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Abstract: Gradient-domain image processing is a technique where, instead of operating directly
on the image pixel values, the gradient of the image is computed and processed. The resulting
image is obtained by reintegrating the processed gradient. This is normally done by solving the
Poisson equation, most often by means of a finite difference implementation of the gradient descent
method. However, this technique in some cases lead to severe haloing artefacts in the resulting
image. To deal with this, local or anisotropic diffusion has been added as an ad hoc modification of
the Poisson equation. In this paper, we show that a version of anisotropic gradient-domain image
processing can result from a more general variational formulation through the minimisation of a
functional formulated in terms of the eigenvalues of the structure tensor of the differences between
the processed gradient and the gradient of the original image. Example applications of linear and
nonlinear local contrast enhancement and colour image Daltonisation illustrate the behaviour of
the method.

Keywords: variational methods; anisotropic diffusion; gradient-domain image processing; local
contrast enhancement

1. Introduction and Background

In 2002, Fattal et al. [1] introduced the method of gradient-domain high-dynamic-
range compression. The technique consisted of first computing the gradient field ∇u0 of a
high-dynamic-range image u0 : Ω→ C, where Ω ⊂ R2 is the image domain and C ⊂ R3 is
the colour space. The gradient was then rescaled nonlinearly as G = f (∇u0). The resulting
tensor field G, which is no longer necessarily a gradient field, was then reintegrated by
solving the Poisson equation

∇2u = ∇ ·G (1)

to obtain the compressed image. This is often solved by a gradient descent,

∂u
∂t

= ∇2u−∇ ·G (2)

The Poisson equations can be obtained through a variational approach by minimising
the functional

E(u) =
1
2

∫
Ω
||∇u−G||2F dΩ =

∫
Ω
L(u,∇u) dΩ (3)

where Ω ⊂ R2 is the image domain and the index F indicates the Frobenius norm taken
over both image and colour coordinates. This is done by solving the corresponding
Euler–Lagrange equations,

∇ ·
(

∂L
∂∇u

)
− ∂L

∂u
= 0 (4)

leading to Equation (1).
Perez et al. [2] soon generalised this into the technique called Poisson Image Editing,

and showed that it allowed for a broad range of image processing applications such as
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image inpainting, seamless cloning, texture transfer, feature exchange, insertion of trans-
parent objects through gradient mixing, texture flattening, local illumination correction,
and seamless tiling. All this is obtained by various processing of the gradient or gradients
of the original images to obtain the tensor field G used in Equation (1).

One significant challenge of Poisson Image Editing is that it tends to produce visual
haloing or blurring artefacts in the reconstructed images. The case of G = 0 in Equation (1)
is often used for image denoising. For greyscale images, in order to stop the diffusion at
edges, and thus reduce the blurring, Perona and Malik [3] introduced an image-dependent,
local, nonlinear diffusion method described by the equation

∂u
∂t

= ∇ · (D(s)∇u) (5)

where s = |∇u|2 describing the image ‘structure’ has been introduced. (Despite the fact
that the method is isotropic, but nonlinear and local, the authors termed it ‘anisotropic
diffusion’ in the original publication [3]. This has caused considerable confusion in the
terminology in the following literature.) They proposed two different diffusion coefficients
with different properties,

D(s) = exp
(
− s

K2

)
(6)

D(s) =
1

1 + s/K2 (7)

Instead of designing partial differential equations (PDEs) directly, Rudin et al. [4] used
a variational approach like Equation (3) and introduced the concept of total variation. They
showed that the minimisation of the functional

E =
∫

Ω
|∇u| dΩ (8)

leads to the PDE
∂u
∂t

= ∇ ·
(
∇u
|∇u|

)
(9)

Comparing with the Perona–Malik diffusion, Equation (5), we see that it can be written
in the same form choosing

D(s) =
1√

s
(10)

For total variation and Perona–Malik diffusion, the extension to colour images is
not that straight forward. Blomgren and Chan [5] introduced the concept of colour total
variation by using a functional as an `2 norm of the functionals in Equation (8) for each of
the colour channels resulting in

E =
√

∑
i

E2
i (11)

where Ei is the total variation for each colour channel according to Equation (8).
Later approaches have been based on the structure tensor by Di Zenzo [6] and Bigun

and Granlund [7], with components

S = ∇u · ∇u (12)

where the dot product is taken over the colour coordinates. Sapiro and Ringach [8] proposed
to use the eigenvalues

