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Abstract

This thesis presents a computational investigation into the properties of a hybrid
model of self-propelled rod-like particles in 2D interacting via apolar alignment
and soft repulsion. So-called active particles represent a field of combined effort
from statistical physics and biology, and the model intends to combine aspects of
several previously studied models.

The simulated rods are modelled as straight continuous line segments surroun-
ded by a soft repulsive potential, leading to overdamped collisions and allowing
for dense clustering. Large ensembles of rods are simulated for long time inter-
vals and various parameter values to determine their associated steady states with
periodic boundary conditions and in a smooth channel.

Our simulations show a significant difference in qualitative behavior between
systems with varying rod anisotropies. Our results correlate well with earlier stud-
ies conducted with periodic boundary conditions, but suggest different phase be-
havior when confined to the channel. Notable observations include the formation
of a highly ordered boundary layer for short rods and the possibility of stable se-
gregated lane formation at subcritical densities for long rods. The nature of the
phase transition between these flow regimes may have applications in understand-
ing the self-sustained transport of microbial suspensions in confinement.
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Sammendrag

Denne oppgaven presenterer en numerisk undersøkelse av egenskapene til en hy-
bridmodell av selvdrevne stav-aktige partikler i 2D som vekselvirker via apolar
vinkeltilpasning og myk frastøtning. Såkalte aktive partikler representerer et kom-
binert fagfelt innen statistisk fysikk og biologi, og modellen er tiltenkt å kombinere
aspekter fra flere tidligere studerte modeller.

Stavene som blir simulert er modellerte som rette og kontinuerlige linestyk-
ker omringet av et mykt frastøtende potensial, som frembringer overdampede
vekselvirkninger gjennom kollisjoner, samt formasjon av tette klynger. Store en-
sembler av staver blir simulert over lange tidsintervaller og med forskjellige para-
meterverdier for å fastslå de tilhørende likevektstilstandene i periodiske grenseb-
etingelser og i en glatt kanal.

Våre simuleringer viser en betydelig forskjell i kvalitativ oppførsel mellom
systemer med ulik stav-anisotropi. Resultatene korrelerer godt med tidligere stud-
ier utført med periodiske grensebetingelser, men antyder forskjellige faseoppførsler
ved innesperring i kanalen. Merkverdige observasjoner inkluderer formasjon av
sterkt ordnede grenselag for korte staver, samt muligheten for formasjon av stabile
separerte hastighetsfelt for lange staver ved subkritiske tettheter. Faseovergangens
art kan bistå i vår forståelse av den selvdrevne transporten av mikroorganismer
ved innesperring.
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Chapter 1

Introduction

1.1 The mesoscopic scale

A lot of the matter that surrounds us does not possess the properties we normally
encounter in graduate-level physics. The field of solid state physics mainly deals
with precisely uniform crystalline solids, objects with long-range spatial order. On
the other end of the scale, fluid mechanics and statistical physics consider matter
made entirely of randomly structured liquids and gases. In the area linking these
fields, we encounter condensed matter systems which have gained much attention
among researchers as well as in industry. The term soft matter is used to describe
many of these systems, and are characterized by a asymmetries which generate
mechanical interactions at the microscale and manifest through interesting dy-
namics in the intermediate mesoscopic scale. These dynamics further influence
order and structure into the macroscale. Within the definition of soft matter we
find polymers, granular colloids and quite importantly, liquid crystals [1].

Physical matter might exist in various phases which exhibit different proper-
ties. We can separate these phases by characterizing them through a number of
order parameters: variables which quantify these properties and lets us make a
comparative analysis of their behavior. In general microscopic descriptions, or-
der is statistically controlled by the balance of entropy and stabilizing molecular
interactions. In the areas where this balance goes through drastic changes, we
observe phase transitions, either continuously or discontinuously. Discontinuous
phase transitions are characterized by large order parameter fluctuations. Mo-
lecular interactions characteristically reside in the microscopic domain, while the
order parameters can only be evaluated from the behavior of large condensed
systems at the meso- and macroscale.

1
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1.2 Active matter

1.2.1 Definition

In many ways, active matter encompasses an intersection of molecular dynam-
ics and biology. Most of the matter surrounding our everyday lives is passive, or
thermal - it naturally tends to reach a state of minimum free energy through ran-
dom thermodynamic processes. Of course, passive does not mean stationary and
non-changing. Systems may be driven out of thermodynamic equilibrium, be it
by boundary conditions, mechanical perturbations or electric, chemical or other
external gradients [2]. The processes that govern the behavior of such matter,
as well as the corresponding probability theory is well understood by statistical
mechanics. In active systems, however, the constituent particles characteristically
drive the system from equilibrium internally by converting an infinite ambient
energy source into self-propelled motion [3].

Canonical examples of living active matter include bacterial colonies and flocks
of birds. Of course, neither of these are in actual conflict with the laws of thermo-
dynamics. However, striking similarities in their collective motion across length
scales sparked interest among physicists in the late 20th century. This lead to the
emergence of multiple minimal models of synthetic active matter derived from
simple components such as directed self-propulsion and local alignment mechan-
isms. These irreversible process leads to the breaking of time reversal symmetry,
and thus thermodynamic equilibrium.

(a) (b)

Figure 1.1: Active matter: Self-propelled agents come in various shapes and sizes.
(a): Traffic jam in Seoul, South Korea. Image by Martin Sasse1. (b): Highly mag-
nified image of a subsurface colony of Pseudomonas aeruginosa, with a portion
(yellow) being a faster-moving genetically modified variant, showing separation
and collective motion of clusters. Image reused from [4].

1https://www.nrc.nl/nieuws/2006/09/06/auto-uit-korea-wordt-te-duur-11188762-a420907
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Active matter is composed of large numbers of active particles, a derivative
concept from the more abstract active agent. An agent takes its conceptual origin
from living beings, and generally describes a self-contained process that encapsu-
lates some state and changes this state through proactive and reactive interactions
with its environment and other agents. Large collections of agents realize a type
of so-called complex systems, a name earned due to the inability to easily deduce
their macroscopic behavior from the well-defined microscopic processes of the
agents [5]. Due to the advent of powerful computers, agent-based modelling has
in recent decades become a useful tool applied in both technology, economics and
information theory. For the purposes of the work presented here, we specifically
focus on classes of agents which do not deny their origin in the physical world,
and will refer to them simply as active particles for now.

The active particles contain some set of external and internal variables. In ad-
dition to the generic properties of self-propulsion, agents may interact with the
system through other specified rules. These interactions range from repulsive and
attractive forces to particle birth and death. Different rules may generate different
large-scale effects, such as cooperative or competitive behavior. From large mul-
tiagent systems we may observe the emergence of collective motion [6], agent
ecology and evolution [5], and to the formation of structures much larger than
the individual agents, such as topological defects [7]. The range of possible in-
teractions and boundary conditions are limitless, and active matter is a field still
being explored in a unified effort by both physicists and biologists.

Figure 1.2: Confined system: Magnified images of human endothelial cells con-
fined to a narrow channel. The collective migration of these cells are important
to the maintenance of the tissue lining the inner part of blood vessels. Adapted
from [8].
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1.2.2 Active phase transitions

Since its conception, theoretical and experimental work on multiagent active sys-
tems has spanned a large spectrum of sizes and complexities, from traffic flows
[9] to human crowds during mass events [10]. The main inspiration and most
notable application has been related to the study of coherently moving flocks of
animals and collections of cells [11]. Their physical commonality as active matter
allows us to make general statements about their dynamics. In addition to exhib-
iting interesting behavior at a large scale, varying the microscopic properties of
the system leads to new types of active phase transitions. The properties that drive
some of these transitions are still not fully understood, as opposed to the case of
most passive matter.

As a contribution, we conduct an investigation of how different microscopic in-
teractions and boundary conditions influence certain phase transitions. This thesis
will examine the properties of active particles confined to simple geometries, and
more specifically try to determine how particle shape affects the observed phase
behavior and the transitions between them. Dense collections of active particles
confined to special geometries are relevant to a wide range of contexts. As an
example, human cells within biological channels (e.g. blood vessels) have been
studied in order to determine the physics of tissue repair (see Figure 1.2). To
study the non-trivial physical phenomena that arise in active matter systems, we
first outline the components and implementation of common theoretical active
matter models. We later define a suitable model of elongated active rods with
which we perform discrete element simulations.

The remaining chapters of this thesis will present the following:

• Chapter 2 motivates and gives an introduction to computational active mat-
ter models and the theory related to their most important elements.

• Chapter 3 describes the practical considerations for the implementations of
these models.

• Chapter 4 presents results from simulations performed for systems with
chosen parameters and boundary conditions, as well as some statistical the-
ory related to the results.

• Chapter 5 summarizes the main conclusions to the problems in question,
and presents a discussion of the employed methodology.



Chapter 2

Models

2.1 Motivation

Even simple models are able to describe complex features of reality. As an example,
the Ising model of quantum spin ensembles is a simple, but revolutionary model
which can be made more complex step-by-step. The initial task of reducing an
observed phenomenon to its most basic components lets us consider each one in
order, making it easier to understand the whole picture.

Research, both theoretical and experimental within the field of active matter
can be complicated in the most simple situations. Setting up well-controlled ex-
periments on physical systems is difficult, as the number of influencing factors
may be hard to evaluate and control independently. In the case of microbiological
systems such as cells, the presence of external chemical gradients and genetic
factors are examples of issues with potentially large effects [12]. These necessit-
ate good descriptions in-and-of-themselves for observations to be useful. Experi-
mental work therefore often makes use of man-made micro- or nanoscopic objects
with known properties and parameters, such as vibrated granular materials. For
complete control, however, physical systems are replaced entirely by numerical
experiments. The advantages of this approach are numerous: Simulations can be
made as complex as one wishes and results may also be quickly produced and
directly compared to theory. The immense increase in power and accessibility of
computers has lead this being a highly relevant approach.

Areas concerned with complex systems such as molecular dynamics may make
great use of our increasingly fast and affordable computers, in addition to the
possibility of parallelization. Molecular dynamics requires that we keep track of
both positions and trajectories of particles. For simulations of condensed matter
in equilibrium, it is thus computationally more costly than methods based on the
thermodynamic averages, such as Monte Carlo methods [13]. Both are similar in
that molecules are treated as classically interacting particles, but differ in how
particles are moved about in time. For non-equilibrium simulations, particle- or
agent-based simulations are required when we want a detailed description of mi-
croscopic features [5], due to the difficulty of matching these to an analytic model.

5
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In terms of implementation, we want to compute equations of motion at the
level of each particle. We aim to study systems of suspended colloids where the
density and short-range interactions may induce phase separations that are im-
possible to achieve in continuum models. These include the motility-induced phase
separation and jamming transitions observed in the presence of self-propulsion
and short-range repulsion. The discrete particle model allows us to control each
element of the interactions and measure microscopic details of the states, giving
a realistic picture with easily interpreted physical features.

2.2 Classifying active particles

2.2.1 Symmetry and polarity

A large part of the interest surrounding active matter is how non-equilibrium in-
teractions may cause spontaneous self-organization of the systems. Going into the
microscopic details of how these interactions work can help us understand how
they drive these phase transitions. The primary questions is how the particles
themselves are structured. If particles are imagined as isotropic spheres in space,
we would naturally not expect the flocking behavior we see in groups of liv-
ing creatures. Anisotropies, such as complex shapes and directional interactions
can drive symmetry breaking and induce ordering [14]. In 2D space, we gener-
ally consider three typical ordering schemes: Ferromagnetic-like ordering of polar
particles with a distinct front and rear, where all the particles on average are
pointing in a fixed direction; Nematic ordering, seen in particles with an elong-
ated uniaxial symmetry; No orientational ordering, when particles are effectively
circular in shape [14]. The different ordered states do not, however, uniquely cor-
respond to each symmetry of particle pair interactions. Polar particles subject to
extremely short-range interactions may enter a dense stable nematic phase when
constrained by crowding [3] (see Figure 2.1). Likewise, strictly apolar interactions
can result in the formation of polar clusters of aligned particles due to activity-
induced separation. To make the distinction of these interactions clearer, we will
discuss these symmetries in detail.

