
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f E
ng

in
ee

rin
g

Cy
be

rn
et

ic
s

Tuva Okkenhaug Moxnes

A common software framework for a
CubeSat with multiple payloads

Master’s thesis in Cybernetics and Robotics
Supervisor: Tor Arne Johansen
Co-supervisor: Sivert Bakken, Roger Birkeland

June 2021

M
as

te
r’s

 t
he

si
s

Tuva Okkenhaug Moxnes

A common software framework for a
CubeSat with multiple payloads

Master’s thesis in Cybernetics and Robotics
Supervisor: Tor Arne Johansen
Co-supervisor: Sivert Bakken, Roger Birkeland
June 2021

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Engineering Cybernetics

Summary

Observation of the ocean is motivated by the need of an increased understanding of climate change
effects. A multidisciplinary team is working together at the SmallSatLab at the Norwegian Uni-
versity of Science and Technology (NTNU) with a common goal of designing and developing a
hyperspectral payload for a CubeSat called HYPSO. This payload will be integrated in a satellite
bus developed by NanoAvionics, and the satellite is planned to be ready for launch in the fourth
quarter of 2021. A second mission is planned to follow after this, launching HYPSO-2. This
satellite will feature a second payload, the Software Defined Radio (SDR).

The goal of this master’s thesis is to demonstrate how to further develop a software platform to have
a flexible architecture which can support multiple payloads. The integration of a second payload,
the SDR, into the code repository already working for the hyperspectral payload, is used as an
example. The design of the software architecture has been crucial for the resulting development,
and agile development methods have been investigated and used. Modularization, refactoring and
generalization have been the key principles used to obtain the desired result. This has resulted in
a new software architecture, which with slight modifications, can support any payload.

i

Sammendrag

Overv̊aking av verdenshavene er nødvendig for å øke v̊ar kunnskap om effekten av klimaendringene.
Et tverrfaglig team jobber sammen p̊a SmallSatLab ved Norges teknisk-naturvitenskapelige univer-
sitet (NTNU). Teamet har som mål å designe og utvikle en hyperspektral nyttelast for en CubeSat
kalt HYPSO. Nyttelasten vil bli integrert i en satelitt-bus utviklet av NanoAvionics. Satelitten
er planlagt å være klar for oppskyting i fjerde kvartal 2021. Det er planlagt ett etterfølgende
trinn med oppskytning av HYPSO-2. Denne nye satelitten vil ha med seg en nyttelast i tillegg,
”Software Defined Radio (SDR)”.

Målet med denne masteroppgaven er å demonstrere hvordan en kan videreutvikle en program-
vareplattform til å f̊a en fleksible arkitektur som kan støtte flere ulike nyttelaster. Integrasjon
av SDRen inn i kodebiblioteket allerede utviklet for den hyperspektrale nyttelasten er brukt som
eksempel. Design av programvarearkitekturen har vært avgjørende for utviklingen, og fleksible
(agile) utviklingmetoder har blitt undersøkt og brukt. Modularisering, omstrukturering og gener-
alisering har vært nøkkelprinsipper benyttet for å oppn̊a det ønskede resultat. Dette har resultert
i en ny programvarearkitektur som med små endringer vil kunne støtte enhver nyttelast.

ii

Preface

Private Repositories and Internal Documents

Access has to be granted to the private GitHub repositories of the NTNU SmallSat Lab organiza-
tion, or internal documents of the NTNU SmallSat Lab organization which are referenced in this
master’s thesis. This access can be requested from the author’s co-supervisor Sivert Bakken at
sivert.bakken@ntnu.no.

Personal Information

Consent has been given by everyone featured in the issues or pull requests in the appendix of this
master’s thesis to have their opinion and identity shown.

Previous work

Prior to working on this master’s thesis, the author wrote a specialization project report [1] featur-
ing the design and implementation of a telemetry service logging system of the software variables
on the same project. This work was finished during the first sprint of this master’s thesis. In
addition to this, the author had a summer internship developing software at the SmallSat lab for
the HYPSO project. Some of the chapters from the specialization project report are relevant for
this master’s thesis. The sections listed below can be found with a varying degree of similarity in
the specialization project report:

• Chapter 1: section 1.2 is based on the same section in the project report.

• Chapter 2: all sections except 2.2.3, 2.3.3 and 2.4.4 are based on sections in the project
report.

• Chapter 4: all sections except 4.3.7 are based on the project report.

Acknowledgements

I want to thank all members of the HYPSO project, and especially the ones on the software team
for all the support I have gotten throughout the semester. Whenever I needed help with something
hardware related, Roger Birkeland was always there to give me hints and tips on how to solve the
problems. Dennis D. Langer has been an important resource who always had an answer when
it came to questions related to the code-base. He would also help if I was stuck on a debugging
problem, or had ideas to discuss regarding how to solve a problem.

iii

Table of Contents

Summary i

Preface iii

Table of Contents iv

List of Figures viii

List of Tables x

Acronyms xi

1 Introduction 1

1.1 The HYPSO Mission . 1

1.2 CubeSats . 2

1.3 Integrating a Second Payload into Existing Software 3

1.4 Objective and Structure of the Master’s Thesis . 4

2 System Background 6

2.1 The HYPSO Satellite . 6

2.2 Planned Payload Hardware for HYPSO-2 . 7

2.2.1 Breakout Board (BoB) . 8

2.2.2 On-board Processing Unit . 8

2.2.3 Software Defined Radio . 9

2.3 Network Communication . 10

2.3.1 CSP . 10

2.3.2 CAN . 11

2.3.3 RS-422 . 11

iv

2.4 Payload Software . 12

2.4.1 Toolchains . 12

2.4.2 hypso-sw . 12

2.4.3 opu-system . 16

2.4.4 sdr-system . 17

2.4.5 Operating System . 17

2.5 Lab setup and testing . 17

2.5.1 Electrostatic Discharge (ESD) . 20

2.5.2 Remote Work . 20

3 Building a Flexible Software Architecture 21

3.1 Agile System Life Cycle . 21

3.2 Agile Software development . 23

3.3 Agility in the HYPSO project . 24

4 Methods and Tools 26

4.1 Software Development . 26

4.1.1 Code Quality . 26

4.1.2 Agile development . 27

4.2 Scrum . 28

4.3 Git . 29

4.3.1 Issues . 29

4.3.2 Branch . 30

4.3.3 Commit . 30

4.3.4 Pull Request . 30

4.3.5 Review . 31

4.3.6 Merge . 31

4.3.7 Development on another branch than master 32

5 Work and Results 33

5.1 Sprint 1 - Finalize Telemetry Service . 34

5.2 Sprint 2 - How to mirror opu-commands . 34

5.2.1 How to mirror OPU commands . 35

5.2.2 Making opu check work for the SDR . 35

5.2.3 CSP commands for the SDR . 35

5.2.4 Issues created . 35

v

5.3 Sprint 3 - Implementing sdr-commands . 36

5.3.1 Dividing cli opu.c . 36

5.3.2 Split the telemetry service . 38

5.3.3 Pull Requests . 38

5.3.4 Issues created . 38

5.4 Sprint 4 - Telemetry service for the SDR . 39

5.4.1 SDR log . 39

5.4.2 Telemetry service for the SDR . 39

5.4.3 Issues created . 40

5.5 Sprint 5 - User permissions for the SDR . 40

5.5.1 User permissions . 41

5.5.2 SDR commands . 41

5.5.3 Verification of CSP commands . 41

5.5.4 Update Totem time after reboot . 41

5.5.5 Pull request . 41

5.5.6 Issues created . 42

5.6 Sprint 6 - Refactoring code . 42

5.6.1 Changing ports . 42

5.6.2 Refactor . 43

5.7 Sprint 7 - Telemetry service for the SDR . 44

5.7.1 Issues created . 46

5.8 Sprint 8 - Generalizing functionality and logging of XADC values 46

5.8.1 Add payload telemetry struct to repository 46

5.8.2 Logging of xadc-values . 47

5.8.3 Generalizing pl functions . 48

6 Discussion and Conclusion 50

6.1 Planning . 50

6.1.1 GitHub Workflow . 50

6.1.2 Scrum Method . 51

6.2 Construction . 51

6.2.1 Code quality . 51

6.2.2 Functionality . 52

6.3 Testing . 53

6.4 Future Work . 54

vi

Appendix . 57

A tm log.h . 57

B Issue #471 & #472 hypso-sw . 59

C Issue #473 hypso-sw . 63

D Issue #474 & #475 hypso-sw . 65

E Issue #476 hypso-sw . 69

F Issue #477 hypso-sw . 71

G Issue #478 hypso-sw . 73

H Issue #492 hypso-sw . 75

I Issue #493 & #494 hypso-sw . 77

J Issue #495 hypso-sw . 82

K Issue #496 hypso-sw . 84

L Issue #501 hypso-sw . 86

M Issue #502, #503, #504 & #505 hypso-sw 89

N Issue #518 hypso-sw . 99

O Issue #521 hypso-sw . 101

P Issue #541 hypso-sw . 103

Q Issue #542 hypso-sw . 106

R Issue #543 hypso-sw . 109

S PR #426 hypso-sw . 111

T PR #506 hypso-sw . 121

U PR #520 hypso-sw . 127

V PR #523 hypso-sw . 130

W PR #529 hypso-sw . 132

X PR #538 hypso-sw . 134

Y PR #546 hypso-sw . 137

Z PR #547 hypso-sw . 142

vii

List of Figures

1.1 Autonomous network - internal powerpoint . 2

1.2 CubeSat dimensions. 3

1.3 Structure of Master’s Thesis. 4

2.1 Satellite connections of HYPSO-1 . 6

2.2 Satellite connections of HYPSO-2 . 7

2.3 HSI Payload Hardware with interfaces . 8

2.4 SDR with interfaces . 9

2.5 CAN network in HYPSO-2 . 11

2.6 Build executables from hypso-sw(top left), using the make-commands from the
Docker Container. 14

2.7 Structure of the hypso-sw repository . 16

2.8 LidSat and FlatSat . 18

2.9 Lab setup . 19

2.10 Lab setup, SDR . 19

3.1 Classic waterfall model . 22

3.2 Agile system engineering lifecycle framework, figure inspired by [23] 22

3.3 Development cycle in the HYPSO project . 25

4.1 Kanban: backlog, to do in progress . 28

4.2 Kanban: review in progress, done, blocked . 29

4.3 The GitHub Workflow[36] . 29

4.4 Creating a branch[36] . 30

4.5 Committing[36] . 30

4.6 Pull Request[36] . 31

4.7 Review[36] . 31

viii

4.8 Merge[36] . 32

5.1 Refactoring of cli-files . 37

5.2 Examplpe of wrapper function for PL command 37

5.3 Refactoring of tm-files . 38

5.4 Initial TM struct for SDR with units of variables. 40

5.5 New port names. 43

5.6 Added files. 43

5.7 TM structs . 45

5.8 Refactoring of tm files . 45

5.9 Initial TM struct for SDR. 47

5.10 Wrapper function and definition of generalized log function. 48

ix

List of Tables

2.1 Five-layer Internet protocol stack . 10

5.1 Sprints . 34

5.2 Issues worked with in sprint 2 . 35

5.3 Issues created in sprint 2 . 36

5.4 Issues worked with in sprint 3 . 36

5.5 Pull request of sprint 3 . 38

5.6 Issues created in sprint 3 . 39

5.7 Issues worked with in sprint 4 . 39

5.8 Issues related to sprint #5 . 40

5.9 Pull request of sprint 3 . 42

5.10 Issues created in sprint 5 . 42

5.11 Issues liked to sprint 6 . 42

5.12 Pull request of sprint 6 . 44

5.13 Issues liked to sprint 7 . 44

5.14 Pull request of sprint 7 . 46

5.15 Issues created in sprint 7 . 46

5.16 Issues worked with in sprint 8 . 46

5.17 Pull request of sprint 8 . 49

x

Acronyms

ACK Acknowledgement. 11

ADCS Attitude Determination Control System. 7

AOSN Autonomous Ocean Sampling Network. 1

ARM Acorn RISC Machine. 9, 10, 13

ASV Autonomous Surface Vehicle. 1

AUV Autonomous Underwater Vehicle. 1

BoB Breakout Board. iv, 8, 9, 20

BSc Bachelor of Science. 1

CAN Controller Area Network. iv, 7, 8, 10–12, 17, 18

CLAW Colored Littoral Zone and Algae Watcher. 6, 7, 12, 17

CLI Command Line Interface. 12, 17, 18, 49

CPU Central Processing Unit. 9

CRC Cyclic Redundancy Check. 11

CSP Cubesat Space Protocol. iv–vi, 10–13, 15, 17, 18, 23, 27, 35–37, 39–43, 53

eMMC Embedded Multimedia Card. 9

EOF End-Of-Frame. 11

EPS Electrical Power System. 6–8, 17, 18, 35, 39, 41

ESD Electrostatic Discharge. v, 20

FC Flight Computer. 7, 17

FPGA Field-programmable Gate Array. 9, 10

FT File Transfer. 15

GB Gigabyte. 9, 10

GPS Global Positioning System. 7, 8

GS Ground Station. 7, 10

xi

HSI Hyperspectral Imaging. viii, 1, 3, 4, 6–8, 11, 15, 17, 34, 38

HW Hardware. iv, viii, 7, 8, 13, 17, 21, 23, 39

HYPSO Hyperspectral Small Satellite for Ocean Observation. i, iii–v, viii, 1, 3–8, 10–12, 16, 17,
21–29, 32, 33, 50, 51, 53, 54

IP Internet Protocol. 20

LEO Low Earth Orbit. 2

M6P Multi-Purpose Nano-Satellite Bus. 6–8, 11, 17

MIO Multiplexed IO. 9

MSc Master of Science. 1

NA NanoAvionics. i, 6, 7, 10, 17

NTNU Norwegian University of Science and Technology. i, iii, 1, 8, 12, 17, 20, 22

OPU On-board Processing Unit. iv, v, 3, 7, 8, 12, 13, 15–18, 26, 32, 35–39, 41–46, 48, 52, 53

OS Operating System. v, 8, 16, 17

PC Payload Controller. 7, 8, 11, 12, 17, 18

PhD Doctor of Philosophy. 1

PL Payload. viii, ix, 1–4, 6–9, 11, 12, 15, 17, 26, 33–38, 42, 43, 45–49, 52–54

PPS Pulse-Per-Second. 8

PR Pull Request. vii, 28, 30–32, 34, 35, 38–49, 51–53, 111, 121, 127, 130, 132, 134, 137, 142

PS Processing System. 9, 10

QSPI Quad-SPI. 9

RAM Random Access Memory. 9, 10

RF Radio Frequency. 9

RGB Red Green Blue. 1, 8, 15

SDLC Software Development Life Cycle. 27

SDR Software Defined Radio. i, ii, iv–vi, viii, ix, 1–4, 6–9, 12, 15, 17–20, 22–24, 26, 32–48, 50–54

SoC System-on-chip. 9, 10

SOF Start-Of-Frame. 11

SoM System-on-module. 9

SSH Secure Shell. 20

SW Software. v, 3–5, 8, 12, 13, 17, 21–24, 26, 27, 33, 35, 36, 42, 50, 51, 53, 54

TM Telemetry. ix, 15, 18, 34, 35, 38–40, 44–48, 52, 53

UART Universal Asynchronous Receiver-Transmitter. 39

UAV Unmanned Aerial Vehicle. 1

xii

UHF Ultra-high Frequency. 1, 2, 7, 8

USB Universal Serial Bus. 8, 9, 11, 17

VCS Version Control System. 29

VPN Virtual Private Network. 20

xiii

Chapter 1
Introduction

1.1 The HYPSO Mission

Hyperspectral Small Satellite for Ocean Observation (HYPSO) is a satellite project planned and
developed from the SmallSat Lab at the Norwegian University of Science and Technology (NTNU)
with a first mission (HYPSO-1) planned to launch in the fourth quarter of 2021 followed by
a second mission (HYPSO-2) later. The team consists of multiple departments and disciplines
cooperating to finalize the satellite projects. The first mission, HYPSO-1, is a CubeSat containing
a Hyperspectral Imaging (HSI) Payload (PL) which aim is to gather, monitor and analyze ocean-
color data. This is to be done with intelligent on-board processing using the data from HSI cameras.
The desired result from this mission is to have observation of oceanographic phenomena which is
close to real time. HYPSO-2 will be an improvement of HYPSO-1. In addition to implement even
better solutions to the HSI payload, this mission will include a Software Defined Radio (SDR) as a
secondary payload to acquire sensor data where there are harsh environments which induce both
high cost and risk at operation. The mission of this PL is to gather data regarding the Ultra-high
Frequency (UHF) communication channel and on-orbit interference over selected areas such as the
Arctic.

Documentation of work done on the project is extremely important as the team changes every
semester. The foundation of the team consist of PhD candidates and postdocs which stay on
the team for longer periods of three years or longer. Nevertheless does a great part of the team
members include MSc and BSc students which only join the project for one or two semesters. A
team that changes this frequently can be an advantage in the regards that new students might see
problems differently, but the disadvantage is still the time it requires to understand the project
and different concepts. Hence, documentation is key for a successful project.

Ocean observation is motivated by the need of an increased understanding of climate change
effects. A HSI camera is used because it can detect multiple wavelengths compared to regular
RGB cameras, and one result of this is that it can discover algal blooms. Light is diffracted into
separate wavelengths inside the HSI camera, and it can detect wavelengths from 400-800nm. Hence,
it is able to detect light given off by algae blooms in the near-infrared spectra. Sea temperatures
are expected to rise, and for this reason, algae blooms will likely also increase both in severity
and frequency [2]. A reason to care about these algae blooms, is that they are a threat to the
fish farming industry in Norway as they are harmful to the fish in the farms, but also to the
ecosystems surrounding them [2]. Detecting algae blooms early with satellites can help the owners
of the farms save their fish. The satellite will then downlink data to be a part of an Autonomous
Ocean Sampling Network (AOSN) including Autonomous Surface Vehicle (ASV)s, Autonomous
Underwater Vehicle (AUV)s and UAVs illustrated in Figure 1.1 which can investigate the situation
further.

1

Figure 1.1: Autonomous network - internal powerpoint

Using a SDR to gather information on communication over the Arctic is driven by the wish to
design a communication system between Low Earth Orbit (LEO) satellites and Arctic sensors [3].
A reliable communication system is needed to give Arctic researchers faster access to scientific data
where the alternative is expeditions. The SDR is suitable as a secondary PL as its impact on the
primary mission can be limited because the measurements can be carried out in a flexible way.
Robust and energy efficient high gain antennas are not available for sensor nodes in the Arctic,
which is why the lower frequency band UHF is desired.

1.2 CubeSats

This section is based on the same section in the specialization project report [1]. Development
and launching of a traditional satellite is very expensive, both with regards to money and time.
A small satellite is significantly smaller than a conventional satellite, and a CubeSat is a special
version of a SmallSat. Since 1999 CubeSats have been developed to provide affordable access to
space for the university science community [4].

One difference between a small satellite and a CubeSat, is the fact that a CubeSat is obligated to
have a specific shape, size and weight. While a small satellite is any satellite weighing less than
300kg, a CubeSat has to be a composition of CubeSat units [4]. A Cubesat unit, 1U, is a cube
with sides of 10cm weighing up to 1.33 kg. HYPSO is a 6U CubeSat.

Specific standards is contributing to reduced costs when producing CubeSats as it is feasible to
mass-produce the components. Hence, companies can buy off-the-shelf parts. There are also
reduced costs in transporting and launching satellites of standardized sizes.

2

(a) CubeSat units. Courtesy of Alén Space. (b) 6U CubeSat. Courtesy of NanoAvionics.

Figure 1.2: CubeSat dimensions.

.

1.3 Integrating a Second Payload into Existing Software

The project needs a software platform that can support multiple payloads. Originally, HYPSO-1
was planned to include two payloads, the HSI and the SDR. However, when the final design of
HYPSO-1 was decided, the SDR PL was not included, and postponed to HYPSO-2. One of the
reasons behind this choice was capacity. A lot of the decisions regarding the Software (SW) and
its architecture were therefore made solely with respect to the On-board Processing Unit (OPU).
In addition to this, not many detailed functional requirements were made. This has resulted in a
development method where the focus is to make the code work, but not on specific requirements.
The SW architecture was not explicit at the project beginning, resulting in a gradual definition
throughout the life cycle of the system. Definitions of interfaces and architecture are required
to facilitate for modular SW. In order to make the SW function with multiple PLs, the new
components have to be integrated, and some of the SW architecture has to be redefined. Hence, a
lot of changes has to be made in the SW to make it work with multiple PLs.

The SW architecture should be able to support any PL in addition to the OPU, not just the SDR.
This includes future PLs that are not yet planned for. An important step on the way, is ensuring
that code used by more payloads is generic rather than specific so that code only has to be changed
in one place to change the functionality of the whole system. A lot of the code written for the
OPU can also work for the SDR with a few modifications. Consequently, refactoring of the code
resulting in the PLs sharing some modules is beneficial as the shared code then only has to be
updated in one place when changing functionality. Ensuring that all code is made up of modules
with specified inputs and outputs, will also give developers a better overview in the future. Making
everything generic will be more time consuming, but this will also make it easier for others to make
changes in the future. Both adding more payloads, and changing the functionality already existing
will be easier when the SW is made more modular.

3

1.4 Objective and Structure of the Master’s Thesis

The overall goal of this thesis is to demonstrate how to further develop a SW platform to have a
flexible architecture which can support multiple PLs using the integration of the SDR PL into the
code repository already working for the HSI PL as an example. In addition to this, the development
done as a part of the thesis will contribute to the HYPSO mission with useful SW. A key aspect of
the work done, is planning and design of how to change the code repository and develop it further.
As background research before the planning of the SW to be implemented began, different SW
architecture fundamentals were investigated in order to write code which is as useful and reusable
for others as possible. These fundamentals were used when planning for the implementation of
code, and the main focus was to generate generalized and modular code.

The SW implementation consists of refactoring and improving old code in addition to developing
new code. To be able to do this as effectively and with as generic solutions as possible, the author
came up with suggestions which were discussed with the other team members before implementing
the solutions. After implementation, testing of the functionality was performed both by the author
and other team members. The main design and implementation job has had a focus on integrating
the SDR into the already existing SW used to communicate with the HSI PL. Furthermore, the
telemetry logging developed in the specialization project report [1] will be completed with a few
additional features. A discussion will reflect upon why it is important for a project to have
generalized and modular code, and which considerations were made during development of the
code related to this thesis.

The structure of the thesis is as illustrated in Figure 1.3. This differs from a general master
structure due to the fact that Chapter 2 and Chapter 3 together make up the background research
of the thesis. Chapter 2 is a thorough explanation of the (planned) structure and connections
of HYPSO-2 relevant for this thesis, and Chapter 3 includes the research done by the author on
principles which should be satisfied in order to build a flexible SW architecture.

Figure 1.3: Structure of Master’s Thesis.

The contents of the different chapters are as listed below:

4

• Chapter 1: brief introduction with a main focus on the HYPSO mission, the satellite and
the goal of the thesis.

• Chapter 2: background theory of the system to understand the work done. Explanation of
the satellite, its structure and connections.

• Chapter 3: on principles and advantages of developing a flexible and modular SW architec-
ture.

• Chapter 4: describes the different methods and tools that have been used while developing
code for the project.

• Chapter 5: gives a summary of the work done and the results obtained.

• Chapter 6: a discussion and summary of the obtained results, and what could have been
done differently. This chapter also features a section on future work.

5

Chapter 2
System Background

In the specialization project report [1], the author focused on explaining the satellite structure and
connections of HYPSO-1. This chapter will rather explain the plans for HYPSO-2, as the master’s
thesis regards the integration of the second PL planned for this mission. The present chapter will
introduce theory about the satellite, its structure and connections relevant for the work performed
by the author during the scope of this thesis. It is based on the corresponding chapter of the
project thesis [1].

2.1 The HYPSO Satellite

Figure 2.1: Satellite connections of HYPSO-1

As mentioned in Section 1.1, HYPSO-1 consists of a satellite bus developed by NanoAvionics
(NA) and a HSI payload while the most important difference for HYPSO-2 is the secondary PL,
the SDR. NA specializes on CubeSats, and delivers a 6U nanosatellite bus, M6P with dimensions
10cm × 20cm × 30cm , to the HYPSO project. As stated on NAs website [5], the M6P satellite
bus will let the customers focus on the goals of the mission and implement high-level mission tasks
only. The different parts and interfaces of HYPSO-1 are shown in Figure 2.1, while the differences
in HYPSO-2 are illustrated in Figure 2.2. The power cables connected to the Colored Littoral
Zone and Algae Watcher (CLAW) and the SDR from the EPS are not present in the figures, but
are illustrated in Figure 2.9 in Section 2.5.

6

Figure 2.2: Satellite connections of HYPSO-2

The different modules of the SDR and the HSI payload, CLAW-2, will be explained in Section 2.2.
Listed below are the different modules in the M6P, where some of its subsystems are excluded
from the figure:

• FC: the Flight Computer performs activities related to the ADCS and collects data from the
sensors and GPS. Scripts can also be used on the FC in order to make it execute different
commands at given times. One example of such a command is booting the OPU or make it
take an image.

– GPS: the Global Positioning System is the navigation system of the satellite.

– ADCS: the Attitude Determination Control System is responsible of pointing and slew
maneuvering. It has a redudndant pair of avaliable actuators which are based on differ-
ent technologies.

• EPS: the Electrical Power System collects its energy from the solar panels and stores it
in batteries. Whenever other subsystems need power, the EPS provides and regulates it.
Moreover, it is equipped with fail-safe mechanisms making it avoid electical damage, both to
other subsystems and itself.

• PC: the Payload Controller controls every interface between the PLs and the satellite plat-
form. This also includes the CAN bus explained in Section 2.3.2 and power connections from
the EPS.

• UHF: the Ultra-high Frequency radio communicates with the Ground Station (GS).

• S-band: this radio is also used to communicate with the GS. The radio has larger bandwidth
and throughput than the UHF, but had the disadvantage that it requires the satellite to point
directly at theGS it is communicating with.

• Solar Panels: Attached to the satellite frame, used to collect energy from the sun to the
satellite.

More information about the satellite bus can be found on NAs website [5].

2.2 Planned Payload Hardware for HYPSO-2

HYPSO-2 is planned to have two payloads; in addition to the main HSI payload which is called
CLAW-2, this satellite will also feature a SDR payload. The different HW instruments of the two
PLs, OPU[6] and the SDR [7] are listed below:

• On-board Processing Unit (OPU):

7

– UltraBOB: on-board processing board and interface to satellite PL. Combination of a
Breakout Board (BoB) and a UltraZed running the SW of the on-board processing.

– HSI (Hyperspectral Imaging): for high-spectral images.

– RGB Camera: used to georeference and register the images obtained with the HSI
camera.

– Payload structure: support for ensuring the mechanical integration on the M6P.

• Software Defined Radio (SDR):

– Totem: high-performance nanosatellite SDR platform. Features an UHF front end,
embedded linux and has support to deploy multiple SDR applications

HYPSO-1 has a quite similar PL HW instruments as the ones listed for HYPSO-2 above. The
main difference is that the SDR is not included in HYPSO-1. In addition to this, HYPSO-1 has a
PicoZed instead of an UltraZed. The payload HW relevant for this thesis are the Breakout Board
and the OPU, which features the UltraZed, in addition to the TOTEM. These will be explained
next.

