@ivind Auseth Nielsen

Modelling of Cache/Interconnect
Performance in an Embedded
System

Master’s thesis in Electronics Systems Design and Innovation
Supervisor: Snorre Aunet
Co-supervisor: Torbjern Ness (Nordic Semiconductor ASA)

July 2021

2
4
=
P

°
o
C

c
]

'_

©
C
(8]
[0}
9]
C

o
(&)

(V2]

Y
o

2
(%]
—
[}

2
C

o)
C

ke
Bo
:
o

zZ

b0 v
£ E
—
g &
59
c 2
o c
= 2
v
59
O ow
3L
s]
-OJ—J
c
Sa
=
& £
gs
o)
cn0
9]
l_
c
S
=1
©
I
—_
L
£
G
5]
=
(9]
(]
[N

@ NTNU

Norwegian University of
Science and Technology

NORDIC

SEMICONDUCTOR

@ivind Auseth Nielsen

Modelling of Cache/Interconnect
Performance in an Embedded System

N

NORDIC

SEMICONDUCTOR

Master’s thesis in Electronics Systems Design and Innovation
Supervisor: Snorre Aunet

Co-supervisor: Torbjgrn Ness (Nordic Semiconductor ASA)
July 2021

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Electronic Systems

@ NTNU

Norwegian University of
Science and Technology

Abstract

The cache and bus topology in an embedded system has a big influence on the system per-
formance and energy efficiency. Producing a new silicon chip for testing is expensive, and
this has made simulating architectural changes a common practice in the industry. Modern
RTL simulations are able to provide highly accurate estimates of integrated circuit perfor-
mance. However, modelling an architecture for such a simulation is a long and laborious
process, and making modifications to the model is often time consuming. There is a need
for a quick and easy way of experimenting with different bus topologies, which is still able
to provide a good estimate of how various changes will affect performance.

This thesis presents an easy to use model, which allows for completely changing an ar-
chitecture just by modifying a few values in a text file. The model uses a node tree repre-
sentation of the bus hierarchy, abstracting away hard to model architecture features, such
as timing jitter when crossing between clock domains, and bus contention. Each node
represent a component in the interconnect topology and explicitly states the latency it con-
tributes to a memory access. This allows a highly simplified architecture description to
be written, only focusing on the aspects of the bus topology which significantly contribute
to memory access performance. The bus topology simulated for testing purposes in this
thesis is the main Cortex-M33 processor on Nordic Semiconductor’s nRF5340 SoC.

The simulation results were compared to tests running on a nRF5340 development kit.
When simulating Coremark with cache enabled, the model reported a 18.70% longer run
time than hardware. When simulating Coremark with cache disabled, the model reported
a 4.36% longer run time than hardware. When simulating sequential accesses to matrices,
the model reported 68% more instruction cache hits and 18% fewer latency cycles than
hardware for the smallest matrices, and 50% more instruction cache hits and 5% fewer
latency cycles than hardware for the largest matrices. The model displayed high fidelity,
but the simulated results were offset from the hardware results. It is useful for predicting
whether a change would lead to an increase or decrease in instruction cache performance
and total latency cycles. There were issues outside the scope of this thesis which were
significant error sources in the results. In preliminary testing of how the model would per-
form if these issues were resolved, it reported cache hit and cache miss results which were
within 0.2% of the results seen on hardware, and cache latency results which were 7.3%
higher than the results seen on hardware. This shows that the model has the potential to
achieve very accurate results, and be a useful tool for initial exploration of the performance
impact of modifications to cache and bus topology.

Sammendrag

Cache og bus topologi i et innvevd system har en stor innflytelse pa systemets ytelse og
energi effektivitet. A produsere en ny chip for testing er dyrt, og dette har gjort simulering
av arkitektur forandrnger til en vanlig praksis i industrien. Moderne RTL simuleringer kan
gi veldig ngyaktige estimater av ytelsen til integrerte kretser. A modellere en arkitektur for
en slik simulering er en lang og arbeidskrevende prosess, og & modifisere modellen er ofte
tidkrevende. Det er et behov for en rask og enkel mate & eksperimentere med forskjellige
bus topologier, som fortsatt klarer a gi et godt estimat pa hvordan forandringer vil pavirke
ytelse.

Denne avhandlingen presenterer en modell som er lett & bruke, og som gjgr det mulig &
fullstendig forandre en arkitektur ved & bare modifisere et par verdier i en tekst fil. Mod-
ellen bruker en node-tre representasjon av bus hierarkiet, og abstraherer vekk deler av
arkitekturen som er vanskelig a modellere, slik som timing jitter nar man krysser klokke-
domener og bus contention. Hver node representerer en komponent i interconnect topolo-
gien og sier eksplisitt hvor mye latency den legger til en minneaksess. Dette gjgre det
mulig a skrive en veldig forenklet arkitektur beskrivelse, som bare fokuserer pa de as-
pektene av bus topologien som bidrar mye til minneaksess ytelsen. Bus topologien som
er simulert for testing i denne avhandlingen er den sentrale Cortex-M33 prosessoren pa
Nordic Semiconductor sin nRF5340 SoC.

Simuleringsresultatene ble sammenlignet med tester som kjgrte pa et nRF5340 develop-
ment kit. Nar Coremark ble simulert med cache aktivert, rapporterte modellen en kjgretid
som var 18.70% lengre enn kjgretiden pa hardware. Nar Coremark ble simulert med cache
deaktivert, rapporterte modellen en kjgretid som var 4.36% lengre enn kjgretiden pa hard-
ware. Nar sekvensielle aksesser til matriser ble simulert, rapporterte modellen 68% flere
instruction cache hits og 18% ferre latency sykluser enn hardware for de minste matrisene,
og 50% flere instruction cache hits og 5% faerre latency sykluser enn hardware for de
stgrste matrisene. Modellen viste hgy fidelity, men de simulerte resultatene var forskyvet
sammenlignet med resultatene fra hardware. Den er nyttig for & spd om en forandring
vil gke eller senke instruction cache ytelsen og den totale mengden latency sykluser. Det
var problemer utenfor omfanget av denne avhandlingen som var betydelige feilkilder i
resultatene. I tidlig testing av hvordan modellen ville yte hvis problemene ble 1gst, sa rap-
porterte den cache hit og cache miss resultater som var innen 0.2% av resultatene som ble
sett pa hardware, og cache latency resultater som var 7.3% hgyere enn resultatene som ble
sett pa hardware. Dette viser at modellen har potensialet til & gi veldig ngyaktige resultater
og veare et nyttig verktgy for tidlig utforskning av hvordan modifikasjoner av cache og bus
topologi vil pavirke ytelse.

ii

Table of Contents

Abstract i
Sammendrag ii
Table of Contents iv
List of Tables v
List of Figures vii
1 Introduction ix
2 Theory xi
2.1 Cache e Xi

22 Coremark xiii

2.3 JSON . . e e Xiv

3 Methodology XV
3.1 Materials XV
3.1.1 The nRF5340 ApplicationCore XV

3.12 CacheModel XVi

3.2 Modelling the Architecture Xvii
32.1 TheContentsofaNode xvii

322 BuildingtheNode Tree Xviii

3.3 Simulating a Memory Access e Xix
33.1 BusContention Xix

3.3.2 Frequency Conversion XX

34 TheApplication XXi

3.5 Testing Methodology xXii
3.,5.1 Obtaining InputData XXii

3.5.2 nRF5340 Application Core JSON File Xxiii

iii

353 Tests

4 Results
41 Coremark
4.2 Sequential Matrix ACCESSeSo e
43 ObservedIssues
43.1 Missing Data Accesses
432 WrongTaglength

4.3.3 Too Many Instruction Cache Lookups

4.4 Tmprovements i e e e

5 Discussion

5.1 Coremark
5.2 Sequential Matrix Accesses
5.3 Improvements

6 Conclusion
Bibliography

Appendix

........ XXVi
........ XXViil
........ XXViil
........ XXViii
........ XXViii
........ XXiX

XXXV

XXXVii

XXXIX

iv

List of Tables

4.1
4.2
43
44
4.5
4.6
4.7
4.8

Simulation Results, Coremark XXV
Hardware Results, Coremark XXV
Simulation Results, Sequential Matrix Accesses XXVi
Hardware Results, Sequential Matrix Accesses XXVi
Hardware Results, Instruction Hits and Misses, Sequential Matrix Accesses xxvi
Simulated/Hardware Ratios, Sequential Matrix Accesses XXvii
Simulation Results, 100x100 Sequential Matrix Accesses, modified . . . xxXix
Potential Simulated/Hardware Ratios, 100x100 Sequential Matrix Accesses,
modified e XXiX

vi

List of Figures

3.1
32
33
34
35
3.6

nRF5340 development kit oL XV
Memory Map xvii
Node Contents oo v v v ittt xviil
get_latency() functionality, Xix
Testing Setup Graphic XXii
Testing Setup XXiii

vii

viii

Chapter

Introduction

Many aspects of an embedded system architecture contribute to the system’s performance
and energy efficiency. An important factor is the design and optimization of the cache and
bus topology. The gains from slightly reducing the average memory access latency add
up to a big performance boost, and this leads engineers to constantly search for ways to
improve the bus topology. This search involves making changes and observing how they
affect performance. Producing a new silicon chip every time an engineer wants to test
a small change would be overly expensive, and this makes FPGA implementations and
software simulations a common practice in the industry. Modern RTL software simula-
tions can provide highly accurate estimates of integrated circuit performance. However,
the models used for such simulations are very complex, and building them is a long and la-
borious process. Making modifications to a model is also often time consuming, and many
of the changes an engineer makes are for early exploratory purposes and do not require
perfectly accurate results. For these types of changes the complexity of the RTL imple-
mentation, which is necessary to achieve its high accuracy, becomes a burden. A quicker
and easier way of experimenting with different bus topologies is needed, while still being
able to provide good performance estimates.