2.2.2 Polar interactions

Polar particles are characterized by a distinct head-tail symmetry which defines
their orientation in space and in relation to other particles. For active particles,
this orientation generally defines their direction of self-propulsion and acts as the
principal mechanism of intermolecular interactions. The latter property is of sig-
nificant importance due to spontaneous breaking of rotational symmetry, leading
to large-scale systematic behavior in conjunction with active motion. The type
of intrinsic polarity assumed for this type of matter is often a simplified analogy
of biological processes, such as distinguishable "heads" (usually containing long-
range sensory organs) and "tails". In 2D, examples include herds of sheep con-
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fined to the surface of the Earth, and in 3D, a flock of birds. Polar interactions can
span a wide range of length and time scales. Ferromagnetic organization of polar
particles imitates the interaction of magnetic dipoles, where large-scale organiz-
ation stems from dipoles aligning with their neighbors to minimize energy. In the
case of non-equilibrium systems, the same self-organization have been shown in
in vitro studies of kinesin, a motor protein which moves along polar microtubules
from hydrolysis of ATP [15].

(a) (b) (c)

Figure 2.1: Polarity and ordering: Primary ordering schemes of particles with
different symmetry: (a): Polar ordering of polar particles, (b): Apolar (nematic)
ordering of polar particles, (c): Nematic ordering of apolar particles.

2.2.3 Active nematics

Nematic particles, or nematics, comprise a class of particles with properties dis-
tinctly different from particles with polar interactions. Their characteristic prop-
erties are closely associated with those of liquid crystals, which are composed of
symmetric, elongated molecules. Dense liquid crystals lack the regular structure
of solid crystals. Constituent atoms in crystals typically organize in periodic struc-
tures, forming solid bulks of robust matter. Nematics, on the other hand, form
amorphous or glassy solids at a critical temperature and density. Research into
colloidal nematic liquid crystals is plentiful, largely due to the popularity of liquid
crystal displays in modern electronics [16].

Nematic particles naturally interact via apolar interactions, leading to passive
alignment. The macroscopic ordering has an n= −n invariance of its mean orient-
ation. Non-equilibrium nematics can generate large number fluctuations similar
to polar systems through contextual active stresses, such as pushing or pulling
against other particles or the environment [17]. The nematically ordered phase
has major relevancy to the dynamics of dense collections of cells. Migrating cells
may spontaneously move in ”streams” during embryonic development or cancer
metastasis. This is usually attributed to cell-cell adhesions, but cells lacking stable
adhesions have been shown to order into a nematic phase and moving collectively
as a consequence [18].
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2.3 The Vicsek model

The Vicsek model, proposed in 1995 by T. Vicsek et al. [19], is an algorithm ori-
ginating in the early effort to mimic the non-equilibrium behavior of biological
systems. More specifically, the model intends to demonstrate the emergent phase
transitions of a system of self-propelled particles with polar ordering. The model
considers a system of N point particles in an L× L continuous 2D space with peri-
odic boundary conditions to emulate an infinite system. Each particle’s absolute
velocity v is kept constant, making their individual orientation with respect to the
x-axis, θi , the only parameter of their motion in the plane. The rule of the Vicsek
model is as follows: At each time step, the orientation of each particle is updated
to equal the average orientation of the particles in its neighborhood of radius R,
in addition to some random noise. A particle i described by its position ri and
velocity vi = vx̂cosθi + vŷsinθi moves in the plane by an Euler-step

ri(t +∆t) = ri(t) + vi(t)∆t (2.1)

= ri(t) + v∆tx̂ cosθi(t) + v∆t ŷ sinθi(t) (2.2)

and the particle’s direction of motion θi is calculated by

θi(t +∆t) = 〈θ j(t)〉|r j−ri |≤R +∆θi . (2.3)

The noise term ∆θi is generated from a uniform random probability distribu-
tion∆θi ∈ [−η/2,η/2], and represents an effective system temperature. The term
temperature is not strictly applicable to this type of non-equilibrium system; it is
only an intuitive interpretation of rotational diffusion. As this term corresponds to
a certain added angle, η is more intuitively represented as a multiple of π radi-
ans, and its value range is effectively restricted to η = [0, 2π] due to periodicity.
In the most extreme case, η= 2π, the particle may occasionally make a complete
reorientation regardless of the state of its neighborhood, making the orientation
θi completely uncorrelated in time. Some trigonometry is required to obtain the
averaged orientation 〈θ j(t)〉, which must be computed component-wise on the
unit circle. A visual summary of the Vicsek model is shown in Figure 2.2.

To quantify the phase transition of the system we will use the global average
velocity of the particles in the system as a general order parameter [19]

va =
1
N

�

�

�

N
∑

i=1

vi

�

�

�. (2.4)

A completely scrambled system with uniformly distributed orientations will cor-
respond to a minimum value of va = 0. Conversely, for an almost completely coher-
ently moving system, va ≈ 1. In the case that the particles are considered passive,
v = 0, the Vicsek model is identical to the 2D ferromagnetic Ising model, where
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Figure 2.2: Vicsek model: A particle calculates its new angle θ from the average
of its neighbors within |r j − ri | ≤ R, in addition to a noise term.

a random distribution of particle ”spins” corresponds to a high-energy configura-
tion of the system. These spins experience short-range interactions which depend
only on their relative orientations, and these interactions tend to align them to
their neighbors to minimize energy. Thermal forces also have an influence, and
similarly determine the equilibrium state of the system, where a zero-temperature
limit will correspond to a perfectly magnetized state at t →∞.

2.3.1 Simulations and results

In order to compare the simple Vicsek model with the more complex methods
used later, some simulations were run to see how some key properties of active
matter spring out from the models. These simulations do not constitute a rigorous
analysis of the model, we only want to make qualitative statements about the
properties of the model1.

Four separate simulations based on the Vicsek algorithm were carried out with
a particle number N = 1024 and system size L =

p
N = 32 with periodic boundary

conditions, resulting in particle number density ρ = 1. Noise parameters were
chosen to somewhat evenly sample the spectrum of possible values, including
the infinite-temperature limit η = 2π. The particle interaction radius was set to
R = 1; the time step length was set to ∆t = 10−2 and the active particle velocity
to v = 5. The length of the simulation was chosen to allow the system to reach a
steady state, and a total time of tmax = 6 ·103∆t was determined to be sufficient.
Figure 2.3 shows the measurements of the average velocity of the particles in the
system va as a function of running time t. Snapshots of the final states are shown
in Figure 2.4, giving a visual representation of how the noise affects the system
steady state.

1Note: The results in this section stem from simulations performed for my specialization project.
The data is thus of worse quality, but illustrate the behavior of simple active matter models.
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Figure 2.3: Order evolution: Average velocity va over time for four different values
of the noise intensity η. v = 5, N = 1024, ρ = 1. The transitional noise regime
between almost complete order for η = 0.1π and a disordered state for η = 2π
shows large order fluctuations around an apparent critical temperature.

2.3.2 Discussion

The evolution of the order parameter va shown in Figure 2.3 gives some good
insight into how the effective temperature of the system influences the transient
and steady state properties of the Vicsek systems. The system with η= 0.1π shows
the highest and most stable order, and is even at certain points at almost perfect
order. This makes sense, as less noise would make it easier for particles to stick
together once they are within the alignment radius R. However, since the noise is
nonzero, small clusters of particles occasionally split off and later recombine with
the main particle cluster within a short time. The total order thus remains stable
after the initial mass flocking of the system.

Systems with higher noise amplitudes are characterized by a decreasing cohe-
sion and lower total order as a result. An interesting observation from 2.3 is that
while all four systems are initiated in complete disorder, systems of higher noise
amplitudes seem to reach their steady state quicker than the less noisy systems.
This may be due to larger diffusive behavior in the particles, effectively increas-
ing their neighborhood of influence and causing quicker flocking, a point deemed
plausible by Vicsek himself [19]. As expected, for the system of infinite effective
temperature, η = 2π, the system maintains extremely high disorder and experi-
ences small fluctuations. The particles are practically unable to align themselves
to each other, as the reorientation is dominated by the noise.

In the noise regime between the two extreme states, the evolution of va is
characterized by large fluctuations. These fluctuations were predicted to be due
to a phase transition located at a critical effective temperature point. It was later
shown that the phase transition is in fact discontinuous [20]. The Vicsek model
demonstrates the descriptive ability of simple active matter models, and motivated
the development of more realistic models.
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(a) η= 0.1π. Highly ordered phase.
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(d) η= 2π. Isotropic phase.
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Figure 2.4: Ordering of aligning particles: (a-d): Snapshots of the final states of
active systems run with the Vicsek algorithm and different values for the noise
parameter η. N = 1024. Colors indicate orientation θi , mapped to (e).
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2.4 Brownian particles

In the introductory chapter, we defined the concept of an active agent and later
made observations from the simple, yet informative Vicsek model of active point
particles. We will now expand on the simplistic model and combine it with the
concept of a Brownian agent. In order to manifest more realistic behaviors in our
simulations of active systems, we need to model dynamics at more general time
and length scales. In the field of molecular dynamics, Brownian particles are of-
tentimes used as a reductionist model of the deterministic and stochastic processes
which drive the dynamics of particles at the microscale. Likewise, Brownian agent
models are used to represent a relatively simplistic form of agent for which one
can define a set of microscopic rules to excite large-scale behavior [5]. Observing
the emergent properties of the system rather than complex individual behavior
will allow for more general interpretations and applications of our model. Addi-
tionally, observing the system at this mesoscopic level allows us to investigate the
nature of the emergent phases of the system.

2.4.1 Passive Brownian particles

As an initial generalization of the Vicsek model, we consider the Newtonian ansatz
for an isotropic disk i with mass m centered in ri = ri(t) with orientation θi:

mr̈i = Fext + Fdrag + Fstoch, (2.5)

where Fext comprises any external (center-of-mass) forces, Fdrag = −γt mṙi de-
scribes a dissipative friction force and Fstoch is a time-dependent stochastic noise
term from random collisions between the disk and the momentum-absorbing solv-
ent medium [5]. From the fluctuation-dissipation theorem, the friction of the me-
dium and stochastic forces vanish on average, and we can write Fstoch as a force
with zero mean, strength Dt = kBT/γt and δ-correlated time dependence. Equa-
tion 2.5 then becomes [5]

mr̈i = Fext − γtṙi + γt

p

2Dtηi(t) (2.6)

〈ηi(t)〉= 0, 〈ηi(t) ·η j(t
′)〉= δi j δ(t − t ′),

describing a random diffusive walk, so-called Brownian motion. Although this
walk conserves orientation, the particle simultaneously experiences a rotational
force governed by rotational friction with the solvent medium, given by

I θ̈i = Mdrag = −γrθ̇i , (2.7)

We are mostly interested in the case where the friction terms containing γt,γr
completely cancel the forces at any point in time, leading to no net acceleration of
the system in time. This is justified by the fact that microscopic particles typically
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reside in the low-Reynolds-number regime [21], where viscous forces dominate
over inertial forces. In this overdamped approximation, we get

γtṙi = Fext + γt

p

2Dt η (2.8)

γrθ̇i = 0, (2.9)

commonly called the overdamped Langevin equations, in attribution of Paul Lange-
vin [22]. This defines the dynamics of a passive Brownian particle (PBP), where the
motion of the particle is determined by external forces and some random noise,
leading to purely diffusive behavior in the case that Fext = 0.

2.4.2 Active Brownian Particles

Continuing on the equations for passive Brownian particles, we include the mech-
anics that move these dynamics from the realm of equilibrium physics into one
of non-equilibrium. We impose a constant self-propulsion force on each particle,
where the energy to drive the propulsion is supplied continuously and irreversibly
to counteract friction. The self-driving force Fp acts along the particle’s polarity,
propelling it at a velocity vpei = vp(x̂ cosθi + ŷ sinθi), where vp = Fp/γt.

