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Introduction

This thesis is made up of four papers on dispersive equations. Such
equations are typically used to model the behaviour of water waves, and
in this context, dispersion refers to the physical phenomenon that waves
of different wavelengths travel at different speeds. One may wonder where
the interest in water wave models comes from when the governing equa-
tions for fluid dynamics, the Euler equations [26], have been known for
two centuries. The short answer is that the Euler equations are compli-
cated and not well suited for providing explanations to seemingly simple
observations. For an analogy, suppose one was interested in understand-
ing why planetary orbits are elliptical. As Newton demonstrated at the
end of the 17th century, this was a direct corollary of his law of gravity.
And while this law has since been superseded by Einstein’s far more com-
plicated theory of general relativity, Earth’s orbit remains ellipse shaped,
for Newton’s equation is still an excellent model for how gravity behaves
in this particular regime. Similarly for water waves, one may replace the
intricate Euler equations with simpler models depending on the regime
of interest. For example, in the shallow water regime, the water surface
can be modelled by the Whitham equation [24,37] which features several
qualitative properties of shallow water waves including periodic travel-
ling waves [20], solitary waves [17], wave breaking [33] and Stokes waves
of maximal amplitude [22].

The Whitham equation is in many ways simpler than the Euler equa-
tions. The former features only one spacial dimension (the horizontal)
and one unknown (the wave height) while the latter includes the water
depth and the unknown velocity field of the water. But one arising dif-
ficulty, not present in the Euler equations, is that of nonlocality: The
dispersive term of the Whitham equation cannot be calculated locally
without knowing the global surface profile. A nonlocal dispersive term is
common for water wave models, and can be thought of as a price to pay
for dropping a spacial dimension and one unknown. Contrariwise, any
equation featuring a fractional Laplacian-type nonlocality can be trans-
formed into a pair of local equations at the cost of introducing one more
space variable and one more unknown [9].

The theory on water wave models, both local and nonlocal, covers a
broad specter of mathematical tools and techniques; each question asked
requires its own meticulous analysis further depending on the equation in
focus. This intriguing complexity is partially why water wave problems
have gained much attention among mathematicians, especially in recent
years.
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The thesis will cover various topics and equations, but most of the
water wave models considered are included in the general form

ut + (n(u) + Lu)x = 0. (1)

Here, the wave height u is a real valued function in the two variables time
and space, the nonlinearity n is a real valued function in one variable and
the – typically nonlocal – operator L is a symmetric Fourier multiplier in
space. Often L is characterized on the Fourier side by its corresponding
real valued and symmetric symbol ξ 7→ m(ξ). That is, L and m are re-

lated through the equation L̂f(ξ) = m(ξ)f̂(ξ) for any Schwartz function
f and where the hat-notation denotes the Fourier transform. The sym-
bol m is also referred to as the dispersion relation; in the linear setting
n = 0, a planar wave of wavelength ξ will travel at the velocity m(ξ). In
the nonlinear setting, this is still approximately true for small amplitude
waves, but in general, the velocity of travelling wave solutions might not
even coincide with any value of m(ξ). This last point is discussed more
in the introduction to Paper 2.

Multiple one dimensional water wave models are of the form (1), and
in the case of a quadratic nonlinearity n(u) = u2, the following equations
(here specified by their symbol m) are included:

Table 1. Equations of the form (1) with n(u) = u2.

m(ξ) Equation

ξ2 Korteweg–De Vries

|ξ| Benjamin–Ono√
(1+Tξ2) tanh(ξ)

ξ Capillary Whitham√
tanh(ξ)

ξ Whitham

|ξ|−1 Burgers–Hilbert

ξ−2 Ostrovsky–Hunter

(1 + ξ2)−1 Burgers–Poisson

where T > 0 denotes the surface tension parameter for the capillary
Whitham equation. These equations are listed in decreasing order with
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respect to the ‘strength’ of the featured dispersion, referring here to the
order of growth of m(ξ) as |ξ| → ∞. In particular, the top three feature
positive order dispersion as lim|ξ|→∞m(ξ) =∞ while the remaining four
feature negative order dispersion as lim|ξ|→∞m(ξ) = 0.

As three of the papers in the thesis examine travelling wave solu-
tions, we give the corresponding definition. Such solutions take the form
(t, x) 7→ u(x−ct) for some velocity c ∈ R and a function u in one variable
satisfying the stationary equation

(−cu+ n(u) + Lu)′ = 0, (2)

that is, the bracket in (2) is a constant. What follows is a short in-
troduction to each paper, where the relevant results and concepts are
introduced.

Paper 1: On the bifurcation diagram of the capillary–gravity
Whitham equation.

With: Mats Ehrnström, Mathew A. Johnson and Filippo Remonato .

Published in Water Waves [19]

Paper 1 concerns periodic travelling wave solutions of the capillary-
gravity Whitham equation, or just capillary Whitham for short, which
models shallow water waves when surface tension is included [15,39]. This
equation takes the form (1) with a quadratic nonlinearity n(u) = u2 and
the symbol

mT (ξ) =

√
(1 + Tξ2) tanh(ξ)

ξ
,

for a positive surface tension parameter T > 0. In the original Whitham
equation capillary effects are ignored and so the surface tension is set to

zero. For any T > 0 the symbol mT grows like |ξ|
1
2 at infinity and so

the corresponding Fourier multiplier L = MT is a positive order operator
(of order 1

2); this is in stark contrast to the original Whitham equation

in which L = M0 is a smoothing operator (of order −1
2). An available

trick that removes the cumbersome positive order operator, is to apply
its inverse M−1T to this instance of (2), so to obtain

M−1T [−cu+ u2] + u = 0, (3)

where we integrated once and set the integrating constant to zero (result-
ing here in no loss of generality due to a Galilean invariance principle).
As M−1T admits the symbol 1/mT it is a smoothing operator and can be
realized as a convolution operator KT ∗ for an even kernel KT ∈ L1(R).
Paper 1 starts off by demonstrating various properties of both M−1T and
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KT including characterizing for which surface tensions KT is monotone
on (0,∞). These properties are then used to carry out bifurcation anal-
ysis on periodic solutions of (3), here mimicking the approach in for
example [16,21].

Bifurcation analysis in this context relates to the fact that travelling
wave solutions of water wave models, such as those provided in Table 1,
tend to form connected manifolds in appropriate solutions spaces. Thus,
by tracing these manifolds using implicit function theorems one may dis-
cover nontrivial solutions bifurcating from some trivial starting point. In
the quintessential scenario the manifolds are curves, then called bifurca-
tion branches, whose global behaviour can be characterized through the
theory developed by Dancer [14] and further improved by Buffoni and
Toland [8]. For example, [11] deploys these tools for the Euler equations
to conclude that the bifurcation branches of even periodic solutions con-
necting to trivial constant ones never ‘loop’. But there are limitations
to analytic techniques, and so numerical results serve as an integral part
of bifurcation analysis. By numerical methods, [29] finds isolated bifur-
cation branches of non-symmetric periodic solutions for the Euler equa-
tions; these branches are not connected to any trivial solution and do
form loops.

Paper 1 provides a local description of even periodic solutions, bi-
furcating from zero, of the stationary capillary Whitham equation (3).
These solutions differ in two qualitative ways from those found for the
original Whitham equation in [20, 21]. First, any periodic and bounded
solution of (3) is necessarily smooth, while the bifurcation branches for
the Whitham equation approach non-smooth solutions of maximal am-
plitude as shown in [22] (the introduction to Paper 4 gives a description
of such highest waves). Second, the bifurcation kernel can here be two-
dimensional giving rise to bifurcation sheets, a novelty not featured in
the Whitham case. When this happens, the (small) solutions found are
roughly the sum of two weighted cosines of different wave length. And if
one of the wavelengths divide the other, a resonance phenomenon occurs,
resulting in ‘slit’ sheets. The paper also provides some global bifurca-
tion results, both numerical and analytic, using the previously mentioned
theory of Dancer, Buffoni and Toland.

Paper 2: Solitary waves for weakly dispersive equations with
inhomogeneous nonlinearities.

Published in Discrete and Continuous Dynamical Systems [43]

Paper 2 proves the existence of solitary wave solutions for a sub-family of
(1). Solitary waves are travelling wave solutions that vanish at infinity.
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As a physical phenomenon, such waves can be observed in shallow water
canals. The first research on these waves was conducted by the Scottish
engineer John Scott Russel [47] in 1834. At the time, water wave models
would not allow for such solutions, leaving the scientific community skep-
tical of Russel’s observations [12,45]. However, in 1871 and 1872 Joseph
Boussinesq derived, in a series of papers [5–7], the first model featuring
solitary waves, and today such models are abundant; the key being an
intricate balance of nonlinearity and dispersion.

Numerous techniques have been developed to prove the existence of
solitary waves for dispersive equations. In [50] bifurcation analysis is used
to find solitary waves for the Whitham equation that reach maximal am-
plitude; again, such highest waves is the topic of Paper 4. Another tech-
nique is Lions’ very successful concentration-compactness method [41] of
which an appropriate variation is applied in Paper 2. Curiously, the ques-
tion of uniqueness of solitary waves is typically far more difficult, and no
general method, like that of Lions’ for existence, have been discovered.
Still, some instances of (1) are well understood. For the Korteweg–De
Vries equation, classical ODE-techniques show that the solitary waves
are uniquely characterized, up to translation, by their amplitude. This
uniqueness result is extended in [28] to a homogeneous sub-family of (1)
for corresponding ground states (positive and symmetric solitary waves)
by exploiting the previously mentioned fact that (1) can be rephrased as
a local problem when L is a fractional Laplacian.

In Paper 2, small amplitude solitary waves of (1) are proved to exist
under mild assumptions on the positive order symbol m and nonlinearity
n, where the novelty is in allowing for a nonhomogeneous n. The case of
positive order dispersion and a homogeneous nonlinearity has been dealt
with by numerous authors, for example [2, 4, 51, 54] which all deploy
Lions’ concentration-compactness method. While this method does not
go through for a badly behaving n (such as one with exponential growth),
we overcome this difficulty by first truncating the nonlinearity at a fixed
height, and then demonstrate the existence of solitary waves of arbitrarily
small amplitude for the truncated equation. Any such sufficiently small
solitary wave then necessarily solves the original equation as well.

This work compliments [17] where a similar result is proved, also for a
nonhomogeneous n, but for negative order dispersion. Interestingly, the
solitary waves found in Paper 2 are subcritical, meaning their velocities
are less than m(0) (which in our case is the minimum of m), while those
from [17] are supercritical, meaning their velocities exceed m(0) (which in
their case is the maximum of m). That is, these waves move at velocities
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outside of those provided by the dispersion relation. In [35], general-
ized solitary waves are constructed for the capillary Whitham equation,
and the velocities of these waves are indeed of the form ν = m(ξ0) for
some frequency ξ0. But the waves do not vanish at infinity, and instead
approach a periodic solution of wavelength ξ0.

Paper 3: One sided Hölder regularity of global weak solutions
of negative order dispersive equations.

With: Jun Xue.

Submitted for publication.

Paper 3 examines global weak solutions of negative order dispersive equa-
tions taking the form (1) with a quadratic nonlinearity and with L = G∗,
where G can be any function admitting a weak integrable derivative.

As convolution operators are smoothing (making L negative order),
one should expect the dispersive effects in these equations to be generally
small compared to those of the nonlinearity. A phenomenon then arising
is wave breaking ; this is when a solution attains infinite slope in finite
time, while its height remains bounded. In fact, wave breaking occurs
in all four of the negative order dispersive equations from Table 1 [30,
33, 42, 53]. As a consequence, neither of these equations are (classically)
globally well-posed, although they are locally well-posed [23,27,31,32].

In contrast, the strongly dispersive Korteweg–de Vries equation and
Benjamin–Ono equation are both globally well-posed [34, 36] in appro-
priate Sobolev spaces. While positive order dispersion seems to hinder
wave breaking (at least for instances of (1)) it is not sufficient to guar-
antee global well-posedness. In [44] the authors show that the modified
Benjamin–Ono equation – which takes the form (1) with n(u) = u3

and m(ξ) = |ξ| – is ill-posed by constructing a solution behaving like
an accelerating and growing solitary wave reaching infinite velocity and
amplitude in finite time. It is believed [38, 40] that a similar phenome-
non occurs for a homogeneous analogue of the capillary Whitham equa-
tion; in particular, no global well-posedness result exists for the capillary
Whitham equation.

Turning back to the case of negative order dispersive equations, one
remedy for dealing with the absence of global classical solutions is to
instead consider weak solutions. A powerful approach originally from
the theory of hyperbolic conservation laws is then to reformulate (1) in a
weaker sense as a family of entropy conditions. Remarkably, this concept
of entropy solutions gives rise to a global well-posedness theory for the
Ostrovsky–Hunter equation [10] and the Burgers–Poisson equation [30].
This latter equation is in fact included in the family we study, but [30]
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considers this equation in a ‘pure’ L1(R) setting, while we have chosen
to work in a slightly more natural L2(R) setting, allowing for different
results.

The first half of Paper 3 establishes the uniqueness, existence, and
L2-stability of entropy solutions for the considered family of equations.
This analysis, consisting mostly of classical conservation law techniques,
is first carried out for L2 ∩ L∞(R) initial data, and is by a continuity
argument further extended to pure L2(R) data. In the second half of the
paper, an operator splitting argument is used to demonstrate that the
acquired weak solutions satisfy explicit one sided Hölder conditions with
time decreasing coefficients. This result can be viewed as a generalization
of the classical Olěınik estimate [13] for Burgers’ equation, which states
that entropy solutions satisfy the inequality

u(t, x)− u(t, y) ≤ x− y
t

,

whenever x ≥ y. But contrary to the Olěınik estimate, the one sided
Hölder conditions we find do not vanish as t → ∞; such a result is
generally unattainable, as the family of equations we consider features
solitary waves [17].

The inferred one sided Hölder regularity of the attained weak solutions
results in two interesting consequences. First, the solutions satisfy ex-
plicit and time decreasing height bounds. And second, the lifespan of a
classical solution can be bounded, provided its initial data is sufficiently
steep. While it is tempting to think (and very possible) that the finite
lifespan of a classical solution is due to wave breaking, this is not proved.

Paper 4: On the precise behaviour of extreme solutions to a
family of nonlocal dispersive equations.

With: Mats Ehrnström and Kristoffer Varholm.

In preparation.

Paper 4 establishes previously conjectured limits at the crests of the
highest waves of the Whitham equation and the bidirectional Whitham
equation. This latter water wave model, formally derived in [1, 46] from
the Euler equations, is a system of two equations that allow for both left-
and rightward wave propagation. In contrast, (small) periodic waves of
the original Whitham equation necessarily propagate to the right [20] by
the positivity of the dispersion relation.

In 1880, Sir George Stokes conjectured [48] that the Euler equations
featured periodic waves reaching a maximal height (relative to the wave-
length) and whose crests formed 120◦ degree interior angles. Just short
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of a decade later, John F. Toland proved the existence of such highest
waves [49] in 1978, and together with Amick and Fraenkel, they verified
Stokes’ conjecture on the interior angles [3] in 1982.

Similarly, Gerald B. Whitham conjectured [52] that his proposed water
wave model, the Whitham equation, featured analogous highest waves,
but whose crests formed cusps like that of square roots. And indeed,
through bifurcation analysis such periodic waves were found in [22]. More
recently, it was proved that the Whitham equation also features highest
solitary waves [50]. But in both of these works, the crests of the corre-
sponding highest waves were only shown to behave like square roots in
‘h’ sense; more precisely, denoting such a wave with φ, whose crest we
assume is at zero, the following bounds were demonstrated

0 < lim inf
x→0

φ(0)− φ(x)

|x|
1
2

lim sup
x→0

φ(0)− φ(x)

|x|
1
2

<∞.

This left open the question of whether a full limit exists. Not long ago,
such a limit was established in [25] for a 2π-periodic highest wave of the
Whitham equation constructed through a computer assisted fixed point
argument. For this wave, the authors proved the even stronger result of
a convex profile in between the crests.

Paper 4 determines the precise cusp shape (i.e. the full limits) at the
crests of the highest waves found in [22, 50]. The paper includes the
corresponding limits for the analogous highest waves of the bidirectional
Whitham equation; these were found in [18] and conjectured to admit
crests forming logarithmic cusps, that is, cusps like that of x 7→ |x| log |x|
at zero.

Curiously, the phenomenon of cusp-shaped surface profiles is not only
reserved for the highest waves. Numerical evidence [38] suggests that
the solutions of the Whitham equation that undergoes wave breaking,
do so by forming cusps in finite time. In fact, it is conjectured in [38]
for the Whitham equation that large positive initial data results in the
formation of square root cusps, while large negative initial data results in
the formation of cube root cusps. Related is the work [53] which proves
the existence of a family of solutions for the Burgers–Hilbert equation
undergoing wave breaking by forming cube root cusps in finite time.
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Paper 1

ON THE BIFURCATION DIAGRAM OF THE

CAPILLARY-GRAVITY WHITHAM EQUATION

Published in Water Waves [17]

MATS EHRNSTRÖM, MATHEW A. JOHNSON, OLA I.H. MÆHLEN,
AND FILIPPO REMONATO

Abstract. We study the bifurcation of periodic travelling waves
of the capillary-gravity Whitham equation. This is a nonlinear
pseudo-differential equation that combines the canonical shallow
water nonlinearity with the exact (unidirectional) dispersion for
finite-depth capillary-gravity waves. Starting from the line of zero
solutions, we give a complete description of all small periodic solu-
tions, unimodal as well bimodal, using simple and double bifurcation
via Lyapunov–Schmidt reductions. Included in this study is the reso-
nant case when one wavenumber divides another. Some bifurcation
formulas are studied, enabling us, in almost all cases, to continue the
unimodal bifurcation curves into global curves. By characterizing
the range of the surface tension parameter for which the integral
kernel corresponding to the linear dispersion operator is completely
monotone (and therefore positive and convex; the threshold value
for this to happen turns out to be T = 4

π2 , not the critical Bond

number 1
3
), we are able to say something about the nodal properties

of solutions, even in the presence of surface tension. Finally, we
present a few general results for the equation and discuss, in detail,
the complete bifurcation diagram as far as it is known from ana-
lytical and numerical evidence. Interestingly, we find, analytically,
secondary bifurcation curves connecting different branches of solu-
tions; and, numerically, that all supercritical waves preserve their
basic nodal structure, converging asymptotically in L2(S) (but not
in L∞) towards one of the two constant solution curves.

1. Introduction

We consider periodic travelling wave solutions of the capillary-gravity
Whitham equation

ut +MTux + 2uux = 0 (1.1)

where MT is a Fourier multiplier operator defined via its symbol mT as

M̂T f(ξ) = mT (ξ)f̂(ξ) =

(
(1 + Tξ2) tanh(ξ)

ξ

) 1
2

f̂(ξ), (1.2)
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and the coefficient T > 0 denotes the strength of the surface tension. The
symbol mT arises as the linear dispersion relation for capillary-gravity
water waves over a finite depth described by the Euler equations [30]. In
the purely gravitational case, that is, when T = 0, the use of this symbol
was proposed by Whitham as a way to generalise the KdV equation and
remedy its strong dispersion [42]. Bifurcation in the gravitational setting
has been investigated in [18, 19, 21]. We are here interested in completely
characterising the local theory for travelling wave solutions of (1.1), and
understanding their global extensions.

The overarching technique follows an approach similar to that used
for the gravity Whitham equation in [19] and the Euler equations in [14],
where a Lyapunov–Schmidt reduction is used to prove the existence of
wave solutions through the application of the implicit function theorem.
Here, however, the symbol of the linear dispersion has a different large-
frequency behaviour: whereas it is ∼ |ξ|−1/2 in the gravity case, it changes

to ∼ |ξ|1/2 in the presence of surface tension. Inspired by recent work on
large waves for very weakly dispersive equations, we tackle the equation
by inverting the linear operator, see (2.3), presenting us with a smoothing
operator with good properties but that now acts nonlocally on a nonlinear
term. Apart from the results presented in this paper, we see this as a first
step toward handling large-amplitude theory for equations with mixed
nonlocal and nonlinear terms. A study in that direction, but with a
different order and global structure of the solutions, has been carried out
in [6].

The organisation of the paper correspond to the development of our
theory:

We start, in Section 2, with a study of the inverse of the Fourier
multiplier operator M in (1.2). This is a smoothing operator of order
−1

2 on any Fourier-based scale of functions spaces (such as the Sobolev
and Zygmund spaces), that is realised as a convolution operator with
a surface tension-dependent integral kernel KT . We characterise the
kernel KT in Theorem 2.3, expressing it as a sum of three terms that are,

optimally, in the regularity classes C− 1
2 , C 3

2 and Cω, respectively, where
Cs is the scale of Zygmund spaces, and Cω is the class of real-analytic
functions. This is different from the regular Whitham symbol which,
although of the same order, has only two terms when decomposed in
the same manner [21]. Additionally, we estimate the decay rate of KT

and its compactness properties (in suitable spaces) which will play an
important role in the global bifurcation analysis in Section 3. Finally, as
in [21] we apply complex analysis techniques and the theory of Stieltjes
functions to determine further properties of the convolution kernel, in
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particular the signs of its derivatives to infinite order. When the surface
tension is big enough, T > 4

π2 , we are able in Theorem 2.8 to show that
the kernel is completely monotone, a delicate structural property shared
by the kernel for the linear dispersion in the pure gravity case (not its
inverse). Moreover, we can show that neither complete monotonicity nor
monotonicity on a half-line is preserved if 0 < T < 4

π2 , showing in effect

that the critical Bond number 1
3 separating weak from strong surface

tension is not the break-off value for the positivity of the kernel (or its
stronger properties). How this affects solutions, is further discussed and
studied in Section 5.