This thesis shows that a very simple model can be built, which allows for quick and easy
modifications by only editing values in a text file. This is achieved by only focusing on the
aspects of the bus topology which significantly contribute to memory access performance,
explicitly stating how much latency each component contributes to a memory access, and
abstracting away hard to model features such as timing jitter and bus contention. It is also
shows that such a model has the potential to retain very high accuracy, as long as it is
supported by the proper tools.

Chapter 2 provides useful theory about how cache memory works, describes relevant con-
cepts of a bus architecture, explains what Coremark is and its significance, and gives a
brief introduction to the JSON text format. Chapter 3 describes the materials used, how the
model functions, and details how the tests were performed. Chapter 4 presents a compari-

son between the performance of Coremark and other tests on hardware and the developed
model, followed by an examination of issues encountered during testing and the impact
these issues had on the results. Chapter 5 discusses the results and what they mean for the
stated goals of the presented work. Chapter 6 sums up the purpose of the work done, what
was achieved and the potential of future work.

Chapter

Theory

2.1 Cache

The cache is a memory component designed to reduce the time needed to access instruc-
tions or data from memory. It is usually very fast, small in capacity, and placed close to the
processor. When the processor needs information from memory, it first checks whether it
has been stored in the cache. When the processor finds the information it is looking for
in the cache, it is called a cache hit. When the processor does not find the information
it is looking for in the cache, it is called a cache miss. When a cache miss happens, the
processor has to find the information in the larger and slower memory, which takes a much
longer time. The information fetched from the slower memory is then placed in the cache,
so that it can be fetched from the cache the next time it is needed[1].

The cache can be organized in different ways, but the most common is what is called an
n-way set-associative cache. In this structure the cache is divided into a number of equally
sized “’sets”, which are divided into a number of equally sized “ways”, which contain a
number of equally sized ”words”. A way is the size of one cache line. Each memory
address is only associated with a single set in the cache, and can only be placed in its
associated set. A set can only hold data from 1 address for each way it has.

As an example, imagine a 8kB 2-way set associative cache which covers the addresses for
64kB, from 0x0 to OxFFFF. Further, imagine that the word size is 4 bytes and a cache line
is 4 words. Each set would be 32 bytes, and the cache would have 256 sets. 16 bits are
needed for the addresses from 0x0 to OxFFFF. When a address is looked up in the cache,
the last 5 bits, bit 12 to 16, would be called the ~offset bits”, and point to a specific byte in
a set. Bit 4 to 11 would be called the “set bits”, and decide which set the address belongs
to. Bit 1 to 3 would be called the “’tag bits”, and would indicate which part of the memory
the address is from. When the information from a memory address is stored in a way,
the tag from that address is also stored. During a cache lookup, the cache finds the set
associated with the address using its set bits, and compares its tag with the tags stored in

Xi

the set’s ways. If either way has a tag that matches, it’s a hit, and if they don’t, it’s a miss.
A different tag means that the address is for a very different place in the memory, so this
type of cache assumes that most accesses within a short time period will be to the same
part of the memory.

xii

2.2 Coremark

Coremark is a simple benchmark from EEMBC. It measures the performance of micro-
controllers (MCUSs) and central processing units (CPUs) used in embedded systems. Core-
mark contains list processing (find and sort), matrix manipulation (common matrix op-
erations), state machine (determine if an input stream contains valid numbers), and CRC
(cyclic redundancy check)[2]. It is one of the most commonly used benchmarks for MCUs
and CPUs in embedded systems, and some companies include Coremark scores in the off-
ical documentation of their products.

Xiii

2.3 JSON

JavaScript Object Notation, or "JSON™ as it is better known, is a text format used to store
and transport data. json.org describes the format in the following way:

It is easy for humans to read and write. It is easy for machines to parse and generate.
It is based on a subset of the JavaScript Programming Language Standard ECMA-262 3rd
Edition - December 1999. JSON is a text format that is completely language independent
but uses conventions that are familiar to programmers of the C-family of languages, in-
cluding C, C++, C#, Java, JavaScript, Perl, Python, and many others”[3].

The JSON text format is built on two structures. The first is a collection of name/value
pairs, and the second is an ordered list of values. In C++ these would be similar to a struct
and an array. Here is an example of how those structures are used to store data:

{

"firstName": "John",
"lastName": "Smith",
"isAlive": true,

"age": 27,

"address": {
"streetAddress": "21 2nd Street",
"city": "New York",
"state": "NY",
"postalCode": "10021-3100"

}I

"phoneNumbers": [

{
"type": "home",
"number": "212 555-1234"
by
{
"type": "office",
"number": "646 555-4567"
}
17
"children": [],

"spouse": null

Xiv

Chapter

Methodology

3.1 Materials

3.1.1 The nRF5340 Application Core

The architecture simulated in this thesis is the Application core of the nRF5340, developed
by Nordic Semiconductor ASA. The nRF5340 is an ultra-low power wireless System on
Chip (SoC) with two Arm Cortex-M33 processors[4], one of these processors is named
the Application core and the other processor is named the Network core. The Application
core is designed to be the main processor, handling the main functions of the applica-
tion, while the connectivity back-end, for example the bluetooth stack, is running on the
Network core. This architecture was chosen because it is the newest SoC from Nordic
Semiconductor, making it their most relevant SoC to study in this thesis. The hardware
tests were run on the Application core of a nRF5340 development kit PCA10095 v0.7.0,
as seen in figure 3.1.

Figure 3.1: nRF5340 development kit

XV

3.1.2 Cache Model

A pre-existing cache model, created by Nordic Semiconductor, was used to simulate cache
functionality. The cache model was ported from python to C++, and the code for the cache
model is attached in appendix listing 6.8. It is implemented as a class object, with ways,
sets, linewidth, duwidth and lookahead as input arguments for its constructor function.
These parameters are then used to initialize vector variables of the appropriate dimensions
for the sets, ways, tag, data, valid bit and mru bit of a cache with matching parameters.

A lookup function is used to simulate instruction and data fetches. This function takes a
memory address as an argument, and determines whether a fetch for that address should
result in a cache hit or a cache miss by calculating its tag and associated set, and checking
whether a way in that set is valid and populated with a matching tag. The cache content is
also updated, using a least-recently-used replacement policy.

XVi

3.2 Modelling the Architecture

The model was implemented in C++, and uses an existing cache model which was ported
from python to C++. The code for the model is attached in appendix listing 6.7. A re-
cursive class called "memory_map” was created to build a tree hierarchy representing the
architecture, with the CPU as the root node as shown in figure 3.2. A node represents a
part of the bus hierarchy which can be traversed during a memory access, becoming more
localized for each step, and with the leaf nodes representing the memory itself. This struc-
ture includes every detail relevant for the performance metrics being evaluated, and aims
to make adding or removing components very easy. Every component is represented by
a node with the same class skeleton, and all that is needed to represent a new component
with a node are a few basic parameters.

PERIPHERAL
BUS

PERIPHERAL PERIPHERAL

Figure 3.2: Memory Map

3.2.1 The Contents of a Node

Every node contains information about the section of the architecture it represents, such
as its name, the frequency domain, and the additional latency cycles traversing it adds
to a memory access, as shown in figure 3.3. Each parent node also contains one struct
for each of its children, organized in a vector. These structs contain information about
the child nodes, such as the memory region they represent, whether the memory region
is cacheable, and a pointer to the class object representing the child node. Having this
information available in the parent node reduces the amount of class objects which need
to be accessed when traversing the node tree. If this information was stored in the child
nodes, a function would potentially be required to access every child node when travers-
ing through a parent node. A node can also hold a pointer to a cache object, based on

Xvii

the pre-existing cache model. This pointer will be present in the CPU node for most ar-
chitectures, and some architectures could also have lower level caches in lower nodes.
This implementation models the delay caused by the distance from the CPU to lower level
caches, and how architecture changes affect this delay. The node also has three functions:
get_latency(), which traverses the node tree to calculate the latency of a memory access;
freq_convert(), which handles the conversion from one frequency domain to another; and
check_contention(), which handles the delay experienced when accessing a contended part
of the architecture.

Values Functions
Local_cache: pointer to cache object freq_convert()
Name: “RAM_BUS” check_contention()
Bus_clock_freq: 32 get_latency()
Latency_cycles: 2
Contention: 0.6
Address_range: {

Cacheable: true Cacheable: false

From: 0x2000 0000 From: 0x2800 0000

To :0x2800 0000 To :0x3000 0000

Child: pointer to child node Child: pointer to child node

Figure 3.3: Node Contents

3.2.2 Building the Node Tree

The constructor of the memory map class is the function which builds the node tree, using
the the JSON object it takes as an argument. The function traverses the JSON hierarchy
and uses the contents to populate its own tree of recursive class objects. The JSON object
is created from a description in a text file, and changes to the architecture can be made by
editing this file with basic text editing software. The description in the text file is a node
tree, showing how the node tree built by the constructor should be laid out.