2.2.1 Breakout Board (BoB)

The different versions of the Breakout Board are developed at NTNU, and their purpose is to be
interfaces, both mechanical and electrical, between the other modules of the satellite [8]. HYPSO-
1 use BoBv3, while HYPSO-2 will use BoBv4 which is still being developed at the SmallSat
Laboratory. As seen in Figure 2.3, the BoBs are used to route signals and power, and the interfaces
are slightly different for HYPSO-1 and HYPSO-2. For HYPSO-1, the BoBv3 is connecting the
PicoZed to the cameras and the M6P satellite bus. The HSI camera is connected through a Gigabit-
Ethernet cable and using a HIROSE cable for power and flash signal. The PicoBoB is connected
to the PC with a CAN interface which will be explained in Section 2.3.2. The BoBv4 in HYPSO-2
will connect the UltraZed to the cameras and the M6P satellite bus. Here, the planned interface
for the HSI camera is a USB3 cable in addition to the HIROSE cable for flash signal and power.
The reason for upgrading the Gigabit-Ethernet cable from HYPSO-1 to a USB3 cable is to enable
for a higher frame rate. As mentioned in Section 2.3.3, the UltraBoB is interfacing with the PC
with a RS-422 cable for faster data transfer in addition to the CAN bus. Both the PicoBoB and
the UltraBoB connect to the RGB camera with a USB2 cable, to the EPS with powerlines and to
the GPS with a PPS(Pulse-Per-Second) signal which goes through the PC.

(a) HYPSO-1: PicoBoB (b) HYPSO-2: UltraBoB

Figure 2.3: HSI Payload Hardware with interfaces

2.2.2 On-board Processing Unit

The On-board Processing Unit (OPU) is the control part of the HSI Payload which performs
processing on the HSI data. It is the processing platform which together with the HSI camera and
the RGB camera forms the PL. The OS (Operating System) running on the OPU is Embedded
Linux, which will be explained in Section 2.4.5. The OPU in HYPSO-2 will feature an UltraZed

8

SoM (System-on-module) developed by Avnet which will be mounted on the BoB as seen in
Figure 2.3, resulting in the UltraBoB. From the designer’s guide [9], the specifications of the
UltraZed are as follows:

• PS (Processing System): Xilinx XCZU7EV-1FBVB900 industrial grade SoC (System-on-
chip) featuring

– ARM (Acorn RISC Machine) processor.

– Two Central Processing Unit (CPU) cores.

• Programmable Logic: FPGA (Field-programmable Gate Array).

• Memory:

– 4GB RAM (Random Access Memory)

– 8GB eMMC (Embedded Multimedia Card)

– 64 MB QSPI (Quad-SPI)

• Interfaces:

– Gigabit Ethernet

– USB 2.0 controller

– MIO (Multiplexed IO) pins

– Three 100-pin Micro Headers

The 152-pin Micro Headers are holding the electrical interfaces of the UltraZed. These lets the
UltraZed interface with the BoB to construct the UltraBoB. Hence, the UltraZed performs pro-
cessing on the PL when mounted on the BoB which lets the UltraZed interface with other modules
on the satellite.

2.2.3 Software Defined Radio

The processing on the second PL is done by the TOTEM SDR which also runs a Linux kernel
on a dual ARM Cortex-A9 processor. TOTEM was chosen due to cost and schedule constraints,
and consists of an analogue RF (Radio Frequency) front-end and a SDR motherboard with an
RF transceiver and a SoC based on Xilinx boards(Zync 7020). An illustration of the SDR and its
interfaces can be seen in Figure 2.4. The programmable logic of the TOTEM is also a FPGA.

Figure 2.4: SDR with interfaces

From the datasheet [7], the specifications of the TOTEM are as follows:

9

• PS (Processing System):a SoC based on Xilinx boards(Zync 7020) (System-on-chip) featuring
a Dual ARM Cortex-A9 processor.

• Programmable Logic: FPGA (Field-programmable Gate Array).

• Memory:

– 1GB RAM

– 1GB NAND Flash

• Interfaces:

– CAN Bus

– UART

– JTAG

– Ethernet

2.3 Network Communication

The following section is a modified version of what was presented as Section 2.2 in the project
thesis [1] written by the author. All subsections apart from Section 2.3.3 are inspired by this.

The understanding of the different communication protocols that are used in this project can
be obtained by looking at the five-layer network model seen in Table 2.1. This network model
is explained in [10]. Viewing the complex network communication in layers can increase the
understanding of it, as opposed to considering it as a single system. System layers provide structure
to network designers when they are designing protocols. Every layer in the model provides a service
to the layer above by performing certain actions itself and using the services from the layer directly
below it. Each layer’s implementation is independent of the other layers as the implementation in
encapsulated, they only use each other’s services.

Layer

5 Application
4 Transport
3 Network
2 Link
1 Physical

Table 2.1: Five-layer Internet protocol stack

The implemented protocols in the HYPSO CubeSat related to this thesis are the link layer protocol
CAN (Controller Area Network), and the transport layer protocol CSP (Cubesat Space Protocol).
The transport layer provides transportation of application-layer messages between application end-
point, and is providing increased reliability for data delivery. The link layer delivers finitely long
messages between two nodes on the route from one host to another. As seen in Table 2.1, the
transport layer is above the link layer. Thus, CAN provides services to CSP.

2.3.1 CSP

The Cubesat Space Protocol is a transport layer protocol developed specifically for CubeSats.
CSP has a router-core (Network Layer) which again features interfaces to the link and physical
layers in the satellite [11]. Thus, the CSP network has multiple ways of connecting its nodes. The
payload and its subsystems in the satellite, employs CSP as its external communication protocol
for communication with the satellite bus. The M6P satellite bus from NanoAvionics communicates
using CSP both between its internal sub modules and externally to the GS [12]. Each sub module
in the satellite has a unique CSP address, and the operator at the GS will have one as well [13].

10

2.3.2 CAN

The CAN-bus is a physical connection between different modules of the satellite. The bus has two
wires for transportation, ideally twisted to reduce noise. The extended CAN is a protocol in the
link layer, and it is specified by the ISO-11898:2003 standard [14]. This standard states that CAN
has a maximum signal rate of 1 Mbps when the bus has 30 nodes or less and a length of up to
40m. The standard also lists different features of the protocol:

• Has a 29-bit identifier field. (11 for standard CAN)

• Can send a maximum of 8 Bytes per frame.

• Does CRC (Cyclic Redundancy Check): contains checksum for verification of the received
messages integrity.

• Has ACK (Acknowledgement): used to acknowledge the integrity of the data.

• Marks SOF (Start-Of-Frame) and EOF (End-Of-Frame).

There are two CAN-buses in the satellite which are routed through the Payload Controller. CAN1
connects the modules of the M6P bus. CAN2 connects the two PLs to the PC, which communicates
the signals to the rest of the M6P. The way the subsystems are connected can be seen in Figure 2.5.
The different CAN interfaces will route CSP packets encapsulated in CAN back and forth, making
the different subsystems communicate.

Figure 2.5: CAN network in HYPSO-2

Another link layer protocol in the HYPSO-1 satellite is the Gigabit Ethernet, which is a sub-
standard of Ethernet. This is used as an interface between the PicoBoB explained in Section 2.2
and the HSI camera. Currently, this protocol is considered changed for a USB3 for the HYPSO-2
because it might enable for higher frame rates.

2.3.3 RS-422

The following section is based on an internal document regarding the A difference for the HYPSO-
2 compared to the HYPSO-1 is the RS-422 which at the moment is planned to be another link

11

layer connection in addition to the CAN interface between the CLAW-2 and the PC. This can be
seen in Figure 2.5 from Section 2.3.2. The RS-422 is a definition of the electrical signal interface
between nodes of a serial data bus which transforms a ground referenced serial input signal to a
differential serial output signal with a different voltage at the transceiver side, and vice-versa on
the receiver side [15]. The reason for adding this to HYPSO-2 is that CAN has limited throughput,
and the actual overhead of CAN was larger than expected and not sufficient when transferring large
amounts of data from the PL. RS-422 can be configured to a higher data transfer rate compared
to CAN. The anticipated difference between RS-422 and CAN is a net rate on 1-3Mbps for RS-422
compared to 0.4Mbps for CAN. For HYPSO-2, CAN will be kept in parallel as a backup.

2.4 Payload Software

The following section is a continuation of Section 2.4 merged with section 4.4 in the specialization
project report [1]. The code developed for this master’s thesis, is a part of the code under version
control on GitHub for the NTNU-SmallSatLab organization. GitHub and its methods will be
described in Section 4.3. There are three repositories which are relevant to understand in order
to understand the development done in this thesis. The main one is hypso-sw [16], which is the
repository the author has developed code for. There has not been written any code by the author for
the remaining two, opu-system [17] and sdr-system [18]. These repositories contain the necessary
tools for building the firmware for the respective system, and they are used by hypso-sw to build
the executables. Within the scope of this thesis, the author has solemnly used the repositories to
build executables in hypso-sw.

2.4.1 Toolchains

In the context of SW development, the Toolchain refers to the process of refining the source code
files into a program or other files that are needed for the system. As listed in [19], the process
of creating a program of code can consist of several different steps such as a static analyzer and
a compiler. The static analyser will determine if the program behaviour is correct with the help
of program invariants, while the compiler will be used to translate the developed code to machine
code. A toolchain can consist of other steps as well. The toolchain used for the hypso-sw repository
consists of makefiles. These makefiles will link files developed by the SW team with other libraries
to compile the source code.

Docker ensures that the building of the executables from the hypos-sw repository is consistent
within the team. The reason for using it is that a specific toolchain is needed for compiling the
source code. The way docker handles this is by running a virtual environment - a docker container
- on any computer[20]. Specific software is installed inside the container so that when a developer
uses it, the software accessible will be the same regardless of the computer it is run on. Thus,
the docker container can be used to contain the specific toolchain needed to compile the source
code for hypso-sw. The container will guarantee that the same environment is used every time
the exectables are built, not depending on the operating system or the host computer used.

2.4.2 hypso-sw

The following is based on the authors experience using the repository, in addition to the repository
itself [16]. All source code contained in this repository is written in C. The source code generates
executables, where the three that are relevant for this thesis are the software to run on the OPU,
the software to run on the SDR, and a Command Line Interface (CLI) to communicate with the
two others using CSP. Thus, the repository compiles one client that pairs up with both PL services:

• hypso-cli: compiled for regular computers(x86). The executable will parse user input and
create CSP packets to be distributed over the CAN network in the satellite. This is the main
tool for communicating with the satellite.

12

• opu-services: mainly compiled for ARM which is the processor of the OPU. It can also
be compiled for x86 architecture for SW testing that does not require HW. This version
was mostly used early in the timeline of the project and is not relevant for this thesis. The
executable will interpret CSP packets, and performs the actions requested.

• sdr-services: compiled for ARM which is the processor of the totem. Just like for
opu-services, a version can be compiled for x86 architecture. The sdr-services executable
will interpret CSP packets similar to opu-services, and perform the actions requested.

To make the process of compiling the SW easier, the toolchain is encapsulated inside a Docker
container as explained in Section 2.4.1. Hence, the code is compiled inside the container by the
command make to generate hypso-cli, opu-services and sdr-services for x86. To generate
the ARM version of opu-services, the developer writes the command make ARCH=arm inside
the Docker container. The sdr-services is generated using the command make ARCH=sdr. The
order of the generation of the executables can be seen in Figure 2.6 from starting the Docker
container inside hypso-sw/scripts. The script will scan the file CMakeLists.txt for dependencies
for the executable which is to be built, and the connections between the build process and the
CMakeLists.txt is illustrated in the figure with the numbered boxes instead of drawing out each
arrow as this version is clearer. This file has to be changed every time a new source file is added to
the hypso-sw repository. The new file has to be added to the list of executables for the applications
the files are to be used in. The toolchain works in reverse for building sdr-services compared
to opu-services. To be able to build sdr-services, a pre-compiled version of sdr-system has
to be present in the same repository as hypso-sw. The reason for this is that the compiler has to
be built before sdr-services can be built in Docker. For the OPU it is the other way around.
The compiler for opu-services is already installed in the Docker container, and it is ready to be
built. To be able to build opu-system, a pre-built version of opu-services has to be present in a
hypso-sw/build/arm folder located at the same computer as the opu-system repository in order
to include the SW in the system.

13

Figure 2.6: Build executables from hypso-sw(top left), using the make-commands from the Docker
Container.

14

When sdr-services starts running on the SDR, or opu-services starts running on the OPU,
several threads which function as services will be initialized. The services accept CSP connections
sent to their ports by or another client interface. Two services are related to the cameras, and are
only running on the OPU:

• RGB service: this task handles the interfacing with the RGB camera, and the commands
related.

• HSI service: this task handles the interfacing with the HSI camera, and typically captures
and processes HSI cubes.

The SDR does not have any private services yet, but there will probably be developed a service in
the future to run application code related to the radio. An example of use for this service would
be to gather data connected to the on-orbit interference over the Arctic. The rest of the services
run on both PLs, and their tasks are as follows:

• FT (File Transfer) service: this task manages file operations.

• Shell service: this task accepts commands and executes them in a shell.

• TM service: this task handles requests related to TM.

• CSP service: this task task accepts all CSP connections that are not bound by any of the
other services.

The structure of the repository the structure at the present time is illustrated in Figure 2.7. It
includes the main directories in addition to the files that were significant in the development part
of this thesis.

15

Figure 2.7: Structure of the hypso-sw repository

2.4.3 opu-system

The explanations in this subsection are based on the README-file of the repository [17] and the
authors experience with it. The authors use of the repository opu-system in the thesis consisted of
generating bootfiles for the OPU. The bootfiles are used for booting the OS of the OPU, meaning
the files locate, load and initialize the OS when the OPU is powered on. The main bootfile of
the OPU is the image image.ub. As for now, the test-setup for the OPU in the lab is the one of
HYPSO-1. Hence, the bootfiles are built for the PicoZed, not the UltraZed. They can be built
either in Prototyping Mode, which only creates a primary image, and where opu-services has to
be started manually after boot. This version can be good for testing purposes as the developer
might want to test different versions of opu-services. The other mode, Deployment Mode, is
the one that is to actually run on the satellite after deployment. Here, opu-services will start
automatically at boot. In addition to this a backup image, the Golden Image, will be generated.
The current test setup is run in Deployment Mode, and the development done with regards to this
thesis did not require this image to be changed. Hence, the repository was only used by hypso-sw

to build opu-services.

16

2.4.4 sdr-system

As for the OPU, the explanations in this subsection are based on the README-file of the repository
itself [18] and the authors experiences. The content of the repository is the tools necessary for
building the TOTEM firmware which is provided from Alén Space. Just like hypso-sw, sdr-system
uses a Docker container for the build process. During the scope of the master’s thesis, the firmware
was never a problem, and therefore never had to be updated by the author. Thus, this repository
was mainly used in order to understand the system in addition to building the sdr-services from
. For the building of sdr-services, a version of sdr-system with a prebuilt firmware has to be
present in the same folder as the hypso-sw repository which the sdr-services is built from.

2.4.5 Operating System

As mentioned in section 2.2.2 and section 2.2.3, both the OS running on the OPU and the one
running on the SDR will be Embedded Linux. The version running on the OPU is Linux based
on the yocto project [21]. The embedded Linux system which is run on the TOTEM is built using
Buildroot [18]. Linux is a free and open-source OS. Hence it can be customized for a particular
use-case. Embedded Linux is a result of such a customization to generate a light-weight version of
Linux. The use-case in mind in the yocto project is embedded devices as for instance HYPSO’s
OPU and SDR.

2.5 Lab setup and testing

Testing is done in a similar way as for the specialization project report [1], thus the following section
is inspired by Section 2.6 regarding the testing of the code developed for this. To understand the
testing done of the different SW functionality developed, there are several parts of the HW setups
in the lab which are relevant. The focus in the earlier parts of this chapter has been on HYPSO-2,
as the development of code done within the scope of this master’s thesis has been for this version
of the satellite. Even though that is the case, the testing has been done on a CLAW-1 setup
for the OPU part as this is what is present in the lab for the time being. Thus, testing is done
on a PicoZed, not an UltraZed. A RS-422 cable between the PC and the OPU is not present,
and neither is the USB3 cable for the HSI camera. The SDR setup in the lab represents what is
meant to be in HYPSO-2. The testing of the OPU is done on a machine called LidSat while the
machine for testing the SDR is called Totem, and they are both located in the SmallSat Laboratory
at NTNU. Furthermore, one part of the test setup is located at NanoAvionics (NA)’ facilities in
Vilnius, Lithuania. This part is called FlatSat, and it is connected to LidSat through a virtual
CAN-bridge. An illustration of the whole setup can be seen in Figure 2.8.

Most of the satellite modules from the M6P bus explained in Section 2.1 are present in the test
setup. This includes the EPS and the PC which are parts of LidSat, while the FC and the rest of
the satellite bus are parts of the FlatSat[22]. The EPS is used when testing to check the power
status of the different PL modules, or to turn them on and off. The PC connects the payload to
the rest of the satellite bus. The developer can connect to the EPS through hypso-cli with CSP
address 4 using the command shell remote 4 <timeout(s)>, and similarly using CSP address 6
for the PC. As seen in Figure 2.8, the equipment in the SmallSat Laboratory at NTNU includes the
HSI payload and the SDR payload in addition to the mentioned M6P modules. From hypso-cli,
the user can connect to the OPU through CSP address 12, and the SDR through CSP address 13.
Further is hypso-cli itself started on the LidSat from CSP address 14.

There are two CLIs in use in the lab for testing purposes. When possible, it is preferable to use
hypso-cli, which was explained in Section 2.4.2. This has been sufficient for all testing done
related to this thesis. This is used for communication with the payloads, both the OPU and the
SDR. It can send commands to the PLs, and remotely log into them. NanoMCS is the other
CLI in use in the lab, and it is developed by NA. NanoMCS can be used both for operating the
FlatSat and the subsystems in the lab, and it is typically used if there is a lack of functionality in

17

Figure 2.8: LidSat and FlatSat

hypso-cli. NanoMCS was used to parse the log files generated by the Telemetry-Service in this
thesis. While testing, the CLI is run on the operator computer in Figure 2.8. Further, the user
input is parsed into CSP commands. These commands will then be distributed over the CAN-
network in the satellite. When the OPU is running with its services, these will accept the CSP
commands sent from the CLI, and with the added functionality of this thesis, the same applies to
the SDR.

To enable for parallel testing of the OPU, there are two PicoBobs (Section 2.2) in the test setup.
One PicoBob means one OPU, hence two people can perform testing at the same time with two
PicoBobs. With a lot of team members working remotely (Section 2.5.2) due to COVID-19 this has
been even more important so that multiple people can access OPUs at the same time. Upon starting
hypso-cli, the user tells it which PicoBob to send messages to. During the scope of the master
thesis, all testing done by the author has been through ssh which is explained in Section 2.5.2.
Running of hypso-cli is done by signing in to the LidSat, this is also where opu-system is
started from which is automatically running opu-services as explained in Section 2.4.3. To run
sdr-services, the developer has to sign in to the TOTEM, and start the preferred version through
CSP address 13.

In conclusion, the author will use a running version of hypso-cli on the operator computer to
communicate with a running version of opu-services on the OPU, and a running version of
sdr-services on the TOTEM, in order to test new functionality developed in hypso-sw. Images
of the setup in the lab are shown in Figure 2.9 and Figure 2.10. From the left in Figure 2.9 are:
the CAN-adapters are the two boxes left of the black lid, the PC is the grey box, the EPS is in
the bottom right corner and the PicoBoB is located in the top right corner. The cameras are not
featured in the image. The SDR is connected to the EPS with a long power cable, and to the PC
with one of the CAN adapters. The SDR itself is featured in Figure 2.10, and the CAN bus can
be seen in the top right corner..

18

Figure 2.9: Lab setup

Figure 2.10: Lab setup, SDR

19

2.5.1 Electrostatic Discharge (ESD)

Both the SDR, the BoB and the PicoZed/UltraZed must be protected against Electrostatic Dis-
charge (ESD). Thus, a part of the SmallSatLab is ESD secure, and people handling equipment
sensitive to ESD must do so in this area. All instruments pictured above are located inside the
ESD secure zone of the lab. In addition to this, the operator must also use ESD protected gear
including a coat, a bracelet and shoes.

2.5.2 Remote Work

COVID-19 has made home-office more common. To be able to continue testing in the lab while
working from home, VPN and SSH have been crucial. A lot of the lab equipment must be ESD
protected as mentioned in Section 2.2, thus it is preferable to reduce the amount of physical contact
with the lab setup and SSH is used in the lab to access the computers inside the ESD secure area.
Thus SSH is also used in the lab when testing software

VPN is short for Virtual Private Network, and allows the user to create a secure connection to
another network. This has been used to connect to the network at NTNU to further be able to
connect to the computers at the SmallSat lab using SSH.

SSH is short for Secure Shell, and allows the user to access the terminal shell on the target computer.
When using SSH, you must know the IP address of the target computer. To prevent the computers
in the lab from acquiring new IP addresses on reboot, their IP addresses are static. Hence, the IP
address of any computer in the lab is always known.

20

Chapter 3
Building a Flexible Software Architecture

There are multiple ways of developing a system. A traditional system life cycle is a linear sequence
of stages like the waterfall model [23]. In comparison, the agile system life cycle can exist in
multiple stages at the same time, and studies have shown that agile systems provide sufficient
and necessary conditions for a system to have adaptability and flexibility [24]. This can be a
benefit when the stakeholders of a project wish to change their demands, or the requirements of
the project are unknown in the beginning. When developing scientific code in Software projects
where the requirements are changing frequently or are unknown at the beginning of the project,
an agile approach is preferred compared to a traditional approach [25]. The HYPSO team has
chosen the Scrum methodology as the project manager had familiarity with using it from earlier
projects in SW and HW for developing agile products. Further, a few of the students had used
it before as well. This type of system development is desired as the requirements and feature
demands of the project are changing a lot. Sletholt et al. [26] performed a literature review based
on 35 different agile practices leading to their findings of the agile practices such as Scrum being
well fit for activities related to testing. This holds for the HYPSO project as it is a technology
demonstrator which demands a lot of testing.

In the context of systems engineering, Agile can be defined as ”Adaptability and sustainment of
adaptability” [24]. A system benefits from performing good in unpredictable and uncertain envi-
ronments, and the agile systems-capability is supposed to address risky, unpredictable, uncertain
and variable system environments, and adapt to them. Hence, the use of agile methodologies in
software often focuses on the ability to react to changes requested from customers as well as a
changing environment [27]. Using methods of agile development in software increased in frequency
in the end of the 1990s, leading up to the publishing of the ”Manifesto for Agile Software Develop-
ment” [28] in 2001, featuring four concepts and twelve backup principles. The manifesto focuses
on the importance of being able to respond to a change rather than following an exact plan, coop-
erate with the customers over negotiate on a contract, having a software which works instead of
comprehensive documentation, and interaction with individuals over tools and processes [28].

Agile systems are designed to accommodate for structural change [24]. Hence, they can be changed
in ways such as restructuring with regards to internal relationships, up- or down-scaling an aug-
mentation to fit to a changed environment. The methods used in this master’s thesis for agile
development and design of an agile architecture will be explained in Chapter 4 and connected to
the theory on agile systems and architecture presented in this chapter.

3.1 Agile System Life Cycle

Whereas a traditional system life cycle from concept to disposal, consists of a linear sequence of
stages, where the stages are non-repeating, the agile life cycle works differently [23]. One example

21

of a traditional life cycle is the waterfall model which is illustrated in Figure 3.1.

Figure 3.1: Classic waterfall model

An agile system differs from this model because it exists in a dual state where it is both in the
state of development, and in the state of utilization, at the same time [23]. From the definition,
the agile systems engineering process is capable of responding to an environment as it changes. In
Dove and LaBarge, a sequential system engineering maturity transition is described [23], where
each of the stages is a combination of all the previous stages, running concurrently as pictured in
Figure 3.2. In order to achieve this, it is important that the architecture of the system facilitates
change which is justified throughout the development in addition to subsequent support stages and
utilization. The production stage will be the first stage in the agile development life cycle which
puts a working product into the user environment. Within the next two stages; utilization and
support, subsequent increments and development iterations take place [24]. The SW management
process, Scrum, is connected to this type of agile development. This is the planning-tool used of
the SW team of the HYPSO-project and will be explained in Section 4.2.

Figure 3.2: Agile system engineering lifecycle framework, figure inspired by [23]

As for the HYPSO life cycle, the System and its modules are subject to continuous development.
The HYPSO project is a technology demonstrator, and the purpose of developing the satellite is
to contribute to new knowledge rather than mass-production to earn money. A typical scientific
software development project continues as new projects researching different objects, perhaps with
different developers wanting to change the functionality [26]. This is the case when expanding the
HYPSO mission to include the SDR, and the technology will likely be used in different satellite
projects at NTNU in the future. In addition to this, the team changes every semester because
it mainly consists of master students. New ideas come with new developers contributing to the
team. As a result of the above, being able to change the requirements and add new functionality
is crucial for the project. When requirements change, or a new kind of performance is requested,
this might change the whole architecture. A traditional life cycle with a pre-defined end result
through a negotiated contract would not give the team the same possibilities of changing the system
or software in the desired ways, and the agile life cycle is preferred as planning of scientific SW
development projects can be challenging.

22

3.2 Agile Software development

The agile workflow described in Section 3.1 facilitates for making changes in the code base of
the SW as the requirements of the project changes. In order to make those changes efficient, an
agile SW architecture is the desired goal of the code base. In Dove and LaBarge, a foundation
of fundamentals for agile systems creation is provided [24]. The research done includes empirical
studies and discoveries regarding man-made systems including enterprise processes, manufacturing
processes, HW systems and SW systems. They have concluded that an agile architectural pattern
consists of three important elements: drag-and-drop of different encapsulated modules, plug-and-
play interconnection enabled by a passive infrastructure, and an active infrastructure [24]. It is
claimed that if the architecture includes these elements, it improves the systems adaptability and
flexibility.

A module can be defined as a self-contained encapsulated unit having interfaces which are defined
precisely and complies with the plug-and-play passive infrastructure. This simplifies the drag-and-
drop in the system and connection to other modules [24]. Having a system containing encapsulated
modules is essential to have their functionality and methods independent of other modules. To
achieve this in SW, careful planning and clear definitions of modules are key factors. A clear
definition will be beneficial when deciding what functionality to put inside of a module, and ensuring
that every part of the code is in the right place. When defining a module, the SW developer needs
to decide what is supposed to go inside of it, what functionality the module should offer, and
what the module should provide for the rest of the SW system. In the context of this master
thesis, modularity is important between the different modules in the SW architecture. A change
or an improvement could be made rapidly to the implementation or internal design of a subsystem
when the change is not impacting its external function, fit or form. When developing a system,
it is desired with an effective replacement of modules and the ability to make internal changes
without side effects. This is also a central point when planning for further SW development using
issues in GitHub, which will be explained in Section 4.3.1, and during the scrum meetings where
development is planned, which will be explained in Section 4.2.

Modularity is also a factor when the different teams are working together on the satellite, each
contributing with their speciality, and the HW and SW teams are connecting the whole system and
its different functionalities together. Once a requirement is defined by another team, the SW team
can deliver incremental capabilities to meet the requirements as soon as possible. The modules in
hypso-sw are clearly defined, and an important part of changing the code base to integrate the
SDR has been to put the new code into fitting modules as well as defining new modules wherever
code has been changed. This method is called refactoring and is heavily included in the agile
development, due to the common step of changing code without changing semantics [29]. This is
often done to prepare the code for development of new components or improve its quality and can
be connected to. One example is that it is better to divide the functionality into more files than
having a lot of different functionality in one place. When the module has a specified functionality,
input and output, it will not affect other modules in unpredictable ways. This results in a good
overview of the code-base, and easier error detection.

The drag-and-drop connection between the modules is provided by the passive infrastructure. It is
ensuring that the different encapsulated modules are isolated, resulting in less side effects and easier
implementation of new functionality [24]. These connections are related to Section 2.3 regarding
network communication. The connection of the different modules within hypso-sw, which is the
part of the HYPSO project the author has worked with, is done through CSP packets. The
implementation of these connections were already finalized by another student to enable for the
different modules in the SW to be plug compatible, before the author started writing this master
thesis. Clear interfaces are beneficial for replacement and integration of different modules within
the system. Clear interfaces is also in mind when the author is defining inputs and outputs of
different functions in order to make them generalized.