In Section 3 we perform the one-dimensional bifurcation of periodic
waves from simple eigenvalues along the line of zero solutions. After
an initial discussion of the eigenvalues of the linearised operator, and a
scaling to reduce the problem to a fixed period, we use Lyapunov–Schmidt
reduction to prove the existence of small-amplitude solutions in a vicinity
of the simple eigenvalues (expressed using the wavespeed) in Theorem 3.1.
The constructed waves are all unimodal and bell-shaped in a minimal
period. They arise for both strong and weak surface tension; for strong
surface tension they are the only type of waves in a Cs(S)-vicinity of
the line of zero solutions, s > 0. Although one could have carried out
the simple bifurcation using the Crandall–Rabinwitz theorem [27], we
choose to prove Theorem 3.1 using a Lyapunov–Schmidt reduction as a
preparation for the two-dimensional case (which would otherwise be harder
to understand). Under a simple condition that relates the wavenumber
to the surface tension and period, we prove the continuation of the local
solution curves to global ones in Theorem 3.6. This condition may be
related to sub- and supercritical bifurcation, and we see in Remark 3.7
that both cases can appear. The modulational stability of these waves in
the small-amplitude case has been studied in [24]

A challenge and interesting feature of the capillary-gravity case is
that weak surface tension allows for a non-monotone dispersion relation
(see Figure 1) and double eigenvalues of the corresponding linearised
operator (in spaces of even functions). We handle this case in Section 4.
To analytically capture the larger dimension of the space of solutions
nearby the trivial ones, one requires an additional free parameter in
addition to the wavespeed, used in the one-dimensional bifurcation. In
line with [20] we choose to use the period as this extra parameter, while
holding the surface tension fixed. The result, presented in Theorem 4.1,
depends on the resonances between the two frequencies appearing in
the nullspace: if one of the wavenumbers is a multiple of the other,
one obtains a slit disk of solutions, excluding bifurcation straight in the
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direction of the higher wavenumber; if not, one obtains a full open disk
of solutions, see Figure 2. These results are in line with similar ones
in [14,34,38], and include — when projecting the full disk onto a fixed
period — a curve of bimodal rippled waves connecting waves of different
wavenumbers (secondary bifurcation). This technique has later been used
also in [2]. The existence of these interconnecting branches of waves
have been corroborated numerically, showing persistence with respect to
perturbations in the surface tension parameter [35]. The nonexistence of
the pure higher mode in the resonant case of Theorem 4.1 (ii) has also
been confirmed numerically in the same paper. More generally, Wilton
ripples, as these kinds of waves are sometimes called, have earlier been
found to exist for the Euler equations with surface tension [34,38], and
their spectral stability has been numerically investigated in [39]. They
also exist in the presence of vorticity [31], even without capillarity [14,20].
In that case, one may even construct arbitrary large kernels [1, 15], and
corresponding multi-dimensional solution sets [29].

Our motivation for this investigation has arisen from two different
directions: one is the study of the (very) weakly dispersive equations with
nonlocal nonlinearities, and especially their large-amplitude theories; the
other is the mathematically qualitative analogues between the full water-
wave problem and the family of fully dispersive Whitham-type equations.
While numerical bifurcation of steady water waves with surface tension
have been earlier carried out [8], and display striking resemblances to
our case, it is not known how to control the waves along the bifurcation
curves when surface tension is present, and our results show that, at
least for weak surface tension, the looping alternative in Theorem 3.6 is
possible∗. Our initial hope was that, using methods as in [16, 21], one
would be able to reach a conclusion for larger waves. In Section 5 we turn
to this question, as well as discussing the general picture of bifurcation
in the capillary-gravity Whitham equation. While we are indeed able
to reach a partial result, preserving the nodal properties to O(1)-height
of the solutions in Proposition 5.4, the final evolution of solution curves
is very challenging to handle analytically. While both our preliminary
calculations and numerical simulations for this paper indicate that one
can follow curves of supercritical bell-shaped solutions all the way to
c → ∞, and that they converge, asymptotically in L2(S), towards the
curve of constant solutions u = c−1, they do not converge in L∞, and the
analysis is complicated by that the equation lies exactly at the Sobolev-
critical balance s = 1

2 , p = 2 and n = 1. We discuss both our findings

∗See also the discussion in Section 5 concerning related results for the Euler equations.
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and conjectures in detail in Section 5. For a quick overview, we refer to
Figures 3 and 4.

Finally, we give in Appendix A some bifurcation formulas.

2. Properties of the convolution kernel KT

Traveling-wave solutions of the form u(x − ct) satisfy the (profile)
equation

− cu+MTu+ u2 = 0, (2.1)

where we have integrated once and used Galilean invariance to set the
constant of integration to zero. Since mT is strictly positive on R, the
operator MT is invertible (for example in any Fourier-based space) with
inverse LT defined via

L̂T f(ξ) = lT (ξ)f̂(ξ), lT (ξ) = (mT (ξ))−1. (2.2)

In particular, the capillary-gravity Whitham equation (2.1) can be rewrit-
ten in the “smoothing” form

u− cLT (u) + LT (u2) = 0, (2.3)

where LT = KT ∗ and KT is the convolution kernel corresponding to
the symbol lT . Note that the form (2.3) is resemblant of the Whitham
equation itself, but with a nonlocal nonlinearity. By a solution of (2.1)
(respectively (2.3)), we shall mean a real-valued, continuous and bounded
function u that satisfies (2.1) (respectively (2.3)) everywhere.

In the rest of this work we shall make heavy use of the properties of the
convolution kernel KT and its symbol. Our choice of Fourier transform is

f̂(ξ) =

∫
R
f(x)e−ixξ dx.

To start, note that KT = F−1lT is smooth away from the origin with∫
R
KT (x) dx = lim

ξ→0
lT (ξ) = 1 (2.4)

and

lim
x→0

KT (x) =
1

2π

∫
R
lT (ξ) dξ = +∞.

Moreover, since lT is analytic, KT has rapid decay at ±∞, whence
KT ∈ L1(R) provided that the blow-up at x = 0 is not too fast. Later
in this section, we will show that the singularity at the origin is of order

|x|− 1
2 , with a second-leading term of somewhat smoother order, and that

the convolution kernel is completely monotone for strong enough surface
tension.
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2.1. Analyticity of the symbol. We start by studying the analytic
extension of lT to the complex plane; the results to come will be important
to establish both the decay and the complete monotonicity of KT . Define
the meromorphic function

%T (ζ) =
ζ

(1 + Tζ2) tanh(ζ)
, (2.5)

with ζ a complex number. We want to understand the complex extension√
%T of lT , where

√· denotes the principal branch of the square root.

Thus we determine the pre-image %−1
T ((−∞, 0]) and the set of singularities

of %T . As it turns out, the union of these (problematic) sets lie solely on
the imaginary axis. To show this, we introduce the sets

Zc =
{
π(k − 1

2) : k ∈ Z
}
,

Zs = {πk : k ∈ Z \ {0}} ,

ZT =
{
− 1√

T
, 1√

T

}
,

that is, the zeros of cos(ζ), sin(ζ)
ζ , and 1−Tζ2, respectively. Finally, recall

that the symmetric difference between two sets A and B is the set A4B
of elements either in A and not B, or contrariwise†

Lemma 2.1. Let ζ = ξ + iη. Then %T (ζ) takes a zero or infinite value
exactly if ξ = 0 and η ∈ Zs∪(Zc 4 ZT ). Further, %T (ζ) is negative exactly
when the following three conditions hold: ξ = 0, η /∈ Zs ∪ (Zc 4 ZT ), and
the intersection (0, |η|) ∩

(
(Zc ∪ Zs)4 ZT

)
contains an odd number of

elements.

Proof. By the infinite product formulas for sinh ζ and cosh ζ we obtain

%T (ζ) =
1

1 + Tζ2

∞∏
n=1

1 + ζ2

π2(n− 1
2

)2

1 + ζ2

π2n2

. (2.6)

The first part of the lemma now follows immediately, where the symmetric
difference accounts for removable singularities should the term (1 + Tζ2)

coincide with a term of the form 1 + ζ2

π2(n− 1
2

)2
. For the second part we

start by showing that %T is never negative away from the imaginary axis.
As %T is symmetric about zero, we restrict our attention to ξ > 0. We

†That is, (A4B) = (A ∩Bc) ∪ (B ∩Ac).
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have

Re
[

cosh(ζ)sinh(ζ)
]

=
1

2
sinh(2ξ) > 0,

Re
[
ζ (1 + Tζ2)

]
= ξ + ξT (ξ2 + η2) > 0,

and consequently | arg( ζ
1+Tζ2

)|, | arg( 1
tanh(ζ))| < π

2 . This in turn implies

that | arg(%T (ζ))| < π, and so %T (ζ) cannot be negative. Restricting
our attention to the imaginary axis (ζ = iη) and away from zeroes and
singularities, it is clear from (2.6) that %T (iη) is real valued and satisfies

sgn(%T (iη)) = sgn(1− Tη2)

∞∏
n=1

sgn
(

1− η2

π2(n− 1
2)2

)
sgn
(

1− η2

π2n2

)
.

As %T (iη) is positive for η = 0, it is negative exactly when an odd number
of factors in the expression above has swapped sign. This is equivalent to
the last part of the lemma. �

In Section 2.2 we will use Paley–Wiener theory to establish the decay
rate of KT ; we will need to know the maximal vertical analytic extension
of lT into the complex plane. This is immediate from the previous result,
and so we record the following corollary.

Corollary 2.2. The symbol lT extends analytically onto the strip R ×
i(−δ∗, δ∗), where

δ∗ =

{
min{ 1√

T
, π2 }, T 6= 4/π2,

π T = 4/π2.

We shall also use decay of symbols on horizontal lines in R× i(−δ∗, δ∗).
While lT decays too slow (∼ |ξ|− 1

2 ) to be in L2(R), its derivatives decay

sufficiently fast (at least as |ξ|− 3
2 ). In particular, there is an increasing

function τ : [0, δ∗) → R+ such that |l′T (ζ)| 6 τ(|η|)(1 + |ξ|)− 3
2 , which is

readily seen by differentiating and exploiting that coth′ decays exponen-
tially along fixed horizontal lines in the complex plane.

2.2. Regularity properties and decay. In this subsection we split KT

into three canonical parts, and determine the precise regularity of these.
We also record the rapid decay and smoothing properties of KT . Write

lT = l− 1
2

+ l 3
2

+ lω,

with l− 1
2
(ξ) = 1√

T |ξ|
, l 3

2
(ξ) =

√
|ξ|

1+Tξ2
− 1√

T |ξ|
and lω(ξ) = lT (ξ)−

√
|ξ|

1+Tξ2
.

The subscripts represent the regularity of each corresponding term of KT ,
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as will be seen. The decay of l− 1
2
(ξ) h |ξ|− 1

2 for |ξ| � 1 is clear, and for

any fixed T > 0, it is readily seen that

l 3
2
(ξ) h −|ξ|− 5

2 ,

and

lω(ξ) =

√
|ξ|

1 + Tξ2

(√
coth(|ξ|)− 1

)
h |ξ|− 1

2 e−2|ξ|,

both for |ξ| � 1.
To establish the regularity of the corresponding parts of KT we shall use

Zygmund spaces. Let {ψ2
j }∞j=0 be a partition of unity with ψ0(ξ) supported

in |ξ| 6 1, ψ1(ξ) supported in 1
2 6 |ξ| 6 2, and ψj(ξ) = ψ1(21−jξ) for

j > 2. Then the support of each ψj is concentrated around ξ h 2j .

With D = −i∂x, the Fourier multiplier operators ψj(D) : f 7→ F−1(ψj f̂)
characterises the Zygmund spaces: we say u ∈ Cs(R) if

‖u‖Cs(R) = sup
j

2js ‖ψ2
j (D)u‖L∞ (2.7)

is finite. For non-integer values of s > 0 the Zygmund spaces coincide
with the standard (inhomogeneous) Hölder spaces‡,

Cs(R) ∼= Cs(R), s ∈ R+ \ N0,

and one furthermore has the embedding Ck(R) ↪→ Ck(R) for integer
values of k. We refer the reader to [37, Section 13.8] and [22, Section 1.4]
for further details.

Now, the symbols l− 1
2
, l 3

2
and lω all have well-defined Fourier transforms,

and we let

K− 1
2
(x) = F−1(1/

√
T |·|)(x),

K 3
2
(x) = F−1(l 3

2
)(x),

Kω(x) = F−1(lω)(x),

so that

KT (x) = F−1(lT )(x) = K− 1
2
(x) +K 3

2
(x) +Kω(x).

From Fourier analysis we know that F−1(1/
√
|·|)(x) = 1/

√
2π|x| and,

additionally, that the exponential decay of lω(ξ) for |ξ| � 1 implies that
Kω is real-analytic by Paley–Wiener’s first theorem [33]. The optimal
regularity of K 3

2
follows from the following theorem about the integral

kernel KT .

‡Throughout, we use the notation that N0 := N ∪ {0}.
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Theorem 2.3. The integral kernel KT may be written as

KT (x) =
1√

2πT |x|
+K 3

2
(x) +Kω(x),

where the second term belongs to the optimal Hölder class C
3
2 and the

third is real-analytic. The singularity of KT thus has the characterization

lim
x→0

√
|x|KT (x) =

1√
2πT

.

Moreover,

|KT (x)| . e−δ|x| for |x| > 1,

with δ < δ∗ as given in Corollary 2.2. As a consequence, KT ∈ L1(R).

Proof. Most of the first claim was established in the preceding discussion,
and only the regularity of K 3

2
remains. Notice that l 3

2
is always of negative

sign, and thus so is the product ψ2
j (ξ)l 3

2
(ξ). This means

‖ψ2
j (D)K 3

2
‖L∞ = ‖ψ2

j (ξ)l 3
2
‖L1 .

Further, we exploit the decay of l 3
2

and the compact support of ψ2
j , to

obtain

‖ψ2
j (ξ)l 3

2
‖L1 h

∫ 2j+1

2j−1

|ξ|− 5
2 dξ h 2−

3
2
j .

Combining these two equations, we conclude in view of (2.7) and the
equivalence between Hölder and Zygmund norms for non-integer indices

that K 3
2

lies in the optimal Hölder class C
3
2 (R). As for the decay rate

of KT , we instead prove this estimate for the more regular expression
x 7→ xKT (x), which again proves it for KT . The exponential decay of
x 7→ xKT (x) is a direct consequence of Corollary 2.2 and the discussion
thereafter combined with Paley–Wiener theory (see, for example, [33,
Theorem IV]). One can obtain further asymptotic estimates as in [21, Prop.
2.1 and Cor. 2.26]. �

We conclude this subsection by recording some mapping properties
of the convolution operator LT = KT ∗ that will be vital to the global
bifurcation analysis in Section 3 and additionally employed in the analysis
in Section 5. Let S be the one-dimensional unit sphere of circumference
2π, and note that the Hölder and Zygmund spaces are straightforward to
define on the compact manifold S (these are the 2π-periodic functions in
the larger spaces Cs(R) and Cs(R)).

Lemma 2.4. For each T > 0 and each s > 0, LT is a continuous linear
mapping Cs(R)→ Cs+1/2(R) and is hence compact on Cs(S).
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Proof. Consider T > 0 fixed. We want to show that the inequality

‖ψ2
j (D)LTu‖L∞ . 2−

j
2 ‖ψ2

j (D)u‖L∞ , (2.8)

is valid for all j ∈ N0. We prove this estimate for j > 1; the case
j = 0 must be done separately, but the calculation is similar to what
follows and so we exclude it. Pick a smooth function ϕ supported in
1
3 6 |ξ| 6 3 satisfying ϕ(ξ) = 1 whenever 1

2 6 |ξ| 6 2. For j > 1, we

define ϕj(ξ) = ϕ(21−jξ), and observe that ϕjψ
2
j = ψ2

j . Exploiting this
relationship, we deduce

‖ψ2
j (D)LTu‖L∞ = ‖F(ψ2

j (ξ)lT û) ‖L∞
= ‖F(ϕjψ

2
j (ξ)lT û)‖L∞

= ‖F(lTϕj) ∗ (ψ2
j (D)u)‖L∞

6 ‖F(lTϕj)‖L1‖ψ2
j (D)u‖L∞ ,

where we have used Young’s inequality for convolution. The proof will

be complete if we can establish ‖F(lTϕj)‖L1 . 2−
j
2 ; we do this by

splitting the integral, ‖ · ‖L1 = ‖ · ‖L1(|x|62−j) + ‖ · ‖L1(|x|>2−j), and
then prove the bound for each part separately. From the general fact

‖f‖Lp 6 |supp(f)|
1
p ‖f‖L∞ , we deduce two important inequalities for the

calculations to come:

‖lTϕj‖L1 . 2
j
2 , ‖(lTϕj)′‖L2 . 2−j .

These follows from the bounds |lT (ξ)| . |ξ|− 1
2 , |l′T (ξ)| . |ξ|− 3

2 and
(ϕj)

′ h 2−j(ϕ′)j , and the observation that the support of ϕj (and ϕ′j) is

of size 2j and located about |ξ| h 2j . We now conclude the proof with
the two calculations promised above; the first is straight forward

‖F(lTϕj)‖L1(|x|62−j) . 2−j‖F(lTϕj)‖L∞ 6 2−j‖lTϕj‖L1 . 2−
j
2 .

For the second, we use basic Fourier analysis, the Cauchy–Schwarz in-
equality, and the Plancherel theorem:

‖F(lTϕj)‖L1(|x|>2−j) = ‖ 1
xF((lTϕj)

′)‖L1(|x|>2−j)

6 ‖ 1
x‖L2(|x|>2−j)‖F((lTϕj)

′)‖L2(|x|>2−j)

. 2
j
2 ‖(lTϕj)′‖L2

. 2−
j
2 ,

and so we have established (2.8). It is immediate that LT maps Cs(R) to

Cs+ 1
2 (R) continuously, and combining this with the compact embedding

Cs+ 1
2 (S) ↪→ Cs(S) we get the full result. �
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2.3. Montonicity and complete monotonicity. We conclude this sec-
tion by showing that KT is completely monotone for sufficiently large
T . This result will be employed in our analysis in Section 5. A func-
tion g : (0,∞) → [0,∞) is called completely monotone if g is infinitely
differentiable with

(−1)ng(n)(λ) > 0

for n = 0, 1, 2, . . . and all λ > 0. If it can furthermore be written in the
form

g(λ) =
a

λ
+ b+

∫
(0,∞)

1

λ+ t
dσ(t)

for some constants a, b > 0, with σ a Borel measure on (0,∞) such
that

∫
(0,∞)

1
1+t dσ(t) < ∞, then it is called Stieltjes. Our interest in

such functions is motivated by the following two results, taken from [21]
and [36].

Lemma 2.5. [21] Let f : R → R and g : (0,∞) → R be two functions
satisfying f(ξ) = g(ξ2) for ξ 6= 0. Then f is the Fourier transform of
an even, integrable, and completely monotone function if and only if g is
Stieltjes with limλ↘0 g(λ) <∞ and limλ→∞ g(λ) = 0.

Lemma 2.6. [36] Let g be a positive function on (0,∞). Then g is Stielt-
jes if and only if limλ↘0 g(λ) exists in [0,∞] and g extends analytically
to C \ (−∞, 0] such that Im(z) · Im(g(z)) 6 0.

With f(ξ) = lT (ξ) and g(ξ) = lT (
√
ξ) we want to employ the two

above results to conclude that KT = F−1(lT (ξ)) is completely monotone
for T sufficiently large. Since lT has a unit limit at the origin and a
vanshing limit at infinity, it only remains to prove that lT (

√·) is Stieltjes.
In light of Lemma 2.6 it is useful to note that lT (

√·) indeed extends

analytically to C \ (−∞, 0]. Its extension is ζ 7→
√
%T (
√
ζ), where %T is

as in (2.5) and
√· is the principal branch of the square root. To see that

this extension is well defined, note that
√· maps C \ (−∞, 0] into the

right half-plane Cξ>0, while Lemma 2.1 guarantees that %T maps Cξ>0

into C \ (−∞, 0]. Consequently, %T (
√
C \ (−∞, 0]) ⊆ C \ (−∞, 0], and

so it has principal branch square root. We are ready to prove Theorem
2.8, where we determine a critical value T∗ = 4

π2 of the surface tension T ,
for which KT is completely monotone whenever T > T∗. Note that T∗
does not correspond to the, likewise critical, Bond number T = 1

3 that

separates strong from weak surface tension; in fact, T∗ >
1
3 . Further, this

result is sharp since KT is not monotone for T ∈ (0, T∗). As we shall see,
the image of KT in this regime contains negative values which rules out
monotonicity as Theorem 2.3 guarantees that KT is positive near zero
and decays to zero at infinity.
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In the calculations to come, we will make use of the class of so-called
positive definite functions. A function f : R → C is said to be positive
definite if for every n ∈ N and ξ ∈ Rn the n× n matrix [f(ξi − ξj)]ni,j=1

is positive semi-definite. We point out the following standard results [9].

Lemma 2.7. The following statements are true.

(i) [Bochner’s Theorem] Any positive definite function is the Fourier
transform of a non-negative, finite Borel measure.

(ii) [Schur’s Theorem] A countable product of positive definite func-
tions is positive definite.

(iii) If f : R → C is positive definite, then the global maximum of f
occurs at x = 0.

(iv) The function f(x) = 1+ax2

1+bx2
is positive definite if and only if

b > a > 0.

With the above preliminaries, we now state the main result for this
section.

Theorem 2.8. For T > 4
π2 , the kernel KT is completely monotone on

(0,∞). Further, for 0 < T < 4
π2 , the image of KT includes negative

values. Consequently, KT is not monotone on (0,∞).

Proof. We first prove that KT is completely monotone for T > 4
π2 . By

Lemma 2.5 and Lemma 2.6 and the discussion thereafter, we conclude

that KT is completely monotone exactly if Im(ζ) · Im
√
%T (
√
ζ) 6 0 for

ζ ∈ C \ (−∞, 0]. This property is satisfied for
√
%T (
√·) if and only if it

is satisfied for %T (
√·), as the latter function maps C \ (−∞, 0] to itself

(Lemma 2.1). Moving the first factor of cosh ζ out of the infinite product
in (2.6), we obtain

%T (ξ) =
1 + 4

π2 ξ
2

1 + Tξ2

∞∏
n=1

1 + ξ2

π2(n+ 1
2

)2

1 + ξ2

π2n2

. (2.9)

Substituting ξ 7→ √ζ in (2.9), and taking the complex argument of both
sides, we obtain

arg
(
%T
(√

ζ
))

=
[

arg
(

1 +
4

π2
ζ
)
− arg(1 + Tζ)

]
+

∞∑
n=1

[
arg
(

1 +
ζ

π2(n+ 1
2)2

)
− arg

(
1 +

ζ

π2n2

)]
.

