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Abstract: The shipping industry is striving to reduce its negative environmental footprint
and become more energy-efficient. In order to achieve this, undergoing the transition towards
innovative engine and propulsion systems is attracting considerable attention. However, the
economic aspect is of paramount importance for decision-makers (e.g. ship owners) when
it comes to investing in innovative technologies. For this reason, it is required to have a
comprehensive and holistic view on the economic impacts of such technologies at an early
stage. This paper proposes a life-cycle cost analysis (LCCA) framework to be implemented for
innovative emission reduction marine engines. The proposed framework will be able to serve as
a decision support tool that is beneficial for ship owners during the decision-making process for
retrofitting investments.
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1. INTRODUCTION

Climate change is regarded as a pressing social-economic
challenge that every sector has ever faced. In this regard,
the shipping industry is no exception. Considering that
greenhouse gas (GHG) emissions from international ship-
ping increased by roughly 10% from 2012 to 2018 (IMO,
2020), the industry has been under a heavy pressure to
mitigate its negative environmental footprint. Ambitious
targets were set out by the International Maritime Or-
ganization (IMO) under the Initial IMO Strategy with a
vision phasing out maritime GHG emissions as soon as
possible. These targets aim to reduce the total annual
GHG emissions from international shipping by at least
50% by 2050, compared to 2008 levels; and to reduce
annual CO2 emissions per transport work by 40% by 2030,
again compared with 2008 levels (IMO, 2018). Apart from
that, within Chapter 4 of the International Convention for
the Prevention of Pollution from Ships (MARPOL) Annex
VI, technical and operational measures namely Energy Ef-
ficiency Design Index (EEDI) and Ship Energy Efficiency
Management Plan (SEEMP) are mandatory regulatory
mechanisms limiting CO2 emissions from ships (IMO,
2011). Furthermore, the shipping industry produces air
pollutants such as sulphur oxides (SOx), nitrogen oxides
(NOx) and particulate matter (PM). Such air pollutants
are addressed by the introduction of emission control areas
(ECAs) in Chapter 3 of MARPOL Annex VI and the 2020
global sulphur limit (applies for ships operating outside
ECAs) (Zisi et al., 2021).

Given the above-mentioned environmental targets and
regulations, the shipping industry is striving to further

improve technical- and operational energy efficiency and
explore innovative engine and propulsion systems. In
this respect, the EU H2020 SeaTech project (https://
seatech2020.eu) has proposed two symbiotic ship engine
and propulsion technologies, aiming at increasing fuel ef-
ficiency and reducing emissions. The project will develop
a flapping-foil thruster propulsion innovation mounted at
the ship bow to augment ship propulsion in moderate
and higher sea states, capturing wave energy, producing
extra thrust and damping ship motions. By doing this, the
reduction in the propulsion power requirement is expected.
Furthermore, such hydrofoil technology will be combined
with an innovative dual fuel engine with a view to achiev-
ing ultra-high energy conversion efficiency by precisely
controlling the combustion process (Perera et al., 2021).
Therefore, with the high efficiency and the utilization of
clean fuel (i.e. liquefied natural gas (LNG)), running the
SeaTech engine in gas mode will result in extremely low
exhaust gas emissions.

The development of such complex technologies is an inter-
disciplinary and lengthy process that involves numerous
activities until the product delivery. If a decision can be
made at the early design stage, it will exert favourable
impacts on the product’s life cycle with regard to economic
performance. Moreover, the economic aspect is fundamen-
tal to decisions on technological investments (Bui et al.,
2020). Therefore, it is highly desirable to develop an ap-
proach that provides a holistic picture of the total cost
performance of the product in the design stage. In this re-
gard, this study utilises the life-cycle cost analysis (LCCA)
to develop a life-cycle cost framework for a diesel engine.
The proposed framework is expected to serve as a tool for
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(e-mail: jan.emblemsvag@ntnu.no)

Abstract: The shipping industry is striving to reduce its negative environmental footprint
and become more energy-efficient. In order to achieve this, undergoing the transition towards
innovative engine and propulsion systems is attracting considerable attention. However, the
economic aspect is of paramount importance for decision-makers (e.g. ship owners) when
it comes to investing in innovative technologies. For this reason, it is required to have a
comprehensive and holistic view on the economic impacts of such technologies at an early
stage. This paper proposes a life-cycle cost analysis (LCCA) framework to be implemented for
innovative emission reduction marine engines. The proposed framework will be able to serve as
a decision support tool that is beneficial for ship owners during the decision-making process for
retrofitting investments.