Xviii

3.3 Simulating a Memory Access

A class function is used to find the latency of a memory access in the architecture, mea-
sured in CPU clock cycles. This is a recursive function which takes a memory address as
an argument and returns the latency of a memory access to that address. The function first
looks through the start and end addresses of the child nodes and finds the child associated
with the passed memory address. If there is a local cache and the child node is cacheable,
a cache lookup is performed. On a hit, the cache latency is returned, and on a miss the
function is recursively called in the child node. Through this process the function traverses
the node tree until it gets a cache hit or enters a leaf node, as shown in the function float
chart in figure 3.4. A leaf node has no child nodes, and in this situation the node’s latency
parameter is returned. As the function travels back up the node tree, the latency parameter
of each node is added to the total latency value which is returned by the initial instance of
the function.

call
get_latency()

Node has
Node has
child nodes

same
frequency
as child

Return node latency

Frequency
conversion function
adds latency cycles

Call get_latency() in
child node

No

Cache &&
child is
cachable

Returned
from CPU

Node has
contention

| Yes
v

Yes

Return cache
latency

Contention function
adds latency cycles

Cache lookup

T

|
: - @

Figure 3.4: get_latency() functionality

3.3.1 Bus Contention

This is a very simplified implementation of a memory access, and some aspects of bus
and interconnect architectures had to be abstracted away. The first of these is the situation
where a component in the path of a memory access is being accessed by a master other than
the CPU, and thus the CPU has to wait for the component to become available before the
memory access can be carried out. This is called bus contention and has been abstracted
away as a contention parameter for each node, which signifies the probability that the
node will be busy during a given clock cycle. A master in this context is any component
which controls or makes accesses to other components. Before the latency function in a

XiX

node returns, it passes the node’s contention value to a function which generates a random
amount of additional latency cycles based on the contention parameter.

3.3.2 Frequency Conversion

The concept of aligning different frequency domains has also been abstracted away. This
has been replaced by a frequency parameter and a conversion function which is called
when a recursively called latency function returns from the child node. The conversion
function takes the latency value returned by the latency function and the frequency of
the two nodes as parameters, and uses these to generate a random amount of additional
latency cycles. This simulates the amount of cycles the CPU has to wait for clocks of the
two frequency domains to line up, and that a number of latency cycles in a given frequency
domain constitutes more cycles when they are converted to a higher frequency.

XX

3.4 The Application

When the application is launched, the selected JSON text file is read into a JSON object.
The JSON object is passed as an argument to the constructor of a memory_map class
object. This results in a populated node tree representing the architecture described in the
text file. The application reads memory addresses from another text file, and simulates
memory accesses to those addresses. This can be used to simulate the memory accesses of
entire programs. The application also simulates the results of cache lookups and calculates
the delay incurred by each memory access. At the end of the simulation, the destructor
function of the class objects prints the performance numbers of every implemented cache
object.

XX1

3.5 Testing Methodology
3.5.1 Obtaining Input Data

The memory accesses used in the simulation were obtained by running tests on the nRF5340
development kit and logging the memory accesses using GDB[5]. The board was con-
nected to a Windows 10 computer over J-Link, using a USB cable. The Windows 10 ap-
plication J-Link GDB Server V6.88a[6] was used to connect to the board’s debugger chip,
and the GDB debugging application was connected to the GDB server’s listening port.
With this setup, GDB could issue commands to the debugger, and was able to step through
the firmware instructions in a controlled manner. At every step the program counter was
logged and the instruction word sent through a python decoder function. The python de-
coder code, attached in appendix listing 6.11, was provided by Nordic Semiconductor
and is separate from the work carried out in this thesis. The decoder function determines
whether the instruction was a data access. If a data access was identified, the address of
the accessed data was also logged. The testing setup is shown in figure 3.5 and figure 3.6.

nRF5340 development kit Computer
GDB (Deb {
Test Firmware Debugger Chip J-Link GDB Server Sshi:fj‘”g Decode_Addr
N\ ' N\
Runs tests, is 4 N\ (" Sends commands "\ (" Decodes)
controlled b Controls the Connects nRF5320 to the debugger instruction word
debugger Y firmware, sets debugger to GDB sonds metrnction to identify data
breakpoints,
o — word to decoder accesses, and
e function, and logs prints the address
sther regiotors, memory of data which is

\ accesses. / \ accessed. /

Figure 3.5: Testing Setup Graphic

xxii

Figure 3.6: Testing Setup

3.5.2 nRF5340 Application Core JSON File

The JSON text file describing the nRF5340 Application core was written using the infor-
mation available in the product specification at Nordic Infocenter[7], and is attached in
appendix listing 6.9. Latency values for flash, RAM and buses were estimated based on
this documentation. The documentation is clear about the layout of the cache, and this
information was used for the cache in the "CPU_BUS” node. Rough estimates were used
for memory regions outside flash and RAM, as they were deemed to not be significant for
the specific tests performed in this thesis.

3.5.3 Tests

The first test was Coremark, with and without cache enabled to verify that the cache model
was behaving correctly. With a correctly modelled cache, the simulation and hardware
should see the same relative performance changes when switching between the cache being
enabled and the cache being disabled. Both scenarios ran two iterations of the Coremark
benchmarks. This allowed the first iteration to fill the cache and the second iteration to run
with a pre-filled cache when the cache was enabled. The core_portme.c and core_portme.h
files of the Coremark code had to be configured for the nRF5340, and are attached in ap-
pendix listing 6.5 and 6.6, respectively. The Coremark code was compiled into .hex files
using Make and flashed onto the nRF5340 development kit using Segger Embedded Stu-
dio for ARM (Nordic Edition) V5.10d (64-bit)[8]. The hardware results were reported by
the benchmark code and read using a serial terminal on a computer connected to the board

XXiii

using a USB cable.

The second set of tests were sequential accesses to the elements of matrices of various
sizes. The various sizes were added to compare how the model performed when the entire
data structure could fit in the cache, and how it performed when the data structure was
larger than the cache. The sizes used were 10x10, 25x25, 50x50 and 100x100, and an
example of the files used to store the matrices is attached in appendix listing 6.4. One
matrix was stored in flash memory, while the other was stored in RAM, in order to test
both flash memory accesses and RAM accesses of large data structures. The test was
developed using the nRF Connect SDK v1.4.2[9], and the code is attached in appendix
listing 6.1. Additional files used to compile this test are attached in appendix listing 6.2
and 6.3. The code was compiled into .hex files and flashed onto the nRF5340 development
kit using Segger Embedded Studio.

XX1V

Chapter

Results

4.1 Coremark

Tables 4.1 and 4.2 show the Coremark results on both the model and the nRF5340 appli-
cation core, with and without cache. While running Coremark, the application core was
running at a clock frequency of 128 MHz. For convenience, the run time reported by Core-
mark has been converted to latency cycles, and the latency cycles reported by the model
have been converted to run time.

While Coremark outputs a lot of performance metrics, the only metric which can be prop-
erly compared with the output from the model is the run time. With the cache enabled,
the Coremark simulation reports a run time which is 18.70% longer than the run time
reported by Coremark running on hardware. This discrepancy is reduced when the cache
is disabled, with the simulated run time being 4.36% longer than the run time on hardware.

Cache Cache | Cache | Latency Run

Status Hits Misses | Cycles Time
Enabled | 462850 | 6935 585794 | 0.004577s
Disabled - - 1511493 | 0.011809s

Table 4.1: Simulation Results, Coremark
Cache | Cache | Cache | Latency Run

Status Hits | Misses | Cycles Time
Enabled - - 493568 | 0.003856s
Disabled - - 1448448 | 0.011316s

Table 4.2: Hardware Results, Coremark

XXV

4.2 Sequential Matrix Accesses

Tables 4.3, 4.4 and 4.5 show the results of sequential matrix accesses on both the model and
the nRF5340 application core. The amount of simulated cache misses stayed consistent for
all matrix sizes, similar to the instruction misses seen on hardware. For ease of viewing,
the instruction hits and misses seen on hardware have been isolated in table 4.5. Table 4.6
shows that the ratio between the simulated cache hits and hardware instruction cache hits
converges to 1.50 as the size of the matrices increases. Similarly the ratio between the
simulated and hardware latency cycles converges to about 0.95, or more accurately 17/18.

Matrix Cache | Cache | Latency | Cycles per
Dimensions Hits Misses | Cycles | Operation
10x 10 1649 14 1891 18.91
25x 25 9538 15 10833 17.33
50 x 50 37789 14 42831 17.13

100 x 100 | 150589 14 170631 17.06

Table 4.3: Simulation Results, Sequential Matrix Accesses

Matrix Cache Hits Cache Misses Latency | Cycles per
Dimensions (Instruction+Data) (Instruction+Data) | Cycles | Operation
10x 10 1247 (979+268) 19 (5+14) 2302 23.02
25x25 8100 (6321+1779) 85 (5+80) 12408 19.85
50 x 50 32362 (25192+7170) 319 (5+314) 45482 18.19

100 x 100 | 129175 (100442+28733) 1256 (5+1251) 180015 18.00

Table 4.4: Hardware Results, Sequential Matrix Accesses

Matrix Cache | Cache | Latency | Cycles per
Dimensions Hits Misses | Cycles | Operation
10x 10 979 5 2302 23.02
25x 25 6321 5 12408 19.85
50x 50 25192 5 45482 18.19
100 x 100 | 100442 5 180015 18.00

Table 4.5: Hardware Results, Instruction Hits and Misses, Sequential Matrix Accesses

XXVi

Matrix Simulated/Hardware | Simulated/Hardware

Dimensions Cache Hits Ratio Latency Cycle Ratio
10x 10 1.68 0.82
25x 25 1.51 0.87
50 x 50 1.50 0.94
100 x 100 1.50 0.95

Table 4.6: Simulated/Hardware Ratios, Sequential Matrix Accesses

XX Vil

4.3 Observed Issues

4.3.1 Missing Data Accesses

Through inspecting the logged memory accesses, it was discovered that the data accesses
for the specific elements in the matrices were not being logged. An attempt was made to
estimate which addresses would have been accessed by the missing data accesses, and add
them to the log for the 100 by 100 sequential matrix accesses. One memory access was
added after each ldr.w instruction, which is how the missing data accesses should have
appeared. As the elements accessed were sequentially stored integer values, the memory
addresses were incremented by 4 for each iteration. The starting address was set at 0x4e38,
the location in memory where the accessed matrix was stored.

