
Optimal Scheduling of Multiple Spatio-temporally
Dependent Observations using Age-of-Information
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Abstract—This paper proposes an optimal scheduling policy
for a remote estimation problem, where spatio-temporally depen-
dent sensor observations are broadcasted to remote estimators.
At each time instant only observations from a limited number
of sensors can be communicated. The system has a network
scheduler that decides the set of sensor observations to be
communicated. The scheduler cannot observe measurements
and exploits age-of-information (AoI) to calculate the expected
estimation error. The scheduling problem is modeled as a Markov
decision process with the AoI representing the state and the
scheduling decision representing the action. We derive an optimal
scheduling policy that minimizes the average mean squared error
for an infinite time horizon – the policy results in a periodic
scheduling pattern. Our results show that by exploiting spatio-
temporal dependencies and using optimal sensor scheduling, the
overall estimation accuracy is enhanced.

I. INTRODUCTION

In wireless sensor networks (WSN) and networked control
systems, sensors communicate observations to controllers or
remote estimators that track physical processes by forming
estimates. Sensors often share a limited number of communi-
cation channels, and so the communication between sensors
and estimators follows protocols to avoid interference. Sensor
transmissions can be either event-triggered [1], [2], e.g., a
measurement breaching a threshold, or time-triggered [1], i.e.,
scheduled time slots. The latter can result in collision-free
communication [1], [3] and is the focus of this paper.

The utility of the system depends on the real-time estimation
accuracy of the estimators. An important task is to design
scheduling protocols that minimize the overall estimation error
over time. Optimal scheduling schemes for infinite time-
horizons have been studied under different resource con-
straints, e.g., limited packet size [4], limited battery [5], or the
presence of eavesdroppers [6]. In [3], authors derive an optimal
scheduling policy for a system with multiple linear time-
invariant sub-systems and a single communication channel.
Increasing the number of communication channels improves
the estimation accuracy, and in [7], authors derive an optimal
scheduling policy for a system with multiple linear time-
invariant sub-systems and multiple communication channels.

Most work that regards optimal scheduling for remote
estimation assumes independent processes [3], [4], [6]–[8].
However, sensor measurements tend to be spatio-temporally
correlated, which can be exploited to improve estimation
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accuracy. In [5], [9], [10], the authors investigate the op-
timal transmission frequency for sensors observing spatio-
temporally correlated measurements. In [11], authors consider
correlated sensor measurements when a scheduler can observe
measurements before scheduling. Such a scheduling strategy
may reduce estimation error but has implications on the
system’s privacy and latency.

This paper presents an optimal scheduling policy for multi-
ple sensors that observe spatio-temporally correlated Gaussian
processes. Our system model is similar to [11], [12], where
observations are communicated via a network manager to
the remote estimators. In contrast, we assume spatio-temporal
dependence among the sensors, that multiple observations
are broadcasted, and that a system-scheduler cannot read the
measurements but utilizes the age-of-information (AoI) [13],
[14] to decide on the scheduling. Most works regarding AoI
have focused on evaluating the average AoI, given the system
settings [13], [15]. Recent work shows that the AoI can be used
as a state-variable in a broader range of optimization tasks if
the performance metric can be expressed as a function of the
AoI [14], [16].

The results of this paper demonstrate that exploiting spatio-
temporal dependencies, together with AoI, can improve the
remote estimation accuracy in systems with communication
constraints. This paper is an extension of [16], where two pro-
cesses and a single communication channel were considered.
We derive an optimal policy for the multiple channel case
is attained by modeling the problem as a finite-state Markov
decision process (MDP). Further, we show that an optimal
policy results in a periodic scheduling pattern. Numerical
results verify the theory and show that the policy we propose
outperforms alternative policies.