Keywords: Life-cycle cost analysis (LCCA), emission reduction, marine engine, shipping
industry.

1. INTRODUCTION

Climate change is regarded as a pressing social-economic
challenge that every sector has ever faced. In this regard,
the shipping industry is no exception. Considering that
greenhouse gas (GHG) emissions from international ship-
ping increased by roughly 10% from 2012 to 2018 (IMO,
2020), the industry has been under a heavy pressure to
mitigate its negative environmental footprint. Ambitious
targets were set out by the International Maritime Or-
ganization (IMO) under the Initial IMO Strategy with a
vision phasing out maritime GHG emissions as soon as
possible. These targets aim to reduce the total annual
GHG emissions from international shipping by at least
50% by 2050, compared to 2008 levels; and to reduce
annual CO2 emissions per transport work by 40% by 2030,
again compared with 2008 levels (IMO, 2018). Apart from
that, within Chapter 4 of the International Convention for
the Prevention of Pollution from Ships (MARPOL) Annex
VI, technical and operational measures namely Energy Ef-
ficiency Design Index (EEDI) and Ship Energy Efficiency
Management Plan (SEEMP) are mandatory regulatory
mechanisms limiting CO2 emissions from ships (IMO,
2011). Furthermore, the shipping industry produces air
pollutants such as sulphur oxides (SOx), nitrogen oxides
(NOx) and particulate matter (PM). Such air pollutants
are addressed by the introduction of emission control areas
(ECAs) in Chapter 3 of MARPOL Annex VI and the 2020
global sulphur limit (applies for ships operating outside
ECAs) (Zisi et al., 2021).

Given the above-mentioned environmental targets and
regulations, the shipping industry is striving to further

improve technical- and operational energy efficiency and
explore innovative engine and propulsion systems. In
this respect, the EU H2020 SeaTech project (https://
seatech2020.eu) has proposed two symbiotic ship engine
and propulsion technologies, aiming at increasing fuel ef-
ficiency and reducing emissions. The project will develop
a flapping-foil thruster propulsion innovation mounted at
the ship bow to augment ship propulsion in moderate
and higher sea states, capturing wave energy, producing
extra thrust and damping ship motions. By doing this, the
reduction in the propulsion power requirement is expected.
Furthermore, such hydrofoil technology will be combined
with an innovative dual fuel engine with a view to achiev-
ing ultra-high energy conversion efficiency by precisely
controlling the combustion process (Perera et al., 2021).
Therefore, with the high efficiency and the utilization of
clean fuel (i.e. liquefied natural gas (LNG)), running the
SeaTech engine in gas mode will result in extremely low
exhaust gas emissions.

The development of such complex technologies is an inter-
disciplinary and lengthy process that involves numerous
activities until the product delivery. If a decision can be
made at the early design stage, it will exert favourable
impacts on the product’s life cycle with regard to economic
performance. Moreover, the economic aspect is fundamen-
tal to decisions on technological investments (Bui et al.,
2020). Therefore, it is highly desirable to develop an ap-
proach that provides a holistic picture of the total cost
performance of the product in the design stage. In this re-
gard, this study utilises the life-cycle cost analysis (LCCA)
to develop a life-cycle cost framework for a diesel engine.
The proposed framework is expected to serve as a tool for

Development of a Life-cycle Cost
Framework for Retrofitting Marine Engines
towards Emission Reduction in Shipping

Khanh Q. Bui ∗ Lokukaluge P. Perera ∗ Jan Emblemsv̊ag ∗,∗∗

∗ UiT The Arctic University of Norway, Tromsø, Norway (e-mail:
{khanh.q.bui, prasad.perera}@uit.no)

