure 2.2.1: Point cloud of a 3D object

2.2.1 CAD Modeling

Computer aided design (CAD) is a powerful tool for creating 2D or 3D graphical
models of objects. It consists of hardware and software to assist in design tasks such
as creation, modification, analysis or optimisation of a design (Groover and Zimmers
(1983)). CAD software makes it possible to build a model in an imaginary space, en-
abling visualization where design choices like size, color or material can be altered.
The CAD model of an object can further be used for 3D printing, which is an inno-
vation that enables the manufacturing of a synthetic object residing in the virtual
world to take shape as a physical object in the real world Berman (2012).

To produce a CAD model of a physical object, point cloud data of the object can be
generated. This is collected through laser scanning techniques that sample the sur-
face geometry of the 3D object Hattab and Taubin (2015). Point clouds are datasets
of X, Y and Z-geometric coordinates that represents the object surface in space. Each
point in the cloud requires a single laser scan measurement. All points stitched to-
gether in a cloud will then form a geometric shape of either an object or a scene. This
model can further be used to create a CAD model of the object by creating meshes
that ultimately form the object surface.

3D file formats: STL, OBJ

A 3D file format stores information that can be processed by 3D software. The two
most common file formats to use for 3D printing is STL and OBJ. STL files encodes
the surface of a 3D object into a triangular mesh. For higher resolution, smaller
triangles are used. The information contained in an STL file is restricted to that
of the object shape and size. In order to store information like color and texture,
another format must be used.

OBJ files on the other hand are equipped with more flexibility. They store addi-
tional geometry information, texture and the original mesh the model was created
with. The surface encoding is not restricted to triangles as with STL, but can also use
polygons or hexagons. This results in is a smoother mesh that simulates the original
surface better. Yet, they are more complex and difficult to work with than STL, which
is why STL remains the most popular file format overall (Iancu (2018)).

Chapter 2. Theory 9

2.3 Dynamic Mode Decomposition

The following theory is partially or fully retrieved from the author’s preproject that
also utilized DMD for motion detection.

Dynamic Mode Decomposition (DMD) is an equation-free method that is capable
of retrieving intrinsic behaviour in data, even when the underlying dynamics are
nonlinear (Tu et al. (2013)). It is a purely data-driven technique, which is proving to
be more and more important in the arising and existing age of Big Data.

DMD decomposes time series data into spatiotemporal coherent structures by ap-
proximating the dynamics to a linear system that describes how it evolves in time.

The linear operator, sometimes also referred to as the Koopman operator (Nathan Kutz
et al. (2017)), that describes the data from one time step to the next is defined as
follows

xt+1 = Axt (2.3.1)

Consider a set of sampled snapshots from the time series data. Each snapshot is
vectored and structured as a column vector with dimensions n × 1 in the following
two matrices

X = {x1, ...,xm−1}, X′ = {x2, ...,xm} (2.3.2)

Where X′ is the X-matrix shifted one time step ahead, each of dimension n×(m−1).
Relating each snapshot to the next, Equation 2.3.1 can be rewritten more com-

pactly as
X
′
= AX (2.3.3)

The objective of DMD is to find an estimate of the linear operator A and obtain its
leading eigenvectors and eigenvalues. This will result, respectively, in the modes and
frequencies that describes the dynamics.

Computing the leading DMD modes of the linear operator proceeds as follows

Algorithm 1: Standard DMD

1. Structure data vectors into matrices X and X′ as described in Equation 2.3.2

2. Compute the SVD of X

X = UΣV∗ (2.3.4)

Where U and V are square unitary matrices of sizes n× n and m×m respec-
tively, and UU∗ = VV∗ = I .

3. To reduce the order of the system, the following matrix is defined

Ã = U∗AU = U∗X′VΣ−1 (2.3.5)

Where Ã is projected onto the r leading modes of U as a result of a truncated
SVD.

4. Compute the eigendecomposition of Ã:

ÃW = WΛ (2.3.6)

10 Chapter 2. Theory

5. Which ultimately leads to the DMD modes Ψ, where each column of Ψ repre-
sents a single mode of the solution.

Ψ = X
′
VΣ

−1
W (2.3.7)

The predicted state at time points t ∈ 1,, k is then expressed as a linear combi-
nation of the identified modes.

x̃t+1 =
∑
i

λtiψibi,0 = ΨΛtb0 (2.3.8)

The initial amplitudes, bi,0, of the modes are obtained by setting t = 0 and solving
for b0 in Ψb0 = x1.

Note that each DMD mode ψi is a vector that contains the spatial information of
the decomposition, while each corresponding eigenvalue λti along the diagonal of Λt

describes the time evolution of the respective mode. The part of the video frame,
i.e. modes, that changes slowly in time must therefore have a stationary associated
eigenvalue, i.e. | λ |≈ 1. Relating this to the frequency domain, we have that ωi =
ln(λi)
δt

. Thus, the slowly varying dynamics will have frequency content | ωi |≈ 0, i.e
slowly varying energy content in time.

2.3.1 DMD for streaming data and background subtraction

Although Standard DMD is primarily viewed as a post-processing tool that requires a
large amount of data, recent innovations of DMD for streaming and online-data have
emerged. Among them are the two methods of Streaming DMD and Compressed
DMD proposed in Nathan Kutz et al. (2017).

The computational cost of performing DMD is dominated by the expensive SVD
calculation at each iteration. The Streaming DMD method utilises a less costly method
of computing the SVD decomposition, namely the method of snapshots. This method
is derived from performing the eigenvalue decomposition of the matrix product
XTX.

XTXV = VΣ2 (2.3.9)

This result can be used to obtain the U-matrix

U = XVΣ−1 (2.3.10)

Now consider performing Standard DMD on an incoming data stream using the
method of snapshots for computing the SVD at each iteration. As more data become
available, there will be a shift of the X matrix as columns are appended to the right
of the data matrix X with new sampled snapshots, and columns to the left with
old data are discarded. This will result in repeated SVD computations where all the
overlapping columns from one time step to the next yield redundant inner product
computations (XTX). This is illustrated in Figure 2.3.1.

The Streaming DMD algorithm utilises this fact to only update the calculation of
the last column appended to the data matrix X at the next time step. Thus reducing
the computational complexity from O(n2m) to O(nm) (Nathan Kutz et al. (2017)),

Chapter 2. Theory 11

Figure 2.3.1: Re-usable inner products from one time step to the next outlined in green

where m are the number of snapshots or video frames considered and n is the pixel
dimension of the flattened frames.

The paper Zhang et al. (2019) proposes another method of dealing with online
streaming data and DMD. It is an intuitive and simple approach called Windowed
DMD, which in simple terms performs DMD repeatedly on a sliding window. The
window is of equal size and enables the incorporation of new data and the discard-
ing of old data for each iteration as new data become available. Note that this is
simply the Streaming DMD method, without the optimisation of reusing the redun-
dant inner products.

Another remark is that both methods (Streaming DMD and Windowed DMD)
yield a better time resolution of the dynamics present in the video, rather than per-
forming DMD once on the entire batch of video snapshots.

A relevant application of DMD is background modeling of video streams. As men-
tioned, DMD can be used to separate out the slowly varying modes related to slowly
varying dynamics in the data. Based on the assumption that the nonlinear dynamics
is a superposition of a low-dimensional component and a sparse component, Robust
Principal Component Analysis (RPCA) have been shown to successfully separate the
data X (Candès et al. (2011)).

X = L + S (2.3.11)

where L is the low-rank structure and S is sparse.
In terms of DMD, this separation can be based on the frequency contents of the

modes. Considering again Equation 2.3.8 in terms of frequencies

x̂(t) =
r∑
i

exp(ωit)ψibi,0 (2.3.12)

Slowly varying video content, i.e low-rank features, will be related to small values
of ωi. Selecting a threshold ε, the separation of the stationary or nearly stationary

12 Chapter 2. Theory

dynamics, i.e the video background, with the time-varying foreground can be written
as

L ≈
∑
|ωi|≤ε

exp(ωit)ψibi,0︸ ︷︷ ︸
background

, S ≈
∑
|ωi|>ε

exp(ωit)ψibi,0︸ ︷︷ ︸
foreground

(2.3.13)

The foreground can thus be estimated by subtracting the raw video frame with the
reconstructed background, L, from the DMD mode separation in Equation 2.3.13.

Ŝ = Xraw − L (2.3.14)

where Ŝ denotes the estimated foreground. This result can thus be used for lo-
calising moving objects against a stationary or slowly moving background Erichson
et al. (2019).

Thresholding

To evaluate the accuracy of the detected pixels, a foreground mask based on thresh-
olding the difference between the true raw frame and the reconstructed background
can be computed. The Euclidean distance can then be used to transform the prob-
lem to a binary classification problem (Wang et al. (2014), Erichson et al. (2019))
as follows.

χt(j) =

{
1 if ‖xj,t − x̂j‖ > τ

0 otherwise

where xj,t is the jth pixel of the tth video frame, and x̂j is the corresponding pixel
of the estimated background. The foreground pixels, i.e. pixels classified as 1 based
on the threshold, can then be compared with ground truth pixel values to evaluate
the localisation performance of the method.

Figure 2.3.2 illustrates background subtraction using DMD with thresholding.

- >

Current raw video frame

Predicted background model

Threshold

Classified foreground pixels

Figure 2.3.2: Background subtraction

Chapter 2. Theory 13

2.4 Convolutional Neural Network

A Convolutional Neural Network (CNN) for image classification takes as input an
image and outputs a predicted label among certain categories, e.g. chair, boat, cup.
An input image is of size height×width× depth, where the depth can be interpreted
as the color depth of the image. Here, d = 1 refers to a grayscale image, while d = 3
refers to a RGB (Red Green Blue)-image.

A CNN is typically composed of several layers that each serves a dedicated pur-
pose. These layers are convolutional layers, pooling layers and fully connected layers
where the classification eventually takes part.

2.4.1 Convolution layer

The convolution layers in combination with the pooling layers extract the most im-
portant features from the input images. A convolution operation in the sense of
feature extraction is applying a kernel, which is a matrix, that is slid over the input
image, multiplied with the overlapping pixels and finally adding them together as a
measure of similarity between the kernel and the image. This operation will create
an output that enhance some feature, depending on the kernel used, that is detected
at the particular region in the image. A common kernel used in image feature extrac-
tion is one that detects vertical or horizontal edges in an image. In a CNN however,
the kernel pixel values are learned by the network. This way it obtains the features
it deems most important for the training data provided. Yet, the size of the kernel
is specified by the user and is thus a hyper-parameter to consider when designing
the convolutional layers. Another parameter that is user-specified is the stride step
which is the number of pixels the kernel is shifted for each multiplication operation.
Finally, the convolution operation must have a way of handling the borders of the
input image if the overlap between the kernel and stride does not coincide with the
image size. This is referred to as the padding. Options here are valid padding, which
only performs the convolution operation on the pixels of the input image resulting in
a feature map of smaller dimensions than the input image. While a padded or same
convolution will add zeros around the borders of the image such that the output
dimensions match those of the input dimensions.

The output of the convolution is referred to as a feature map (He and Sun (2015)).
A pooling layer is then applied to downsample the feature map which also reduces
the sensitivity to the position of the features in the map (O’Shea and Nash (2015)).

Figure 2.4.1: Convolution operation with a sliding kernel where stride step is two and
padding is valid or zero

14 Chapter 2. Theory

2.4.2 Pooling layer

Pooling layers may be applied to the feature maps produced by the convolutional
layers. They serve the purpose of further downsampling the feature maps, as well
as summarizing, or extracting the most prevalent features that are present in each
section of the feature maps. This will decrease the number of parameters or weights
in the final network. The two most common pooling types are average pooling and
max pooling. The first taking the average of each patch and returning a single num-
ber, while the other simply returns the maximum number of a section. A section is
here referred to as the window that is slid over the feature map, similarly to the filter
that is slid over the image in a CNN layer.

%3CmxGraphModel%3E%3Croot%3E%3CmxCell%20id%3D%220%22%2F%3E%3CmxCell%20id%3D%221%22%20parent%3D%220%22%2F%3E%3CmxCell%20id%3D%222%22%20value%3D%222%26lt%3Bspan%20style%3D%26quot%3Bcolor%3A%20rgba(0%20%2C%200%20%2C%200%20%2C%200)%20%3B%20font-family%3A%20monospace%20%3B%20font-
size%3A%200px%26quot%3B%26gt%3B%253CmxGraphModel%253E%253Croot%253E%253CmxCell%2520id%253D%25220%2522%252F%253E%253CmxCell%2520id%253D%25221%2522%2520parent%253D%25220%2522%252F%253E%253CmxCell%2520id%253D%25222%2522%2520value%253D%2522%2522%2520style%253D%2522endArrow%253Dnone%253Bhtml%253D1%253BexitX%253D0.25%253BexitY%253D0%253BexitDx%253D0%253BexitDy%253D0%253BentryX%253D0%253BentryY%253D0%253BentryDx%253D0%253BentryDy%253D0%253BstrokeWidth%253D1%253BstrokeColor%253D%2523FFD966%253B%2522%2520edge%253D%25221%2522%2520parent%253D%25221%2522%253E%253CmxGeometry%2520width%253D%252250%2522%2520height%253D%252250%2522%2520relative%253D%25221%2522%2520as%253D%2522geometry%2522%253E%253CmxPoint%2520x%253D%2522200%2522%2520y%253D%2522170%2522%2520as%253D%2522sourcePoint%2522%252F%253E%253CmxPoint%2520x%253D%2522389.9999999999998%2522%2520y%253D%2522190.01999999999998%2522%2520as%253D%2522targetPoint%2522%252F%253E%253C%252FmxGeometry%253E%253C%252FmxCell%253E%253C%252Froot%253E%253C%252FmxGraphModel%253E%26lt%3B%2Fspan%26gt%3B%22%20style%3D%22text%3Bhtml%3D1%3BstrokeColor%3Dnone%3BfillColor%3Dnone%3Balign%3Dcenter%3BverticalAlign%3Dmiddle%3BwhiteSpace%3Dwrap%3Brounded%3D0%3B%22%20vertex%3D%221%22%20parent%3D%221%22%3E%3CmxGeometry%20x%3D%22190%22%20y%3D%22180.04000000000002%22%20width%3D%2240%22%20height%3D%2220%22%20as%3D%22geometry%22%2F%3E%3C%2FmxCell%3E%3C%2Froot%3E%3C%2FmxGraphModel%3E0 1

2 5 6

2

3 0 4

5 6

3 4

Figure 2.4.2: Max pooling operation with stride 1 and zero padding

2.4.3 Fully connected layer

The final part of the CNN network are the fully connected layers that have the same
architecture as a regular feed-forward Artificial Neural Network (ANN). The input
to this network is the set of flattened feature maps produced by previous parts.
Each neuron receives inputs from connected neurons, with weights corresponding to
them. The output of the neuron is further the result of applying an activation func-
tion to the weighted sum of the inputs multiplied with their corresponding weights
and a potential added bias term. This operation is seen in Figure 2.4.3.