II. PROBLEM FORMULATION

We consider a WSN of N sensors, one scheduler, and N
remote estimators as depicted in Fig. 1. Sensor i observes
the stochastic process θi[k] ∈ R, with θi[k] ∼ N (0, σ2

i ), at
time instant k ∈ N+ and i = 1, ..., N . The N processes are
correlated over space and time with the cross-covariance given
by a positive-definite function [17], [18]

E[θi[k]θj [l]] = σiσjρijρt(|k − l|), i, j ∈ {1, ..., N}, (1)

where ρij ∈ [−1, 1] represents the spatial correlation and ρt :
R+ → (0, 1] is the temporal correlation, which is a strictly
decreasing function with ρt(0) = 1 and limn→∞ ρt(n) = 0.
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Fig. 1. Schematic of WSN scheduling problem with D = 2.

At time instant k, Sensor i, i = 1, ..., N , acquires measurement
xi[k] ∈ R, which is modeled as

xi[k] = θi[k] + wi[k], k ∈ N+, (2)

where wi[k] ∈ R denotes independent identically distributed
(iid) measurement noise with distribution wi[k] ∼ N (0, ξ2).
For each process θi[k], there is a corresponding remote es-
timator that tracks the process and forms an estimate θ̂i[k]
based on sensor measurements communicated via the network
scheduler, see Figure 1.

A. Scheduler

Due to limited channel capacity, the scheduler broadcasts
D ∈ N+, D ≤ N , sensor observations to the remote esti-
mators. Since the processes are spatial-temporally correlated,
the estimators can use every measurement to improve the
local estimation accuracy. The scheduler decides the set of
observations to be communicated and must maximize the total
estimation accuracy over time.

Let π[k] ∈ {1, ..., N}D be a scheduling variable denoting
an index set of sensors to be scheduled at time k. The AoI
of the ith sensor is denoted by ∆i[k] ∈ N+, i = 1, ..., N,
and defined as the time elapsed between two measurement
transmissions

∆i[k] =

{
0, if i ∈ π[k],
∆i[k − 1] + 1, if i /∈ π[k].

(3)

The scheduler is not allowed to observe the measurements,
x[k] = [x1[k], x2[k], ..., xN [k]]T, but can keep track of the
AoI at each sensor through vector ∆[k], where ∆[k] =
[∆1[k],∆2[k], ...,∆N [k]]T. Let γk denote the scheduling strat-
egy at time k, i.e.,

π[k] = γk(∆[k − 1]), (4)

which provides a mapping from ∆[k − 1] to the scheduling
decision at instant k.

B. Remote estimators

The data available at Estimator i at time instant k contains
∆[k] and y[k] = [y1[k], y2[k], ..., yN [k]]T, representing the
most recently broadcasted measurement from each sensor, i.e.,

yi[k] = xi[k −∆i[k]], i = 1, ..., N. (5)

The minimum mean square error (MMSE) estimate of θi[k],
given {∆[k],y[k]}, is computed as

θ̂i[k] = E[θi[k]|∆[k],y[k]], i = 1, ..., N. (6)

C. Scheduling policy

The scheduling policy γ is defined as the collection γ =
(γ1, γ2, . . . γT ) where T denotes the time horizon. The perfor-
mance measure (cost) is the total mean squared error (MSE)
of the estimate (6) over T time slots and is given by

J(γ, T ) =

T∑
k=1

N∑
i=1

E
[
(θi[k]− θ̂i[k])2

∣∣∣∆γ [k]
]
, (7)

where ∆[0] = (∞,∞, ...,∞)T is the AoI when initializing
the system and ∆γ [k] is the AoI at time k generated by γ.

Our objective is to find an optimal scheduling policy γ∗ that
minimizes the average cost in (7) over an infinite time horizon

min
γ∈Γ

lim sup
T→∞

1

TN
J(γ, T ), (8)

where Γ is the set of all feasible policies.