∗∗ Norwegian University of Science and Technology, Ålesund, Norway,
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1. INTRODUCTION

Climate change is regarded as a pressing social-economic
challenge that every sector has ever faced. In this regard,
the shipping industry is no exception. Considering that
greenhouse gas (GHG) emissions from international ship-
ping increased by roughly 10% from 2012 to 2018 (IMO,
2020), the industry has been under a heavy pressure to
mitigate its negative environmental footprint. Ambitious
targets were set out by the International Maritime Or-
ganization (IMO) under the Initial IMO Strategy with a
vision phasing out maritime GHG emissions as soon as
possible. These targets aim to reduce the total annual
GHG emissions from international shipping by at least
50% by 2050, compared to 2008 levels; and to reduce
annual CO2 emissions per transport work by 40% by 2030,
again compared with 2008 levels (IMO, 2018). Apart from
that, within Chapter 4 of the International Convention for
the Prevention of Pollution from Ships (MARPOL) Annex
VI, technical and operational measures namely Energy Ef-
ficiency Design Index (EEDI) and Ship Energy Efficiency
Management Plan (SEEMP) are mandatory regulatory
mechanisms limiting CO2 emissions from ships (IMO,
2011). Furthermore, the shipping industry produces air
pollutants such as sulphur oxides (SOx), nitrogen oxides
(NOx) and particulate matter (PM). Such air pollutants
are addressed by the introduction of emission control areas
(ECAs) in Chapter 3 of MARPOL Annex VI and the 2020
global sulphur limit (applies for ships operating outside
ECAs) (Zisi et al., 2021).

Given the above-mentioned environmental targets and
regulations, the shipping industry is striving to further

improve technical- and operational energy efficiency and
explore innovative engine and propulsion systems. In
this respect, the EU H2020 SeaTech project (https://
seatech2020.eu) has proposed two symbiotic ship engine
and propulsion technologies, aiming at increasing fuel ef-
ficiency and reducing emissions. The project will develop
a flapping-foil thruster propulsion innovation mounted at
the ship bow to augment ship propulsion in moderate
and higher sea states, capturing wave energy, producing
extra thrust and damping ship motions. By doing this, the
reduction in the propulsion power requirement is expected.
Furthermore, such hydrofoil technology will be combined
with an innovative dual fuel engine with a view to achiev-
ing ultra-high energy conversion efficiency by precisely
controlling the combustion process (Perera et al., 2021).
Therefore, with the high efficiency and the utilization of
clean fuel (i.e. liquefied natural gas (LNG)), running the
SeaTech engine in gas mode will result in extremely low
exhaust gas emissions.

The development of such complex technologies is an inter-
disciplinary and lengthy process that involves numerous
activities until the product delivery. If a decision can be
made at the early design stage, it will exert favourable
impacts on the product’s life cycle with regard to economic
performance. Moreover, the economic aspect is fundamen-
tal to decisions on technological investments (Bui et al.,
2020). Therefore, it is highly desirable to develop an ap-
proach that provides a holistic picture of the total cost
performance of the product in the design stage. In this re-
gard, this study utilises the life-cycle cost analysis (LCCA)
to develop a life-cycle cost framework for a diesel engine.
The proposed framework is expected to serve as a tool for
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1. INTRODUCTION