...

bias
(b)

activation function

Figure 2.4.3: Output y of a single neuron

The purpose of an ANN is further to learn the weights related to each connecting
neuron. This is in simple terms done by formulating an optimization problem that
minimizes some loss function and updating the weights accordingly during training
(Günther and Fritsch (2010)).

Chapter 2. Theory 15

2.4.4 Activation functions

Following each node or neuron in a Neural network, is an activation function that
outputs if the neuron should fire or not. Activation functions need to exhibit a non-
linearity in order to learn the complex structures of the input data, which is the
trait that ultimately renders neural networks to be universal approximators (Sharma
(2017)). If the activation functions were to be linear, one would essentially be left
with a linear regression model, which is far from a universal approximator.

The ReLU activation function is the most general and widely used in neural net-
works (Ramachandran et al. (2017)). Mathematically, it is expressed as in Equa-
tion 2.4.1.

y = max(0, x) (2.4.1)

0

5

- 5 5

y = max(0, x)

Figure 2.4.4: ReLU function

For classification tasks, such as image recognition, we require the network to
output the recognized class in the image. It is however more interesting to know
how certain the network is of the prediction. The Softmax activation function solves
this by mapping the output of the final layer to a probability distribution, giving the
probability of the input belonging to each of the possible classes. For instance, the
final output after applying softmax, could predict that it is a 90% probability that the
input image is of a cat, and a final 10% probability that the input image is of a dog,
given that there are only these two possible classes. An illustration of this operation
can be seen in Figure 2.4.5.

Output
layer

1.3
5.1
2.2
0.7
1.1

Softmax

Probabilities

0.02
0.90
0.05
0.01
0.02

Figure 2.4.5: Softmax operation to output layer

The mathematical formulation of the softmax function is as in Equation 2.4.2.

softmax(x)i =
exp(xi)∑
j exp(xj))

(2.4.2)

16 Chapter 2. Theory

2.5 Compressed Sensing

The following theory is partially or fully retrieved from the author’s preproject that
also utilized CS and SRC for image classification.

Compressed sensing (CS) is a method of signal compression that enables success-
ful representation and reconstruction of a signal with far less samples than what the
well-known Nyquist-Shannon sampling theorem requires. CS benefits from the fact
that a signal’s frequency content is highly sparse in some basis, which is the case for
most natural signals.

A signal z ∈ Rn is said to be k-sparse if it can be represented as a linear combina-
tion of only k basis vectors. Consider a signal x that is sparse in the basis Φ

z = Φs (2.5.1)

Suppose only m samples of the signal are taken. Then the measurement vector of
m × 1 dimensions is y where each element is a single measurement. Then y can be
written as

y = Θz = ΘΦs (2.5.2)

Where Θ is an m× n measurement matrix.
This yields a highly underdetermined system. The aim of CS is to find the sparsest

solution ŝ, that successfully recovers z from m measurements

ŝ = min
s′
‖s′‖0, subject to y = ΘΦs′ (2.5.3)

Solving Equation 2.5.3 is an NP hard problem and difficult to approximate. Yet,
sparse representation and CS theory reveals that the sparsest solution of Equa-
tion 2.5.3 can be obtained by relaxing the norm to l1 (Donoho (2006)). The problem
can therefore be reformulated

ŝ = min
s′
‖s′‖1, subject to y = ΘΦs′ (2.5.4)

To account for corrupted or noisy data the equality constraint is relaxed with a resid-
ual error, leading to the quadratically constrained `1-minimisation problem which is
the standard formulation of sparse reconstruction

ŝ = ‖s′‖1
s′

, subject to ‖y −ΘΦs′‖2 ≤ ε (2.5.5)

2.5.1 Time complexity of `1-minimization

The standard formulation of `1-minimization is a linear program and can be solved
with high accuracy using interior point-algorithms Ge et al. (2011). Unfortunately,
traditional linear programming solvers solves the problem of `1-minimization in cu-
bic time, which is unsuitable for large-scale applications. Therefore, attempts at de-
veloping more efficient solvers have been a central topic for CS advocates. Donoho
and Tsaig (2008) propose a solver based on homotopy that is able to recover solu-
tions with t non-zeros in O(t3 + n) time, making it linear in the size of the training
set.

Chapter 2. Theory 17

2.5.2 Sparse Representation based Classification

Based on theory from CS and Sparse Representation, the application of Sparse Rep-
resentation for Face Recognition is presented in Wright et al. (2008).

An image can be represented as a signal flattened into an m × 1 vector ∈ Rm.
This signal can then be represented by a basis of orthogonal and unit length vectors
di, forming an m × n orthonormal basis matrix D, which is also referred to as a
dictionary matrix (Wright et al. (2008)).

When running the classifier, a new test image y belonging to class j, can be ex-
pressed as a linear combination of the column vectors that make up the training
images of that same class as

y ≈ Djcj, or y ≈
nj∑
i=1

cidj,i (2.5.6)

Where Dj ∈ Rm×nj has columns dj,i, and nj is the number of training samples for
class j such that cj ∈ Rnj . The input image y in terms of all the training samples for
L number of classes, where each Dj-matrix is concatenated into what becomes the
final dictionary matrix D is then

y = Dc =

[
D1,D2, ...,DL

]
c (2.5.7)

where D ∈ Rm×n, and n =
∑L

j=1 nj. The coefficient vector is thus

c =
[
0, ..., 0, cj,1, cj,2, ..., cj,nj , 0, ..., 0

]T
such that coefficients corresponding to other classes than the one y belongs to, in this
case j, is ideally zero. In practice however, there will be small non-zero coefficients
associated with other class images as well due to noise or modelling errors (Carrillo
et al. (2016)).

Each element cj,i of the coefficient vector c will denote a weighting coefficient for
each column vector in the dictionary matrix, D for the new test image y belonging
to class j. This relationship is illustrated in Figure 2.5.1.

For a valid test image y, this c-vector contains zero-elements for all other classes
than the one in question, making it a highly sparse vector when the number of train-
ing images and classes are sufficiently large. The CS optimization problem Equa-
tion 2.5.4 can thus be adapted as follows

min ‖c‖1, subject to ‖y −Dc‖2 ≤ ε (2.5.8)

The representation error or the residual error of a class p is calculated by keeping
the coefficients in c corresponding to class p, and setting the rest to zero. This is
achieved by introducing a characteristic function ηj, that selects the jth class. The
residual of a class p can then be represented as a function of the classes by

rp(y) = ‖y −Dηpc‖2 (2.5.9)

The recognized class of the input signal, y is retrieved as the class with the smallest
residual error

identity(y) = min
j

rj(y) (2.5.10)

18 Chapter 2. Theory

The full workflow of performing a single classification is comprised of the follow-
ing steps

Algorithm 2: Sparse Representation Classifier (SRC)

1. The input to SRC is a matrix of training images that form a dictionary D =[
D1,D2, ...,DL

]
∈ Rm×n for L classes, a test sample y ∈ Rm and an error

tolerance ε > 0.

2. Normalise the columns of D to have unit length

3. Solve the `1 minimisation problem in Equation 2.5.8

4. Compute the residuals from Equation 2.5.9 for each class j = 1, 2, ..., L

5. The given test sample is then classified as the class that provides the mini-
mum representation error from Equation 2.5.10, given that the test sample is
accepted as a valid input image, see subsubsection 2.5.2

=

y D c

d1 dnd2

c1

c2

cn

....
....

Figure 2.5.1: Query image y as a linear combination of the training image set D with corre-
sponding weights given by c. White entries signify zero-elements

Classification threshold

Prior to making a prediction based on the class residuals of an input image, the
validity of the image itself and thus also the prediction must be assessed. This is done
by evaluating the sparsity of the coefficients vector obtained by the minimization step
in Equation 2.5.2. The idea is that a valid input image will have sparse coefficients
more concentrated around a single class, while an invalid input image that could just
as well be a random image not associated with any class, will have its coefficients
spread across several classes. The predicted label for such an image should thus be
discarded. The metric that captures this "sparsity"-score and is used in this report
is the one presented in Wright et al. (2008), called the SCI-score. The score takes
as input the coefficients vector obtained from Equation 2.5.5 and returns a score
SCI ∈ [0, 1] where 0 denotes coefficients spread out perfectly even across all classes,
and 1 denotes an input image that can be described solely by images from a single
class.

Chapter 2. Theory 19

A user specified threshold, τ , is selected as the value the SCI-score must pass in
order for the predicted label to be accepted.

SCI ≥ τ (2.5.11)

2.6 Object detection using Yolo

Object detection is a subdivision of computer vision tasks that aims at both localising
and classifying objects in a frame. When an object is localised, it is identified as
belonging to one of the classes in the provided set of defined classes.

You only look once (Yolo) is a family of state-of-the-art object detection algorithms
first introduced by Redmon et al. (2016) in 2016. Yolo became a game-changer in
the computer vision community as it proved itself capable of providing one of the
fastest object detection algorithms at the time. This made it suitable for real-time
object detection applications. In the following years, newer versions of Yolo models
have been released, with most iterations implemented and maintained in the open-
source Darknet framework Redmon (2013). In 2020, Yolov5 was released, this time
based on the PyTorch framework (Jocher et al. (2020)). PyTorch is an open-source
optimised deep learning library compatible for running on CPU and GPU (Paszke
et al. (2019)). This newest version of Yolo have outperformed all previous versions
in addition to being even more suitable for smaller mobile devices as its size have
been reduced with 90% compared to its predecessor Yolov4.

The Yolo algorithm is simpler than its predecessors in that it uses a single convolu-
tional network to simultaneously predict bounding boxes, and class probabilities for
those boxes in an image Redmon et al. (2016). The algorithm "looks" at the image
once, hence the name, and extracts all this information in a single run. The prob-
lem of object detection is thus reformulated as a regression problem; relating image
pixels to bounding box coordinates and class probabilities. This results in a high-
speed model which is well suited for processing a video-stream or other real-time
applications.

2.6.1 Evaluation metrics

Typical metrics for evaluating the performance of a classification model is Precision,
Recall and F1-score. These are defined in terms of true positives (TP), true negatives
(TN), false positives (FP) and false negatives (FN) of the predictions on a test set.
True positives and true negatives are classifications that match the ground truth,
while false positives and false negatives are predictions that are not equal to the true
label. The F1-score can be considered as the harmonic mean of the precision recall
scores, and as an overall measure of the model’s accuracy. A high F1-score indicates
that both Precision and Recall is high, which reflects a good model.

Precision =
TP

TP + TN
Recall =

TP

TP + FN
F1 = 2× precision× recall

precision+ recall

A high precision typically yields a higher confidence of a correct prediction, but
might in turn yield a lower recall or sensitivity to a true label. Due to the desirable

20 Chapter 2. Theory

trait of both a high precision and a high recall, a precision-recall curve can be plot-
ted that shows the trade-off between the two for different confidence thresholds.
Furthermore, from the precision recall curve, the Average Precision (AP) can be cal-
culated as a means of summarizing the precision-recall curve into a single value. The
AP is calculated as the sum over all precisions at every threshold value, multiplied
by the change in recall.

AP =
N∑
k=1

Precision(k)∆Recall(k)

Here, N signifies the number of threshold values considered.
Object detection models are usually evaluated at different threshold for the pre-

dicted bounding boxes against the ground truth bounding boxes. At each threshold,
different predictions may occur which results in different Precision Recall values. An-
other important metric used for evaluating object detection models is thus the mean
Average Precision, or mAP, which is the mean of the APs calculated for each class at
different thresholds.

2.7 3D machine learning

3D machine learning is an interdisciplinary field that integrates machine learning,
computer vision, and computer graphics to enhance 3D understanding. It has gained
traction over the last couple of years due to its broad application areas in Robotics,
Autonomous driving, Augmented or Virtual reality and Medical Image processing. If
computers are to succeed at these tasks, they require a thorough 3D understanding
of the world. This understanding need in addition to be robust, fast and lightweight
as most of these applications require real-time capabilities (Cunico et al. (2019)).

2.7.1 3D Pose estimation

3D pose estimation is the task of determining an object’s translation and orienta-
tion relative to some reference coordinate system (Xiang et al. (2017),). Thereby
recovering its full six degree of freedom (6DoF) coordinates stemming from three
rotational angle coordinates, and three spatial coordinates.

The 3D pose of an object can in general be recovered either by localizing a set
of keypoints that describe the object shape, or by estimating the camera viewpoint
relative to a depicted object (Tulsiani and Malik (2015)). State of the Art approaches
for methods of pose estimation using either RBG, RBG-D (depth), or point cloud
information (i.e. 3D information) as input (Cunico et al. (2019)). These methods
can be based on feature-matching, which essentially extracts 3D features from RGB
images, and use them to recover a full 6DoF pose. This is done by either matching the
features with known objects in a feature database (Lowe (2004)). Or by matching
coherent feature keypoints between 2D images and 3D point clouds(Nadeem et al.
(2020)). Recent methods are particularly focused around using CNNs for extracting
relevant 3D information (Kendall et al. (2015), Xiang et al. (2017), Su et al. (2015)).

Chapter 2. Theory 21

Translation and orientation

The rotational angles are expressed as the Euler angles azimuth (φ), elevation (θ)
and in-plane rotation (ψ) that can be used to describe the orientation of a rigid body.