The active infrastructure is an important element in an agile system as new requirements will result
in new system configurations. For enabling of new configurations it is important to ensure that the
existing modules are upgraded, insufficient modules are removed, and new modules are added [24].
An important part of the integration of the SDR into the existing SW has been to keep track of and

23

change the modules when it seemed beneficial to the author. Upgrading of modules can include
reusing modules or parts of modules instead of writing the same code over again, which is connected
to the modularization and refactoring of code. In this master, typical reuse consists of refactoring
code to be able to reuse functionality which is similar for the different payloads. Another part
of the active infrastructure, is always having the sufficient modules ready for deployment. This
is connected to the agile building block of continuous integration which is crucial for the reason
of not breaking the functionality which already works with the new changes or implementations.
The focus here is on uploading the source code which is being developed regularly into a shared
repository within the team. This is done to facilitate for automated building of the code in addition
to automated quality control tools and tests made for detecting issues early [29]. The SW team
in the HYPSO project are working in such a way that the master branch of hypso-sw is always
ready for deployment. No new functionality is added to this part of the SW before team members
have tested and approved the code to work. This method of working is connected to the agile life
cycle and will be explained in Section 4.3.

These fundamentals are appropriate with regards to the best practices for scientific SW devel-
opment according to Wilson et al. [30] which are stating that they include: writing programs
which are understandable for the people which are going to read them, re-use code when it is
possible, changes should be made incremental, make modular code over copy pasting, use version
control, refactoring code rather than explaining the functionality, and collaboration with code re-
views. This type of agile design makes it easier to change the system. Different types of structural
changes could be adding functionality, restructuring of internal subsystems, scaling or reshaping
in order to make the system compatible with a different environment. To enable for these types
of changes, an architecture which accommodates structural change is required. This architecture
will consist of many different connected components interacting with each other in specific ways.
Using these types of principles in SW development will also make a code base which is an easy
subject to change. This is a benefit when developing code for a satellite where the demands can
change suddenly. Dividing the code into modules with clear interfaces will make it easy to find the
part of the code which has to be changed to make the system function as desired. Furthermore,
it will simplify the job of changing different parts of the code without it affecting the rest of the
system when the inputs and outputs of functions and modules are clear. With regards to these
fundamentals, the main focus of this master’s thesis will be the module element and maintaining
an active infrastructure. A lot of the modules had to be changed in order to integrate the SDR
into the code-base, in addition to adding new modules, and deleting the ones not needed anymore
after changes were made.

3.3 Agility in the HYPSO project

Agility is used in multiple ways in the HYPSO project, and the two most relevant ways with
regards to this thesis are the agile life cycle interpreted through scrum and the implementation
of modular and reusable code in order to make the SW agile. The cycle of development used in
the project can be seen in Figure 3.3. As can be seen there are several steps which together make
up the workflow which is supported by the Scrum Method (Section 4.2) and the GitHub workflow
(Section 4.3). This cycle is repeated every two weeks with planning with the whole team, deciding
what is supposed to be the focus in the upcoming weeks. In the same meeting, an analysis is done
on the past two weeks. When the tasks have been set for the week, every team member performs
its tasks with design before implementation. Then coding and debugging will be performed, before
it is tested in the lab. When the team member believes that the development is sufficient, other
team members will test and review the code. If every test is working, and the code is reasonably
written, the newly developed code will be approved to be integrated to the master branch of the
hypso-sw repository. In this way, the master branch is never updated before the features are
ready, and hence always working unless bugs are not discovered when testing new code. Iterative
development and continuous integration are results of this workflow.

24

Figure 3.3: Development cycle in the HYPSO project

25

Chapter 4
Methods and Tools

This chapter will focus on describing the different methods and tools that have been used when
designing and developing code for the SmallSat lab.

4.1 Software Development

This section is based on section 4.1 in the author’s specialization project report [1]. Improved
Software Development is important for a project. As McConnel states in Code Complete [31],
construction(coding and debugging) is the central activity in software development, hence it is the
only activity that is guaranteed to be done in every project. However, for efficient construction, it
is beneficial to plan the project by first defining requirements and architecture well. The planning
in this project has been done using GitHub, and the process will be described in Section 4.3. After
construction, the system testing is done to verify correct functionality of the system. There are
different parts of testing as well; unit testing - on each module, integration testing - module with
the rest of the program, and system testing of the whole system or program.

Prior to writing code for this master’s thesis, there was done a lot of planning to ensure that the
desired functionality would be obtained. And maybe more importantly, that a desired architecture
would be obtained. When making the designs for the architecture, the agile principles from Chap-
ter 3 were taken into account, with a main focus on making generalized and modular code. A lot of
the code was refactored to generalize the functionality which could be re-used with the SDR. Thus,
the generalized code could be used for both PLs instead making a copy of the code developed for
the OPU and customize it to fit the SDR. After developing the code, there was performed testing
on the requirements from the design to verify that the code worked as intended. In-between the
two, code was developed and debugged. In this section, some important aspects of code quality
will be listed, as well as a description of the development style used in the HYPSO project; Agile
Software Development.

4.1.1 Code Quality

There are two types of software quality characteristics mentioned in the book Code Complete [31].
External characteristics are the ones which the user care about, typically how easy it is for them
to use the software. From a programmers point of view, it is rather important how easy it is to
modify the code. As for the HYPSO project it is especially important that the code written is
understandable and use-able by others, as there are a lot of different people working together to
develop the SW. In addition to this, new programmers are on-boarding the project frequently, and
it is very helpful for them if the code is of great quality. Hence, the focus here (as in the book)
will be on the internal quality characteristics, as the main focus has been writing code of quality

26

which will also be easy to modify for others. The following characteristics are listed in the book,
and are some of the things which has been considered by the author while writing code for the
HYPSO project:

• Maintainability: The ease with which the code can be changed or edited to add function-
ality. Here, the focus has typically been to ensure that the code written is encapsulated
and abstracted such as the different network layers in Section 2.3. A developer can create
a function in hypso-cli to send a message to one of the services in opu-services through
a CSP-connection, without really understanding the implementation of the code related to
CSP.

• Reusability: The extent to which you can use parts of the code in other parts of the
program. An great part of the work done related to this master’s thesis has had this focus.
Several functions have been re-written in order to use the same generalized functions for any
payload. Designing an agile SW architecture as expla

• Readability: The ease at which the source code can be read and understood. A way of
ensuring readability, is creating names for functions and variables which state exactly what
they do or what they represent. In cases where representative names is not enough for the
code to be readable, comments can be a necessary tool for documentation. For example, it
can be useful for others to know where the value of a constant comes from. The formatting
of the code is important as well. In this project, all code is formatted with clang, which is
explained in Section 4.1.1.

• Testability: Make it possible to test if the functions implemented actually work with a
standardized unit test. All developed functionality has been thoroughly tested throughout
the semester, and the return-values of the function will indicate whether or not it has passed
a test. Hence, having return values which describe the outcome of a function is desirable

Clang formatting

The clang-format is used by the software team in the HYPSO project to format the C code to tidy
up the code so that everything is written with similar formatting. It has a few different use cases
[32]: reformatting code to the kernel style, finding mistakes in the style, as well as helping the user
following the rules of the coding style. The clang-format is applied after adding code to one of the
repositories, before the code is submitted.

4.1.2 Agile development

The software group in the HYPSO project uses an agile approach for the Software Development
Life Cycle (SDLC). The agile approach differs from the traditional methodologies where the success
relies on knowing all the requirements before the development begins [33]. For the agile approach,
the development is rather incremental and iterative. The traditional methods define requirements
before designing and planning takes place, then the system is constructed before testing is per-
formed. Instead of having one large process model, the agile approach will divide the project into
different smaller parts, and will then focus on one of these increments at a time. This approach is
used in the HYPSO project due to a few of its advantages listed in the article [33]: it is suitable
for small projects, the testing is done on every iteration, the rework cost is low, the development
direction is readily changeable and the rework cost is low. The fact that the master students on
the team change every year is also a reason fur using this approach. The framework used in the
HYPSO project to implement Agile development is called Scrum, and is described in Section 4.2.

27

4.2 Scrum

The following section is based on Section 4.2 of the author’s specialization project report [1]. Scrum
is well suited for the HYPSO project as the team is working on different parts of a complex product
and this is a framework that implements the agile methods explained in Section 4.1.2 [34]. This is
a tool that helps dividing up the functionality needed for the software, prioritizing the tasks, and
delegate the tasks between the team members. It can be a helpful tool or development process to
achieve a higher level of transparency within the team.

The product is delivered incrementally through a series of short development phases called sprints
[34]. In the software group in HYPSO, a sprint lasts for two weeks and is followed by a review
combined with planning of the next sprint. Frequent smaller meetings are held during the sprint
so that everyone involved are updated on each others progress, and can discuss problems if they
emerge. The main meeting for the software group is held for an hour every Tuesday. The whole
HYPSO team also has a meeting called stand up every weekday, where every team member is
invited to update the others on what they are currently working on.

In each sprint planning, tasks are delegated to the different members of the team. These tasks
are predefined in issues in GitHub, these issues will be explained in Section 4.3. Here, the tasks
are explained thoroughly so that they should be possible to complete without further information.
Each issue will be assigned a proper amount of points to estimate its workload. When the sprint
is planned, the issues are divided into the following columns in a board called Kanban, and the
explanations are a result of the authors experience working with it:

• Backlog: All currently identified issues.

• To Do: Issues delegated for the current sprint.

• In progress: Issues that have been started, but are not quite finished yet.

• Review in progress: After completing a PR (Section 4.3.4), the issue is moved here.

• Done: The issue is moved to this column when the pull request it is related to is approved.

• Blocked: Issues that can not yet be completed, because it relies on another issue to be
completed first.

Figure 4.1 and Figure 4.2 are together an example of what this Kanban board looks like.

Figure 4.1: Kanban: backlog, to do in progress

28

Figure 4.2: Kanban: review in progress, done, blocked

In the review part of the sprint, the progress of the last two weeks will be discussed. Both the
issues that are done, and the ones that weren’t completed and why. A track of the scores will
be kept so that one can see the difference between estimated work, and work that was actually
completed in each sprint.

4.3 Git

Except from section Section 4.3.7, this section is a continuation of section 4.3 of the specialization
project report [1] written by the author. To keep track of the history of different versions of the
software while developing different functionality, the free and open source Version Control System
(VCS) Git is used. As explained in the book Pro Git [35], Git performs version control of a file
system called repository through snapshots called commits. This can be done both locally on a
computer or remote on a server.

The remote service GitHub is used in the HYPSO project for online hosting of Git repositories.
This is only one out of several similar services, and it is not associated directly with Git. One
of the additional services GitHub provides is improved collaboration by enabling for teams and
organizations to work together.

The GitHub workflow is branch-based[36], where the master branch is not affected by another until
requested changes are reviewed by a team member. The following sub-sections are based on this
website[36], and images used was also found there.

Figure 4.3: The GitHub Workflow[36]

4.3.1 Issues

The GitHub workflow solves bugs or features requested for the code base. A way of keeping track
of the problems team members encounters is through issues. These are written descriptions of
bugs, features or other code-related matter. All team members can generate new issues as they
arise, and comment on the issues of others. In the HYPSO software team, Scrum is used to keep
track of issues. This framework is described in Section 4.2.

29

4.3.2 Branch

An issue often results in a new branch made to solve the bug or feature request. The new branch
will be a copy of the master branch. This is done to experiment with new ideas without affecting
the master branch until the new branch is sufficiently developed and tested so that it is ready to
be a part of the core functionality of the project. The construction of a new branch is illustrated
in Figure 4.4. The name of the branch should be descriptive and give a hint of which issue it is
solving.

Figure 4.4: Creating a branch[36]

4.3.3 Commit

After the branch is created, changes made is tracked by commits(Figure 4.5 made to the branch,
hence tracking the progress. This history will also let team members look at the history of each
others branches. A message associated with each commit is made to describe why a specific change
was made. Each commit also has a hash value which will let you erase your changes if for example
a bug is detected. Commits are pushed to move local changes to the remote server. A developer
cannot commit changes directly to the master branch of hypos-sw or opu-services, this is a way
of trying to keep the main repositories free of errors and bugs.

Figure 4.5: Committing[36]

4.3.4 Pull Request

A Pull Request (PR) is opened to initiate a discussion with the rest of the team about the changes
made to a branch. This is typically done when the developer consider the feature to be working as
intended, and wants the fellow team members to review the changes. Great practice is to describe
the changes made, and how to test if they work as intended to ease the workload of the team
members that are going to review the changes. If the changes are related to an issue, this should

30

also be linked up to the PR. Particular team members can be requested to review the code. In
Figure 4.6, a PR is highlighted.

Figure 4.6: Pull Request[36]

4.3.5 Review

Some PRs are approved right away, others may take time either to test or due to team members
requesting changes to the functionality or the coding-style. The reviewers task is to test the
functionality of the new features of the branch as well as ensuring that the rest of the system still
works as intended when the new branch is integrated. Once the PR is created, commits can still
be made and pushed reflecting the feedback from the review of other team members. The new
commits will be showed in the PR in GitHub together with the comments from the reviewers.

Figure 4.7: Review[36]

4.3.6 Merge

When the changes in a branch is accepted by at least one other team member, it is ready to be
merged into the master branch by the developer making the PR. This is the final step of the
GitHub workflow, and is pictured in Figure 4.8

31

Figure 4.8: Merge[36]

4.3.7 Development on another branch than master

A special method used while developing code for this thesis, has been to branch out from a different
branch than the master branch of hypso-sw. As the code for HYPSO-1 is only meant for the OPU,
the team decided to rather make another branch for development of code for the SDR. This branch
was called sdr-services, and an important step of updating this branch is to always merge the
newest commits added to the master branch into it. When a new feature or update is requested
for the integration of the SDR into the code-base, a new branch is made out of the sdr-services
branch. When the development of the new issue is completed, a merge is requested into the
sdr-services branch with a PR, and it is reviewed by another team member just like a normal
PR. If the PR is approved, it can be merged into the sdr-services branch, and the development
branch can be safely deleted.

32

Chapter 5
Work and Results

Most of the contribution in this thesis has been related to designing how to integrate the SDR into
the existing SW of the HYPSO project in a way that is efficient and relating to the principles listed
in Section 4.1.1 and the agile fundamentals described in Section 3.2. This way, the author made a
flexible framework supporting a satellite with multiple payloads. The code-base is developed in a
way so it can be further re-used for future projects and satellites too. The results of this work will
serve as an example of how to implement a flexible SW architecture which works with multiple
PLs. As explained in Section 4.2, sprints are used to implement Agile development in the project.
During the first eight sprints this semester consisted of, different functionality has been developed
and merged into the sdr-services branch of hypso-sw, resulting in the current version of the SW
related to the SDR, as the code-base is under continuous development and integration. There has
also been developed some improved functionality on previous work (Section 5.1). In Table 5.1, the
start- and end-date of each sprint is listed together with the main focus of the author during the
corresponding sprint. The other participants in the SW group of the HYPSO project had different
main focuses throughout each sprint. This chapter will feature the author’s contributions, both the
development process of the different functionality as well as the planning of design and different
options. As described in chapter 4, the main methods used for developing the code for the project
are:

1. Planning: planning of the development has been a combination of the author designing
solutions for further development and discussions with the team in issues in Github and
during the bi-weekly sprint-meetings.

2. Construction (coding and debugging): making modular and generalized code of quality
through agile development.

• Making sure the code developed is: maintainable, reusable, readable and testable.

• Agile development through sprints.

3. Testing using the setup explained in Section 2.5.

33

Sprint# Start End Author’s contribution

1 January 14th January 28th Finalize Telemetry Service
2 January 28th February 11th How to mirror opu-commands
3 February 11th February 25th Implement sdr-commands
4 February 25th March 11th Telemetry service for the SDR
5 March 11th March 25th User access on SDR
6 March 25th April 13th Refactor code
7 April 13th April 29nd Telemetry service for the SDR
8 April 29th May 20th Generalize functionality & logging ADC values
9 May 20th June 7th Finalize Master’s Thesis

Table 5.1: Sprints

Each sprint will be featured in its own section with subsections describing the different issues and
PRs related to the authors contribution within the corresponding period. These issues and PRs
will be listed in tables. Some of the titles were made shorter to fit the tables, but the essence is
the same. The actual issues and PRs can be found in the appendixes linked in the tables with a
varying degree of discussion between the team members of the project. With a few exceptions,
all issues and PRs referred to in this thesis are located in the hypso-sw repository explained in
Section 2.4.2. The relevant repository for the remaining ones will be referred to as the issue or PR
is discussed.

5.1 Sprint 1 - Finalize Telemetry Service

The authors main contribution to the project during this sprint, was to finalize the telemetry
service developed while working with the specialization project [1]. There were a few feature
requests from the other team members which were still to be completed. No points were given to
these changes, as no new issues were created. Most of the features were requested as comments in
the final PR made as a part of the specialization project, and it can be seen in Appendix S.

As mentioned in Section 6.4, called Future Work, of the authors project thesis [1], there were a
few remaining problems to solve in order to make the Telemetry Service work as desired. The
TM logging had an impact on the performance of the rest of the system which was larger than
acceptable during HSI capture. Hence, it was solved by turning off the logging before every capture,
and turning it back on when the capture is done. The possibility to turn the logging on and off,
and change the logging-interval through hypso-cli was also implemented. It was requested that
the logging interval is saved to a file when changed so that the TM service can read this file upon
boot to set the correct interval. Having the integration of the SDR in mind, the functionality
was made general with specified inputs and outputs in order to make it work with any PL. After
completing these changes in the telemetry-service branch of hypso-sw, the PR was tested by
some of the other team members and approved. This resulted in the PR being merged into the
master-branch of hypso-sw, and it is finally a part of the main software of the project. After
months of development, the telemetry-service branch could be deleted.

5.2 Sprint 2 - How to mirror opu-commands

Other members of the team worked with the SDR over Christmas, and found a lot of necessities
for hypso-sw in order to make it work as desired with the SDR. The issues the author worked with
during this sprint (Table 5.2) were a result of this.

34

Issue Title Points Linked PR Appendix

#476 How to mirror opu-commands 5 - Appendix E
#475 opu check does not work on SDR 5 - Appendix D
#473 Verify CSP commands on sdr-services 3 - Appendix C

Table 5.2: Issues worked with in sprint 2

5.2.1 How to mirror OPU commands

Attempting to solve these issues, the author started going through the sdr-services branch made
in hypso-sw to get an overview of what was different from the original branch. The findings of this
work, were a lot of similar code between the two PLs which could be refactored and generalized so
that the similar functionality could be shared. The authors main focus during this sprint, was to
plan the integration of the SDR into the already existing SW as requested in issue #476. Hence,
no new PRs were created by the author during this sprint. The work rather resulted in more
issues for the author to solve, these will be featured in Section 5.2.4. The main goal when making
these issues was to describe a refactoring of code which would result in an agile architecture with
modules and clear interfaces.

5.2.2 Making opu check work for the SDR

While going through the code compiled to create the sdr-services, the author found the source
of the problem in issue #475. The issue reports that the command to compare a local and a remote
checksum1 does not work on the SDR even though the TOTEM has the md5sum tool, which is the
tool used to find the checksum, implemented. This problem was a result of the TM service not
being included in sdr-services, and opu check being a TM service command.

5.2.3 CSP commands for the SDR

Issue #473 should in theory be an easy issue to test and solve, as it simply is to verify that a few
commands work. This turned out to be a bit more complicated due to two reasons. Firstly, the
SDR was not yet connected to the EPS, meaning that testing the command csp shutdown and
csp reboot would require someone to be present at the lab to flip the switch to turn the SDR
back on. As the author, and most of the other team members, at this time worked from home
due to COVID-19, this issue was hard to test. The other problem was the fact that whether these
commands work, is dependent on which user the sdr-services is run from. They only work using
the root user, and not the totem user which was the user the sdr-services was initially run
from. Due to this, issue #473 was postponed to a later sprint.

5.2.4 Issues created

Due to the agile approach of the project, issues are made when they arise. Hence, a great deal
of new issues were made as a result of this sprint as the design decisions had started. The new
issues were created to describe the tasks to be fulfilled in order to make it possible to use the
same commands for both PLs and hence making a flexible SW architecture for easier integration
of future PLs. The issues created by the author during this sprint are listed in Table 5.3, and
were given points by the team during the following sprint-meeting. One issue made by another
team member, #492 is also listed in the table, as this was made after discussions with the author
and is relevant for this thesis. This issue is concerning the problem with user permissions for the
sdr-services. The other issues were made to refactor the already existing code which works for

1Checksum: sequence of numbers representing the file to check its integrity. If the checksum of two files match,
the files are equal.

35

the OPU into more files to further develop the code to work with multiple payloads. By doing
this, functionality which is common for all PLs will be separated from functionality specified for a
specific PL and common functions can be reused instead of having two similar functions with only
small tweaks to make them function with different PLs. Having shared functions will save future
developers in the project for unnecessary maintenance of multiple functions.

Issue Title Points Linked issue Appendix

#492 Decide user for sdr-services 5 #476 Appendix H
#493 cli opu =>cli opu + cli sdr + cli pl 13 #476 Appendix I
#494 refactor tm service.c 8 #476 Appendix I
#495 Find a way to list all files on the sdr 2 #476 Appendix J
#496 Make opu update include sdr-services 3 #476 Appendix K

Table 5.3: Issues created in sprint 2

5.3 Sprint 3 - Implementing sdr-commands

The main focus of this sprint was to make the OPU commands sent from hypso-cli available for
any PL, which results in generalized code where functionality can be reused instead of implemented
over again. In order to do this, wrapper functions which takes in the CSP address of the PL in
addition to the other arguments of the different commands were made. The issues linked to this
development can be found in Table 5.4. As mentioned in Section 4.3.7, integration of the SDR into
hypso-sw is developed in its own branch, sdr-services, which is branched out from the master
branch of hypso-sw. This is done to avoid interference with the development of the main SW until
all functionality related to the SDR is working as desired. Hence, a new branch, sdr-opumirror
was branched out from sdr-serivces to attempt to solve the issues in this sprint. The new branch
will be requested merged into sdr-services instead of master as explained in Section 4.3.7.

Issue Title Points Linked PR Appendix

#474 make opu upload support the SDR 5 #506 Appendix D
#475 opu check does not work on SDR 5 #506 Appendix D
#493 cli opu => cli opu + cli sdr + cli pl 13 #506 Appendix I
#494 Split telemetry service 8 #506 Appendix I
#495 Find a way to list all files on the sdr 2 #506 Appendix J
#496 Make opu update include sdr-services 3 #506 Appendix K

Table 5.4: Issues worked with in sprint 3

5.3.1 Dividing cli opu.c

Some of the previous OPU-commands sent from hypso-cli are useful both for the OPU and the
SDR, but they are defined specifically to work with the OPU. To solve this, the solution described
in issue #493 was chosen, resulting in one general PL-file with common commands, and one specific
file for each PL, as seen in Figure 5.1. This provided reusability of the code as the functionality
was generalized for both PLs, and modularity as the new files and functions had clear interfaces.
Making common functions for the functionality to be used on both PLs also results in a code base
which is easier to maintain because a change in functionality only has to be made in one place of
the code.

36

Figure 5.1: Refactoring of cli-files

After some testing, it was discovered that some of the commands worked by starting the SDR with
the CSP address of the OPU, while others would need some more modification. Hence, the first
step was to change the previous cli opu*-functions to pl *-functions which takes in the CSP
address of the PL as an argument in addition to the others. These functions were placed in the
new file cli pl.c, while the OPU-specific functions remained in cli opu.c. Wrapper functions
for the OPU were also implemented, connected to the generalized PL-functions, and placed in this
file. Similar wrapper functions were also made for the SDR and placed in the new file cli sdr.c,
this is also where SDR-specific commands will be placed in the future. An example of one of the
wrapper functions can be seen in Figure 5.2 paired with the definition of the pl *-function from
cli pl.c.

Figure 5.2: Examplpe of wrapper function for PL command

Issue #474 was solved by making the SDR wrapper-functions and connect them to the generalized
functions. Issue #495 was simply solved by passing different commands for the OPU and SDR
from the pl list-function as the system command used for listing files on the OPU did not work
on the SDR. Issue #496 was solved by adding checks for sdr-services to the pl update-function.
Most of the previous OPU-commands are now PL-commands with wrappers for both the OPU
and the SDR to make the functionality work for both PLs. In addition to this, wrappers were
made in cli pl.c for any PL with given CSP address. Adding a third payload would now be
less demanding than before, as the wrapper-functions work the same for every payload, and the
developer could just add the new PL-address. These changes made it possible for the user to send
sdr commands, opu commands and pl <address> commands. Hence, sdr exit will perform the
same job as pl exit 13, as 13 is the CSP address of the SDR. The commands which could be
used for communication with the SDR after this are the following:

• sdr exit: Request the sdr-services process to exit.

• sdr list: List files in SDR’s current directory.

• sdr status: Get status of SDR (simple telemetry).

• sdr download: Download a file from the SDR.

• sdr upload: Upload a file to the SDR.

• sdr update: Update sdr-services on the SDR.

• sdr check: Compare local and remote checksums.

37

• sdr git: Get branch and commit of sdr-services.

• sdr lastcmd: Request the last command received by one of the sdr services.

• sdr telemetry: Get current telemetry status from sdr-services.

There are still some functions that miss wrapper-functions for the SDR, and new issues featured
in Section 5.3.4 are requesting the required changes for them to be implemented.

5.3.2 Split the telemetry service

To be able to solve #475, the TM-service had to be added as one of the service-threads of the
SDR. This is done by adding the files of the TM service to the dependency list for the sdr-serices in
CMakeLists.txt and adding the TM-service thread to sdr services.c. The TM-service also had to
be divided as requested in issue #494 as the values to be logged on the different PLs will differ from
each other, and some of the TM commands are OPU-specific. The added files to this service were
src/tm/tm opu.c, and src/tm/tm sdr.c. Nothing was added to src/tm/tm sdr.c as the desired
telemetry was still to be discussed. The HSI-related commands were moved to src/tm/tm opu.c.
Hence, the TM service was refactored as illustrated in Figure 5.3, and this solved #494.

Figure 5.3: Refactoring of tm-files

5.3.3 Pull Requests

The PR in Table 5.5 is including all changes made in this sprint to make generalized functions able
to send commands to any PL from hypso-cli. The PR requested the changes made in sdr-opumirror
to be merged into the sdr-services branch of hypso-sw. The resulting code is easy to maintain,
as the generalized functions can be used of any PL. Hence, making changes in the functionality
would only be made in one place, and it would not affect the functionality of the functions in other
modules. The PR was not reviewed within this sprint, therefore the merging had to wait.

Pull Request ∼ Title Linked issues Appendix

#506 Implementing sdr-commands #474, #475, #493, Appendix T
#494, #495, #496

Table 5.5: Pull request of sprint 3

5.3.4 Issues created

When testing the new functionality on the SDR, a problem occurred with the TM logging. The
running sdr-services shut down when the log file was to be created. Hence, the TM logging
functionality had to be turned off. Issue #501 was created to resolve this problem, with the author
suspecting that it is the format of the log file which is not supported on the TOTEM.

The remaining issues were made suggesting how to mirror the opu-commands which did not work
as intended on the SDR, and hence required larger changes to work. This closed issue #476 as

38

every part of the issue on how to mirror the OPU-commands was designed and explained in other
issues, or already implemented. Issue #502, #503 and #504 are all dependent on the solution to
issue #492 which is related to user permissions on the TOTEM. This resulted in the issues being
blocked in the kanban-board. They are also linked to issue #476 of mirroring the OPU commands.