Climate change is regarded as a pressing social-economic
challenge that every sector has ever faced. In this regard,
the shipping industry is no exception. Considering that
greenhouse gas (GHG) emissions from international ship-
ping increased by roughly 10% from 2012 to 2018 (IMO,
2020), the industry has been under a heavy pressure to
mitigate its negative environmental footprint. Ambitious
targets were set out by the International Maritime Or-
ganization (IMO) under the Initial IMO Strategy with a
vision phasing out maritime GHG emissions as soon as
possible. These targets aim to reduce the total annual
GHG emissions from international shipping by at least
50% by 2050, compared to 2008 levels; and to reduce
annual CO2 emissions per transport work by 40% by 2030,
again compared with 2008 levels (IMO, 2018). Apart from
that, within Chapter 4 of the International Convention for
the Prevention of Pollution from Ships (MARPOL) Annex
VI, technical and operational measures namely Energy Ef-
ficiency Design Index (EEDI) and Ship Energy Efficiency
Management Plan (SEEMP) are mandatory regulatory
mechanisms limiting CO2 emissions from ships (IMO,
2011). Furthermore, the shipping industry produces air
pollutants such as sulphur oxides (SOx), nitrogen oxides
(NOx) and particulate matter (PM). Such air pollutants
are addressed by the introduction of emission control areas
(ECAs) in Chapter 3 of MARPOL Annex VI and the 2020
global sulphur limit (applies for ships operating outside
ECAs) (Zisi et al., 2021).

Given the above-mentioned environmental targets and
regulations, the shipping industry is striving to further

improve technical- and operational energy efficiency and
explore innovative engine and propulsion systems. In
this respect, the EU H2020 SeaTech project (https://
seatech2020.eu) has proposed two symbiotic ship engine
and propulsion technologies, aiming at increasing fuel ef-
ficiency and reducing emissions. The project will develop
a flapping-foil thruster propulsion innovation mounted at
the ship bow to augment ship propulsion in moderate
and higher sea states, capturing wave energy, producing
extra thrust and damping ship motions. By doing this, the
reduction in the propulsion power requirement is expected.
Furthermore, such hydrofoil technology will be combined
with an innovative dual fuel engine with a view to achiev-
ing ultra-high energy conversion efficiency by precisely
controlling the combustion process (Perera et al., 2021).
Therefore, with the high efficiency and the utilization of
clean fuel (i.e. liquefied natural gas (LNG)), running the
SeaTech engine in gas mode will result in extremely low
exhaust gas emissions.

The development of such complex technologies is an inter-
disciplinary and lengthy process that involves numerous
activities until the product delivery. If a decision can be
made at the early design stage, it will exert favourable
impacts on the product’s life cycle with regard to economic
performance. Moreover, the economic aspect is fundamen-
tal to decisions on technological investments (Bui et al.,
2020). Therefore, it is highly desirable to develop an ap-
proach that provides a holistic picture of the total cost
performance of the product in the design stage. In this re-
gard, this study utilises the life-cycle cost analysis (LCCA)
to develop a life-cycle cost framework for a diesel engine.
The proposed framework is expected to serve as a tool for
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economic life-cycle evaluation during the decision-making
process for converting such engine into the SeaTech engine.

2. LCCA IN THE MARITIME DOMAIN

LCCA was originally proposed in the 1960s by the U.S.
Department of Defense for the acquisition of high cost
defence systems (Sherif and Kolarik, 1981). It has now
been successfully adopted in various industries such as oil
& chemistry, materials production, railway systems, etc.
This method has become widespread and it has been seen
in contemporary management practices. Albeit its popu-
larity in many sectors, the use of LCCA in the maritime
industry is scarce. However, over the past few years, it has
been gained in popularity following the global trend of life
cycle assessment for service chain improvements, especially
in transportation and logistic services (Blanco-Davis and
Zhou, 2014). It can be observed from the literature that
LCCA has been used in parallel with life cycle assessment
for the design, construction, operation and maintenance
of ships or for the selection of retrofit technologies. The
usefulness of LCCA was examined for enhancing sustain-
able designs of fishing vessels for ship owners, thereby
improving decision-making in fisheries management (Utne,
2009). Emblemsv̊ag (2003) proposed an activity-based life-
cycle costing method for assessing the economic and en-
vironmental aspects of a platform supply vessel. Blanco-
Davis and Zhou (2014) carried out a cost-effectiveness
analysis in order to assess ballast water treatment system
alternatives for retrofit. Jeong et al. (2018) proposed an
effective framework for life cycle and cost assessment for
the selection of marine propulsion systems. Wang et al.
(2018) examined the life cycle cost and the environmen-
tal impact on ship hull maintenance and suggested an
optimal maintenance strategy for ship operators. Wang
et al. (2019) conducted an investigation on the benefits
of applying solar panel systems on a short route ferry
through life cycle and economic assessment. LCCA was
integrated into a life cycle performance assessment tool
for the assessment of ship’s performances throughout its
life-cycle (Maggioncalda et al., 2019) and the evaluation
of maintenance costs of different ship propulsion layout
solutions (Gualeni et al., 2019).