By including the self-driving force, the new system of active Brownian particles
(ABPs) is characterized by the particle density ρ and temperature Dt in addition
to two new control parameters, namely the persistence time of the active force
and its strength [2]. The particles will move along their long axis and experience
small random perturbations as they move. We can assume that in most cases, the
constant driving velocity vp will significantly dominate the diffusion of the thermal
noise [23]. In order to preserve the diffusive behavior of the Brownian particle, we
move the stochastic noise term from the translational equation and into the rota-
tional one, creating a persistent random walk similar to the Vicsek model. By neg-
lecting the translational effects of temperature, we simplify the parameter space
and now control the persistence time of the particle’s motion through the rota-
tional diffusion coefficient Dr.

We expand Fext to only include a lateral pairwise force acting in the particle’s
center-of-mass from other ABPs in the system. From this point we also add to our
model that the ABPs may gain rotational energy Mi j from some similar torque-
like interaction. If neither of these interactions pertain to solvent-mediated hy-
drodynamic effects caused by flows from particle motion, this characterizes dry
active matter [3], systems without momentum conservation. We are then left with
the updated equations

ṙi =
1
γt

N
∑

j 6=i

Fi j + vpei (2.10)
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θ̇i =
1
γr

N
∑

j 6=i

Mi j +
p

2Dr ξ (2.11)

〈ξi(t)〉= 0, 〈ξi(t)ξ j(t
′)〉= δi j δ(t − t ′). (2.12)

In 2D and 3D, the gradual reorientation of such ABPs has been shown to be
equivalent with another class of active particle models, so-called run-and-tumble
particles (RTP), where the particle moves persistently and occasionally reorients
by Poisson-distributed ”tumbles”. This swimming strategy is observed in the mo-
tion of common bacteria, such as E. coli [24]. In cases where the motility para-
meters are independent of ei , the random-walk with diffusivity Dr can be seen as
a continuous equivalent of the sudden reorientations of RTPs [25], despite their
difference in the short-time dynamics.

2.4.3 Repulsive forces

With the equations of motion of the individual ABPs laid out, we turn our focus
to the details of the interactions between particle pairs. In the Vicsek model, this
interaction was limited to systematically conform the orientations of particles to
neighbors within a specified region. This rule does not, however, restrict the pos-
sible positions of particles within the system. Local particle densities may then
grow arbitrarily large, leading to difficulty in making statements about the size of
the system.

If we assume that particles are impenetrable objects of finite size, we can im-
plement a passive area exclusion interaction, a so-called steric interaction [6]. For
circular particles of radius R, the simplest and most intuitive solution is to enforce
a rule of some maximal interparticle distance σ = 2R. We interpret this as a dis-
continuous infinite potential barrier surrounding each point-particle, exerting a
force in each particle’s center-of-mass. This hard-center model is unsuited for nu-
merics with finite time steps, as this potential will abruptly exert an infinite force
on particles for center-to-center distances r < σ. To mitigate this issue, we instead
use a soft continuous potential with a finite gradient that is more repulsive the
closer the particles are to each other. The force is thus reduced to a more practical
size for the simulations. Additionally, as we will discover in the consideration of
particle shape, this center-of-mass separation mechanism may be simultaneously
used to determine rotational interactions. It also impacts system parameters such
as density. The details of this mechanism is therefore important to the dynamics
of the system, necessitating deliberation when choosing the appropriate model.

Examples of soft passive interaction include a spring model [26], where the
repulsion is modelled by a spring pulling the particles normally away from each
other, and exponential potentials such as the Yukawa potential [27]. Perhaps the
most extensively used model for a realistic intermolecular potential is the Lennard-
Jones potential [28]. In the original formulation of the Lennard-Jones potential



Chapter 2: Models 15

(commonly called the 12-6-potential), the magnitude of the potential for two
particles with a center-to-center distance r is given by

ULJ(r) = 4ε

�

�σ

r

�12
−
�σ

r

�6
�

. (2.13)

Here, σ denotes the effective diameter of each particle in the dimensions of
length, and ε has dimensions of energy [29]. The potential is zero for r = σ, sep-
arating two regions of attraction and repulsion for r > σ and r < σ, respectively.
The short-range r−12 part describes repulsion due to the Pauli exclusion principle,
and the r−6 part is an attractive term inspired by induced electrostatic forces. As
we are only interested in the repulsive part of this potential, we split it at its min-
imum U(rmin) = −ε, raise the minimum value to U(rmin) and enforce U(r) = 0
for r > rmin. This new truncated potential is commonly called the Weeks-Chandler-
Andersen (WCA) potential [30]

UWCA(r) =







4ε

�

�

σ
r

�12
−
�

σ
r

�6
�

+ ε, r ≤ r0

0, r > r0.
(2.14)

For the simulations in this work, high densities might lead to large forces if a
particle experiences forces from many directions. The r−12-term acts quite quickly,
which comes with a rather large risk of causing numerical issues. As a preventative
solution, reducing the exponents from 12-6 to 6-3 drastically reduces this risk.
Because the 12-6 exponents are somewhat arbitrary, we are free to choose the
softer potential as long as we can define an effective size of the particles. The 6-3
modified WCA-potential becomes

Urep(r) =







4ε

�
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σ
r

�6
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σ
r
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+ ε, r ≤ r0

0, r > r0.
(2.15)

The force acting on a particle within this potential along the center-to-center
direction r is then given by the derivative Frep(r) = −∂r Urep(r)r̂:

Frep(r) =







4ε

�

6
r

�

σ
r

�6
− 3

r

�

σ
r
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�

r̂, r ≤ r0

0, r > r0.
(2.16)

Solving for Frep(r) = −∂r Urep(r) = 0 gives a value of r0 = 21/3σ ≈ 1.26σ, the
cut-off radius for the modified WCA-potential, where the repulsive forces become
non-zero. By this transformation, what we called the effective diameter σ is now
the point at which the potential is U = ε. With the truncated WCA-potential, r0
can thus be regarded as the new ”de facto” diameter of the soft particles. The
original Lennard-Jones potential and the modified WCA-potential are shown in
Figure 2.5.
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Figure 2.5: Repulsive potential: (a): Original Lennard-Jones potential and the
modified truncated WCA-potentials. By lifting the potential by ε, the U = 0-point
is shifted from σ to r0. (b): Forces calculated from the radial derivatives of (a),
showing the softer slope of the modified potential Urep.

2.5 Active Brownian rods

2.5.1 Particle shape

As discussed in Section 2.2, the symmetries associated with the pairwise interac-
tions are critical considerations which strongly influence how systems of particles
evolve and behave mechanically. This is particularly significant in the high-density
regime, where frequent collisions within clusters dominate the dynamics. If we
narrow our focus to apolar grains, we still face an enormous range of possibility
in terms of particle shape [31]. The shape we consider must ideally meet several
criteria depending on the context of our model. If we require that the particles are
effectively aspherical, as is typical in the study of active matter, we need a way of
controlling the asphericity. Furthermore, any other anisotropies should be char-
acterized by a minimal number of parameters to maintain a manageable amount
of parameters.
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Perhaps most importantly, the shape should allow for accurate and efficient
calculations of contact distances between particles to determine the magnitude
of distance-dependent forces. In both 2D and 3D, using ellipsoidal particles is a
tempting option, due to their simple mathematical description. Calculating the
contact distance between two ellipsoids in arbitrary configurations is, however,
quite complicated [31]. Popular solutions to this issue involve approximating el-
lipsoids by constructing rigid polymers of multiple perfect spheres [32] or as
smooth spherocylinders [33].

(a) (b)

Figure 2.6: Rod models: Schematic representation of two prominent constructed
rod models, the rigid n-mer rod (a) and the line segment rod (b). Both may be
used to approximate short ellipsoids and longer filaments, as well as allowing for
simple collision calculations.

2.5.2 Linear rod model

Because we want to make our model as applicable as possible to the context of
microbiology, we choose to consider a model of smooth anisotropic self-propelled
rods. Previous studies have examined models of flexible rods, but due to the ex-
panded parameter space, we will focus on rigid, linear rods. These are constructed
from a straight line segment of length l surrounded by a repulsive potential with
a cut-off diameter of length r0 = 21/3σ. The continuous inner line segment lets
us neglect friction from the varying rod thickness we might otherwise expect in
models based on chains of discrete spheres. In the high-density regime, then, we
can disregard effects caused by this somewhat unnatural geometry. Usingσ as the
effective rod width, the shape is characterized by the rod aspect ratio [33]

A=
l
σ
+ 1. (2.17)

The rods may thus approximate the shape of ellipsoids for small values of A and
longer filaments for large A.
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The dynamics of the rods will be based on the equations for ABPs. Due to the
particles now being modelled as anisometric rods, the viscous friction coefficients
of the forces parallel and perpendicular to the rod axis are no longer equal. For a
straight rod with diameter σ and length Aσ dragged through a fluid with a force
F, the flow in the low-Reynolds number regime is given by the linear equation

F= γ · ṙ (2.18)

In the long and slender-limit A→∞, the friction coefficient in the long axis
direction is half as big as for movement normal to it [34]. In 2D, this yields the
friction matrix

γ=

�

γ‖ 0

0 γ⊥

�

=

�

γ‖ 0

0 2γ‖

�

, (2.19)

where γ‖ = Aσγ0. The rotational friction coefficient is given by γr = A2σ2γ‖/6
[33]. We now decompose the translational equation 2.10 to treat these axes of
movement separately:

ṙi,‖ =
1
γ‖

� N
∑

j 6=i

Fi j,‖ + Fp

�

(2.20)

ṙi,⊥ =
1
γ⊥

N
∑

j 6=i

Fi j,⊥, (2.21)

and along with the rotational motion by equation 2.11, these three equations form
the complete equations of motion for an individual active Brownian rod (ABR). The
self-propulsion speed now takes the form vp = Fp/γ‖ and the collision-induced
rotational energy term Mi j in equation 2.11 is defined by the cross-product

Mi j =
�

a(ri , r j;θi ,θ j)ei × Fi j,⊥

�

· n̂. (2.22)

Here, a ∈ (−l/2, l/2) is the distance from the center-of-mass of rod i to the point
where the force Fi j,⊥ from rod j is exerted and n̂ is the normal vector of the 2D
plane. The method of calculating a, as well as an illustration of the forces involved,
is shown Section 3.3.

In summary, the computational model outlined in this section defines the dy-
namics of an elongated apolar ABR characterized by its aspect ratio A. The state of
the rod is given by its 2D center-of-mass position ri , its velocity ṙi and its polarity
ei = x̂ cosθi + ŷ sinθi . It is internally driven by a force Fp along its polarity, while
subject to rotational diffusion with strength Dr. During collisions with other rods,
it experiences center-of-mass translational and rotational forces depending on the
distance of contact, as well as the point and angle of incidence. The next chapter
will present the method of model implementation and discuss the parameters as-
sociated with the numerical experiments.
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Simulating Active Brownian Rods

3.1 Computer implementation

The main suite of programs used to simulate our systems were implemented in
C++, a high-level programming language compatible with object-oriented simu-
lation. The agent-based approach of our active particle model is object-oriented by
definition [5], making this an appropriate paradigm for practical implementation.
As a compiled language, C++ is typically much faster compared to interpreted
languages such as Python. The code is optimized further using multithread par-
allelization using the OpenMP extension. This allows simulations of a high num-
ber of particles to be performed on standard computer hardware with reasonable
runtimes. Object-oriented simulation is a particularly suitable method for paral-
lelized molecular dynamics computations, as the work load is organized in easily
divisible chunks that are distributed across multiple processor nodes. Tasks con-
tained in each chunk are performed in a serial manner, including the calculation
of new variables and integrating the equations of motion, the details of which will
be presented in a later section.

All the simulations for this thesis were performed on standard home com-
puters, although creating a framework for running the software on external hard-
ware would have allowed for major improvements in total runtime. In this case,
an increased number of simultaneous simulations could have been conducted in
order to gather better statistics overall. However, with optimizations in form of
code parallelization and rewriting functions to more efficiently calculate quantit-
ies such as the intermolecular distance between rods, we could perform simula-
tions of N ' 2 · 103 for relatively long system-time intervals t ∼ 300τ in about
two hours of real runtime. Other optimization alternatives and information re-
lated to the practical implementation of the methods in this chapter is described
in Appendix A.