If a rigid body is rotated, each basis vector of the coordinate system fixed to its
body, will experience a rotation. The total of this operation is contained in a rota-
tional matrix R. This matrix can further be decomposed into three rotational matri-
ces - one for each rotation of either φ, θ or ψ about one of the basis vectors which
are referred to as elementary rotations. These elementary rotations are defined as
follows

Rx(φ) =

1 0 0

0 cos(φ) sin(φ)

0 −sin(φ) cos(φ)

 Ry(θ) =

cos(θ) 0 −sin(θ)

0 1 0

sin(θ) 0 cos(θ)

Rz(ψ) =

 cos(ψ) sin(ψ) 0

−sin(ψ) cos(ψ) 0

0 0 1

While R exhibits the rotational change of the body, the translation T = [Tx, Ty, Tz]

T

refers to the coordinate displacement of the body frame resulting from moving the
frame through space.

The results of applying a translation and a rotation to a rigid body frame is illus-
trated in Figure 2.7.1.

Referring back to our application, this simple transformation can be used for up-
dating the orientation of the objects considered in our Digital Twin. By using Pose
estimation for estimating the camera viewpoint, i.e. the Euler angles for which the
camera is oriented in relation to the object, the camera rotation matrix can be re-
trieved and applied to the previous camera viewpoint coordinates to obtain the up-
dated scene.

b

b'

x

y

z

x y

z

Figure 2.7.1: Movement of a rigid body through 3D space will produce a translation and a
rotation component to the body frame from b to b′

22 Chapter 2. Theory

23

Chapter 3

Method and Setup

The full workflow of detecting a positional change of a 3D-object consists of three
modules. The proposed method of performing change detection is tested using an ex-
perimental setup that is built and designed to fit this purpose. This chapter presents
the experimental setup used for testing the framework as well as the implementation
details for each individual module.

Furthermore, with research question two in mind, namely Can synthetic data pro-
grammatically acquired be used for training image classifiers to further use the trained
model in the real world?, a virtual experimental setup is considered. This virtual ex-
perimental setup is used for the programmatic acquisition of synthetic data that will
be used to train the various image classifiers CNN, SRC and yolo. The results follow-
ing this experiment will be evaluated with discussions around their performance as
well as which model is best equipped for performing object detection in the proposed
framework.

Reverting back to the Change Detection application, each part of the workflow
constitute a preprocessing step for the subsequent module. The procedure begins
with real-time motion detection performed by DMD. This is described in subsec-
tion 3.3.1. The output of this part is further passed on to the next module, namely
object detection performed by yolov5 described in subsection 3.3.2. Lastly, the lo-
calised objects with their bounding box estimates are processed by a Pose estimation
algorithm that estimates the object orientation with respect to the camera reference
frame. This is explained in subsection 3.3.3. It should be noted that the proposed
framework is constrained to detecting rotational changes only. This is partly due to
the pose estimation model used, as well as the absence of the necessary apparatus
needed to extend the approach to estimate a translation component of the movement
as well. This is also mentioned as part of future works in chapter 5.

The full workflow is finally summarised to give an overview of the working pipeline
in subsection 3.3.4.

3.0.1 CAD models

CAD models of the 3D objects that were used in this analysis were selected from the
website https://grabcad.com, each depicted in Figure 3.0.1 and downloaded in .stl
format. These particular objects were selected for their different shapes, with some
being more oblong, their difference in symmetries and textures. Apart from the cup,

24 Chapter 3. Method and Setup

the objects exhibit non-symmetry, which is a feature most pose estimation algorithms
are dependent on Labbé et al. (2020). The cup, although exhibiting symmetry except
for its handle, is thus included for comparison purposes.

Each CAD model was 3D printed in three colors; black, white and green. The color
variations serve the purpose of testing for performance variations in the different
modules presented later in the report. The white objects are in particular considered
in the motion detection module performed by DMD.

Figure 3.0.1: Selected CAD models

3.1 Virtual experimental setup

The virtual experimental setup is created in ParaView (Ahrens et al. (2005); Ayachit
(2015)), an open-source data analysis and visualization application, and an excel-
lent tool for exploring 3D-data. Several options are available for customizing the
exploration of 3D-data in ParaView. Specifically, the rendering background can be
changed as well as the texture, color and lighting options for the 3D models. For
the purpose of synthetic data acquisition in the following experiments, the virtual
scene was altered to mirror that of the real-world scene where the 3D-printed ob-
jects would reside. An image of the appropriate background was therefore captured
and uploaded as the rendering background in ParaView. Further, the color and light-
ing of each 3D model was modified to reflect that of the physical object. This was
done for the black and green objects. Since the physical background in the experi-
ments were white, the white objects were omitted for the image recognition parts.
This decision was made after performing some initial tests with motion detection,
and observing that these objects were hard to detect and separate from the white
board in the scene. In addition, it was recognised that the the white objects against
a white background would likely cause problems for the Pose estimation model as
the 3D information may be hard to extract when the distinction between the object
and the background is poor (Choi and Christensen (2012)).

The result of these operations can be seen in Figure 3.1.1.

Chapter 3. Method and Setup 25

ParaView comes with a seamless Python integration that enables the creation of
scripts for rendering views from different angles and taking snapshots of the ren-
dered views. This feature is utilized for acquiring the synthetic datasets of the se-
lected CAD models.

Real image Synthetic images

Figure 3.1.1: Adapting the synthetic environment to match the physical one

The first view of each object is rendered from the side in ParaView. The camera
reference frame or the rendered viewpoint with respect to the object frame, and the
angles for which the object is rotated is illustrated in Figure 3.1.2. The angles are
defined as the Euler angles where φ refers to the azimuth-angle, θ refers to elevation
and ψ denotes the in-plane rotation angle. The object is further rotated about its
center with an increasing φ angle offset for each sampled image, as illustrated in
Figure 3.1.3.

 (in-plane rotation)

(elevation)

(azimuth)

Figure 3.1.2: Angles for which the object is rotated w.r.t the camera

3.1.1 Synthetic data acquisition

The sampling angles and setup for which the synthetic datasets were acquired for
either the CNN, SRC or yolo varied slighty. The following sections present the proce-
dure for each of them.

26 Chapter 3. Method and Setup

Figure 3.1.3: Images sampled for an increasing Azimuth angle

CNN

The sampling angle offsets for acquiring data for CNN are summarized in Table 3.2.3.
An offset azimuth angle of 20◦, consequently yields 360◦

20◦
= 18 images for a full rota-

tion of the object. The procedure is further repeated at three elevation levels. This is
to reflect the test images that were captured from either a level or elevated perspec-
tive.

For the CNN dataset, the objects were in addition applied an in-plane rotation of
30◦, before repeating the above procedure but with two elevation levels at level and
15◦ elevation. As the in-plane rotation in addition to a large elevation resulted in a
poor representation of the object, the last elevation level was omitted.

Table 3.1.1: Sampling angle offsets for CNN

∆φ (azimuth) 20◦

∆θ (elevation) 15◦

∆ψ (in-plane rot.) 30◦

SRC

The SRC algorithm is known to be sensitive to pose variations at test time, when
the training and testing images of the objects are misaligned (Wright et al. (2008),
Zhang et al. (2013)). An intuitive approach for dealing with this challenge is simply
to enrich the training data dictionary to contain more information. For instance,
providing enough training samples with pose variations, thus expanding the feature
set and increasing robustness to these variations (Zhang et al. (2013)).

Even so, for large pose variations of each object that spans a whole 360◦ rotation,
the dictionary matrix would have to contain enough training samples to encompass
this, and it might still not lead to sufficient mitigation of this effect. In addition, the
optimization problem in Equation 2.5.8 would become much larger, which would
result in increased computation time. Therefore, the synthetic dataset acquired for
SRC was more conservative regarding the sampling angles, than what was the case
for the CNN.

The resulting sampling angles used for SRC are summarized in Table 3.1.2. For
SRC the following azimuth angles were omitted to limit large pose variations;
{60◦, 75◦, 90◦, 105◦, 120◦, 135◦, 240◦, 255◦, 270◦, 285◦, 300◦}.

Chapter 3. Method and Setup 27

Table 3.1.2: Sampling angle offsets for SRC

∆φ (azimuth) 15◦

∆θ (elevation) 15◦

∆ψ (in-plane rot.) 0◦

Yolo

The virtual setup considered for yolo is designed to mirror the physical experimental
setup to be presented in section 3.2. Example renders of the 3D-objects in the virtual
experimental setup in ParaView can be seen in Figure 3.1.4.

The sampling procedure for yolo is quite similar to that of CNN. The difference is
the in-plane rotation which was omitted this time. This was to limit the amount of
data that needed to be annotated. Additionally, it was recognised that several of the
images with in-plane rotations yielded a poor representation of the object and could
possibly lead to outlier data. The final selection of sampling angles are summarised
in Table 3.1.3.

Table 3.1.3: Sampling angle offsets used in data acquisition scripts

∆φ (azimuth) 20◦

∆θ (elevation) 15◦

∆ψ (in-plane rot.) 0◦

Three elevation levels were used, i.e. 0◦, 15◦ and 30◦. Thus, the number of images
per object amounted to 3× 360

20
= 54.

Thus, the final dataset consisted of synthetic images of six green and black objects,
each depicted in 54 images. This resulted in a total of 648 images.

Figure 3.1.4: Examples of renders in ParaView

28 Chapter 3. Method and Setup

3.2 Experimental set-up

The setup was built such that a camera is monitoring a scene where the objects
reside. This scene was constructed with a white wooden plate with laser-cut trenches
where the 3D-printed objects can move.

The scene is monitored and captured by a high quality (HQ) Camera and a 6 mm
CS-mountlens compatible with a Rapberry Pi4 model B. The Raspberry Pi is installed
with the Raspberry Pi OS which is GNU/Linux-based. The camera is mounted on a
3D-printed tripod stand depicted in, and further secured on an adjustable steel arm.
The Raspberry Pi is secured on a steel plate that is positioned underneath the camera.
This installation is depicted in Figure 3.2.1. Both the camera and the Raspberry Pi
can be elevated along a vertical steel pole, and the camera can further be adjusted
sideways and up an down. Furthermore, a light source in the form of a torch was
installed to a steel arm overlooking the scene to provide additional lighting with the
option to alter the light intensity. The full setup can be viewed in Figure 3.2.2.

The Raspberry Pi runs the DMD-algorithm for motion detection in real-time. This
is further explained in subsection 3.3.1.

Table 3.2.1: Raspberry Pi4 model B technical specifications
System-on-a-chip Broadcom BCM2711
Processor Quad-core 1.5GHz Arm Cortex-A72 based processor
Memory 8GB LPDDR4 RAM
Power 5V/3A via USB-C
GPU Broadcom VideoCore VI @ 500 MHz
OS Raspberry Pi OS

Table 3.2.2: Raspberry Pi4 HQ camera specifications
Sensor Sony IMX466
Sensor resolution 4056× 3040 pixels
Sensor image area 6.287mm× 4.712mm
Pixel size 1.55µ× 1.55µ

Focal length 6mm
Resolution 3 MegaPixel

3.2.1 Real data acquisition

To test the trained models in the real world, real-world images of the 3D-printed
objects were acquired and used for testing. Test sets for the black and green objects
were acquired separately. The real environment considered was both against a plain
white background, and with the experimental setup presented in section 3.2. Exam-
ple images from each test set is depicted in Figure 3a, Figure 4a and Figure 3.2.5. For
SRC, some of the test samples with large pose variations in line with those angles
that were omitted in the training data were discarded. This was due to the argu-
ments presented earlier regarding SRC’s proneness to pose sensitivity. As no mea-
sures were taken to mitigate this effect by for instance creating a large training set

Chapter 3. Method and Setup 29

including large pose variations, and a more frequent azimuth sampling rate, these
particular images were not considered relevant at test time.

With regards to Yolo, each object was depicted from an elevated perspective, sam-
pling 7 to 9 images per object category for different azimuth angles. This resulted in
a total of 104 images in the real test set.

Furthermore, the number of samples of each object in the synthetic datasets and
real test sets for black and green objects respectively, as well as for all three models
are summarised in Table 3.2.3 and Table 3.2.4.

Table 3.2.3: Number of samples per object category

Black objects

CNN boat chair hammer knight shoe cup total

Synthetic dataset 90 90 90 90 90 90 540

Real test set 8 7 8 7 9 7 46

SRC

Synthetic dataset 26 26 26 26 26 26 156

Real test set 7 8 8 8 6 7 44

Yolo

Synthetic dataset 54 54 54 54 54 54 648

Real test set 9 9 7 8 8 8 49

Table 3.2.4: Number of samples per object category

Green objects

CNN boat chair hammer knight shoe cup total

Synthetic dataset 90 90 90 90 90 90 540

Real test set 12 15 13 11 16 8 75

SRC

Synthetic dataset 26 26 26 26 26 26 156

Real test set 10 11 10 8 11 8 58

Yolo

Synthetic dataset 54 54 54 54 54 54 648

Real test set 8 8 8 8 8 8 48

30 Chapter 3. Method and Setup

Figure 3.2.1: Raspberry Pi Camera mounted on a 3D-printed stand and secured on a steel
arm

Figure 3.2.2: Complete setup with the camera monitoring the scene

Chapter 3. Method and Setup 31

(3a) Images from the real test set (3b) Synthetic data
Figure 3.2.3: Example images of black objects from the real test set

(4a) Real data (4b) Synthetic data
Figure 3.2.4: Example images of green objects from the real test set

Figure 3.2.5: Example images from real yolo test set

32 Chapter 3. Method and Setup

3.3 Method

3.3.1 Motion detection using DMD

The DMD framework used for motion detection was implemented in Python. The
algorithm used for processing a real-time stream of video was the algorithm pre-
sented in Nathan Kutz et al. (2017), namely Streaming DMD. For details refer to
subsection 2.3.1. The size of the sliding window was set to N = 10, meaning that 10
subsequent video frames were evaluated at a time. The ∆t parameter that shifts the
window ∆t timesteps for each iteration was set to 1

3
seconds. The frame rate (fps),

or the sampling rate of the video stream was 15 fps.
The camera is monitoring the scene while the Raspberry Pi is continuously run-

ning the Streaming DMD algorithm, computing the DMD modes from a fixed stream
of video frames and performing background subtraction in real-time as illustrated in
Figure 2.3.2.