3. THE PROPOSED LIFE-CYCLE COST
FRAMEWORK

Fig. 1 depicts the process of the proposed framework
adapted from (Utne, 2009). Furthermore, it is tailored with
respect to a life-cycle perspective, including construction,
operation, maintenance and end of life, based on the ISO
15686-5 (ISO, 2017). The proposed framework also encom-
passes the concept of circular economy (Jansson, 2016)
along with economic Key Performance Indicators (KPIs).
The feedback loop indicates that this is an iterative process
where stages of the process should be improved due to the
unavailability of information. In this way, the framework
is revised on its own process while retaining a thorough
formulation.

3.1 Problem definition

The objective of this study is to offer the benefits of using
the proposed framework as a decision support tool for

ship owners during the economic evaluation process for
retrofitting technologies. The scope of this study is limited
to a marine diesel engine. As such, it is used as a reference
baseline to compare with the SeaTech dual-fuel engine
with regard to the economic performance. In this way, the
retrofitting cost (i.e including the part replacement costs)
is taken into account when it is converted into the SeaTech
engine.

3.2 Breakdown analysis

With a systematic and a cradle-to-grave view, a cost
breakdown structure (CBS) is devised to divide the life-
cycle cost into cost elements, including construction cost,
operation cost, maintenance cost and end-of-life cost, as
shown in Fig. 2. A Product Breakdown Structure (PBS),
which is a physical breakdown of a product’s components
and systems, is commonly used. Similarly to PBS, we
have specified an Engine Breakdown Structure (EBS) as a
fundamental base for cost estimates of the diesel engine.

Construction phase In order to estimate the construc-
tion cost, the EBS is used to have a better understanding
of the engine’s main components and systems that can be
modelled in the LCCA. Table 1 details the EBS of a diesel
engine and the costs associated with its components and
systems.

Table 1. A general Engine Breakdown Struc-
ture (EBS) of a diesel engine

2nd level 3rd level Cost range

M
a
in

co
m
p
o
n
en

ts
&

sy
st
em

s

Engine Basement 328K 440K
Fuel Injection System 32K 40K
Camshaft & Valve Mechanism 72K 104K
Turbocharging & Scavenging System 120K 160K
Ancillary System 56K 80K
Automation System 32K 48K
Low value Parts 32K 40K

Exhaust gas cleaning system* 52K 244K
Total 724K 1 156K

* Selective Catalytic Reduction (SCR) technology for NOx reduc-
tion. Cost range source: International Association for Catalytic
Control of Ship Emissions to Air (IACCSEA)
Unit K = 1000 e. Source: Wärtsilä

Operation phase The main focus in the operation phase
of the diesel engine is more or less in relation to its fuel
consumption. Since the engine load will vary, subjected to
different operation modes during a given year, the total
annual fuel oil consumption (FOC) and the total an-
nual lubricant oil consumption (LOC) can be determined
through the following equations (Wang et al., 2019)

FOC =
N∑
i=1

Pi × SFOCi ×Hi (1)

LOC =

N∑
i=1

Pi × SLOCi ×Hi (2)

where

P is the power required for each operation mode [kW],
SFOC is the specific fuel oil consumption under
specific engine output [g/kWh],

Fig. 1. The proposed LCCA framework

Fig. 2. Cost breakdown structure (CBS) of a marine engine

SLOC is the specific lubricant oil consumption under
specific engine output [g/kWh],
H is the yearly operating hours for each operation
mode [hour/year],
i refers to different operation modes associated with
different engine loads.

Such technical information can be obtained from the
technical product guide given by an engine manufacturer
combined with the operational profile from a selected
ship. The annual fuel oil consumption cost CFOC and
annual lubricant oil consumption cost CLOC are expressed
as follows, where e FOC and e LO are fuel price [e] and
lubricant oil price [e] respectively.