19
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3.2 Units and parameters

3.2.1 Persistence number

We start by considering the motion of a single rod obeying the ABR equations
2.20, 2.21 and 2.11. In the absence of other rods, we can neglect the transverse
velocity, as Fi j represents an exclusively pairwise interaction. From the rotational
noise term defined in equation 2.12, the orientational correlation function for the
rod is given by [30]

〈ei(t) · ei(0)〉= e−t/τr (3.1)

where τr = 1/Dr is the persistence time of the particle’s orientation, quantifying
the average length of time θi is self-correlated. Lower rotational noise naturally
corresponds to large values ofτr, and we expect this time scale to approach infinity
in the limit Dr → 0, as was discussed earlier in the context of the Vicsek model.
Because we are mainly interested in the low effective-temperature regime, the τr
time scale is unsuitable as our time characteristic. Instead, we consider the ballistic
movement of the rod from equation 2.20, namely the self-propulsion speed vp. We
define the ballistic time scale [30]

τ=
σ

vp
=
σγ‖

Fp
. (3.2)

This represents the length of time a rod uses to travel a length equal to its width
σ at vp. We can now characterize the interplay of translational and rotational
motion by comparing the two time scales. We define a persistence number as

Per =
τr

τ
=

Fp

σγ‖Dr
. (3.3)

This commonly goes by its alternative name, the (rotational) Péclet number, but
”persistence number” may be less ambiguous as to its physical meaning. In units
of rod width σ, this number defines the persistence length SPe = Perσ over which
an active rod has typically lost all information about its initial orientation [30].
Values of Per� 1 represent the low-temperature domain, where the dynamics of
the rod is dominated by translational movement. In the opposite case Per� 1, we
will expect more chaotic motion and a slower average drift velocity. Examples of
random walks with different values of Per are shown in Figure 3.1.

Usual values for Per are largely dependent on the application of the model. Due
to being associated with a characteristic distance of a particle’s random walk, it is
most relevant if directly compared to the size of a finite system. Low values gen-
erally correspond to negligible dynamical changes between weakly constrained
and unconstrained systems, as these are unlikely to occupy a large area of influ-
ence. However, for magnitudes of Per from O(102), rotational diffusion is strong
enough to significantly affect the trajectories of interacting particles with charac-
teristic size σ [35].
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Figure 3.1: Persistence and diffusion: Positions of three independent ABRs (A= 4)
tracked for a distance S = 100σ (∆t = 0.01τ), each with different values of
Per, showing the different random walk behavior. Increased noise shortens the
persistence length, hence slowing the average drift from the initial position.

3.2.2 Strength of the repulsive interaction

While we defined the persistence number Per, the set of equations describing the
dynamics of our ABRs still contains three different energy scales: One each asso-
ciated with the self-propulsion energy Fpσ, the rotational diffusion Per and the
height of the repulsive potential ε. Similar to how Per relates the rotational diffu-
sion to the strength of self-propulsion, we can define a single parameter to let us
forget about the size of Fp entirely, and focus on the strength of the intermolecular
forces acting between rods. Using the ballistic time scale τ defined by equation
3.2 as our time unit, we can express any time stamp as a dimensionless multiple
of this unit, t = t̃τ. Along with the reduced length r = r̃σ, we can reduce the
translational ABR equations 2.20 and 2.21 to their dimensionless form:

σ
∂ r̃i,‖

∂ ( t̃τ)
=

1
γ‖

N
∑

j 6=i

Fi j,‖ +
1
γ‖

Fp

⇔
∂ r̃i,‖

∂ t̃
=

1
vpγ‖

N
∑

j 6=i

Fi j,‖ + 1

(3.4)

σ
∂ r̃i,⊥

∂ ( t̃τ)
=

1
γ⊥

N
∑

j 6=i

Fi j,⊥

⇔
∂ r̃i,⊥

∂ t̃
=

1
2vpγ‖

N
∑

j 6=i

Fi j,⊥.

(3.5)
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We obtain the dimensionless form of the repulsive force components Fi j,‖, Fi j,⊥
by inserting the dimensionless variables into the potential in equation 2.15

Urep(r̃) = 4ε

�

�1
r̃

�6
−
�1

r̃

�3
�

+ ε, (3.6)

yielding the repulsive force

Frep(r̃) = −
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(3.7)

When inserted back into equation 3.4, we obtain the fully reduced translational
equation for the main axis direction

∂

∂ t̃
r̃i,‖ =

ε

σvpγ‖

N
∑

j 6=i

F̃i j,‖ + 1 = β
N
∑

j 6=i

F̃i j,‖ + 1, (3.8)

which contains only a single parameter β ≡ ε/σvpγ‖ = ε/Fpσ. By changing
this parameter, we can control how the magnitude of the translational forces act-
ing on the rods compare to each other. If we disregard changing the active driving
force, we can interpret β as a comparative measure of the repulsion and trans-
lational friction γ‖. β � 1 corresponds to softer collisions dominated by friction.
For motion perpendicular to the rod axis, friction is doubled, and we get a similar
equation from equation 3.5

∂

∂ t̃
r̃i,⊥ =

β

2

N
∑

j 6=i

F̃i j,⊥. (3.9)

3.2.3 Particle number

One of the most important subjects with regard to system realization is the particle
number N used for each simulation. The main considerations here is to minim-
ize the effects that a finite system size has on the results, all while being able to
perform the calculations in a reasonable time. Regardless of anyone’s definitions
of reasonable, being able to make adjustments to the experiment and get useful
results in hours rather than days contributes greatly to quality-of-life. Finding the
balance between practicality and result quality is a universal challenge for com-
putational work in scientific fields.

A computer implementation of the model will consider each particle to calcu-
late interactions, making the total runtime scale by O(N2)1. Thus, a small particle
number is preferred to avoid long runtimes. With the current state of computer

1This can be reduced to O(N) through the use of cell list algorithms, see Appendix A.
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hardware speeds, particle numbers of magnitudes between N = 102 − 104 seem
to have been the predominant choice in much of published research [23]. Larger
numbers are required if we extend our implementation to 3D, typically by a factor
N3/2. Using a higher particle number in high-density systems is common due to
the increased correlation length of particle variables. In earlier studies of ABRs at
high densities, the steady state order parameters have been observed to be robust
with respect to changes in N as long as N is of at least O(104) [27].

3.2.4 Effective area fraction

In the section concerning the Vicsek model, we used the number density ρ as the
parameter of the system density. In that model, particles were treated as point-
like particles of zero spatial extent. This is not the case for the ABP and ABR
models, as repulsive interactions enforce separation between individual particles.
As a more suitable density parameter, we will instead use the effective area- or
packing fraction: The total fraction of the system area occupied by the particles.
For circular particles, we use the effective diameter of the particles σ to define
the effective area π(σ/2)2. For a square system of dimensions L× L containing N
particles, the packing fraction of the system is thus given by

φcirc =
π

4
Nσ2

L2
. (3.10)

We intend to simulate systems of rods with A > 1, and thus the area of each
particle needs to include the rectangular central segment. The generalized area
fraction then becomes

φrod =
Nσ (l + π

4σ)

L2
=

Nσ2 (A+ π
4 − 1)

L2
. (3.11)

Naturally, φrod = φcirc for A= 1. It is important to point out that we consider soft
particles with no well-defined dimensions. Depending on the potential we use,
the effective area fraction may exceed φ > 1, an effectively over-compressed sys-
tem. As previously discussed, defining the effective rod width as σ is a somewhat
arbitrary choice. However, as Urep(σ) = ε, we still conserve a form of generality.

3.3 Calculating repulsive forces

During a single collision, the forces between rods pairs will act reciprocally due to
symmetry, Fi j = −F ji . By recognizing this, half of the computational cost may be
saved by only calculating the contact forces of specific pairs once. The question
then becomes how to calculate the magnitude of Fi j .

The task of calculating the repulsive forces between segmented particles such
as in the rigid polymer model is rather intuitive in comparison, no doubt contrib-
uting to its popularity. For simplicity, we assume that the intermolecular forces
between pairs of rods depend only on the shortest distance rc between the two,
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regardless of the total area of overlap [33]. The repulsive force then acts sym-
metrically in the centers-of-mass with a magnitude determined by this shortest
distance. In a scenario where two rods are perfectly aligned, these points are not
uniquely defined. With a floating-point machine epsilon of εm ∼ 10−16, we can
neglect the possibility of this occurring. The problem is then simplified by one
important observation: When computing the shortest distance points of two non-
overlapping line segments, at least one of the contact points is an end-point of
one of the line segments [36]. The second point is determined by computing the
projection of the primary contact point onto the second line segment. Or, if the
projected point is beyond the segment, take the nearest end-point and finally com-
pute the distance between the obtained point pair.

The algorithm for finding the shortest distance between two rods i and j needs
to be performed only once for a rod pair (i, j). For each pair, all four end-points and
their corresponding contact points are calculated and compared, with the shortest
being selected to determine the force vector Fi j . A schematic of the interaction
forces is shown in Figure 3.2.

Figure 3.2: Rod interaction: Schematic of the interaction of a pairwise rod colli-
sion, showing the center-of-mass translational forces and accompanying rotation.

3.4 Integrating the equations of motion

Because we simulate our active systems with computers, we require a method of
approximating the solutions to the equations of motion from Sections 2.4 and 2.5.
Unlike purely deterministic differential equations, our set of equations are partly
stochastic; they contain a random element in the form of the rotational diffusion
term

Æ

2D̃rξ. Finding the solution to these equations is therefore reminiscent of
Monte Carlo simulations, in that we observe statistical averages (e.g. diffusion)
emerge from individual realizations from some probability distribution. From the
longitudinal and transverse velocity components given by the first-order equa-
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tions 2.20 and 2.21, we obtain the new positions of every rod by calculating their
change at a finite number of points in time. This method requires discretization of
time ∆t = ∆ t̃τ to calculate new trajectories and positions. A simple approxima-
tion of the solution can be found by using the first-order Euler-Maruyama scheme

r̃i,x( t̃ +∆ t̃) = r̃i,x( t̃) +∆ t̃ cosθi β
�

N
∑

j 6=i

F̃i j,‖ + 1
�

−∆ t̃ sinθi
β

2

N
∑

j 6=i

F̃i j,⊥

r̃i,y( t̃ +∆ t̃) = r̃i,y( t̃) +∆ t̃ sinθi β
�

N
∑

j 6=i

F̃i j,‖ + 1
�

+∆ t̃ cosθi
β

2

N
∑

j 6=i

F̃i j,⊥,

(3.12)

for t̃0 ≤ t̃ ≤ t̃max. These equations of course assume that every particle has an
identical internal self-propulsion force generating a swim speed vp = σ/τ along
ei , but this term is thrown out for passive particles. From the dimensionless form
of the rotational equation of motion 2.11

∂

∂ t̃
θi =

ετ

γr

N
∑

j 6=i

M̃i j +
q

2D̃rξ( t̃), (3.13)

with D̃r = Drτ. We similarly integrate the stochastic differential equation for
∂ t̃θi , using the time step

p
∆ t̃, as the rotational diffusion makes each position

coordinate change proportionally to
p

t̃ [34]

θi( t̃ +∆ t̃) = θi( t̃) +∆ t̃
6β
A2

N
∑

j 6=i

M̃i j +
q

2D̃r∆ t̃ξ( t̃). (3.14)

〈ξi( t̃)〉= 0, 〈ξi( t̃)ξ j( t̃
′)〉= δi jδ( t̃ − t̃ ′)

Due to being a first-order method, the Euler-Maruyama scheme has an error of
O(∆ t̃2) [34], meaning that it is accurate to O(∆ t̃). It approximates the solution in
an unsymmetric way, as only the derivative at the beginning of the time interval
∆ t̃ is considered for the trajectory calculation. Another problem with this first-
order scheme is that accuracy is only improved by using a smaller time step ∆ t̃.
Complete convergence of the solution is after all asymptotic, which only holds for
∆ t̃ → 0. Decreasing the time step does however proportionally increase computa-
tional runtime. Accuracy may be improved otherwise by using multistep-methods
such as the Runge-Kutta methods, which uses information at several time stamps
for the approximation. By doing this, these methods may gain accuracy in the
range of O(∆ t̃3) to O(∆ t̃5). However, the stochastic element of the equations
pose an issue for higher-order methods, especially when noise is dominant. Be-
cause we have to rely on this not being the case, the Euler-Maruyama scheme is
usually sufficient, and thus one of the most commonly used methods. Improved
methods such as the Adams-Bashforth method improve stability by using an im-
plicit scheme, although it is still first-order accurate for the stochastic noise.