Issue Title Points Linked issue Appendix

#501 Telemetry service for the sdr 13 - Appendix L
#502 sdr settime 5 #476, #492 Appendix M
#503 sdr shutdown 5 #476, #492 Appendix M
#504 sdr restart 3 #476, #492 Appendix M
#505 sdr log 3 #476 Appendix M

Table 5.6: Issues created in sprint 3

5.4 Sprint 4 - Telemetry service for the SDR

In this sprint, another team member connected the SDR to the EPS, meaning that the SDR now
could be turned on and off remotely, making it easier to test both new functionality, and CSP
commands that requires the SDR to reboot or shutdown.

There were made some requested changes to PR #506 by the other team members. These changes
included one spelling mistake in the TM-service of the SDR and a request of returning other TM-
variables from the command sdr telemetry. The author started working on these changes in the
sdr-opumirror-branch, but unfortunately the team experienced some problems with the TOTEM as
it was not possible to connect to it over ssh. This made it impossible to test the changes made,
and the approval of the PR had to wait until the next sprint. In the end of the sprint, another
team member managed to get the TOTEM working as before by connecting it to a UART2 cable.
The other issues in focus during this sprint are listed in Table 5.7.

Issue Title Points Linked issue Appendix

#501 Telemetry service for the SDR 13 #494 Appendix L
#505 sdr log 3 #476 Appendix M

Table 5.7: Issues worked with in sprint 4

5.4.1 SDR log

The author dealt with issue #505 before the TOTEM shut down. The TOTEM could not find the log-file
sdr log requested because the log-file of the SDR is saved on a different location than the log-file
of the OPU, therefore the previous command could not access the log-file as it addressed the wrong
location. Logging on the SDR is a message log in a specific location which has now been added
to the pl log-function. As a result, the message log from the SDR is displayed in hypso-cli

when the command sdr log is sent. There was made a commit to include this functionality in
PR #506.

5.4.2 Telemetry service for the SDR

As mentioned in Section 5.3.4, a problem occurred with the TM-logging when strarting the TM
service from the SDR. The author started the work of integrating the TM-service in the SDR
during this sprint. A new branch, sdr-telemetry was branched out from sdr-services for this

2Universal Asynchronous Receiver-Transmitter (UART): HW device used for asynchronous serial communication.
The transmission speeds and data format can be configured [37]

39

development. A struct3 was defined with a draft of variables desired for logging, this draft is
pictured in Figure 5.4. As it was requested in PR #506 that the values from the xadc values4

command on the TOTEM would be displayed in the TM logging, these were the ones in the first
draft on the struct. Development of functionality to fetch these variables was also started, but due
to the issues with the TOTEM, testing could not be done, and the continuation of solving this issue
had to wait until Section 5.7. The variables were saved as floats because they are all of different
units, making it difficult not to use decimal numbers. In addition to this, some of the values can
be negative. Hence, the number type uint which is used for the telemetry variables of the opu,
would not be sufficient as it saves values without sign.

Figure 5.4: Initial TM struct for SDR with units of variables.

5.4.3 Issues created

There were made no new issues by the author during this sprint as no new problems occurred
regarding the work on integrating the SDR.

5.5 Sprint 5 - User permissions for the SDR

Early in this sprint, the changes requested for PR #506 were completed and tested. This included
changing the output of the command sdr telemetry as well as one minor spelling mistake. The PR
was then tested again, resulting in an approval of the changes, and a merge into the sdr-services
branch in hypso-sw. The author worked with a lot of issues(Table 5.8) during the rest of this
sprint, as many of them were connected to issue #492, which was the main focus.

Issue Title Points Linked issue Appendix

#492 Decide which user sdr-services shall run under 5 - Appendix H
#473 Verify CSP commands on sdr-services 3 #492 Appendix C
#502 sdr settime 5 #492 Appendix M
#503 sdr shutdown 5 #492 Appendix M
#504 sdr restart 3 #492 Appendix M
#471 Change handle restart request() for sdr-services 3 #504 Appendix B
#472 Consider csp shutdown for sdr-services 3 #492 Appendix B
#478 Update Totem time after reboot 3 #492 Appendix G

Table 5.8: Issues related to sprint #5

3Struct: short for structure. A structure in C is a user defined data type where variables of different data types
can be put together[38]. This abbreviation will be used during the rest of the thesis

4currents and voltages of the TOTEM

40

5.5.1 User permissions

A great deal of the issues connected to the SDR were still dependent on which user sdr-services
is run from. Thereby, there was held a meeting with some of the other team members discussing
pros and cons of the different possibilities, as well as possible solutions. With the sdr-services

run from root, it has all permissions, while it is more limited from the totem user. The optimal
solution would be to create a new user with the permissions needed, but still not full access to
every command available in the system. The team agreed upon that making this user would be a
problem for future work, and that for development we would use the root user for testing. Hence,
user permissions would no longer be an obstacle for further development and integration of the
SDR.

After this decision, it was possible to access time, can, shutdown, restart and tm-logging.
Hence, issue #502 was resolved instantly, as the problem simply was that the totem user could
not access time.

5.5.2 SDR commands

When the user permissions were decided in Section 5.5.2 and the SDR was connected to the EPS
in sprint #4 (Section 5.4), the commands sdr shutdown and sdr restart could be implemented.
This was done by making two wrapper functions in cli sdr.c connected to the generalized func-
tions already implemented in cli pl.c. In addition to this, a few lines had to be changed in
apps/sdr services.c in order to power off the SDR through the EPS when the commands were
called from hypso-cli. A call to restart a given version of sdr-services also had to be added
in order to make sdr-restart work resolving #471 which asked to change or delete the function
for restarting sdr-services in order to make it work. As this functionality was connected to
the mirroring of the OPU commands, the changes were made in the sdr-opumirror branch from
Section 5.3. These changes resolved issues #503 and #504.

5.5.3 Verification of CSP commands

The CSP commands csp reboot, csp shutdown and csp uptime could also be confirmed when
sdr-services was run from root and the SDR was connected to the EPS. Completing the function-
ality in apps/sdr services.c for sdr shutdown and sdr restart as mentioned in Section 5.5.2
was necessarry to make csp shutdown and csp reboot work. The testing was done by sending the
commands from hypso-cli followed by the CSP address of the SDR, 13, solving issue #473. Issue
#472 was also resolved as it addressed the issue that csp shutdown could not be implemented for
the SDR as at the time of the generation of the issue, the SDR was not yet connected to the EPS.

5.5.4 Update Totem time after reboot

As a part of the meeting with the other team members, a new startup script was added to the
totem. The script will start sdr-services on boot and synchronize the totem time with the EPS.
This resolves issue #478 requesting that the totem time is updated, as it was previously restarted
after reboot.

5.5.5 Pull request

There was made a PR, referenced in Table 5.9 to summarize the decisions and changes made in
this sprint. It requested the changes made in the branch sdr-opumirror to be merged into the
branch sdr-services. The changes were tested and approved of one of the other team members
within the period of this sprint, and merged by the author.

41

Pull Request ∼ T itle Linked issues Appendix

#520 Run sdr-services from root #492, #502, #503, #504, #478 Appendix U

Table 5.9: Pull request of sprint 3

5.5.6 Issues created

Issue #521 was created by one of the other team members as a result of the new start-up script
implemented, it was blocking the reboot and shutdown commands. This was resolved by the same
team member in sprint #7, simply by requesting the service to start in the background with a
<&>. The other new issue listed in Table 5.10 is addresses the use of port names in hypso-sw as
the common ports for OPU and SDR should be called PL * *PORT, not OPU * PORT in order to
not confuse the developers as the different PLs all use the same port numbers for their common
services.

Issue Title Points Linked issue Appendix

#518 Change common ports to PL-ports 3 - Appendix N
#521 SDR start-up script blocks commands 8 - Appendix O

Table 5.10: Issues created in sprint 5

5.6 Sprint 6 - Refactoring code

This sprint mainly consisted of refactoring opu services.c and sdr services.c in order to re-
move duplicate code as well as making the new functions general for any payload. The other issue
in Table 5.11 consisted of renaming the ports in hypso-sw.

Issue Title Points Linked PR Appendix

#518 Change common ports for and to PL-ports 3 - Appendix N
#477 Refactor common code between * services.c 8 - Appendix F

Table 5.11: Issues liked to sprint 6

5.6.1 Changing ports

In the beginning of this sprint, issue #518 was solved - resulting in PR #523 listed in Table 5.12.
The ports defined in HYPSO.h tells the SW to which CSP port to send a command. As the ports of
the service threads that are common for the SDR and the OPU also have the same CSP address,
the author found it useful to change the common port names to PL * PORT instead of having two
definitions of the same CSP address. This was also done to make the code more understandable,
as the common generalized functions were using the OPU * PORT definitions that could possibly
result in confusion when using the functions with the SDR. The work consisted of changing the
definitions in HYPSO.h as illustrated in Figure 5.5 in addition to changing all port names in the
code from OPU * PORT to PL * PORT. The work was done in the branch sdr-opumirror and the
PR was tested by another team member at the last day of the sprint and merged by the author
into the branch sdr-services of hypso-sw.

42

Figure 5.5: New port names.

5.6.2 Refactor

As mentioned in Section 1.3, the code-base for the satellite was initially customized for the OPU.
When the SDR was added, most of the source code for opu-services(/apps/opu services.c) was
copied into the source code of sdr-services(/apps/sdr services.c) by another team member.
As this would result in double work while changing these files in the future, issue #477 was made
by one of the other team members as they did this copying asking for the code to be refactored.
This issue was solved making PR #529. Firstly, the author went through the two files to find the
common code in order to design a new module for common app code, making sure it was general
and easily used with any type of PL. Modularization, re-use and interfaces were in focus. The
contribution consisted of making a new folder containing new files with the common code for the
services. This code is general for any payload, and can be used if a new payload is to be added to
the satellite in the future as well. The new folder, /src/services, is consisting of the three files
services csp.c, services init.c and services util.c. An illustration of the architecture can
be seen in the figure below(Figure 5.6).

Figure 5.6: Added files.

Setup of the CSP services is done in services csp.c, initializing of service threads is done in
services init.c and general help functions are present in services util.c. The new files were
all added to CMakeLists.txt for both payloads. The common code was removed from the original
files and replaced by calls to the new functions.

43

The author got a few problems working with this issue as the development was done in the same
branch as of issue #523, sdr-opumirror. As the other issue was not yet tested and merged,
commits from this issue was pushed into the previous PR. This was undesirable as there was a
different issue being solved, and the author wished to make a new PR after completing it as it
was a rather large issue. The trouble arose when the author branched out from sdr-opumirror to
make a new branch with the commits due to the refactoring while deleting the commits from the
old branch. The new branch was not pushed into GitHub until the commits were already deleted
from the old branch. This resulted in the new branch not seeing the commits made, and they
could not be pushed into GitHub. After trying a lot of different git hacks, the final solution was to
wait until PR #532 was merged, use the sdr-opumirror branch again and collect the old commits
before pushing them again and making a new PR, #529, with the changes from the refactoring.

Pull Request ∼ Title Linked issues Appendix

#523 Changing port names to PL * PORT #518 Appendix V
#529 Sdr refactor #477 Appendix W

Table 5.12: Pull request of sprint 6

5.7 Sprint 7 - Telemetry service for the SDR

Within the first week of this sprint, PR #529 from sprint #6 (Section 5.6.2) was tested and
approved of another team member, and later the branch, sdr-opumirror was again merged into
the sdr-services branch of hypso-sw. Following this, the issue in focus for this sprint was
#501 concerning the TM-service of the SDR, featured in Table 5.13. Working on this issue, the
development from Section 5.3.2 was continued in the sdr-telemetry branch of hypso-sw. Before
starting the further development of this branch, the new commits from sdr-service were merged
into sdr-telemetry.

Issue Title Points Linked PR Appendix

#501 Telemetry service for the sdr 13 #506 Appendix L

Table 5.13: Issues liked to sprint 7

As mentioned in Section 5.3.4, the sdr-services shut down due to the creation of the TM log file.
This part off issue #501 was resolved by starting sdr-services from the root user of the totem as
explained in Section 5.5. The author suspected that it was the file-type of the log-file that was the
problem, but it turned out to be the user permissions. After solving this part of the issue, there
were still some remaining changes to complete to make the TM service work for multiple payloads.

The TM struct from Figure 5.4 was redefined during this sprint because there was a wish of also
collecting similar variables as from the OPU. In addition to this, it was not yet decided on how
to log the xadc values. Hence an issue was made on this to be resolved in a later sprint, see
Table 5.15 for reference. The new struct can be seen together with the TM struct for the OPU in
the figure below(Figure 5.7).

44

(a) SDR (b) OPU

Figure 5.7: TM structs

The main remaining issue was the fact that structs with different variables - Figure 5.7 - were to
be recorded for the different PLs. As inserting elements and extracting elements from structs in
the programming language C has to be done manually, some of the telemetry functions had to be
made specific for each payload as the developer also has to specify the type of struct to use as
an argument to the function. As a result of this, the old file /src/tm/tm service.c was divided
into three files. The command functions that were common for all PLs were moved to the new
file /src/tm/tm cmd.c, and there was made one TM thread for each PL. Hence, the new files
/src/tm/tm service opu.c and /src/tm/tm service sdr.c has a lot of quite similar but not
identical code, and some specific functions concerning each payload. These functions are typically
the ones that were put in tm opu.c in Section 5.3.2. In addition to this, a few functions that
turned out to be PL-specific had to be moved to these files from src/tm/tm util.c. Examples of
such functions are the ones used for logging as they take different structs as input. The new files
are illustrated in Figure 5.8, and it can be seen that tm opu.c and tm sdr.c were removed as their
functionality were moved into the new service files.

Figure 5.8: Refactoring of tm files

Some of the functions in src/tm/tm util.c has been made specifically for the OPU. As a final
part of completing and refactoring the TM-service, these functions were generalized with specified
inputs and outputs instead of setting TM struct variables directly to modularize the code. This
restructured the functions in a way to make them more compatible with an agile architecture as
they would only deliver the values requested instead of changing values themselves.

The final work done by the author before making the PR, was to add two commands to tm service sdr.c.
The first one sdr xadc was made to give the user access to the values from this totem command
throgh hypso-cli. The other one, was sdr tmlog, which can change the log ineterval and turn

45

on/off logging on the SDR. This command which was made accessible through the generalized
function in tm cmd.c, as the funcionality is similar for the OPU and the SDR. Every change men-
tioned in this sprint was done in the sdr-telemetry branch, and the PR featured in Table 5.14
was made. It was approved within the last day of this sprint by another team member, and after
correcting one spelling mistake in a printout, the branch was merged into the sdr-services branch
of hypso-sw by the author.

Pull Request ∼ T itle Linked issues Appendix

#538 Sdr telemetry #501 Appendix X

Table 5.14: Pull request of sprint 7

5.7.1 Issues created

One issue still remained for the TM logging of the SDR to be sufficient; to find a way to log
the xadc values of the TOTEM. This is discussed with quite a few options in the issue linked in
Table 5.15, and continued in Section 5.8. The second issue was made regarding a few functions in
cli pl.c that were not yet fully genrralized for any PL.

Issue Title Points Linked issue Appendix

#542 Logging of xadc values 8 - Appendix Q
#543 Generalizing some pl -functions 5 - Appendix R

Table 5.15: Issues created in sprint 7

5.8 Sprint 8 - Generalizing functionality and logging of XADC
values

This sprint consisted of the issues in Table 5.16. The sprint lasted for three weeks instead of two
as May has a few bank holidays in Norway and the initial date landed on one of these. The main
focus for the author within this sprint was to design the final PL commands to be generalized in
order to make the code reusable for any PL and making it easier to maintain the functionality
when changes are requested.

Issue Title Points Linked PR Appendix

#541 Add payload telemetry struct to repository 1 - Appendix P
#542 Logging of xadc values 8 #546 Appendix Q
#543 Generalizing some pl -functions 5 #547 Appendix R

Table 5.16: Issues worked with in sprint 8

5.8.1 Add payload telemetry struct to repository

The first issue, #541, was simply to upload two text files to Github. These files were containing the
TM structs for the OPU and the SDR similar to the ones illustrated earlier in Figure 5.7. These
files are used to parse the TM logging files in nano mcs. As seen in Figure 5.7, the file displays
the order, type and size of the elements in the struct. Storing these structs in known locations
makes it easier for the other team members both to use and test the code. The structs were saved
in a different repository called hypso-telemetry-c-structs [39]. Before uploading the files, the
author created a new branch add-tmstructs and uploaded the structs to folders representing their

46

PL. A PR was made to merge the branch into the master branch of the repository, and it was
approved and merged by one of the other team members within the period of the current sprint.

5.8.2 Logging of xadc-values

The author branched out a new branch from the sdr-services branch of hypso-sw, called
sdr-xadc, in order to solve issue #542. As temperatures, voltages and currents from the totem is
not already being logged as a part of the firmware, this has to be included in the telemetry logging.
These are the values made available in hypso-cli with the command sdr xadc in Section 5.7. To
be able to log them in the telemetry file, the values had to be collected and put into the already
existing TM struct. Resulting in an updated TM struct on the format seen in Figure 5.9. Hence,
the file representing the sdr-struct from Section 5.8.1 had to be updated as well.

Figure 5.9: Initial TM struct for SDR.

As can be seen in the issue #542, there was suggested a few options by the author, but none of
them were optimal to solve this problem. The issue requested the possibility of logging the output
form the xadc values command on the TOTEM which generates a printed output though a script.
Saving this in a struct included knowing the exact content and order of the command to be able to
parse it. A change in this order would mean a change in the command, which is undesirable. The
other suggested solution, was to log the whole output of the command at each logging instance.
The downside of this solution was that the parser used to read the log files would not understand
this format as it converts files based on structs and their sizes. Hence, the solution would have
resulted in the need of a new tool to parse the files. In addition to this, it would result in a larger
log file as unnecessary info would be logged as well, and memory is a restriction in the PLs.

As none of the suggested solutions were optimal, the scrum method and issues became beneficial.
Other team members also have access to the issues, and one of the team members with more
knowledge about the systems and its files suggested an alternative solution. The raw values can
be found in a specific folder on the totem in the same files used to generate the script for the
xadc values command. Hence, these variables can be read, and after some calculations with
offset and scaling they could be converted to intelligible values. This solution made it easier to
store the variables in the telemetry struct, and the formula to convert the raw values can be seen

47

below. All values could be collected from files on the TOTEM, and the desired result is the mag value.

adc value = (raw value+ offset value) ∗ scale value; (5.1)

mag value = (adc value ∗mag scale) +mag offset; (5.2)

An issue arose while the author was testing this functionality, as the system could not log the
instance to the file as it was too large. When creating the log file, an input size is also set
dependent on the size of the struct. Therefore, the old log-file has to be deleted when changing
the size of the struct.

The contributions to the code base were to add the xadc values to the TM struct of the SDR in
addition to adding two new functions to tm service sdr.c in order to read the files containing the
values and calculate the final values. These changes resulted in PR #546 referenced in Table 5.17.
Here, the branch sdr-xadc was requested merged into sdr-services

5.8.3 Generalizing pl functions

Some of the PL functions that were rewritten in PR #506 (Section 5.3.1), were working for both
the OPU and the SDR without being fully generalized. This meant that for using the functions
with another PL later, it would be required to add another if-sentence. This is not optimal, and
the goal of issue #543 was to make these functions work with any PL with specific input and
output. In this way, the functions can be re-used with another PL as requested in Section 4.1.1.
They will also be easier to maintain. Working with this issue, a new branch, sdr-generalize was
branched out from the hypso-sw branch sdr-services.

The first function to be changed was pl list which had different options for the list command
of the OPU and the SDR. Instead of setting this inside the function, the function was redefined
(Figure 5.10) with list command as an argument so that the wrapper functions could send in what
command to send in addition to the PL. A similar change was made for pl log, where the location
of the log was sent as an argument instead of set inside of the function.

Figure 5.10: Wrapper function and definition of generalized log function.

The formatting of the feedback of the TM command also had to be moved in order to make all
functions in cli pl.c general for any PL. Since all PLs have different TM structs, the output of
this command will be different for each PL. Therefore, the formatting of the output was moved to
the PL specific files, and only the TM request was made in the general file. The had to be removed
because the variables depend on the type of PL, resulting in the commands sdr telemetry and
opu telemetry being the available commands to fetch instant telemetry.

The final function that had to be changed in order to make all pl -functions general was pl update.
This functions was refactored to four functions, the PL specific parts of the function were moved to
cli sdr.c and cli opu.c, and the refactored functions were called from there. The new functions
are as listed:

• pl update check: general checks (as path checks and arg checks).

48

• pl check img: checking if the file for update is an image.ub-file.

• pl check exe arm: checking if file is an arm executable(opu-services and sdr-services);

• pl tar: compresses file to be updated.

The result of the work done om the branch sdr-generalize is that all pl -functions are now
generalized. Meaning that all functions located in src/cli/cli pl.c have a specified input and
output, and could be used by any PL. Functions that are not general are located in the CLI file
which fit their PL. All changes were committed to the sdr-generalized branch, and PR #547
which is listed below was made to merge it into the sdr-services branch of hypso-sw. The team
did not have the time to test it within the scope of this sprint, so it was not yet merged.

Pull Request ∼ Title Linked issues Appendix

#546 Sdr xadc #542 Appendix Y
#547 Sdr generalize #543 Appendix Z

Table 5.17: Pull request of sprint 8

49

Chapter 6
Discussion and Conclusion

Throughout the semester, the software team has developed code incrementally with an agile ap-
proach using the methods from Chapter 4. The work has consisted of planning, construction and
testing.

6.1 Planning

The planning tied to this master’s thesis includes thorough design of the desired architecture
combined with discussions with other team members to conclude with the best solution to each
problem. A light version of the results of the design was posted as issues in GitHub, often suggesting
one preferred solution of implementation joined by one or multiple backup solutions. The focus
when designing the architecture will be discussed in Section 6.2, while this section will address the
approach towards the planning, including the Scrum method and the GitHub workflow.

6.1.1 GitHub Workflow

After working on the HYPSO project for exactly a year, starting as a summer intern in June
of 2020, the author appreciates the GitHub workflow even more than in the beginning. Making
issues in GitHub at the time they are encountered following the agile approach, helps tidying up
the work. If an issue is explained well, it simplifies the understanding of a problem for the other
members on the team. This is especially helpful when solving an issue made by another team
member. Using issues on GitHub has also been efficient with regards to documentation of work,
as anyone on the team can look up any issue made in a common GitHub repository whenever they
want, for example to look up a design choice or a solution to a bug. A possible result could be less
time spent on fixing of bugs. This can also be helpful for the new students on-boarding the project
every semester in order to get into the project. Creating an issue also allow other team members
to comment with other possible solutions to the problem encountered, or even add to the issue
with problems the author of the issue did not predict. The feedback from other team members
in GitHub issues has helped the author making design choices when integrating the SDR into the
hypso-sw code base, it has also made the design process more efficient.

Having a common repository and workflow for all team members involved in the project, makes
continuous integration of development possible. This is a huge benefit as opposed to integrating
different contributions after the implementations are done when collaborating on a SW project. As
everyone on the team can look into the code developed by others in the common repositories, both
reuse and consistency is improved across the whole code base. An important part of the GitHub
workflow, is having a main branch which is always working. When a bug or feature request is
fixed or developed in its own, dedicated branch, the new features will not be merged into the main

50

branch until the development branch is reviewed and tested. Hence, if anything goes wrong while
developing, nothing happens to the main branch, and the developer can start over again.

A difference from the work done in the specialization project, is the development branch sdr-services
which branch out beyond the main branch. Development was done here to separate the code which
integrates the SDR from the code meant for HYPSO-1. A lot of the code base has been refactored
during the 8 sprints this semester consisted of, and everything was tested and merged into the
sdr-services branch instead of the master branch. Thus, a large PR has to be made in order
to merge everything into the master branch when the team decides that the time has come for
that to happen. This includes even more testing to make sure there are no bugs and everything
works as desired. An issue of waiting to merge the two branches, is that there is a risk that the
two branches then diverges when new features are implemented to the master branch. In order to
avoid this, it is cruicial to merge the master branch into the sdr-services branch when changes
are made to the master branch. The main reason for not merging the two branches yes, is that the
functionality regarding the SDR is not needed on HYPSO-1, and there is always some risk that
there is an unnoticed bug after refactoring such a large amount of code.

6.1.2 Scrum Method

Within the HYPSO SW team, the Scrum framework is used to facilitate for agile development.
Breaking down tasks and setting goals for two weeks at a time has been beneficial as there has
been requested a lot of new features in addition to the change of some requirements. Discussing
the prioritization and workload of the issues made since the last sprint is helpful before deciding
what each team member shall focus on for the next weeks. As the team has helped prioritize the
issues the author has solved, the resulting order of issues solved lead to a progress which benefited
the whole team. The discussions with the team has improved the authors judgement of how time-
consuming different tasks are, and it has helped the author in prioritizing tasks. The Kanban
board was a useful tool when planning with the team, as it is easier to follow when all issues are
displayed visually in different columns. It is also an excellent way of cooperating with the rest of
the team to structure work. During the time between sprint meetings, the Kanban board could be
used to track the progress, get an overview of the current status of the whole SW team, or check
what is planned if someone has forgotten.

6.2 Construction

The code development of this master’s thesis has been constructed around the architectural designs
made by the author. In order to develop a flexible architecture which can support multiple payloads,
modularity, reusability and generalization has been in focus. To be able to satisfy the fundamentals
of an agile architecture, the problem has been broken down to smaller tasks to be able to focus
on one task at a time which have been solved and continuously integrated into the sdr-services
branch pg hypso-sw.

6.2.1 Code quality

Working in group projects amplifies the importance of code quality. While working on the project
thesis in the previous semester, the author spent quite a bit of time trying to understand code
written by other people before adding functionality to the project. During this work, the impor-
tance of having maintainable, reusable, readable and testable code was made clearer to the author.
Thereby, the author spent a lot of time on writing code of quality during the development of the
code connected to this master’s thesis to make the job easier for other people continuing the work
on this SW later. The main focuses were to make functions general, modularize code, and intuitive
naming of files and functions.

Modularization has been in mind, both when deciding inputs and outputs of different functions,

51

and when deciding on the content of different files. When rewriting the util-functions in Section 5.7,
they were given specified inputs and outputs instead of setting values to variables outside of the
function. Hence, the functions became self-contained and encapsulated, and even reusable for the
SDR. Clear definitions have thus proven beneficial as the functions now have functionality and
methods independent of other modules.

Generalization of code has been a tool for making the code modular, as the generalization of code
previously dedicated to the OPU has made new modules with clear interfaces in order to make
them work with any type of PL. This allows for easy plug-and-play with different PLs, which is
one of the main goals of modularization. The result of the new modularized architecture, is an
adapted and flexible architecture which easily can integrate a new PL.

6.2.2 Functionality

The resulting functionality developed during the scope of this master’s thesis worked as intended
during the planning and designing. Some of the design choices made to obtain an agile sw frame-
work will be discussed below.

Finalizing previous work

The final commits to fix the remaining issues in PR #426 (Appendix S) were important to merge
the telemetry-service branch into the master branch of hypso-sw. As the TM-service was also
a significant part of the development done to integrate the SDR into the code-base, the approval
of this PR and merge into the master branch were crucial for the final result. The functions added
to the PR with these commits, were general so that they could also be used for the SDR.

Mirroring of OPU commands

The decision on how to solve this issue was well designed. The author made the design thoroughly
as a lot of the development branched out from this and a poor design would have resulted in a lot
of extra work in order to be fixed. The main focus when designing the architecture before making
issues on how to implement the mirroring of the commands were to make the new architecture
as general and modular as possible. In order to obtain this, the functions originally designed for
the OPU was generalized to work for any PL. The actual implementation of this functionality was
similar for each of the functions. Hence, after making the design and testing it with one function,
the rest of the functionality was easy to implement.

After generalizing the functions and making wrappers for the different PLs, adding a third payload
would be less demanding than before. This will be an advantage in the future, as the development
made now will be brought forward to new small satellites with different missions. With general
code, the development will be less demanding and time consuming in the future. Since the wrapper-
functions work similarly for any PL, the developer could simply add the new PL address and use
it as an argument in the wrapper-functions of the new PL.