λ± =
1
2

(
S11 + S22 ±

√
(S11 − S22)2 + 4S2

12

)
(13)



J. Imaging 2021, 7, 196 3 of 10

and the corresponding eigenvectors θ± of the structure tensor as a basis for constructing
the diffusion equations. In terms of these eigenvalues, an alternative to the colour total
variation by Blomgren and Chan [5] can be obtained by the functional

E =
∫

Ω

√
λ+ + λ− dΩ =

∫
Ω

√
s dΩ (14)

For greyscale images, where λ+ = |∇u|2 and λ− = 0, this reduces to total variation.
For colour images, the corresponding Euler–Lagrange equations become

∂u
∂t

= ∇ ·
(
∇u
||∇u||F

)
(15)

which again is on the form of Equation (5) with D(s) = 1/
√

s = 1/
√

λ+ + λ− =
1/
√

S11 + S22 = 1/||∇u||F. Notice the coupling between the colour channels introduced
by the sum in the denominator of Equation (15).

Tschumperlé and Deriche [9] extended this approach to a anisotropic diffusion by
introducing the general Lagrangian density ψ(λ+, λ−) in the functional

E =
∫

Ω
ψ(λ+, λ−) dΩ (16)

The corresponding Euler–Lagrange equations are

∂u
∂t

= ∇ · (D · ∇u) (17)

where D is the diffusion tensor

D = 2
(

∂ψ

∂λ+
θ+θT

+ +
∂ψ

∂λ−
θ−θT

−

)
(18)

where θ± are the eigenvectors of the structure sensor S. It should be noted that this actually
encompasses all previously presented diffusion methods as follows:

ψ(λ+, λ−) =
√

λ+ + λ− (19)

gives the solution of Sapiro and Ringach [8] for colour images and total variation of
Rudin et al. [4] for greyscale images,

ψ(λ+, λ−) = −K2 exp(−s/K2) and (20)

ψ(λ+, λ−) = K2 ln(1 + s/K2) (21)

give the two equations of Perona and Malik [3], and

ψ(λ+, λ−) = s/2 (22)

gives the classical linear diffusion, Equation (2).
Choosing

ψ(λ+, λ−) = φ(λ+ + λ−) = φ(s) (23)

in general leads to isotropic equations, since then ∂ψ/∂λ+ = ∂ψ/∂λ− = φ′(s) and the
diffusion tensor in Equation (18) reduces to the scalar diffusion coefficient D = 2φ′(s).
With

ψ(λ+, λ−) = φ+(λ+) + φ−(λ−), (24)

the diffusion in the mutually orthogonal directions of maximal and minimal change can be
controlled independently, like used by, e.g., Farup [10].



J. Imaging 2021, 7, 196 4 of 10

For other application of Poission image editing, i.e., applications of Equation (2) where
G 6= 0, extensions to anisotropic and edge-preserving methods have been obtained by ad
hoc modifications of Equation (2). This has been done for e.g., colour gamut mapping [11],
colour image demosaicing [12], colour-to-greyscale conversion [13], and colour image
Daltonisation [10]. Common to these is that they solve an equation on the form

∂u
∂t

= ∇ · (D · (∇u−G)) (25)

where D is a diffusion tensor constructed from the structure tensor like, e.g., Equation (18).
However, a unifying variational formulation of anisotropic gradient-domain image

processing has not yet been given. In this paper, we provide this by introducing the
difference structure tensor based on the difference of the original image gradient ∇u and
the tensor field G and follow the process of Tschumperlé and Deriche [9]. The resulting
PDE is similar, but not identical, to the ones obtained by the ad hoc modification of Poisson
Image editing, Equation (25). For the applications to linear and nonlinear local contrast
enhancement and colour image Daltonisation, we show that the two approaches gives very
similar results.

2. Variational Anisotropic Gradient-Domain Formulation

The variational formulation of anisotropic diffusion by Tschumperlé and Deriche [9]
was based on the structure tensor S, Equation (18). In analogy, we introduce the difference
structure tensor,

S′ = (∇u−G) · (∇u−G) (26)

with eigenvalues

λ′± =
1
2

(
S′11 + S′22 ±

√
(S′11 − S′22)

2 + 4S′12
2
)

(27)

and corresponding eigenvectors θ′±.
In analogy with Tschumperlé and Deriche [9], we define the functional in terms of the

eigenvalues of this difference structure tensor,

E =
∫

Ω
ψ(λ′+, λ′−) dΩ (28)