Chapter 4

Investigating steady state of
dense ABR systems

4.1 Non-equilibrium jamming transition

As mentioned in the introductory chapters, much of the interest surrounding act-
ive matter systems is related to the non-equilibrium phase transitions associated
with them. Specifically with regard to dense systems, their comparison to the glass
transition observed for passive systems. This transition is observed when freely
flowing thermal particles experience a dramatic slowdown at critical densities
and temperature [2]. Although active systems are not at thermodynamic equilib-
rium due to self-propulsion, ABP systems possess a non-equilibrium steady state
for densities lower than the critical density for the glass transition [2]. Below
this density, we find a partially liquid-like flowing system sustained by the self-
propulsion of the active particles.

As particles come into contact and create regions of high density, the motion
of individual particles within these regions is inhibited. As this dynamical arrest
becomes system-wide, we observe a phase transition into a jammed solid-like state.
The equilibrium equivalent phase transition is the glass transition, where high
densities and low noise gives the bulk material solid-like properties when subject
to external forces [6]. Unlike in the passive case, the active jamming phenomenon
is not fully understood in terms of the few parameters of temperature and density,
and the nature of the transition has been related to both non-equilibrium particle
interactions and boundary conditions.

We conduct an investigation to characterize the flow-jamming transitions of
active particles with the model and parameters outlined in previous chapters, with
most attention given to the rod aspect ratio A and the effective area fraction φ.
The initial task will be to make general observations from the model, and make
comparison with earlier findings of similar setups.

26



Chapter 4: Investigating steady state of dense ABR systems 27

4.1.1 Effective diffusion of ABRs

In the first practical implementation of the ABR model outlined in Chapter 2,
we examine the properties of a system of short rods in periodic boundary con-
ditions, similarly to the treatment of the Vicsek model. With the now extensive
rods, the nature of the interparticle interactions are completely different. Colli-
sions between rods will cause rods to speed up, slow down or rotate, generating
behavior which may differ noticeably depending on certain system parameters.
The frequency of these collisions is determined primarily by the effective area
fraction φ, and so we want to understand how the density impacts the dynamics
of an ABR system.

In order to quantitatively describe the dynamics of a system, we can use the
mean squared displacement (MSD), defined by the ensemble average [30]

MSD≡ 〈|r(t)− r0|2〉=
1
N

N
∑

i=1

|r(i)(t)− r(i)0 |
2, (4.1)

where r0 is the reference position of particle i at t = 0. By tracking the particle
ensemble in time, we can make some general remarks about its collective mo-
tion from this reference state. The MSD defines an effective diffusion coefficient
Deff for the ensemble [30]. Expanding equation 4.1 for 2D movement of a single
independent ABR obeying equations 2.20 and 2.11 we get the expression for
〈|r(t)− r0|2〉= 〈∆r2(t)〉

〈∆r2(t)〉= v2
pτr t −

v2
pτ

2
r

2

�

1− e−2t/τr
�

, (4.2)

which we for convenience and clarity can rewrite to the dimensionless form

σ2〈∆r̃2( t̃)〉= v2
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�
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(4.3)

For times small compared to the persistence time, t̃ � Per, this expression
reduces to 〈∆r̃2( t̃)〉= t̃2. Because the self-propulsion of the rod is linear in time,
the trajectory is ballistic (MSD ∼ t̃2) at these small times. In the long time limit
t̃ � Per, the MSD is approximated by 〈∆r̃2( t̃)〉= Per t̃. Rotational diffusion leads
to randomization in the direction of the self-propulsion, and the result is a diffusive
trajectory (MSD ∼ t̃). From measuring the mean squared displacement, we can
define an effective diffusion coefficient D̃eff for the system by

〈∆r̃2( t̃)〉= 4D̃eff t̃.

⇔ D̃eff =
〈∆r̃2( t̃)〉

4 t̃

(4.4)

In transient systems, the effective diffusion constant Deff cannot be assumed
constant, because the time dependency of the correlation functions.
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4.2 Summary of system parameters

Table 4.1

Quantity Symbol Dimensions Dim.less form Value

Rod number N 1 N 1200-2400

Rod width σ L 1 Length unit

Rod aspect ratio A 1 A 2,4, 6 or 10

Potential energy ε GL3 β = ε
Fpσ

0.1

Friction coefficient γ0 GT 1 Modulus unit

Self-propulsion force Fp GL2 1 Time unit

Rot. diff. coefficient Dr T−1 Per =
Fp

Aσ2γ0Dr
To be varied

Effective area fraction φ 1 φ To be varied

Table 4.1 summarizes the parameters derived in Section 3.2. For the simulations
we therefore operate with the parameter space {A,β , Per,φ}. Because we con-
trol for area fraction φ instead of N , this number fluctuates in the range N ∈
[1200, 2400]. Instead of having a dedicated alignment strength parameter, which
is necessary in models of isotropic particles emulating alignment [37], the rod as-
pect ratio A acts as an effective alignment strength parameter for our model [38].
The self-propulsion force Fp, our unit of force, both defines the time unit though
the active velocity vp and the energy scale Fpσ. Using the value β = 0.1 for the di-
mensionless repulsion strength parameter was selected after running tests of the
system and was shown to provide better stability for longer rods, due to reducing
the magnitude of the alignment torque. Since the high-density characteristics of
the system has an unknown dependency on the repulsion strength, we prioritize
staying consistent even though this value could safely be larger for short rods.

4.2.1 Rod aspect ratio

For the spherocylindrical model we chose to represent the ABRs in Chapter 2 to be
of any use, we should make an informed decision of which values of the rod aspect
ratio A we consider in our simulations. We ideally want to cover a wide range
of values to adequately explore the phase behavior. It is known that the phase
behavior of elongated particles is qualitatively different from spherical ones, even
when the asphericity ∆A = O(10−6) [39]. In this range, special theory will be
needed for adequate description. As a more general low-aspect case, we choose
A= 2 to be the minimum asphericity.

Intermediate ratio values, A∼ 5 have been used in models of dense layers of
bacteria [4]. Separating this range into A = 4 and A = 6 will allow us to more
easily spot differences within characteristically similar steady states, as well as
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offering better data continuity. The value A = 6 has also been used in studies of
nematically ordering vibrated copper wire segments [40].

We will make an additional investigation of rods with aspect ratio A= 10. Al-
though this represents a rather extreme case of particle anisotropy, it is not one
overlooked in active matter literature. Earlier studies have investigated arrange-
ments of human melanocytes [41], pigment skin cells about 100µm in length.
However, these are naturally flexible, meaning that a rigid rod model may be
overly reductionist in this biological context. Lengths exceeding A> 10 are typic-
ally used in simulations of elastic flagella [38] where hydrodynamic interactions
play an important role. These cases are therefore beyond the scope of this thesis.

4.3 ABRs in periodic domain

Large systems of rods with aspect ratio A = 4 were run for different values of
φ, and the MSD was measured for a t̃ = 100 time interval (∆ t̃ = 10−3) after
an equally long initialization phase1. Given the effective size of the system, these
relaxation times are required for the system to enter a steady state and avoid meas-
urements in the transient period. The persistence number is fixed to Per = 103,
corresponding to an extremely low noise regime. As observed in simulations of
the Vicsek model, low noise promotes a higher degree of clustering and ordering.
This value will ensure that we can attribute the observed behavior mainly to the
overdamped interactions between rods. The measured MSD is shown in Figure
4.1(a) and state snapshots of some of the systems are shown in Figure 4.2.

4.3.1 Ordering and flocking

After starting from a highly ordered initial state, the rods quickly form small
clusters as they begin to collide with each other. Unlike the unlimited density
of clusters we can observe in the Vicsek model, the repulsive forces between rods
create a competition of attraction and repulsion [42]. Because of the long persist-
ence length Perσ = 103σ in comparison to the system size L ∼ 102σ, the breakup
rate for these clusters is long, meaning that they too persist for long periods of
time. This in turn lets clusters live long enough to collide and merge with other
clusters. The clustering and flocking behavior is an example of motility-induced
phase separation, a separation phenomenon observed universally in self-propelled
repulsive particles, even in systems without extrinsic alignment [14].

Visual inspection of Figures 4.2 and 4.3 shows that the ordering scheme of the
elongated rods seems to be one characterized by a smectic phase, a mesomorphic
phase characterized by a 1D translational correlation between ordered rods [1].
This manifests as long bands of packed rods with widths commonly exceeding
multiple rod lengths Aσ. The bands may then combine in a zipper-like manner
with other similarly oriented bands and create regions of highly ordered grid-like

1See appendix A for a detailed description of the system initialization.
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configurations. This is a result of the special geometry of the spherocylindical rods,
as rods tend to align more strictly to their neighbors as opposed to ellipsoidal rods.
Rods with reverse orientation may become trapped within bands if restricted by
the local density. The average width of bands with continuous polarity thus seems
to increase from lower to moderate density, as the increased collision frequency
leads to higher local orientational correlation. From moderate to high densities,
the width decreases from an increased number of trapped ”imperfections”, as well
as larger jammed regions suppressing the formation of wider bands.

4.3.2 Active jamming transition

For these chosen parameter values, we are located in the t̃ � Per regime for
independent rods, meaning that would expect the MSD of freely moving rods to
grow exponentially with∼ t̃2. With periodic boundary conditions, this is observed
for t̃ < 40, followed by a more linear evolution. This corresponds to a slowing of
the dynamics caused by dense rod clustering. Higher densities directly result in
lower measured MSD. Equation 4.2 yields a theoretical value of MSD( t̃ = 100)≈
9.4 ·103σ2, or an effective translational diffusion constant D̃eff = 23.5, which acts
as the upper bound value of these measurements. The ballistic t̃2-regime is also
shortened from the translational dynamic arrest, and we observe a diffusive ∼ t̃
behavior when the ratio of the ballistic and rotational time scales changes. It is
shown that for systems of passive particles, jamming is associated with a specific
critical density φc , while for active systems, flocking leads to the formation of
dense clusters with a local density φc . It has also been shown that this critical
density increased with increased activity in the system [6].
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(b) A= 4 in a square channel.

Figure 4.1: Density and diffusion: Mean-squared displacement calculated for a
of systems of different packing fractions φ, showing the emergent ∆r̃2 ∼ t̃

3
2

superdiffusive behavior of the active rods. Rods confined to a channel experience
an earlier onset of movement on a diffusive time scale for similar densities.
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As mentioned in the introductory chapter, one important area of ongoing re-
search on this type of phase behavior is in the biophysical field concerning systems
of cells. The jamming of cell layers is a field of research separated from the chem-
ical aspects of cells. It is instead focused on how the mechanics of individual cells
and larger cell ensembles forms larger structures through symmetry-breaking in-
teractions. The movement of cells is important to maintain the tissue in the body,
both in formation of new tissue and in repairing damage [11]. Collections of cells
have for a long time been treated as viscoelastic liquids which exhibit behavior
as solid-like on short time scales and as viscous liquids at long time scales [43].
Dense clusters of cells move collectively at large time scales, but as each cell is
constrained in their movement from the crowded environment, the clusters are
solid-like at short time scales. This amorphous solidification is attributed largely
to density, but also the cell-cell interactions caused by their shape, as well as adhe-
sion [44]. The rigid rods emulate this behavior in many ways. However, living cells
change their shape and respond to their environment dynamically, and making a
good comparison of theses systems is therefore difficult.