The foreground model of the video frames will be the raw frame with the back-
ground subtracted. The foreground model is further thresholded by using the Eu-
clidean distance in Equation 2.3.14, with the threshold set to τ = 0.3. Thus, the
pixels are either classified as foreground (white = 1) or background (black = 0).
Based on this, motion is detected if enough white pixels are lighting up in the frame,
signalling the presence of movement. The motion detection problem can thus be
formulated as a binary classification problem, where the proportion of foreground
pixels decides if motion is detected or not. Moreover, this proportion needs to exceed
yet another threshold that is set by the user, and will be referred to as the motion
threshold. This threshold was decided by trial and error, after visual inspection of the
modeled foreground. The selection fell on a threshold deemed sensible in terms of
not being too sensitive, resulting in false positives, yet not too strict and unable to
detect motion, resulting in false negatives.

Prior to calculating the DMD modes, the raw frame is downsampled and con-
verted to grayscale as steps to decrease the computational cost related to the SVD-
decomposition in the DMD algorithm.

Upon detecting movement, the running script starts to sample the incoming video
frames. At the time the scene is deemed stationary again, the algorithm will merely
store the last frame where movement was detected, and delete the rest. This is to
minimize storage, which is one of the motivations for designing this framework. This
last moving frame can then be compared with the original position of the object, to
estimate the rotational change. This is further explained in the upcoming sections.
The process of motion detection is depicted in Figure 3.3.1.

3.3.2 Object detection and Image classification

The models were trained and tested on each color separately. This decision was made
to compare if color variations had any effect on the performance of the classifiers.
The implementation details and training procedure of each image classifier and yolo
is further presented in this section.

Chapter 3. Method and Setup 33

Stationary scene Stationary scene

Motion

... monitoring ...

DMD detects motion

Store last moving frame

Figure 3.3.1: Motion detection timeline

CNN

The CNN is implemented in Python using the Keras API which has a Tensorflow
backend (Chollet et al. (2015)). The network architecture is comprised of two con-
volutional layers with kernel size 3 × 3 followed by a ReLu activation function as in
Equation 2.4.1. Further, a pooling layer with filter size 2× 2 is added after each con-
volutional layer followed by a dropout layer with a dropout rate of 0.6. After these
feature extraction steps, the remaining feature map is flattened before it is passed in
to a dense layer with 256 neurons followed by a ReLU activation and a dropout layer
with rate 0.7. The final output layer is a dense layer with the number of neurons
equal to the number of output classes, in this case six. The final output or predicted
label is the result of a softmax activation in Equation 2.4.2. The final architecture
used is illustrated in Figure 3.3.2.

5 x 5

Input images

Conv. layer 1.

2 x 2

Fl
at

te
ne

d Softmax
Output

Max Pooling Conv. layer 2. Max Pooling

Fully connected NN

5 x 5

Input layer Dense layer Output layer

ReLu

Figure 3.3.2: Architecture of the CNN used

For the CNN, a training and validation set was created from a 20% split in the
data. Furthermore, the images were downsampled to 200 × 200 and converted to
grayscale.

The network was trained and tested on both RGB and Gray-scale images for both
color sets. For the black objects, this did not improve the performance of the net-
work significantly, and thus the grayscale-setting was kept to avoid unnecessary
model complexity. For the green objects however, a slight improvement was ob-
served, which is why this network was trained and tested with RGB-images.

34 Chapter 3. Method and Setup

Table 3.3.1: CNN training parameters
Image size 200× 200

Epochs 7
Optimizer RMSprop
Learning rate 0.001
Kernel size 3
Pooling size 2
Batch size 32
Color ch. black objects GRAY
Color ch. green objects RGB

(3a) Black objects (3b) Green objects
Figure 3.3.3: Validation performance during training of the two models

The network was trained with the parameters summarized in Table 3.3.1. It was
trained for six epochs as a means of regularising the network against overfitting
towards the synthetic data, in addition to observing that the validation performance
stagnating from that point on.

The evolution of the two models’ performance on the validation with respectively
black and green objects can be seen in Figure 3.3.3. The same validation set was
used when producing the confusion matrices with predictions from the final trained
models on synthetic images in Figure 4.2.1 and Figure 4.2.4. Note that this is purely
for comparison purposes against the real test set as it is a highly prohibited practice
to use validation data at test time. Yet, as it is the real world images that are the
actual test sets in this trial, it is for this reason deemed acceptable.

SRC

The SRC-algorithm is implemented in Python. For solving the `1-minimisation prob-
lem in Equation 2.5.8, the Python library CVXPY is used. The choice of solver is
the open source ECOSsolver, which is an interior point solver for second order cone
programming (Domahidi et al. (2013)).

Contrary to a CNN, the SRC algorithm does not require training in the sense of
storing the learned knowledge in the model itself. The knowledge rather lies directly
accessible in the dictionary matrix comprised of the training images. The sparsity
that is present in most natural signals and images encourages the use of feature
extraction for removing redundancy without the loss of information (Mairal et al.

Chapter 3. Method and Setup 35

(2007)). This is an important step towards a minimal and discriminate represen-
tation of the data, which ultimately leads to a more simplistic pattern recognition
system (Zhang et al. (2016)). Depending on the number of training samples, and
the choice of feature extraction for reducing the image size, the dictionary matrix
will differ in shape. For this report, both downsampling and Principal Component
Analysis (PCA) were tested for feature extraction. As PCA enabled better model per-
formance, this was the final choice. The number of components for representing the
data such that a ∼ 95% explained variance in the data is obtain is a common choice
when using PCA for feature extraction (Jolliffe and Cadima (2016)). For this trial
however, it was observed that choosing ncomponents = 25 for the black objects which
yielded an explained variance of 87%, and ncomponents = 50 with an explained vari-
ance of 92% for the green objects resulted in better model performance than the
general rule of ∼ 95% explained variance. The results presented are therefore with
this choice of principal components.

PCA was applied to the total dictionary matrix after stacking each training image
horizontally. With a total of 156 training images as reported in Table 3.2.3 and Ta-
ble 3.2.4, the final dictionary matrices had dimensions 156× 25 for the black objects
and 156 × 50 for the green objects. The choice of threshold for validating the pre-
diction using the SCI-score in Equation 2.5.11, was set to 0.5 which is a common
threshold value for classification tasks (Burger and Gowen (2015)).

Yolov5

The Yolov5 model is implemented with the PyTorch framework, as mentioned in
section 2.6. The training parameters selected for training Yolov5 are listed in Ta-
ble 3.3.2. The network was implemented using the data platform provided by Kag-
gle, and the cloud computing services that comes with it. Kaggle is a platform and
community for data science and machine learning, that provides datasets, hosts data
science competitions which also recently recently released a cloud computing plat-
form for free development of data science and Artificial Intelligence projects 1. Kag-
gle provides free access to NVidia K80 GPUs, which was the accelerator used for
training the network.

Table 3.3.2: Yolov5 Training parameters
Image size 416× 416

Batch size 16

Epochs 180

Optimizer Adam
Learning rate 10−2

Device NVidia Tesla K80 GPU

Furthermore, the images used for training and testing Yolo was annotatated for
correct labeling of the bounding boxes. This was done in Roboflow Annotate 2, a
tool for creating bounding boxes with labels for image datasets. Examples of the
annotation process can be seen in Figure 3.3.4.

1https://www.kaggle.com
2https://roboflow.com/

36 Chapter 3. Method and Setup

For the Yolo trial, both green and black objects were considered together in both
the training and test sets, as the conditions for data sampling were the same for both
colors.

In terms of preprocessing, all images, both test set and synthetic data were down-
sampled to 416×416. The synthetic training images were also applied augmentations
of a 90% rotation as well as a crop, leading to a zoomed in version of the image. This
led to a final training data size of 1554 images.

8% of the synthetic dataset was saved for validation during training, and 4% for
testing. The synthetic test set was thus comprised of 65 images.

Figure 3.3.4: Annotating the synthetic data set in Roboflow

3.3.3 Pose estimation

The method for performing Pose Estimation is the one presented in Xiao et al.
(2019b). A detailed description of the method is written in our published paper;
Sundby et al. (2021). The following section is thus a direct citation from the paper,
describing the method of Pose Estimation.

The essence of the method is to combine image and shape information in the form
of 3D models to estimate the pose of a depicted object. The information that relates a
depicted object to its 3D shape stems from the feature extraction part of the method. Two
separate feature extractions are performed in parallel. One for the images themselves
by using a CNN (ReHe et al. (2016)), and one for the corresponding 3D shapes. The
3D shape features are extracted either by feeding the 3D models as point clouds to the
point set embedding network PointNet (Qi et al. (2017)), or by representing the 3D
shape through a set of rendered image views that circumvents the object at different
orientations, and further passes these images into a CNN.

Chapter 3. Method and Setup 37

The outputs of the two feature extraction branches are then concatenated into a
global feature vector before initiating the pose estimation part. This part consists of a
fully connected multi-layer perceptron (MLP) with three hidden layers of size 800-400-
200, where each layer is followed by batch normalization and a ReLU activation. The
network outputs the three Euler angles of the camera; azimuth, elevation, and in-plane
rotation concerning the shape reference frame. Each angle is estimated as belonging to a
certain angular bin l ∈ {0, Lα− 1}, for a uniform split of Lα bins. This is done through
a softmax activation in the output layer which yields the bin-probabilities. Along with
each predicted angle belonging to an angular bin, an angle offset, δ̂α,l ∈ [−1, 1] relative
to the center of an angle bin is estimated to obtain an exact predicted angle. For this
report, the 3D model features are extracted by using the method of rendering different
views of the 3D shape as mentioned above and using them as input to a CNN. This
is done with the help of the Blender module for Python (Community (2018)). For
the image features, YOLOv5 is first applied to create bounding boxes to localize each
object, before being fed to the ResNet-18. The final MLP network was trained on
the ObjectNet3D dataset, as this provided better system performance than the network
trained on Pascal3D.

The full pose estimation workflow is illustrated in Figure 3.3.5. The output of
the network are thus the three estimated Euler angles (azimuth, elevation, in-plane
rotation) describing the camera orientation relative to the object reference frame.
This relation is illustrated in Figure 3.1.2.

The parameters used for training this part of the network are presented in Ta-
ble 3.3.3.

Table 3.3.3: Pose Estimation network training parameters
Batch size 16

Epochs 200

Optimizer Adam
Device NVidia Tesla P100-PCIE-16GB GPU
Learning rate 10−4/10−5

As mentioned the network was trained on ObjectNet3D; a large scale database
consisting of 100 class categories, 90,127 images depicting 201,888 objects, and
their corresponding 44,147 3D shapes (Xiang et al. (2016)). Due to its large variety
of object classes, it is suited as training data when the aim is to test the model on
novel classes due to the regularisation that results from this fact. This became evident
at test time as the model performed better when using ObjectNet3D for training
rather than Pascal3D, which is another popular benchmark 3D dataset, however
containing only 12 object categories (Xiang et al. (2014)).

Each object was rendered at three elevation levels; 0◦, 30◦ and 60◦, with an image
sampled every 5◦ offset in azimuth. This amounted to 3 × (360

5
) = 216 images per

object. Examples of rendered object views are depicted in Figure 3.3.6. The first
view of the object is with the camera facing its side. The camera is further shifted
with an increasing azimuth angle as depicted in Figure 3.3.7. These are the 3D-
images that are used as input to the shape encoder for feature extraction as depicted
in Figure 3.3.5.

38 Chapter 3. Method and Setup

Fe
at

ur
e

ve
ct

or

R
es

N
et

18

Fe
at

ur
e

ve
ct

or

H
id

de
rn

 la
ye

r

R
eL

U

H
id

de
rn

 la
ye

r

R
eL

U

R
eL

U

H
id

de
rn

 la
ye

r3D model

RBG image
Bounding box from YOLOv5

Shape encoder

Image encoder

Multi-layer perceptron

Ve
ct

or
 c

on
ca

te
na

tio
n

Figure 3.3.5: Pose estimation pipeline

Hardware used for training

The pose estimation network was trained and tested on the professionally admin-
istered compute platform for the Norwegian University of Science and Technology
(NTNU), namely the Idun cluster (Själander et al. (2019)). The Idun cluster is part
of a project between the Department of Computer Science and the IT Division at
NTNU. It is a research cluster providing high-performance computing (HPC) infras-
tructure for rapid testing and prototyping of HPC software. It exhibits 73 nodes with
and 90 general purpose graphics GPUs (GPGPUs). The Idun topology is comprised
of four EPIC research infrastructure groups, either serving a distinct purpose. Each
EPIC consists of at least three nodes with either NVIDIA Tesla P100 or NVIDIA Tesla
V100 GPUs with respectively 16 and 32 GiB. Furthermore, each EPIC has two Intel
Xeon cores and at least 128GiB of memory.

Figure 3.3.6: Example images of rendered views by Blender

Evaluation metrics

The accuracy of the predicted angles, (φ, θ, ψ), is based on which angle bin the output
angle is associated with. As mentioned, the network estimates each angle as belong-
ing to a certain angular bin l ∈ {0, Lα− 1}, for a uniform split of Lα bins. Selecting a

Chapter 3. Method and Setup 39

Figure 3.3.7: Camera movement during renderings

higher bin-number, Lα yields higher precision demands when determining the accu-
racy. A common metric used for determining accuracy is Accπ

6
(Li et al. (2019), Xiao

et al. (2019b)). This implies a bin-number of 12, and α = π
6
. Hence, Accπ

6
is the per-

centage of all predicted angle differences smaller than π
6
, i.e. 30◦ within the correct

angle-bin. Thus, if the true camera angle is 0◦, a predicted angle deemed correct can
lie within 〈−15◦, 15◦〉. This is illustrated in Figure 3.3.8.