4.3.2 Wrong Tag Length

It was also discovered that the cache on the hardware uses a 17-bit tag, while inputting the
parameters of the hardware cache into the cache model produces a 20-bit tag. This occurs
because only the memory region from 0x0 to Ox 1FFFFFFF is cacheable on the hardware,
while the cache model assumes the cache address space to be from 0x0 to OxFFFFFFFF.
To observe how a smaller tag would affect results, a 17-bit tag was forced by setting the
duwidth to 32 bytes, 8 times its actual size.

4.3.3 Too Many Instruction Cache Lookups

The third uncovered issue was related to the situation where two 16-bit instructions are
stored consecutively in the memory, within the same 32-bit aligned word, and these in-
structions are consecutively executed. When the first instruction is fetched, either from
the cache or memory, the nRF5340’s CPU also fetches the second instruction, as it always
fetches 32-bit sections. Then it skips the cache lookup for the second instruction, as it has
already been fetched. The model does not take this into account, and as a result the simula-
tion performs significantly more cache lookups compared to the board. In order to explore
the impact of this oversight, a quick fix was implemented by keeping track of the most
recently fetched cacheable address. The fix also took advantage of a quirk of the decoder
function, which causes data accesses to always be padded to 32-bit length, to differentiate
instruction and data addresses. This fix made it possible to simulate the “double-fetching”
behavior of the nRF5340.

XXviii

4.4 Improvements

A simple script was written to add missing data accesses to the list of memory accesses for
the 100 by 100 sequential matrix accesses, the code for this script is attached in appendix
listing 6.13. The duwidth for the CPU cache was also increased to 32 bytes. Lastly, two
different consecutive instructions in the same 32-bit word were made to only cause a single
cache lookup. The results from running the simulation with these modifications are shown
in table 4.7, and how these results compare with the hardware results is shown in table 4.8.

Modifications Cache | Cache | Latency | Cycles per
Hits Misses | Cycles | Operation
Added data accesses 160589 | 10014 | 210631 21.06
Increased duwidth 150600 3 170609 17.06
Added data accesses & increased duwidth 169349 1254 193111 19.31
Data & duwidth & double-fetching instructions | 129050 | 1254 193111 19.31
Table 4.7: Simulation Results, 100x100 Sequential Matrix Accesses, modified
Cache | Cache | Latency
Modifications Hits | Misses | Cycles
Ratio | Ratio Ratio
Added data accesses 1.243 | 7.973 1.170
Increased duwidth 1.166 | 0.002 0.948
Added data accesses & increased duwidth 1.311 | 0.998 1.073
Data & duwidth & double-fetching instructions | 0.999 | 0.998 1.073

Table 4.8: Potential Simulated/Hardware Ratios, 100x100 Sequential Matrix Accesses, modified

XXIX

XXX

Chapter

Discussion

5.1 Coremark

The higher accuracy when the cache is disabled points to the cache being a significant
error source in the model. The issues outlined in chapter 4.3 are likely the cause of the
poor performance of the model when the cache is enabled. When the cache is disabled the
model outputs results which are very close to the results seen on the nRF5340 development
kit. A discrepancy of 4.36% should be acceptable for exploring how changes to the bus
topology would affect performance, if the discrepancy is consistent and can be accounted
for.

XXXI1

5.2 Sequential Matrix Accesses

The point of this test was to force cache misses, specifically data fetch misses, by accessing
matrices of various sizes. This was successfully executed on the nRF5340 development
kit, as seen in table 4.4, but the data in table 4.3 reveals that the simulation could not re-
produce the cache misses. If we ignore the data cache hits and misses in the hardware
results, and only look at the instruction cache, shown in table 4.5, it appears that the in-
struction cache numbers are a lot closer to the simulated numbers. This could mean that
the model is unsuited for simulating programs which handle data in cacheable memory re-
gions. Tables 4.7 and 4.8 show that this is likely caused by the issues described in chapter
4.3, and that if these issues are solved, the model has the potential to become very accurate.

XXXil

5.3 Improvements

As explained in chapter 4.3.1, the method used to acquire input data for the model was not
able to log every memory access. Specifically, the method is not able to correctly identify
data accesses originating from 32-bit instructions like 1dr.w. Future work should find a new
method of acquiring input data, or improve the existing method such that it can properly
log 32-bit instructions.

Chapter 4.3.2 describes how the cache model was not able to accurately simulate the cache
parameters seen on the nRF5340 Application core. A high priority improvement would
be to replace the cache model, or rewrite it to allow for deeper customization of the cache
parameters.

The model is not able to reproduce how the cache on the simulated hardware fetches
instructions, and as a result it reports inaccurate cache performance numbers. A robust
solution to this problem will require sections of the model code to be rewritten, but will
likely produce much more accurate results for all affected architectures.

Temporary implementations of fixes to these problems can be seen in table 4.7, and to-
gether the fixes appear to produce performance numbers which are very close to the hard-
ware performance seen in table 4.4. Solving these issues would produce a much more
robust and accurate model.

XXXiii

XXX1V

Chapter

Conclusion

This thesis shows that a simple bus topology model can be a quick and easy way of exper-
imenting with different bus topologies, while still being able to provide a good estimate of
how various changes will affect performance. In this thesis the model was held back by an
insufficient cache model and inaccurate input data, so future work should pair the model
with suitable supporting tools to fully realize its potential. When supported by proper
tools, the model appears to be able to simulate cache hits and cache misses to within 0.2%,
and cache latency to an error margin as low as 7.3%.

XXXV

XXXVi

Bibliography

[1] John L. Hennessy and David A. Patterson. Computer Architecture A Quantitative
Approach (5th edition). Morgan Kaufmann Publishers, Appendix B.1

[2] Shay Gal-On and Markus Levy (2009). Exploring CoreMark™ — A Benchmark Max-
imizing Simplicity and Efficacy. EEMBC

[3] Douglas Crockford (2021). Introducing JSON. Retrieved July 16, 2021, from
https://www.json.org/json-en.html

[4] Nordic Semiconductor ASA (2021). Nordic Semiconductor Infocenter.
Retrieved July 16, 2021, from https://infocenter.nordicsemi.com/topic/struct._
nrf53/struct/nrf5340.html

[5] GNU (2021). GDB: The GNU Project Debugger. Retrieved July 16, 2021, from
https://www.gnu.org/software/gdb/

[6] SEGGER (2021). J-Link GDB Server. Retrieved July 16, 2021, from
https://www.segger.com/products/debug-probes/j-link/tools/j-link-gdb-server/about-
j-link-gdb-server/

[7] Nordic Semiconductor ASA (2021). Nordic Semiconductor Infocenter.
Retrieved July 16, 2021, from https://infocenter.nordicsemi.com/index.jsp

[8] Nordic Semiconductor (2021). SEGGER Embedded Studio - nordicsemi.com. Re-
trieved July 16, 2021, from https://www.nordicsemi.com/Products/Development-
tools/Segger-Embedded-Studio

[9] Nordic Semiconductor (2021). Welcome to the nRF Connect SDK! -
nRF Connect SDK 1.4.2 documentation. Retrieved July 16, 2021, from
https://developer.nordicsemi.com/nRF_Connect_SDK/doc/1.4.2/nrf/index.html

XXX Vil

XXXViii

#include
#include
#include
#include
#include
#include

#include

Appendix

Listing 6.1: Sequential Matrix Accesses Code

<zephyr.h>
<device .h>
<devicetree .h>

<drivers/gpio.h>

<nrf.h>

<timing/timing .h>

”"matrices100.h”

void main(void)

{

timing_init ();

volatile int tmp
int x = 0;
int y;

timing_start ();

while (x < mdim)
y = 0;
while (y

}

X ++;

}

timing_stop ();

NRF_CACHE->ENABLE=0;
NRF_CACHE—>PROFILINGENABLE=0;

:0,

{

< mdim) {
tmp += (mram[x][y]
y++;

* mflash[x][y]);

XXX1X

Listing 6.2: Sequential Matrix Accesses config file

CONFIG_GPIO=y
CONFIG_DEBUG=y
CONFIG_CONSOLE=y
CONFIG_UART_CONSOLE=y
CONFIG_TIMING_FUNCTIONS=y

x1

Listing 6.3: Sequential Matrix Accesses CMakeLists.txt
cmake_minimum-_required (VERSION 3.13.1)

find_package (Zephyr REQUIRED HINTS $ENV{ZEPHYR BASE})
project(blinky)

target_sources (app PRIVATE src/main.c)
zephyr_library_include_directories (
include