III. OPTIMAL SCHEDULING POLICY

To solve (8), we need to calculate the cost (7), which
depends on the process ∆γ [k] during interval k ∈ [1, T ].
To do so, we derive a closed-form expression for the
MSE at instant k given ∆[k]. The process vector θ[k] =
[θ1[k], θ2[k], ..., θN [k]]T follows a zero-mean Gaussian distri-
bution with covariance matrix Cθθ. Substituting (2) in (5), we
obtain y[k] ∼ N (0,Cyy[k]). The covariance matrix Cyy[k]
can be obtained from (1)–(5) as

[Cyy[k]]i,j = σiσjρijρt(∆ij [k])+ξ2δ(i−j), i, j ∈ {1, ..., N}
(9)

where ∆ij [k] = |∆i[k] −∆j [k]| is the absolute difference of
AoI between processes i and j, and δ(·) denotes the Dirac
delta function.

The vector estimate θ̂[k] = [θ̂1[k], θ̂2[k], ..., θ̂N [k]]T be-
comes [19]

θ̂[k] = E[θ[k]|∆[k],y[k]] = Cθy[k]C−1
yy [k]y[k], (10)

where Cθy[k] ∈ RN×N is the cross-covariance between y[k]
and θ[k] given by

[Cθy[k]]i,j = σiσjρijρt(∆j [k]), i, j ∈ {1, ..., N}. (11)

The MSE at instant k can be expressed as a function of ∆[k]

E(∆[k]) =

N∑
i=1

E
[
(θi[k]− θ̂i[k])2

∣∣∣∆[k]
]

= tr
(
Cθθ −Cθy[k]C−1

yy [k]CT
θy[k]

)
, (12)

where tr(·) denotes the trace of a matrix. The MSE is upper
bounded by the sum of all the marginal variances, i.e.,

E(∆[k]) ≤ tr
(
Cθθ

)
=

N∑
i=1

σ2
i . (13)



It can be seen from (3) that ∆[k] only depends on ∆[k−1]
and π[k]. We can, therefore, model the system as a Markov
decision process (MDP) [20], where at instant k, ∆[k − 1]
is the state, π[k] is the action and E(∆[k]) is the reward.
Using dynamic programming, we can then derive a state-action
policy that minimizes the average reward and corresponds to
an optimal scheduling policy.

Using ∆[k] as a state-variable leads to an infinite countable
state space, and an optimal state-action policy may not exist
or be prohibitive to derive. From (12) and (13), we see that as
the AoI grows, the temporal correlation becomes negligible,
and the MSE does not increase with respect to the marginal
AoI, i.e.,

lim
∆i[k]→∞

∂E(∆[k])

∂∆i[k]
= 0, i = 1, ..., N. (14)

Therefore, we can reduce the state-space in our MDP to only
AoI values that correspond to distinct MSE values. Since ρt
in (2) is continuous, we restrict the set of possible correlation
functions ρt to the type given in Assumption 1.

Assumption 1. The temporal correlation function ρt : R+ →
[0, 1] in (2), satisfies ρt(∆) = 0, for all ∆ ≥ m, m ∈ N+.

If Assumption 1 holds, we can try to find a state-variable
that corresponds to all possible MSE values, and results in a
finite state MDP.

A. Truncated AoI

Let ∆m[k] ∈ {0, 1, ...,m}N2

denote the truncated AoI
[15] that contains the elements ∆m

i [k],∆m
ij [k] ∈ {0, 1, ...,m},

∀i, j = 1, .., N , i.e.,

∆m
i [k] =

[
∆i[k]

]m
+
, i = 1, ..., N, (15)

∆m
ij [k] =

[
|∆i[k]−∆j [k]|

]m
+

=
[
∆ij [k]

]m
+
, i, j = 1, ..., N,

where m ∈ N+ and
[
·
]m
+

is defined as the truncation operator[
x
]m
+

, min{x,m}, x ∈ R+. Let fm : NN+ → {0, 1, ...,m}
N2

be a mapping from ∆[k] to ∆m[k], i.e., ∆m[k] = fm(∆[k]).
We can express the MSE as a function of ∆m[k], i.e.,

Em(∆m[k]) =

N∑
i=1

E
[
(θi[k]− θ̂i[k])2

∣∣∣∆m[k]
]
. (16)