Another common metric used for evaluating Pose estimation models is MedERR,
denoting the median of all viewpoint differences across all test samples.

corresponding
angle bin

Figure 3.3.8: Angle bins used for determining the pose accuracy

40 Chapter 3. Method and Setup

3.3.4 Full workflow overview

The result from piecing together all three modules is the full workflow architecture
illustrated in Figure 3.3.9. Consider the physical environment our Digital Twin is
going to model. From an initial state of the physical scene, a change occurs and
the workflow is initiated. From the knowledge of the full initial state, the object(s)
pose will be known. The moment DMD detects motion in the frame, the monitor-
ing initiates and images of the scene are sampled. As soon as the scene is deemed
stationary again by the absence of foreground objects, only the last moving frame
is stored while the rest are discarded for minimizing storage. This frame is further
passed on to the Object Detection module, where Yolov5 outputs a bounding box es-
timate along with the predicted object class. An accurate bounding box estimate of
the object is essential for providing the Pose Estimation module with an apt represen-
tation of the object. The Pose Estimation network will output three rotational angles
that describes the camera viewpoint with respect to the object reference frame. This
can however be translated into the object orientation in relation to the stationary
camera by constructing a rotational matrix and taking its inverse. Thus, given an
initial pose of the object and the rotational change it has undertaken, this informa-
tion can be utilised by the Digital Twin to reconstruct the new scene on demand.
Thereby circumventing the need for real-time sensor data updates, and the storage
and bandwidth requirements that follow.

YOLOv5

Rasberry Pi + camera

Experimental set-up DMD

Object Detection

Bounding box images

3D CAD models

Stored object pose at t = 0

Stored object pose at t = 2

3D Pose Estimation

Change in rotational pose

Figure 3.3.9: Architecture of change detection method

41

Chapter 4

Results and Discussions

4.1 Motion detection using DMD

The performance of DMD as a motion detector was inspected by moving objects of
different shapes and colors in the monitored scene. For this, two different move-
ments were considered as to enable a valid comparison of object color and object
type which is only possible when the movements they undertake are similar. The
first experiment is a pure translation, i.e. no rotation, along the middle trench on
the board as can be seen in Figure 4.1.1. The images show the raw video frame to
the out-most left, the reconstructed background by DMD in the middle and lastly the
estimated foreground that results from background subtraction. The second experi-
ment is a pure 360◦ rotation of each object about its center.

Based on thresholding the predicted foreground as in subsubsection 2.3.1, and
comparing with the motion threshold as described in subsection 3.3.1, the results
from performing these experiments are summarised in Table 4.1.1.

When the movement of the objects was slowed down, the DMD performance de-
grades notably. The predicted foreground becomes weaker and less foreground pixels
pass the thresholded prediction. This is however expected of background subtraction
approaches, as the pixel intensity between the background and moving foreground
objects decrease with a slower speed and may fall short of the threshold in subsub-
section 2.3.1 (Shaikh et al. (2014)). Secondly, this observation could also be related
to the sliding window size used in the Streaming DMD algorithm. Recalling that
the nature of DMD is to decompose the spatial components and their corresponding
frequency content or temporal evolution in the data, parameters like sampling fre-
quency and window size used can be adjusted to capture dynamics at different time
resolutions (Kutz et al. (2016)). This is comparable to selecting the window size in
Wavelet theory. Thus, for slower dynamics, a larger window size can be used to cap-
ture full oscillations of a slowly varying signal while high frequent signals will require
a finer time resolution, i.e. a more narrow window. In effect, for a persistent signal
with dynamics at different timescales, the frequency components at each timescale
can be retrieved by an appropriate choice of window size in the Sliding DMD method
(Shu et al. (2020)). For this application however, the window size was selected such
that the algorithm succeeded to both detect rapid and moderately slow movements
of the objects adequately. Depending on the application, for instance detecting mo-
tion in traffic i.e. fast moving objects, this parameter of Streaming or Sliding DMD

42 Chapter 4. Results and Discussions

can be adjusted accordingly.
Overall, the DMD algorithm proves to be successful in detecting moving objects

when the pixel contrast between the object and the background is large, which is the
case for the black and green objects. In terms of the white objects, the reconstructed
foreground is hardly showing any movement which results in negative predictions
for the white objects. An attempt at increasing the motion sensitivity by adjusting
the detection parameter to a lower threshold enabled detection of the white chair,
but not the white boat. This is depicted in Figure 4.1.3 while the fail detection of
the white boat is seen in Figure 4.1.4. Even so, increasing motion sensitivity by
lowering the motion threshold is not a robust setting as it could make the algorithm
more susceptible to noise such as light changes which should not be confused with
the movement of an object. Another remark that may also explain why the boat
was not detected with this setting is simply due to its smaller size compared to the
white chair. Even with a lower motion threshold for the foreground pixels, a smaller
object will have less pixels lighting up, and may therefore not be detected compared
to a larger object on the same setting. This can be regarded as a criticism of the
threshold used for detecting motion, as it is constrained to objects of fairly equal
size, and not generalizable to all objects. A small object could for instance undertake
a large movement, which could go undetected due to the low percentage of white
foreground pixels. On the other hand, a large object, taking up more space in the
frame, could make a larger impact with just a small movement.

Furthermore, an investigation of a better motion threshold to guard the binary
classification problem of detecting motion, while being robust to noise is recom-
mended. One option that does not suffer with the problem of object size above, and
is more linked to the DMD theory, could be to threshold the DMD modes and their
frequency content themselves. This approach is essentially what is proposed in Kutz
et al. (2016) and enables motion detection of objects moving at different speeds.

For the change detection application presented in this report however, DMD does
a more than adequate job in detecting moving objects that will trigger the sampling
of the last moving frame, which is further passed on to the next step in the change
detection pipeline, namely object detection.

Table 4.1.1: Motion detection using Streaming DMD in real time. Results with * are with a
lower motion threshold

Detected motion (y/n) pure translation pure 360◦ rotation
black boat y y
green boat y y
white boat n n
black chair y y
green chair y y
white chair n n
white chair* y y
white boat* n n

Chapter 4. Results and Discussions 43

Figure 4.1.1: DMD motion detection of black boat detected

Figure 4.1.2: DMD motion detection of green chair

Figure 4.1.3: DMD motion detection of white chair with lower detection threshold

Figure 4.1.4: Images of white boat not detected even with lower detection threshold

44 Chapter 4. Results and Discussions

4.2 Object detection and Image recognition

The preceding sections present the results obtained by the various image classifiers
on the synthetically acquired data described in section 3.1. Final discussions on their
respective performance and model nature are undertaken with the second research
question presented in subsection 1.3.2 in mind:

• Can synthetic data programmatically acquired in a virtual environment be used
for training image classifiers so that they can be used in the real world with
confidence ?

4.2.1 CNN

Black figures

The confusion matrix for the real test set in Figure 4.2.1 reveals that the classifier
performance is somewhat dependent on the object class. The boat is not recognised
in any of its test samples, and is confused with the hammer and knight class. Both
the hammer and boat exhibit an elongated shape, which is a probable factor for the
confusion. This is also seen for the hammer, which is incorrectly classified as the boat
in four of the samples.

Other similar objects in shape are the knight and chair, which is observed to be
confused with each other in some of the samples as well. The object with the most
unique shape in this selection is the cup, which could be an indication of why it is
the only object that is recognised in all its samples in addition to not being subject to
any false positives. The precision recall curves for each object, and the average over
all classes in the bold blue line can be seen in Figure 4.2.2. Here, the confidence
threshold for the prediction values is set to 0.5, which produces a single precision
and recall point for each class.

Furthermore, the performance metrics are summarised in Table 4.2.1 where it is
seen that the obtained F1-score of 0.652 is below the desired level of a ideal clas-
sifier. Even so, as a preliminary result with no attempts for optimising the hyper-
parameters or architecture of the network, it is an indication that a model trained
solely on synthetic data can exhibit expertise that is transferable to the real world.
Especially when considering the plentiful possibilities of adapting the synthetic train-
ing data that is realisable through Python scripts. This is a topic for further research,
as this trial merely concentrated on sampling synthetic images of the objects from
different viewpoints.

Table 4.2.1: CNN performance on black test set

Classification accuracy (%) 65.20
Precision 0.65
Recall 0.65
Specificity 0.93
F1 score 0.65

Chapter 4. Results and Discussions 45

(1a) Synthetic test set (1b) Real test set
Figure 4.2.1: Confusion matrices for black figures on real images (right) and synthetic test

set for comparison (left)

Figure 4.2.2: Precision recall curves for black test set

Green figures

The results for the green figures are summarised in Table 4.2.2. Compared to the
black figures, a slightly higher F1-score of 0.76 was obtained. A possible reason for
this is that the test images captured of the green figures had more natural lighting, so
no external light source was used. This resulted in less noise from the shadow asso-
ciated with each object that the black objects were increasingly subject to. Another
aspect could be that the test images of the green objects were acquired such that
the objects stayed true to size compared to the synthetic data. This resulted in less
cropping and resizing that will decrease the pixel granularity, producing an image
of lower-quality and with less distinctive image features. The synthetic data did not
contain zoomed in or out versions of the objects. This will likely result in a network
that is sensitive to the object size in the test images, and the reason for the improved
performance on the green test set, being more similar to the synthetic training data
than the black objects.

Another remark that is connected to the black objects as well is regarding the

46 Chapter 4. Results and Discussions

Table 4.2.2: CNN performance on green test set

Classification accuracy (%) 76.00
Precision 0.76
Recall 0.76
Specificity 0.95
F1 score 0.76

sampling angles the synthetic data was acquired with. When the objects are rotated
about the k-axis, as seen in Figure 3.1.2, and images are sampled at regular intervals
specified by the ∆φ-angle, there will be some sampled images that provide a poor
representation of the objects. Thus a good portion of the training data is missing out
on important features describing the particular object, and may even present them-
selves as outliers disrupting the quality of the training data. This is mainly the case
for the elongated objects as can be seen in Figure 4.2.3. As mentioned, this trial was
primarily meant to be a preliminary study to examine the potential value of acquiring
synthetic data using scripting techniques. The sampling angles was probably chosen
a bit to rigorous, and examining the effects of removing some of these outliers could
therefore be an interesting path to pursue.

Figure 4.2.3: Examples of poor sampling angles for oblong objects

(4a) Synthetic test set (4b) Real test set
Figure 4.2.4: Confusion matrices for green figures on real images (right) and synthetic test

set for comparison (left)

Chapter 4. Results and Discussions 47

Figure 4.2.5: Precision recall curves for real test set of green objects

4.2.2 SRC

Black figures

The performance of SRC on the black objects are summarised in Table 4.2.3 and Ta-
ble 4.2.4. With a prediction threshold of 0.5 and 0, respectively. When the threshold
was set to 0.5, the SRC-classifier was able to obtain an accuracy of 75.0%. This lead
to five "None"-predictions, or predictions with a too low SCI-score to be accepted
as valid. Even so, six false positives resulted from this threshold. An investigation on
finding the optimal threshold that obtains the fewest false negatives while achiev-
ing a sufficient classification accuracy could be relevant here. Even so, it should
be noted that using a threshold based on the sparsity of the class coefficients is
not a completely robust method of validating the predictions. As similar classes will
share much of the same information or feature set, they become harder to discrimi-
nate. This can lead to sparsity in other classes than the true class, leading to a high
SCI-score for the similar class and thus a false prediction. Methods that exploit this
similarity in features or intra-class variability’s like illumination, shape or occlusions
for enriching the dictionary information, especially when training data is limited, is
proposed in Deng et al. (2012b) and Peng et al. (2018).

Referring back to Table 4.2.4, the average SCI-score for all test samples was 0.73.
This is a relatively high score which would indicate that the "certainty" or at least the
discriminate nature of the predictions can be considered quite high. But with six false
positives, it is likely that there have been false predictions with a high SCI-score,
and that a threshold based on sparsity cannot effectively say anything for certain
about the correctness of the prediction.

The distributions of class residuals and the corresponding sparse vector coeffi-
cients (c) obtained for a correct prediction and a "None"-prediction can be seen in
Figure 4.2.6. For the correct prediction, one of the training images in the dictionary
obtains a very large weight. Since the weights from other class coefficients become
negligible in comparison, there is a prominent smaller residual for the knight class
and a high SCI-score. The "None"-prediction on the other hand illustrates the dis-

48 Chapter 4. Results and Discussions

tribution of coefficients among several classes, which leads to a low SCI-score and
high residuals across all classes. The query image for this prediction belongs to the
boat class which is the class SRC seems to struggle the most with in this trial.

Similarly to the CNN, SRC interchanges some of the oblong objects as can be seen
in Figure 4.2.8, likely due to their similarity in shape. As mentioned, it performs
worst on the boat class, which is predicted as the shoe in five of its seven test samples,
while the hammer is observed to be confused with the boat in three of its samples,
and the shoe in one.

Results from a second run of the model with the threshold set to 0 is presented in
Table 4.2.4. The same evaluation metrics have been used here as for the CNN as a
threshold of 0 is in line with how a CNN performs predictions (the array index with
the largest value in the softmax output). It is observed that the accuracy increases
slightly, but at the expence of increased false positives of 10 predictions, which is
expected.

Table 4.2.3: SRC performance on black test set and threshold set to 0.5

Classification accuracy (%) 75.0
False positives 6
True positives 33
None predictions 5
Avg. SCI-score 0.73

Table 4.2.4: SRC performance on black test set and threshold set to 0

Classification accuracy (%) 77.30
False positives 10
Precision 0.77
Recall 0.77
Specificity 0.95
F1 score 0.77

(6a) Class residuals (6b) Sparse coefficients
Figure 4.2.6: Example residuals and coefficients from black objects of a successful prediction

Chapter 4. Results and Discussions 49

(7a) Class residuals (7b) Non-sparse coefficients
Figure 4.2.7: Non-sparse coefficients leading to no predicted class due to threshold

Figure 4.2.8: SRC confusion matrix for black objects

Green figures

The table in 4.2.5 shows that with a threshold of 0.5 an accuracy of 68.96% was
reached for the green objects, which is slightly poorer than the black objects. An-
other remark is that the average SCI-score is a bit lower than what was obtained
for the black objects. An example of this is seen in Figure 4.2.9, where the coeffi-
cients looks to be somewhat clustered around three or more classes. This trend was
seen for all test samples as well, indicating that the dictionary matrix for the green
objects was less discriminative for predicting real world samples than the black ob-
jects. Another reason for why the coefficients may be more distributed is the fact
that more principal components was used for down-sizing the data than what what
used for the black objects. The size of the dictionary matrix, or rather how under-
determined the equation set in Equation 2.5.8, the more sparsity in the solution is
encouraged. Thus, with more principal components, the dictionary matrix becomes
less underdetermined, which softens this sparsity characteristic. Additionally, with a
larger feature set, as a result of using more components, there will be more shared
features across the classes as there will be more features to "choose" from.