Integrating the SDR in the TM service

The initial idea was to use the same TM-service thread for both PLs, and having different PL
specific functions in their own files. The design plan for this solution would have been to keep
the service common with generalized functionality, and moving the PL-specific functions and com-
mands to their own files. This would result in good re-use of code in addition to generalization
and modularity.

A problem arose making this a tricky issue to solve as because the TM logging is a part of the
constant TM-service loop, and the variables to be logged differ for the different PLs. As the logging
is to happen automatically as a part of the service, neither the author, nor any of the team members,

52

saw any possibility to put it anywhere else. This resulted in different TM-serivce threads for the
different PLs, but the code was still made as refactored as possible with all common functions put
in files that were common for both services. Such an obstacle was not foreseen, but after some
re-thinking of the issue, the new design also managed to re-use parts of the code resulting in a
more flexible architecture.

Refactoring main source files

The file sdr services.c was generated as a modified copy of opu services.c. If the source code
of these files were to be updated, the same changes would have been made in two places. This is
undesirable over having common functions for the shared functionality. The change resulted in new,
generalized functions ready for reuse by any payload. The common functionality connected to CSP
commands, initialization of services, and other utilities were all refactored as their own modules.
The new modules have clear interfaces, and independent functionality of the other modules in
order to contribute to the agle SW architecture.

Generalizing functionality

Some functionality present the current version of the SW is not well suited for generalization, as it
is too specific. Examples are fetching of telemetry and updating specific files on a PL. As the TM
variables to be fetched are different for each PL, the struct definitions also differ from each other.
The operational part of the team also wishes to have the opportunity of faster update of some
files. Such functionality is hard to generalize as a lot of parameters are different for the different
PLs. Hence, the functions were broken down to smaller parts of common functionality, resulting
in larger wrapper functions calling many generalized functions. This part of the architecture is, to
a certain extent generalized, but unfortunately more work is needed to use this functionality with
a new PL.

6.3 Testing

Testing is an important part of any SW project. In the HYPSO SW team, it has been decided that
a branch cannot be merged into the master branch before at least one other team member than the
one making the PR has approved it. Hence, the same rule was used for the sdr-services branch,
even though it is not blocked automatically by GitHub like merging of the master branch. Most
of the testing related to the development of this thesis was done by the author before committing
and opening a PR to confirm the functionality developed. Having team members testing the
functionality is useful as well. Another team member might test for different scenarios, and hence
pick up bugs that were not found by the one making the PR. In addition to manually testing
the code, automated tests can be run by a computer called Jenkins in order to test for common
scenarios on the OPU. These automated tests can not be run on the SDR as there is no SDR setup
connected to Jenkins. As the architecture of the OPU commands was changed to work in the same
way as the SDR commands, these tests would reflect the implementation done. Even so, it would
have been beneficial to run the automated tests on the SDR as well.

Having a workflow which includes other team members testing the code developed helped finding
bugs, and ensured better quality of the code developed. Testing can also be a way of getting
to know the new features made by other team members and learning how to use them. As the
different issues were divided and made as small as possible, no PRs made as a result of this thesis
took too long to get tested and approved. Some PRs were approved quickly as the changes to
the code base were minimal, whereas for the PRs with the largest amount of refactoring, more
extensive testing was required. Even more extensive testing would be required before merging the
sdr-services branch into the main branch of hypso-sw as the consequences of introducing bugs
can be large. It would be beneficial to have Jenkins run its automated tests on the SDR as well
before merging. As a lot of code has been changed, the probability of there being some scenario

53

which has not been tested for is present.

6.4 Future Work

As a result of the development done by the author within the scope of this master’s thesis, the
SDR is fully integrated into the SW. Every issue were solved regarding refactoring and generalizing
of code in order to develop a flexible SW platform to support multiple PLs. Nevertheless, there is
remaining work to be done before the part of the code related to the SDR is ready to be launched
with HYPSO-2. A lot of the future work includes developing functionality specifically for the SDR.

The only issue regarding the SDR remaining from the scope of this master’s thesis, is the problem
with user permissions. This is an issue which has to be solved in sdr-system, and the goal is
generate a user which has user permissions which is somewhere in-between the root and the totem
user.

Before starting the development of SDR-specific features, the team has to make a decision of when
and how to merge the sdr-services branch into the master branch of hypso-sw. Things to be
considered are diverging branches, and sufficient testing of the branch before merging. Hence, the
sdr could be considered connected to Jenkins in order to run automated tests.

The SDR does not have any private services yet, but there will probably evolve a need in the
future for a service which shall run application code related to the radio. An example of use for
this service would be to gather data connected to the on-orbit interference over the Arctic.

54

Bibliography

[1] Tuva Okkenhaug Moxnes. Telemetry Service Logging System for CubeSat. Non-published.
2020.

[2] Mariusz Grøtte.Mission Operations Plan. HYPSO-MOP-001. Internal document. Non-published.

[3] Gara Quintana-Dı́az et al. “An SDR mission measuring UHF signal propagation and inter-
ference between small satellites in LEO and Arctic sensors”. In: (2021 - non-published).

[4] NASA CubeSat Launch Initiative. CubeSat101, Basic Concepts and Processes for First-Time
CubeSat Developers. hhttps://www.nasa.gov/sites/default/files/atoms/files/nasa_
csli_cubesat_101_508.pdf. Accessed: 2020-12-22. 2011.

[5] NanoAvionics website. https://nanoavionics.com/nanosatellite-buses/6u-nanosatellite-
bus-m6p/. Accessed: 2020-12-15.

[6] HYPSO project team. System Design Report. HYPSO-DR-001. Internal document. Non-
published.

[7] Avnet. “TOTEM Motherboard - Softwae-Defined Radio for nanosatellites - Datasheet”. In:
(2019).

[8] Amund Gjersvik. Breakout Board V3 ICD. HYPSO-ICD-003. Internal document. Non-published.

[9] Avnet. “UltraZed-EV™ Carrier Card Designer’s Guide”. Version 1.1. In: (2018).

[10] Keith W. Ross James F. Kurose. Computer Networking - A Top-Down Approach. 6th ed.
2013.

[11] GomSpace. CubeSat Space Protocol. https://bytebucket.org/bbruner0/albertasat-on-
board-computer/wiki/1.%20Resources/1.1.%20DataSheets/CSP/GS-CSP-1.1.pdf?rev=

316ebd49bed49fdbb1d74efdeab74430e7cc726a. Accessed: 2020-12-14. 2011.

[12] J. Garret S. Bakken and R. Birkeland. HYPSO SW Design Report. HYPSO-DR-005. Internal
document. Non-published.

[13] M. Hjertenæs and Magnus Danielsen. Platform-Payload Interface Control Document. HYPSO-
ICD-001. Internal document. Non-published.

[14] Texas Instruments. Introduction to the Controller Area Network (CAN). https://www.ti.
com/lit/an/sloa101b/sloa101b.pdf. Accessed: 2020-12-14. 2016.

[15] Amund Gjersvik. Journal on RS-422 transceiver selection process. Internal document. Non-
published. 2021.

[16] HYPSO-SW team. hypso-sw. https : / / github . com / NTNU - SmallSat - Lab / hypso - sw.
GitHub repository.

[17] HYPSO-SW team. opu-system. https://github.com/NTNU-SmallSat-Lab/opu-system.
GitHub repository.

[18] HYPSO-SW team. sdr-system. https://github.com/NTNU-SmallSat-Lab/sdr-system.
GitHub repository.

[19] Andrew W. Appel. “Verified Software Toolchain”. In: European Symposium on Programming
(2011), pp. 1–17.

55

[20] Docker website. https://www.docker.com/. Accessed: 2020-12-21.

[21] A. Vaduva. Learning Embedded Linux Using the Yocto Project. 6th ed. Packt Publishing,
2015.

[22] Roger Birkeland and Dennis Langer. Manual for Flatsat and Lidsat. HYPSO-UM-004. Inter-
nal document. Non-published.

[23] Rick Dove and Ralph LaBarge. “Fundamentals of Agile Systems Engineering - Part 2”. In:
(2014).

[24] Rick Dove and Ralph LaBarge. “Fundamentals of Agile Systems Engineering - Part 1”. In:
(2014).

[25] Kaisa Könnöla et al. “Can embedded space system development benefit from agile practices?”
In: J Embedded Systems (2017). issn: 1687-3963. doi: https://doi.org/10.1186/s13639-
016-0040-z. url: https://jes-eurasipjournals.springeropen.com/articles/10.
1186/s13639-016-0040-z#citeas.

[26] Magnus Thorstein Sletholt et al. “A Literature Review of Agile Practices and Their Effects
in Scientific Software Development”. In: Proceedings of the 4th International Workshop on
Software Engineering for Computational Science and Engineering. SECSE ’11. Waikiki, Hon-
olulu, HI, USA: Association for Computing Machinery, 2011, pp. 1–9. isbn: 9781450305983.
doi: 10.1145/1985782.1985784. url: https://doi.org/10.1145/1985782.1985784.

[27] Stefanie Paluch et al. “Stage-gate and agile development in the digital age: Promises, perils,
and boundary conditions”. In: Journal of Business Research 110 (2020), pp. 495–501. issn:
0148-2963. doi: https://doi.org/10.1016/j.jbusres.2019.01.063. url: https:
//www.sciencedirect.com/science/article/pii/S0148296319300827.

[28] A. van Bennekum et al. K. Beck M. Beedle. Manifesto for Agile Software Development. url:
https://agilemanifesto.org/. (accessed: 05.06.2020).

[29] European Cooperation for Space Standardization. Space engineering - Agile software devel-
opment handbook. ECSS-E-HB-40-01A. ESA Requirements and Standards Division. 2020.

[30] Greg Wilson et al. “Best Practices for Scientific Computing”. In: PLOS Biology 12.1 (Jan.
2014), pp. 1–7. doi: 10.1371/journal.pbio.1001745. url: https://doi.org/10.1371/
journal.pbio.1001745.

[31] Steve McConnel. Code Complete. 2nd ed. Microsoft, 2004.

[32] Clang-format. https://www.kernel.org/doc/html/latest/process/clang-format.
html. Accessed: 2020-12-21.

[33] Tham Wai Yip Loo Wooi Khong Leau Yu Beng and Tan Soo Fun. “Software development
life cycle agile vs traditional approaches”. In: (2012).

[34] N. S. Janoff and Linda Rising. “The scrum software development process for small teams”.
In: (2000).

[35] Scott Chacon and Ben Straub. Pro Git. 7th ed. Apress, 2020.

[36] Understanding the GitHub flow. https : / / guides . github. com / introduction / flow/.
Accessed: 2020-12-10.

[37] Wikipedia. Universal asynchronous receiver-transmitter. url: https://en.wikipedia.org/
wiki/Universal_asynchronous_receiver-transmitter. (accessed: 04.06.2021).

[38] C - Structures. https://www.tutorialspoint.com/cprogramming/c_structures.htm.
Accessed: 2020-12-22.

[39] HYPSO-SW team. hypso-telemetry-c-structs. https://github.com/NTNU-SmallSat-Lab/
hypso-telemetry-c-structs. GitHub repository.

56

Appendix

A tm log.h

#ifndef TM_LOG_H

#define TM_LOG_H

#define TELEMETRY_SAVE_FOLDER "telemetry/"

#define TELEMETRY_SAVE_FILE "telemetry.log"

#define TELEMETRY_SAVE_INTERVAL "telemetry_interval.txt"

#define TELEMETRY_LOG_INTERVAL 60 // seconds

#define TM_FILE_ID 1

#define TM_ENTRY_SZ_OPU sizeof(struct telemetry_opu_data)

#define TM_ENTRY_SZ_SDR sizeof(struct telemetry_sdr_data)

#define TM_ENTRY_COUNT 2100 // 7(days)*(10*30)(min on-time)

#include <time.h>

#include <stdio.h> //for FILE*

bool tm_logging_on;

uint16_t tm_logging_interval;

struct __attribute__((packed)) telemetry_opu_data

{

uint32_t plTime;

uint32_t plUptime;

uint8_t plLoad1;

uint8_t plLoad5;

uint8_t plLoad15;

union

{ // same data, nanoMCS does not take in char

int64_t plHost; // ASCII

char plImg[8];

};

uint32_t plMemoryFree;

uint32_t plMemoryTotal;

uint32_t opuSdPlFree;

uint32_t opuSdPlTotal;

uint32_t opuSdImgFree;

uint32_t opuSdImgTotal;

uint32_t opuEmmcPlFree;

uint32_t opuEmmcPlTotal;

uint32_t opuEmmcGoldImgFree;

uint32_t opuEmmcGoldImgTotal;

};

struct __attribute__((packed)) telemetry_sdr_data

{

uint32_t plTime;

uint32_t plUptime;

uint8_t plLoad1;

uint8_t plLoad5;

uint8_t plLoad15;

union

{ // same data, nanoMCS does not take in char

int64_t plHost; // ASCII

char plImg[8];

57

};

uint32_t plMemoryFree;

uint32_t plMemoryTotal;

uint32_t sdrDevFree;

uint32_t sdrDevTotal;

uint32_t sdrTmpFree;

uint32_t sdrTmpTotal;

uint32_t sdrUbi0Free;

uint32_t sdrUbi0Total;

float sdrTemp; //mC

float vccINT; //mV

float vccAUX; //mV

float vccBRAM; //mV

float vccPINT; //mV

float vccPAUX; //mV

float vccODDR; //mV

float vrefP; //mV

float vrefN; //mV

float currVCC5V0; //mA

float analog0; //

float voltVCC5V0; //V

float tempUHFfront; //C

float tempUHFpa; //C

float voltVCC3V3; //V

float voltVCC2V5; //V

float sdrTemp2; //C

float currVBAT; //mA

float currVCC2V5; //mA

float TRXcurrVCC3V3;//mA

float currVCC3V3; //mA

float currVCC0V95; //mA

float currVCC1V3; //mA

float currVCC1V8; //mA

float currVCC1V35; //mA

};

struct telemetry_log_file

{

FILE* p_telemetry_log_file;

char tm_filepath[100];

time_t timestamp;

// bool tm_log_status; //global variable instead to be able to change it

// from hsi capture without passing the log struct

};

#endif /* TM_LOG_H */

~

~

58

B Issue #471 & #472 hypso-sw

Jump to bottom

NTNU-SmallSat-Lab / hypso-sw Private

Code Issues 70 Pull requests 3 Actions Projects Security

Remove or change handle_restart_request() for sdr-

services #471

rogerbirkeland opened this issue on Dec 20, 2020 · 2 comments

Labels points=3 sdr

Projects SW kanban board

Edit New issue

rogerbirkeland commented on Dec 20, 2020

int handle_restart_request(csp_conn_t* conn, csp_packet_t* pkt) -- this function tries to

restart sdr-services into a non-existing folder.

Functionality to restart sdr-services should be maintained, but implementation needs to be

changed.

rogerbirkeland added the sdr label on Dec 20, 2020

sivertba commented on Jan 14

Investigate what is needed and implement something that fits with the current hardware.

(Use relative path)

sivertba added the points=3 label on Jan 14

sivertba added this to Backlog in SW kanban board on Jan 14

 Closed

Remove or change handle_restart_request() for sdr-ser... https://github.com/NTNU-SmallSat-Lab/hypso-sw/issue...

1 of 2 6/1/21, 17:59

59

No one—assign yourself

points=3 sdr

SW kanban board

No milestone

Successfully merging a pull request may close this issue.

None yet

2 participants

Pin issue

rogerbirkeland commented on Mar 24

Closed due to #504

Author

rogerbirkeland closed this on Mar 24

SW kanban board automation moved this from Backlog to Done on Mar 24

Assignees

Labels

Projects

Done

Milestone

Linked pull requests

Remove or change handle_restart_request() for sdr-ser... https://github.com/NTNU-SmallSat-Lab/hypso-sw/issue...

2 of 2 6/1/21, 17:59

Jump to bottom

NTNU-SmallSat-Lab / hypso-sw Private

Code Issues 70 Pull requests 3 Actions Projects Security

Consider the implementation of csp shutdown for sdr-

services #472

rogerbirkeland opened this issue on Dec 20, 2020 · 2 comments

Labels points=3 sdr

Projects SW kanban board

Edit New issue

rogerbirkeland commented on Dec 20, 2020

At the moment, the SDR is not connected to the EPS, so it cannot (really) power itself of if it receives

the csp shutdown command.

Consider if the power-off implementation should be similar to what of the opu-services. See

implementation in sdr-services.c .

rogerbirkeland added the sdr label on Dec 20, 2020

sivertba commented on Jan 14

MIght be transferred to different issues

sivertba added the points=3 label on Jan 14

sivertba added this to Backlog in SW kanban board on Jan 14

sivertba moved this from Backlog to To do in SW kanban board on Jan 14

 Closed

Consider the implementation of csp shutdown for sdr-s... https://github.com/NTNU-SmallSat-Lab/hypso-sw/issue...

1 of 3 6/1/21, 17:59

61

No one—assign yourself

points=3 sdr

SW kanban board

No milestone

Successfully merging a pull request may close this issue.

None yet

2 participants

sivertba moved this from To do to Backlog in SW kanban board on Jan 14

rogerbirkeland commented on Mar 24

Closed due to #503

Author

rogerbirkeland closed this on Mar 24

SW kanban board automation moved this from Backlog to Done on Mar 24

Assignees

Labels

Projects

Done

Milestone

Linked pull requests

Consider the implementation of csp shutdown for sdr-s... https://github.com/NTNU-SmallSat-Lab/hypso-sw/issue...

2 of 3 6/1/21, 17:59

C Issue #473 hypso-sw

Jump to bottom

NTNU-SmallSat-Lab / hypso-sw Private

Code Issues 70 Pull requests 3 Actions Projects Security

Verify functionality of csp commands on sdr-services

#473

rogerbirkeland opened this issue on Dec 20, 2020 · 4 comments

Assignees

Labels points=3 sdr

Projects SW kanban board

Edit New issue

rogerbirkeland commented on Dec 20, 2020 •

CSP implements the following functions, that should work across all subsystems. The correct

implementation must be verified for the SDR. (If needed, split into more issues).

csp reboot

csp shutdown

csp uptime

edited

rogerbirkeland added the sdr label on Dec 20, 2020

sivertba added the points=3 label on Jan 14

sivertba added this to Backlog in SW kanban board on Jan 14

sivertba moved this from Backlog to To do in SW kanban board on Jan 28

sivertba assigned tuvaom on Jan 28

 Closed

Verify functionality of csp commands on sdr-services · I... https://github.com/NTNU-SmallSat-Lab/hypso-sw/issue...

1 of 3 6/1/21, 17:44

63

tuvaom

rogerbirkeland commented on Mar 8

Seem to work when sdr-services is run as root.

Author

tuvaom commented on Mar 23

Still get error messages on csp reboot and csp shutdown , even when run from root.

apps/sdr_services.c:80:csp_services_task: CSP Services conn: 0x40a10

Failed to reboot: No error information

apps/sdr_services.c:80:csp_services_task: CSP Services conn: 0x40a48

Failed to shutdown: No error information

rogerbirkeland commented on Mar 24

Works when the sdr-services is started automatically, but not when it is started through the startup

script.

Author

rogerbirkeland commented on Mar 24

Closed due to #520

Author

rogerbirkeland closed this on Mar 24

SW kanban board automation moved this from To do to Done on Mar 24

Assignees

Verify functionality of csp commands on sdr-services · I... https://github.com/NTNU-SmallSat-Lab/hypso-sw/issue...

2 of 3 6/1/21, 17:44

D Issue #474 & #475 hypso-sw

Jump to bottom

Code Issues 70 Pull requests 3 Actions Projects Security

make opu upload support the SDR #474

rogerbirkeland opened this issue on Dec 20, 2020 · 1 comment

Labels Enhancement hypso-2 points=5 sdr

Projects SW kanban board

Edit New issue

rogerbirkeland commented on Dec 20, 2020

Is your feature request related to a problem? Please describe.

Currently, the target CSP-ID when using the nice wrapper function opu upload is hard-coded to 12.

This means that it cannot directly support the SDR (which has CSP-ID 13).

Describe the solution you'd like

opu upload should take an optional target CSP-address.

Describe alternatives you've considered

Alternatively, a new wrapper for sdr upload should be made.

Additional context

opu upload to the SDR works fine if the sdr-services is started with CSP-ID 12.

rogerbirkeland added Enhancement hypso-2 sdr labels on Dec 20, 2020

sivertba added the points=5 label on Jan 14

sivertba added this to Backlog in SW kanban board on Jan 14

tuvaom mentioned this issue on Feb 11

 Closed

make opu upload support the SDR · Issue #474 · NTN... https://github.com/NTNU-SmallSat-Lab/hypso-sw/issue...

1 of 3 6/1/21, 17:50

65

No one—assign yourself

Enhancement hypso-2 points=5 sdr

SW kanban board

No milestone

Successfully merging a pull request may close this issue.

None yet

Converting the opu-commands in hypso-cli into pl-commands to work with

multiple payloads #506

tuvaom commented on Mar 17

closed by #506

tuvaom closed this on Mar 17

SW kanban board automation moved this from Backlog to Done on Mar 17

Assignees

Labels

Projects

Done

Milestone

Linked pull requests

tuvaom mentioned this issue on Mar 17

 Merged

make opu upload support the SDR · Issue #474 · NTN... https://github.com/NTNU-SmallSat-Lab/hypso-sw/issue...

2 of 3 6/1/21, 17:50

Jump to bottom

NTNU-SmallSat-Lab / hypso-sw Private

Code Issues 70 Pull requests 3 Actions Projects Security

opu check does not work on SDR #475

rogerbirkeland opened this issue on Dec 20, 2020 · 2 comments

Labels bug points=5 sdr

Projects SW kanban board

Edit New issue

rogerbirkeland commented on Dec 20, 2020

Describe the bug

Even though the Totem has the (an implementation of...) md5sum tool, opu check does not work.

To Reproduce

Steps to reproduce the behavior:

1. start sdr-services with CSP_ID 12

2. do a opu check

3. observe timeout and no printouts on the totem log.

Expected behavior

no timeout.

rogerbirkeland added the sdr label on Dec 20, 2020

sivertba added bug points=5 labels on Jan 14

sivertba added this to Backlog in SW kanban board on Jan 14

tuvaom commented on Feb 3

 Closed

opu check does not work on SDR · Issue #475 · NTNU... https://github.com/NTNU-SmallSat-Lab/hypso-sw/issue...

1 of 3 6/1/21, 17:25

67

No one—assign yourself

bug points=5 sdr

SW kanban board

No milestone

timeout because opu check is a part of the telemetry-service thread which does not run on the SDR.

(replace it?)

tuvaom mentioned this issue on Feb 11

tm_service.c -> tm_service.c + tm_opu.c + tm_sdr.c #494

tuvaom mentioned this issue on Feb 25

Converting the opu-commands in hypso-cli into pl-commands to work with

multiple payloads #506

tuvaom commented on Mar 18

closed by #506

tuvaom closed this on Mar 18

SW kanban board automation moved this from Backlog to Done on Mar 18

Assignees

Labels

Projects

Done

Milestone

 Closed

 Merged

opu check does not work on SDR · Issue #475 · NTNU... https://github.com/NTNU-SmallSat-Lab/hypso-sw/issue...

2 of 3 6/1/21, 17:25

E Issue #476 hypso-sw

Jump to bottom

NTNU-SmallSat-Lab / hypso-sw Private

Code Issues 70 Pull requests 3 Actions Projects Security

Decide how to mirror the implementation of opu ...

commands for the SDR #476

rogerbirkeland opened this issue on Dec 20, 2020 · 2 comments

Assignees

Labels hypso-2 points=5 sdr

Projects SW kanban board

Edit New issue

rogerbirkeland commented on Dec 20, 2020 •

hypso-cli has a lot of useful opu xxx commands. These must be mirrored to the SDR, either make new

wrappers or new implementations. The ones that can be used directly must atleast be able to direct to

the correct CSP-ID.

These services should be kept:

 opu exit

 opu shutdown

 opu restart

 opu settime

 opu list

 opu log

 opu status

 opu download

 opu upload

 opu update

 opu check

 opu git

 opu lastcmd

edited by tuvaom

 Closed

Decide how to mirror the implementation of opu ... c... https://github.com/NTNU-SmallSat-Lab/hypso-sw/issue...

1 of 3 6/1/21, 17:44

69

rogerbirkeland added hypso-2 sdr labels on Dec 20, 2020

sivertba commented on Jan 14

related to #477

sivertba added the points=5 label on Jan 14

sivertba added this to Backlog in SW kanban board on Jan 14

sivertba moved this from Backlog to To do in SW kanban board on Jan 28

sivertba assigned tuvaom on Jan 28

sivertba moved this from To do to In progress in SW kanban board on Feb 2

tuvaom mentioned this issue on Feb 11

cli_opu -> cli_opu + cli_sdr + cli_pl #493

sivertba moved this from In progress to Review in progress in SW kanban board on Feb 25

tuvaom commented on Feb 25

Decided through issues:

#493 (exit, status, download, upload, update, lastcmd)

#494(check, git)

#495 (list)

#503(shutdown)

#504(restart)

#502(settime)

#505(log)

 Closed

Decide how to mirror the implementation of opu ... c... https://github.com/NTNU-SmallSat-Lab/hypso-sw/issue...

2 of 3 6/1/21, 17:44

F Issue #477 hypso-sw

Jump to bottom

NTNU-SmallSat-Lab / hypso-sw Private

Code Issues 70 Pull requests 3 Actions Projects Security

Refactor common code between sdr-services.c and opu-

services.c #477

DennisNTNU opened this issue on Dec 21, 2020 · 1 comment

Labels hypso-2 points=8 sdr

Projects SW kanban board

Edit New issue

DennisNTNU commented on Dec 21, 2020

Is your feature request related to a problem? Please describe.

Duplicate code requires the programmer to apply the same changes multiple times, thereby doubling

increasing the time needed for testing and debugging and increasing the chance for introducing bugs.

Describe the solution you'd like

Making new source files containing the common code in sdr-services.c and opu-services.c

 1

DennisNTNU added hypso-2 sdr labels on Dec 21, 2020

sivertba mentioned this issue on Jan 14

Decide how to mirror the implementation of opu ... commands for the SDR #476

13 of 13 tasks complete

sivertba added the points=8 label on Jan 14

sivertba added this to Backlog in SW kanban board on Jan 14

 Closed

 Closed

Refactor common code between sdr-services.c and opu... https://github.com/NTNU-SmallSat-Lab/hypso-sw/issue...

1 of 3 6/1/21, 18:18

71

No one—assign yourself

hypso-2 points=8 sdr

sivertba moved this from Backlog to To do in SW kanban board on Jan 14

sivertba moved this from To do to Backlog in SW kanban board on Jan 14

sivertba moved this from Backlog to To do in SW kanban board on Jan 28

sivertba moved this from To do to Backlog in SW kanban board on Jan 28

sivertba moved this from Backlog to In progress in SW kanban board on Mar 23

tuvaom mentioned this issue on Apr 12

Refactoring opu_services.c and sdr_services.c #527

tuvaom commented on Apr 13

closed by #527

tuvaom closed this on Apr 13

SW kanban board automation moved this from In progress to Done on Apr 13

tuvaom mentioned this issue on Apr 14

Sdr refactor (opu_services.c and sdr_services.c) #529

Assignees

Labels

 Merged

 Merged

Refactor common code between sdr-services.c and opu... https://github.com/NTNU-SmallSat-Lab/hypso-sw/issue...

2 of 3 6/1/21, 18:18

G Issue #478 hypso-sw

Jump to bottom

NTNU-SmallSat-Lab / hypso-sw Private

Code Issues 70 Pull requests 3 Actions Projects Security

Add command to update Totem time after reboot #478

garaq opened this issue on Dec 22, 2020 · 2 comments

Assignees

Labels points=5 sdr

Projects SW kanban board

Edit New issue

garaq commented on Dec 22, 2020

Problem: After rebooting Totem, the time restarts.