(2.10)

This equation is valid whenever the right hand side takes values in (−π, π),
which in turn is always true when ζ ∈ C\(−∞, 0] as the RHS is continuous
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in ζ, zero for ζ > 0 and prevented from taking the values ±π as %T (
√
ζ)

is non-negative (Lemma 2.1). Moreover, when Im(ζ) > 0, it is easily seen
that t 7→ arg(1 + tζ) is strictly increasing in t ∈ R, and so each square
bracket in (2.10) is negative (the first non-positive), further implying

Im(ζ) · Im
√
%T (
√
ζ) < 0. After a similar argument for Im(ζ) < 0, we

obtain the desired conclusion.
For the second part of the theorem, we observe that by Bochner’s

Theorem in Lemma 2.7(i), KT is non-negative if and only if its Fourier
transform lT is a positive definite function; we now prove that the latter
statement is false when 0 < T < 4

π2 . Note first that for 0 < T < 1
3 , this

follows immediately from Lemma 2.7(iii) as lT does not have a global
maximum at ξ = 0 (see Figure 1). Suppose instead that 1

3 6 T < 4
π2 . If

lT is positive definite, then Lemma 2.7(ii) implies the same would be true
for its square ξ 7→ %T (ξ). To this end, we write (2.9) as

%T (ξ) =
1 + 4

π2 ξ
2

1 + Tξ2
ϕ(ξ),

which, after introducing the positive constants α = 4/(Tπ2) and β = α−1,
can be further rewritten as

%T (ξ) =
(
α− β

1 + Tξ2

)
ϕ(ξ) =: αϕ(ξ)− βψ(ξ).

By Lemma 2.7, both ϕ and ψ are positive definite as they are (countable)

products of positive definite functions, and thus ϕ̂, ψ̂ > 0 by Bochner’s
Theorem. Note that ϕ has a complex analytic extension to the strip
R × i(−π, π), while ψ can not be extended to a larger strip than R ×
i( −1√

T
, 1√

T
). Since 1√

T
6
√

3 < π, we can pick some γ ∈ ( 1√
T
, π) and use

Paley–Wiener theory [33] and Cauchy–Schwarz to conclude that

0 <

∫
R
ϕ̂(x)eγ|x| dx <∞ and

∫
R
ψ̂(x)eγ|x| dx = +∞,

which further implies ∫
R
%̂T (x)eγ|x| dx = −∞.

By Bochner’s Theorem, ξ 7→ %T (ξ) is not positive definite, and so neither
is lT , which concludes the proof. �

Before we end this section, we note that there is a range of values of
strong surface tension T ∈ (1

3 ,
4
π2 ) where the kernel KT is not monotone.

As we will see, this has implications when trying to establish monotonicity
of solutions along the supercritical global solution branches described in
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Section 3.3 below; see Proposition 5.4 and the discussion in Section 5 in
general.

3. One-dimensional bifurcation

Since K ∈ L1(R), it may be periodised to an arbitrary period. In
particular, given a 2π-periodic f ∈ L∞(R) we can define the action of
LT = KT ∗ on f through a convolution of f with a 2π-periodic kernel Kp

over a single period:

LT f(x) =

∫
R
KT (x− y)f(y) dy =

∫ π

−π

(∑
k∈Z

KT (x− y + 2kπ)

)
f(y) dy

=:

∫ π

−π
Kp(x− y)f(y) dy.

Clearly Kp is even, strictly positive on R and satisfies ‖Kp‖L1(−π,π) = 1.
Further, by Theorem 2.3 we know that Kp is smooth on R \ 2πZ, and
that for T > 4

π2 it follows by Theorem 2.8 and [21, Proposition 3.2] that
Kp is completely monotone function on the half period (0, π). To find
nontrivial solutions of the equation (2.1), or, equivalently, of (2.3), we fix
s > 1/2 and define a map F : Cseven(S)× R→ Cseven(S) via

F (u, c) = u− cLT (u) + LT (u2), (3.1)

where Cseven(S) is the subspace of even functions in Cs(S). Note this map
is well-defined since Cseven(S) is a Banach algebra for any s > 0. Then the
roots of F correspond to the even and 2π-periodic solutions of (2.1) with
wavespeed c. The choice s > 1

2 is by convenience, as functions of that
regularity have absolutely convergent Fourier series [26].

ξ0

�T(ξ)

0 < T < 1 /3

1

(a)

�T(ξ)

ξ0

T > 1 /3

1

(b)

Figure 1. Schematic drawings of the behavior of the symbol lT (ξ) for
(a) weak surface tension 0 < T < 1/3 and for (b) strong surface tension
T > 1/3. In both cases, the symbol is strictly positive and decays as

|ξ|−1/2 as |ξ| → ∞.
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Now, we begin with the observation that F (0, c) = 0 for all c ∈ R and
that the linearised operator

DuF [0, c] = Id− cLT
has a nontrivial kernel in Cseven(S) if and only if c lT (k) = 1 for some
k ∈ N0 (we intentionally include the case k = 0 as it will play a role in
the two-dimensional bifurcation to come). Consequently, for a fixed c ∈ R
we have

kerDuF [0, c] = span {cos(kx) : k ∈ N0 such that clT (k) = 1} , (3.2)

and hence the multiplicity of the kernel depends sensitively on the graph
of the function lT (ξ). In particular, if T > 1/3 then lT (ξ) is monotone
decreasing on R+ and hence the above kernel is simple: see Figure 1. If
0 < T < 1/3, however, the function lT has exactly one local extremum (a
maximum) in the interior of R+, whence opening the possibility of two
different positive integers for which lT (m) = lT (k): again, see Figure 1.
A simple calculation shows that for a fixed k ∈ N0, the kernel will be
simple if and only if T /∈ {T∗(n; k)}n∈N0 , where§

T∗(n; k) :=
n tanh(k)− k tanh(n)

kn (n tanh(n)− k tanh(k))
,

while it will have multiplicity exactly two when T = T∗(n; k) for some
n ∈ N0.

Note that for each fixed k, the function T∗(·; k) tends to zero as n→∞,
as does T∗(0; k) when k → ∞. It is also not hard to see that T∗(0; k)
is a strictly decreasing function of k. Numerical plots indicates that
also the function T∗(·; k) is strictly decreasing, but we will not use this
monotonicity property in our proofs.

Throughout the remainder of this section, we turn our attention to
the branches of solutions {(u, c)} bifurcating from the trivial line u = 0
at some wavespeed c∗ for a fixed value of the surface tension T > 0
and where the kernel of DuF [0, c∗] is one-dimensional; two-dimensional
bifurcation in the case 0 < T < 1

3 is dealt with in Section 4. Note that
while one-dimensional kernels appear both for sub- and supercritical wave
speeds, separated by c = 1, two-dimensional kernels only appear for
c ∈ (0, 1]: see Section 4 below.

3.1. The parameters. To investigate the bifurcations we will make use
in the following sections of three positive quantities — the wavespeed c,
the surface tension T , and a scaling in the period of the waves, κ. While

§Note that the function T∗(·; ·) can be extended to the cases n = 0 and k = 0
through continuity.
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the first two appear directly in the steady problem (2.1), the scaling
ξ 7→ κξ is realised by introducing the corresponding dependence in the
convolution operator L, so that

L̂κ,T (ξ) = lκ,T (ξ) := lT (κξ). (3.3)

This operator agrees with the original one for κ = 1. In particular, finding
2π-periodic solutions of (2.1) with symbol Lκ,T is equivalent to finding
2π/κ-periodic solutions of (2.1) with symbol LT = L1,T . This allows
us to treat different wavelengths in the same equation by moving the
wavelength parameter to Lκ,T . Of course, the family of operators Lκ,T all
enjoy the embedding properties of Lemma 2.4, as the proof is identical
for an arbitrary, fixed, κ > 0. In what follows, we will thus modify (3.1)
and seek non-trivial solutions of the map

Fκ(u, c) = u− cLκ,T (u) + Lκ,T
(
u2
)

(3.4)

in Cseven(S)× R for a fixed κ > 0.
Since surface tension is a property of the medium, while the speed

and wavenumber are properties of particular waves, it is physically more
relevant to use the two latter as bifurcation parameters, while holding
the surface tension fixed. This is what we will do in the following.

3.2. Local bifurcation via Lyapunov–Schmidt. The following theo-
rem establishes, for fixed wavelength and surface tension, the local bifur-
cation of small amplitude steady solutions the capillary-gravity Whitham
equation (1.1). Although this is by now a standard Crandall–Rabinowitz
type result [27], we prove the result using a direct Lyapunov–Schmidt
reduction as to prepare for the two-dimensional bifurcation in Section 4.
This is similar to the strategy in [14]. As κ and T will be fixed — assum-
ing that we already have a one-dimensional kernel as described in the
beginning of this section — we shall here suppress the dependence upon
these parameters.

Theorem 3.1. Let k ∈ N and set c0 = lκ,T (k)−1. For any T, κ > 0 such
that dim kerDuFκ(0, c0) = 1 there exists a smooth curve

{(u(t), c(t)) : 0 < |t| � 1}
of small-amplitude, 2π-periodic even solutions of the steady capillary-
gravity Whitham equation (2.1) with symbol given by (3.3). These solu-
tions satisfy

u(t) = t cos(kx) +O(t2)

c(t) = c0 +O(t).
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in Cseven(S)×R, and constitute all nontrivial solutions in a neighbourhood
of (0, c0) in that space.

Remark 3.2. There is an additional but qualitatively different bifurcation
taking place at c = 1, where the straight curve of constant solutions
(u, c) = (c− 1, c) crosses the trivial solution curve (0, c). These solutions
must be taken into consideration when constructing non-constant waves
at c = 1 when the kernel is two-dimensional, see Theorem 4.1.

Remark 3.3. By considering the role of κ in the proof of Theorem 3.1
one can see that by varying κ one obtains a one-dimensional family of
solution curves, the starting points of which depend smoothly on κ. This
may be seen also by applying the implicit function theorem directly to 3.1.
For each k ∈ N we thus obtain a two-dimensional sheet of solutions,

Sk = {(u(t, κ), c(t, κ), κ) : 0 < |t| � 1, |κ− κ0| � 1} (3.5)

parameterised by (t, κ) in a neighbourhood of a bifurcation point (0, κ0).

Proof. As stated above, we suppress the dependence on the fixed pa-
rameters T and κ throughout. According to the assumptions and the
discussion after (3.2), on Cseven(S) we have

kerDuF (0, c0) = ker(Id− c0L) = span{cos(k·)}.

We first write

u(t) = t cos(kx) + v(t),

c(t) = c0 + r(t),

with v(t) ∈ Cseven(S) such that
∫ π
−π cos(kx)v dx = 0 and r(t) ∈ R, and

proceed to show the existence of v and r such that for |t| � 1 we have

F (t cos(kx) + v(t), c0 + r(t)) = 0. (3.6)

As a subspace of L2(S), we equip Cseven(S) with the L2 inner product
〈f, g〉 = 1

π

∫ π
−π fg dx and let Π: Cseven(S)→ kerDuF (0, c0) be the orthog-

onal projection onto span{cos(k·)}. Since DuF (0, c0) is a symmetric
Fredholm operator with index 0 by Corollary 3.5 below, it follows that
Cseven(S) may be decomposed as a direct sum between its kernel and range.
In particular, (3.6) is equivalent to the system of equations

ΠF (t cos(kx) + v, c0 + r) = 0,

(I −Π)F (t cos(kx) + v, c0 + r) = 0,
(3.7)
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where we have suppressed the t-dependence in v and r. Noting that

F (t cos(kx) + v, c0 + r)

= t cos(kx) + v − (c0 + r)L(t cos(kx) + v) + L(t cos(kx) + v)2

= DuF (0, c0)(v + t cos(kx))

− rL(t cos(kx) + v) + L(t cos(kx) + v)2,

and that cos(k·) is in the kernel of DuF (0, c0), the equation (3.6) may be
rewritten as

DuF (0, c0)v = rL(t cos(kx) + v)− L(t cos(kx) + v)2 =: g(t, r, v) (3.8)

and hence, recalling that v ∈ (1−Π)Cseven(S), (3.7) is equivalent to the
system

0 = Πg(t, r, v)

DuF (0, c0)v = (Id−Π)g(t, r, v).
(3.9)

Finally, observe that since DuF (0, c0) is invertible on (I−Π)Cseven(S), the
second equation in (3.9) can be rewritten as

v = [DuF (0, c0)]−1(Id−Π)g(t, r, v).

Concerning this latter equation, note that at (t, r) = (0, 0) we have both
that v = 0 is a solution and that the Fréchet derivative with respect to v is
invertible on (Id−Π) Cseven(S) (because DuF (0, c0) is). Therefore, by the
implicit function theorem on Banach spaces, the second line of (3.9) has
a unique solution v(t, r) ∈ (Id−Π) Cseven(S) defined in a neighbourhood of
(t, r) = (0, 0), and depending analytically on its arguments. By uniqueness,
v(0, r) = 0 for all |r| � 1. Moreover, differentiation with respect to t at
(t, r) = (0, 0) in (3.8) shows that ∂

∂tv(0, r) = 0, which implies that v has
no constant or linear terms in t. As it is smooth in t, it may be expanded
in an (at least) quadratic series around t = 0.

We now need to solve the equation

Πg(t, r, v(t, r)) = Q(r, t) cos(kx) = 0

for r, with

Q(t, r) := 〈g(t, r, v(t, r)), cos(k·)〉.
Notice that that Q(0, r) = 0 since v(0, r) = 0 for all r, which together
with the symmetry of L implies that we can write

Q(t, r) = t [r l(k) +R(t, r)] ,

where R is analytic with R(0, 0) = ∂rR(0, 0) = 0, again due to the
properties of v (here, l = lT,κ). An application of the implicit function
theorem to the equation r l(k)π +R(t, r) = 0 at (t, r) = (0, 0) then yields
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the existence of a locally unique smooth function r : t 7→ r(t) with r(0) = 0
such that

Q(t, r(t))) = t(r(t) l(k) + R̃(t, r(t))) = 0

for all |t| � 1. This concludes the proof. �

3.3. Global bifurcation (analytic). We now extend the local bifur-
cation curves from Section 3.2 to global ones by the means of the an-
alytic bifurcation theory pioneered by Dancer [12, 13] and then devel-
oped further by Buffoni and Toland [10]. For fixed s > 1/2, we define

N : Cseven(S)× R→ Cs+1/2
even (S) by

N(u, c) = L(cu− u2).

Fixed points of N are solutions of the steady capillary-gravity Whitham
equation (2.1), and conversely. Let

S = {(u, c) ∈ Cseven(S)× R : F (u, c) = 0}
be the set of solutions (fixed points of N). Note that Lemma 2.4 implies
that S ⊂ C∞even × R, so that all solutions are smooth: for details, see
Proposition 5.1 below. By combining this with a diagonal argument one
obtains the following compactness result.

Lemma 3.4. Bounded and closed sets in S are compact in Cseven(S)× R.

Proof. Let K ⊂ S ⊂ Cseven(S) × R be closed and bounded, and pick a
sequence (uj , cj)j ⊂ K. Since {c ∈ R : (u, c) ∈ K} is a closed and bounded
subset of R, it is compact. This means that (cj)j has a convergent
subsequence, name it (ck)k. As the map

Cseven(S)× R 3 (u, c) 7→ cu− u2 ∈ Cseven(S)

is continuous for s > 1/2, and since the map L is compact on Cseven(S)
thanks to Lemma 2.4, it follows that after passing to a further subsequence
(ul, cl)l ⊂ K that (N(ul, cl))l converges in Cseven(S) to some function u.
Since ul = N(ul, cl) by definition, passing to limits implies the sequence
(ul, cl)l converges in Cseven(S)× R with limit (u, c) ∈ S. As K is closed it
follows that (u, c) ∈ K, establishing that K is compact. �

Corollary 3.5. The Fréchet derivative DuF (u, c) is a Fredholm operator
of index 0 at any point (u, c) ∈ Cseven(S)× R.

Proof. This follows immediately from Lemma 3.4 as then

DuF (u, c) = Id− L(c− 2u)

is a compact perturbation of the identity. �



20 EHRNSTRÖM, JOHNSON, MÆHLEN, AND REMONATO

Before embarking on to the next theorem, we recall the shorthand l(·)
for lκ,T (·) = lT (κ·).

Theorem 3.6. Whenever

c̈(0) =
3c0l(2k)− l(2k)− 2

(c0 − 1)(c0l(2k)− 1)
(3.10)

is finite and non-vanishing the local bifurcation curve t 7→ (u(t), c(t)),
|t| � 1, from Theorem 3.1 extends to a continuous and locally analytically
parametrizable curve in Cseven(S) × R defined for all t ∈ [0,∞). One of
the following alternatives holds:

(i) ‖(u(t), c(t))‖Cs(S)×R →∞ as t→∞.
(ii) t 7→ (u(t), c(t)) is P -periodic for some finite P , so that the curve

forms a loop.

Remark 3.7. We note that

c̈(0; k) =


10

(3T − 1)(κk)2
+O(1) for |k| � 1

− (
√

2− 1)(Tκk)−1/2 +O
(
k−1

)
for k � 1.

For T > 1/3 it follows that (0, c0) undergoes a supercritical pitchform
bifurcation for small k, and a subcritical pitchfork bifurcation for large k.
Note numerically, we observe there exists a unique k∗ = k∗(T ) > 0 such
that c̈(0) > 0 for 0 < k < k∗ and c̈(0) < 0 for k > k∗. For 0 < T < 1/3,
both the numerator and denomenator of (3.10) change signs. Note that
one may be able to do global bifurcation when c̈(0) = 0 but inspecting

c(4)(0): see, for example, [21, Theorem 6.1]. We do not pursue this here.

Proof. This theorem is a version of the global analytic bifurcation theorem
in [10], and — apart from the bifurcation formulas — the proof goes as in
the purely gravitation case in [19, 21]. The assumptions are fulfilled from
Lemma 3.4 and Corollary 3.5 if one can just show that some derivative
c(k)(0) is non-vanishing. We give the calculations for ċ(0) and c̈(0) in the
Appendix; the first is 0, and the second is given by (3.10). Note that a
third alternative in the theorem in [10] does not happen here, as the set
Cseven(S)× R lacks a boundary. �

There are a few more things one can say about the global bifurcation
curves, both numerically and analytically, and we discuss the global
bifurcation diagram in detail in Section 5. In particular, the cases of
strong and weak surface tension are summarised in Figures 3 and 4,
respectively.
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4. Two-dimensional local bifurcation

We now focus our attention on the case of a two-dimensional bifurcation
kernel in Cseven(S). To enable the necessary two degrees of freedom we
shall make use of the wavelength κ in addition to the wavespeed c, while
the surface tension T is assumed to be fixed. We shall therefore study for
κ > 0 the operator

Fκ(u, c) = u+ Lκ(u2 − cu)

on Cseven(S)× R, along with its linearisation

L = DuFκ0(0, c0) = Id− c0Lκ0 ,

assuming that T, κ0, c0 > 0 are constants such that

ker(L) = span{cos(k1·), cos(k2·)}, (4.1)

which happens when κ0, c0 > 0 and k1, k2 ∈ N0, k1 6= k2, are such that

c0 = lκ0(k1)−1 = lκ0(k2)−1,

as described at the start of Section 3 (we suppress the dependence on T ,
as it will not be used apart from in this assumption). A two-dimensional
kernel can arise only for c0 ∈ (0, 1]. Let now 1 6 k1 6 k2. With Sk being
the sheet of 2π/k-periodic solutions defined in (3.5) we shall show that
in addition to the solutions in Sk1 and Sk2 , we may obtain solutions in
a set called Smixed consisting of perturbations of functions in the span
of cos(k1·) and cos(k2·). Assuming that k1 6 k2, the resonant case when
k2 is an integer multiple of k1 (sometimes referred to as Wilton ripples)
is more difficult than the generic case, but we follow here the procedure
in [14,20] to construct a slit disk of solutions also in that case. Numerical
calculations indicate that this set is optimal [35].

When one of the wavenumbers is zero (meaning c0 = 1), we instead call
that one k2, and we will automatically have the resonant case, as then
k1 | k2. That case is included in the below theorem. Hence, at c = 1 there
is a nontrivial bifurcation, but the arising waves always have a non-zero
component in the constant direction.

Theorem 4.1. Let T > 0 be fixed and assume that (4.1) holds for some
distinct k1, k2 ∈ N0.

(i) When k1 does not divide k2 there is a full, smooth, sheet

Smixed = {(u(t1, t2), c(t1, t2), κ(t1, t2)) : 0 < |(t1, t2)| � 1}
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of solutions in Cseven(S)× R× R+ of the form

u(t1, t2) = t1 cos(k1x) + t2 cos(k2x) +O(|(t1, t2)|2),

c(t1, t2) = c0 +O((t1, t2)),

κ(t1, t2) = κ0 +O((t1, t2)),

to the steady capillary-gravity Whitham equation (2.1). The set
Sk1 ∪ Sk2 ∪ Smixed contains all nontrivial solutions in Cseven(S)×
R× R+ of this equation in a neighbourhood of (0, c0, κ0).

(ii) When k1 divides k2 there exists for any δ > 0 a small but positive
εδ and a slit, smooth, sheet

Smixedδ = {(u(%, ϑ), c(%, ϑ), κ(%, ϑ)) : 0 < % < εδ, δ < |ϑ| < π − δ}
of solutions in Cseven(S)× R× R+ of the form

u(%, ϑ) = % cos(ϑ) cos(k1x) + % sin(ϑ) cos(k2x) +O(%2),

c(%, ϑ) = c0 +O(%),

κ(%, ϑ) = κ0 +O(%).

to the steady capillary-gravity Whitham equation (2.1). In a
neighbourhood of (0, c0, κ0), the set S = Sk2 ∪ Smixedδ contains
all nontrivial solutions in Cseven(S) × R × R+ of (2.1) such that
δ < |ϑ| < π − δ.

Remark 4.2. The order of vanishing of the functions c− c0 and κ− κ0

in Theorem 4.1 is analyzed in Section A.2 of Appendix A.

Remark 4.3. The bifurcation theorem Theorem 4.1 shows that near a
two-dimensional bifurcation point in the case where k2/k1 /∈ N0 there
exists a full disk of solutions (for fixed κ), while if k2/k1 ∈ N0 the disk is
slit with one axis removed. This situation is summarised in Figure 2. In
particular this means that it is possible to find curves connecting solutions
with different wavenumbers, consistent with the recent numerical findings
in [35].