Another remark that may explain the slightly poorer performance is that the back-
ground image used for acquiring the dataset in ParaView was taken with the exact
same illumination conditions as the black test set. Even though the difference is
slight, SRC is known to be sensitive to illumination variations (Cao et al. (2016), Hu

50 Chapter 4. Results and Discussions

et al. (2018)). It is therefore likely that this trait presents itself for the green objects,
creating a more challenging classification problem.

By looking at Table 4.2.6, both the accuracy and the number of false positives in-
crease with the threshold set to 0 while still falling slightly short of the black objects.
This emphasises that it is not a too strict threshold value that is causing a slightly
poorer accuracy, but rather the model, i.e. the dictionary matrix comprised of the
training images.

Once again, the three oblong objects hammer, shoe and boat are interchanged as
seen in Figure 4.2.4, with the poorest performance on the hammer class.

To summarize, the results could indicate that the SRC models were able to extract
some valuable information from the synthetically acquired data that was transferable
to the real world. Considering again that this was a rigorous trial where the approach
of sampling the images was not fully examined. This could for instance imply exper-
imenting with the synthetic illuminations to better fit the real world or creating an
even larger image database with a more thorough representation of each class as
well as experimenting with applying some filter to the training images to simulate
noise present in the real world images. Yet, the results show that the SRC classifiers
does an adequate job when introduced to the real world, and are able to distinguish
classes to a certain extent.

Table 4.2.5: SRC performance on green test set and threshold set to 0.5

Classification accuracy (%) 68.96
False positives 11
True positives 40
None predictions 7
Avg. SCI-score 0.64

Table 4.2.6: SRC performance on green test set and threshold set to 0

Classification accuracy (%) 75.86
False positives 14
Precision 0.76
Recall 0.76
Specificity 0.95
F1 score 0.76

Chapter 4. Results and Discussions 51

(9a) Class residuals (9b) Sparse coefficients
Figure 4.2.9: Example residuals and coefficients for green objects of a successful prediction

Figure 4.2.10: SRC confusion matrix for green objects

4.2.3 Yolo

The precision-recall curves from the test runs with synthetic and real data respec-
tively can be seen in Figure 4.2.13. Interestingly, it is observed that the model per-
formance on the real data has reached a satisfactory accuracy, with a mAP of 0.962.
The green hammer and the black boat are the two object categories that yield the
lowest performance here.

The highest F1-score of 0.94 on the synthetic data set is obtained already at confi-
dence level 0.0, while for the real test set the F1-score peaks at confidence level 0.711
with a value of 0.93. Thus, the model is observed to be most accurate or perform best
at this confidence level. By inspecting Figure 4.2.15 the precision curves of the green
chair and boat produce the weakest scores, decreasing the precision across all classes
until it reaches 1.0 at 0.939. This is the reason for the low F1-score seen for the green
chair in Figure 4.2.13 for the real test data. As the training data is synthetic, there
will be no natural variations in the data. This may explain why the F1-score for the
synthetic test set is at its peak already at confidence level 0.0, as the model will not
encounter sources leading to uncertainties other than which object is depicted. It is
therefore sensible that the precision and recall values of the model are high already
at low confidence levels because the environment of the test set is exactly the same
as the training data.

By viewing the confusion matrix for the real test set in Figure 4.2.12 which is
with a confidence of 0.25, it is observed that in 70% of the false positive predictions

52 Chapter 4. Results and Discussions

that are truly of the background, it is the green chair that is predicted. It therefore
seems to be something in the background that yolo confuses with the green chair.
This could possibly be the steel pole in the left corner of the scene which is a bit
similar in shape and perhaps in color, and can be observed in Figure 4.2.11. This
background object, could explain why the results for the green chair stands out from
the rest of the classes in the precision plot.

In light of the results obtained by Yolov5 on the real test set, it can be concluded
that the model performance is satisfactory and at a desirable level for an object detec-
tion model. It is able to localize the objects with accurate estimates of the bounding
box coordinates, which is an essential job for the change detection application. The
last remaining module, namely the Pose Estimation, is dependent on correct and
tight crops of the objects, which Yolov5 has proved to be able to provide in this trial.

In light of the promising results presented in this section, it should be noted that
the real test set was acquired under strictly controlled circumstances. Attempts to
minimise the differences between the real and synthetic scene were emphasized,
and should thus be regarded as a prerequisite or constraint for acquiring results at
this accuracy.

Figure 4.2.11: Examples of detected objects in the experimental setup

Figure 4.2.12: Confusion matrix for Yolo with confidence 0.25 of real test set

Chapter 4. Results and Discussions 53

(13a) Test set with synthetic data (13b) Test set with real data
Figure 4.2.13: F1-curves of test set from same distribution as training data, i.e. synthetic

data, and test set of real data only

(14a) Test set with synthetic data (14b) Test set with real data
Figure 4.2.14: Precision-Recall-curves of test set from same distribution as training data, i.e.

synthetic data, and test set of real data only

Figure 4.2.15: Green chair contributing to a low precision at lower confidence levels

4.2.4 Summary of all models

The initial findings from CNN and SRC point in a direction where both synthetically
trained models were able to adequately classify the test samples acquired from a real

54 Chapter 4. Results and Discussions

world setting. Beyond the fact that both models seem to struggle with separating ob-
jects that are similar in shape, their performances are not really comparable as their
respective synthetic datasets are too dissimilar as a result of the differing sampling
strategies. With more conservative object rotations in the SRC dataset, it is likely that
SRC had an easier job of recognising the query images than the CNN. Particularly
based on the arguments regarding outlier data as previously discussed. Therefore,
it cannot be established which model is more suited for use with synthetic training
data, and real world test data.

Both models showed indications of being sensitive to the settings used at the
time of data collection. Thus, the usefulness of leveraging synthetic data in training
image classifiers as CNN, SRC as well as Yolo is not yet fully examined. Based on the
observations in terms of outlier data for CNN, and illumination sensitivities for SRC,
the following possible alterations to the synthetic data acquisition is proposed:

• Customize sampling angles to each object or objects similar in shape to avoid
outlier data

• Sample images at different zoom-levels to avoid overfitting towards a fixed
object size

• Depending on the application or real world scene, adapt the background the
images are rendered in to several backgrounds as a means of regularizing the
network to avoid overfitting towards a single background

• Alternate the object localization in the images such that they are not always
centered in the middle

• Apply different illumination and texturing settings to the rendered objects

As for the Yolo model, the use of synthetic data for training proved to achieve
a sufficiently powerful model also able to extract accurate bounding box estimates
of the objects. Due to the requirement of tightly cropped images of each object as
input to the Pose Estimation model, the model selection for performing this task of
object recognition and localization in the proposed Change detection application was
more suited for Yolo. Although SRC offer strengths in terms of interpretability, less
computation load and no training necessary, it is not directly suited for the proposed
change detection application. The reasons being sensitivity to large pose variations
in addition to merely performing the task of image recognition.

It should be notet that Yolov5, belonging to the Yolo-family, is a powerful state-
of-the-art object detection model exhibiting the robustness that is required for real-
time object detection (Bochkovskiy et al. (2020)).This is likely to make it less sen-
sitive to variations in data stemming from the real-world environment, as opposed
to the synthetic environment in the training data. The discrepancy in performance
seen between Yolo and the two other image classifiers might therefore be expected.
Secondly, the synthetic dataset used for training Yolo contained a larger volume of
images with more training samples for each class. Additionally, some image augmen-
tation was applied to the training data as measures for mitigating overfitting as well
as increasing model robustness. Lastly, the image size used to downsize the images

Chapter 4. Results and Discussions 55

was greater than for the CNN and SRC. This would lead to higher quality images,
possibly enabling added or better image features learned by the network.

Furthermore, it is fair to say that the data volume used for training Yolo in this
trial would have been significantly more tedious to produce if the images were to be
acquired manually. By simply running a script, a sufficiently large dataset, completely
customised to the application was produced. For the task of detecting positional
changes of monitored objects, it is relevant to know the angles for which the objects
are rotated in the dataset. This could for instance help with correctly annotating the
dataset with the correct angles for use in the Pose Estimation model as this is exactly
known in a synthetic world. If the same images were to be acquired manually, and
with the same sampling angles, this would rely on human measurements. A process
highly susceptible to uncertainty which would consequently be introduced into the
application.

An interesting examination would be to see how the models perform when com-
bining synthetic and real world data during training. If training data is scarce, this
would be a valuable option for generating the necessary data to build a complete
model. This could also make the model more robust when faced with for instance
illumination changes in the test set that was seen for the green objects with SRC
and CNN. As synthetic data can be adapted to fit any variation, the possibilities for
enriching the training data with the features desired for some application are exten-
sive.

A problem SRC and other image classifiers are faced with is imbalanced training
data that results in a skewed representation of classes. This can make the classifier fa-
vor some classes over others simply because they are over-represented in the training
data (Zou et al. (2018), Shu et al. (2020)). A highly useful application of synthetic
training data, could therefore be to balance a skewed distribution of training images
with synthetic data for the poorly represented classes.

With the rapid advancement of technology like virtual and augmented reality
seeking to accurately mirror the real world, software for visualizing 3D-models and
generating synthetic data will likely improve. Thus, the relevance of synthetic data
applied to the real world is growing, and might not yet be fully exploited.

4.3 Pose Estimation

Proceeding with the change detection pipeline depicted in Figure 3.3.9, the resulting
image crops given by the bounding box estimates produced by Yolov5 are further
passed as input to the Pose Estimation module. Accompanying the cropped images
of each object is its corresponding CAD model in .obj file format used for rendering
views of the object as shown in subsection 3.3.3.

Once again, the object categories are isolated in terms of color such that experi-
ments on the black and green objects are reported separately for comparison.

The metrics used for evaluating the Pose Estimation performance are the ones
presented in subsection 3.3.3, namely Accπ

6
and MedERR. The evaluated results are

seen in Table 4.3.1 and Table 4.3.2. Additionally, the offset between the three pre-
dicted Euler angles and the true angles for each experiment is shown in Figure 4.3.1,
Figure 4.3.2 and Figure 4.3.3.

56 Chapter 4. Results and Discussions

With regard to the Accπ
6

evaluation metric, there is only a small deviation between
the green and black objects. Even so, the result for the green shoe category is seen to
be slightly poorer than that of the black shoe, which results in a moderate decrease in
the mean Accπ

6
for the azimuth angle across all green classes. For both the elevation

and in-plane rotation angle, the mean Accπ
6

are fairly equal. The only significant
deviation between the two colors is the the MedERR of the azimuth angle with the
larger difference of 39◦ reported for the black objects. The deviation here seems to
originate from mainly the black boat class and the black knight.

Overall, the results reported in Table 4.3.1 and Table 4.3.2, report poor accuracies
and angle deviations for the elevation angles and azimuth angles in particular. The
results for in-plane rotation on the other hand, are observed as obtaining a high
Accπ

6
. The metric Accπ

6
allows in general for angle deviations up to 30◦ within the

same angle bin. The results presented here however, are based on angles centered
in the angle bins seen in Figure 3.3.8 (e.g. 0◦, 30◦, 60◦). Thus, the results are rather
based on angle deviations up to 15◦ in either direction from the ground truth angle.
Yet, as even small in-plane rotation deviations can result in a completely altered pose,
it may be more relevant to look at the MedERR for this angle estimate. With a result
of 7.2 and 7.02 for the green and black objects respectively, and the application of
Change detection for detecting even small changes in the objects in mind, this result
may not suffice.

Revisiting the origin of this Pose Estimation model, namely the one presented
in Xiao et al. (2019a), the results on novel categories with ObjectNet3D used for
training reported in the paper can be compared with those obtained in this trial. They
report a mean Accπ

6
for novel categories of 62%. This is the mean accuracy across

all three Euler angles. In this trial, the novel black and green objects obtain a mean
accuracy across all three Euler angles of 61.3% and 59.3% respectively. This remark
should only verify that the approach for using the model in this trial is in line with
that of the origin of the model. Further, a high accuracy on novel categories might not
be plausible unless measures are taken to adapt the model to fit the application. For
this trial, these measures should have been to train the model on a custom dataset of
the object categories used in this report. The original plan was to extend the idea of
synthetic data acquisition for this part of the training data as well. Unfortunately, due
to shortage in time as a result of recurring delays with finalizing the experimental
setup the experiments were dependent on, this investigation had to be omitted from
the scope of this report. It is however left as a note on a plausible measure for
improving the performance of the Pose Estimation model used in this framework.

The resulting offset between the true and predicted angle for each experiment
is seen in Figure 4.3.1. Every object undergoes 7-9 experiments, depending on the
number of accurate bounding box estimates delivered by Yolov5. From the figure,
it appears that around half of the predictions for several object categories are ap-
proaching a 170◦ azimuth angle offset. This seems to particularly affect the oblong
objects like the hammer, boat and shoe. Upon creating a rendered view of the pre-
dicted poses for these experiments, it is observed that the Pose Estimation model
flips the oblong objects such that they are turning the opposite way. In other words,
with an addition to the azimuth angle of nearly 180◦. This effect can be seen in Fig-
ure 4.3.5. This suggests that the model might fail to extract the more finely tuned
features of these objects that separate the front from the back. Consequently, it is

Chapter 4. Results and Discussions 57

somewhat random which orientation along their major principal axes the prediction
lands on.