Solution: run this command from a computer: sshpass -p passw ssh root@129.241.2.61 date +%s -s

@ date +%s

We could add this line to sdr-services or somewhere in the start configuration

garaq added the sdr label on Dec 22, 2020

garaq self-assigned this on Dec 22, 2020

rogerbirkeland commented on Dec 22, 2020

Perhaps better to (also) implement the function syncing from the EPS. Might / hopefully work streigth

out if the box.

sivertba added the points=5 label on Jan 14

 Closed

Add command to update Totem time after reboot · Issu... https://github.com/NTNU-SmallSat-Lab/hypso-sw/issue...

1 of 3 6/1/21, 18:00

73

garaq

points=5 sdr

SW kanban board

sivertba added this to Backlog in SW kanban board on Jan 14

sivertba moved this from Backlog to In progress in SW kanban board on Mar 23

tuvaom mentioned this issue on Mar 23

Run sdr-services from root to access functionality #520

rogerbirkeland mentioned this issue on Mar 23

Making Totem startupscript NTNU-SmallSat-Lab/sdr-system#8

garaq commented on Mar 24

It works.

Author

rogerbirkeland closed this in NTNU-SmallSat-Lab/sdr-system#8 on Mar 24

SW kanban board automation moved this from In progress to Done on Mar 24

Assignees

Labels

Projects

Done

Milestone

 Merged

 Merged

Add command to update Totem time after reboot · Issu... https://github.com/NTNU-SmallSat-Lab/hypso-sw/issue...

2 of 3 6/1/21, 18:00

H Issue #492 hypso-sw

Jump to bottom

NTNU-SmallSat-Lab / hypso-sw Private

Code Issues 70 Pull requests 3 Actions Projects Security

Decide which user sdr-services shall run under #492

rogerbirkeland opened this issue on Feb 10 · 3 comments

Labels points=5 sdr

Projects SW kanban board

Edit New issue

rogerbirkeland commented on Feb 10

Should sdr-services run under totem or root user?

This issue is related to NTNU-SmallSat-Lab/sdr-system#6. If it's desided to run under root , that

resolves NTNU-SmallSat-Lab/sdr-system#6.

rogerbirkeland mentioned this issue on Feb 10

Configure CAN-network interface during boot NTNU-SmallSat-Lab/sdr-system#6

rogerbirkeland added the sdr label on Feb 10

rogerbirkeland commented on Feb 11

Figure out if the totem-user can be given more permissions without use full root privs. Perhaps also

related to startup-scripts that will start sdr-services automatically.

Author

 Closed

 Closed

Decide which user sdr-services shall run under · Issue... https://github.com/NTNU-SmallSat-Lab/hypso-sw/issue...

1 of 3 6/1/21, 17:45

75

jlgarrett added this to Backlog in SW kanban board on Feb 11

jlgarrett added the points=5 label on Feb 11

rogerbirkeland mentioned this issue on Feb 16

Make start-up-scripts for Totem NTNU-SmallSat-Lab/sdr-system#7

rogerbirkeland commented on Mar 2

Input from Alen Space:

Regarding running as non-root, it is as you said more secure and helps you identify mistakes as

you have more control over what can or cannot be done. For allowing non-root users to access

i.e. CAN devices, the user must have proper permissions to the devices in /dev, usually setting

device files as owned by a group and making the non-root user part of this group.

My recommendation for proper non-user device usage is to change the /dev management to

mdev and use the /etc/mdev.conf file to set specific groups and permissions to each device (i.e.

/dev/can0). Then, change the user_table.txt file to add the user to these groups. Please see the

buildroot manual for this, as it offers extensive documentation, and if you need any help you can

ask me again.

https://buildroot.org/downloads/manual/manual.html#_dev_management

Author

tuvaom changed the title Deside which user sdr-services shall run under Decide which user

sdr-services shall run under on Mar 17

sivertba moved this from Backlog to Review in progress in SW kanban board on Mar 23

tuvaom mentioned this issue on Mar 23

Run sdr-services from root to access functionality #520

tuvaom commented on Mar 24

closed by #520

 Closed

 Merged

Decide which user sdr-services shall run under · Issue... https://github.com/NTNU-SmallSat-Lab/hypso-sw/issue...

2 of 3 6/1/21, 17:45

I Issue #493 & #494 hypso-sw

Jump to bottom

NTNU-SmallSat-Lab / hypso-sw Private

Code Issues 70 Pull requests 3 Actions Projects Security

cli_opu -> cli_opu + cli_sdr + cli_pl #493

tuvaom opened this issue on Feb 11 · 2 comments

Assignees

Labels points=13 sdr

Projects SW kanban board

Edit New issue

tuvaom commented on Feb 11 •

Is your feature request related to a problem? Please describe.

Some opu -commands are useful both for opu and the sdr, but the csp address is hard-coded into

cli_opu.c as HYPSO_OPU_ADDRESS.

Describe the solution you'd like

Create a new file cli_pl.c and move all functions that will be used for both payloads here

These functions will now take in one additional argument address , which decides where to send

cli_opu.c will now only contain the opu-specific functions, and will call the functions in cli_pl

with the HYPSO_OPU_ADDRESS

Create a new file cli_sdr.c which will contain functions to only be used on the sdr. The

functions in cli_pl can be called using the HYPSO_SDR_ADDRESS.

Example

sdr status will use the function cli_pl_status(HYPSO_SDR_ADDRESS)

opu status will use cli_pl_status(HYPSO_OPU_ADDRESS)

Describe alternatives you've considered

Making an additional user-argument to be the csp-address fro the common functions, and calling pl

status 12 and pl status 13 .

Additional context

Have tested that opu_status, opu_upload, opu_download, opu_lastcmd, opu_exit all work on the SDR

when HYPSO_OPU_ADDRESS and HYPSO_SDR_ADDRESS are switched.

This would resolve #474 and partly #476

edited

 Closed

cli_opu -> cli_opu + cli_sdr + cli_pl · Issue #493 · NT... https://github.com/NTNU-SmallSat-Lab/hypso-sw/issue...

1 of 3 6/1/21, 17:46

77

tuvaom added the sdr label on Feb 11

tuvaom changed the title cli_opu -> cli_opu + cli_sdr + cli_payload cli_opu -> cli_opu +

cli_sdr + cli_pl on Feb 11

rogerbirkeland commented on Feb 11

Consider both ways: sdr/opu statu s and pl status x

rogerbirkeland added the points=13 label on Feb 11

jlgarrett added this to Backlog in SW kanban board on Feb 11

jlgarrett moved this from Backlog to To do in SW kanban board on Feb 11

tuvaom self-assigned this on Feb 11

sivertba moved this from To do to In progress in SW kanban board on Feb 23

sivertba moved this from In progress to Review in progress in SW kanban board on Feb 25

This was referenced on Feb 25

Converting the opu-commands in hypso-cli into pl-commands to work with

multiple payloads #506

Decide how to mirror the implementation of opu ... commands for the SDR #476

tuvaom commented on Mar 18 Author

 Merged

 Closed

cli_opu -> cli_opu + cli_sdr + cli_pl · Issue #493 · NT... https://github.com/NTNU-SmallSat-Lab/hypso-sw/issue...

2 of 3 6/1/21, 17:46

tuvaom

points=13 sdr

SW kanban board

No milestone

Successfully merging a pull request may close this issue.

None yet

2 participants

Pin issue

closed by #506

tuvaom closed this on Mar 18

SW kanban board automation moved this from Review in progress to Done on Mar 18

Assignees

Labels

Projects

Done

Milestone

Linked pull requests

cli_opu -> cli_opu + cli_sdr + cli_pl · Issue #493 · NT... https://github.com/NTNU-SmallSat-Lab/hypso-sw/issue...

3 of 3 6/1/21, 17:46

Jump to bottom

NTNU-SmallSat-Lab / hypso-sw Private

Code Issues 70 Pull requests 3 Actions Projects Security

tm_service.c -> tm_service.c + tm_opu.c + tm_sdr.c #494

tuvaom opened this issue on Feb 11 · 1 comment

Assignees

Labels points=8 sdr

Projects SW kanban board

Edit New issue

tuvaom commented on Feb 11 •

Is your feature request related to a problem? Please describe.

The telemetry service is currently not included for the sdr, but some functions are needed.

Describe the solution you'd like

Create two new files tm_opu.c and tm_sdr.c, and divide split tm_service.c into three files. The common

functions will still be located in tm_service.c. Include the tm-service in sdr_services.c.

Describe alternatives you've considered

Create different services, but this will result in a lot of extra services in the end.

Additional Context

This would resolve #475 as opu check is a part of the telemetry service.

edited

tuvaom added the sdr label on Feb 11

jlgarrett added this to Backlog in SW kanban board on Feb 11

jlgarrett added the points=8 label on Feb 11

 Closed

tm_service.c -> tm_service.c + tm_opu.c + tm_sdr.c · I... https://github.com/NTNU-SmallSat-Lab/hypso-sw/issue...

1 of 3 6/1/21, 17:47

80

tuvaom

points=8 sdr

SW kanban board

jlgarrett moved this from Backlog to To do in SW kanban board on Feb 11

tuvaom self-assigned this on Feb 11

sivertba moved this from To do to In progress in SW kanban board on Feb 23

sivertba moved this from In progress to Review in progress in SW kanban board on Feb 25

This was referenced on Feb 25

Converting the opu-commands in hypso-cli into pl-commands to work with

multiple payloads #506

Decide how to mirror the implementation of opu ... commands for the SDR #476

tuvaom commented on Mar 18

closed by #506

Author

tuvaom closed this on Mar 18

SW kanban board automation moved this from Review in progress to Done on Mar 18

Assignees

Labels

Projects

Done

 Merged

 Closed

tm_service.c -> tm_service.c + tm_opu.c + tm_sdr.c · I... https://github.com/NTNU-SmallSat-Lab/hypso-sw/issue...

2 of 3 6/1/21, 17:47

J Issue #495 hypso-sw

Jump to bottom

NTNU-SmallSat-Lab / hypso-sw Private

Code Issues 70 Pull requests 3 Actions Projects Security

Find a way to list all files on the sdr #495

tuvaom opened this issue on Feb 11 · 2 comments

Assignees

Labels points=2 sdr

Projects SW kanban board

Edit New issue

tuvaom commented on Feb 11

Is your feature request related to a problem? Please describe.

const char* list_command = "find . -exec ls -ld $PWD/{} \\;"; Does not work on the SDR.

Get the error message find: not found

Describe the solution you'd like

Want to find a want to find a way so that a similar command to opu list can be run on the SDR

tuvaom added the sdr label on Feb 11

rogerbirkeland commented on Feb 11

Might be possible to use ls -Rl for this.

rogerbirkeland added the points=2 label on Feb 11

jlgarrett added this to Backlog in SW kanban board on Feb 11

 Closed

Find a way to list all files on the sdr · Issue #495 · NT... https://github.com/NTNU-SmallSat-Lab/hypso-sw/issue...

1 of 3 6/1/21, 17:47

82

tuvaom

points=2 sdr

SW kanban board

No milestone

tuvaom self-assigned this on Feb 25

sivertba moved this from Backlog to Review in progress in SW kanban board on Feb 25

This was referenced on Feb 25

Converting the opu-commands in hypso-cli into pl-commands to work with

multiple payloads #506

Decide how to mirror the implementation of opu ... commands for the SDR #476

tuvaom commented on Mar 18

closed by #506

Author

tuvaom closed this on Mar 18

SW kanban board automation moved this from Review in progress to Done on Mar 18

Assignees

Labels

Projects

Done

Milestone

 Merged

 Closed

Find a way to list all files on the sdr · Issue #495 · NT... https://github.com/NTNU-SmallSat-Lab/hypso-sw/issue...

2 of 3 6/1/21, 17:47

K Issue #496 hypso-sw

Jump to bottom

NTNU-SmallSat-Lab / hypso-sw Private

Code Issues 70 Pull requests 3 Actions Projects Security

Make opu update include sdr-services #496

tuvaom opened this issue on Feb 11 · 1 comment

Assignees

Labels points=3 sdr

Projects SW kanban board

Edit New issue

tuvaom commented on Feb 11

Is your feature request related to a problem? Please describe.

Currently opu update can only update image.ub and opu-services

Describe the solution you'd like

Make it possible to update sdr-services as well.

tuvaom added the sdr label on Feb 11

rogerbirkeland added the points=3 label on Feb 11

jlgarrett closed this on Feb 11

jlgarrett added this to Backlog in SW kanban board on Feb 11

DennisNTNU reopened this on Feb 11

 Closed

Make opu update include sdr-services · Issue #496 · ... https://github.com/NTNU-SmallSat-Lab/hypso-sw/issue...

1 of 3 6/1/21, 17:48

84

tuvaom

points=3 sdr

SW kanban board

No milestone

jlgarrett moved this from Backlog to To do in SW kanban board on Feb 11

tuvaom self-assigned this on Feb 11

sivertba moved this from To do to Review in progress in SW kanban board on Feb 25

tuvaom mentioned this issue on Feb 25

Converting the opu-commands in hypso-cli into pl-commands to work with

multiple payloads #506

tuvaom commented on Mar 18

closed by #506

Author

tuvaom closed this on Mar 18

SW kanban board automation moved this from Review in progress to Done on Mar 18

Assignees

Labels

Projects

Done

Milestone

 Merged

Make opu update include sdr-services · Issue #496 · ... https://github.com/NTNU-SmallSat-Lab/hypso-sw/issue...

2 of 3 6/1/21, 17:48

L Issue #501 hypso-sw

Code Issues 70 Pull requests 3 Actions Projects Security

Telemetry service for the sdr #501

tuvaom opened this issue on Feb 25 · 2 comments

Assignees

Labels points=13 sdr

Projects SW kanban board

Edit New issue

tuvaom commented on Feb 25

Is your feature request related to a problem? Please describe.

sdr-services is currently exiting when the telemetry logging is included.

I suspect that this is because the FS_TYPE_LOG is not supported on the totem(?)

Describe the solution you'd like

The optimal thing would be to make the log file-type work on the sdr

totem@totem ~> ./sdr-tuva 13 can0

Logging output to: logs/210224T202545_sdr-services.log

Init can interface can0

RTNETLINK answers: Operation not permitted

RTNETLINK answers: Operation not permitted

RTNETLINK answCSP initiaisation complete

Hostname: sdr

Model: sdr-services

Revision: Feb 24 2021 19:22:47ers: Operation not permitted

RTNETLINK answers: Operation not permitted

Git commit: d501985-dirty

Git branch: sdr-opumirror

./sdr-tuva

[Started] CSP Services Thread ID: 2436

[Started] File Transfer Service Thread ID: 2437

[Started] CLI Service Thread ID: 2438

Panic - verify failed:

Expression: fd > 0

Information: Failed to get file descriAborted

ptor from file stream.

Location: src/fs/fs.c:342:fs_format_file

Backtrace:

Please include a core file if filing a bug report.

 Closed

Telemetry service for the sdr · Issue #501 · NTNU-Sma... https://github.com/NTNU-SmallSat-Lab/hypso-sw/issue...

1 of 4 6/1/21, 17:54

86

Additional context

We also have to figure out what we wish to include in the telemetry for the SDR.

tuvaom added the sdr label on Feb 25

sivertba commented on Feb 25

Talk with Alen Space / Totem ppl

sivertba added the points=13 label on Feb 25

sivertba added this to Backlog in SW kanban board on Feb 25

sivertba moved this from Backlog to To do in SW kanban board on Feb 25

tuvaom self-assigned this on Feb 25

tuvaom mentioned this issue on Feb 25

Converting the opu-commands in hypso-cli into pl-commands to work with

multiple payloads #506

sivertba moved this from To do to In progress in SW kanban board on Mar 11

tuvaom mentioned this issue on Apr 23

Sdr telemetry #538

jlgarrett moved this from In progress to Review in progress in SW kanban board on Apr 27

 Merged

 Merged

Telemetry service for the sdr · Issue #501 · NTNU-Sma... https://github.com/NTNU-SmallSat-Lab/hypso-sw/issue...

2 of 4 6/1/21, 17:54

tuvaom

points=13 sdr

SW kanban board

No milestone

Successfully merging a pull request may close this issue.

 Sdr telemetry

2 participants

Sdr telemetry #538 Merged

tuvaom commented on Apr 29 •

closed by #538

Authoredited

tuvaom closed this on Apr 29

SW kanban board automation moved this from Review in progress to Done on Apr 29

Assignees

Labels

Projects

Done

Milestone

Linked pull requests

Telemetry service for the sdr · Issue #501 · NTNU-Sma... https://github.com/NTNU-SmallSat-Lab/hypso-sw/issue...

3 of 4 6/1/21, 17:54

M Issue #502, #503, #504 & #505 hypso-sw

Jump to bottom

NTNU-SmallSat-Lab / hypso-sw Private

Code Issues 70 Pull requests 3 Actions Projects Security

sdr settime #502

tuvaom opened this issue on Feb 25 · 4 comments

Labels points=5 sdr

Projects SW kanban board

Edit New issue

tuvaom commented on Feb 25

Is your feature request related to a problem? Please describe.

The operation used to set the time on the OPU is not allowed on the SDR:

(hypso) sdr settime

EPS Unix time: 1614251640

date: can't set date: Operation not permitted

Thu Feb 25 11:14:00 UTC 2021

Describe the solution you'd like

Want to be able to set the time on the SDR from for example the EPS. Have to figure out how to do this

on the totem.

tuvaom added the sdr label on Feb 25

sivertba commented on Feb 25

Could be a part of the start-up script

sivertba added blocked points=5 labels on Feb 25

 Closed

sdr settime · Issue #502 · NTNU-SmallSat-Lab/hypso-sw https://github.com/NTNU-SmallSat-Lab/hypso-sw/issue...

1 of 3 6/1/21, 17:55

89

sivertba added this to In progress in SW kanban board on Feb 25

sivertba moved this from In progress to Done in SW kanban board on Feb 25

sivertba moved this from Done to Blocked in SW kanban board on Feb 25

rogerbirkeland commented on Feb 25

Try running as root, to prove functionality?

This was referenced on Feb 25

Converting the opu-commands in hypso-cli into pl-commands to work with

multiple payloads #506

Decide how to mirror the implementation of opu ... commands for the SDR #476

rogerbirkeland commented on Mar 1

Works when started as root.

sivertba moved this from Blocked to Backlog in SW kanban board on Mar 11

sivertba removed the blocked label on Mar 11

sivertba moved this from Backlog to In progress in SW kanban board on Mar 23

 Merged

 Closed

sdr settime · Issue #502 · NTNU-SmallSat-Lab/hypso-sw https://github.com/NTNU-SmallSat-Lab/hypso-sw/issue...

2 of 3 6/1/21, 17:55

No one assign ourself

points=5 sdr

SW kanban board

No milestone

Successfully merging a pull request may close this issue.

None yet

3 participants

Pin issue

tuvaom mentioned this issue on Mar 23

Run sdr-services from root to access functionality #520

tuvaom commented on Mar 24

closed by #520

Author

tuvaom closed this on Mar 24

SW kanban board automation moved this from In progress to Done on Mar 24

Assignees

Labels

Projects

Done

Milestone

Linked pull requests

 Merged

sdr settime · Issue #502 · NTNU-SmallSat-Lab/hypso-sw https://github.com/NTNU-SmallSat-Lab/hypso-sw/issue...

3 of 3 6/1/21, 17:55

Jump to bottom

NTNU-SmallSat-Lab / hypso-sw Private

Code Issues 70 Pull requests 3 Actions Projects Security

sdr shutdown #503

tuvaom opened this issue on Feb 25 · 2 comments

Labels points=5 sdr

Projects SW kanban board

Edit New issue

tuvaom commented on Feb 25

Is your feature request related to a problem? Please describe.

The command sdr shutdown is currently not implemented. It was tested last week, and it works. The

problem is that there is no (remote) way to turn it back on again as it is not connected to the EPS.

Describe the solution you'd like

Connect the SDR to the EPS. Then the same code as for the other sdr/pl functions can be used.

tuvaom mentioned this issue on Feb 25

sdr restart #504

tuvaom added the sdr label on Feb 25

sivertba added the points=5 label on Feb 25

sivertba added this to Backlog in SW kanban board on Feb 25

This was referenced on Feb 25

Converting the opu-commands in hypso-cli into pl-commands to work with

 Closed

 Closed

sdr shutdown · Issue #503 · NTNU-SmallSat-Lab/hypso-sw https://github.com/NTNU-SmallSat-Lab/hypso-sw/issue...

1 of 3 6/1/21, 17:56

92

No one—assign yourself

multiple payloads #506

Decide how to mirror the implementation of opu ... commands for the SDR #476

sivertba moved this from Backlog to In progress in SW kanban board on Mar 23

tuvaom mentioned this issue on Mar 23

Run sdr-services from root to access functionality #520

garaq commented on Mar 24

It is implemented and tested. It works if sdr-services is started manually but not if on the start-up script

tuvaom commented on Mar 24

closed by #520

Author

tuvaom closed this on Mar 24

SW kanban board automation moved this from In progress to Done on Mar 24

rogerbirkeland mentioned this issue on Mar 24

Consider the implementation of csp shutdown for sdr-services #472

Assignees

 Merged

 Closed

 Merged

 Closed

sdr shutdown · Issue #503 · NTNU-SmallSat-Lab/hypso-sw https://github.com/NTNU-SmallSat-Lab/hypso-sw/issue...

2 of 3 6/1/21, 17:56

Jump to bottom

Code Issues 70 Pull requests 3 Actions Projects Security

sdr restart #504

tuvaom opened this issue on Feb 25 · 2 comments

Labels points=3 sdr

Projects SW kanban board

Edit New issue

tuvaom commented on Feb 25

Is your feature request related to a problem? Please describe.

Not yet implemented as I am afraid it could shut off the SDR. (And the SDR is not connected to the

EPS.)

Describe the solution you'd like

Similar to opu restart , it would be beneficial to be able to restart the SDR into a specific version of

sdr-services.

Describe alternatives you've considered

Not having this functionality, but rather manually exiting and restarting the preferred version.

Additional context

Linked to #503

tuvaom added the sdr label on Feb 25

sivertba added blocked points=3 labels on Feb 25

sivertba added this to Blocked in SW kanban board on Feb 25

This was referenced on Feb 25

Converting the opu-commands in hypso-cli into pl-commands to work with

 Closed

sdr restart · Issue #504 · NTNU-SmallSat-Lab/hypso-sw https://github.com/NTNU-SmallSat-Lab/hypso-sw/issue...

1 of 4 6/1/21, 17:56

94

Decide how to mirror the implementation of opu ... commands for the SDR #476

sivertba moved this from Blocked to Backlog in SW kanban board on Mar 11

sivertba removed the blocked label on Mar 11

sivertba moved this from Backlog to In progress in SW kanban board on Mar 23

tuvaom mentioned this issue on Mar 23

Run sdr-services from root to access functionality #520

garaq commented on Mar 24

Solved and tested. Output is:

apps/sdr_services.c:419:s_service_monitor_task: New service monitor conn: 0x40a0

Request to restart sdr-services received.

Starting /home/totem/hypso/sdr-tuva ...

Logging output to: logs/210324T140729_sdr-services.log

xilinx_can e0008000.can can0: bitrate error 0.0%

Init can interface can0

CSP initiaisation complete

Hostname: sdr

Model: sdr-services

Revision: Mar 23 2021 11:01:02

Git commit: b80a940-dirty

Git branch: sdr-opumirror

/home/totem/hypso/sdr-tuva

[Started] CSP Services Thread ID: 1578

[Started] File Transfer Service Thread ID: 1579

[Started] CLI Service Thread ID: 1580

[Started] Telemetry Service Thread ID: 1581

 Closed

 Merged

sdr restart · Issue #504 · NTNU-SmallSat-Lab/hypso-sw https://github.com/NTNU-SmallSat-Lab/hypso-sw/issue...

2 of 4 6/1/21, 17:56

No one—assign yourself

points=3 sdr

SW kanban board

No milestone

Successfully merging a pull request may close this issue.

None yet

3 participants

closed by #520

tuvaom closed this on Mar 24

SW kanban board automation moved this from In progress to Done on Mar 24

rogerbirkeland mentioned this issue on Mar 24

Remove or change handle_restart_request() for sdr-services #471

Assignees

Labels

Projects

Done

Milestone

Linked pull requests

 Closed

sdr restart · Issue #504 · NTNU-SmallSat-Lab/hypso-sw https://github.com/NTNU-SmallSat-Lab/hypso-sw/issue...

3 of 4 6/1/21, 17:56

Jump to bottom

NTNU-SmallSat-Lab / hypso-sw Private

Code Issues 70 Pull requests 3 Actions Projects Security

sdr log #505

tuvaom opened this issue on Feb 25 · 1 comment

Assignees

Labels points=3 sdr

Projects SW kanban board

Edit New issue

tuvaom commented on Feb 25

Is your feature request related to a problem? Please describe.

Wish to be able to display the current log, like opu log for the OPU. This command fetches the log

from a specified folder where the log of the current opu-services is stored.

(hypso) sdr log

cat: can't open '/var/log/boot': No such file or directory

Describe the solution you'd like

Store the current log in a specific folder on the SDR as well so that it is easy to find and display in

hypso-cli .

Describe alternatives you've considered

Somehow save the generated name of the log in a variable to be able to find and display it.

sivertba added sdr points=3 labels on Feb 25

sivertba added this to Backlog in SW kanban board on Feb 25

sivertba moved this from Backlog to To do in SW kanban board on Feb 25

 Closed

sdr log · Issue #505 · NTNU-SmallSat-Lab/hypso-sw https://github.com/NTNU-SmallSat-Lab/hypso-sw/issue...

1 of 3 6/1/21, 17:57

97

tuvaom

points=3 sdr

SW kanban board

No milestone

tuvaom self-assigned this on Feb 25

This was referenced on Feb 25

Converting the opu-commands in hypso-cli into pl-commands to work with

multiple payloads #506

Decide how to mirror the implementation of opu ... commands for the SDR #476

sivertba moved this from To do to In progress in SW kanban board on Mar 11

tuvaom commented on Mar 18

closed by #506

Author

tuvaom closed this on Mar 18

SW kanban board automation moved this from In progress to Done on Mar 18

Assignees

Labels

Projects

Done

Milestone

 Merged

 Closed

sdr log · Issue #505 · NTNU-SmallSat-Lab/hypso-sw https://github.com/NTNU-SmallSat-Lab/hypso-sw/issue...

2 of 3 6/1/21, 17:57

N Issue #518 hypso-sw

Jump to bottom

NTNU-SmallSat-Lab / hypso-sw Private

Code Issues 70 Pull requests 3 Actions Projects Security

Change common ports for OPU and SDR to PL-ports

#518

tuvaom opened this issue on Mar 23 · 1 comment

Labels hypso-2 points=3 sdr

Projects SW kanban board

Edit New issue

tuvaom commented on Mar 23

Is your feature request related to a problem? Please describe.

The ports for the OPU and SDR are currently defined as follows

Only OPU_*_PORT is used in the rest of the code, this can be confusing.

Describe the solution you'd like

Change to the following definitions in HYPSO.h :

#define OPU_FT_PORT M6P_FT_PORT

#define OPU_RGB_PORT 11

#define OPU_HSI_PORT 12

#define OPU_CLI_PORT 13

#define OPU_TM_PORT 14

#define OPU_MONITOR_PORT 15

#define SDR_FT_PORT M6P_FT_PORT

#define SDR_CLI_PORT OPU_CLI_PORT

#define SDR_TM_PORT OPU_TM_PORT

#define SDR_MONITOR_PORT OPU_MONITOR_PORT

#define PL_FT_PORT M6P_FT_PORT

#define PL_CLI_PORT 13

#define PL_TM_PORT 14

#define PL_MONITOR_PORT 15

#define OPU_HSI_PORT 12

#define OPU_RGB_PORT 11

 Closed

Change common ports for OPU and SDR to PL-ports · I... https://github.com/NTNU-SmallSat-Lab/hypso-sw/issue...