)

xli

Listing 6.4: 10x10 Matrices header file
#define mdim 10

volatile int mram[mdim][mdim] = {

{74, 576, 271, 107, 488, 313, 708, 505, 583, 812},
{878, 714, 232, 301, 578, 992, 294, 280, 491, 219},
{689, 973, 532, 373, 18, 315, 93, 295, 691, 303},
{175, 349, 34, 569, 38, 889, 369, 418, 373, 457},
{423, 521, 248, 985, 347, 91, 150, 163, 756, 439},
{580, 187, 592, 430, 7, 289, 567, 47, 473, 809},
{995, 350, 639, 24, 81, 16, 983, 199, 451, 472},
{628, 140, 815, 665, 111, 411, 651, 912, 563, 830},
{746, 425, 852, 785, 410, 499, 602, 665, 960, 547},
{888, 594, 763, 223, 797, 999, 115, 120, 833, 989}
}s

const int mflash[mdim][mdim] = {

{838, 456, 845, 467, 394, 647, 765, 61, 918, 473},
{681, 407, 969, 985, 482, 236, 223, 77, 661, 595},
{72, 50, 392, 344, 239, 502, 175, 496, 564, 117},
{808, 796, 989, 427, 629, 261, 963, 174, 270, 459},
{605, 615, 652, 504, 30, 641, 872, 857, 521, 103},
{27, 597, 572, 298, 434, 667, 532, 842, 682, 31},
{627, 263, 950, 725, 939, 940, 4, 751, 103, 681},
{52, 618, 778, 63, 501, 747, 449, 914, 916, 905},
{513, 606, 30, 225, 937, 515, 625, 717, 510, 826},
{261, 275, 659, 864, 21, 957, 935, 99, 687, 485}
}:

xlii

Listing 6.5: Coremark C file

/ #*
File : core_portme.c

#/

/#*
Author : Shay Gal-On, EEMBC
Legal : TODO!

#/

#include “coremark.h”
#include “core_portme.h”

#if VALIDATION_RUN
volatile ee_s32 seedl_volatile=0x3415;
volatile ee_s32 seed2_volatile=0x3415;
volatile ee_s32 seed3_volatile=0x66;
#endif
#if PERFORMANCE_RUN
volatile ee_s32 seedl_volatile=0x0;
volatile ee_s32 seed2_volatile=0x0;
volatile ee_s32 seed3_volatile=0x66;
#endif
#if PROFILE_RUN
volatile ee_s32 seedl_volatile=0x8;
volatile ee_s32 seed2_volatile=0x8;
volatile ee_s32 seed3_volatile=0x8;

#endif
volatile ee_s32 seed4_volatile=ITERATIONS;
volatile ee_s32 seedS5_volatile =0;
/% Porting : Timing functions
How to capture time and convert to seconds must be ported
to whatever is supported by the platform.
e.g. Read value from on board RTC, read value from cpu
clock cycles performance counter etc.
Sample implementation for standard time.h and windows.h
definitions included.
%/

CORETIMETYPE barebones_clock () {
TIMER->TASKS_CAPTURE[0] = I;
return TIMER->CC[O0];

}

/% Define : TIMER_RES_DIVIDER

Divider to trade off timer resolution and total time that

can be measured.

Use lower values to increase resolution, but make sure
that overflow does not occur.

If there are issues with the return value overflowing,
increase this value.

x/

xliii

#define GETMYTIME(_t) (x _t=barebones_clock())

#define MYTIMEDIFF(fin ,ini) ((fin)—(ini))

#define TIMER_RES_DIVIDER 1

#define SAMPLE_TIME_IMPLEMENTATION 1

// 250kHz

#define CLOCKS_PER_SEC (250000)

#define EE_TICKS_PER_SEC (CLOCKS_PER_SEC / TIMER_RES_DIVIDER)

/%% Define Host specific (POSIX), or target specific global time
variables. =/
static CORETIMETYPE start_time_val , stop_time_val;

/% Function : start_time
This function will be called right before starting the
timed portion of the benchmark.

Implementation may be capturing a system timer (as
implemented in the example code)
or zeroing some system parameters — e.g. setting the cpu
clocks cycles to 0.
#/
void start_time (void) {
GETMYTIME(& start_time_val);
}

/% Function : stop_time
This function will be called right after ending the timed
portion of the benchmark.

Implementation may be capturing a system timer (as
implemented in the example code)
or other system parameters — e.g. reading the current
value of cpu cycles counter.
#/
void stop_time (void) {
GETMYTIME(& stop _time _val);
}

/% Function : get_time
Return an abstract "ticks” number that signifies time on
the system.

Actual value returned may be cpu cycles, milliseconds or
any other value,
as long as it can be converted to seconds by <time_in_secs
>.
This methodology is taken to accomodate any hardware or
simulated platform.
The sample implementation returns millisecs by default,
and the resolution is controlled by <TIMER_RES_DIVIDER>
#/
CORE_TICKS get_time (void) {

xliv

CORE_TICKS elapsed =(CORE_TICKS) (MYTIMEDIFF(stop_-time_val ,
start_time_val));
return elapsed;

}
/% Function : time_in_secs
Convert the value returned by get_time to seconds.
The <secs_ret> type is used to accomodate systems with no
support for floating point.
Default implementation implemented by the EE_TICKS_PER_SEC
macro above.
#/

secs_ret time_in_secs (CORE.TICKS ticks) {
secs_ret retval=((secs_ret)ticks) / (secs_ret)
EE_TICKS_PER_SEC;
return retval;

}

ee_u32 default_num_contexts=1;

void uart_init(veid) {
UART_GPIO_PORT—>DIRSET = (1 << UART_TX_PIN);
UART_GPIO_PORT—>OUTSET = (1 << UART_TX_PIN) ;
UART_GPIO_PORT->PIN_CNF[UART_RX_PIN] = (
(GPIO_PIN_CNF_PULL _Pullup <<
GPIO_PIN_CNF_PULL_Pos)
| (GPIO_PIN_CNF_DIR Input <<
GPIO_PIN_CNF_DIR_Pos)
| (GPIO_PIN_CNF_INPUT_Connect <<
GPIO_PIN_CNF_INPUT_Pos)
)

UART->BAUDRATE = (UARTE_.BAUDRATE_BAUDRATE_Baud115200 <<
UARTE_BAUDRATE_BAUDRATE_Pos) ;

UART->PSEL .RTS = UART_RTS_PIN;

UART—>PSEL . TXD UART_TX_PIN;

UART—>PSEL .RXD = UART_RX_PIN;

UART->PSEL.CTS = UART_CTS_PIN;

UART—>CONFIG = (UARTE_CONFIG_HWFC_Enabled <<
UARTE_CONFIG_HWFC_Pos) ;

}

/% Function : portable_init
Target specific initialization code
Test for some common mistakes .
%/
void portable_init(core_portable =p, int =xargc, char =xargv[])
{
#ifndef NO.CACHE
NRF_CACHE_S—>ENABLE = 1;

xlv

#endif

}

// UART init
uart_init () ;
ee_printf(”portable_init()\n”);
if (sizeof(ee_ptr_int) != sizeof(ee_u8 =x)) {
ee_printf ("ERROR! _Please._define_ee_ptr_int._to._a.
type-that_holds.a_pointer!\n”);
}
if (sizeof(ee_u32) != 4) {
ee_printf ("ERROR!_Please _define_ee_u32._to_.a_32b.
unsigned._type!\n”);

}

p—>portable_id=1;

TIMER->BITMODE = TIMER_BITMODE_BITMODE_32Bit;
TIMER—>PRESCALER = 6; // 0.25MHz
TIMER—>TASKS_START = 1;

/% Function : portable_fini

*/

Target specific final code

void portable_fini(core_portable xp)

{

}

p—>portable_id =0;

TIMER—>TASKS_STOP = 1;

while (1) {} // Spin-wait upon completion, this is the last
executed line in the test

// Keil printf support
int stdout_putchar(int ch) {

UART->ENABLE = UARTE_ENABLE_ENABLE_Enabled <<
UARTE_ENABLE_ENABLE_Pos ;

UART->TXD.PTR = (uint32_t)&ch;

UART->TXD.MAXCNT = 1;

UART->TASKS_STARTTX = 1;

while (!UART->EVENTS ENDTX); // Wait for completion

// Ack ENDTX event

UART->EVENTS_ENDTX 0;

UART->TASKS_STOPTX = 1;

while (!UART->EVENTS_TXSTOPPED) ;

UART->EVENTS_TXSTOPPED = 0;

UART->ENABLE = 0;

return ch;

xlvi

Listing 6.6: Coremark header file

/% File : core_portme.h =/

#include <nrf.h>
#include <stdint.h>

VES
Author : Shay Gal-On, EEMBC
Legal : TODO!

#/

/« Topic : Description

This file contains configuration constants required to
execute on different platforms

#/

#ifndef CORE_PORTME_H
#define CORE_PORTME_H

/% ok kR kR Rk Rk ok ks kkkk ko k %/
/% Data types and settings =/
/% sk okok ok ok sk sk ok ok ok sk ok ok kok sk kR sk k ok %/

/% Configuration : HAS_FLOAT

Define to 1 if the platform supports floating point.