The corresponding Euler–Lagrange equations are

∇ ·
(

∂ψ

∂∇u

)
− ∂ψ

∂u
= 0 (29)

It is clear that ∂ψ/∂u = 0. To derive the explicit form of the Euler–Lagrange equations,
we will need to look at the individual components. Using Greek indices for the colour
coordinates, Latin indices for the spatial coordinates, letting a comma denote partial
differentiation with respect to the following coordinates, and using Einstein’s convention
of summing over repeated indices, the expression within the parenthesis in the first term
can be written

∂ψ

∂uρ
,i
=

∂ψ

∂λ′p

∂λ′p
∂S′kl

∂S′kl

∂uρ
,i

(30)

where the index p is used for summing over the two eigenvalues of the difference structure
tensor. The first factor, ∂ψ/∂λ′p, can be computed directly since the Lagrangian ψ is defined
explicitly in terms of the eigenvalues of the difference structure tensor, and will thus depend
on the design of the Lagrangian density.



J. Imaging 2021, 7, 196 5 of 10

The second factor can be computed implicitly following the method of Tschumperlé
and Deriche [9] as follows:

δk
i δl

j =
∂S′kl
∂S′ij

=
∂λ′p
∂S′ij

θ′pkθ′pl + λ′p
∂θ′pk

∂S′ij
θ′pl + λ′pθ′pk

∂θ′pl

∂S′ij

(31)

Multiplying with θ′mk and θ′ml , summing over the k and l indexes, using that θ′mkθ′pk =

δpm, and θ′pk(∂θ′pk/∂S′ij) = 0, the latter due to the orthonormality of the θ′s gives

∂λp

∂S′kl
= θ′pkθ′pl (32)

(no sum).
The last term, ∂S′kl/∂uρ

,i deviates from the derivation of Tschumperlé and Deriche due
to the definition of the difference structure tensor, Equation (26),

∂S′kl

∂uρ
,i
= δik(u

ρ
,l − vρ

l ) + δil(u
ρ
,k − vρ

k) (33)

Inserted into Equation (30) and exploiting the symmetry of Equation (32) gives

∂ψ

∂uρ
,k
= 2

∂ψ

∂λ′p
θ′pkθ′pl(u

ρ
,k − vρ

k) = D′kl(u
ρ
,k − vρ

k) (34)

where the diffusion tensor
D′kl = 2

∂ψ

∂λ′p
θ′pkθ′pl (35)

has been defined.
Inserting this into Equation (29) and solving by gradient descent gives the varia-

tional anisotropic gradient-domain image processing PDE (switching back to the regular
vector notation):

∂u
∂t

= ∇ ·
(
D′ · (∇u−G)

)
, where D′ = 2

(
∂ψ

∂λ′+
θ′+θ′+

T
+

∂ψ

∂λ′−
θ′−θ′−

T
)

(36)

The form of this equation is similar to the one based on the ad hoc approach,
Equation (25). The only difference is that, in this case, the diffusion tensor is computed
from the difference structure tensor, and not the common structure tensor.

3. Results and Discussion

In order to demonstrate the usefulness of the proposed method, we apply it to three ex-
ample problems: linear local contrast enhancement, nonlinear local contrast enhancement,
and colour image Daltonisation.

3.1. Implementation

The algorithm represented by Equation (36) is implemented using the finite difference
method (FDM). For the time derivative, the explicit (forward) Euler method is used. For the
spatial derivatives, forward differences are used for the ∇u and G terms, and backward
difference is used for the divergence in order to balance the overall resulting numerical
scheme. The resulting code is available online. https://github.com/ifarup/variational-
anisotropic-gradient-domain (accessed on 28 September 2021)
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A selection of colourful and detailed test images was downloaded from Pixnio.
https://pixnio.com (accessed on 28 September 2021). The images are shown in Figure 1.
All images are available under the CC0 licence, https://creativecommons.org/share-your-
work/public-domain/cc0/ (accessed on 28 September 2021).

Figure 1. Test images from Pixnio. All images are available under the CC0 licence.

3.2. The Diffusion Tensor

The purpose of the diffusion tensor is to direct the diffusion of the image information.
The idea is that the diffusion should be avoided across the edges of the image, but allowed
to some degree along the edges. The expression for the actual diffusion tensor is given
in Equation (36). A choice has to be made for the function ψ. Here, we will use the
Perona–Malik motivated functional

ψ(λ′+, λ′−) = K2 ln(1 + λ′+/K2) + K2 ln(1 + λ′−/K2) (37)

The resulting diffusion coefficients along and across the edges, represented by 2∂ψ′/∂λ′+
and 2∂ψ′/∂λ′−, respectively, are shown for one of the test images in Figure 2, where it is
easily seen how the edges influence the directional diffusion.