1 of 3 6/1/21, 18:16

99

And replace the OPU_*_PORTs in the rest of hypso-sw.

Describe alternatives you've considered

But this would still be more confusing than helpful, and we probably won't change the port numbers of

OPU or SDR independently.

#define PL_FT_PORT M6P_FT_PORT

#define PL_CLI_PORT 13

#define PL_TM_PORT 14

#define PL_MONITOR_PORT 15#define OPU_HSI_PORT 12

#define OPU_RGB_PORT 11

#define OPU_FT_PORT M6P_FT_PORT

#define OPU_CLI_PORT PL_CLI_PORT

#define OPU_TM_PORT PL_TM_PORT

#define OPU_MONITOR_PORT PL_MONITOR_PORT

#define SDR_FT_PORT M6P_FT_PORT

#define SDR_CLI_PORT PL_CLI_PORT

#define SDR_TM_PORT PL_TM_PORT

#define SDR_MONITOR_PORT PL_MONITOR_PORT

tuvaom added hypso-2 sdr labels on Mar 23

rogerbirkeland added the points=3 label on Mar 25

rogerbirkeland added this to Backlog in SW kanban board on Mar 25

rogerbirkeland moved this from Backlog to To do in SW kanban board on Mar 25

tuvaom mentioned this issue on Apr 2

changing port names to PL_*_PORT #523

tuvaom moved this from To do to Review in progress in SW kanban board on Apr 2

tuvaom commented on Apr 13 Author

 Merged

Change common ports for OPU and SDR to PL-ports · I... https://github.com/NTNU-SmallSat-Lab/hypso-sw/issue...

2 of 3 6/1/21, 18:16

O Issue #521 hypso-sw

Jump to bottom

Code Issues 70 Pull requests 3 Actions Projects Security

SDR start-up script blocks shutdown and reboot

commands #521

garaq opened this issue on Mar 24 · 1 comment

Assignees

Labels bug points=8 sdr

Projects SW kanban board

Edit New issue

garaq commented on Mar 24

Describe the bug

When sdr-services is run from the start-up script, the shutdown and reboot commands don't work.

To Reproduce

Steps to reproduce the behavior:

1. Reboot Totem

2. Log in into Totem via ssh

3. Type halt / reboot

4. Nothing will happen

5. Hit enter

6. Power cycle totem

7. Kill the automatically started sdr-services

8. Start manually in cd /home/totem/hypso

9. Log in into totem in a new window

10. Type halt / reboot

Expected behavior

It should work even if sdr-services is started form the start-up script.

 Closed

SDR start-up script blocks shutdown and reboot comm... https://github.com/NTNU-SmallSat-Lab/hypso-sw/issue...

1 of 3 6/1/21, 18:17

101

garaq commented on Mar 25 •

Also I got a error in a dataframe I sent to Totem while running my tests

The receiver does not work either.

Authoredited

rogerbirkeland added the points=8 label on Mar 25

rogerbirkeland added this to Backlog in SW kanban board on Mar 25

rogerbirkeland moved this from Backlog to To do in SW kanban board on Mar 25

sivertba assigned tuvaom on Apr 13

garaq mentioned this issue on Apr 16

Added <&> to start the service in the background NTNU-SmallSat-Lab/sdr-system#9

garaq closed this in NTNU-SmallSat-Lab/sdr-system#9 on Apr 16

 Merged

SDR start-up script blocks shutdown and reboot comm... https://github.com/NTNU-SmallSat-Lab/hypso-sw/issue...

2 of 3 6/1/21, 18:17

P Issue #541 hypso-sw

Jump to bottom

NTNU-SmallSat-Lab / hypso-sw Private

Code Issues 70 Pull requests 3 Actions Projects Security

Add payload telemetry struct to repository #541

garaq opened this issue on Apr 28 · 1 comment

Assignees

Labels points=1

Projects SW kanban board

Edit New issue

garaq commented on Apr 28

Is your feature request related to a problem? Please describe.

Telemetry structs for OPU and SDR are missing.

Describe the solution you'd like

Define telemetry structs to parse telemetry logs

tuvaom self-assigned this on Apr 29

jlgarrett added the points=1 label on Apr 29

jlgarrett added this to Backlog in SW kanban board on Apr 29

jlgarrett moved this from Backlog to To do in SW kanban board on Apr 29

AudunVN commented on Apr 30 •

+1 from me - will watch this for updates so we can get them added to hypso-telemetry-c-structs and

uMCT as well.

edited

 Closed

Add payload telemetry struct to repository · Issue #541... https://github.com/NTNU-SmallSat-Lab/hypso-sw/issue...

1 of 3 6/7/21, 20:09

103

tuvaom

points=1

EDIT: Sorry for accidentally closing the issue for a few seconds, misclicked Close with comment

instead of Comment .

AudunVN closed this on Apr 30

SW kanban board automation moved this from To do to Done on Apr 30

AudunVN reopened this on Apr 30

AudunVN moved this from Done to To do in SW kanban board on Apr 30

jlgarrett moved this from To do to In progress in SW kanban board on May 4

tuvaom mentioned this issue 25 days ago

Add tmstructs NTNU-SmallSat-Lab/hypso-telemetry-c-structs#2

rogerbirkeland moved this from In progress to Review in progress in SW kanban board

19 days ago

AudunVN closed this in NTNU-SmallSat-Lab/hypso-telemetry-c-structs#2 19 days ago

SW kanban board automation moved this from Review in progress to Done 19 days ago

Assignees

Labels

Projects

 Merged

Add payload telemetry struct to repository · Issue #541... https://github.com/NTNU-SmallSat-Lab/hypso-sw/issue...

2 of 3 6/7/21, 20:09

SW kanban board

No milestone

Successfully merging a pull request may close this issue.

 Add tmstructs

4 participants

Pin issue

Done

Milestone

Linked pull requests

Add payload telemetry struct to repository · Issue #541... https://github.com/NTNU-SmallSat-Lab/hypso-sw/issue...

3 of 3 6/7/21, 20:09

Q Issue #542 hypso-sw

1.6.2021 Logging of xadc_values · Issue #542 · NTNU-SmallSat-Lab/hypso-sw

https://github.com/NTNU-SmallSat-Lab/hypso-sw/issues/542 1/4

NTNU-SmallSat-Lab / hypso-sw Private

Code Issues 70 Pull requests 3 Actions Projects Security In

Jump to bottom

Logging of xadc_values #542
 Closed tuvaom opened this issue on 29 Apr · 3 comments

Assignees

Labels points=8 sdr

Projects SW kanban board

Edit New issue

 tuvaom commented on 29 Apr

Is your feature request related to a problem? Please describe.
Want to have the possibility to log the output of the command xadc_values on the SDR

ID Name Raw value Mag value Unit

-- ---- --------- --------- ----

 0 Temperature 46878.5339 46878.5339 mC

 1 Vcc INT 938.9648 938.9648 mV

 2 Vcc AUX 1783.4473 1783.4473 mV

 3 Vcc BRAM 938.2324 938.2324 mV

 4 Vcc PINT 935.3027 935.3027 mV

 5 Vcc PAUX 1784.9121 1784.9121 mV

 6 Vcc ODDR 1345.4590 1345.4590 mV

 7 Vref P 1250.9766 1250.9766 mV

 8 Vref N 1.4648 1.4648 mV

 9 VCC5V0 Current 833.0000 0.5084 mA

10 Analog 0 518.0000 0.1251

11 VCC5V0 Voltage 2780.0000 4.5829 V

12 UHF Frontend Temp. 1381.0000 39.3469 C

13 UHF PA Temp. 1243.0000 30.4187 C

14 VCC3V3 Voltage 2931.0000 3.1534 V

15 VCC2V5 Voltage 3012.0000 2.4782 V

16 Temperature 1576.0000 39.7786 C

17 VBAT Current 136.0000 0.0664 mA

18 VCC2V5 Current 845.0000 0.1375 mA

19 VCC3V3 TRX Curr. 85.0000 0.0415 mA

20 VCC3V3 Current 1022.0000 0.1663 mA

21 VCC0V95 Current 932.0000 0.5688 mA

22 VCC1V3 Current 94.0000 0.0459 mA

106

1.6.2021 Logging of xadc_values · Issue #542 · NTNU-SmallSat-Lab/hypso-sw

https://github.com/NTNU-SmallSat-Lab/hypso-sw/issues/542 2/4

Describe the solution you'd like
Similar logging as telemetry. As I see it now, there are two alternatives - but other suggestions would be nice.

1. Save the values in a struct like the telemetry
a) Save them in the tm_data_sdr struct, and log in the same file -- think this might result in a larger struct
than desired
b) Make new struct tm_xadc_sdr and log in new file, still in telemetry folder -

Issues with this option: would have to know the content (and its order) of this command already to make the
struct, and then to save the values in the struct it would be something like "After the third big gap in this line,
this value is written". If the output of the command changes, the code would have to change as well.
Pros: probably easier to log as soon as the values are fetched as they would be saved on the same format as
the other tm-values. We also have the parser from NA to read the file after download.

2. Log the whole output of this command to the file at each logging instance
Still save the new file in the telemetry folder. - I'm imagining one line at a time from this command
inserted to the file.

Issues with this option: we don't have any tools for reading this file (as far as I know?) - the parser in nanoMCS
uses structs. Would also have to log this in a different way than the structs - but I think any input can be
logged with the fs_log_write_entry-function.
Pros: don't have to know the content and order of the command.

23 VCC1V8 Current 304.0000 0.1855 mA

24 VCC1V35 Current 770.0000 0.3133 mA

 tuvaom self-assigned this on 29 Apr

 tuvaom added the sdr label on 29 Apr

 jlgarrett added the points=8 label on 29 Apr

 jlgarrett added this to Backlog in SW kanban board on 29 Apr

 jlgarrett moved this from Backlog to To do in SW kanban board on 29 Apr

 rogerbirkeland commented 20 days ago • edited

1.6.2021 Logging of xadc_values · Issue #542 · NTNU-SmallSat-Lab/hypso-sw

https://github.com/NTNU-SmallSat-Lab/hypso-sw/issues/542 3/4

The correct(?) solution would be to read each value directly and build a struct for it. I suggest logging only
the converted values in the struct.

All values can be read from the device directly: /sys/devices/soc0/amba/43c00000.adc/iio:device1 , and all
values are exposed as files. There is a script (/usr/bin/xadc_values) that also has all scaling factors so it can
be used as inspiration.

Alternatively: Make a copy of the said script, outputing only an index and the converted value, and then read
that script from C?

 tuvaom mentioned this issue 19 days ago

Sdr xadc #546

 Merged

 rogerbirkeland moved this from To do to Review in progress in SW kanban board 13 days ago

 rogerbirkeland commented 13 days ago

Probably resolved by #546

 rogerbirkeland linked a pull request that will this issue 13 days ago

Sdr xadc #546 Merged

close

 tuvaom commented 12 days ago

closed by #546

Author

R Issue #543 hypso-sw

1.6.2021 Generalizing some _pl_-functions · Issue #543 · NTNU-SmallSat-Lab/hypso-sw

https://github.com/NTNU-SmallSat-Lab/hypso-sw/issues/543 1/3

NTNU-SmallSat-Lab / hypso-sw Private

Code Issues 70 Pull requests 3 Actions Projects Security In

Jump to bottom

Generalizing some _pl_-functions #543
 Open tuvaom opened this issue on 29 Apr · 0 comments

Assignees

Labels points=5 sdr

Projects SW kanban board

Edit New issue

 tuvaom commented on 29 Apr •

Is your feature request related to a problem? Please describe.
Some of the pl-functions are not general:

_pl_list has different options for OPU (list_command = "find . -exec ls -ld $PWD/{} \;";) and SDR (
list_command = "ls -Rl;";)

_pl_log: the logs are saved in different files. OPU ("/var/log/boot), SDR ("/var/log/messages")

_pl_update: different files are updated

_pl_telemetry: different struct with different variables for SDR and OPU

Describe the solution you'd like

_pl_list : take in an argument with the command from the specific payload wrapper function,

_pl_log: take in an argument with the location of the file from the specific payload wrapper function.

_pl_update: delete this function, input the relevant parts to opu_update and sdr_update, and make some
util-functions of the common parts

_pl_telemetry: same as above

Describe alternatives you've considered

_pl_list : both use "ls -Rl"

_pl_update: accept some "if pl_address = HYPSO_OPU_ADDRESS", and that this function is not general
for any payload

_pl_telemetry: same as above

edited

109

1.6.2021 Generalizing some _pl_-functions · Issue #543 · NTNU-SmallSat-Lab/hypso-sw

https://github.com/NTNU-SmallSat-Lab/hypso-sw/issues/543 2/3

 tuvaom

points=5 sdr

SW kanban board

Would be nice with some comments on preferred options - also if there are any other suggestions.

 tuvaom self-assigned this on 29 Apr

tuvaom added the sdr label on 29 Apr

 jlgarrett added the points=5 label on 29 Apr

 jlgarrett added this to Backlog in SW kanban board on 29 Apr

 jlgarrett moved this from Backlog to To do in SW kanban board on 29 Apr

 jlgarrett moved this from To do to In progress in SW kanban board 28 days ago

 tuvaom mentioned this issue 12 days ago

Sdr generalize #547

 Open

 jlgarrett moved this from In progress to Review in progress in SW kanban board 7 days ago

Assignees

Labels

Projects

Review in progress

S PR #426 hypso-sw

Jump to bottom

Code Issues 70 Pull requests 3 Actions Projects Security

Telemetry service #426

 Merged tuvaom merged 45 commits into from on Feb 24

Conversation 28 Commits 45 Checks 2 Files changed 12

Edit

master telemetry-service

tuvaom commented on Nov 13, 2020

#364

Changes made

New file tm_util.c collecting telemetry

- Telemetry service logging telemetry to telemetry/telemetry.log once every minute

- The log file is compatible w/ namoMCS

- The log file takes a maximum of 2100 entries (= 7 days * (10*30 min on-time)), after this, the

oldest entry will be overwritten (have tested this by setting the TM_ENTRY_COUNT lower)

created tm_log.h to define struct and constants for logging

hypso-cli can request current telemetry from the telemetry service using opu telemetry

How to test log file:

Download the log file using opu download telemetry/telemetry.log tm_log.log

In nanoMCS you use the pr parse command which converts binary data to text: pr parse

<input_file> <struct_file> <output_file> - Parses binary file into text (CSV) file

by given structure (C lang)

- You can find the text-file for the struct attached (as well as one of the logs I made to test that it

works)

- Ex: pr parse tm_log.log tm_struct.txt tm_output.csv

- save the output as a CSV-file and open it in Excel (here you will see one row for each variable in

the struct)

Comments:

for some reason, the file will only appear when you use ft list 12 on .42

Image/host used for testing: 0820ba0

Resolves

Telemetry service by tuvaom · Pull Request #426 · NT... https://github.com/NTNU-SmallSat-Lab/hypso-sw/pull/426

1 of 11 6/1/21, 17:42

111

_s

tuvaom added 29 commits on Oct 5, 2020

make opu telemetry command cca7b3e

basic tm_util w/functions to get telemetry 88f0f29

add get_image 1d434c3

get disk statistics 0b4bcf6

define telemetry struct b3facc0

create directory to save tm logs 5254ba6

init logging, start log func 7930563

log correct memory, error handling for util funcs 76e8dc7

only create folder + init logfile if nonexixting when thread starts df339b1

timestamp human readable + not, log appending until maxsize, log inte… cbb480a
…

Merge branch 'master' into telemetry-service 1a80b08

start fix get current telemetry from hypso-cli 3f47519

change sizes in struct af5b19c

fix struct sizes and logging loop 3df9df8

opu telemetry returns stuct to hypso-cli, logging included in CSP loop 43f27fa

add constants for circular logging 257686e

Fix opu Get telemetry fb243b3

circular log w/ FS_TYPE_LOG 160e245

uncomment csp_buffer_free 8f81b07

opu telemetry from hypso-cli now returns correct struct 121ee72

cleanup of telemetry structs 569068a

merge conflict fix 3a01cf4

TM struct compatible w/ nanoMCS 47e15d7

Remove unnecessary functions from tm_util 50733ad

Telemetry service by tuvaom · Pull Request #426 · NT... https://github.com/NTNU-SmallSat-Lab/hypso-sw/pull/426

2 of 11 6/1/21, 17:42

14 hidden items

Load more…

g logging

logging works w/ nanoMCS 8835f1c

Removing commments and functions not in use a40263c

get all of img 617e8ac

tuvaom requested a review from DennisNTNU on Nov 13, 2020

magne-hov approved these changes on Nov 17, 2020

View changes

magne-hov left a comment

Thanks for making the changes!

magne-hov commented on Nov 18, 2020 •

I just tried running opu-services and I get a crash:

edited

[Started] CLAW-1 Service Thread ID: 134974

Panic - verify failed:

Expression: file

Location: src/fs/fs.c:338:fs_format_file

Backtrace:

[Started] Telemetry Service Thread ID: 134975

 /home/magne/repos/hypso-sw/build/x86/opu-services(print_backtrace+0x35)

[0x55f180eb12b5]

 /home/magne/repos/hypso-sw/build/x86/opu-services(panic+0x1b0) [0x55f180eb14f0]

 /home/magne/repos/hypso-sw/build/x86/opu-services(fs_format_file+0x1c5)

[0x55f180eb2aa5]

 /home/magne/repos/hypso-sw/build/x86/opu-services(tm_util_init_log+0x2c)

[0x55f180ec550c]

 /home/magne/repos/hypso-sw/build/x86/opu-services(tm_service_task+0x2c4)

[0x55f180ec4b34]

 /usr/lib/libpthread.so.0(+0x93e9) [0x7fd74a59a3e9]

Telemetry service by tuvaom · Pull Request #426 · NT... https://github.com/NTNU-SmallSat-Lab/hypso-sw/pull/426

3 of 11 6/1/21, 17:42

Opening the core dump in GDB (can be done with coredumpctl debug if your system runs systemd)

shows that the crash happened here:

hypso-sw/src/tm/tm_util.c

Lines 372 to 375 in d83e938

372

373

374

375

I assume that this happens becaues I hadn't made the telemetry directory yet, so it fails to open the

file and we try to format NULL .

Does this happen for you as well?

aborted (core dumped)

~/repos/hypso-sw/build/x86 $

 tm_log_file->p_telemetry_log_file = fs_open_rw(tm_log_file->tm_filepath);

fs_format_file(FS_TYPE_LOG, TM_FILE_ID, TM_ENTRY_SZ, TM_ENTRY_COUNT,

 tm_log_file->p_telemetry_log_file);

(gdb) p tm_log_file->tm_filepath

$1 = "telemetry/telemetry.log", '\000' <repeats 76 times>

(gdb)

rogerbirkeland commented on Nov 18, 2020

I assume that this happens becaues I hadn't made the telemetry directory yet, so it fails to

open the file and we try to format NULL .

Does this happen for you as well?

I couldn't reproduce. Deleted the telemetry-folder from another opu-services version, then started the

tm-version and it worked fine.

(gdb) p tm_log_file->tm_filepath

$1 = "telemetry/telemetry.log", '\000' <repeats 76 times>

(gdb)

magne-hov commented on Nov 18, 2020

I couldn't reproduce.

Telemetry service by tuvaom · Pull Request #426 · NT... https://github.com/NTNU-SmallSat-Lab/hypso-sw/pull/426

4 of 11 6/1/21, 17:42

mkdir returns 0 on success, not fail 507038f

tuvaom commented on Nov 19, 2020

I couldn't reproduce.

As long as it's not happening for you then it's not a problem.

I think the problem might have been that when I was checking if mkdir failed, I was really checking if it

didn't fail. Therefore the init log-file was made in the current directory (even though the telemetry

directory was created), while at the first logging, when checking if the directory exists - it does, and a

new log-file is then created in the telemetry directory.

(see changes in my latest commit)

Author

sivertba requested changes on Nov 20, 2020

View changes

sivertba left a comment

Wait till patch release is merged ...

sivertba commented on Nov 25, 2020 •

From performance testing on target hardware it seems like hsi capture performance is degraded, see

figure. Needs to be resolved, or some other mitigation actions needs to be taken before merging.

@DennisNTNU will do some further testing.

edited by DennisNTNU

Telemetry service by tuvaom · Pull Request #426 · NT... https://github.com/NTNU-SmallSat-Lab/hypso-sw/pull/426

5 of 11 6/1/21, 17:42

Example from before:

rogerbirkeland commented on Nov 25, 2020

Interesting. Think I need an explanation to go with these graphs. But anyway, easy(?) workaround

might be to disable tm during capture? I dont see a problem with the potential lack of data in that short

period.

 1

sivertba commented on Nov 26, 2020

Telemetry service by tuvaom · Pull Request #426 · NT... https://github.com/NTNU-SmallSat-Lab/hypso-sw/pull/426

6 of 11 6/1/21, 17:42

tuvaom added 3 commits on Jan 20

hypso-cli can stop telemetry logging, hsi capture will stop telemetry… e7c5631
…

Merge branch 'master' into telemetry-service 2117015

Update cli_opu.c d35982f…

hsi capture turning off/on tm logging from the OPU, not from hypso-cli e8da2cb

tuvaom commented on Jan 21

Should consider having the hsi capture say start and stop to the telemetry service via CSP

packets.

Should also be possible to start and stop telemetry service via hypso cli

The telemetry logging will now be turned off before capture, and started again when capture is

finished. The logging can also be turned on/off in hypso-cli with the command opu tmlog [on | off]

. The current logging status will be displayed in hypso-cli when de command is run without an option

(opu tmlog).

Author

rogerbirkeland commented on Feb 2

Compile error:

[26%] Building C object CMakeFiles/opu-services.dir/src/tm/tm_service.c.o

/home/hypso/src/tm/tm_service.c: In function 'tm_service_task':

/home/hypso/src/tm/tm_service.c:49:16: error: 'struct telemetry_log_file' has no

member named 'tm_log_status'

 tm_log_file.tm_log_status = true;

 ^

CMakeFiles/opu-services.dir/build.make:998: recipe for target 'CMakeFiles/opu-

services.dir/src/tm/tm_service.c.o' failed

make[3]: *** [CMakeFiles/opu-services.dir/src/tm/tm_service.c.o] Error 1

make[3]: Leaving directory '/home/hypso/build/x86'

CMakeFiles/Makefile2:105: recipe for target 'CMakeFiles/opu-services.dir/all' failed

make[2]: *** [CMakeFiles/opu-services.dir/all] Error 2

make[2]: Leaving directory '/home/hypso/build/x86'

Makefile:94: recipe for target 'all' failed

make[1]: *** [all] Error 2

make[1]: Leaving directory '/home/hypso/build/x86'

Makefile:8: recipe for target 'all' failed

Telemetry service by tuvaom · Pull Request #426 · NT... https://github.com/NTNU-SmallSat-Lab/hypso-sw/pull/426

7 of 11 6/1/21, 17:42

remove old logging variable 828f786

rogerbirkeland commented on Feb 2

Did a quick test and the module works. Would like to see this change:

Be able to set a config value for the telemetry logging period. Perhaps between 5 s to 5 min.

Config value should survive reboot....

tuvaom added 3 commits on Feb 3

Logic added to specify tm log period in hypso-cli df6676c

Saved to file when log interval is changed, tm service reads from fil… 15c20cc
…

Log interval works, addd clang f048787

rogerbirkeland commented on Feb 17

Almost there; but something is weird with the uptime-column:

Short cut-out from the parsed TM-file:

opuTime opuUptime diff_oU diff_oT

1613546726 165

1613546746 203 38 20

1613546751 213 10 5

1613546756 223 10 5

1613546761 233 10 5

1613546766 243 10 5

1613546771 252 9 5

1613546776 262 10 5

1613546791 291 29 15

1613546806 320 29 15

1613546821 350 30 15

1613546828 365 15 7

1613546833 374 9 5

1613546861 430 56 28

Telemetry service by tuvaom · Pull Request #426 · NT... https://github.com/NTNU-SmallSat-Lab/hypso-sw/pull/426

8 of 11 6/1/21, 17:42

1613546914 512 9 5

1613546919 522 10 5

1613546924 532 10 5

1613546929 542 10 5

1613546934 552 10 5

1613546939 560 8 5

1613546944 570 10 5

1613546949 579 9 5

1613546954 589 10 5

1613546959 599 10 5

1613546964 609 10 5

1613546969 619 10 5

1613546974 627 8 5

1613546979 637 10 5

1613546984 647 10 5

1613546989 657 10 5

1613546994 667 10 5

1613546999 677 10 5

1613547004 685 8 5

1613547009 695 10 5

1613547014 705 10 5

1613547019 715 10 5

1613547024 725 10 5

1613547029 735 10 5

1613547034 745 10 5

1613547094 861 116 60

1613547154 979 118 60

1613547214 1097 118 60

uptime value corrected fd58576

rogerbirkeland approved these changes on Feb 17

View changes

Telemetry service by tuvaom · Pull Request #426 · NT... https://github.com/NTNU-SmallSat-Lab/hypso-sw/pull/426

9 of 11 6/1/21, 17:42

Tested, seems to do the trick now.

Could change log interval

Could turn of logging

Logging is off during capture

Uptime seem now to be correct.

sivertba approved these changes on Feb 17

View changes

DennisNTNU approved these changes on Feb 24

View changes

DennisNTNU left a comment

Plots look good, lets get this merged.

 1

Merge branch 'master' into telemetry-service 82387fesivertba

rogerbirkeland

Reviewers

Telemetry service by tuvaom · Pull Request #426 · NT... https://github.com/NTNU-SmallSat-Lab/hypso-sw/pull/426

10 of 11 6/1/21, 17:42

T PR #506 hypso-sw

Jump to bottom

NTNU-SmallSat-Lab / hypso-sw Private

Code Issues 70 Pull requests 3 Actions Projects Security

Converting the opu-commands in hypso-cli into pl-

commands to work with multiple payloads #506

 Merged tuvaom merged 75 commits into from on Mar 17

Conversation 3 Commits 75 Checks 2 Files changed 30

Edit

sdr-services sdr-opumirror

tuvaom commented on Feb 25 •

Changes Made:

The previous opu-commands are now pl-commands with wrappers for both OPU and SDR to make the

functionality work for both payloads. Some commands (connected to the HSI) are still only available for

the OPU.