#/
#ifndef HAS_FLOAT
#define HAS FLOAT 1
#endif
/% Configuration : HAS_TIME_H
Define to 1 if platform has the
and implementation of functions
#/
#ifndef HAS_TIME_H
#define HAS_TIMEH 0
#endif
/% Configuration : USE_CLOCK
Define to 1 if platform has the
and implementation of functions
%/
#ifndef USE_.CLOCK
#define USE.CLOCK 0
#endif
/% Configuration : HAS_STDIO
Define to 1 if the platform has
%/
#ifndef HAS_STDIO
#define HAS_STDIO 1
#include <stdio .h>
#endif
/% Configuration : HAS_PRINTF
Define to 1 if the platform has
printf function.

time.h header file ,
thereof .

time.h header file ,
thereof.

stdio . h.

stdio.h and implements the

xlvii

%/

#define HAS_PRINTF 0
#ifndef HAS_PRINTF
#define HAS_PRINTF 1
#endif

/% Definitions : COMPILER_-VERSION, COMPILER_FLAGS, MEM_LOCATION
Initialize these strings per platform

#/

#ifndef COMPILER_VERSION

#ifdef __GNUC__

#define COMPILER_VERSION “GCC”__VERSION__

#else

#define COMPILER_VERSION ”Please.put_.compiler_.version_here.(e.g..
gcco4.1)”

#endif

#endif

#ifndef COMPILER_FLAGS

#define COMPILER FLAGS ”-03” /% ”Please put compiler flags here (
e.g. —03)” =/

#endif

#ifndef MEM_LOCATION

#define MEM_LOCATION ”STACK”

#endif

/% Data Types
To avoid compiler issues, define the data types that need
ot be used for 8b, 16b and 32b in <core_portme.h>.

sImprtant + :
ee_ptr_int needs to be the data type used to hold pointers
, otherwise coremark may fail!!!
#/
typedef intl6_t ee_sl6;
typedef uintl6_t ee_ul6;
typedef int32_t ee_s32;
typedef double ee_f32;
typedef uint8_t ee_ul;
typedef uint32_t ee_u32;
typedef ee_u32 ee_ptr_int;
typedef size_t ee_size_t;

#ifndef NULL

#define NULL 0

#endif

/% align_mem

This macro is used to align an offset to point to a 32b

value. It is used in the Matrix algorithm to
initialize the input memory blocks.

#/

xlviii

#define align.mem(x) (void #)(4 + (((ee_ptr_int)(x) — 1) & 73))

/% Configuration : CORE_TICKS
Define type of return from the timing functions.
x/
#define CORETIMETYPE ee_u32
typedef ee_u32 CORE_TICKS;

/% Configuration : SEEDMETHOD
Defines method to get seed values that cannot be computed

at compile time.

Valid values
SEED ARG - from command line .
SEED_FUNC - from a system function.
SEED_VOLATILE — from volatile variables.
*/
#ifndef SEED-METHOD
#define SEEDMETHOD SEED_VOLATILE

#endif

/% Configuration : MEMMETHOD
Defines method to get a block of memry.

Valid values
MEM MALLOC - for platforms that implement malloc and have

malloc.h.
MEM STATIC — to use a static memory array.
MEM STACK - to allocate the data block on the stack (NYI).
%/
#ifndef MEMMETHOD
#define MEMMETHOD MEM STACK
#endif

/% Configuration : MULTITHREAD
Define for parallel execution

Valid values
1 — only one context (default).
N>1 — will execute N copies in parallel.

Note
If this flag is defined to more then 1, an implementation

for launching parallel contexts must be defined.

Two sample implementations are provided. Use <USE_PTHREAD>
or <USE_FORK> to enable them.

It is valid to have a different implementation of <
core_start_parallel> and <core_end_parallel> in <

xlix

core_portme.c>,

to fit a particular architecture.
#/
#ifndef MULTITHREAD
#define MULTITHREAD 1
#define USE_PTHREAD 0
#define USE_FORK 0
#define USE_SOCKET 0
#endif

/% Configuration : MAIN_.HAS_.NOARGC
Needed if platform does not support getting arguments to
main .

Valid values

0 — argc/argv to main is supported
l — argc/argv to main is not supported
Note

This flag only matters if MULTITHREAD has been defined to
a value greater then 1.
#/
#ifndef MAIN_HAS_NOARGC
#define MAIN_HASNOARGC 1
#endif

/% Configuration : MAIN_-HAS_.NORETURN
Needed if platform does not support returning a value from
main .

Valid values
0 — main returns an int, and return value will be 0.

1 — platform does not support returning a value from main
#/
#ifndef MAIN_HAS NORETURN
#define MAIN_HAS NORETURN 0
#endif

/% Variable : default_num_contexts

Not used for this simple port, must cintain the value 1.
#/
extern ee_u32 default_.num_contexts;

typedef struct COREPORTABLES {
ee_u8 portable_id;
} core_portable;

/% target specific init/fini =/
void portable_init(core_portable =#p, int =argc, char =argv([]);
void portable_fini(core_portable =p);

#if !defined (PROFILE_LRUN) && !defined (PERFORMANCERUN) && !defined

(VALIDATION_RUN)
#if (TOTAL_DATA_SIZE==1200)
#define PROFILE_RUN 1
#elif (TOTAL_DATA_SIZE==2000)
#define PERFORMANCERUN 1
#else
#define VALIDATIONRUN 1
#endif
#endif

// Keil printf support
int stdout_putchar(int ch);

void uart_init(void);

#define TIMER NRF_TIMERO_S
#define GPIO_P0O NRF_PO_S

// nRF5340-DK pin config

#define UART NRF_UARTEO_S
#define UART_GPIO_PORT NRF_PO_S
#define UART_TX_PIN 20

#define UART_RX_PIN 22

#define UART_CTS_PIN 21
#define UART_RTS_PIN 19

#define ee_printf printf

#endif /+ CORE_PORTMEH =/

Listing 6.7: Model C++ code

#include <iostream>
#include <iomanip>
#include <fstream>
#include <string>
#include <math.h>
#include <vector>
using namespace std;

#include “nlohmann/json.hpp”

using json = nlohmann::json;
#include “cache.h”

const unsigned int CACHELATENCY = 1;

class mem_map

{

public:
int get_latency (long unsigned address);
mem_map (json config);
“mem_map () ;

cachex local_cache;

int freq_-convert(int parent_freq, int child_freq,
child_cycles);

int check_contention () ;

string name;

int bus_clock_freq;

int latency_cycles;

double contention;

struct mem_map_child

{
bool cacheable;
uint32_t from;
uint32_t to;
mem_maps* child;
IE

vector<mem_map_child> address_range;

int

lii

/% %

*

#/

Note: Requires the entire address region of parents to be
represented in their children.

mem-map : : mem-map(json config)

{

/% %

*

%/

this —>name = config.at(”name”);

this—>bus_clock_freq

config.at(”bus_clock_freq”);

this—>latency_cycles = config.at(”latency_cycles”);

this—>contention = config.at(”contention”);
for (json& json_cache : config.at(”cache”))
{

for

this—>local_cache = new cache(
json_cache.at(”ways”),
json_cache.at(”sets”),
json_cache.at(”linewidth”),
json_cache.at(”duwidth”),
json_cache.at(”lookahead”)

)

(json& child_config : config.at(”address_range”))
mem-map * child = new mem-map(child_config.at(”child”));

mem_map_child member{
child_config.at(”cacheable”),
stoul ((string)child_config.at(”from”), nullptr, 16),
stoul ((string)child_config.at(”to”), nullptr, 16),
child

}s

this—>address_range . push_back (member) ;

% @brief Recursive destructor for the mem_map class. Prints

performance

numbers for caches.

mem-map : : ~mem-map ()

if (this—>local_cache)

liii

this—>local_cache—>print_performance () ;
delete this—>local_cache;

}

for (mem_map_child i : this—>address_range)

{
}

delete i.child;

VAR

% @brief Calculates and returns the additional latency cycles
which occur

% when a higher frequency parent accesses a lower frequency child

@param parent_freq Clock frequency of the parent.

@param child_freq Clock frequency of the child.

@return Additional latency cycles due to frequency conversion.

I S SR

TODO: Check if (ratiosxchild_cycles) + ratio + 1 + (rand() %
ratio) is more correct.
« TODO: Add compatibility for child_freq higher than parent_freq.
x/
int mem_map:: freq_convert(int parent_freq, int child_freq , int
child_cycles)
{

int ratio = parent_freq / child_freq;
if (ratio > 1)

{

}

else

{
}

return (ratio * child_cycles) + 1 + (rand() % ratio);

return child_cycles;

VEE:

%« @brief Traverses the memory map and calculates total delay of a
data lookup

* request.

*

% @param address Address of data lookup.