Table 4.3.1: Pose estimation results for black objects

Black objects

Accπ
6

boat chair hammer knight shoe mean

azi. (φ) 0.44 0.22 0.29 0.13 0.5 0.32

elev. (θ) 0.67 0.56 0.14 0.38 1.0 0.55

in-plane rot. (ψ) 1.0 1.0 0.86 1.0 1.0 0.97

MedERR (◦)
azi. (φ) 170.51 80.60 156.27 96.56 89.89 118.77

elev. (θ) 9.32 9.87 23.50 22.67 7.34 14.54

in-plane rot. (ψ) 6.91 6.78 7.39 6.50 7.54 7.02

Table 4.3.2: Pose estimation results for green objects

Green objects

Accπ
6

boat chair hammer knight shoe mean

azi. (φ) 0.38 0.25 0.25 0.13 0.38 0.28

elev. (θ) 0.88 0.5 0.13 0.25 1.0 0.55

in-plane rot. (ψ) 1.0 1.0 0.75 1.0 1.0 0.95

MedERR (◦)
azi. (φ) 96.53 82.19 74.65 52.55 90.67 79.32

elev. (θ) 8.41 14.16 23.81 22.67 7.45 15.3

in-plane rot. (ψ) 6.69 7.81 7.29 6.40 7.81 7.2

58 Chapter 4. Results and Discussions

Figure 4.3.1: Offset of predicted azimuth angle and real angle

Figure 4.3.2: Offset of predicted elevation angle and real angle

Figure 4.3.3: Offset of predicted in-plane rotation angle and real angle

Chapter 4. Results and Discussions 59

Figure 4.3.4: Offset of predicted angles and real angles

Inferred pose

Inferred pose

Inferred pose

Figure 4.3.5: Inferred poses of elongated objects rendered in Blender

60 Chapter 4. Results and Discussions

61

Chapter 5

Conclusion and future work

To reiterate, the research questions posed in the introduction to this report were the
following

• With pedagogical purpose in mind, what kind of experimental setup can be
built for the purpose of testing a cost-effective change detection approach in a
Digital Twin ?

• Can synthetic data programmatically acquired in a virtual environment be used
for training image classifiers so that they can be used in the real world with
confidence ?

• How effective are DMD for motion detection, and SRC for image classification
in comparison to Deep Learning ?

The first research question was answered by showing that the pipeline of change
detection and its three modules could be properly tested with the experimental setup
built in this project. Motion detection using DMD can be run in real-time on cheap
hardware and obtained satisfactory results. The potential of using synthetic data for
training YOLO showed another way of enhancing cost-effectiveness of the proposed
approach since one can easily avoid the and time and labour intensive process of cap-
turing and labelling real data. Although YOLO required training accelerated by GPU,
once trained, inference was run with merely laptop-class computing power. Transfer-
ring the physically detected changes to reconstruct the digital scene on demand in a
Digital Twin is dependent on an accurate Pose Estimation model. However, the pose
estimation module, despite their ability to generalize to novel objects, still requires
further improvements before they can be put to use in real use.

However, the overall change detection pipeline proved to be successful in terms
of the cooperation between the modules which could be put together with the exper-
imental setup. Approaches for improving the accuracy of the pose estimation model
could for instance be to train the model on a custom dataset with the selected 3D-
models, under the assumption that these are known, or simply try a more powerful
model for performing pose estimation. A model that also estimates the translation
part of the object movement could be relevant here. In terms of training the pose
estimation model, a custom dataset could easily be generated and annotated with
synthetic data, which would open for the investigation on the model performance in
the real world.

62 Chapter 5. Conclusion and future work

The second research question regarding synthetic data acquisition was thoroughly
tested on the two image classifiers CNN and SRC, as well as the object detection
model Yolo. The two image classifiers obtained overall a performance on the same
level, although with the remark that SRC had less pose variations in its training and
test data. Even so, the concept of using synthetic data proved to produce two ad-
equate models, and proposals for altering the data acquisition to possibly improve
their performance was discussed. As for Yolo, the resulting model from using syn-
thetic data proved to obtain a high mAP of 0.962 which is both satisfactory and
impressive. The remark about Yolo being a more powerful model along with the
added data augmentation and larger data volume used for training were listed as
likely contributors to this promising result as compared to the two image classifiers.

With reference to the third research question, this report exemplifies possible ap-
plications of DMD and SRC. SRC has earlier proved to obtain state-of-the-art face
recognition, and was seen to perform on the same level as CNN as an image clas-
sifier in this trial. Both DMD and SRC draw benefit from being cost-effective with
sound mathematical foundations. DMD could be run on cheap hardware and man-
aged to efficiently detect movement in the experimental setup. As opposed to Deep
Learning models, SRC allows for complete transparency in the prediction as the pre-
diction stems from a single optimization problem. Consequently, the computation
load is decided by the size of the optimization problem, which for a moderate sized
dictionary matrix, will result in a fast computation without the need for expensive
GPUs. Additionally, SRC does not require the timely process of training. This is espe-
cially useful if an application requires an easy method of adding a new class to the
image database, which would require expensive retraining of the model in the case
of Deep Learning. For the Change Detection application, an introduction of a new
object to the scene when using SRC, would merely require that training images of
the new object class were appended to the dictionary matrix. Lastly, SRC has shown
to perform adequately without the need of a large training data volume (Hu et al.
(2018)) which could make it a valid candidate for applications where data is scarce.
As the proposed change detection application required object localization as well as
recognition for valid inputs to the pose estimation model, as well as Yolo obtaining
a higher recognition accuracy than SRC, the latter model was not deemed fit this
time. An idea could be to create bounding box estimates via the smallest rectangle
circumventing all predicted foreground pixels from DMD. Further, the accuracy of
SRC could possibly be improved by increasing the dictionary matrix to extend the
representation of each object class, or the synthetic training data could be adapted
to better coincide with the real world. These suggestions are however left out of the
scope of this report.

5.1 Conclusions

The major conclusions of the thesis are:

• The experimental setup built proved to realize the proposed framework of de-
tecting changes in a physical scene using a cost effective approach of motion
detection with DMD, cheap hardware, lightweight Yolov5 for object detection
and synthetic data acquisition for generating training data.

Chapter 5. Conclusion and future work 63

• Using synthetic data for training, and further use the trained model in the real
world proved to obtain adequate models of CNN and SRC, while a satisfactory
model with Yolo. The possibilities of adapting the scripting process and virtual
scene are extensive, and the software for performing 3D-visualization and data
acquisition may only improve with the innovations in augmented and virtual
reality. Leveraging synthetic data as has been done in this report, is therefore
yet to be exploited to its full extent.

• DMD and SRC have both shown to be computationally efficient methods with
sound mathematical foundations. In this report, they have both shown to per-
form adequately in the application of motion detection and image recognition
and could be recognized as competing methods with their respective strengths
against state-of-the-art methods which are generally based on Deep Learning.

In doing so we answer all the research questions mentioned in 1.3.2 thereby
realizing all the secondary and primary objectives

5.2 Future Work

Although the proposed approach of change detection was able to show the concept,
several challenges were revealed and could light a spark for further investigations.
Furthermore, findings and possible directions related to synthetic data acquisition
emerged. Thus, the following remarks are left out as future work

• Alter the Pose Estimation module by either choosing a more robust and pow-
erful model, or train the existing model with custom data acquired from the
experimental setup

• Extend the change detection application to obtain an estimate of the transla-
tion component of each object in addition to the orientation. This could imply
installing a RGB-D camera to the experimental setup. With the advert of sensor
technology that have enabled the development of RGB-D cameras, pose esti-
mation models have been proposed that exploit this additional dimension of
depth, showing that there exists a community for this type of pose estimation
models as well.

• Consider adjusting the process of synthetic data acquisition with different zoom
levels, placements of the object, synthetic illuminations, colors and background
variations. Furthermore, examine the effect of combining synthetic and real
data when training to avoid overfitting towards the synthetic environment.

64 Chapter 5. Conclusion and future work

65

Bibliography

Ahrens, J., Geveci, B. and Law, C. (2005), ‘Paraview: An end-user tool for large data
visualization’, The visualization handbook 717(8).

Ayachit, U. (2015), The paraview guide: a parallel visualization application, Kitware,
Inc.

Bajwa, I. S., Naweed, M., Asif, M. N. and Hyder, S. I. (2009), ‘Feature based im-
age classification by using principal component analysis’, ICGST Int. J. Graph. Vis.
Image Process. GVIP 9, 11–17.

Berman, B. (2012), ‘3-d printing: The new industrial revolution’, Business horizons
55(2), 155–162.

Bochkovskiy, A., Wang, C.-Y. and Liao, H.-Y. M. (2020), ‘Yolov4: Optimal speed and
accuracy of object detection’, arXiv preprint arXiv:2004.10934 .

Burger, J. E. and Gowen, A. A. (2015), Classification and prediction methods, in
‘Hyperspectral Imaging Technology in Food and Agriculture’, Springer, pp. 103–
124.

Candès, E. J., Li, X., Ma, Y. and Wright, J. (2011), ‘Robust principal component
analysis?’, Journal of the ACM (JACM) 58(3), 1–37.

Cao, F., Hu, H., Lu, J., Zhao, J., Zhou, Z. and Wu, J. (2016), ‘Pose and illumination
variable face recognition via sparse representation and illumination dictionary’,
Knowledge-Based Systems 107, 117–128.

Carrillo, R. E., Ramirez, A. B., Arce, G. R., Barner, K. E. and Sadler, B. M. (2016),
‘Robust compressive sensing of sparse signals: a review’, EURASIP Journal on Ad-
vances in Signal Processing 2016(1), 108.

Choi, C. and Christensen, H. I. (2012), 3d pose estimation of daily objects using an
rgb-d camera, in ‘2012 IEEE/RSJ International Conference on Intelligent Robots
and Systems’, IEEE, pp. 3342–3349.

Chollet, F. et al. (2015), ‘Keras’, https://keras.io.

Community, B. O. (2018), Blender - a 3D modelling and rendering package, Blender
Foundation, Stichting Blender Foundation, Amsterdam.
URL: http://www.blender.org

https://keras.io

66 Bibliography

Cunico, F., Carletti, M., Cristani, M., Masci, F. and Conigliaro, D. (2019), 6d pose
estimation for industrial applications, in M. Cristani, A. Prati, O. Lanz, S. Messelodi
and N. Sebe, eds, ‘New Trends in Image Analysis and Processing – ICIAP 2019’,
Springer International Publishing.

Deng, W., Hu, J. and Guo, J. (2012a), ‘Extended src: Undersampled face recognition
via intraclass variant dictionary’, IEEE Transactions on Pattern Analysis and Machine
Intelligence .

Deng, W., Hu, J. and Guo, J. (2012b), ‘Extended src: Undersampled face recognition
via intraclass variant dictionary’, IEEE Transactions on Pattern Analysis and Machine
Intelligence 34(9), 1864–1870.

Domahidi, A., Chu, E. and Boyd, S. (2013), ECOS: An SOCP solver for embedded
systems, in ‘European Control Conference (ECC)’, pp. 3071–3076.

Donoho, D. L. (2006), ‘For most large underdetermined systems of linear equations
the minimal 1-norm solution is also the sparsest solution’, Communications on Pure
and Applied Mathematics: A Journal Issued by the Courant Institute of Mathematical
Sciences 59(6), 797–829.

Donoho, D. L. and Tsaig, Y. (2008), ‘Fast solution of `1-norm minimization prob-
lems when the solution may be sparse’, IEEE Transactions on Information Theory
54(11), 4789–4812.

Dugelay, J.-L., Baskurt, A. and Daoudi, M. (2008), 3D object processing: compression,
indexing and watermarking, John Wiley & Sons.

Erichson, N. B., Brunton, S. L. and Kutz, J. N. (2019), ‘Compressed dynamic mode
decomposition for background modeling’, Journal of Real-Time Image Processing
16(5), 1479–1492.

Gallier, J. and Gallier, J. H. (2000), Curves and surfaces in geometric modeling: theory
and algorithms, Morgan Kaufmann.

Ge, D., Jiang, X. and Ye, Y. (2011), ‘A note on the complexity of l p minimization’,
Mathematical programming 129(2), 285–299.

Girshick, R. (2015), Fast r-cnn, in ‘Proceedings of the IEEE international conference
on computer vision’, pp. 1440–1448.

Girshick, R., Donahue, J., Darrell, T. and Malik, J. (2014), Rich feature hierarchies
for accurate object detection and semantic segmentation, in ‘Proceedings of the
IEEE conference on computer vision and pattern recognition’, pp. 580–587.

Groover, M. and Zimmers, E. (1983), CAD/CAM: computer-aided design and manu-
facturing, Pearson Education.

Grosek, J. and Kutz, J. N. (2014), ‘Dynamic mode decomposition for real-time back-
ground/foreground separation in video’.

Bibliography 67

Günther, F. and Fritsch, S. (2010), ‘neuralnet: Training of neural networks’, The R
journal 2(1), 30–38.

Hattab, A. and Taubin, G. (2015), 3d modeling by scanning physical modifications, in
‘2015 28th SIBGRAPI Conference on Graphics, Patterns and Images’, IEEE, pp. 25–
32.

He, K. and Sun, J. (2015), Convolutional neural networks at constrained time cost, in
‘Proceedings of the IEEE conference on computer vision and pattern recognition’,
pp. 5353–5360.

He, K., Zhang, X., Ren, S. and Sun, J. (2016), Deep residual learning for image
recognition, in ‘Proceedings of the IEEE conference on computer vision and pattern
recognition’, pp. 770–778.

Hu, C.-H., Lu, X.-B., Liu, P., Jing, X.-Y. and Yue, D. (2018), ‘Single sample face recog-
nition under varying illumination via qrcp decomposition’, IEEE Transactions on
Image Processing 28(5), 2624–2638.

Iancu, C. (2018), ‘About 3d printing file formats.’, Annals of the Constantin Brancusi
University of Targu Jiu-Letters & Social Sciences Series .