Understanding jamming and un-jamming of cellular tissue also has applica-
tions in the field of cancer research. Metastasis, the process by which cancerous
cells split off from an aggregate, migrate and spread to other locations in the body,
works much like the healthy processes of tissue maintenance [43].
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Figure 4.2: Unbounded rods: (a-d): Snapshots of some A= 4 systems with peri-
odic boundary conditions after running for a total time t = 200τ. Controlling
for density, particle numbers range N ∈ [1300, 2400]. Per = 103, β = 0.1. Rod
colors correspond to 2D orientation. The ellipsoid used to draw the rods does
not correspond to the shape or cut-off of the repulsive potential, but is rather for
illustrative purposes.
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4.4 Bounded domains: Channel

The idealized infinite system emulated by periodic boundaries demonstrate the
emergence of clusters in systems of active colloids. Studying the behavioral prop-
erties of active agents in more complex environments, however, reiterates their
utility in understanding real biological processes. Focusing on the relatively simple
mechanics of microscopic swimmers, these life-forms rarely swim alone or in un-
bounded fluids [35]. Interaction between individual active particles comes with
some set of effects, while barriers and obstacles represent other system influences
entirely. The main function of obstacles is restricting the size of the system, and
thereby limiting the infinite-system effects we cannot avoid with fully periodic
boundary conditions.

We would like to make a focused effort to investigate the effects on an active
system confined to a channel, an environment allowing for unbounded movement
along only a single axis. Previous work has shown a prominent feature of this con-
straint, namely an aggregation of particles close to the barrier which defines the
channel. This arises with a corresponding depletion layer near the channel center
line [45]. As one might predict, this is due to the time it takes for rotationally dif-
fusive particles to reorient away from the barrier, an asymmetry causing particles
to tend to spend time at the obstacle. This phenomenon persists even in systems
where particles only interact with the wall itself [46][14]. Systems of repulsive
spherical particles allow for a similar treatment, and have even been shown to
exhibit stronger accumulation at a wall than elongated rods [35]. These studies
frequently consider the ratio of the persistence length to the wall separation dis-
tance, i.e. the channel width. As we have put a large focus on the quite flexible
model of continuous active rods, we naturally want to find similar relationships
between the rod shape and the collective behavior of our system.

As far as we know, systems of elongated active rods in this type of bound-
ary conditions have not been studied extensively. Work by Wensink and Löwen
have made connection between microscopic interactions and the transient beha-
vior [47] and characterized phases for periodic boundary conditions [27]. Our
contribution will be exploratory in terms of summarizing these observations and
conduct an investigation of the hybrid rod model. This makes the methodology
an important topic of later discussion along with the results themselves.

4.4.1 Method

The channel was implemented by arranging a line of stationary rods separated by
a distance l = (A− 1)σ on one side of the domain. The barrier is thus exclusively
repulsive, and does not impose a no-slip condition on the system. As the rods are
fixed in position, they are not impacted by the overlapping occurring on each rod
end, and the separation distance l ensures that the barrier has a relatively smooth
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profile2. Due to the already enforced periodic boundary conditions, the single line
of rods restrict all movement beyond−Lx/2< x < Lx/2, but rods are free to move
infinitely in the ± ŷ-directions.

We first made a general assessment of the behavior of active systems con-
fined to a 2D channel, and later make more focused considerations of the relation
between the length of rods, the effective area fraction and the properties of the
channel itself. Several A= 4 systems were simulated with different packing frac-
tions for a time t = 200τ after being allowed to run for 100τ from an ordered
initial state. The measured MSD for the different densities is shown alongside the
results for periodic boundary conditions in Figure 4.1, and snapshots in Figure 4.3.
The persistence number was again fixed as Per = 103 to have a weak influence,
given a channel size L� Per.

4.4.2 Flow order parameters

From the measured MSD and visual inspection of Figure 4.3, we start to notice
dissimilarities to the systems with periodic boundary conditions. The introduction
of a barrier leads to a slight slow-down of the dynamics, due to rods stagnating
at the wall. This edge effect is reflected in the fact that rods aggregate massively
along the wall, even for low effective area fractions of φ = 0.29 and φ = 0.39.
Aggregation of active systems in confinement is nothing new, and has been shown
to occur in both channels and in circular confinements [49]. The dense regions
we observe along the wall are ordered largely in a similar manner to Figure 4.2,
although some rods become entrapped within the formed boundary layer, causing
imperfect smectic-nematic ordering. From visual inspection, it is unclear whether
the frequency of these band-disrupting regions increases with density, because of
the conflict between individual entrapment and higher density of rods overall. The
various similarities and dissimilarities between the types of boundary conditions
motivate an adjusted experiment to further investigate effect observed close to
the barrier.

To quantify the dynamical behavior in the channel, we propose a similar treat-
ment to the mean squared displacement for systems subject to periodic boundary
conditions. We use the average ŷ-component of the velocity in some region to
define the flow parameter

v̄y =
1
n

�

�

�

n
∑

j=1

v j · ŷ
�

�

�, (4.5)

along the channel, where n is the number of rods j within a sub-domain of

2Because the rods are not rectangular, the areas where the ”rod caps” overlap create regions
of overlapping potentials, and thus the barrier is not perfectly uniform. While avoiding overlap,
separating the rods by Aσ would create areas where the repulsive potential height is finite, possibly
causing rods to penetrate the barrier in extreme cases. Uneven or rugged boundaries, such as the
one used in [48]may be deliberately incorporated to suppress global translation modes, in this case
vortex formation along a circular boundary.
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Figure 4.3: Channel: (a-h): Snapshots for A = 4 systems in a square ŷ-directed
channel after a total runtime t = 300τ. Controlling for density, particle numbers
range N ∈ [1000,1600]. Per = 103, β = 0.1. Colors correspond to 2D orientation.
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dimensions (∆Lx , L y). Similarly, we define the absolute flow parameter

ūy =
1
n

n
∑

j=1

�

�

�v j · ŷ
�

�

� (4.6)

to quantify overall ŷ-directed motion. With v̄y , we aim to observe net move-
ment along sections of the channel, and describe any flow patters that may emerge.
ūy , on the other hand, makes it easier to point out areas of stagnation, regardless
of the direction. Large fluctuations in the flow parameters can indicate the onset
of new phases, and allow us to make a quantitative description of these phases.
The coarse-graining domain width was chosen to be ∆Lx = σ.

Due to the moderate-to-high density regime we will investigate, periodic bound-
ary conditions inevitably produce some self-correlations in the rods’ positions. As
we want to investigate the effects of the imposed barrier specifically, the channel
has been expanded to dimensions Lx × L y , where L y = 2Lx to suppress the in-
fluence of the periodic channel. We choose an effective temperature Per = 102, a
value that exceeds the width Lx for most systems and thus allows the barrier to
be the dominant influence on the dynamics. It is also biologically justified by the
fact that real cell motion is usually highly persistent. This is due to it being more
efficient in searching for chemotactic signals than a pure random walk [50].

We ran systems for a range of rod aspect ratios A ∈ 2, 4,6, 10 with packing
fractions φ = 0.6. Additional runs with higher packing fractions φ = 0.9 were
performed for A = 2, 10 to probe the density-dependency of the extreme cases.
Each permutation was realized three times for later averaging, and was run for
t = 300τ, where the transient phase was included to gain understanding of the
transition to a steady state. The simulations were carried out with a time step
∆t ∈ [5 · 10−4, 5 · 10−3]τ. Flow profiles of the subregions troughout the time
interval are shown in Figure 4.4, and snapshots of the final states are shown in
Figure 4.5. Results from the high-density systems are shown in Figure 4.6.

4.4.3 Short rods: Boundary layer formation

A priori, we expect an aggregation of rods along the barrier. The lowest effective
area fraction φ = 0.6, although rightfully regarded as a very high density, allows
for relatively free movement of rods. Thus, the diffusive behavior from an initial
state will be somewhat similar to the open boundary scenario. A curious observa-
tion from the A= 2 systems is the formation of a highly ordered boundary layer
oriented perpendicular to the barrier. The steady state is otherwise characterized
by a dilute liquid domain in the interior of the channel. This position distribution
is known to be a feature of self-propelled rods in confinement, and the surface
excess is shown to increase with activity [51]. Some of these studies consider hy-
drodynamic interactions with the barrier, which promotes alignment parallel to
the wall. We see the formation of bands which spontaneously push perpendicu-
larly towards the wall, something not observed in these studies. This is especially
interesting given that the initial condition is completely nematically ordered along
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the ŷ-direction. The absolute system flows in Figure 4.8(a) reflect the observed
steady state, with a sharply decreasing flow in the early transient period, followed
by consistent movement determined by the density-dependent central region.

4.4.4 Intermediate rods: Active turbulence

The most apparent observation for rods in the intermediate and long A-range
A> 2, is that we see overall more ordered configurations emerge. Net flow meas-
urements in Figure 4.4 indicate that in the early transient phase, these systems
form small collectively moving clusters. The direction of this movement is altern-
ating between ± ŷ . For A = 4 and A = 6, this flow regime slowly disintegrates.
Because the flow is highly correlated with the initial state, rotational diffusion
will break up the areas of high nematic order and towards a steady state which is
more characteristically turbulent. We see a sharp decline in absolute flow during
this process, with the decline being significantly slower for A= 6.

Along the boundary, we no longer observe the same type of ordered bound-
ary layer formation. The aggregated layer is instead composed of several locally
ordered bands, interrupted by highly disordered regions. Most notably, the inner-
most layer is now in equal parts aligned with the barrier, and this fraction seems
to increase with longer rod lengths. Moving towards the center, this wall-aligned
layer is followed by an irregular layer of perpendicular rods. This layer is partly
”nematized” for A= 6 at t = 300τ, indicating that longer rods are more likely to
align with the wall at long times. The onset of higher nematic order is reflected
in both Figures 4.7(c,d) and 4.8. After a transient dynamical arrest, the system
experiences an emerging shear flow along the barrier. The central region seems
to remain disordered and turbulent, as parallel movement along the wall is more
likely to reflect rods back to the center. Active turbulence has been studied in the
context of bacterial motion, where nematic ordering causes high-vorticity dynam-
ics in dense systems [52].

4.4.5 Long rods: Lane formation

For long rods, A= 10, we observe the emergence of separated flowing lanes that
remain intact for long periods of time. For low densities, the lanes merge and al-
low for ŷ-directed regions of highly correlated flow fields. In the long time limit,
we can hypothesize that the system will reach a state with three separated lanes of
alternating direction. An alternative would be one with two lanes, although this
may be less likely due to the difficulty for the central lane to completely dislocate
one of the boundary lanes. This type of left-right symmetry breaking shear flow is
observed in confined systems of hydrodynamically moving cells at critical channel
widths, due to mechanical instability [18]. At higher density, our measured flows
indicate that the system forms narrower lanes or lanes that more frequently over-
lap, causing a near-zero net flow in these regions and decreased overall flow (Fig-
ure 4.8(d)). It has been shown that this laning phase can be achieved in systems
with periodic boundary conditions when above a certain rod length and density
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Figure 4.4: Flow in channel: (a-d): Example heatmaps of the net flow profile
in time for individual simulations from the initial state to t = 300τ. φ = 0.6,
β = 0.1, Per = 102, N = 2048.
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Figure 4.5: Changing dynamics: (a-d): Snapshots of the t = 300τ states of the
systems corresponding to Figure 4.4, showing the features observed for different
values of the rod aspect ratio A. φ = 0.6, β = 0.1, Per = 102, N = 2048. Rod
colors correspond to 2D orientation.
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Figure 4.6: High-density states: Example heatmaps of the net flow profile in time
(a-b) for individual simulations from the initial state to the t = 300τ state (c-d).
β = 0.1, Per = 102, N = 2048.
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Figure 4.7: Absolute flow profiles: (a-f): Heatmaps of the average absolute chan-
nel flow profile for three separate system realizations, from initial state to t =
300τ. β = 0.1, Per = 102, N = 2048. Darker subregions indicate areas of in-
creased movement. The initial transient phase is characterized by a gradual slow-
ing of the dynamics, followed by the formation of a jammed or flowing boundary
layer at the barrier.
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Figure 4.8: Absolute system flow: (a-d): Average of absolute flow measurements
ūy for the entire channel over time. Shaded area shows standard deviation across
three individual simulations. The early oscillatory behavior is explained by the
initial conditions, as the period of oscillations is close to Aσ/2vp, what we would
expect from the numerous initial collision events. These are also visible as pale
horizontal lines in the early absolute flow profiles in Figure 4.7.

[27]. Comparing the rod lengths and densities used in this study, the laning phase
we observe is shifted towards a smaller rod aspect ratio. This may indicate that
confinement to the channel forces the phase transition for shorter rods.