*

liv

%« @return Total delay of data lookup.
*
« TODO: Keep track of hits and misses.
®/
int mem map:: get_latency (long unsigned address)
{
if (this—>address_range.size())
{
for (mem_map_child& child : this—>address_range)
{
if ((address >= child.from) && (address < child.to))
{
if (this—>local_cache && child.cacheable)
{
if (this—>local_cache—->lookup(address, 0))
{
//cout << this—>name << ” hit” << "\n’;
return CACHELATENCY ;
}
}
int freq_cycles = freq_convert(this—>
bus_clock_freq , child.child-—>bus_clock_freq,
child.child—>get_latency (address));
//cout << freq-cycles << ’\n’;
return this—>latency_cycles + this—>
check_contention () + freq.cycles;

}
}

std ::cout << ’\n’ << ”Warning:_Address_not_found” << ’\n’
<< ’\n’;
return 0;

}

else

{

// add contention and frequency conversion
return this—>latency_cycles;

int mem_map:: check_contention ()

{

unsigned int cycles = 0;

if (this—->contention >= 1)
{

std ::cout << ’\n’ << ”Error:.invalid_contention_value_at.”
<< this—>name << ’\n’ << ’\n’;

while ((rand() % 100) < (int)(this—>contention = 100))

{
}

return cycles;

cycles ++;

int main ()
std :: cout << ”Start\n\n";
ifstream infofile;
infofile .open(”nrf53app.txt”);
json infol;
infofile >> infol;

mem_map the_map(infol);

json tmp2;
string tmp;

unsigned int 1;

string line;

int lookupcycles = 0;

//ifstream myfile(” gmatl0_10f. txt”);
//ifstream myfile(” gdb_coremark_nocachef. txt”);

ifstream myfile (”gmatl100_100f_fake2.txt”);

while (getline (myfile, line))

{
I = stoul(line, nullptr, 16);
int cycles = the_map.get_latency(1);
lookupcycles += cycles;

}

myfile.close () ;

”

std :: cout << "Cycles=" << lookupcycles << ’\n’ << ’\n’;

return 0;

1vi

Listing 6.8: Cache model code

#include <stdio .h>
#include <math.h>
#include <stdlib .h>
#include <vector>

class cache

{

public:

private:

+

cache(int ways, int sets, unsigned int linewidth, int
duwidth, int lookahead = 0);

void print_state ()

int lookup(unsigned int addr, int verbose = 0);

void print_performance();

vector<vector<vector<imt>>> data;
int ways;

int sets;

unsigned int linewidth;

int lookahead;
vector<vector<vector<int>>> duvalid;
vector<vector<int>> tag;
vector<vector<int>> lvalid;
vector<int> mru;

int dubits;

int lbits;

int sbits;

unsigned int hits;
unsigned int misses;

cache ::cache(int ways, int sets, unsigned int linewidth , int
duwidth , int lookahead)

{

this —>ways = ways;

this—>sets = sets;

this—>linewidth = linewidth;

this —>lookahead lookahead;

this—>dubits = (int) ceil(log2(duwidth));

this—>I1bits = (int) ceil(log2(linewidth)) + this—>dubits;

this—>sbits = (int) ceil (log2(sets)) + this—>Ibits;

this—>duvalid = vector<vector<vector<int>>> (ways, vector<
vector<int >>(sets , vector<int>(linewidth, 0)));

this—>tag = vector<vector<int>>(ways, vector<int>(sets, 0)
)

this—>1valid = vector<vector<int>>(ways, vector<int>(sets,

Ivii

}

0))3

this—>mru = vector<int >(sets, 0);

this—>data = vector<vector<vector<int>>>(ways, vector<
vector<int >>(sets , vector<int >(linewidth, 0)));

this—>hits = 0;
this—>misses 0;

void cache:: print_state ()

{

}

for (int i = this-—>sets - 1; i > -1; i—--)

{

printf (”hello”);

void cache:: print_performance ()

{
}

printf (”Hits=%d, -Misses=%d\n”, hits, misses);

int cache::lookup(unsigned int addr, int verbose)

{

unsigned int tagaddr = addr >> this—>sbits;

unsigned int setidx = (addr & (OxFFFFFFFF >> (32 - this—>

sbits))) >> this—>I1bits;
unsigned int duidx = (addr & (OxFFFFFFFF >> (32 - this—>
Ibits))) >> this—>dubits;
int lhit = -1;
int duhit = 0;
if (verbose)
{
printf (”Addr=%d, .Tag=%d.Set=%d , .DU=%d\n”, addr,
tagaddr , setidx , duidx);
}

for (int i = 0; i < this-—>ways; i++)

{

if (this—>Ivalid[i][setidx] && (tagaddr == this—>

tag[i][setidx]))
{

lhit = 1i;
if (this—>duvalid[i][setidx][duidx])
{

duhit = 1;
this—>mru[setidx] = i;

else

Iviii

this—>duvalid[i][setidx][duidx]

this —>mru|[

repl);

L;
}
break;
}
}
if (lhit < 0)
{
int repl = rand() % (this—->ways — 1);
while ((this—>ways > 1) && (repl ==
setidx]))
{
repl = rand() % (this—>ways);
}
this—>tag[repl][setidx] = tagaddr;
this—>1Ivalid[repl][setidx] = 1;
for (unsigned int i = 0; i < this—>linewidth;
{
this—>duvalid[repl][setidx][i] = O;
}
for (unsigned int i = duidx; i < (duidx + this—>
lookahead +1); i++)
{
if (i < this—>linewidth)
{
this—>duvalid[repl][setidx J[i] =
1
}
}
this—>mru[setidx] = repl;
if (verbose)
{
printf (”Replacing .way.%d” ,
}
I
if (duhit)
{
hits ++;
}
else
{
misses ++;
}

i++)

lix

if (verbose)

{ printf (”1hit=%d, _duhit=%d",
if (verbose > 1)
{
this—>print_state () ;
}
}

return (duhit);

lhit ,

duhit);

1x

Listing 6.9: nRF5340 JSON file

”name” : ”"CPU_BUS”,
“bus_clock_freq” : 64,
”latency-cycles” : 1,
”contention” : O,
”cache” : [{

“ways” 1 2,

“sets” : 256,

”linewidth” : 4,
”duwidth” : 32,
”lookahead” : 0

M

“address_range” : [{
”cacheable” . true ,
”from” : ”0x00000000”,
”to” D POXIEffffeqfeef”
”child” : {
”name” . "FLASH_BUS” ,
“bus_clock_freq” : 64,
”latency_cycles” : 1,
”contention” : O,
”cache” : [],
”address_range” : [{
”cacheable” . true ,
”from” : 70x00000000”,
”to” c POXIEffffff”
child” @ {
“name” ”
FLASH.MEM” ,
“bus_clock_freq” : 64,
”latency_cycles” : 1,
”contention” : 0,
”cache” : [],
”address_range” : []

H
}
oA

”cacheable” . false ,

”from” : ”0x20000000”,

”to” D POx3ffEfffff”

child” @ {
”name” : "RAMBUS” ,
“bus_clock_freq” : 64,
”latency-cycles” : O,
”contention” : 0,
”cache” : [],
”address_range” : [{

Ixi

”cacheable”

false ,

”from” ”0x200000007,
”to” : 70x2003ffff”
”child” {
”name” ”
RAMMEM1” ,
“bus_clock_freq” 64,
”latency_cycles” : O,
”contention” 0,
”cache” [1,
“address_range” : []
}
A
”cacheable” false ,
”from” ”0x20040000",
”to” POx3fffffff”
”child” {
”name” ”
“bus_clock_freq” 64,
”latency-cycles” 3,
”contention” 0,
”cache” [1,
”address_range” : []
}
H
}
A
”cacheable” false ,
”from” ”0x40000000”,
”to” "Ox4fffffff”,
child” : {
”name” "PERIPH_BUS_NS” ,
“bus_clock_freq” 16,
”latency_cycles” 1,
”contention” 0.6,
”cache” [1,
”address_range” [{
”cacheable” false ,
”from” ”0x40000000”,
”to” D POx4fffEfff 1
”child” {
“name” 7
PERIPHERAL_NS” ,
“bus_clock_freq” 16,
”latency_cycles” 10,
”contention” 0,
”cache” [1,
“address_range” : []
}

Ixii

H
}
A
”cacheable” . false ,
”from” : ”0x50000000”,
”to” D POXSEfffffef”
“child” : {
”name” : ”"PERIPH_BUS_S”,
“bus_clock_freq” : 16,
”latency_-cycles” : 1,
”contention” : 0.6,
”cache” : [],
“address_range” : [{
”cacheable” . false ,
”from” : 70x50000000”,

”

to” "OxSEEfffff”
“child” : {
”name” 7
PERIPHERAL_S” ,
“bus_clock_freq” : 16,
”latency-cycles” : 10,
“contention” : 0,
”cache” : [],
”address_range” : []
}
H
}
A
”cacheable” . false ,
“from” : ”0x60000000”,
”to” D POxdfffffff”
child” : {
”name” . "RAM_DEV_BUS” ,
“bus_clock_freq” : 64,
”latency_cycles” : 1,
”contention” : 0.6,
”cache” : [],
”address_range” : [{
”cacheable” . false ,
“from” : ”0x60000000”,
”to” D POxdfffffff”
child” @ {
“name” : "RAM.DEV

”»

“bus_clock_freq” : 64,
”latency_cycles” : 10,
”contention” : O,
”cache” : [],
“address_range” : []

Ixiii

}H

}
FoA
”cacheable” . false ,
”from” : “0xE0000000”,
”to” : "OxEOQOfffff”,
“child” : {
”name” . "PRIVATE_PERIPHERAL_BUS” ,
“bus_clock_freq” : 64,
”latency_-cycles” : 1,
”contention” : 0.6,
”cache” : [],
“address_range” : [{
”cacheable” . false ,
”from” : “0xE0000000”,
”to” "O0xEOQOfffff”,
“child” : {
”name” 7
PRIVATE_PERIPHERAL” ,
“bus_clock_freq” : 64,
”latency-cycles” : 10,
“contention” : 0,
”cache” : [],
”address_range” : []
}
}H
}
H

Ixiv

0x466
0x46a
0x46¢
0x46e
0x470
0x472
0x474
0x478
0x47a
0x47c¢
0x000004c0
0x47e
0x482
0x000004c6
0x484
0x488
0x20000e44
0x48a
0x48e
0x20000e44

Listing 6.10: Example List of Memory Accesses

Ixv

Listing 6.11: Instruction Address Decoder python code

#lenv python3
import sys
import time

print(__name__)
if __name__ != ”__main__":
Assume we’re running from GDB if this file is not the
executable
import gdb
class GDBCommandDecode (gdb .Command) :
"7 [Inject this script as a callable command in the GDB
prompt”””