Proof. We start by writing

u(t1, t2) = t1 cos(k1x) + t2 cos(k2x) + v,

c(t1, t2) = c0 + r,

κ(t1, t2) = κ0 + p,

where, generically, we want to find v, r and p parameterised by (t1, t2)
such that

Fκ0+p(t1 cos(k1x) + t2 cos(k2x) + v, c0 + r) = 0, (4.2)
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Figure 2. The local solution disks for the steady capillary-gravity
Whitham equation (2.1) around a point where the bifurcation kernel is
two-dimensional. The left-hand drawing depicts the situation in Theo-
rem 4.1 (i), whereas the right-hand drawing refers to case (ii) of the same
theorem. The blue and red colours represent the proximity of the solutions
to the pure k1- and k2-modes, respectively. In particular, when k1 divides
k2 we have not found any waves bifurcating in the direction of cos(k1·).

for sufficiently small values of (t1, t2). As in the proof of Theorem 3.1, we
let Π: Cseven(S) → ker(DuFκ0(0, c0)) be the orthogonal projection onto
ker(DuFκ0(0, c0)) parallel to ran(DuFκ0(0, c0)), where we have equipped
Cseven(S) with the L2 inner product 〈f, g〉 = 1

π

∫ π
−π fg dx. According to

Corollary 3.5 equation (4.2) is then equivalent to

{
ΠFκ(t1,t2) (u(t1, t2), c(t1, t2)) = 0

(Id−Π)Fκ(t1,t2) (u(t1, t2), c(t1, t2)) = 0.
(4.3)

Note that under the above ansatz, where it is assumed that Πv = 0,

Fκ (u, c) = t1 cos(k1x) + t2 cos(k2x) + v

+ Lκ0+p

[
(t1 cos(k1x) + t2 cos(k2x) + v)2

−(c0 + r) (t1 cos(k1x) + t2 cos(k2x) + v)]

= (v − c0Lκ0+pv) + t1 (cos(k1x)− c0Lκ0+p cos(k1x))

+ t2 (cos(k2x)− c0Lκ0+p cos(k2x))

− rLκ0+p (t1 cos(k1x) + t2 cos(k2x) + v)

+ Lκ0+p (t1 cos(k1x) + t2 cos(k2x) + v)2 ,
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and writing Lκ0+p = Lκ0 + (Lκ0+p − Lκ0) we have

Fκ (u, c) = DuFκ0(0, c0)v − c0(Lκ0+p − Lκ0)v

− t1c0(Lκ0+p − Lκ0) cos(k1x)− t2c0(Lκ0+p − Lκ0) cos(k2x)

− rLκ0+p (t1 cos(k1x) + t2 cos(k2x) + v)

+ Lκ0+p (t1 cos(k1x) + t2 cos(k2x) + v)2

=: DuFκ0(0, c0)v − g(t1, t2, r, p, v).

Therefore (4.2) is equivalent to

DuFκ0(0, c0)v = g(t1, t2, r, p, v), (4.4)

and we can rewrite (4.3) as{
0 = Πg(t1, t2, r, p, v)

DuFκ0(0, c0)v = (Id−Π)g(t1, t2, r, p, v).
(4.5)

Note that since v is orthogonal to ker(DuFκ0(0, c0)) the second equation
in (4.5) reads v = DuFκ0(0, c0)−1(Id−Π)g(t1, t2, r, p, v). It is clear that

DuFκ0(0, c0)v − (Id−Π)g(t1, t2, r, p, v) = 0

has the solution (t1, t2, r, p, v) = (0, 0, 0, 0, 0) and at that point the
Fréchet derivative respect to v is DuFκ0(0, c0), which is invertible on
(Id − Π)Cseven(S). The implicit function theorem then ensures the exis-
tence of a solution v = v(t1, t2, r, p) ∈ (Id− Π)Cseven(S). By uniqueness
we have that v(0, 0, r, p) = 0 for all small enough values of r and p.
Moreover, note that ∂

∂t1
v(0, 0, 0, 0) = 0 and ∂

∂t2
v(0, 0, 0, 0) = 0. This

follows by differentiating (4.4) respect to t1 or t2, and evaluating at
(t1, t2, r, p) = (0, 0, 0, 0) recalling that DuFκ0(0, c0) is invertible on its
range. As a consequence, v depends at least quadratically on t1 and t2.

We are now left with solving the finite-dimensional problem given by
the first equation in (4.5). To this end, we decompose the projection Π
as Π = Π1 + Π2, where Π1 is the projection onto cos(k1·), and Π2 is the
projection onto cos(k2·). Then

Πg = Π1g + Π2g = Q1 cos(k1x) +Q2 cos(k2x),

with Qj = 〈g, cos(kj ·)〉, and the first line of (4.5) is equivalent to showing
that

Q1 = Q2 = 0. (4.6)

To solve (4.6) we consider two cases.

The non-resonant case. Assume that k2/k1 /∈ N0. Using the properties of
v and Π1, a direct calculation shows that
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Q1 = t1
[
c0

(
l((κ0 + p)k1)− l(κ0k1)

)
+ r l((κ0 + p)k1)

]
− l((κ0 + p)k1)

〈
cos(k1·), (t1 cos(k1·) + t2 cos(k2·) + v(t1, t2, r, p))

2
〉
.

(4.7)
As v(0, t2, r, p) is 2π/k2-periodic and k2 6= k1, the above inner term

product vanishes for t1 = 0. Therefore we may write

Q1(t1, t2, r, p) = t1 Ψ1(t1, t2, r, p) (4.8)

with

Ψ1(t1, t2, r, p) =

∫ 1

0

∂Q1

∂t1
(zt1, t2, r, p) dz, (4.9)

and note (4.7) implies

Ψ1(0, 0, r, p) = c0 [l((κ0 + p)k1)− l(κ0k1)] + r l((κ0 + p)k1). (4.10)

Similarly, we have

Q2 = t2
[
c0

(
l((κ0 + p)k2)− l(κ0k2)

)
+ r l((κ0 + p)k2)

]
− l((κ0 + p)k2)

〈
cos(k2·), (t1 cos(k1·) + t2 cos(k2·) + v(t1, t2, r, p))

2
〉

(4.11)
with the inner product term vanishing at t2 = 0 since we assumed
k2/k1 /∈ N0. We can thus write

Q2(t1, t2, r, p) = t2 Ψ2(t1, t2, r, p) (4.12)

with

Ψ2(t1, t2, r, p) =

∫ 1

0

∂Q2

∂t2
(t1, zt2, r, p) dz (4.13)

so that

Ψ2(0, 0, r, p) = c0 [l((κ0 + p)k2)− l(κ0k2)] + r l((κ0 + p)k2). (4.14)

Hence, condition (4.6) is equivalent solving the system{
t1Ψ1(t1, t2, r, p) = 0

t2Ψ2(t1, t2, r, p) = 0

for p and r in a neighborhood of (t1, t2, r, p) = (0, 0, 0, 0). There are
clearly four cases: t1 = t2 = 0 represents the trivial solutions. When
Ψ1 = 0 and t2 = 0 we can apply Theorem 3.1 concerning one-dimensional
bifurcations along with the remark following it to obtain the solutions
in Sk1 . Similarly, when t1 = 0 and Ψ2 = 0 we instead retrieve the
solutions in Sk2 . To obtain the mixed-period solutions we apply the
implicit function theorem to solve Ψ1 = Ψ2 = 0 near the origin. Indeed,
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note that Ψ1(0, 0, 0, 0) = Ψ2(0, 0, 0, 0) = 0 and that the Jacobian of the
map

(r, p) 7→ (Ψ1(0, 0, r, p),Ψ2(0, 0, r, p))

at (r, p) = (0, 0) is given by

det

[
DrΨ1(0, 0, r, p) DpΨ1(0, 0, r, p)
DrΨ2(0, 0, r, p) DpΨ2(0, 0, r, p)

]∣∣∣∣
(r,p)=(0,0)

= c0 lκ0(k1)
[
l′κ0(k2) k2 − l′κ0(k1) k1

]
, (4.15)

which is always different from 0 since lT has only one positive stationary
point, lκ0(k1) 6= 0, and that the terms l′κ0(k1) and l′κ0(k2) necessarily
have opposite signs. Applying the Implicit Function Theorem gives
the solutions in Smixed. Note in each of the above four cases, we find
r = r(t1, t2) and p = p(t1, t2) with p and r both vanishing to at least
second order at (t1, t2) = (0, 0), as claimed.

The resonant case. Assume now that k2/k1 ∈ N0. In this case, we are
not guaranteed that Q2(t1, 0, r, p) = 0 for all |t1| � 1 due to a possible
resonance in the inner product term in (4.11). Nevertheless, we do know
that Q2(0, 0, r, p) = 0. Using polar coordinates to introduce the function

Q̃2(%, ϑ, r, p) = Q2(% cos(ϑ), % sin(ϑ), r, p),

defined for 0 6 %� 1 and |(ϑ, r, p)| � 1, we find from (4.11) that

Q̃2(%, ϑ, r, p) = % sin(ϑ)c0

(
l((κ0 + p)k2)− l(κ0k2)

)
(4.16)

+ % sin(ϑ)r l((κ0 + p)k2)

− l((κ0 + p)k2)
1

π

∫ π

−π
cos(k2x)

[
% cos(ϑ) cos(k1x)

+ % sin(ϑ) cos(k2x) + v(% cos(ϑ), % sin(ϑ), r, p)
]2

dx.

Since Q̃2(0, ϑ, r, p) = 0, we may as before write

Q̃2(%, ϑ, r, p) = % Ψ̃2(%, ϑ, r, p) (4.17)

with

Ψ̃2(%, ϑ, r, p) =

∫ 1

0

∂Q̃2

∂%
(z%, ϑ, r, p) dz (4.18)

so that

Ψ̃2(0, ϑ, r, p) = sin(ϑ) c0 [l((κ0 + p)k2)− l(κ0k2)]

+ r sin(ϑ) l((κ0 + p)k2).
(4.19)
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For Q1, instead, all the previous calculations remain true and hence,
similarly defining the function

Ψ̃1(%, ϑ, r, p) := Ψ1(% cos(ϑ), % sin(ϑ)), (4.20)

it follows in this resonant case that (4.6) is equivalent to solving the
system {

% cos(ϑ)Ψ̃1(%, ϑ, r, p) = 0

% Ψ̃2(%, ϑ, r, p) = 0.

for r and p in a neighborhood of (%, ϑ, r, p) = (0, 0, 0, 0). The case % = 0

clearly corresponds to trivial solutions, while the case cos(ϑ) = 0, Ψ̃2 = 0
corresponds to solutions in Sk2 via the application of Theorem 3.1. For

the case that Ψ̃1 = 0, Ψ̃2 = 0 we again apply the implicit function theorem

near the origin. Indeed, note that both Ψ̃1 and Ψ̃2 both vanish at the
origin and that the Jacobian of the map

(r, p) 7→ (Ψ̃1(0, 0, r, p), Ψ̃2(0, 0, r, p))

at (r, p) = (0, 0) is given by

det

[
DrΨ̃1(0, ϑ, r, p) DpΨ̃1(0, ϑ, r, p)

DrΨ̃2(0, ϑ, r, p) DpΨ̃2(0, ϑ, r, p)

]∣∣∣∣
(r,p)=(0,0)

= sin(ϑ) c0 l(κ0k1)
[
l′(κ0k2) k2 − l′(κ0k1) k1

]
, (4.21)

which, by the same considerations we applied to (4.15), is non-zero so long
as sin(ϑ) 6= 0 Therefore, for any fixed δ > 0, restricting to δ < |ϑ| < π− δ
gives the solutions in Smixedδ , as desired �

5. Global bifurcation diagram

In this section we give some additional properties of solutions of (2.1),
that is, of continuous and finitely periodic solutions. Our goal is to com-
municate the global bifurcation picture, as gathered from both analytic
and numerical evidence, as well as to relate this to some comparable
studies. We first present and prove the additional analytic results, after
which we discuss the bifurcation diagram of the periodic capillary-gravity
Whitham with the help of Figures 3 and 4.

Proposition 5.1. Any L∞(R)-solution of the steady capillary-gravity
Whitham equation (2.1) is smooth.

Proof. This is immediate from writing the equation in the form (2.3). For
any T > 0, the operator LT is a smoothing Fourier multiplier operator
of order −1

2 . This applies in particular to the scale of Zygmund spaces
Cs(R), s > 0, see Lemma 2.4. As L∞(R) is an algebra embedded in
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C0(R) [37, Section 13.8], and the spaces Cs(R) are Banach algebras for
s > 0, the result follows by bootstrapping. �

Proposition 5.2.

(i) There are no periodic solutions of (2.1) in the region

maxu < min{0, c− 1}.

(ii) Except for the bifurcation points when c = 1
lT (k) > 0 there are

no small periodic solutions in a vicinity of any point along the
curve of trivial solutions (u, c) = (0, c), c ∈ R. Similarly, there are
no periodic solutions that are small perturbations of the constant
solutions (u, c) = (c−1, c), c ∈ R, except for the bifurcation points
that appear along this line for c < 2.

(iii) The solution u = 0 is the only periodic solution for c = 1.

(iv) For T > 4
π2 , all periodic solutions satisfy

maxu 6 c2

4 ,

with equality if and only if u is a constant solution and either
c = 0 or c = 2.

Remark 5.3. The qualifier ’periodic’ is here used only to guarantee that
solutions, which we have defined to be continuous, are integrable over
their period.

Proof. As all steady solutions are smooth, and the symbol of LT satisfies
lT (0) = 1, one may as in [21] integrate over any finite period to obtain

(c− 1)

∫ π

−π
u dx =

∫ π

−π
u2 dx. (5.1)

(The same argument works for other periods as well.) This is an immediate
contradiction for u < min{0, c− 1}.

For the second statement, consider first c < 1. As the symbol lT is

positive, and the operator LT is a linear isomorphism Cs(S)→ Cs+ 1
2 (S)

unless clT (k) = 1 (cf. (3.2)), the implicit function theorem implies that
there are no small solutions in a vicinity except for the bifurcation points
found in Theorems 3.1 and 4.1 when c < 1. In particular, there are no
such solutions for c < 1 in the case of strong surface tension T > 1

3 , and

none for c < 0 in the case of weak surface tension 0 < T < 1
3 . By Galilean

invariance, the corresponding result applies to the line u = c− 1 for c > 1.
The proposition (iii) is immediate from (5.1).
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For (iv), note that

u(x) = L(cu− u2) =
c2

4
− L

( c
2
− u
)2
6
c2

4
,

when T > 4
π2 , as the integral kernel of L is then everywhere positive.

This proves that maxu 6 c2

4 , with equality if and only if (u, c) = (1, 2)
or (u, c) = (0, 0), as these are the only constant solutions along the line
maxu = c

2 . �

Proposition 5.4. If the surface tension satisfies T > 4
π2 , then the bi-

furcation curve found in Theorem 3.6 for k = 1 can be constructed such
that it contains a subsequence of solutions that are all single-crested (bell-
shaped) in each minimal period and that either:

(i) is bounded in wavespeed but with minu unbounded; or

(ii) eventually leaves every set {maxu 6 λc} for λ < 1
2 .

Proof. For even and periodic solutions u one may as in [16,21] use (2.1)
to write

u′(x) = 2

∫ π

0
(Kp(x− y)−Kp(x+ y))

( c
2
− u(y)

)
u′(y) dy. (5.2)

When Kp is completely monotone, and u is decreasing on (0, π) with
u 6 c

2 , this implies that u is strictly decreasing on the same interval
(unless u is a constant), and a standard argument [16, Lemma 5.5] yields
that looping as in alternative (ii) is ruled out.

Let us therefore, for a contradiction, assume that the bifurcation
curve remains within the set {maxu < c

2}. Recalling that Theorem 2.8
and [21, Proposition 3.2] together imply that Kp is completely monotone
on (0, π) when T > 4

π2 , it follows that alternative (i) in Theorem 3.6
has to hold. As solutions are smooth, this is equivalent to a sequence of
solutions (un, cn) = (u(tn), c(tn)) satisfying |un|∞ + |cn| → ∞ as n→∞.

Assume first that {cn}n is bounded. Then {un}n is unbounded in
L∞(R), and therefore minun → −∞ as n→∞ is the only possibility, by
Proposition 5.2 (iv).

If, on the other hand, {cn}n is unbounded, pick a subsequence such that
limn→∞ |cn| =∞. Note that cn cannot pass c = 1, as Proposition 5.2 (iii)
shows that it would have to pass via (u, c) = (0, 1), but near that point
there are only small constant solutions (see Remark 3.2 and Theorem 4.1).
Hence, the solution curve would first have to connect to either the curve
u = c− 1 or u = 0. But, as described in Proposition 5.2 (ii), the first of
these has no bifurcation points for strong surface tension and c > 1, and
connection back to the bifurcation points of the second is excluded by the
argument used in [16, Lemma 5.5] (no looping). Hence, limn→∞ cn =∞.
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We now show that this is impossible when maxun 6 λcn, λ < 1
2 .

Recall that we are following a branch of the curve for which u is even, and
strictly increasing on the half-period (−π, 0), in view of the positivity of
the integrand in (5.2). According to our assumptions, there exists δ > 0
such that cn

2 −maxun > δcn, pick xn ∈ (0, π) such that

−u′n(xn) = min
y∈[δ,π−δ]

(−u′n(y)).

−u′n(xn) = 2

∫ π

0
(Kp(xn − y)−Kp(xn + y))

(cn
2
− un(y)

)
(−u′(y)) dy

> 2δcn

∫ π−δ

δ
(Kp(xn − y)−Kp(xn + y)) (−u′n(y)) dy

> −2δcnu
′
n(xn)

∫ π−δ

δ
(Kp(xn − y)−Kp(xn + y)) dy.

On the interval of consideration, Kp(xn − y) −Kp(xn + y) is bounded
from below by a positive constant (it is zero only for y = kπ, k ∈ Z).
Although it has a singularity at xn = y, it tends to ∞ there, so we may
estimate it from below, uniformly in xn, by

min {(Kp(xn − y)−Kp(xn + y)) : (x, y) ∈ [δ, π − δ]× [δ, π − δ]} & 1.

Consequently,
−u′n(xn) & −cnu′n(xn),

which is not possible, as cn →∞ and −u′n(xn) > 0 for all n. �

5.1. Discussion and summary of results. Analytically, we have de-
termined almost completely¶ the solution set near the lines of constant
solutions u = 0 and u = c − 1. The result depends crucially on the
strength of surface tension T , and, apart from the easily seen change
in the dispersion relation at T = 1

3 , we have seen in Section 2 that

there is a more subtle change at T = 4
π2 , at which the integral kernel

of the dispersive operator L loses its positivity and monotonicity; that
has made it possible to prove some additional, but not complete, results
for the case of (very) strong surface tension T > 4

π2 . To complete the
picture where our analytical methods have so far proved insufficient, we
have additionally run a spectral bifurcation code similar to the one used
in [35]: a Fourier-collocation scheme is employed to discretise and solve
the equation, while a pseudo-arclength strategy allows us to follow the
branch of solutions in the presence of turning points and other complex
behaviours. In these computations the wavelength 2π has been used, that

¶We lack a proof of non-existence of the k1-modal waves in the resonant case of
Theorem 4.1, but these waves do not seem to exist numerically.
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is, κ = 1. We will present the main result of these calculations as well,
but only in overview form.
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maxu

cc = 1 c = 2

maxu
=
c

2

u
=
c−

1

c !→ 2− c

u !→ u+ 1− c

u = 0

c− 1

Figure 3. A schematic drawing of the global bifurcation diagram in the
case of strong surface tension T > 1

3
(partly T = 4

π2 ). The diagram is

discussed in detail in Section 5.2.

To start our discussion, focus first on one of the Figures 3 or 4. Just as
the regular Whitham equation, the capillary-gravity Whitham equation
(2.1) admits two lines of constant solutions, namely u = 0 and u =
c− 1. These cross at c = 1, the point of a transcritical bifurcation (see
Remark 3.2), and also a bifurcation point for solitary [7] and generalised
solitary [25] waves ; additionally, c = 1 is the symmetry line for the
Galilean invariance

c 7→ 2− c, u 7→ u+ 1− c,
that leaves (2.1) invariant, and is shared by the regular Whitham equation
[21]. The two constants 0 and c − 1 correspond to the two natural
depths that appear for steady flows in the water wave problem, see for
example [28]. In addition to these two lines, there is a third, mathematical,
constant arising from the structure of (2.1) when completing the square,
namely c

2 . While this constant is of physical and absolute importance
in the regular Whitham equation — being the height above surface of a
highest wave — and while it appears as a technical difficulty when trying
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to expand the result of Proposition 5.4, numerical evidence indicate that
this construct is probably only artificial in the presence of capillarity.
Still, we have indicated it in Figure 3 using the line maxu = c

2 (but not
in Figure 4, as it did not prove any help in communicating our results).
Additionally, in both Figures 3 and 4 the greyed-out area illustrates
Proposition 5.2, that there are no solutions in the region where

maxu < min{0, c− 1}.
A final common feature of the strong and weak surface tension case is
that solutions cannot pass c = 1, except via the transcritical bifurcation
point (u, c) = (0, 1), where, locally, the only solutions are given by the
constant functions u = 0 and u = c− 1. This fact may be induced from
Proposition 5.2 (iii) and Remark 3.2, and is indicated in the figures with
a solid red line (no solutions pass). Note that both figures are for a fixed
and finite period.

5.2. The case of strong surface tension. Now, let us focus on the
strong surface tension case and especially the case T > 4

π2 , which is
depicted in Figure 3. As described in Theorem 3.1, we have small waves
of the approximate linear form cos(k·) bifurcating at

ck =
1

lT (k)
> 1.

The bifurcation curves of these waves are indicated by solid blue lines,
with a zoom-in on a small wave along the main bifurcation branch k = 1.
The red line {u = 0, 1 < c 6= ck} shows the result of Proposition 5.2 (ii),
that there are no other supercritical solutions in a Cs-vicinity of the line
of vanishing solutions. By Galilean invariance, each of these curves (and
non-existence results) has an exact counterpart for c < 1 along the line
u = c − 1, and we do not comment more on that in the case of strong
surface tension.

The initial direction of the curves is calculated in Remark 3.7: analyti-
cally, sub-critical bifurcation is established for small enough values of k,
and super-critical bifurcation as k →∞; numerically, this shift happens
at exactly one value, and we have illustrated this with the last visible
(third) curve bending leftwards from the bifurcation point, while the two
first bend right-wards (the direction after the Galilean shift is opposite).