CFOC = e FOC × FOC (3)

CLOC = e LO × LOC (4)

Maintenance phase As recommended by the engine
manufacturer, several components of the engine will un-
dergo through maintenance periods when a number of pro-
cedures, including checks, overhauls, repairs and replace-
ments will be performed. The maintenance periods, which
provide overhaul intervals for the components, are listed in
the engine’s Operation & Maintenance Manual (O&MM)
given by the engine manufacturer. The maintenance costs
for the engine components are calculated by considering a
job as basis. Based on the O&MM, the maintenance pro-
cedure for each component demands numerous jobs. Each
job is associated with a maintenance activity (e.g., check,
clean, inspect, replace or renew the respective component),
a service interval, a component number, components costs,
and labor hours.

End of life phase Scrapping and recycling are usual
processes during the end-of-life phase of ships and its
associated assets in the shipping industry. In this regard, it
is of interest to introduce the concept of circular economy
as depicted in Fig. 3. Apart from recycling, remanufac-
turing and reusing are within the circular economy while
scrapping is an disadvantageous process since it produces
more waste compared to others. This concept can open up
opportunities for the application of the proposed frame-
work in remanufacturing and recycling of the engine’s com-
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Maintenance phase As recommended by the engine
manufacturer, several components of the engine will un-
dergo through maintenance periods when a number of pro-
cedures, including checks, overhauls, repairs and replace-
ments will be performed. The maintenance periods, which
provide overhaul intervals for the components, are listed in
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given by the engine manufacturer. The maintenance costs
for the engine components are calculated by considering a
job as basis. Based on the O&MM, the maintenance pro-
cedure for each component demands numerous jobs. Each
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a service interval, a component number, components costs,
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End of life phase Scrapping and recycling are usual
processes during the end-of-life phase of ships and its
associated assets in the shipping industry. In this regard, it
is of interest to introduce the concept of circular economy
as depicted in Fig. 3. Apart from recycling, remanufac-
turing and reusing are within the circular economy while
scrapping is an disadvantageous process since it produces
more waste compared to others. This concept can open up
opportunities for the application of the proposed frame-
work in remanufacturing and recycling of the engine’s com-
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ponents. Remanufacting opportunities can be observed
in many occasions during the engine’s life-cycle such as
repair, maintenance, overhaul, retrofit/ refurbishment and
conversion. By way of illustration, several associated parts
of the engine such as piston, connecting rod, exhaust
valves, cylinder cover, etc can be remanufactured or can
be used for another purposes (second life).

Fig. 3. Reuse, remanufacture and recycle under circular
economy concept (Jansson, 2016)

3.3 Cost modelling

It can be perceived from the literature that cost estimation
models can be categorized into three groups as follows.

• Analogy model: The principle of this model is to
adjust the cost of a similar product in relation with
the differences between it and the target product.
It is assumed in this model that similar products
have similar costs. This model is considered as a
case-based approach and its effectiveness depends on
the domain knowledge of identifying the similarities
and differences between the actual case and the past
case. Based on the past cost data, the cost estimation
can be done with close and reasonable approximation
(Curran et al., 2004; Hueber et al., 2016).

• Parametric model: The backbone of this model is
the formulation of ”Cost Estimation Relationships”
(CERs) and associated mathematical relations be-
tween one or more parameters that have influence
on the cost changes of a product. Such parameters
are referred to ”Cost Drivers”. A typical example of
this is the utilization of weight, size and and costs
for establishing a mathematical correlation in order
to predict the product costs. This model relies on
historic data and cannot be used outside this historic
data range. Moreover, it is unable to demonstrate
technology changes or altered system requirements
(Curran et al., 2004; Hueber et al., 2016).

• Engineering model: This model is also known as a
bottom-up approach in which component tasks are
identified and sized, and the individual estimates are
then added up to provide the final estimate. In order
to apply this model to any product, the detailed
information regarding design, configuration of the
product’s systems and components as well as account-
ing information regarding materials, labour should
be available. Although it requires a great deal of
information, this approach provides a totally compre-
hensive process and is practical for new technologies
or products (Curran et al., 2004; Hueber et al., 2016).