The function Em(∆m[k]) is obtained in a similar fashion as
E(∆[k]) in (12), i.e.,

Em(∆[k]) = tr
(
Cθθ −Cm

θy[k](Cm
yy)−1[k](Cm

θy[k])T
)
, (17)

with Cm
yy[k] and Cm

θy[k] calculated using ∆m[k] as

[Cm
yy[k]]i,j = σiσjρijρt(∆

m
ij [k]) + ξ2δ(i− j),

[Cm
θy[k]]i,j = σiσjρijρt(∆

m
j [k]), i, j ∈ {1, ..., N}. (18)

In the following propositions, we show that ∆m[k] can be
used as a state-variable for modeling the system as an MDP.

Proposition 1. Under Assumption 1 the following relationship
holds

E(∆[k]) = Em(∆m[k]), ∀∆[k] ∈ NN+ . (19)

Proof. If Assumption 1 holds, we can see from expres-
sions (12) and (17) that E(∆[k]) − Em(fm(∆[k])) =
0, since ρt(∆i[k]) = ρt(∆

m
i [k]) and ρt(∆ij [k]) =

ρt(∆
m
ij [k]), ∀∆i[k],∆ij [k] ∈ N+. This gives that E(∆[k]) =

Em(∆m[k]), ∀∆[k] ∈ NN+ .

Proposition 1 states that if ∆[k] or ∆m[k] represents the
state, either can be used to calculate the MSE in (12). For
∆m[k] to represent the state in the MDP, we need to express
it as a function of ∆m[k − 1] and π[k].

Proposition 2. The truncated AoI ∆m[k] can be expressed as
a function of ∆m[k − 1] and π[k] as

∆m
i [k] =

{
0, if i ∈ π[k],[
∆m
i [k − 1] + 1

]m
+
, if i /∈ π[k],

(20)

∆m
ij [k] =


0, if i, j ∈ π[k],[
∆m
ij [k − 1]

]m
+
, if i, j /∈ π[k],[

∆m
i [k − 1] + 1

]m
+
, if i /∈ π[k], j ∈ π[k],[

∆m
j [k − 1] + 1

]m
+
, if i ∈ π[k], j /∈ π[k].

(21)

Proof. Applying the truncation operator on the expression (3)
for ∆i[k], we obtain

∆m
i [k] =

{
0, if i ∈ π[k],[
∆i[k − 1] + 1

]m
+
, if i /∈ π[k].

(22)

Further, we know that the following relationship holds[
∆i[k−1]+1

]m
+

=
[[

∆i[k−1]
]m
+

+1
]m
+

=
[
∆m
i [k−1]+1

]m
+
.

(23)
Now, substituting (23) in (22), we obtain the relationship in
(20). Similarly, substituting (3) in ∆ij [k] = |∆i[k] −∆j [k]|,
we can express ∆ij [k] as

∆ij [k] =


0, if i, j ∈ π[k],
∆ij [k − 1], if i, j /∈ π[k],
∆i[k − 1] + 1, if i /∈ π[k], j ∈ π[k],
∆j [k − 1] + 1, if i ∈ π[k], j /∈ π[k].

(24)

Next, we use the truncation operator on (24) and employ the
relationship in (23) to derive expression (21).

Proposition 1 and 2 state that ∆[k] or ∆m[k] can be used
as state-variable to model the system as an MDP. Employing
the latter leads to a finite state-space, which is preferable when
trying to derive γ∗.

B. Finite-state Markov decision process

To find γ∗, we model our scheduling problem as a finite-
state MDP [20]. We define the MDP as the following;
• Action a[k] at instant k is the scheduling decision π[k]

belonging to action-space A = {1, ..., N}D, a[k] ∈ A.
• State s[k] at instant k is the truncated AoI ∆m[k−1] be-

longing to state-space S = {fm(δ) | δ ∈∆}, s[k] ∈ S,



where ∆ is the set of possible AoI values, i.e., ∆[k] ∈∆,
which depends on N and D.