The result of the global bifurcation theory as carried out in Theorem 3.6
is that each curve, when considered in a space of 2π/k-periodic functions,
is either unbounded in Cs × R, or returns (loops) back to (u, c) = (0, ck)
in a finite period of the bifurcation parameter. The standard tool for
ruling out looping is by preserving the unimodal nodal pattern along the
main bifurcation branch, an argument for which one relies on maximum
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principles/positivity of the underlying operators. As we prove in Theo-
rem 2.8 that this property is present when the surface tension coefficient
satisfies T > 4

π2 (and only then)‖, the complete monotonicity of the kernel
K established in Theorem 2.8 for that case provides hope for stronger
results. Note that, regardless of the exact value of T > 0, it follows from
Lemma 2.4 that all solutions of (2.1) are smooth, so that alternative (i)
in Theorem 3.6 is equivalent, by bootstrapping in (2.3), to a sequence of
solutions satisying |u|∞ + |c| → ∞ along the bifurcation curve.

While we cannot rule out alternative (ii) in Theorem 3.1 completely, see
Proposition 5.4, we can at least show that looping would require leaving
every set of the form maxu < λc for λ < 1

2 (that is the consequence of
Proposition 5.4, as an unbounded continuous bifurcation curve cannot
be finitely periodic). Although alternative (i) in Proposition 5.4 is very
unlikely, and never appears in our numerical calculations, we have been
unable to rule it out (the reason for this might be that the balance between
Mu and u2 is exactly at the critical threshold for Gagliardo–Nirenberg,
so that control of a higher Sobolev norm of u in terms of a lower seems to
require using precise properties of the integral kernel.) We have illustrated
this with long-dashed lines in Figure 3, showing the curves (probably)
leaving the cone maxu 6 c

2 .
After that point, our calculations are purely numerical, showing the

solution curves asymptotically approaching the second curve of constant
solutions u = c− 1. Indeed, if the quotient

u

c− 1

should converge to any constant along the bifurcation curve, it is immedi-
ate from (5.1) that the limit is either 0 or 1. The numerics indicate that

the quotient max(u)
c−1 increases along the bifurcation curve to cover all of

the interval (0, 1), with wave profiles that are monotone on a minimal
half-period even though, by far, we have passed u = c

2 . Such a result, we
believe, would be new in the setting of capillary-gravity water waves, but
it is so far out of reach for us when u crosses c

2 . Interestingly enough, the
same pattern seems to persist even when the kernel is not everywhere
positive and monotone, that is, for T < 4

π2 .
As a comparison, for the Euler equations — in the presence of interfacial

waves or waves with surface tension — analytically all alternatives along
a global bifurcation curve are open: waves could be steepening, looping,
speeding, lengthening or develop surface or vorticity singularities [4]; for
interfacial waves without surface tension, unboundedness in speed, slope

‖It is possible that the periodised kernel is positive even when the original kernel is
not, depending on the period, but we have not investigated that here.
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or in the form of a surge is necessary [5]. There is an indirect proof,
however, of connection between the trivial state and waves with infinite
slopes/overhanging profiles [3] and even self-touching surface (so-called
splash singularities) [11], in that the former are perturbations of Crapper
waves, the Crapper family being a continuum from undisturbed water [32].
Numerical investigation have further shown that waves with infinite slopes
can re-appear higher up along bifurcation branches [40]. As the model
we are dealing with cannot capture multi-valued profiles, the increased
steepening visible in the numerical calculations is probably the closest
one can come. Interestingly, in [4], an alternative is that two different flat
states connect in a way very much resemblant to our curves approaching
the line u = c− 1.

Finally, for surface tension T > 4
π2 , Proposition 5.2 shows that no

solutions pass the line c = 0 with maxu > 0, indicated by red in Figure 3.

5.3. The case of weak surface tension. When the surface tension
is weak, T < 1

3 , several things are very different. First of all, the first
single bifurcation points ck might, depending on the period, appear in the
interval 0 < c < 1, although for large enough values of the wavenumber
k the waves will all be supercritical. Just as as in the case of strong
surface tension, Proposition 5.2 guarantees that solutions do not cross
the lines marked with red in Figure 4 (although these now do not include
the positive vertical axis maxu > 0), and there are no solutions in the
grey area. Similarly, there are no small, non-constant, solutions in a
neighbourhood of any point along the constant solution axes u = 0 and
u = c− 1, except at the countable bifurcation points.

A peculiarity in the case of weak surface tension is the appearance of
multimodal waves connecting different curves of k-modal waves. Ana-
lytically, we find a full disk of solutions by two-dimensional bifurcation
in Theorem 4.1 (i), by varying the wavelength. Fixing the fundamental
period, however, this yields a one-dimensional subset of this disk, where
we continuously transform via only a curve between two main modes of
waves. Numerically, this effect persists even for values slightly off the
exact points of two-dimensional bifurcation: as the numerical investiga-
tion [35] shows, the looping alternative (i) in the global one-dimensional
Theorem 3.6 happens in the form of one bifurcation curve of k-modal
waves transforming into one of n-modal waves and thereby connecting
back to the line of zero states. The same kind of connections have been
found for the Euler equations, analytically for small waves [38], and
numerically for small and large waves [8, Figures 4 and 5] (see also [23,41]
for perturbation theory and numerical calculations showing the rippling
and non-uniqueness of small waves). These branch-to-branch connections
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are illustrated in Figure 4 by a curve of small bimodal waves connecting
two curves of unimodal waves bifurcating off the 0-axis for c ∈ (0, 1). (In
numerical calculations for this manuscript, there have even been instances
of curves of waves bridging, consecutively, three different unimodal bi-
furcation curves, that is, a nontrivial path that connects three separate
bifurcation points, but that is not indicated in the graphics.)

The curves of subcritical waves can be followed, again numerically, past
zero wave speed, going left-ward without any indication to stop. In L2(S),
they seem to flatten out to 0, but not in L∞. This feature reappears
again and again in both numerics and our calculations: while L∞-bounds
easily yield bounds on higher norms, and one has control of solutions in
L2 with respect to the wave speed, it is extremely difficult to relate the
L∞-norm of solutions to their L2(S)-norm, even when the wave speed
is bounded. Generally, all curves of solutions appear to asymptotically
approach one of the curve of constant solutions (u = 0 or u = c − 1)
in L2(S), while an actual connection in a space of higher regularity is
impossible for almost all wavespeeds because of the invertibility of the
linear operator DuF (note that it is not obvious how to make sense of
the nonlinear mapping F in L2(S)).

Finally, in the case of supercritical bifurcation, we find only single-
crested (bell-shaped) waves even though the surface tension is weak.
When these waves are small it is a result of Theorem 3.1. These curves
may be continued globally (Theorem 3.6), but the information about them
is purely numerical. Just as in the case of strong surface tension, these
supercritical waves show no ripples, and they asymptotically approach
u = c − 1 in L2(S), but not in L∞. Any proof of preservation of the
nodal properties in the case of supercritical bifurcation when the surface
tension is weak is for the moment entirely out of our reach, even though
it would be very interesting to obtain.

Appendix A. Bifurcation formulas

This appendix contains higher order expansions of the quantities in
Theroem 3.1 and Theorem 4.1. We start with the first and second
order terms in the expansion for the speed c(t) in the one-dimensional
bifurcation case, which is required by the proof of the global extension
in Theorem 3.10. We then proceed to study the first order terms for the
expansions of the functions r and p in the two-dimensional bifurcation
case.

A.1. One-dimensional bifurcation case. We begin by determining
the derivatives ċ(0) and c̈(0) associated to the bifurcation curve con-
structed in Theorem 3.1. This can be done either directly using the
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Figure 4. A schematic drawing of the global bifurcation diagram in the
case of weak surface tension T < 1

3
. The diagram is discussed in detail in

Section 5.3.

Lyapunov–Schmidt reduction carried out in the proof of Theorem 3.1
or by the means of bifurcation formulas given for example in [27]. The
latter requires an identification between the bifurcation function φ(u, c) =
ΠF (u+ψ(u, c), c) used in [27] and the functions v and r used in the proof
of Theorem 3.1. This relation is given by v(t) = ψ(t cos(kx), c(t)).

Here, start from the Lyapunov–Schmidt representation

0 = F (t cos(kx) + v(t), c0 + r(t))

= t cos(kx) + v(t)

+ L
[
(t cos(kx) + v(t))2 − (c0 + r(t))(t cos(kx) + v(t))

]
,

(A.1)

where here it is understood that for each t small the function v(t) is a
2π/k-periodic function of x. Differentiating (A.1) once with respect to
t, evaluating at t = 0 and using that v(0) = v̇(0) = r(0) = 0 yields the
equation

(1− c0L) cos(kx) = 0,
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which holds by our choice of c0. Similarly, differentiating (A.1) twice with
respect to t and evaluating at t = 0 yields

(1− c0L)v̈(0) = 2ṙ(0)L cos(kx)− 2L cos2(kx)

= 2ṙ(0)l(k) cos(kx)− (1 + l(2k) cos(2kx)) .
(A.2)

Since
∫ π
−π v(t) cos(kx)dx = 0 for all |t| � 1, the above implies that

ṙ(0) = 0. Returning to (A.2), it now follows that

v̈(0) =
1

c0 − 1
+
l(2k) cos(2kx)

c0l(2k)− 1
. (A.3)

Continuing, we observe that taking the third derivative of (A.1) with
respect to t and evaluating at t = 0 yields

(1− c0L)
...
v (0) = 3r̈(0)L cos(kx)− 6L (v̈(0) cos(kx)) .

Using (A.3), we compute that

L (v̈(0) cos(kx)) =
l(k) cos(kx)

c0 − 1
+
l(2k) (l(k) cos(kx) + l(3k) cos(3kx))

2(c0l(2k)− 1)
.

Using again that
∫ π
−π v(t) cos(kx) dx = 0 for all |t| � 1, it follows that

r̈(0) =
3

c0 − 1
+

l(2k)

c0l(2k)− 1
=

3c0l(2k)− l(2k)− 2

(c0 − 1)(c0l(2k)− 1)
,

which is the expression (3.10) for c̈(0) given in Theorem 3.6. Note that
the above procedure could be continued to obtain asymptotic expansions
of r(t) and v(t) to arbitrarily high order in t. We also note that the above
result is consistent with the asymptotic formulas in [24].

A.2. Two-dimensional bifurcation case. We now consider the case
of a two-dimensional bifurcation as considered in Section 4 above. Recall
that the solutions constructed in Theorem 4.1 can be written as

u(t1, t2) = t1 cos(k1x) + t2 cos(k2x) + v(t1, t2),

c(t1, t2) = c0 + r(t1, t2),

κ(t1, t2) = κ0 + p(t1, t2),

with v of order O(|(t1, t2)|2) and r, p of order O(|(t1, t2)|). We now
characterize the order of vanishing of the functions r and p at the origin.

Proposition A.1. Let the functions r and p be as in Theorem 4.1. If
k2/k1 /∈ N0, then

∇r(0, 0) = 0, ∇p(0, 0) = 0
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so that, in particular, r and p are of order O(|(t1, t2)|2) near the origin.
If instead k2/k1 ∈ N0, then for any δ > 0 small we have that, in polar
coordinates,

r% (0, ϑ) = 0, p% (0, ϑ) = 0

if and only if either k2 /∈ {0, 2k1} or (k2, ϑ) =
(
2k1,

π
2

)
.

Proof. We begin the non-resonant case, k2/k1 /∈ N0. From the proof of
Theorem 4.1, we know for all 0 < |(t1, t2)| � 1 the functions r and p
satisfy

Ψi(t1, t2, r(t1, t2), p(t1, t2)) = 0 for i = 1, 2,

where the Ψi are defined in (4.9) and (4.13). Fixing j ∈ {1, 2} we
find that differentiating the above with respect to tj and evaluating at
(t1, t2) = (0, 0) gives the system of equations(

Ψ1,r(0) Ψ1,p(0)
Ψ2,r(0) Ψ2,p(0)

)(
rtj (0, 0)
ptj (0, 0)

)
= −

(
Ψ1,tj (0)
Ψ2,tj (0)

)
, (A.4)

where here 0 denotes the origin in R4. Since the above system matrix
is invertible by (4.15), it remains to determine the values of Ψi,tj (0) for
i = 1, 2. This can be accomplished by recalling (4.9) and (4.13) and
noting that (4.7) implies that

∂2Qi
∂t2j

(0) = − 2

π
l(κ0ki)

∫ π

−π
cos3(kix) dx

and

∂2Qi
∂t1∂t2

(0) =


− 2

π
l(κ0k2)

∫ π

−π
cos2(k1x) cos(k2x) dx, i = 1,

− 2

π
l(κ0k1)

∫ π

−π
cos2(k2x) cos(k1x) dx, i = 2

Consequently, since k2/k1 /∈ N0 it follows that Ψi,tj (~0) = 0 for i = 1, 2
and hence (A.4) implies that rtj (0, 0) = ptj (0, 0) = 0 as claimed. Since
j ∈ {1, 2} was arbitrary, this proves the proposition in the non-resonant
case.

Now, consider the resonant case when k2/k1 ∈ N0 and fix δ > 0 small.
In this case, for each δ < |ϑ| < π − δ and 0 < %� 1 the functions r(%, ϑ)
and p(%, ϑ) satisfy the system

Ψ̃i (%, ϑ, r(%, ϑ), p(%, ϑ)) = 0 for i = 1, 2,
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where here the Ψ̃i are as in (4.20) and (4.18). Differentiating this system
with respect to % at % = 0 gives the system of equations(

Ψ̃1,r(0, ϑ, 0, 0) Ψ̃1,p(0, ϑ, 0, 0)

Ψ̃2,r(0, ϑ, 0, 0) Ψ̃2,p(0, ϑ, 0, 0)

)(
r%(0, ϑ)
p%(0, ϑ)

)
= −

(
Ψ̃1,%(0, ϑ, 0, 0)

Ψ̃2,%(0, ϑ, 0, 0)

)
.

(A.5)

As in the non-resonant case, the above system matrix is invertible, this
time thanks to (4.21), and hence it remains to determine the values of

Ψ̃i,%(0, ϑ, 0, 0) for i = 1, 2. Let us begin by determining the value in the
case i = 1. From (4.20) and the preceding discussion, we know we can
write

Ψ̃1(%, ϑ, 0, 0) =

∫ 1

0

∂Q̃1

∂%
(z%, ϑ, 0, 0) dz

where, using (4.7), we have explicitly

Q̃1(%, ϑ, 0, 0) = Q1(% cos(ϑ), % sin(ϑ), 0, 0)

= −2%2l(k0k1) cos(ϑ) sin(ϑ)

π

∫ π

−π
cos2(k1x) cos(k2x) dx.

Clearly then, Q̃2,%%(0, ϑ, 0, 0) is equal to zero if and only if either ϑ = π
2

or k2 /∈ {0, 2k1}. Since

Ψ̃1,%(0, ϑ, 0, 0) =
1

2

∂2Q̃1

∂%2
(0, ϑ, 0, 0)

by above, we have shown that Ψ̃1,%(0, ϑ, 0, 0) = 0 if and only if either of
the conditions ϑ = π

2 or k2 /∈ {0, 2k1} hold.
Similarly, we have

Ψ̃2,%(0, ϑ, 0, 0) =
1

2

∂2Q̃2

∂%2
(0, ϑ, 0, 0)

where, using (4.16), we have

Q̃2(%, ϑ, 0, 0) = −%
2l(k0k2)

π
×∫ π

−π
cos(k2z)

[
cos2(ϑ) cos2(k1x) + sin2(ϑ) cos2(k2x)

]
dx.

Clearly, Q̃2,%%(0, ϑ, 0, 0) vanishes whenever k2 /∈ {0, 2k1}. When k2 = 0,

Q̃2,%%(0, ϑ, 0, 0) does not vanish for any ϑ, and when k2 = 2k1 it only

vanishes when ϑ = π
2 . Consequently, Ψ̃2,%(0, ϑ, 0, 0) vanishes only when
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either k2 /∈ {0, 2k1} or (k2, ϑ) = (2k1,
π
2 ). Together with the results

concerning Ψ̃1,%, this completes the proof. �

Remark A.2. The special case k2 = 2k1 has been found also in the Euler
equations (with gravity and vorticity) by the authors of [1]. The special
case k2 = 0 is instead due to the transcritical double bifurcation allowed
by the capillary-gravity Whitham equation.

Remark A.3. An explicit example where r%(0, ϑ) 6= 0 can be seen in [35,
Figure 6], where the branch of nontrivial solutions has a non-vertical
tangent at the bifurcation point in the speed-height plane.
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SOLITARY WAVES FOR WEAKLY DISPERSIVE

EQUATIONS WITH INHOMOGENEOUS

NONLINEARITIES

Published in Discrete and Continuous Dynamical Systems [16]

OLA I.H. MÆHLEN

Abstract. We show existence of solitary-wave solutions to the
equation

ut + (Lu− n(u))x = 0 ,

for weak assumptions on the dispersion L and the nonlinearity n.
The symbol m of the Fourier multiplier L is allowed to be of low
positive order (s > 0), while n need only be locally Lipschitz and
asymptotically homogeneous at zero. We shall discover such solutions
in Sobolev spaces contained in H1+s.

1. Introduction

A great deal of model equations for the evolution of water waves in
one spacial dimension can be compactly written as

ut + (Lu− n(u))x = 0 , (1.1)

where the dispersion L is a Fourier multiplier in space with real-valued
symmetric symbol m, that is,

L̂u(ξ) = m(ξ)û(ξ),

and n is a local nonlinear term. Solutions of (1.1) tend to enjoy a variety
of qualitative properties of water, see [12], but our focus will be on
the existence of solitary waves. Traveling at constant velocity ν, these
solutions take the form (x, t) 7→ u(x − νt), where u(y) → 0 as |y|→ ∞.
For such solutions (1.1) means

− νu+ Lu− n(u) = 0 , (1.2)

in light of the assumption that u vanish at infinity.
A common approach to prove solitary waves in equations of the form

(1.2) is Lion’s concentration-compactness method introduced in [15]. We-
instein used this in 1987 to prove existence and orbital stability in the
case of a monomial nonlinearity and a symbol of order s ≥ 1 [19]. The
limit s = 1 is not only superficial: In [2] the authors study an equation
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corresponding to s = 1, and that method was later put in a more gen-
eral framework in [1], again for s ≥ 1. Zeng [20] later used a different
energy functional (and different conserved quantity) to relax some of the
conditions, but still for s ≥ 1.

These works led a number of different authors to consider the case
when s < 1: in [14] and [3] the authors treat equations with positive-order
Fourier operators (s > 0) — the case of homogeneous and inhomo-
geneous symbols respectively – and in both cases with homogeneous
nonlinearities; whereas in [7] smoothing operators (s < 0) with mildly
inhomogeneous nonlinearities are allowed. The method for positive-order
operator is indeed based upon Weinstein’s paper [19], whereas the method
for negative-order operators is different, and more closely related to works
on the Euler equations and other systems with dispersion of very weak
type [10]. A main difference between the works [3, 14] and [7] is the
requirement that the waves in the latter should be small. This is related
to scalings/homogeneity of the nonlinearity, and an essential part of the
method of proof in [7]. A later work, related to the investigations for
positive s, is [6], in which the authors look at (1.1) when the nonlinearity

is polynomial, cubic or higher, and the symbol m grows at least as |ξ|
1
2 at

infinity. This growth may be slightly lowered: in the case of a quadratic
pure-power nonlinearity and a homogeneous symbol m (the fractional
KdV equation), the optimal assumption in terms of growth is m(ξ) = |ξ|s,
s > 1

3 [9]; below this value one does not have solitary waves for the
(homogeneous) fKdV equation [13]. This coincides with our assumption
on s below; for the assumption on s′, see our remarks in Section 1.3.2.

Our goal has been twofold. First, to combine ideas from [3] and [7] to
allow for more inhomogeneous nonlinearities in the theory for lower-order
(s > 0) symbols; and, second, to improve upon the required assumptions
on both the linear and nonlinear terms by a slightly different method
of proof. The last point is made visible mostly in that the theory for
low-order s is carried out in corresponding low-order Sobolev spaces
(below the L∞ embedding), for which we use a cut-off of the nonlinearity
n which is different from the ‘small ball’ used in [7]. (Our solutions will
eventually be somewhat more regular, but the near-minimizers we work
with might not exhibit the same regularity). In effect, we are able to
reduce the assumptions on (1.2) to the following.

1.1. The assumptions and the main theorem. Throughout the pa-
per, we will assume the following:

(A) The nonlinearity n:R→ R is locally Lipschitz, and decomposes
into n = np+nr, where np is homogeneous of one of the two forms:
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(A1) x 7→ c|x|1+p and c 6= 0,

(A2) x 7→ cx|x|p and c > 0,

for a real number p > 0, while the remainder term satisfies
nr(x) = O(|x|1+r), as x→ 0, for some r > p.

(B) The symbol m:R→ R is even and satisfies the growth bounds{
m(ξ)−m(0) ' |ξ|s′ , for |ξ|< 1,

m(ξ)−m(0) ' |ξ|s, for |ξ|> 1,

with s′ > p/2 and s > p/(2 + p). We also require ξ 7→ m(ξ)/〈ξ〉s
to be uniformly continuous on R.

We will discuss these assumptions in detail below. Given them, we will
prove the following existence result.

Theorem 1.1. There exists µ∗ > 0 so that for every µ ∈ (0, µ∗), there is
a solution u ∈ H1+s of (1.2), with wave speed ν ∈ R, satisfying

(i) ‖u‖2H1+s. ‖u‖22= 2µ,

(ii) m(0)− ν ' µβ, with β = s′p
2s′−p ,

where the implicit constants in (i) and (ii) are independent of µ ∈ (0, µ∗).