New source files:

src/cli/cli_pl.c --commands for any payload is sent here (the opu-specific commands are

kept in cli_opu.c)

src/cli/cli_sdr.c --sdr-specific commands

src/tm/tm_opu.c --part of telemetry only related to OPU, the tm-service is now divided

Can now use the folowning commands to communicate with the SDR:

sdr exit

sdr list

sdr status

sdr download

sdr upload

sdr update

sdr check

sdr git

sdr lastcmd

sdr telemetry

edited

Converting the opu-commands in hypso-cli into pl-co... https://github.com/NTNU-SmallSat-Lab/hypso-sw/pull/506

1 of 6 6/1/21, 17:53

121

The general pl <number> can also be used:

sdr exit = pl exit 13

opu update opu-services sd = pl update 12 opu-services sd

Still need:

sdr log (#505)

sdr settime (#502)

sdr shutdown (#503)

sdr restart (#504)

choose specific telemetry for logging and sdr telemetry (#501)

a file src/tm/tm_sdr.c if any sdr-specific telemetry functions arise

How to test

start the (new) sdr-services from totem@129.241.2.61 with command ./sdr-services 13 can0

use the commands from hypso-cli, works just like the OPU

(should probably also make sure that the commands still work for the OPU)

Related issues

#474

#475

#493

#494

#495

#496

Resolves

Resolves

Resolves

Resolves

Resolves

Resolves

tuvaom added 30 commits on Oct 5, 2020

make opu telemetry command cca7b3e

basic tm_util w/functions to get telemetry 88f0f29

add get_image 1d434c3

get disk statistics 0b4bcf6

define telemetry struct b3facc0

create directory to save tm logs 5254ba6

init logging, start log func 7930563

log correct memory, error handling for util funcs 76e8dc7

only create folder + init logfile if nonexixting when thread starts df339b1

timestamp human readable + not, log appending until maxsize, log inte… cbb480a

Converting the opu-commands in hypso-cli into pl-co... https://github.com/NTNU-SmallSat-Lab/hypso-sw/pull/506

2 of 6 6/1/21, 17:53

29 hidden items

Load more…

…

Merge branch 'master' into telemetry-service 1a80b08

start fix get current telemetry from hypso-cli 3f47519

change sizes in struct af5b19c

fix struct sizes and logging loop 3df9df8

opu telemetry returns stuct to hypso-cli, logging included in CSP loop 43f27fa

add constants for circular logging 257686e

Fix opu Get telemetry fb243b3

circular log w/ FS_TYPE_LOG 160e245

uncomment csp_buffer_free 8f81b07

opu telemetry from hypso-cli now returns correct struct 121ee72

cleanup of telemetry structs 569068a

merge conflict fix 3a01cf4

TM struct compatible w/ nanoMCS 47e15d7

Remove unnecessary functions from tm_util 50733ad

struct directly to fs_log, worksgit add tm_util.c 12091d8

rolling logging 0a223f1

logging works w/ nanoMCS 8835f1c

Removing commments and functions not in use a40263c

get all of img 617e8ac

applying clang format 2654828

tuvaom and others added 13 commits on Feb 8

Saved to file when log interval is changed, tm service reads from fil… 15c20cc
…

Log interval works, addd clang f048787

Creating cli_pl for common payload functions from cli_opu ad4fe49

Converting the opu-commands in hypso-cli into pl-co... https://github.com/NTNU-SmallSat-Lab/hypso-sw/pull/506

3 of 6 6/1/21, 17:53

opu and pl commands work for opu 87de6dd

uptime value corrected fd58576

can send commands to sdr from hypso-cli 7490611

Added hostname to opu status and opu git commands b251c9e…

dividing telemetry service for sdr 9db8bcc

added sdr-services to pl_update d501985

Merge branch 'master' into telemetry-service 82387fe

Merge pull request #426 from NTNU-SmallSat-Lab/telemetry-service 044903a…

Merge with tm-changes in master. More checks on user input. Sdr update. 3c74781

Address fix in pl commands, now pl ..., opu ... and sdr ... should al… 4e04d50
…

garaq self-requested a review on Mar 5

garaq requested changes on Mar 5

View changes

garaq left a comment

Correct:

1. The output of SDR git should say "Payload system" or "SDR system" when the info is from the

SDR.

2. SDR telemetry should display the xadc_values in addition, for now.

 (hypso) sdr git

 <--

 Git commit: 3c74781-dirty

 Git branch: sdr-opumirror

 ./sdr-services

 Opu-system: totem

garaq commented on Mar 5

Converting the opu-commands in hypso-cli into pl-co... https://github.com/NTNU-SmallSat-Lab/hypso-sw/pull/506

4 of 6 6/1/21, 17:53

csp shutdown and csp reboot works when sdr-services is run as root.

sdr settime works with root and couldn't test without root

tuvaom added 3 commits on Mar 5

fix sdr log 55f3097

pl/opu/sdr git says payload-system instead of opu-system 0349427

Display xadc_values for 'sdr telemetry' 5677c4f

tuvaom commented on Mar 17

With commit 55f3097 , now also resolves #505

Author

garaq approved these changes on Mar 17

View changes

tuvaom merged commit 762adce into on Mar 17

2 checks passed

RevertView detailssdr-services

This was referenced on Mar 17

make opu upload support the SDR #474

opu check does not work on SDR #475

cli_opu -> cli_opu + cli_sdr + cli_pl #493

tm_service.c -> tm_service.c + tm_opu.c + tm_sdr.c #494

Find a way to list all files on the sdr #495

 Closed

 Closed

 Closed

 Closed

 Closed

Converting the opu-commands in hypso-cli into pl-co... https://github.com/NTNU-SmallSat-Lab/hypso-sw/pull/506

5 of 6 6/1/21, 17:53

No one—assign yourself

None yet

None yet

No milestone

Successfully merging this pull request may close these issues.

None yet

5 participants

Make opu update include sdr-services #496

sdr log #505

garaq

Reviewers

Assignees

Labels

Projects

Milestone

Linked issues

 Closed

 Closed

Converting the opu-commands in hypso-cli into pl-co... https://github.com/NTNU-SmallSat-Lab/hypso-sw/pull/506

6 of 6 6/1/21, 17:53

U PR #520 hypso-sw

Jump to bottom

NTNU-SmallSat-Lab / hypso-sw Private

Code Issues 70 Pull requests 3 Actions Projects Security

Run sdr-services from root to access functionality #520

 Merged tuvaom merged 6 commits into from on Mar 24

Conversation 6 Commits 6 Checks 2 Files changed 7

Edit

sdr-services sdr-opumirror

tuvaom commented on Mar 23

Decided in meeting w/ @rogerbirkeland, @garaq, @sivertba and @DennisNTNU to continue

development and testing of sdr-services in the root user on totem . This #492.

This was decided to access time , can , shutdown , restart and tm-logging . (#502.)

With this PR, sdr restart and sdr reboot is implemented. -> #504, #503.

Continuing the meeting w/ @rogerbirkeland and @garaq, a new startup-script S99HypsoTotem was

added to the totem . Totem time is updated there on reboot, this #478.

closes

Resolves

resolves resolves

resolves

rogerbirkeland and others added 6 commits on Mar 12

Added GSUHF to CSP addr. list and ping all efd34a4…

Added EPS_SDR_OUTPUT_CHANNEL b80a940

enabling for sdr shutdown via EPS 3bfd7f5

'sdr shutdown' and 'sdr restart' implemented. 3d979bc

merge w/master 7f7afd7

comment on sdr update d1f1e1a

rogerbirkeland reviewed on Mar 23

View changes

apps/sdr_services.c

Run sdr-services from root to access functionality by t... https://github.com/NTNU-SmallSat-Lab/hypso-sw/pull/520

1 of 4 6/1/21, 18:01

127

455 452

456

453

Reply…

if (EPS_Single_Output_Channel_Control(

- EPS_OPU_OUTPUT_CHANNEL, 0, 30) != 0)

+ EPS_SDR_OUTPUT_CHANNEL, 0, 30) != 0)

rogerbirkeland on Mar 23

Not sure if we want to have this active now. Will be a bit of an annoyance for Gara and

Stian, I think. Can leave the infrastructure for it, but disable it?

tuvaom on Mar 23

This is for the sdr shutdown command, not the automatic reboot.

Author

Resolve conversation

rogerbirkeland reviewed on Mar 23

View changes

src/cli/cli_pl.c

314

311

312

313

315 314

- args);

+ printf("%sWarning!%s %s%s%s\n", ANSI_COLOUR_YELLOW, ANSI_COLOUR_RE

+ "You are about to request a restart from the file '",

+ args, "' in your PL working directory.");

 }

rogerbirkeland on Mar 23

Will this work for the totem? I guess it will just restart itself?

tuvaom on Mar 23

It works, tried it with two different versions. One including the tm-logging.

Author

tuvaom on Mar 23

uses the handle_restart_request function in sdr_services.c, which executes:

Author

 int ret_local =

 execl(exec_file_path, exec_file_path, "13", "can0", (char*)NULL);

Run sdr-services from root to access functionality by t... https://github.com/NTNU-SmallSat-Lab/hypso-sw/pull/520

2 of 4 6/1/21, 18:01

Reply…

Resolve conversation

garaq self-requested a review on Mar 24

garaq approved these changes on Mar 24

View changes

garaq left a comment

sdr shutdown, csp shutdown and csp reboot don't work when sdr-services are run with the start-up

script. We'll make a separate issue for that.

The PR is approved and can be merged.

tuvaom merged commit 214017b into on Mar 24

2 checks passed

RevertView detailssdr-services

This was referenced on Mar 24

Decide which user sdr-services shall run under #492

sdr settime #502

sdr restart #504

sdr shutdown #503

rogerbirkeland mentioned this pull request on Mar 24

Verify functionality of csp commands on sdr-services #473

 Closed

 Closed

 Closed

 Closed

 Closed

Run sdr-services from root to access functionality by t... https://github.com/NTNU-SmallSat-Lab/hypso-sw/pull/520

3 of 4 6/1/21, 18:01

V PR #523 hypso-sw

Jump to bottom

NTNU-SmallSat-Lab / hypso-sw Private

Code Issues 70 Pull requests 3 Actions Projects Security

changing port names to PL_*_PORT #523

 Merged tuvaom merged 9 commits into from on Apr 13

Conversation 3 Commits 9 Checks 2 Files changed 15

Edit

sdr-services sdr-opumirror

tuvaom commented on Apr 2

#518 as explained in issue.

Changes made

Common ports for OPU and SDR are now referred to as PL_*_PORT.

How to test

Successful building of hypso-cli, opu-services and sdr-services -> no old port-names left as this

would error.

(Send some commands to the different ports for confirmation)

Resolves

changing port names to PL_*_PORT 2fea005

tuvaom requested a review from rogerbirkeland on Apr 2

jlgarrett commented on Apr 12 •

I just ran this through the Jenkins regression tests. Works great (within that domain)!

(FYI: does not test sdr-services)

edited

changing port names to PL_*_PORT by tuvaom · Pull R... https://github.com/NTNU-SmallSat-Lab/hypso-sw/pull/523

1 of 3 6/1/21, 18:19

130

tuvaom added 8 commits on Apr 12

Change help text of pl restart f614f1a

refactoring opu_services.c and sdr_services.c f646762

adding HYPSO_CSP_BUFFER_COUNT to HYPSO.h b77e985

including new files in CMakeLists.txt 77fd326

Revert "including new files in CMakeLists.txt" 3475ec6…

Revert "adding HYPSO_CSP_BUFFER_COUNT to HYPSO.h" 91ab599…

Revert "refactoring opu_services.c and sdr_services.c" a25d777…

Revert "Change help text of pl restart" d9489fd…

rogerbirkeland approved these changes on Apr 13

View changes

rogerbirkeland left a comment

Tested:

With regression tests on Jenkins --> Pass

Manually: Built and tested briefly on OPU.

rogerbirkeland commented on Apr 13

OK to merge! Tested briefly on OPU, SDR and with Jenkins.

tuvaom merged commit 79c808c into on Apr 13

2 checks passed

RevertView detailssdr-services

tuvaom mentioned this pull request on Apr 13

Change common ports for OPU and SDR to PL-ports #518

Reviewers

 Closed

changing port names to PL_*_PORT by tuvaom · Pull R... https://github.com/NTNU-SmallSat-Lab/hypso-sw/pull/523

2 of 3 6/1/21, 18:19

W PR #529 hypso-sw

Jump to bottom

NTNU-SmallSat-Lab / hypso-sw Private

Code Issues 70 Pull requests 3 Actions Projects Security

Sdr refactor (opu_services.c and sdr_services.c) #529

 Merged tuvaom merged 5 commits into from on Apr 19

Conversation 1 Commits 5 Checks 2 Files changed 13

Edit

sdr-services sdr-opumirror

tuvaom commented on Apr 14

#477

Refactoring to remove duplicate code, as well as making the functions general for any payload.

Changes made:

The common code of opu_services.c and sdr_services.c is moved to new files. The new source

files are the following:

src/services/services_init.c : functions used for initialization.

src/services/services_util.c : help functions.

src/services/services_csp.c : csp related functions

Comments

The functionality is almost the same, but the opu restart is no longer automatically directing the user to

/media/sd-pl/opu-service .

(Duplicate of PR #527, but with all commits included)

Resolves

tuvaom added 5 commits on Apr 13

Merge branch 'sdr-opumirror' of github.com:NTNU-SmallSat-Lab/hypso-sw… 39c5aa5
…

"Change help text of pl restart"" adaa1e7…

"refactoring opu_services.c and sdr_services.c"" a1e1150…

"adding HYPSO_CSP_BUFFER_COUNT to HYPSO.h" 3e2ca69…

"including new files in CMakeLists.txt" 898c694…

Sdr refactor (opu_services.c and sdr_services.c) by tu... https://github.com/NTNU-SmallSat-Lab/hypso-sw/pull/529

1 of 3 6/1/21, 18:20

132

No one—assign yourself

None yet

SW kanban board

No milestone

Successfully merging this pull request may close these issues.

None yet

rogerbirkeland self-requested a review on Apr 14

rogerbirkeland approved these changes on Apr 14

View changes

rogerbirkeland left a comment

Approving, since this is the same as yesterday.

tuvaom merged commit 9a7dc51 into on Apr 19

2 checks passed

RevertView detailssdr-services

jlgarrett added this to Done in SW kanban board on Apr 29

rogerbirkeland

Reviewers

Assignees

Labels

Projects

Done

Milestone

Linked issues

Sdr refactor (opu_services.c and sdr_services.c) by tu... https://github.com/NTNU-SmallSat-Lab/hypso-sw/pull/529

2 of 3 6/1/21, 18:20

X PR #538 hypso-sw

Jump to bottom

NTNU-SmallSat-Lab / hypso-sw Private

Code Issues 70 Pull requests 3 Actions Projects Security

Sdr telemetry #538

 Merged tuvaom merged 11 commits into from on Apr 29

Conversation 3 Commits 11 Checks 2 Files changed 19

Edit

sdr-services sdr-telemetry

tuvaom commented on Apr 23

#501

Making the telemetry service w/ logging and commands work with both payloads.

Changes made

New files:

src/tm/tm_service_opu.c : tm thread for OPU w/ opu-specific functions

src/tm/tm_service_sdr.c : tm thread for SDR w/ sdr-specific functions

src/tm/tm_cmd.c : tm commands that are common for both payloads

Deleted files:

src/tm/tm_service.c : Now present in the three files above

src/tm/tm_opu.c : content moved to src/tm/tm_service_opu.c

Changed files:

src/cli/cli_sdr.c : added commands sdr xadc and sdr tmlog

src/tm/tm_util.c : generalizing util functions

src/cli/cli_pl.c : changing printout for opu/sdr telemetry

include/tm/tm.h : changed CMD names (eg: OPU_CMD_GETGIT -> PL_CMD_GETGIT)

- include/tm/tm_log.h : added tm struct for sdr

How to test

Test tm commands for opu and sdr (check, git, telemetry, tmlog) and sdr xadc

Check log files for telemetry: should be present in telemetry directory in the folder *-services is

run from

You can find opu-services , sdr-services and hypso-cli in hypso@129.241.2.147:/home

Resolves

Sdr telemetry by tuvaom · Pull Request #538 · NTNU-... https://github.com/NTNU-SmallSat-Lab/hypso-sw/pull/538

1 of 4 6/1/21, 18:20

134

/hypso/tuva/sdr , and the correct verison of the sdr-services is also uploaded for root in

/home/totem/hypso/sdr-services_tm

tuvaom added 9 commits on Apr 23

refactoring common sdr and opu tm-commands ee0b656

telemetry service for sdr 7e6dce1

telemetry service for opu 34e642e

generalizing util functions dd50e1f

Deleting old files after refactoring c543b29

Adding functionality 'sdr xadc' and 'sdr tmlog' aa31fe9

Correcting telemetry printout for opu and sdr 9cacd4f

including new telemetry files in appps and CMake 557e5fd

removed unnecessary print df92377

tuvaom requested review from rogerbirkeland and garaq and removed request for

rogerbirkeland and garaq on Apr 23

rogerbirkeland linked an issue that may be by this pull request on Apr 28

Telemetry service for the sdr #501

closed

Tm Logging time 3faa578

rogerbirkeland reviewed on Apr 29

View changes

src/tm/tm_service_sdr.c Outdated

102

103

104

105

+ tm_cmd_sdr_get_telemetry(conn, packet);

+ break;

+ case PL_CMD_TMLOG:

+ snprintf(last_cmd_p->cmd_str, LAST_CMD_STR_LENGTH, "opu tmlog

rogerbirkeland on Apr 29

Should this line say 'opu'?

 Closed

Sdr telemetry by tuvaom · Pull Request #538 · NTNU-... https://github.com/NTNU-SmallSat-Lab/hypso-sw/pull/538

2 of 4 6/1/21, 18:20

Reply…

Resolve conversation

rogerbirkeland requested changes on Apr 29

View changes

rogerbirkeland left a comment

The functionality is tested both on OPU and SDR. This looks good.

In the code, there is one reference to a opu-command in one of the SDR-files. Check that before

approve/merge.

There should be made a new issue on how to log the xadc-values from the SDR.

updating lastcmd string 'pl tmlog' cf003ec

rogerbirkeland approved these changes on Apr 29

View changes

rogerbirkeland left a comment

I think this looks good!

tuvaom merged commit f739dcc into on Apr 29

2 checks passed

RevertView detailssdr-services

tuvaom mentioned this pull request on Apr 29

Telemetry service for the sdr #501

 Closed

Sdr telemetry by tuvaom · Pull Request #538 · NTNU-... https://github.com/NTNU-SmallSat-Lab/hypso-sw/pull/538

3 of 4 6/1/21, 18:20

Y PR #546 hypso-sw

1.6.2021 Sdr xadc by tuvaom · Pull Request #546 · NTNU-SmallSat-Lab/hypso-sw

https://github.com/NTNU-SmallSat-Lab/hypso-sw/pull/546 1/5

NTNU-SmallSat-Lab / hypso-sw Private

Code Issues 70 Pull requests 3 Actions Projects Security In

Jump to bottom

Sdr xadc #546
 Merged tuvaom merged 7 commits into from 12 days ago

Conversation 4 Commits 7 Checks 2 Files changed 5

Edit

sdr-services sdr-xadc

 tuvaom commented 19 days ago •

 #542
the xadc_values are now a part of the sdr telemetry command and the tm logging for the sdr

Changes made:

Added the xadc values to the sdr tm struct

Two new functions added to tm_service_sdr:
- float tm_sdr_read_xadc : reading files with xadc_values
- float tm_sdr_get_xadc : calculating final mag_value to set values in struct

Printing new values for the hypso-cli command sdr telemetry

How to test:

correct version of hypso-cli can be found on the LidSat in /home/hypso/tuva/test (also has updated
versions of opu-sevices and sdr-services)

correct version of sdr-services is also uploaded to totem in /home/totem/hypso as sdr-logxadc

struct for parsing of sdr logfile in nanoMCS : sdr_tm_struct.txt

Test if sdr xadc and sdr telemetry gives approximately the same values

Download tm log and parse with nanoMCS to see if it makes sense

edited

Resolves

tuvaom added 6 commits 19 days ago

adding \n on print 9bd51ca

Adding xadc values to sdr tm struct ca33e19

137

1.6.2021 Sdr xadc by tuvaom · Pull Request #546 · NTNU-SmallSat-Lab/hypso-sw

https://github.com/NTNU-SmallSat-Lab/hypso-sw/pull/546 2/5

collecting xadc values for sdr tm struct 72e6c36

'sdr telemetry' now printing collected xadc values 28cef71

FOrmat telemetry sdr print 1cd621d

checking for correct xadc file (scale not offset) 4a060a6

 tuvaom requested a review from rogerbirkeland 19 days ago

rogerbirkeland reviewed 13 days ago

View changes

src/tm/tm_service_sdr.c Outdated

242

243

244

245

Reply…

+ tm_log_data->vrefN = tm_sdr_get_xadc("in_voltage7_vrefn_raw", NULL,

+ "in_voltage7_vrefn_scale", 0, 1);

+ tm_log_data->currVCC5V0 =

+ tm_sdr_get_xadc("in_voltage8_raw", NULL, NULL, 0, 0.0006103516);

 rogerbirkeland 13 days ago

It would have been nicer if the scales and offsets were defines or constants instead if hard-
coded into the function calls.

 tuvaom 13 days ago

Thanks for feedback, updated with constant definitions now.

Author

Resolve conversation

 rogerbirkeland self-requested a review 13 days ago

rogerbirkeland reviewed 13 days ago

View changes

1.6.2021 Sdr xadc by tuvaom · Pull Request #546 · NTNU-SmallSat-Lab/hypso-sw

https://github.com/NTNU-SmallSat-Lab/hypso-sw/pull/546 3/5

 rogerbirkeland left a comment

This looks nice. The xadc-values and telemetry values are similar:

(hypso) sdr telemetry

Sending telemetry request

=========================== Telemetry Info ===========================

 --------- System values ---------

Uptime(sec since boot): 1888035

Memory(kB) - free: 468472 total: 512276

Dev(kB) - free: 190088 total: 190088

Tmp(kB) - free: 256056 total: 256136

Ubi0(kB) - free: 226408 total: 240380

Load*100 - 1 min: 5 5 min: 7 15 min: 1

Image : totem

 --------- ADC values -------

Temperature(mC): 48601.105469 UHF PA Temp.(C): 32.618408

Vcc INT(mV): 941.162109 VCC3V3 Voltage(V): 3.156614

Vcc AUX(mV): 1784.912109 VCC2V5 Voltage(V): 2.477370

Vcc BRAM(mV): 938.232422 Temperature(C): 41.829422

Vcc PINT(mV): 938.232422 VBAT Current(mA): 0.068848

Vcc PAUX(mV): 1783.447266 VCC2V5 Current(mA): 0.153646

Vcc ODDR(mV): 1343.994141 VCC3V3 TRX Curr.(mA): 0.121582

Vref P(mV): 1250.976562 VCC3V3 Current(mA): 0.155599

Vref N(mV): 0.000000 VCC0V95 Current(mA): 0.459595

VCC5V0 Current(mA): 0.707398 VCC1V3 Current(mA): 0.423340

Analog 0: 0.212007 VCC1V8 Current(mA): 0.220947

VCC5V0 Voltage(V): 4.577969 VCC1V35 Current(mA): 0.104574

UHF Frontend Temp.(C):40.640869

===

(hypso) sdr xadc

ID Name Raw value Mag value Unit

-- ---- --------- --------- ----

 0 Temperature 48355.0232 48355.0232 mC

 1 Vcc INT 934.5703 934.5703 mV

 2 Vcc AUX 1784.1797 1784.1797 mV

 3 Vcc BRAM 940.4297 940.4297 mV

 4 Vcc PINT 936.0352 936.0352 mV

 5 Vcc PAUX 1781.2500 1781.2500 mV

 6 Vcc ODDR 1343.9941 1343.9941 mV

 7 Vref P 1249.5117 1249.5117 mV

 8 Vref N 0.0000 0.0000 mV

 9 VCC5V0 Current 1134.0000 0.6921 mA

10 Analog 0 883.0000 0.2258

11 VCC5V0 Voltage 2784.0000 4.5895 V

12 UHF Frontend Temp. 1404.0000 40.8350 C

13 UHF PA Temp. 1279.0000 32.7478 C

14 VCC3V3 Voltage 2937.0000 3.1598 V

15 VCC2V5 Voltage 3009.0000 2.4757 V

16 Temperature 1611.0000 41.7725 C

17 VBAT Current 137.0000 0.0669 mA

18 VCC2V5 Current 864.0000 0.1406 mA

19 VCC3V3 TRX Curr. 122.0000 0.0596 mA

20 VCC3V3 Current 918.0000 0.1494 mA

1.6.2021 Sdr xadc by tuvaom · Pull Request #546 · NTNU-SmallSat-Lab/hypso-sw

https://github.com/NTNU-SmallSat-Lab/hypso-sw/pull/546 4/5

The TM files can be parsed and look like this:

21 VCC0V95 Current 920.0000 0.5615 mA

22 VCC1V3 Current 888.0000 0.4336 mA

23 VCC1V8 Current 367.0000 0.2240 mA

24 VCC1V35 Current 296.0000 0.1204 mA

(hypso)

 rogerbirkeland mentioned this pull request 13 days ago

Logging of xadc_values #542

 Closed

 rogerbirkeland linked an issue that may be by this pull request 13 days ago

Logging of xadc_values #542 Closed

closed

xadc scales and offsets defines as constants cdce64e

rogerbirkeland approved these changes 12 days ago

View changes

 rogerbirkeland left a comment

Looks good!

 tuvaom merged commit d8f0049 into 12 days ago
2 checks passed

RevertView detailssdr-services

1.6.2021 Sdr xadc by tuvaom · Pull Request #546 · NTNU-SmallSat-Lab/hypso-sw

https://github.com/NTNU-SmallSat-Lab/hypso-sw/pull/546 5/5

No one—assign yourself

None yet

SW kanban board

No milestone

Successfully merging this pull request may close these issues.

 Logging of xadc_values

2 participants

 tuvaom deleted the branch 12 days ago Restore branchsdr-xadc

 jlgarrett added this to Done in SW kanban board 7 days ago

 rogerbirkeland

Reviewers

Assignees

Labels

Projects

Done

Milestone

Linked issues

Z PR #547 hypso-sw

1.6.2021 Sdr generalize by tuvaom · Pull Request #547 · NTNU-SmallSat-Lab/hypso-sw

https://github.com/NTNU-SmallSat-Lab/hypso-sw/pull/547 1/3

NTNU-SmallSat-Lab / hypso-sw Private

Code Issues 70 Pull requests 3 Actions Projects Security In

Jump to bottom

Sdr generalize #547
 Open tuvaom wants to merge 13 commits into from

Conversation 0 Commits 13 Checks 2 Files changed 7

Edit

sdr-services sdr-generalize

 tuvaom commented 12 days ago

 #543
all _pl_ -functions are now generalized

Changes made:

_pl_list and _pl_log was changes as explained in the issue to take in extra arguments (cmd/paths)
- cli_pl_log was removed as location of log-file is needed -> can not do pl log 12/13 , have to do
sdr log or opu log

Formatting of opu/sdr telemetry feedback moved to specific files. -> only requesting the telemetry in
cli_pl.c , not formatting outputs.

- pl telemetry command removed as this command has specific variables for each payload
- to get telemetry you have to use either sdr telemetry or opu telemetry

_pl_update is refactored to the following functions, while it is put together in sdr_update and
opu_update :

- _pl_update_check : general checks (as path checks and arg checks)
- _pl_check_img : checking if image.ub
- _pl_check_exe_arm : checking if a file is a arm executable
- _pl_tar : compresses file

also changed one address in sdr_services.c that was set to HYPSO instead of SDR as sdr restart was
restarting to csp address 12 instead of 13

How to test:
-correct version of hypso-cli can be found on the LidSat in /home/hypso/tuva/test (also has updated
versions of opu-sevices and sdr-services)
-correct version of sdr-services is also uploaded to totem in /home/totem/hypso as sdr-generalize
- should (at least) test opu/sdr telemetry , opu/sdr update , opu/sdr log , opu/sdr list , sdr restart ,
- and perhaps that pl telemetry , pl log and pl update no longer works.

Resolves

142

1.6.2021 Sdr generalize by tuvaom · Pull Request #547 · NTNU-SmallSat-Lab/hypso-sw

https://github.com/NTNU-SmallSat-Lab/hypso-sw/pull/547 2/3

No one—assign yourself

None yet

tuvaom added 13 commits on 29 Apr

generalize _pl_log and _pl_list e439243

refactoring opu telemetry and sdr telemetry d828cfb

refalctor pl tm and remove not generalized pl funcs 61cef09

refactoring and generalizing pl update 0bc92af

add changes from sdr-xadc branch 78954a1

Merge branch 'sdr-xadc' into sdr-generalize ac00eb7

Add cat to pl log cmd 55f5a80

removing cleanup cmd -> moved to other files 06b55d2

removing test print f6ea8b9

adding z to zip properly e4e307d

Merge branch 'sdr-services' into sdr-generalize f41cfda

not tar-ing sdr-services 99cd5ac

sdr monitor task to correct csp address b498272

 tuvaom requested a review from rogerbirkeland 12 days ago

 jlgarrett added this to Review in progress in SW kanban board 7 days ago

 rogerbirkeland

Reviewers

Assignees

Labels

Tuva O
kkenhaug M

oxnes
A com

m
on softw

are fram
ew

ork for a CubeSat w
ith m

ultiple payloads