In this study, the engineering model will be chosen as a
basis, combined with the others, depending on the detail

level of data available in different phases of the engine’s
life-cycle.

3.4 Data collection

The data collected in this study have been derived from
multiple sources such as the technical product guide,
O&MM given by the engine manufacturer, and the opera-
tional profile of a selected vessel. Domain knowledge from
experts along with data obtained from the literature are
also useful for the deployment of the proposed framework.

3.5 Cost estimates

Cost treatment is taken into consideration when deploying
the model. Since the value of money today and money
that will be spent in the future are not equal, it is referred
to as the time value of money. The costs that occur at
different stages during the lifespan of the engine cannot be
compared directly attributable to the varying time value
of money. They shall be discounted back to their present
value with the help of the following equation (Welch,
2017).

PV = FV
1

(1 + r)n
(5)

where

PV is the present value [e],
FV is the future value in year n [e],
r is the discount rate [%],
n is the number of years.

One of methods employing the time value of money for
engine technology evaluation is the net present value
(NPV). The NPV calculation involves valuation of both
costs and benefits. Since the cost streams are only taken
into account, the net present value of costs (NPC) over the
period of the engine’s lifespan can be expressed as follows.

NPC =

LS∑
j=1

Cj

(1 + r)j
(6)

where

Cj is the future cost in year j [e],
r is the discount rate [%],
LS is the lifespan of the engine [year]
j refers to a specific year of the lifespan of the engine.

NPC can be used in comparing the cost performance of
engine technologies. The engine with the lowest NPC will
be preferred.

3.6 Evaluation

The key aspects of the engine technology evaluation can be
listed as follows: the indicators of comparison and handling
uncertainty and risks. The former offers several economic
KPIs, expressed as Capital Expenditure (CAPEX) (i.e.
directly related to the construction cost), Operating Ex-
penditure (OPEX) (i.e the operation cost), NPC and so
on. This is a performance-based approach to assess and
compare the total cost performance of different engines
based on the KPIs. The latter includes consideration of

uncertainty and risks. In this regard, Monte Carlo analysis
and sensitivity analysis can be beneficial to model the
uncertainty attached to the costs. Several examples of
what it meant by uncertainty are ship operation modes,
loading conditions, operation hours, engine performances,
fuel costs, discount rate, etc.

3.7 Reporting results

As shown in table 1, the construction cost of the diesel
engine ranges from 724K to 1 156K [e]. On average, it is
determined approximately as 940K [e].

Table 2 shows an overview of the specifications of the case
ship and its diesel engine while table 4 shows the ship’s
operational profile. The engine load, as a percentage of
the maximum continuous rating (MCR) of the engine,
varies under different operation modes. Therefore the
relative SFOC should be adjusted. This can be done by
doing interpolation or extrapolation based on the reference
values, as shown in table 3. Fig. 4 depicts the relative
SFOC as a non-linear function of the relative engine load.
It can be seen from this figure that the minimum value of
the SFOC is located at the relative engine load of 75%.
Therefore, maintaining the engine loads around this point
is required in order to minimize the fuel oil consumption
and optimize the engine performance.

Afterwards, the annual FOC in each operation mode can
be obtained with the help of (1), as presented in table 4.
Similar to the annual FOC, the annual LOC can be
determined based on (2), as shown in the same table.

Table 2. Ship & engine specifications

Specification Value Unit

Deadweight 7600 Ton
LOA 112 m
Maximum speed 15 Knot
Fuel type MGO N/A
Engine maximum power output 3480 kW
Engine speed 750 rpm
Engine’s lifespan of analysis 20 year
Annual operation hours 8700 hour

Source: Wärtsilä

Table 3. SFOC at different engine loads
(Wärtsilä, 2021)

Engine Load [%] 100 85 75 50

SFOC [g/kWh] 184.7 181 180.6 181.9

Therefore, the annual FOC and LOC of the engine can be
determined as shown in table 5. Table 5 also reports the
annual fuel costs and the annual operation cost. It is noted
that market prices were used as the input data as follows
(Ship & Bunker, 2021).