An interesting special case of Theorem 1.1 is the case of the capillary-
gravity Whitham equation with strong surface tension, for which p = 1
and the symbol is

m(ξ) =
(

(1 + Tξ2) tanh(ξ)
ξ

) 1
2
, T ≥ 1

3 ,

which corresponds to s = 1
2 and s′ = 2. Modelled on the water wave

problem with surface tension, the capillary-gravity Whitham equation is
known to admit generalized solitary waves in the case T < 1

3 (weak surface
tension) [11], and decaying solitary waves for T > 0 (both weak and strong
surface tension) [3], as well as periodic steady waves, including rippled
solutions in the case of weak surface tension [8]. In the case T < 1

3 the
solitary waves have wave speeds ν smaller than m(0) (called subcritical),
whereas the generalized waves exhibit supercritical wave speeds ν > m(0);
for strong surface tension we are only aware of sub-critical solutions. As
we also prove the existence of sub-critical solutions, in the case of strong
surface tension T ≥ 1

3 , there currently seems to lack super-critical truly
solitary waves in the capillary-gravity Whitham equation. The same
waves have also not been found for the capillary-gravity Euler equations
(although we have not found a source actually stating this), but a proof of
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general non-existence is lacking. What has been shown is that there are no
small-amplitude, exponentially decaying, even, supercritical solitary-wave
solutions of the Euler equations in the slightly weak case when T is close
to, but less than, 1

3 [18].
On a related note, it might be worth noticing that Theorem 1.1 is also

an existence result for solitary waves tending to a general value c, not
necessarily zero, at infinity. For if ñ(x) = n(c+x)−n′(c)x−n(c) satisfies
the assumptions, then there is a solitary-wave solution u, with velocity ν,
of the equation ut + (Lu− ñ(u))x = 0, and thus, u+ c is a traveling wave
solution of (1.2) with velocity ν − n′(c).

1.2. The method. In this subsection, the framework used to prove
Theorem 1.1 will be introduced. In particular, we develop a constrained
minimization problem whose solutions satisfy (1.2), and in fact, it is
exactly solutions of this minimization problem that we shall prove the
existence of. For this purpose, we will be working with two ‘extra’
assumptions on (1.2), namely

(C1) n is globally Lipschitz continuous,
(C2) m(0) = 0.

While these auxiliary assumptions (especially the first) excludes many
instances of (1.1) where we would like to prove the existence of solitary
wave solutions, it turns out that proving our main theorem for this
smaller class implies the result in the more general setting, as we now
demonstrate.

Lemma 1.2. If Theorem 1.1 holds true under the assumptions (A), (B),
(C1) and (C2), then it also holds true when only (A) and (B) are satisfied.

Proof. Assume n and m satisfy (A) and (B). Define

ñ(x) =

{
n(x), |x|≤ 1,

n(±1), ±x > 1,
m̃(ξ) = m(ξ)−m(0),

and notice that ñ and m̃ satisfy (A), (B), (C1) and (C2). By assumption,
Theorem 1.1 now holds for the modified equation

−ν̃u+ L̃u− ñ(u) = 0,

where L̃ is the Fourier multiplier whose symbol is m̃. Thus there is a
µ̃∗ > 0 so that for each µ ∈ (0, µ̃∗) we have a solution u with velocity ν̃
satisfying

‖u‖2H1+s . µ,

−ν̃ ' µβ,
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where we omitted m̃(0) = 0 from the second expression. As H1+s ↪→ L∞,
we can pick µ∗ ∈ (0, µ̃∗) so that ‖u‖∞≤ 1 for all µ ∈ (0, µ∗). For such
solutions u, we have ñ(u) = n(u), and setting ν = ν̃ −m(0) we see that

0 = −ν̃u+ L̃u− ñ(u),

= −νu+ (L̃+m(0))u− n(u),

= −νu+ Lu− n(u).

Thus, for µ < µ∗ the solutions provided by Theorem 1.1 for the modified
equation are solutions of the original equation, but with a shifted velocity
ν satisfying

m(0)− ν ' µβ.
�

We now construct the minimization problem mentioned above, whose
well-posedness is assured when the assumption (C1) is added to (A)

and (B). We will work in the Sobolev space H
s
2 of measurable functions

f :R→ R with finite Sobolev norm

‖f‖
H
s
2
= ‖〈·〉

s
2 f̂‖2,

where we use the Japanese bracket 〈ξ〉 =
(
1 + ξ2

)1/2
. Our main tools

shall be the functionals Q,L,N :H
s
2 → R, defined by

Q(u) =
1

2

∫
R
u2 dx,

L(u) =
1

2

∫
R
m(ξ)|û|2 dξ,

N (u) = Np(u) +Nr(u) =

∫
R
Np(u) dx+

∫
R
Nr(u) dx,

where Np(x) =
∫ x

0 np dt, and Nr(x) =
∫ x

0 nr dt. We will prove the above

functionals to be Fréchet differentiable with H
s
2 -derivatives

Q′(u) = u, L′(u) = Lu, and N ′(u) = n(u).

Consider now the constraint minimization problem

Iµ = inf
u∈Uµ

E(u) , (1.3)

where E = L −N and

Uµ = {u ∈ H
s
2 :Q(u) = µ}, (1.4)

and where we restrict µ ∈ (0, µ∗), for some fixed upper bound µ∗ that
we shall require to be sufficiently small. Our strategy shall be to find
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minimizers of (1.3); a minimizer u must for some Lagrange multiplier
ν ∈ R satisfy

0 = −νQ′(u) + E ′(u) = −νu+ Lu− n(u),

thus solving (1.2). Note that, although our solutions are ‘discovered’ in

H
s
2 , we additionally prove they lie in the more regular space H1+s (or,

in an even more regular space, see Prop. 8.2). Had we been working on a
compact domain, then any “uniformly regular” minimizing sequence of
(1.3), would admit a converging subsequence, implying the existence of
a minimizer. As R is not compact, we instead use Lion’s concentration–
compactness theorem (see Section 2). Informally, any bounded sequence
(ρk) ⊂ L1 admits a subsequence (again indexed with k) that will, as
k →∞, either

– vanish (the mass spreads out),

– dichotomize (the mass splits in two parts that separate), or

– concentrate (the mass remains uniformly concentrated in space).

We will show that for a ‘concentrated’ minimizing sequence, we can pick
a converging subsequence. Thus, the existence of a minimizer of (1.3)
follows if we can for minimizing sequences rule out the possibility of
vanishing and dichotomy. To achieve this, we use a “long-wave ansatz”
to find a low enough upper bound for Iµ that will allows us to compare
the size of µ, L and N on ‘near minimizers’. This size comparison will
directly exclude vanishing and also imply that µ 7→ Iµ is subadditive for
small µ > 0, which excludes dichotomy. The paper concludes with some
regularity estimates for our solutions (see Prop. 8.2).

We end this section with some discussion regarding the main assump-
tions (A) and (B).

1.3. A technical look at the assumptions (A) and (B). In this
subsection, we discuss our main assumptions on the the pair n and m;
we mention what role the different parts play and whether some could be
weakened. This discussion is easier to follow after a read through.

1.3.1. The nonlinearity n. The continuity of n is needed for N to be
Fréchet differentiable. The stronger local Lipschitz continuity is used to
obtain the estimate ‖u‖2H1+s. µ for our solutions in Prop. 8.1; this impor-
tant estimate gives us Lemma 1.2 which is what we use to guarantee the
well-posedness of (1.3) in the case s ≤ 1. Still, there are two alternative
ways of proving solitary waves when we assume n to be merely continuous:

(i) If s > 1, we have H
s
2 ↪→ BC, and so one could use Prop. 4.1

(specifically equation (4.3)) in place of Prop. 8.1 to attain Lemma
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1.2.

(ii) Alternatively, if |nr(x)|. |x|1+p for |x|> 1, all steps in this pa-
per (apart from Prop. 8.1) go through, granted we include the
restriction ‖u‖

H
s
2
< R to our minimization problem for some arbi-

trary constant R > 0, which only plays a role in proving Prop. 4.1.

We choose to assume local Lipschitz continuity of n to avoid these other
conditions, and to provide a somewhat different technique in comparison
to earlier proofs.

Finally, the reason for excluding the case np(x) = cx|x|p, c < 0, is
the same as in [3] and [7]. Our method breaks down at the first step in
that regime, as we cannot hope to obtain the low upper bound for Iµ in
Prop. 3, because −Np(u) > 0 for all u 6= 0.

1.3.2. The symbol m. The upper bound of the growth at zero and the
corresponding inequality s′ > p/2 are needed to find a satisfactorily low
upper bound for Iµ by a long-wave ansatz (see Prop. 3), while the lower
bound is necessary for Prop. 4.1, which is crucial for the remainder term
nr to be negligible for sufficiently small µ.

As for the growth bounds when |ξ|> 1, the lower bound is chosen to

control the H
s
2 -norm by Q and L, which together with s > p/(2 + p)

gives control of the L2+p-norm by Sobolev embedding. This is used in
the proof of Prop. 4.1 and in (5.4) to exclude vanishing.

The upper growth bound is instead needed when excluding dichotomy:
Indeed, if m(·)−m(0) was bounded by 〈·〉s̃, s̃ > s, we would need to work

in H s̃/2 (for E(u) to be well defined). Then equation (4.3), which bounds

the H
s
2 -norm, would still be the best regularity estimate on a minimizing

sequence, but Lemma 6.2 (now, for operators Br:H
s̃/2 → H−s̃/2), would

require a bound on the stronger H s̃/2-norm to be of any use when proving
Prop. 6.3.

Finally, the uniform continuity of ξ 7→ m(ξ)/〈ξ〉s is necessary for
excluding dichotomy. It assures that L is not ‘too’ non-local, as described
in Lemma 6.2. Note that a sufficient estimate for our regularity constraint
is |m′(ξ)|. 〈ξ〉s, as it implies that ξ 7→ m(ξ)/〈ξ〉s is globally Lipschitz.

2. Preliminaries

In this section, we presents bounds and regularity estimates for the
functionals Q,L,N , E introduced in subsection 1.2. Throughout section
2-7, we assume (only) that n and m satisfies the assumptions (A), (B),
(C1) and (C2), introduced in subsection 1.1 and 1.2. In light of Lemma
1.2, proving Theorem 1.1 in this case, implies the validity of the theorem
when either (C1) or (C2) fails.
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Proposition 2.1. For u 6= 0, we have

(i) 0 < L(u) . ‖u‖2
H
s
2
, (iii) |Np(u)|. ‖u‖2+p

2+p,

(ii) |N (u)|. Q(u), (iv) |Nr(u+ v)|. ‖u‖2+r
2+r+‖v‖

2+p
2+p.

Proof. Combining the growth bounds on m from (B) with (C2), we see
that 0 < m(ξ) . 〈ξ〉s for ξ 6= 0, and so bound (i) follows. By (A) and
(C1), we have |n(x)|. |x|, and so we obtain (ii). From |np(x)|. |x|1+p

we immediately get (iii). For (iv), we note that

|Nr(x)|. |x|2+r, |x|≤ 1, and |Nr(x)|. |x|2+p, |x|≥ 1,

where the the first bound follows from nr(x) = O(|x|1+r), while the latter
follows from |nr(x)|= |n(x)−np(x)|. |x|+|x|1+p. With this, and the fact
that r > p, we obtain

|Nr(x)|. min{|x|2+r, |x|2+p},
or equivalently

|Nr(x+ y)|
|x|2+r+|y|2+p

. min

{
|x+ y|2+r

|x|2+r+|y|2+p
,
|x+ y|2+p

|x|2+r+|y|2+p

}
=: min

{
a(x, y), b(x, y)

}
.

Note that a(x, y) and b(x, y) are bounded for |y|≤ 1 and |y|≥ 1 respec-
tively, and so |Nr(x+ y)|. |x|2+r+|y|2+p. �

From here on, we will refrain from explicitly referring to the assumptions
as done in the previous proof, so to attain a more straight forward
presentation.

Proposition 2.2. The Fréchet derivative of Q,L,N and E at u ∈ H
s
2

are the elements in the (dual) space H
−s
2 given by

(i) Q′(u) = u,

(ii) L′(u) = Lu,

(iii) N ′(u) = n(u),

(iv) E ′(u) = Lu− n(u).

Proof. The Fréchet derivative of Q and E follows from an elementary
calculation and linearity of the Fréchet derivative respectively. Turning to
L, we note that L is self-adjoint, 〈Lu, v〉 = 〈u, Lv〉, due to the symmetry
of m. Consequently L(u+ v) = L(u) + 〈Lu, v〉+ L(v). We then obtain

|L(u+ v)− L(u)− 〈Lu, v〉|
‖v‖

H
s
2

=
L(v)

‖v‖
H
s
2

. ‖v‖
H
s
2
→ 0 ,
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as v → 0, in H
s
2 , where we used (i) from Prop. 2.1. For N , we exploit

the global Lipschitz-continuity of n and calculate

|N (u+ v)−N (u)− 〈n(u), v〉|
‖v‖

H
s
2

≤ 1

‖v‖
H
s
2

∫
R
|v|
∫ 1

0
|n(u+ tv)− n(u)| dt dx

.
‖v‖22
‖v‖

H
s
2

→ 0,

as v → 0, in H
s
2 . �

One important implication of the previous proposition is the following
description of the continuity of E on H

s
2 , that we shall utilize when

excluding dichotomy.

Corollary 2.3. For u, v ∈ H
s
2 we have

|E(u)− E(v)|. (‖u‖
H
s
2
+‖v‖

H
s
2
)‖u− v‖

H
s
2
.

Proof. Using |n(u)|. |u| and m(ξ) . 〈ξ〉s, we have for arbitrary u, v ∈ H
s
2

|〈E ′(u), v〉| ≤ |〈Lu, v〉|+|〈n(u), v〉|
. ‖u‖

H
s
2
‖v‖

H
s
2
+‖u‖2‖v‖2. ‖u‖H s

2
‖v‖

H
s
2
.

We then conclude

|E(u)− E(v)| ≤ max
0≤t≤1

|〈E ′(v + (u− v)t), u− v〉|

. (‖u‖
H
s
2
+‖v‖

H
s
2
)‖u− v‖

H
s
2
.

�

The uniform continuity of ξ 7→ m(ξ)/〈ξ〉s is a simple assumption to
state, but not directly convenient to work with. Instead we shall use an
implied regularity constraint on m, described by the next lemma.

Lemma 2.4. There is a function ω:R → [0,∞), bounded above by a
polynomial, with limt→0 ω(t) = 0, such that

|m(ξ)−m(η)|≤ ω(ξ − η)〈ξ〉
s
2 〈η〉

s
2 . (2.1)

Proof. Firstly, the bound |〈ξ〉s − 〈η〉s|. (〈ξ〉s + 〈η〉s)|ξ − η|, is easily
obtained by the mean value theorem together with crude upper bounds.
By assumption, there is a modulus of continuity ω̃ so that∣∣∣m(ξ)

〈ξ〉s
− m(η)

〈η〉s
∣∣∣ ≤ ω̃(ξ − η), (2.2)
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and limλ→0 ω̃(λ) = 0. As m(·)/〈·〉s is a bounded function, we can assume
ω̃ to also be bounded. We arrive at

|m(ξ)−m(η)| ≤
∣∣∣m(ξ)

〈ξ〉s
− m(η)

〈η〉s
∣∣∣〈ξ〉s +

m(η)

〈η〉s
|〈ξ〉s − 〈η〉s|

. ω̃(ξ − η)〈ξ〉s + |ξ − η|(〈ξ〉s + 〈η〉s)

. (ω̃(ξ − η) + |ξ − η|)〈ξ − t〉
s
2 〈ξ〉

s
2 〈η〉

s
2 ,

=: ω(ξ − η)〈ξ〉
s
2 〈η〉

s
2 ,

where we used the estimate 〈x〉 . 〈x− y〉〈y〉, when going from second to
third line. �

By a more careful argument, it is possible to show that the two
regularity constraints (2.1) and (2.2) are equivalent without any a priori
knowledge of m, although we shall not prove this.

We conclude this section with the concentration-compactness theorem;
the foundation of our proof of Theorem 1.1.

Theorem 2.5 ( Lions [15], concentration-compactness). Any sequence
(ρk) ⊂ L1 of non-negative functions with the property∫

R
ρkdx = µ > 0,

admits a subsequence, denoted again by (ρk), for which one of the following
phenomena occurs.
Vanishing: For each r > 0, k →∞ implies that

sup
x0∈R

∫ r

−r
ρk(x− x0)dx→ 0.

Dichotomy: There exist a real number λ ∈ (0, µ) and three sequences
(xk) ⊂ R and (rk), (r̃k) ⊂ R+, so that when k →∞∫ rk

−rk
ρk(x− xk)dx→ λ, rk →∞,∫ r̃k

−r̃k
ρk(x− xk)dx→ λ, r̃k/rk →∞,

Concentration: There is a sequence (xk) ⊂ R, so that for each ε > 0 there
exists r <∞ satisfying for all k ∈ N∫ r

−r
ρk(x− xk) dx ≥ µ− ε.
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3. Upper and lower bounds for Iµ

In this section, we prove that the infimum Iµ of the minimization

problem (1.3) satisfies −∞ < Iµ < −κµ1+β, for two positive constants
κ and β. The upper bound will give us Prop. 4.1, which declares some
fruitful bounds on near minimizers. The importance of also having a
lower bound is the trivial consequence Iµ 6= −∞, allowing Prop. 6.1 to
be meaningful. For clarity, we note that µ∗, as of now, is an arbitrary
fixed positive upper bound for µ. The proof of the following proposition
is inspired by [7].

Proposition 3.1. There exists κ > 0, so that for µ ∈ (0, µ∗), we have
−∞ < Iµ < −κµ1+β, where the exponent β = s′p/(2s′ − p).

Proof. Note that (i) and (ii) in Prop. 2.1, immediately gives us that
Iµ > −Cµ for some C <∞. For the upper bound, we pick a function ϕ,
satisfying supp(ϕ̂) ⊂ (−1, 1), Q(ϕ) = 1 and cϕ(x) ≥ 0. This last inequal-

ity implies that Np(ϕ) = |c|
2+p‖ϕ‖

2+p
2+p . An example of such a function

would be an appropriately scaled version of x 7→ sinc(x)2. We define

the ansatz function ϕµ,t(x) =
√

µ
t ϕ(x/t), for t ≥ 1. By a substitution of

variables we obtain

‖ϕµ,t‖kk= µ

[
µ

t

] k
2
−1

‖ϕ‖kk . (3.1)

When k = 2, we get Q(ϕµ,t) = µ, and moreover

Np(ϕµ,t) =
|c|

2 + p
‖ϕµ,t‖2+p

2+p =: C1µ

[
µ

t

] p
2

,

Nr(ϕµ,t) . ‖ϕµ,t‖2+r
2+r= O(µ)

[
µ

t

] r
2

.

Exploiting the local growth ofm, a simple computation gives the inequality
L(ϕµ,t) ≤ C2µ/t

s′ , for some C2 <∞. We evaluate the ansatz to obtain

Iµ ≤ E(ϕµ,t) ≤ −

[
C1

[
µ

t

] p
2

− C2

ts′

]
µ+O(µ)

[
µ

t

] r
2

.

We set t−s
′

= Bµβ with β = s′p/(2s′ − p), where B > 0 is small enough
to guarantee t ≥ 1 for µ ∈ (0, µ∗). The inequality above becomes

Iµ ≤ −
[
C1B

p
2s′ − C2B

]
︸ ︷︷ ︸

2κ

µ1+β +B
r

2s′O
(
µ1+β+ r−p

2

)
.
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Without loss of generality, we can choose B small enough so that κ > 0
and κµ1+β is greater than the O-term for all values of µ ∈ (0, µ∗); this
is possible as p < min{2s′, r} and µ∗ < ∞ is fixed. We get the desired
result:

Iµ < −κµ1+β . (3.2)

�

Remark 3.2. From here on, we assume to have picked a constant κ > 0
as described in the last proposition. It is important to note that if we
replace µ∗ by a lower upper bound µ′∗ < µ∗, then (3.2) would still hold
for the same κ, as (0, µ′∗) ⊂ (0, µ∗). This allows us to later assume µ∗
to be ‘sufficiently’ small, without having to worry about the effect on κ.
Similarly, the implicit constants in Prop. 4.1 will also remain fixed when
lowering µ∗.

4. Near minimizers

A consequence of the preceding proposition is that the feasible region
Uµ = {u ∈ H

s
2 : Q(u) = µ} of the the minimization problem (1.3)

contains elements u satisfying

E(u) < −κµ1+β, with β =
s′p

2s′ − p
,

where κ is some fixed positive constant independent of µ ∈ (0, µ∗). We
will refer such functions as near minimizers. Only these functions are of
interest to us; any minimizing sequence (uk) ⊂ Uµ must consist solely of
near minimizers, except for a finite number of exceptions. Proposition
4.1 will give important bounds of such functions, that will serve as the
main building blocks for excluding vanishing and dichotomy. We stress
that throughout this paper, the implicit constants associated with our
usage of .,& and ' are independent of µ ∈ (0, µ∗).

Proposition 4.1. A near minimizer u ∈ Uµ satisfies

L(u) ' N (u) ' ‖u‖2+p
2+p ' µ

1+β, (4.1)

Nr(u) = o(µ1+β), (4.2)

‖u‖2
H
s
2
' µ. (4.3)

Proof. Obtaining the bounds (4.1). As L > 0, we immediately get from
the definition of a near minimizer that

max{L(u), µ1+β} . N (u) . ‖u‖2+p
2+p, (4.4)
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where the last inequality follows from Prop. 2.1. It remains to show
‖u‖2+p

2+p. min{L(u), µ1+β}. Let the indicator function on [−1, 1] be de-

noted χ and partition u = u1 + u2 with û1 = χû and û2 = (1− χ)û. By
the Gagliardo–Nirenberg interpolation inequality,

‖u1‖2+p
2+p. ‖u1‖

p
s′

Ḣ
s′
2

‖u1‖
2+p− p

s′
2 . L(u)

p
2s′ µ1+ p

2
− p

2s′ . (4.5)

For u2, we use Sobolev embedding to obtain

‖u2‖2+p
2+p. ‖u2‖2+p

H
s
2
. L(u)1+ p

2 . (4.6)

As L(u) . N (u), and N (u) . µ by (ii) in Prop. 2.1, the expression (4.6)
can be reduced further to

‖u2‖2+p
2+p. L(u)

p
2s′ µ1+ p

2
− p

2s′ . (4.7)

Exploiting the connection 1 + p
2 −

p
2s′ = (1 − p

2s′ )(1 + β), we combine
inequality (4.5) and (4.7) to obtain

‖u‖2+p
2+p. ‖u1‖2+p

2+p+‖u2‖2+p
2+p. L(u)

p
2s′
[
µ1+β

]1− p
2s′
. (4.8)

Combining (4.4) with (4.8), we conclude that ‖u‖2+p
2+p. min{L(u), µ1+β}.