• Transition probabilities P (s[k+1] | s[k],a[k]) ∈ {0, 1}
are binary and given by (20) and (21) in Proposition 2,
where s[k] corresponds to ∆m[k − 1] and a[k] corre-
sponds to π[k].

• Reward at instant k corresponds to Em(∆m[k]) in (17)
and is given by the reward function

r(s[k],a[k]) = (25)

−
∑

s[k+1]∈S

Em(s[k + 1])P (s[k + 1] | s[k],a[k]).

A policy µ = (µ1, ..., µT ) maps action a[k] to state s[k],
i.e., a[k] = µk(s[k]). The average expected reward gµ is
defined as

gµ(s) = lim
T→∞

1

T
E
[ T∑
k=0

r(s[k],a[k])
∣∣∣s[0] = s,a[k] = µ(s[k])

]
,

(26)

where a policy µ∗ is optimal in average-sense if it fulfills

gµ∗(s) ≥ gµ(s), ∨s ∈ S. (27)

We state the following property of the MDP that will be
useful to derive µ∗.

Lemma 1. For any stationary policy µ = (µ0, ..., µ0), µ0 :
S → A, the MDP results in a periodic state-action sequence.
In other words, for k →∞, we have µ0(s[k]) = µ0(s[k+L])
and s[k] = s[k + L], L ∈ R+, L ≤ |S|.

Proof. From (20) and (21), we know that the transition proba-
bilities are binary, i.e., P (s[k+1] | s[k],a[k]) ∈ {0, 1}. Hence,
given the state at instant k, s[k], the next state s[k + 1] is
perfectly known. Similarly, the states that follow after s[k+1]
are also perfectly known. If a state is revisited and µ is
stationary, the state-sequence that occurred in-between the
state was last visited will repeat itself. Since the state-space
is finite, i.e., |S| <∞, at least one state will be revisited for
k → ∞. Hence, we conclude that for k → ∞ the sequence
of states and actions is periodic, i.e., µ0(s[k]) = µ0(s[k+L])
and s[k] = s[k + L], L ∈ R+, L ≤ |S|.

From Lemma 1 and [20], if an optimal policy µ∗ exist, it
results in a constant average reward gµ∗(s) = g∗ ∈ R, g∗ ∈ R.
The scalar g∗ must then satisfy the optimality equations

max
a∈A

{
r(s,a)− g∗ +

∑
s′∈S

P (s′|s,a)h(s′)− h(s)
}

= 0,

(28)

where h is a function, h : S → R, from the set V of bounded
functions on S, h ∈ V . The existence of an optimal policy µ∗

is stated in the lemma below.

Lemma 2. There exists a stationary average reward optimal
policy µ∗ = (µ∗0, ..., µ

∗
0), corresponding to an optimal constant

reward gµ∗ = g∗, g∗ ∈ R. The policy µ∗ is given by

µ∗0(s) = arg max
a∈A

{
r
(
s,a

)
+
∑
s′∈S

P (s′|s,a)h∗(s′)
}
, (29)

where h∗ ∈ V and g∗ satisfy (28), which can be attained in
a finite number of iterations using policy iteration.

Proof. The MDP has a finite action set |A| <∞, a finite state-
space |S| < ∞, stationary bounded rewards |r(s[k],a[k]| <
∞ and stationary binary transition probabilities. Given the
aforementioned properties of the MDP and Lemma 1, [20, Th.
8.4.5] states that there exist a stationary optimal policy µ∗ and
a pair (g∗, h∗) that satisfy (28). It also states the relationship
between µ∗ and (g∗, h∗) presented in (29). Furthermore, [20,
Th. 8.6.6], states that (g∗, h∗) can be derived in a finite number
of iterations using policy iteration. The full proofs are given
in [20].

Based on Lemma 1 and Lemma 2, we formalize the follow-
ing theorem that states the existence of an optimal scheduling
policy γ∗ and how it can be derived.