Figure 2. The diffusion coefficients 2∂ψ′/∂λ′+ (left) and 2∂ψ′/∂λ′− (right) for one of the test images.

3.3. Linear Local Contrast Enhancement

Local contrast enhancement in the gradient domain is a technique that is known to be
particularly prone to haloing problems. First, we follow a simple approach and define the
contrast enhancement as a scalar multiplication of the original image gradient

G = a∇u (38)

where a > 1.
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We compare this with the standard Poisson method, Equation (2), and the ad hoc
addition with the diffusion tensor derived from the structure tensor instead of the difference
structure tensor, Equation (18). We use a = 2 in order to obtain a quite extreme contrast
enhancement, and use with K = 10� 3 for the variational approach based on the difference
structure tensor, and K = 3 � 10� 4 for the ad hoc solution based on the standard structure
tensor. Different constants are needed since the scaling of the structure tensor will be
different in the two cases. Example results are shown in Figure 3. We can see that, with this
choice of K, the results of the variational and the ad hoc approaches are indistinguishable,
whereas the Poisson solutions exhibit severe haloing artefacts, as expected.

Figure 3. Example results for linear contrast enhancement with a = 2. Original images in the �rst
column, Poisson solution in the second, ad hoc anisotropic diffusion with K = 10� 3 in the third,
and the proposed variational with K = 3 � 10� 4 in the fourth. All images are available under the
CC0 licence.

3.4. Nonlinear Local Contrast Enhancement

A somewhat more sophisticated contrast enhancement can be achieved by using the
nonlinear gamma compression in the gradient domain,

G = sign(r u)jr u jg with 0 < g < 1 (39)

computed element-wise. Solving as for the linear case with the same choice of parameters as
above gives the results shown in Figure 4. We can observe the indistinguishable behaviour
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between the variational approach and the ad hoc solution, and that the haloing problem of
the Poisson solution is solved.

Figure 4. Example results for gamma contrast enhancement with g = 0.7. Original images in the
�rst column, Poisson solution in the second, ad hoc anisotropic diffusion with K = 10� 3 in the third,
and the proposed variational with K = 0.3� 10� 4 in the fourth. All images are available under the
CC0 licence.

3.5. Colour Image Daltonisation

Colour image Daltonisation denotes the recolouring of colour images to increase detail
visibility for colour-de�cient observers. It is a problem that is known to be particularly
prone to the loss of �ner image details and textures. It has previously been shown that
this process can be performed in the gradient-domain [ 10] by constructing a gradient �eld
based on the original image as

G = r u0 + ( r u0 � ed)ec (40)

where u0 is the original colour image, ed is the �rst principal component of the difference
between the original image and a colour-vision-de�ciency simulation the same image,
and ec is a unit vector of maximum chromatic visibility for the colour-vision-de�cient
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observer (in practice, a vector orthogonal to both the lightness axis and ed). Figure 5
shows the resulting daltonised images (left) and the corresponding colour-vision-de�cient
simulations (right). We observe that the variational approach solves the same problem
of lost detail visibility as the ad hoc anisotropic solution, and again gives results that
are indistinguishable.

Figure 5. Example of colour image Daltonisation by the proposed method. Colour images in the
left column, and corresponding colour–vision–de�ciency simulations in the right. Top to bottom:
original image, simple global Daltonisation, ad hoc anisotropic gradient domain Daltonisation, and
the proposed variational gradient-domain solution.
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4. Conclusions

In this paper, a variational formulation of anisotropic gradient-domain image process-
ing has been introduced. It generalises previous formulations of anisotropic processing
and also introduces the difference structure tensor. The resulting PDE deviates somewhat
from the one usually found when anisotropic diffusion is added in and ad hoc manner
to do gradient-domain image processing. The difference is that the diffusion tensor is
based on the difference structure tensor rather than the conventional structure tensor. The
example applications of linear and nonlinear local contrast enhancement and colour image
Daltonisation illustrate that the behaviour is very similar to what is obtained using the
conventional approach. This indicates that the proposed variational formulation is well
suited for rigorous derivations of anisotropic gradient-domain image processing for a
broad range of applications.
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