Obtaining the bound (4.2). Now that (4.1) is established, we get

‖u1‖2+p
2+p. µ

1+β by (4.5). Moreover, ‖u1‖2∞≤ ‖û1‖21≤ 4µ, and so

‖u1‖2+r
2+r≤ ‖u1‖2+p

2+p‖u1‖r−p∞ . µ1+β+(r−p)/2.

Looking back at (4.6), we also obtain ‖u2‖2+p
2+p. µ

(1+ p
2

)(1+β). Finally, by

(iv) in Prop. 2.1,

|Nr(u)|. ‖u1‖2+r
2+r+‖u2‖2+p

2+p= o(µ1+β).

Obtaining the bound (4.3). This is also a consequence of (4.1) together
with ‖·‖2

H
s
2
' Q(·)+L(·) and the fact that the upper bound µ∗ is fixed. �

5. A congestion result for near minimizers

In this section, we show that a minimizing sequence (uk) of (1.3) will
never vanish in accordance with the Concentration-Compactness Theorem
2.5. We start by demonstrating some ‘uniform’ congestion of mass in L2+p-
norm of each element in (uk). To formalize, we pick a smooth function
ϕ, satisfying supp(ϕ) ⊂ [−1, 1] and

∑
j∈Z ϕ(x − j) = 1. An example

would be the convolution of the characteristic function on [−1
2 ,

1
2 ] with a

mollifier supported in [−1
4 ,

1
4 ]. For brevity, we set ϕj(x) = ϕ(x− j).
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Proposition 5.1. For any near minimizer u ∈ Uµ we have

max
j∈Z
‖ϕju‖2+p& µ

β
p .

Proof. Consider the operator T : f 7→ (ϕjf)j , mapping functions to se-
quences of functions. It is a fact that ‖T‖Hα→`2(Hα)< ∞ for all α ≥ 0;
this is a trivial calculation when α ∈ N0 if one replaces ‖·‖Hα with the

equivalent norm f 7→ ‖f‖2+‖f (α)‖2. For non-integer values of α > 0, the
result follows immediately from the (so called) ‘complex interpolation
method’; in particular, the two results [4, Theorem 5.1.2. on p. 107]
and [4, Theorem 6.4.5.(7) on p. 152] combined with the boundness of T
for α ∈ N0, implies the general bound. Setting α = s/2, we conclude∑

j∈Z
‖ϕju‖2

H
s
2
. ‖u‖2

H
s
2
. (5.1)

By (4.3) and (4.1) we also obtain

µβ‖u‖2
H
s
2
' ‖u‖2+p

2+p'
∑
j∈Z
‖ϕju‖2+p

2+p, (5.2)

where the last equivalence uses
∑

j∈Z|ϕj(x)|2+p' 1. Combining (5.1) and

(5.2), we get

µβ
∑
j∈Z
‖ϕju‖2

H
s
2
≤ C

∑
j∈Z
‖ϕju‖2+p

2+p,

for some C <∞ independent of our choice of near minimizer u. At least
one j0 ∈ Z must then satisfy

µβ‖ϕj0u‖2H s
2
≤ C‖ϕj0u‖

2+p
2+p. (5.3)

Combining (5.3) with the Sobolev embedding, ‖ϕj0u‖22+p. ‖ϕj0u‖2H s
2
, we

are done. �

To exclude vanishing we would need congestion of mass in L2-norm; this
is achievable from the previous result through the Gagliardo–Nirenberg
inequality inequality. Indeed, setting j0 = arg maxj∈Z‖ϕju‖2+p we obtain

‖ϕj0u‖
2+p
2+p. ‖ϕj0u‖

p
s

Ḣ
s
2
‖ϕj0u‖

2+p− p
s

2 . (5.4)

By the boundness of T in the previous proof, and (4.3), we have the
estimate ‖ϕj0u‖2Ḣ s

2
. µ; together with the previous proposition, equation

(5.4) now implies

µ
β
p

(2+p) . µ
p
2s ‖ϕj0u‖

2+p− p
s

2 .
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As 2 + p− p/s > 0, we conclude that µδ . ‖ϕj0u‖2, for some appropriate
exponent δ > 0, and so we get the following corollary.

Corollary 5.2. No minimizing sequence of (1.3) has a subsequence for
which vanishing occurs in accordance with Theorem 2.5.

6. Strict subadditivity of the mapping µ 7→ Iµ

Excluding dichotomy from a minimizing sequence is a more difficult
task than that of vanishing, reflected by the laborious calculations in this
subsection. The main idea however, is a simple one: Suppose dichotomy
(as described in Theorem 2.5) occurs on a minimizing sequence (uk) ⊂ Uµ
of (1.3), then we shall see it can be ‘split’ in two (u1

k) ⊂ Uλ, (u2
k) ⊂ Uµ−λ

so that limk→∞ E(u1
k)+E(u2

k) = Iµ. This will contradict that the mapping
µ 7→ Iµ is strictly subadditive for small µ, a fact we now prove.

Proposition 6.1. For µ∗ > 0 sufficiently small, the mapping µ 7→ Iµ is
strictly subadditive on (0, µ∗), that is,

Iµ1+µ2 < Iµ1 + Iµ2 ,

for µ1, µ2 > 0 satisfying µ1 + µ2 < µ∗.

Proof. We begin by finding a µ∗ > 0 so that µ 7→ Iµ is strictly subho-
mogenous on (0, µ∗). Pick a near minimizer u ∈ Uµ and t ∈ [1, 2]. Notice

that L(
√
tu) = tL(u) and Np(

√
tu) = t1+ p

2Np(u). As Q(
√
tu) = tµ, we

calculate

Itµ ≤ L(
√
tu)−N (

√
tu)

= tL(u)− t1+ p
2N (u) + t1+ p

2Nr(u)−Nr(
√
tu)

= tE(u)− [t1+ p
2 − t]N (u)︸ ︷︷ ︸
ϕ(t, u)

+ t1+ p
2Nr(u)−Nr(

√
tu)︸ ︷︷ ︸

φ(t, u)

(6.1)

By (4.1) we get ϕ(t, u) & (t− 1)µ1+β , where we exploited that t1+ p
2 − t &

t− 1, when t ∈ [1, 2]. As for φ, we see that φ(1, u) = 0 and so we use the
mean value theorem for some t∗ ∈ [1, t] (and Leibniz integral rule) to get

φ(t, u) = (t− 1)
dφ

dt
(t∗, u)

= (t− 1)

∫
R

(1 + p
2)t

p
2
∗Nr(u)− u

2
√
t∗
nr(
√
t∗u) dx.

It should be clear that u 7→
∫
R unr(

√
tu) dx also satisfies an inequality of

the form (iv) in Prop. 2.1, uniformly in t ∈ [1, 2]. This in turn means
it satisfies an inequality of the form (4.2) uniformly in t ∈ [1, 2]. Thus
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the above calculation implies that |ϕ(t, u)|= (t− 1)o(µ1+β). These two
bounds on ϕ and φ implies we can pick µ∗ > 0 small enough so that

−ϕ(t, u) + φ(t, u) ≤ −δ(t− 1)µ1+β,

is satisfied for some δ > 0, all t ∈ [1, 2] and all near minimizers u ∈ Uµ
with µ ∈ (0, µ∗). Assuming we have chosen such a µ∗ > 0, then (6.1)
becomes

Itµ ≤ tE(u)− δ(t− 1)µ1+β.

Picking a minimizing sequence (uk) ⊂ Uµ and assuming 1 < t ≤ 2, this
last inequality implies

Itµ < tIµ, (6.2)

on (0, µ∗). Finally, for a general t > 1 and µ satisfying tµ ∈ (0, µ∗), we

can pick an integer k > 0, so that
k
√
t ≤ 2, which combined with (6.2)

implies

Itµ < t
1
k I
t1−

1
k µ

< t
2
k I
t1−

2
k µ

< · · · < tIµ,

that is, µ 7→ Iµ is strictly subhomogenous on (0, µ∗). To show that strict
subhomogeneity implies strict subadditivity, we assume without loss of
generality that 0 < µ1 ≤ µ2 and µ1 + µ2 < µ∗, and calculate

Iµ1+µ2 <
(µ1

µ2
+ 1
)
Iµ2 =

µ1

µ2
Iµ2
µ1
µ1

+ Iµ2 ≤ Iµ1 + Iµ2 .

�

Now that strict subadditivity of µ 7→ Iµ has been established, we shall
create the contradiction as described at the beginning of this section. It
will be essential that the non-local component of E , namely L, behaves
almost like a local operator on sums of functions whose mass is ‘sufficiently’
separated. It is exactly the regularity of m that allows L to enjoy such a
property. This result is encapsulated in the next lemma, which roughly
states that the commutator operator [L,ϕ(·/r)] tends to zero as r →∞,
for any Schwartz function ϕ. Here, the multiplication operator f 7→ ϕf
is defined for any distribution f in the canonical sense.

Lemma 6.2. For a Schwartz function ϕ, let Br:H
s
2 → H

−s
2 be the

commutator of the operators L and f 7→ ϕ(·/r)f . Then

‖Br‖op→ 0, r →∞.
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Proof. Set ϕr = ϕ(·/r). Using the bound (2.1), we have for any u, v ∈ H
s
2 ,

|〈[L,ϕr]u, v〉| =
∣∣∣ ∫

R

∫
R
v̌(ξ)ϕ̂r(t)û(ξ − t)(m(ξ)−m(ξ − t))dtdξ

∣∣∣
.
∫
R
|ϕ̂r(t)|ω(t)

∫
R
〈ξ〉

s
2 |v̌(ξ)|〈ξ − t〉

s
2 |û(ξ − t)|dξdt

.
∫
R
|ϕ̂(t)|ω(t/r)dt︸ ︷︷ ︸
& ‖Br‖op

‖u‖
H
s
2
‖v‖

H
s
2
.

As ω is bounded above by a polynomial and limt→0 ω(t) = 0, the statement
of the lemma follows. �

We are now ready to prove that a dichotomized minimizing sequence
can be ‘split’ in two as described at the beginning of the section.

Proposition 6.3. Suppose a minimizing sequence (uk) ⊂ Uµ undergoes
dichotomy, then there exist a real number 0 < λ < µ and two sequences
(u1
k) ⊂ Uλ and (u2

k) ⊂ Uµ−λ, so that

E(u1
k) + E(u2

k)→ Iµ, k →∞.

Proof. By the Concentration-Compactness principle, we can pick (rk) ⊂
R+ with rk →∞, and (xk) ⊂ R so that∫

X
|uk(x− xk)|2dx→


λ, X = {x : |x|≤ rk},
0, X = {x : rk ≤ |x|≤ 2rk},
µ− λ, X = {x : 2rk ≤ |x|},

(6.3)

as k →∞; without loss of generality, we assume xk = 0 for all k. Next,
we pick two smooth symmetrical functions ϕ,ψ:R → [0, 1], satisfying
ϕ(x) = 1 when |x|≤ 1, ϕ = 0 when |x|≥ 2 and ϕ2 + ψ2 = 1. We denote
ϕk and ψk for ϕ(·/rk) and ψ(·/rk), and set v1

k = ϕkuk and v2
k = ψkuk.

By (6.3), these function automatically satisfies

Q(v1
k)→ λ, Q(v2

k)→ µ− λ, k →∞.

It is easily verified that if φ is Schwartz and symmetric, then 〈v, φu〉 =

〈φv, u〉 for any v ∈ H
−s
2 and u ∈ H

s
2 , and so we may write

L(v1
k)− 〈Luk, ϕ2

kuk〉 = 〈[L,ϕk]uk, ϕkuk〉,
L(v2

k)− 〈Luk, ψ2
kuk〉 = 〈[L, (1− ψk)]uk, (1− ψk)uk〉.

By Lemma 6.2, the RHS of these equations tend to zero, provided we
can uniformly bound the H

s
2 -norm of uk, ϕkuk and (1− ψk)uk in k. By

(4.3), this again is guaranteed if multiplication by ϕk and (1 − ϕk) are
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uniformly bounded (in k) as operators on H
s
2 . This is indeed true and

follows by similar reasoning as in the proof of Prop. 5.1; it is trivially
proven when s/2 ∈ N0, and the result for general s > 0 follows from
interpolation. Thus L(v1

k) + L(v2
k)− L(uk)→ 0, as k →∞. Turning to

N , we have

N (v1
k) +N (v2

k)−N (u) =

∫
rk<|x|<2rk

N(v1
k) +N(v2

k)−N(uk)dx.

By Prop. 2.1, we have |N(x)|. x2, and so (6.3) guarantees the RHS of
this equation to tend to zero as k →∞. As (uk) is a minimizing sequence,
we conclude that

E(v1
k) + E(v2

k)→ Iµ,

for k →∞. By the same reasoning as before, the H
s
2 -norm of v1

k and v2
k is

uniformly bounded in k, and so by Corollary 2.3 the proposition is proved

for the two sequences u1
k = v1

k

√
λ/Q(v1

k) and u2
k = v2

k

√
(µ− λ)/Q(v2

k).

�

With these two results at hand, we can exclude dichotomy; picking
µ∗ > 0 so that µ 7→ Iµ is strictly subadditive and assuming (uk), (u1

k) and
(u2
k) to be as in the previous proposition, we arrive at the contradiction

Iµ = lim
k→∞

E(u1
k) + E(u2

k) ≥ lim inf
k→∞

E(u1
k) + lim inf

k→∞
E(u2

k) ≥ Iλ + Iµ−λ.

Corollary 6.4. Provided µ∗ > 0 is sufficiently small, no minimizing
sequence of (1.3) has a subsequence for which dichotomy occurs in accor-
dance with Theorem 2.5.

7. Solutions from concentrated minimizing sequences

Theorem 2.5 provided us with the three possible phenomena that
could occur for a minimizing sequence of (1.3); the previous two sections
excluded vanishing and dichotomy, and so it remains to see that we can
construct a minimizer from a concentrating minimizing sequence. This is
straight forward:

Proposition 7.1. Provided µ∗ > 0 is sufficiently small, any minimizing
sequence (uk) ⊂ Uµ of (1.3) admits a subsequence converging in L2-norm
to a minimizer u ∈ Uµ.

Proof. For µ∗ sufficiently small, the two preceding sections guarantees
that (uk) admits a subsequence, again denoted (uk), that concentrates
in accordance with Theorem 2.5. Without loss of generality, we assume
(uk) to consist solely of near minimizers and shifted appropriately to
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concentrate about zero (xk = 0 for all k). By the Kolmogorov-Riesz-
Fréchet compactness theorem, (uk) is relatively compact in L2, as it is
bounded, concentrated about zero and uniformly continuous with respect
to translation:

‖uk(·+ y)− uk(·)‖2 = ‖(e−i(·)y − 1)ûk‖2

≤ ‖(e−i(·)y − 1)〈·〉
−s
2 ‖∞‖uk‖H s

2

→ 0,

uniformly in k as y → 0, as guaranteed by (4.3). We conclude that (uk)
admits a subsequence, yet again denoted (uk), so that uk → u, for some
u ∈ L2 with Q(u) = µ. We now demonstrate that u is a minimizer of
(1.3). As the positive functions m(·)|ûk|2 converges locally in measure to
m(·)|û|2, Fatou’s lemma implies

L(u) ≤ lim inf
k→∞

L(uk).

Using the Fréchet derivative (Prop. 2.2) of N , and that |n(x)|. |x|, we
also obtain

|N (u)−N (uk)| =
∣∣∣ ∫ 1

0

∫
R
n(tu+ (1− t)uk)(u− uk)dxdt

∣∣∣
.
∫ 1

0
‖tu+ (1− t)uk‖2‖u− uk‖2dt

→ 0,

as k →∞. We now have Iµ ≤ E(u) ≤ lim infk→∞ E(uk) = Iµ. �

Not only is a minimizer of (1.3) a solutions of (1.2), we are also provided
some additional control over the respective velocity ν, as described in the
next proposition.

Proposition 7.2. Any minimizer u ∈ Uµ of the minimization problem
(1.3), solves (1.2) in distribution sense, with velocity ν = 〈E ′(u), u〉/2µ.
Provided µ∗ > 0 is small enough, we additionally have −ν ' µβ.

Proof. As the feasible set Uµ is a Hilbert submanifold of H
s
2 , it follows

that there must be a Lagrange multiplier ν ∈ R (depending on the
minimizer u), so that

E ′(u)− νQ′(u) = 0, (7.1)

in H−
s
2 . In particular, if we pair (7.1) with u and insert for Q′ we obtain

ν =
〈E ′(u), u〉

2µ
,
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and so we attain the first part of the proposition. For the latter, note
that

n(u)u = (2 + p)N(u) + nr(u)u− (2 + p)Nr(u),

and as argued in the proof of Prop. 6.1, we have∫
R
nr(u)u− (2 + p)Nr(u)dx = o(µ1+β).

Then

〈E ′(u), u〉 = 〈Lu, u〉 − 〈n(u), u〉

= 2L(u)− (2 + p)N (u) + o(µ1+β)

= 2Iµ − pN (u) + o(µ1+β)

< −Cµ1+β + o(µ1+β),

for some fixed C > 0, by Prop. 3 and (4.1). Thus, for a sufficiently small
µ∗ > 0 we obtain −ν & µβ when µ ∈ (0, µ∗). The upper bound on −ν
follows trivially from

−ν . 1

µ

(
L(u) + ‖u‖2+p

2+p

)
. µβ,

where we used |n(x)x|. |x|2+p and (4.1). �

8. Regularity of solutions

Before moving on, we summarize what has been proved so far. For
the class of equations (1.2) that satisfies the assumptions (A) and (B)
(see subsection 1.1) and the ‘auxiliary’ assumptions (C1) and (C2) (see
subsection 1.2), we have proved all parts of Theorem 1.1, except the
estimate ‖u‖2H1+s. µ. By Lemma 1.2, when this estimate is proven,
the theorem automatically holds in the case when only (A) and (B) are
satisfied. Hence, we now introduce the final piece, concluding the proof
of Theorem 1.1.

Proposition 8.1. Provided µ∗ > 0 is sufficiently small, minimizers
u ∈ Uµ of (1.3) satisfies

‖u‖2H1+s. µ.

Proof. By Prop. 7.2, minimizers are solutions of (1.2), and so by a little
rewriting, we have

(L− ν + 1)u︸ ︷︷ ︸
Λνu

= n(u) + u︸ ︷︷ ︸
η(u)

. (8.1)
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Proposition 7.2 also guarantees that −ν + 1 > δ for a positive constant δ
independent of µ ∈ (0, µ∗), provided µ∗ > 0 is small enough. The inverse
of Λν then defines a bounded linear Fourier multiplier, Λ−1

ν :Hα → Hα+s

for any α ∈ R, whose norm has the upper bound

‖Λ−1
ν ‖Hα→Hα+s= sup

ξ∈R

〈ξ〉s

m(ξ)− ν + 1
≤ sup

ξ∈R

〈ξ〉s

m(ξ) + δ
=: C.

Clearly C is independent of µ ∈ (0, µ∗). We also note that Tη:u 7→ η(u),
is a bounded operator on Hα, whenever 0 ≤ α ≤ 1, as η is globally
Lipschitz continuous with η(0) = 0. Looking back at (8.1), a minimizer
u ∈ Uµ satisfies

‖u‖Hα+s= ‖Λ−1
ν ◦ Tη(u)‖Hα+s. ‖u‖Hα , (8.2)

whenever 0 ≤ α ≤ 1 (where the implicit constant in (8.2) can depend on
α). We now obtain the desired conclusion by the following ‘bootstrap’
argument. Pick k ∈ N and 0 ≤ r < s so that 1 + s = ks+ r. By a (finite)
repeated use of (8.2), we obtain

‖u‖H1+s= ‖u‖Hks+r. ‖u‖H(k−1)s+r. · · · . ‖u‖Hr≤ ‖u‖Hs. ‖u‖L2 ,

and so we are done. �

8.1. Further regularity. We conclude this paper with a regularity result
on the solutions we have constructed. Clearly, if equation (8.2) was
satisfied for large α, we could (as done in the previous proof) bootstrap
to corresponding regularity. It is ultimately the regularity of n that
determines how large α can be in (8.2). In [5], the authors prove that
for any γ > 3/2, the composition operator Tf : u 7→ f(u) maps Hγ to
itself if, and only if, f(0) = 0 and f ∈ Hγ

loc; in particular, if we restrict
‖u‖∞< R <∞, then we have

‖f(u)‖Hα≤ C‖u‖Hα , (8.3)

for some constant C depending only on f,R and α ∈ (3
2 , γ]. Moreover,

using the result of [17], we can extend the inequality (8.3) to the case
α ∈ [1, γ] (still with γ > 3/2). It is now an easy task to improve the
regularity of our solutions when n ∈ Hα∗

loc for some α∗ > 3/2; note that
functions in these spaces are necessarily locally Lipschitz continuous. We
present the final proposition of this paper.

Proposition 8.2. If n ∈ Hα∗
loc with α∗ > 3/2, then the solutions u of

(1.2) provided by Theorem 1.1, satisfies

‖u‖Hα∗+s. ‖u‖2.
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Proof. Looking back at (8.2), this equation is now valid for 0 ≤ α ≤ α∗.
This follows from the previous discussion as: 1) η ∈ Hα∗

loc with η(0) = 0,
and 2) by Theorem 1.1 we have a uniform upper bound on the L∞-norm
of our solutions u (µ∗ is fixed). The result is then attained by a similar
bootstrap argument as the one used in the proof of Prop. 8.1. �
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helpful comments on an earlier version of this manuscript.

References

[1] J. P. Albert, Concentration compactness and the stability of solitary-wave
solutions to nonlocal equations, in Applied analysis (Baton Rouge, LA, 1996),
vol. 221 of Contemp. Math., Amer. Math. Soc., Providence, RI, 1999, pp. 1–29.

[2] J. P. Albert, J. L. Bona, and J.-C. Saut, Model equations for waves in
stratified fluids, Proc. Roy. Soc. London Ser. A, 453 (1997), pp. 1233–1260.

[3] M. N. Arnesen, Existence of solitary-wave solutions to nonlocal equations, Dis-
crete Contin. Dyn. Syst., 36 (2016), pp. 3483–3510.
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pp. 109–145.

[16] O. I. H. Maehlen, Solitary waves for weakly dispersive equations with inhomoge-
neous nonlinearities, Discrete Contin. Dyn. Syst., 40 (2020), pp. 4113–4130.

[17] M. Moussai, Composition operators on Besov spaces in the limiting case s =
1 + 1/p, Studia Math., 241 (2018), pp. 1–15.