Theorem 1. There exists a stationary optimal scheduling
policy γ∗ = (γ∗0 , ..., γ

∗
0), where γ∗0 = µ∗0 ◦ fm and µ∗0 is

found using policy iteration. The policy γ∗ results in a periodic
scheduling pattern, i.e., γ∗0 (∆γ∗ [k−1]) = γ∗0(∆γ∗ [k−1+L]),
L ∈ R+, L <∞.

Proof. Consider the MDP defined in Section III-B, where
at instant k, ∆m[k − 1] represents the state-variable s[k],
−Em(∆m[k]) represent the reward r(s[k],a[k]), π[k] repre-
sents the action a[k] and the policy µ represents the mapping
between π[k] and ∆m[k − 1]. Lemma 2 together with (27)
states that a state-action policy µ∗ = (µ∗0, ..., µ

∗
0) exists that

maximizes the average expected reward in (26). If we compare
(26) with (8), this implies, that if µ∗ and the mapping between
∆[k − 1] and ∆m[k − 1] in (15) is known, we can derive an
optimal scheduling policy γ∗ that minimizes the average cost
in (8). Hence, an stationary optimal scheduling policy is given
by γ∗ = (γ∗0 , ..., γ

∗
0 ), where γ∗0 = µ∗0 ◦ fm. Lemma 2 states

that µ∗0 can be derived using policy iteration to solve (29).
Lemma 1 states that µ∗0 results in periodic action sequence.
Hence, γ∗0 results in a periodic action sequence.

IV. SIMULATION RESULTS

We assume a system where N = 5 sensors observe
dependent processes with equal marginal variances, i.e., σi =
1, ∀i = 1, ..., N , where the scheduler can broadcast D = 2
sensors at each time instant k. The spatio-temporal dependency
components in (2) are given by [17], [18]

ρij = e−r0|i−j|, ρt(∆) = e−T0∆
1(e−T0∆ ≥ 0.1) (30)

where T0 ∈ R+, represents the time interval between two
broadcasting sessions, r0 ∈ R+ represents the Euclidean
distance between two neighboring sensors, 1(·) is an indicator
function having value 1 if the condition in the argument is
true and 0 otherwise. The truncation time m in (15) is set to
m = inf∆∈N+

{e−T∆ ≤ 0.1}.
Figure 2 shows the average cost versus T0 with ξ = 0.5,

r0 = 0.5, for an optimal policy γ∗, round-robin [13], random
scheduling, and a greedy policy, i.e., choosing the set of
sensors at time k that minimizes the MSE E(∆[k]) in (12).
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Fig. 2. Average cost versus T0 for different policies with system parameters
N = 5, D = 2, ξ = 0.5, r0 = 0.5 and σi = 1, ∀i = 1, ..., N .
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Fig. 3. Average cost versus r0 for different policies with system parameters
N = 5, D = 2, ξ = 0.5, T0 = 1 and σi = 1, ∀i = 1, ..., N .

Solid lines depicts theoretical values and markers show Monte
Carlo simulated estimates, based on simulating 200 sequences
with T = 100 per T0. We see that the simulations matches the
theory. An optimal policy performs the best and the greedy
policy performs close to optimal for most regions of T0.

Figure 3 shows the average cost versus r0 with ξ = 0.5 and
T0 = 1. Again, an optimal policy performs best followed by
the greedy policy.

V. CONCLUSION

This paper studied a scheduling problem for sensors ob-
serving multiple spatio-temporally dependent processes to be
communicated to remote estimators. At each time instant, the
scheduler broadcasts a limited number of sensor measurements
to the estimators. The scheduler cannot view the measurements
but decides the set of sensors based on the age-of-information.
We derived an optimal scheduling policy that achieves the
minimum average MSE over time by modeling the problem
as a finite state-MDP, with the AoI as a state variable. The

optimal scheduling policy results in a periodic scheduling
pattern.

REFERENCES

[1] M. Xia, V. Gupta, and P. J. Antsaklis, “Networked state estimation over
a shared communication medium,” IEEE Transactions on Automatic
Control, vol. 62, no. 4, pp. 1729–1741, Apr. 2017.
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