• MGO price: 506.37 e/Ton
• Lubricant price: 2300 e/Ton

The results of the operation cost suggest that the operation
cost is driven by not only the engine loads but also the
operation hours.

The results of NPC for the operation cost are presented
in table 6. It is noted that all of the costs are exposed to

Fig. 4. The relative SFOC as a function of the relative
engine load

Table 4. Ship’s operational profile

Item Port
Engine Mode 1
(Manoeuvring)

Engine
Mode 2

Engine
Mode 3

Annual operation hours [h] 1200 100 300 7100
Speed [Knot] 0 0 13.6 11.5
Percentage [%] 14 1 3 82
Power [kW] 0 635 2354.7 1290.7
Engine Load [%] 0 18.2 67.7 37.1
SFOC [g/kWh] 0 183.56 180.96 182.58
Annual FOC [Ton/year] 0 11.66 127.83 1673.12
SLOC [g/kWh] 0 0.064 0.237 0.130
Annual LOC [Ton/year] 0 0.004 0.167 1.190

Source: Wärtsilä

Table 5. Annual fuel consumption and costs

Item Value Unit

Annual FOC 1812.61 Ton/year
Annual LOC 1.361 Ton/year
Annual FOC cost 918K e/year
Annual LOC cost 3K e/year
Annual operation cost 921K e/year

Unit K = 1000 e

the effects of the inflation rate of 3.1% (TradingEconomics,
2021) and the nominated discount rate of 1.3%.

Table 6. Results of NPC

Item Value Unit

Discount Rate 1.30 %
Inflation Rate 3.10 %
NPC -21 990K e

Unit K = 1000 e

Sensitivity analyses were performed for NPC calculations
by the application of higher and lower discount rates, as
presented in table 7.

Table 7. Sensitivity analyses

Scenario 1 Value Unit Scenario 2 Value Unit

Discount Rate 0.80 % Discount Rate 1.80 %
Inflation Rate 3.10 % Inflation Rate 3.10 %
NPC -23 354K e NPC -20 728K e

Unit K = 1000 e
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fuel costs, discount rate, etc.
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relative SFOC should be adjusted. This can be done by
doing interpolation or extrapolation based on the reference
values, as shown in table 3. Fig. 4 depicts the relative
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Table 5. Annual fuel consumption and costs

Item Value Unit

Annual FOC 1812.61 Ton/year
Annual LOC 1.361 Ton/year
Annual FOC cost 918K e/year
Annual LOC cost 3K e/year
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the effects of the inflation rate of 3.1% (TradingEconomics,
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4. CONCLUSION AND FUTURE WORK

This study is the first step towards enhancing our under-
standing of economic impacts on retrofitting investment
in a marine engine innovation throughout its lifespan. The
results of this study indicate that the operation hours
and the engine loads are major contributing factors in
determining the operation cost, thereby influencing the
total life-cycle cost of the engine. The proposed framework
is capable of offering an evaluating tool to assist ship-
owners in making retrofitting decisions regarding emission
reduction. Furthermore, it could potentially be applicable
to economic evaluation on any technological investments
at the early stage.

On the other hand, the proposed framework requires in-
tensive data gathering and collection. For this reason, the
study has only investigated the diesel engine (i.e. the refer-
ence baseline). We are currently in the process of gathering
more data (i.e. O&MM from the engine manufacturer
and domain knowledge through semi-structured interviews
with experts) for the maintenance phase. Further studies,
which take the LCCA on the SeaTech engine into account,
will need to be undertaken. It will be important to compare
the total cost performance of the SeaTech engine with that
of a diesel engine in a similar context (e.g., power output,
engine speed and operational profile). Future studies will
also concentrate on performing the Monte Carlo analysis
and the sensitivity analysis in order to deal with the
uncertainty and the risks that have impacts on the engine’s
life cycle cost performance.
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