4.4.6 Velocity decomposition

The measured flow parameters give some insight into the ŷ-component of the
instantaneous velocity field, which we expect to not cancel out on average, but
still leaves out a few parts of the picture. To make a more in-depth investiga-
tion of the states, it will be helpful to also consider the x̂-component of the velo-
city, to see whether the stagnant dynamics is a result of jamming or other effects.
Additionally, the distribution of ŷ-components can help us differentiate purely
horizontal motion from a zero net flow caused by averaging within subregions.
Individual systems for each set of parameters A and φ were sampled for an addi-
tional t = 10τ, while making no other changes to the system or parameters. The
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distributions of the vx , vy velocity components are shown in Figures 4.9 and 4.10.
The distributions provide additional insight into the nature of the phases we

have seen. Unsurprisingly, the vx -components are universally symmetrical and
largely concentrated around vx = 0. What is more telling, is the shape of the dis-
tributions. Most of the vx -components possess a multimodal distribution, meaning
that there is a coexistence of states. A purely jammed component will have a steep
non-Gaussian distribution, due to most rods being dynamically trapped. On a log-
scale, this is qualitatively represented by an inverse parabola shape [53]. Peaks
around vx = ±vp indicate a freely moving, disordered phase. Wide distributions
with tails extending far beyond |vx |> vp may at first glance seem like the result of
instabilities in the first-order Euler-Maruyama method. However, these extended
tails may have valid physical interpretations related to the extreme stresses within
dense rod clusters. As forces build up in the densest regions, the system releases
occasional ”bursts” of large instantaneous movement. By the small number of rods
observed in these bursts, it is indicated that these occurrences are rare and intense,
likely given by a power law. The sharp central peaks and wide tails indicate the
coexistence of a jammed and a characteristically turbulent regime [53]. Only the
A = 2 and A = 10 systems show a distribution that can be considered close to
Gaussian, explained by the relatively free gas-like x̂-directed motion within the
depletion layer and lanes, respectively.

As for the vy -components, we see a symmetrical distribution for A= 2,10, the
states characterized by a symmetrical boundary layer and highly ordered laning,
respectively. The systems with A = 4, 6 are, as mentioned, more turbulent and
have skewed distributions. Due to the symmetrical initial states, this is likely the
manifestation of the spontaneously excited shear flow along the wall. Frustrations
within the dense boundary layers cause a wide distribution which goes beyond
reasonable values. After an initial runtime of t = 300τ, the A = 10 system has
not reached a highly clustered phase, and the distribution of vy -components is
bimodal around ±vp, as we expect for nematically ordered laning.

The high-density distributions shown in Figure 4.10 show similarities to their
lower-density counterparts. The major differences for short rods seems to be a
taller central peak and a wider tail, likely caused by increased dynamical arrest
and frustration from the repulsive forces. The distribution remains within an ap-
proximation of a Gaussian, with some rods still moving at the characteristic velo-
city vp. As for long rods, the vy -distribution shows signs of a third central peak,
indicating the onset of a slowed or less ordered state. The distributions are other-
wise non-Gaussian, meaning that the phases can be characterized as turbulent.
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Figure 4.9: Velocity distribution: (a-h): Log-scaled distributions of the velocity
components for φ = 0.6 systems with different rod aspect ratios, sampled for
t = 10τ in the steady (or near-steady) state. β = 0.1, Per = 102, N = 2048.
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Figure 4.10: Velocity distribution: (a-d): Log-scaled distributions of velocity com-
ponents for φ = 0.9 systems with different rod aspect ratios, sampled for t = 10τ
in the near-steady state. β = 0.1, Per = 102, N = 2048.
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4.5 Long rods: Steady state considerations

From the measured flows and velocity distributions of the A = 10 systems, we
cannot confirm that these systems are indeed close to a steady state. The laning
phase we observed for intermediate-to-long particles generally dissolved when
the initial transient behavior seized, and showed similar decreases in flow over
time. The time it took for the flow to even out increases with higher values of
A, and Figure 4.8(d) indicates a similar, delayed decrease. Because the A = 10
systems were only run for t = 300τ, the maximum distance traveled for individual
rods is only 30 rod lengths. We have therefore not gathered sufficient data to
conclude that these systems possess a steady state characterized by laning. To
more properly investigate the steady state, we continued running a singleφ = 0.6
and φ = 0.9 system simulation for an additional t = 900τ to see if the laning
behavior persisted through this extended time. The flow parameter progression
and snapshots during the time interval are shown in Figures 4.11 and 4.12.

An increase in absolute flow is observed for φ = 0.6, with an onset at about
t = 800τ. The fluctuations in the data from times beyond t = 900τ were initially
deemed too extreme, and so these results are excluded from the final analysis
except as visual demonstrations. As with the short-time states, the velocity com-
ponents were sampled for t = 10τ after the t = 900τ states. The distributions of
these components are shown in Figure 4.14.

The extended simulations strongly disagree with the previous indications that
the steady state for these chosen values of A and φ (and the wide channel) is in-
deed one characterized by laning. The results instead show qualitatively that the
laning is a transient behavior which eventually breaks down and creates stable
structures similar to the ones described by Wensink and Löwen [47] as so-called
”hedgehog-like” clusters. These occur in conjunction with a narrow wall-aligned
boundary layer. After a long time t > 900τ, it may be reasonable to assume that
this motion will nematize the clusters and lead to a more uniform distribution
of aligned rods which slide along the barrier. Moreover, the aggregation leaves a
depleted region in the center similar to what is observed for other rod lengths,
unlike what is expected for a laning phase. This is again supported by the indi-
vidual velocity components. Wide distributions indicate highly frustrated states
along the x̂-direction from the wall aggregation. vy -components of the φ = 0.6
system does however approach a Gaussian as a result of the released shear flow. At
these times, it is demonstrated that the behavior of long rods is characteristically
similar to the A= 4,6 lengths.
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Figure 4.11: Extended runs: (a-c): Net flow profile evolution in each 300τ time
interval. (d-f): State snapshots. A= 10, β = 0.1, Per = 102, N = 2048.
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Figure 4.12: Extended runs: (a-c): Net flow profile evolution in each 300τ time
interval. (d-f): State snapshots. A= 10, β = 0.1, Per = 102, N = 2048.
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Figure 4.13: Decreasing flow: Absolute system-averaged flow parameter meas-
urements for the individual extended A = 10 simulations. β = 0.1, Per = 102.
Large magnitudes and fluctuations come as the result of compression along the
channel walls.
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Figure 4.14: Velocity distribution: (a-d): Distributions of velocity component mag-
nitudes sampled for t = 10τ after a total evolution time t = 900τ.
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4.6 Partially motile systems

As observed and discussed in previous sections, the active systems we investigate
show a high degree of clustering and ordering. Because every particle moves with
the same motility, large structures of several particles form spontaneously, com-
bine with other clusters or disintegrate due to noise or collisions. This behavior
might in many ways seem idealized or unrealistic if seen from a biological per-
spective. In nature, individual specimens of a specific life-form may exhibit large
variations in behavior, size, speed and consistency in all of the above. Focusing spe-
cifically on speed, models of polydisperse systems of self-propelled particles have
have been studied in an effort to describe behavior observed in nature. Among
them is an observed phase separation of active liquid crystal particles with differ-
ent motilities [4] and spontaneous segregation in mixtures of active and passive
polar rods. The main inspiration for the latter is to study how the dynamics of the
systems change when some portion is assumed dead or otherwise non-motile, a
case encountered in bacterial colonies [33].

As a matter of curiosity then, we qualitatively investigate systems within the
same channel boundary conditions, where only a fraction fa of the particles exper-
ience self-phoretic motion. The binary vp,i ∈ {0, vp} scenario is of most practical
interest, as we do not need to make any statements about the distribution of the
self-propulsion velocities other than the fraction fa. We choose to simulate rods
with aspect ratio A= 4, as this is within the range values of high microbiological
relevancy. Systems of density φ = 0.48 with three different motile fractions were
run for typical time intervals with low noise and moderate repulsion strength.
Snapshots of the initial, final and intermediate states are shown in Figure 4.15.
Another higher-density system was run for a longer time interval to see if the in-
creased collision frequency induced a more segregated state. Snapshots are shown
in Figure 4.16.

4.6.1 Exotic phase separation

The evolution of the moderate-density systems in Figure 4.15 shows similar beha-
vior to the systems of uniform motility in Section 4.4, due to having a significant
fraction of active rods. However, a visible segregation of active and passive rods
occurs not long after the systems are set in motion. Subfigures 4.15(a-c) show that
the active rods migrate and create dense regions close to the barrier on either side,
while passive rods are left in a largely unchanged uniform distribution. The relat-
ively low density allows active particles to bypass most of the passive obstacles, al-
though some passive rods may be carried outward for some distance and trapped
within the active clusters. This is a scenario described as an active bath, where
passive particles subject to the non-thermal fluctuations from the surrounding
active particles tend to experience superdiffusive motion like their active counter-
parts [6].

Systems of similar numbers of passive and active particles in Subfigures 4.15(d-
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Figure 4.15: Mixed systems: (a-i): Snapshots for partially motile A= 4 systems in
a ŷ-directed channel. Active rods are shown in cyan, passive rods in red.φ = 0.48,
Per = 103, β = 0.1. Total particle numbers N = 1300, 1300,1800, respectively.
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Figure 4.16: High-density mixture: (a-f): Snapshots of the evolution of partially
motile A= 4 system in a channel. Active rods are shown in cyan, passive rods in
red. φ = 0.80, Per = 103, β = 0.1. Total particle number N = 2200.
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f) show a distinct phase separation, possibly resulting in a complete separation in
the long time limit. Overall, the distribution of passive particles appears to get
narrower as active particles aggregate at the barrier. Rods collect at the barrier
symmetrically (the distribution is mirrored in x = 0), which is what we would
expect with both noise and initial positions having no preferential direction.

The low-motile fraction case in Subfigures 4.15(g-i) show another type of char-
acteristics. The few randomly distributed active particles may be seen as contained
in a crowd of passive rods, an exaggerated analogy of the medium in which the
rods themselves are immersed. This has been dubbed called active doping, and
have been shown to cause a ”herding” behavior, resulting in a state of passive
rods gathered in flocks by external compression [6]. We see the onset of such a
state, mainly caused by the vacant trails left behind by the active rods. Quite inter-
estingly, the active rods cut through the dense environment and eventually gather
in small clusters. This is likely due to following the already-cleared paths created
by other active rods, where lower density and reflection from the path walls al-
lows for faster movement. In a sense, this effective hydrodynamic interaction is
a long-range effect of short-range repulsion. The active clusters ultimately gather
at the barrier when one is encountered, much like in the other scenarios, likely
causing complete separation after long times.

As one would expect, the evolution of the high-density system shown in Figure
4.16 exhibits slower changes in time. This is likely due to the active rods having a
much harder time getting past the crowd of passive rods, causing jammed regions
and redirecting rods back into the center of the channel. By visual inspection,
however, we see that the separation of active and passive rods is similar to the
low-density scenario, and will probably segregate in the same way in the long
time limit. Higher noise might cause the aggregated regions to partly dissolve,
creating a steady state mixture in the center of the channel and thus a more even
density profile for the entire channel width.



Chapter 5

Discussion

5.1 ABR simulations: Conclusion

The previous Chapter presented the results obtained from simulations of a hybrid
ABR model, as well as some discussion of our observations. From these observa-
tions, we can make general statements about the properties of our model. The line
segment model tends to order in a smectic phase at high density, not unlike what
is observed for rigid polymer models [33]. This manifests in clustering behavior
which is characterized by long correlated bands.

By confining the active system to a channel, behavior changes from the case
of simple periodic boundary conditions. We observe qualitatively different near-
steady state behavior for systems of different rod aspect ratios A, as well as dif-
ferent equal-time states for system with different effect area fractions φ. Higher-
density systems generally possess slowed dynamics and longer relaxation times.
The most prominent feature is the formation of a boundary layer which goes from
a preferential direction perpendicular to the barrier for short rod lengths to align-
ment parallel to it for long rods. In the intermediate rod length regime, there
seems to be a continuous coexistence. This transitions influences the instantan-
eous flow through the channel, with longer rods seemly allowing for large shear
flows along the channel walls, while short rods stagnate due to jamming. The
aggregation-phenomenon along barrier is robust with regard to partially active
systems, with active particles collecting at the walls in both high-density and low-
active fraction regimes.