Jocher, G., Stoken, A., Borovec, J., NanoCode012, ChristopherSTAN, Changyu, L.,
Laughing, tkianai, Hogan, A., lorenzomammana, yxNONG, AlexWang1900, Dia-
conu, L., Marc, wanghaoyang0106, ml5ah, Doug, Ingham, F., Frederik, Guilhen,
Hatovix, Poznanski, J., Fang, J., , L. Y., changyu98, Wang, M., Gupta, N., Akhtar,
O., PetrDvoracek and Rai, P. (2020), ‘ultralytics/yolov5: v3.1 - Bug Fixes and Per-
formance Improvements’.
URL: https://doi.org/10.5281/zenodo.4154370

Jolliffe, I. T. and Cadima, J. (2016), ‘Principal component analysis: a review and
recent developments’, Philosophical Transactions of the Royal Society A: Mathemat-
ical, Physical and Engineering Sciences 374(2065), 20150202.

Kendall, A., Grimes, M. and Cipolla, R. (2015), Posenet: A convolutional network
for real-time 6-dof camera relocalization, in ‘Proceedings of the IEEE international
conference on computer vision’, pp. 2938–2946.

Kulchandani, J. S. and Dangarwala, K. J. (2015), Moving object detection: Review of
recent research trends, in ‘2015 International Conference on Pervasive Computing
(ICPC)’, pp. 1–5.

Kutz, J., Erichson, N., Askham, T., Pendergrass, S. and Brunton, S. (2017), Dynamic
mode decomposition for background modeling, in ‘16th IEEE International Con-
ference on Computer Vision Workshops, ICCVW 2017’, Institute of Electrical and
Electronics Engineers Inc., pp. 1862–1870.

Kutz, J. N., Fu, X. and Brunton, S. L. (2016), ‘Multiresolution dynamic mode decom-
position’, SIAM Journal on Applied Dynamical Systems 15(2), 713–735.

68 Bibliography

Labbé, Y., Carpentier, J., Aubry, M. and Sivic, J. (2020), Cosypose: Consistent multi-
view multi-object 6d pose estimation, in ‘European Conference on Computer Vi-
sion’, Springer, pp. 574–591.

LeCun, Y., Bengio, Y. and Hinton, G. (2015), ‘Deep learning’, Nature
521(7553), 436–444.

Lee, H.-J. and Hong, K.-S. (2012), Class-specific weighted dominant orientation tem-
plates for object detection, in ‘Asian Conference on Computer Vision’, Springer,
pp. 97–110.

Li, Y., Wang, G., Ji, X., Xiang, Y. and Fox, D. (2018), Deepim: Deep iterative matching
for 6d pose estimation, in ‘Proceedings of the European Conference on Computer
Vision (ECCV)’, pp. 683–698.

Li, Z., Wang, Y. and Ji, X. (2019), ‘Monocular viewpoints estimation for generic
objects in the wild’, IEEE Access 7, 94321–94331.

Liu, L., Ouyang, W., Wang, X., Fieguth, P., Chen, J., Liu, X. and Pietikäinen, M.
(2020), ‘Deep learning for generic object detection: A survey’, International journal
of computer vision 128(2), 261–318.

Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.-Y. and Berg, A. C.
(2016), Ssd: Single shot multibox detector, in ‘European conference on computer
vision’, Springer, pp. 21–37.

Lowe, D. G. (2004), ‘Distinctive image features from scale-invariant keypoints’, In-
ternational journal of computer vision 60(2), 91–110.

Mairal, J., Elad, M. and Sapiro, G. (2007), ‘Sparse representation for color image
restoration’, IEEE Transactions on image processing 17(1), 53–69.

Mikołajczyk, A. and Grochowski, M. (2018), Data augmentation for improving deep
learning in image classification problem, in ‘2018 international interdisciplinary
PhD workshop (IIPhDW)’, IEEE, pp. 117–122.

Nadeem, U., Bennamoun, M., Togneri, R. and Sohel, F. (2020), ‘Unconstrained
matching of 2d and 3d descriptors for 6-dof pose estimation’, arXiv preprint
arXiv:2005.14502 .

Nathan Kutz, J., Benjamin Erichson, N., Askham, T., Pendergrass, S. and Brunton,
S. L. (2017), Dynamic mode decomposition for background modeling, in ‘Pro-
ceedings of the IEEE International Conference on Computer Vision Workshops’,
pp. 1862–1870.

O’Shea, K. and Nash, R. (2015), ‘An introduction to convolutional neural networks’.

Park, K., Patten, T. and Vincze, M. (2019), Pix2pose: Pixel-wise coordinate regression
of objects for 6d pose estimation, in ‘Proceedings of the IEEE/CVF International
Conference on Computer Vision’, pp. 7668–7677.

Bibliography 69

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin,
Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison,
M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J. and Chintala, S.
(2019), Pytorch: An imperative style, high-performance deep learning library, in
H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox and R. Garnett,
eds, ‘Advances in Neural Information Processing Systems 32’, Curran Associates,
Inc., pp. 8024–8035.
URL: http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-
performance-deep-learning-library.pdf

Peng, S., Liu, Y., Huang, Q., Zhou, X. and Bao, H. (2019), Pvnet: Pixel-wise voting
network for 6dof pose estimation, in ‘Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition’, pp. 4561–4570.

Peng, Y., Li, L., Liu, S., Li, J. and Wang, X. (2018), ‘Extended sparse representation-
based classification method for face recognition’, Machine Vision and Applications
29(6), 991–1007.

Perez, L. and Wang, J. (2017), ‘The effectiveness of data augmentation in image
classification using deep learning’, arXiv preprint arXiv:1712.04621 .

Qi, C. R., Su, H., Mo, K. and Guibas, L. J. (2017), Pointnet: Deep learning on point
sets for 3d classification and segmentation, in ‘Proceedings of the IEEE conference
on computer vision and pattern recognition’, pp. 652–660.

Qi, Q. and Tao, F. (2018), ‘Digital twin and big data towards smart manufacturing
and industry 4.0: 360 degree comparison’, Ieee Access 6, 3585–3593.

Ramachandran, P., Zoph, B. and Le, Q. V. (2017), ‘Searching for activation functions’,
arXiv preprint arXiv:1710.05941 .

Rasheed, A., San, O. and Kvamsdal, T. (2019), ‘Digital twin: Values, challenges and
enablers’.

Redmon, J. (2013), ‘Darknet: Open source neural networks in c’.

Redmon, J., Divvala, S., Girshick, R. and Farhadi, A. (2016), You only look once:
Unified, real-time object detection, in ‘Proceedings of the IEEE conference on com-
puter vision and pattern recognition’, pp. 779–788.

Ren, S., He, K., Girshick, R. and Sun, J. (2016), ‘Faster r-cnn: towards real-time object
detection with region proposal networks’, IEEE transactions on pattern analysis and
machine intelligence 39(6), 1137–1149.

Shaikh, S. H., Saeed, K. and Chaki, N. (2014), Moving object detection using back-
ground subtraction, in ‘Moving Object Detection Using Background Subtraction’,
Springer, pp. 15–23.

Sharma, S. (2017), ‘Activation functions in neural networks’, towards data science 6.

Shorten, C. and Khoshgoftaar, T. M. (2019), ‘A survey on image data augmentation
for deep learning’, Journal of Big Data 6(1), 60.

70 Bibliography

Shu, T., Zhang, B. and Tang, Y. (2020), ‘Sparse supervised representation-based clas-
sifier for uncontrolled and imbalanced classification’, IEEE Transactions on Neural
Networks and Learning Systems 31, 2847–2856.

Själander, M., Jahre, M., Tufte, G. and Reissmann, N. (2019), ‘EPIC: An energy-
efficient, high-performance GPGPU computing research infrastructure’.

Su, H., Qi, C. R., Li, Y. and Guibas, L. J. (2015), Render for cnn: Viewpoint estimation
in images using cnns trained with rendered 3d model views, in ‘Proceedings of the
IEEE International Conference on Computer Vision’, pp. 2686–2694.

Sundby, T., Graham, J. M., Rasheed, A., Tabib, M. and San, O. (2021), ‘Geometric
change detection in digital twins’, Digital 1(2), 111–129.

Tao, F., Zhang, H., Liu, A. and Nee, A. Y. (2018), ‘Digital twin in industry: State-of-
the-art’, IEEE Transactions on Industrial Informatics 15(4), 2405–2415.

Tao, F., Zhang, H., Liu, A. and Nee, A. Y. C. (2019), ‘Digital twin in industry: State-
of-the-art’, IEEE Transactions on Industrial Informatics 15, 2405–2415.

Tu, J. H., Rowley, C. W., Luchtenburg, D. M., Brunton, S. L. and Kutz, J. N. (2013),
‘On dynamic mode decomposition: Theory and applications’, arXiv preprint
arXiv:1312.0041 .

Tulsiani, S. and Malik, J. (2015), Viewpoints and keypoints, in ‘Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition’, pp. 1510–1519.

Tzeng, F.-Y. and Ma, K.-L. (2005), Opening the black box-data driven visualization of
neural networks, IEEE.

Wanasinghe, T. R., Wroblewski, L., Petersen, B. K., Gosine, R. G., James, L. A.,
De Silva, O., Mann, G. K. I. and Warrian, P. J. (2020), ‘Digital twin for the oil
and gas industry: Overview, research trends, opportunities, and challenges’, IEEE
Access 8, 104175–104197.

Wang, Y., Jodoin, P.-M., Porikli, F., Konrad, J., Benezeth, Y. and Ishwar, P. (2014),
Cdnet 2014: An expanded change detection benchmark dataset, in ‘Proceedings
of the IEEE conference on computer vision and pattern recognition workshops’,
pp. 387–394.

Wright, J., Yang, A. Y., Ganesh, A., Sastry, S. S. and Ma, Y. (2008), ‘Robust face
recognition via sparse representation’, IEEE transactions on pattern analysis and
machine intelligence 31(2), 210–227.

Wu, X., Sahoo, D. and Hoi, S. C. (2020), ‘Recent advances in deep learning for object
detection’, Neurocomputing 396, 39–64.

Xiang, Y., Kim, W., Chen, W., Ji, J., Choy, C., Su, H., Mottaghi, R., Guibas, L. and
Savarese, S. (2016), Objectnet3d: A large scale database for 3d object recognition,
in ‘European conference on computer vision’, Springer, pp. 160–176.

Bibliography 71

Xiang, Y., Mottaghi, R. and Savarese, S. (2014), Beyond pascal: A benchmark for
3d object detection in the wild, in ‘IEEE Winter Conference on Applications of
Computer Vision’, pp. 75–82.

Xiang, Y., Schmidt, T., Narayanan, V. and Fox, D. (2017), ‘Posecnn: A convolutional
neural network for 6d object pose estimation in cluttered scenes’, arXiv preprint
arXiv:1711.00199 .

Xiao, Y., Qiu, X., Langlois, P., Aubry, M. and Marlet, R. (2019a), Pose from shape:
Deep pose estimation for arbitrary 3D objects, in ‘British Machine Vision Confer-
ence (BMVC)’.

Xiao, Y., Qiu, X., Langlois, P., Aubry, M. and Marlet, R. (2019b), ‘Pose from shape:
Deep pose estimation for arbitrary 3d objects’, CoRR abs/1906.05105.
URL: http://arxiv.org/abs/1906.05105

Xu, B., Guo, P. and Chen, C. P. (2013), Kernel based weighted group sparse repre-
sentation classifier, in ‘International Conference on Human-Computer Interaction’,
Springer, pp. 236–245.

Yin, J., Liu, Z., Jin, Z. and Yang, W. (2012), ‘Kernel sparse representation based
classification’, Neurocomputing 77(1), 120–128.

Zhang, B., Ji, S., Li, L., Zhang, S. and Yang, W. (2016), ‘Sparsity analysis versus
sparse representation classifier’, Neurocomputing 171, 387–393.
URL: https://www.sciencedirect.com/science/article/pii/S092523121500898X

Zhang, H., Rowley, C. W., Deem, E. A. and Cattafesta, L. N. (2019), ‘Online dynamic
mode decomposition for time-varying systems’, SIAM Journal on Applied Dynami-
cal Systems 18(3), 1586–1609.

Zhang, H., Zhang, Y. and Huang, T. S. (2013), ‘Pose-robust face recognition via
sparse representation’, Pattern Recognition 46(5), 1511–1521.

Zheng, Y., Yang, S. and Cheng, H. (2019), ‘An application framework of digital
twin and its case study’, Journal of Ambient Intelligence and Humanized Computing
10(3), 1141–1153.

Zou, X., Feng, Y., Li, H. and Jiang, S. (2018), ‘Improved over-sampling techniques
based on sparse representation for imbalance problem’, Intelligent Data Analysis
22(5), 939–958.

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f E
ng

in
ee

rin
g

Cy
be

rn
et

ic
s

Julia Maria Graham

Geometric change detection in the
context of Digital Twin, leveraging
Dynamic Mode Decomposition,
Object Detection and innovations in
3D technology

Master’s thesis in Cybernetics and Robotics
Supervisor: Adil Rasheed

June 2021

M
as

te
r’s

 th
es

is

	Preface
	List of Figures
	List of Tables
	Abstract
	Sammendrag
	Introduction
	Motivation
	Background and related work
	Research Objectives and research questions
	Objectives
	Research Questions

	Outline of Report

	Theory
	Notation
	Geometric modeling
	CAD Modeling

	Dynamic Mode Decomposition
	DMD for streaming data and background subtraction

	Convolutional Neural Network
	Convolution layer
	Pooling layer
	Fully connected layer
	Activation functions

	Compressed Sensing
	Time complexity of 1-minimization
	Sparse Representation based Classification

	Object detection using Yolo
	Evaluation metrics

	3D machine learning
	3D Pose estimation

	Method and Setup
	CAD models
	Virtual experimental setup
	Synthetic data acquisition

	Experimental set-up
	Real data acquisition

	Method
	Motion detection using DMD
	Object detection and Image classification
	Pose estimation
	Full workflow overview

	Results and Discussions
	Motion detection using DMD
	Object detection and Image recognition
	CNN
	SRC
	Yolo
	Summary of all models

	Pose Estimation

	Conclusion and future work
	Conclusions
	Future Work

	Bibliography