>

def __init__ (self):
”””Creates new command ’get—addresses’ in the GDB
prompt that calls a custom function from this file
super (GDBCommandDecode, self).__init__ (" get—
addresses”, gdb.COMMANDDATA)

def invoke (self, arg, from_tty):
decode_and_print(arg)

class ArmlInstructionSimple () :

3393 9

Simplified ARM/Thumb instruction class
16—bit T32 relevant encodings for memory access instructions,
taken from the ARMvS ISA manual:
[15:10]
— 0101xx: load/store reg offset
— base address in reg Rn [5:3], offset in reg Rm [8:6]
— 0llxxx: load/store word/byte imm. offset
—-0x: word — base address in reg Rn [5:3], immediate offset
{[10:6],2°b00}
—Ix: byte — base address in reg Rn [5:3], immediate offset
[10:6]
- 1000xx: load/store halfword imm. offset
— base address in reg Rn [5:3], immediate offset:
{[10:6],1 b0}
— 1001xx: load/store SP—relative
— base address in reg SP, immediate offset: {[7:0],2°b00}
— 1100xx: load/store multiple
— Ix: load - base address in reg Rn [10:8], one 32-bit
access per bit in the reg_list [7:0], incrementing by
+4 for each
— Ox: store — base address in reg Rn [10:8], one 32-bit
access per bit in the reg_list [7:0], incrementing by

Ixvi

+4 for each
— 01001x: LDR (literal)
— loads PC + immediate offset: {[7:0],2 b00}

3393 3

c_INSTR_LEN = 16

def get_bits(self, high, low=None):
Small helper function to get a slice of bits (or single
bit) in a more familiar bit ordering
if low is None:
Case of single bit
low = high
if high < 0 or high > (self.c.INSTR.LLEN - 1) or low < 0 or
low > (self.c.INSTR_.LEN - 1):
raise ValueError(”Only._<=.32_bit_instruction._encodings
~are_supported !\n\thigh:.{:0d},.low:_.{:0d}”.format
(high, low))
elif low > high:
raise ValueError(”low.({:0d})_must_be_<=_high.({:0d})!
”.format (low, high))

return self.bitstring [(self.c INSTR.LEN-1)-high:self.
c_INSTR_LEN-low]

def __init__(self, bitstring):
if len(bitstring) > ArmlInstructionSimple.c_INSTR_LEN:
print(”Warning: Bitstring ({:0d} bits) is longer than
c_INSTR_LEN ({:0d}), expect errors!”.format(len(bitstring),
ArmiInstructionSimple . c_INSTR_LEN))
self.bitstring = bitstring

¢ REG.NAMES = [

0,
rl’,
127,
r3’,
147,
r5°7,
16,
r77,
187,
19”7,
r10°,
rll°,
r127,
sp,
“1r 7,
pc

Ixvii

def gdb_read_reg(reg_num):

»7” Placeholder function for hooking into GDB and returning
the register contents 7”7

if reg_.num > 15 or reg.num < O:
raise IndexError(”Register.number.{:0d}_out_of._range.(must

-be_between.O_and._.15)!”.format(reg_.num))

return int(gdb.newest_frame ().read_register (

ArmlInstructionSimple .c. REGINAMES[reg_num]))

def decode_and_print(arg):
77 time . sleep (0.05)77”

try:
if isinstance(arg, int):
instr_intval = arg
else:
instr_intval = int(arg,16)
bitstring = ”{:016b}”.format(instr_intval)

for address in get_load_store_addresses (
ArmlInstructionSimple (bitstring)):
print ("=>_0x{:08x}.(data_memory._access)”.format(

address))
except ValueError as ve:

print (”Failed _to_parse._value_as_hexadecimal .number:.” +
arg)

print(ve)

def get_load_store_addresses (word):
”7” word is a 16-bit string , returns a list of addresses this
instruction causes acceses to, empty if none 7"
TODO: also add decoding to determine if it’s a load or a
store, because only loads affect the cache?

access_list = []
if word.get_bits(15,12) == *0101°: # Load/store, reg offset
base_address_reg = int(word. get_bits (5,3), 2)
offset_reg = int(word. get_bits (8,6), 2)
print(”Load/store, reg offset: base_address_reg = {:0d},

offset_reg = {:0d}”.format(base_address_reg, offset_reg))
access_list.append(gdb_read_reg(base_address_reg) +
gdb_read_reg(offset_reg))
elif word. get_bits (15,13) == °011°: # Load/store, word/byte,
imm offset
base_address_reg int (word. get_bits (5,3), 2)
offset_bits word. get_bits (10,6)
if word. get_bits(12) == ’0°: # Word access, scale
immediate with 4
offset_bits += *00°

Ixviii

print(”Load/store word/byte, imm offset: base_address_reg
= {:0d}, offset_bits = {:s}”.format(base_address_reg,
offset_bits))

access_list.append(gdb_read_reg(base_address_reg) + int(
offset_bits , 2))
elif word. get_bits(15,12) == 1000’ : # Load/store, halfword,
imm offset
base_address_reg int (word. get_bits (5,3), 2)
offset_bits word. get_bits (10,6) + ’0°

print(”Load/store halfword, imm offset: base_address_reg
= {:0d}, offset_bits = {:s}”.format(base_address_reg ,
offset_bits))

access_list.append(gdb_read_reg(base_address_reg) + int(
offset_bits , 2))

elif word. get_bits (15,12) == 1001’ : # Load/store, SP-relative
base_address_reg = 13 # RI3 is stack pointer
offset_bits = word. get_bits (7,0) + °00°
print(”Load/store, SP relative: offset_bits = {:s}”.

format(offset_bits))
access_list.append(gdb_read_reg(base_address_reg) + int(
offset_bits , 2))

elif word. get_bits(15,12) == 1100°: # Load/store multiple
base_address_reg = int(word. get_bits (10,8), 2)
base_address = gdb_read_reg(base_address_reg)
reg_list = word. get_bits (7,0)
print(”Load/store multiple: base_address_reg = {:0d},

reg_list = {:s}”.format(base_address_reg, reg-list))
for bit in reg_list:

if bit == ’0°:
print(” Bit was 0, no memory access...”)
if bit == ’1°: # was elif
print(” Bit was 1, memory access and increment

address by 4!”)
access_list.append(base_address)
base_address += 4

elif word. get_bits(15,11) == 01001’ : # LDR (load literal) -
PC + immediate
base_address_reg = 15 # RI5 is PC
offset_bits = word. get_bits (7,0) + °00°
print(”Load/store, PC relative: offset_bits = {:s}".

format(offset_bits))
access_list.append(gdb_read_reg(base_address_reg) + int(
offset_bits , 2))
else: # Unsupported instruction or not a load/store
print(”Not a supported load/store instruction: {:s}”.
format(word. bitstring))
return access_list

if __name__ == ”__main__":
try:

Ixix

if True:

Try to parse the string as a hexadecimal number,

representing an Arm instruction

arg = sys.argv[1]

instr_intval = int(arg,16)

bitstring = ”{:016b}”.format(instr_intval)

print(”Got instruction word {:s}, converted to bitstring
{:s}”.format(arg, bitstring))

print(”Access_list:”, get_load_store_addresses (
ArmlinstructionSimple (bitstring)))
except ValueError as ve:

print(” Failed to parse value as hexadecimal number: ~ +
arg)

print (ve)

else:

Register the command in GDB
GDBCommandDecode ()

Ixx

Listing 6.12: GDB commands
target remote localhost:2331
py import sys
py sys.path.append(’/home/user’)
py import decode_addresses
monitor reset
break main.c:21
continue
set logging on
set height 0
while ($pc != 0x494)
x/1 $pc
set $val = x(uintl6_t =)$pc
py decode_addresses.decode_and_print(int(gdb.execute (" output_$val”
, to_string=True).strip(’”’).split()[0]))
si
end

Ixxi

Listing 6.13: Python Script for Adding Missing Data Accesses

inF = open(”gmat100_.100f_fakedata.txt”, "r”)
outF = open(”gmatl00_100f_fake3.txt”, "w”)

counterInt = int(”0x00004e38”, 16)
for 1 in inF:
outF . write (1)
if 1 == 70x47c\n”:
outF.write(’0x’ + hex(counterInt)[2:]. zfill (8))
outF . write (”\n”)
if 1 == 70x482\n":
outF.write(’0x’ + hex(counterInt)[2:]. zfill (8))
outF . write (”\n”)
counterlnt += 4
outF . close ()
inF.close ()

Ixxii

@ NTNU

Norwegian University of SEMICONDUCTOR
Science and Technology

NORDIC

	Abstract
	Sammendrag
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Theory
	Cache
	Coremark
	JSON

	Methodology
	Materials
	The nRF5340 Application Core
	Cache Model

	Modelling the Architecture
	The Contents of a Node
	Building the Node Tree

	Simulating a Memory Access
	Bus Contention
	Frequency Conversion

	The Application
	Testing Methodology
	Obtaining Input Data
	nRF5340 Application Core JSON File
	Tests

	Results
	Coremark
	Sequential Matrix Accesses
	Observed Issues
	Missing Data Accesses
	Wrong Tag Length
	Too Many Instruction Cache Lookups

	Improvements

	Discussion
	Coremark
	Sequential Matrix Accesses
	Improvements

	Conclusion
	Bibliography
	Appendix