Longer rods possess the potential for stratified lane formation, but we suspect
that a steady state will be highly dependent on the initial conditions of the system.
We initialize a perfect nematic arrangement of rods with a 50-50 ± ŷ distribution
of orientations. Because of this, we would expect that the emerging lanes have
a nearly identical distribution, given that the density is high enough to prevent
frequent rod reorientations. In future models, varying the ratio of the oppositely
oriented rods may have a biological significance. A rigorous evaluation might un-
cover regimes of higher or lower net flows, a higher or lower number of lanes, or
even a completely polarized steady state.

54
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(a) Results adapted from [27].
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(b) Results from our experiments.

Figure 5.1: ABR steady states: (a): Phase diagram showing the observed steady
states of n-mer ABRs in periodic boundary conditions with varying packing frac-
tion φ and rod aspect ratio a. (b): Summary of the phase behavior observed for
our rod model in a periodic channel.

We can summarize the observed phase behavior in the diagram shown in Fig-
ure 5.1(b). When compared to the phase diagram by Wensink and Löwen [27],
the observed behavior is in agreement. However, we can make a different type of
differentiation in terms of the way rods aggregate at the walls, either by ordering
along the wall, into the wall or as a mix. It is possible that influence from the
channel wall can shift the phase transitions and have a larger impact on system
order and flow than what we observed in our experiments. We can imagine that
the inclusion of a parameter to relate the channel size and rod parameters will al-
low a shift of the phases, e.g. by restricting rotation of long rods to produce stable
lane formation for rods of shorter lengths or lower densities.

5.2 Methods

5.2.1 Model parameters

One of the most challenging aspects of active matter research is to be able to make
general statements from complex systems with a large amount of parameters. To
narrow the available parameter space, it is worthwhile to understand the indi-
vidual model’s dependency on certain parameters. In this regard, the repulsive
potential has not been given an extensive analysis. As this feature plays an im-
portant role both in relation to the self-propulsion force Fp and the effective area
fraction φ, the potential height β may have an unknown and likely significant
effect on the dynamics. The 6-3 modified Weeks-Chandler-Anderson is a variation
of one of several common soft potentials, and this is a choice left largely to the
individual. In the work for this thesis, a steeper 12-6 WCA-potential was deemed
too steep to allow for stable simulations of long rods. Further improvements in
stability could have been made by having the repulsive force be differentiable at
the cut-off radius, ∂r Frep = 0 for an even softer force. This could, however, lead
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to increased over-compression of systems, allowing for higher values of φ > 1.
Another example is one mentioned by Wensink and Löwen: making a rigorous

consideration of the rotational noise. This might have even greater significance
while investigating the effect of bounded systems, as it relates directly to the ef-
fective system size. Nonetheless, it could potentially show how increased noise
influences the relaxation times for the steady states, be it by dismantling ordered
regions or by causing increased dynamical arrest.

5.2.2 Determining steady state

The introduction of a channel poses issues with regard to determining a steady
state under certain circumstances. In active matter systems, the steady state may
be assumed by the convergence of a probability distribution. This is opposed to
equilibrium matter, where the steady state may be characterized from various
other parameters, including order parameters. The coexistence of states caused
by the barriers makes it challenging to properly determine the prominence of
each one. In retrospect, it would have been useful to measure the surface excess,
which can aid in quantifying the wall aggregation [35].

We suspect that the steady state of medium- to high-density long rod systems
may be highly dependent on initial conditions in the relatively short time intervals
we have examined. We would have ideally wanted to simulate systems for times
far beyond what was shown in this work. As an example, Wensink and Löwen [27]
relax the system for t = 103τ before entering the measurement phase of the sim-
ulations. For these times to be reasonable for the system sizes and interactions we
consider here, additional work is required in terms of stabilizing the algorithm and
use better suited hardware resources. Furthermore, because of the suppression of
rotational motion, there will be less frequent complete rod reorientations with re-
spect to the channel. In this case, the distribution of rod orientations, as well as the
number of lanes may be conserved in the steady state. If we were to investigate
this further, we could quantify the amount of rod reorientations occurring in the
system. Deliberately varying the channel width may allow us to characterize the
phase behavior by its relationship to rod dimensions and the persistence number.

Moreover, it would have been useful to quantify the order of the emergent
rod configurations, e. g. by introducing a smectic order parameter to measure the
width of formed bands. This behavior is central to the clustering behavior of rods
with the specific geometrical properties we chose for our ABR systems. Because
the rod aspect ratio can be regarded as the effective alignment strength, we could
relate this value to the rotational noise and made further investigations into the
formation of bands, and any collective band dynamics.

5.2.3 Numeric considerations

The method used to calculate the interparticle interaction distance is not ideal.
Our model of rigid rods assumes that the interaction strength and point of action
is determined by the closest point of two rods. This should be refined to instead
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account for the complete area of overlap in order to distribute the repulsive force
in a more realistic way. The second assumption of this algorithm is that one of the
two contact points between two rods is an end-point of one rod. This is a massive
time save in the short term, although it comes with a disadvantage due to a feature
of this spherocylinder rod geometry, namely its smectic-nematic ordering scheme.
As rods collect in wide bands, the rotational forces always act as a shear on the
band, possibly being amplified in a ”domino”-like chain of torque mediation. This,
along with the discontinuous derivative of the repulsive force, can allow small
perturbations to cause large numerical instabilities, and thus shorter time steps
are needed for systems of longer rods.

5.3 Outlook

The model of self-propelled rods we have investigated is quite flexible in terms of
adding additional complexity in the form of new exotic interactions and boundary
conditions. While aiming to gain understanding of the physics of living beings,
the natural step would be to extend the model to fit to the parameters of known
biological systems.

Perhaps one of the most useful and physically relevant improvements would
be to generalize the model into 3D. In the study of active matter, systems are most
commonly confined to 2D or quasi-2D, where rods are allowed to rotate into the
third dimension [4]. Taking the 2D channel and creating a smooth cylindrical (to-
pologically toroidal) boundary may combine previous knowledge the flow profile
along the tube, as well as the confined dynamics in each cross-section. Moreover,
by the inclusion of polydispersion of size and motility, as well as passive obstacles,
this could be of high relevance in a microbiological or medical context.
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Appendix A

Method Details

A.1 Optimization: Cell list algorithm

In particle model simulations with exclusively short-range interactions, a signific-
ant amount of computation resources can be saved from limiting the number of
operations needed to compute the forces acting on any single particle. For a sys-
tem of N particles, a naive implementation requires that for every particle whose
data is updated, we compare its position to N − 1 other particles. This results in
a numerical complexity O(N2). One relatively easily work-around is the use of
a cell list, where the simulation domain is subdivided into smaller regions, each
containing an associated list of the particles within the cell. At each system up-
date, the particles are assigned to a list based on its current position, and forces
are computed within each cell and the closest neighboring cells [54]. The size of
each cell is chosen to be equal to or larger than the maximum range of the particle
interactions. In this way, no non-zero forces are being neglected, while the num-
ber of position comparisons for each particle reduces to the order O(1). Because
the number of particles contained in neighboring cells is independent of the total
system size N , the process of calculating the short-range interactions reduces from
O(N2) to O(N), allowing for easier scalability with increased system sizes.

From testing the algorithm in conjunction with OpenMP-parallelization, using
a cell list algorithm made a negligible difference in speeds for particle numbers
2000< N < 4000, and slightly increasing run time for N < 2000. This is probably
due to a relatively large overhead created when assigning each particle to a cell
list for each update of the system. The time used to perform these operations thus
approximate the time saved. In addition, the method of parallelization was im-
plemented differently, as each of the T processing threads was assigned a certain
number of cells instead of a N/T portion of the N particle indices. The efficiency
of the parallelization method seems to be affected by how well N/T approximates
a whole number, as distributing the remainder of the division leads to additional
overhead and idle threads. The cell list algorithm was therefore not used in the
final simulations due to the negligible benefit with system sizes N ∼ 2000.
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A.2 System preparation

A.2.1 Initializing dense systems

The initial configurations for our systems of ABRs were constructed from running
a simulation of N particles initially placed in a regular lattice configuration with
randomly picked orientation ei ∈ {ŷ,−ŷ}, a method previously used in studies of
active rods [27]. This method allows us to generate systems of high number dens-
ities compared to placing the particles with random positions and orientations, as
we approximate a perfectly ordered close packing of 2D spherocylinders. Other
methods include isotropic compression, whereby we initiate a dilute system with
random positions and velocities and subsequently compress the system by either
increasing the size of the particles or decrease the effective size of the system.
This is done in an alternating process of compression and system relaxation until
a satisfactory density is reached.

Before we start to gather data from the system, we would like to ensure that
the system is minimally dependent on the initial regular grid. To find a suitable
relaxation time for the systems, we simulate three random configurations for a se-
lection of particle aspect ratios and typical parameter values and monitor the polar
and nematic order parameters Π and ν. The dimensionless polar order parameter
Π is defined as

Π=
1
N

�

�

�

�

N
∑

i=1

ei

�

�

�

�

. (A.1)

This is equivalent to the average system velocity used in the discussion of
the Vicsek model. The nematic order parameter, describing the degree of global
nematic (n= −n) order,

ν=
1
N

�

�

N
∑

i=1

cos(2θi)
�2
+
�

N
∑

i=1

sin(2θi)
�2
�1/2

(A.2)

The systems for A = 4 and A = 10 are allowed to evolve for a time interval
t = 100τ and t = 500τ, respectively. The measured polar and nematic order para-
meters are shown in Figure A.1. Representative snapshots from the pre-prepared
regular configurations and finished states used for simulations are shown in Figure
A.2, as well as zoomed-in views of the same systems in Figure A.3.

A.2.2 Discussion

As seen in Section 2.3, whenever particles interact via polar alignment interactions
and are subject to subcritical noise levels, we expect to observe a sharp increase
in global polar order in time. In simulations of ABRs, the interactions are apolar,
but from Figure A.1, we still see a slight increase from the initial state with Π∼ 0.
This is due to the spontaneous formation of polar clusters which aggregate rods
of similar orientations. These clusters are visible in Figure A.2(b,d), indicated by
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Figure A.1: Transient order evolution: Average order parameter measurements
during preparation procedure. Shaded area shows standard deviation across three
simulations. The systems seem to reach a steady state at longer times for rods with
larger aspect ratios. β = 0.1, Per = 103.

large regions of similarly colored rods. For the low noise levels used in these sim-
ulations, this aggregation will likely continue until most of the rods are aligned,
similar to the Vicsek particles. This is allowed by the periodic boundary condi-
tions which possess global translation modes. For shorter particles, the clusters
seem to be smaller and more numerous, leading to high local polar order but a
relatively weak global polar order. When the clusters collide, the expected beha-
vior is similar to individual particles. Collision at a small relative angle creates a
new combined region with the average orientation of the old regions, while larger
angles reflect or split the regions. When constrained by the high density, however,
the clusters are instead jammed.

Due to the nematic interaction, we also observe particles trapped within clusters
of opposite polarity, locked in place by the surrounding rods. These occurrences
halt the increase in polar order, but have no impact on the global nematic or-
der. Due to the differing cluster sizes, this effect is more prominent in systems of
longer rods. The onset of an apparent equilibrium in the nematic order parameter
of the systems at t ∼ 100τ for A = 4 and t ∼ 300τ for A = 10 indicate that
these are likely satisfactory values to reach a steady state with periodic boundary
conditions, given a low noise regime.
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Figure A.2: Dense system preparation: Snapshots of N = 1200 rods from the initial
regular grid configuration (a, c) and the configuration after some time when the
system is allowed to evolve (b, d). Per = 103, β = 0.01.

(a) Closeup of initial grid for A= 4. (b) Closeup of A= 10 rods, t = 500τ.

Figure A.3: System preparation details: Closeups from Figure A.2.
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