[18] S. M. Sun, Non-existence of truly solitary waves in water with small surface
tension, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 455 (1999), pp. 2191–
2228.

[19] M. I. Weinstein, Existence and dynamic stability of solitary wave solutions of
equations arising in long wave propagation, Comm. Partial Differential Equations,
12 (1987), pp. 1133–1173.

[20] L. Zeng, Existence and stability of solitary-wave solutions of equations of
Benjamin–Bona–Mahony type, J. Differential Equations, 188 (2003), pp. 1–32.

Department of Mathematical Sciences, Norwegian University of Science
and Technology, 7491 Trondheim, Norway

E-mail address: ola.mahlen@ntnu.no





Paper 3





Paper 3

ONE SIDED HÖLDER REGULARITY OF GLOBAL

WEAK SOLUTIONS OF NEGATIVE ORDER

DISPERSIVE EQUATIONS

Submitted for publication

OLA I.H. MÆHLEN AND JUN XUE

Abstract. We prove global existence, uniqueness and stability of
entropy solutions with L2 ∩ L∞ initial data for a general family of
negative order dispersive equations. It is further demonstrated that
this solution concept extends in a unique continuous manner to all
L2 initial data. These weak solutions are found to satisfy one sided
Hölder conditions whose coefficients decay in time. The latter result
controls the height of solutions and further provides a way to bound
the maximal lifespan of classical solutions from their initial data.

1. Introduction

We consider the initial value problem{
ut + 1

2(u2)x = (G ∗ u)x, (t, x) ∈ R+ × R,
u(0, x) = u0(x), x ∈ R,

(1.1)

for initial data u0 ∈ L2(R) and an even convolution kernel G ∈ L1(R)
admitting an integrable weak derivative G′ =: K ∈ L1(R). A classical
family of examples for (1.1) is attained when we for G or −G insert a
Bessel kernel Gα with α > 1, as defined by its Fourier transform

Ĝα(ξ) =
1

(1 + 4π2ξ2)
α
2

, (1.2)

using the normalization F(f) = f̂(ξ) =
∫
R f(x)e−2πiξxdx. In particular,

setting G = −G2 yields the Burgers–Poisson equation, which in [24] is
derived as a model for shallow water waves. Central questions in the
study of water wave model equations include well-posedness, persistence
and non-persistence of solutions, the latter two in particular exemplified
by solitary and breaking waves. The answers depend intricately on the
type of nonlinearity and dispersive term featured in the equation.
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In the case of a quadratic nonlinearity, the fractional Korteweg–de
Vries equation (fKdV)

ut + 1
2(u2)x = (|D|βu)x (1.3)

where F(|D|βu) = |ξ|βû and β ∈ R, has been suggested [19] as a scale
for studying how the strength of the dispersion affects the questions of
well-posedness and water-wave features. To connect (1.1) to the fKdV

setting, observe that our assumption on G implies that Ĝ(ξ) = o(|ξ|−1)
as |ξ| → ∞ and so in this sense one may place (1.1) in the region β < −1

for fKdV. However, Ĝ will in our case be bounded, while |ξ|β → ∞ as
ξ → 0 for β < 0, and thus (1.1) can not match the low-frequency effect
of negative order fKdV which assigns (very) high velocities to (very) low
frequencies. This qualitative difference disappears in a periodic setting;
the dispersion of fKdV on the torus is for β < −1 precisely of the form
assumed in (1.1). It should be noted that the methods in this paper
can, after a few modifications, be carried out on the torus, and thus our
results can be extended to periodic solutions of fKdV for β < −1. With
the relation between (1.1) and (1.3) accounted for, we now summarize a
few results for the latter to sketch what one may expect of well-posedness
and water-wave features in our case.

The fractional KdV equation of order β ∈ (6
7 , 2] is globally well-posed

in appropriate function spaces; the regions β ∈ (6
7 , 1) and β ∈ (1, 2)

are treated in [23] and [12] respectively, and there are numerous works
on the well posedness for β = 1 (Benjamin–Ono equation) and β = 2
(KdV equation), see for example [15] and [16] and the references therein.
For values β ≤ 6

7 only local well-posedness results have been estab-
lished [10, 23]. Still, numerical investigation [17] suggests that fKdV
is globally well-posed for dispersion as weak as β > 1

2 , but not for β ≤ 1
2 ;

this is also conjectured in [19]. One might expect the culprit of this
loss of global well-posedness for weak dispersion, to be the appearance
of breaking waves (shock formation), i.e. bounded solutions that de-
velop infinite slope in finite time. In the negative order regime β < 0
this might be true: the occurrence of breaking waves have been proved
for the case β = −2 (Ostrovsky–Hunter equation) by [20], for the case
β = −1 (Burgers–Hilbert) by [25] and for the region β ∈ (−1,−1

3) by [14].
However, no such results exists in the positive order regime β > 0, and
it is believed that instead other blowup phenomena occur in the range
β ∈ (0, 1

2 ] inhibiting global well-posedness; see the discussion in [17, 19]
or [22] where an example of L∞ blowup in finite time is constructed
for the modified Benjamin–Ono equation. In the absence of classical
global solutions, several authors have for the β < 0 regime turned to the
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concept of entropy solutions. Adapted from the study of hyperbolic con-
servation laws, entropy solutions are weak solutions that satisfy extra
conditions – the entropy inequalities – automatically satisfied by clas-
sical solutions when the latter exist. This solution concept allows for
continuation past wave breaking and so global well-posedness may again
be achieved. In [6] existence and uniqueness of global entropy solutions
for the Ostrovsky–Hunter equation (β = −2) is established for appro-
priate initial data. Similarly, [4] provides global entropy solutions for
the Burgers–Hilbert equation (β = −1) and a partial uniqueness result.
Finally, the Burgers–Poisson equation mentioned above is in [11] shown
to admit unique global entropy solutions for integrable initial data. The
authors also provide sufficient conditions on the initial data leading to
wave breaking. This equation is not an isolated instance of (1.1) fea-
turing wave breaking; [7] shows that the phenomena is present whenever
G ∈ C∩L1(R) is symmetric and monotone on R+. More generally Corol-
lary 2.7, which provides maximal lifespans for classical solutions, hints
that every instance of (1.1) features wave breaking as is explained in
more detail below.

We now give a brief discussion of our results presented in Section 2.
Theorem 2.1 provides existence, uniqueness and L2 stability of entropy
solutions of (1.1) – as defined by Def. 1.1 – for initial data in L2 ∩
L∞(R). The result is proved in Section 3. Here, existence follows from an
operator splitting argument as done in [11], while uniqueness follows from
a variation of the Kružkov’s doubling of variables device [18] yielding a
weighted L1-contraction. The L2 stability follows from a variation of the
L1-contraction combined with an L2 tightness estimate of these solutions.
The stability result is strong enough to allow the solution concept to be
extended – in a unique continuous manner – to all L2 initial data; this
is Corollary 2.2.

Theorem 2.3 infers one sided Hölder regularity for weak solutions of
(1.1) with L2 initial data, and it is a generalization of the Olěınik estimate
(4.1) for Burgers’ equation. The result is proved in Section 4. Here, the
idea is to introduce for a solution u an object ω(t, h) ≥ supx[u(t, x+h)−
u(t, x)] bounding the one sided growth rate of u, and through an operator
splitting argument the evolution of ω can be controlled. As Lemma 4.3
shows, the nonlinearity has a smoothing effect on ω. The dispersion on
the other hand, is treated as perturbative source term (Lemma 4.4) that
we are able to limit – and this is the key – through Lemma 4.2 using
ω itself and the non-increasing L2 norm of u. Letting then the iterative
steps of the operator splitting go to zero, one attains an autonomous
equation (4.14) for ω, which can be replaced by a coarser but simpler
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equation (4.16) resulting in Theorem 2.3. This result has two interesting
consequences. Corollary 2.6 bounds the height of the entropy solutions
by an expression dependent only on K = G′, the L2 norm of the initial
data and the time t. Said expression is decreasing in t, but does not
tend to zero; this would generally be impossible due to the existence of
solitary waves [9] for several instances of (1.1). Corollary 2.7 bounds the
lifespan of classical solutions of (1.1) provided the initial data satisfies
a skewness condition (2.8). The idea is to exploit the time-reversibility
for classical solutions of (1.1): as Theorem 2.3 is valid also for reversed
solutions this poses one sided Hölder conditions on the original solution’s
initial data. The implication is that a classical solution will break down
before any contradiction is reached. One may ask ‘how’ these classical
solutions break down, and wave breaking rise as the natural candidate,
but proving this rigorously is beyond the scope of this paper. That said,
one can expect a classical solution of (1.1) to break down at t = T only
if infx u(t, x) → −∞ as t ↗ T , which is the case for Burgers’ equation
with a C1 source. We also point out that our skewness condition (2.8)
differ from that of both [11] and [7]; neither imply the other.

1.1. The entropy formulation. We shall restrict the concept of en-
tropy solutions to the function class L∞loc([0,∞), L∞(R)), which we here
define as the subspace of L∞loc([0,∞) × R) of functions u = u(t, x) that
are essentially bounded on [0, T ] × R for each T > 0. Necessary is the
notion of an entropy pair (η, q) of (1.1), which is to say that

η : R→ R is smooth and convex, while q′(u) = η′(u)u.

Definition 1.1. For bounded initial data u0 ∈ L∞(R), we say that a
function u ∈ L∞loc([0,∞), L∞(R)) is an entropy solution of (1.1) if:

(1) it satisfies for all non-negative ϕ ∈ C∞c (R+ × R) and all entropy
pairs (η, q) of (1.1) the entropy inequality∫ ∞

0

∫
R
η(u)ϕt + q(u)ϕx + η′(u)(K ∗ u)ϕdxdt ≥ 0, (1.4)

(2) it assumes the initial data in L1
loc sense, that is

ess lim
t↘0

∫ r

−r
|u(t, x)− u0(x)|dx = 0,

for all r > 0.

The concept of entropy solutions lies between that of strong and weak
solutions. If u ∈ L∞loc([0,∞), L∞(R))∩C1(R+×R) is a classical solution
of (1.1) then it is necessarily an entropy solution as multiplying (1.1)
with η′(u)ϕ and integrating by parts yields (1.4) as an equality. And if
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u is an entropy solution of (1.1) then it is necessarily a weak solution
as follows from considering the two entropy pairs (η(u), q(u)) = (u, 1

2u
2)

and (η(u), q(u)) = (−u,−1
2u

2) respectively.

1.2. A fractional variation. The exponents of the one sided Hölder
conditions provided by Theorem 2.3 depend on the regularity of K = G′;
the smoother K is, the higher the exponent. More precisely, we attain
the Hölder exponent 1+s

2 if |K|TV s <∞ where the latter seminorm is for
s ∈ [0, 1] defined by

|K|TV s = sup
h>0

‖K(·+ h)−K‖L1(R)

hs
. (1.5)

When s = 1 this seminorm coincides with the classical total variation
of K, while s = 0 gives twice the L1 norm of K, and thus we neces-
sarily have |K|TV 0 < ∞ as we assume K ∈ L1(R). For s ∈ (0, 1) the
seminorm is a measure of intermediate regularity between L1(R) and
BV (R); in particular Lemma A.3 bounds this seminorm by the one as-
sociated with W s,1(R). The seminorm also satisfies the scaling property
|K(λ·)|TV s = |λ|s−1|K|TV s and so does not coincide with the scaling
invariant fractional variation from [21] used in [3] to attain maximal
smoothing effects for one-dimensional scalar conservation laws.

2. Main results

We here present the two main results, Theorem 2.1 and Theorem 2.3
and corresponding corollaries. For a general discussion of the content
given here, see the end of the above introduction. We start with Theorem
2.1, which provides a global well-posedness theory for entropy solutions
of (1.1) with initial data in L2 ∩ L∞(R). The theorem is established in
Section 3.

Theorem 2.1. For every initial data u0 ∈ L2 ∩ L∞(R) there exists a
unique entropy solution u of (1.1). The mapping t 7→ u(t) is continuous
from [0,∞) to L2(R) and u(t) satisfies for all t ≥ 0 the bounds

‖u(t)‖L2(R) ≤‖u0‖L2(R), ‖u(t)‖L∞(R) ≤etκ‖u0‖L∞(R), (2.1)

where κ := ‖K‖L1(R). Moreover, we have the following stability result: if

two sequences (tk)k∈N ⊂ [0,∞) and (u0,k)k∈N ⊂ L2 ∩ L∞(R) admit the
limits

lim
k→∞

tk = t, and lim
k→∞

u0,k = u0 in L2(R),

where u0 ∈ L2 ∩L∞(R), then the corresponding entropy solutions satisfy

lim
k→∞

uk(tk) = u(t) in L2(R).
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It is worth mentioning that this theorem is also valid on a time-
bounded domain (0, T ) × R; see the discussion following the proof of
Proposition 3.1. The tools used to prove the stability result of the the-
orem do not depend on the height of the initial data, thus allowing for
the following corollary which is proved at the end of Subsection 3.3.

Corollary 2.2 (Global L2 well-posedness). Equation (1.1) is globally
well-posed for L2(R) initial data in the following sense: The solution map
S : (t, u0) 7→ u(t) mapping L2 ∩ L∞(R) initial data to the corresponding
entropy solution at time t ≥ 0, extends uniquely to a jointly continuous
mapping S : [0,∞) × L2(R) → L2(R). In particular, the L2-bound, -
continuity and -stability of Theorem 2.1 carries over to all weak solutions
provided by S. Moreover, for any u0 ∈ L2(R), the corresponding weak
solution u(t, x) := S(t, u0)(x) is locally bounded in (0,∞)×R and satisfies
the entropy inequalities (1.4).

The second theorem infers one sided Hölder regularity for the weak
solutions provided by Corollary 2.2. The result depends on the regular-
ity of K = G′ which is measured using the fractional variation |K|TV s
defined in (1.5). The theorem is proved in Section 4.

Theorem 2.3. For initial data u0 ∈ L2(R), let u be the corresponding
weak solution of (1.1) provided by Corollary 2.2, and let s ∈ [0, 1] be such
that |K|TV s < ∞. Then for all t > 0, x 7→ u(t, x) coincides a.e. with
a left-continuous function satisfying for all x ≥ y the one sided Hölder
condition

u(t, x)− u(t, y) ≤ a(t)(x− y)
1+s
2 , (2.2)

for a Hölder coefficient a(t) decreasing in t.

As we assume K ∈ L1(R), the case s = 0 of Theorem 2.3 is valid for
all instances of (1.1). Also, when either G or −G coincides with a Bessel
kernel Gα, as introduced in (1.2), and α ∈ (1, 2] the induced one sided
Hölder regularity from Theorem 2.3 takes the form

u(t, x)− u(t, y) ≤ a(t)(x− y)
α
2 , x ≥ y,

as follows from Lemma A.4 when setting s = α − 1. In particular,
for the Burgers–Poisson equation (where G = −G2) L2 data results in
weak solutions that are one sided Lipschitz continuous with a Lipschitz
constant that can be read off from the second part of Corollary 2.5 when
using |(G2)′|TV = 2. We conclude this section with a few corollaries of
Theorem 2.3 including a decaying height bound for weak solutions of
(1.1) and a maximal lifespan estimate for classical solutions.
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Remark 2.4. As Corollary 4.10 states, the Hölder coefficient in (2.2)
can be set to

a(t) =C1(s)|K|
2+s
3+2s

TV s ‖u0‖
1+s
3+2s

L2(R)
+ C2(s)

‖u0‖
1−s
3

L2(R)

t
2+s
3

, (2.3)

where the two coefficients C1(s) and C2(s) are given by

C1(s) =
2

3+s
6+4s [(2 + s)(3 + s)]

1+s
6+4s

1 + s
, C2(s) =

2
4+2s
3+3s (2 + s)

5+s
6 (3 + s)

1−s
6

2
1−s
6 3

2+s
3 (1 + s)

.

(2.4)

Alternatively, one may use the sharper expression for a(t) provided by
Lemma 4.9 where the shorthand notation µ = ‖u0‖L2(R) and κs = |K|TV s
is used.

For clarity, we now use the explicit expressions from this remark to
write out the content of Theorem 2.3 for the special case s = 0 where we
may use the identity |K|TV 0 = 2‖K‖L1(R), and the case s = 1 where we
may use |K|TV 1 = |K|TV .

Corollary 2.5 (Explicit regularity when s = 0 and s = 1).

• The s = 0 case: For initial data u0 ∈ L2(R), let u be the corre-
sponding weak solution of (1.1) provided by Corollary 2.2. Then
for all t > 0, x 7→ u(t, x) coincides a.e. with a left-continuous
function satisfying for all x ≥ y the one sided Hölder condition

u(t, x)− u(t, y)

(x− y)
1
2

≤ 2
4
3 3

1
6 ‖K‖

2
3

L1(R)
‖u0‖

1
3

L2(R)
+

4‖u0‖
1
3

L2(R)

3
1
2 t

2
3

.

• The s = 1 case: If |K|TV <∞, then the above u further satisfies
for all t > 0 and x ≥ y the one sided Lipschitz condition

u(t, x)− u(t, y)

x− y
≤ 3

1
5

2
1
5

|K|
3
5
TV ‖u0‖

2
5

L2(R)
+

1

t
.

Note that the second part of the corollary generalizes the classical
Olěınik estimate u(t, x) − u(t, y) ≤ x−y

t for Burgers’ equation (where
K = 0). Next, we introduce an L∞ bound for the weak solutions provided
by Corollary 2.2 which, in contrast to the one from (2.1), is decreasing
in time.

Corollary 2.6 (Height bound). For initial data u0 ∈ L2(R), let u be the
corresponding weak solution of (1.1) provided by Corollary 2.2. Then for
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all t > 0 we have the height bound

‖u(t)‖L∞(R) ≤

[
2

11
12 3

1
3 ‖K‖

1
3

L1(R)
+

2
5
4

t
1
3

]
‖u0‖

2
3

L2(R)
. (2.5)

More generally, for any s ∈ [0, 1] such that |K|TV s <∞, we have for the
above u and all t > 0 the height bound

‖u(t)‖L∞(R) ≤ C̃1(s)|K|
1

3+2s

TV s ‖u0‖
2+2s
3+2s

L2(R)
+ C̃2(s)

‖u0‖
2
3

L2(R)

t
1
3

, (2.6)

where the coefficients C̃1(s) and C̃2(s) are expressions similar to C1(s)
and C2(s) from Remark 2.4, and they are both written out in (A.2) in
the appendix.

Proof. See Appendix B.

Observe that together, the two height bounds (2.1) and (2.5) imply
that when u0 ∈ L2 ∩ L∞(R) the corresponding weak solution of (1.1) is
globally bounded. The next and final result of this section establishes a
maximal lifespan for classical solutions of (1.1). For brevity we introduce
the following seminorm

[u0]s := ess sup
x∈R
h>0

[
u0(x− h)− u0(x)

h
1+s
2

]
, (2.7)

which is a (left) one sided Hölder seminorm of exponent 1+s
2 .

Corollary 2.7 (Maximal lifespan). There are universal constants C, c >
0 such that: if initial data u0 ∈ L2 ∩ L∞(R) satisfies the skewness con-
dition

[u0]3+2s
s > c|K|2+s

TV s‖u0‖1+s
L2(R)

, (2.8)

for some s ∈ [0, 1] such that |K|TV s < ∞, then the lifespan T of a
classical solution u ∈ L∞∩C1((0, T )×R) of (1.1) admitting u0 as initial
data must satisfy

T < C

[
‖u0‖1−sL2(R)

[u0]3s

] 1
2+s

. (2.9)

Proof. See Appendix B.
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3. Well posedness of entropy solutions

In this section, we provide for (1.1) a global well-posedness theory of
entropy solutions as defined by Def. 1.1. In particular, the content of
Theorem 2.1 follows from Proposition 3.1, Corollary 3.6 and Proposition
3.9; see the summary at the beginning of Subsection 3.3. Corollary 2.2
is also proved here at the end of Subsection 3.3. For entropy solutions
of (1.1), the proofs of existence and uniqueness is the same for L2 ∩ L∞
data as for L∞ data; only the L1 setting allows for ‘shortcuts’. Thus for
generality, many results in the two coming subsections will be presented
for initial data u0 ∈ L∞(R). We also note that in these two subsections
only Lemma 3.3 exploits the dispersive nature of (1.1), that is, that
K = G′ is odd.

3.1. Uniqueness of entropy solutions. It is natural to start with the
proof of uniqueness, as this equips us with a weighted L1-contraction that
can further be used in the existence proof. The involved weight wrM (t, x)
can be interpreted as a bound on the propagation of information for
solutions of (1.1). Its technical role in the coming proof is to serve as a
subsolution of a dual equation, namely the one obtained from setting the
square bracket in (3.17) to zero. A similar method can be found in [1]
where nonlocal conservation laws are treated. The weight is constructed
as follows. Writing |K| to denote the function x 7→ |K(x)|, we introduce

for a parameter t ≥ 0 the operator et|K|∗ mapping Lp(R) to itself for any
p ∈ [1,∞], defined by(

et|K|∗f
)

(x) = f(x) +
∞∑
n=1

(
(|K|∗)nf

)
(x)

tn

n!
, (3.1)

where (|K|∗)n represents the operation of convolving with |K| repeatedly
n times. Observe that by repeated use of Young’s convolution inequality
we have for any p ∈ [1,∞] and f ∈ Lp(R)

‖et|K|∗f‖Lp(R) ≤ etκ‖f‖Lp(R), (3.2)

where κ := ‖K‖L1(R). For parameters r,M ≥ 0, we further introduce

χrM (t, x) =

{
1, |x| < r +Mt,

0, else,
(3.3)

and set

wrM (t, x) =
(
et|K|∗χrM (t, ·)

)
(x). (3.4)
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By (3.2), this weight satisfies for p ∈ [1,∞] the bound

‖wrM (t, ·)‖Lp(R) ≤ etκ(2r + 2Mt)
1
p , (3.5)

where the case p = ∞ is evaluated in a limit sense. Thus, wrM (t, ·) ∈
L1 ∩ L∞(R) for all t, r,M ≥ 0. With wrM defined, we are ready to
state Proposition 3.1 establishing the uniqueness of entropy solutions. It
should be noted that although the following result is stated to hold for
a.e. t ≥ 0, it can be extended to all t ≥ 0, as we shall later prove that
entropy solutions of (1.1) are continuous when viewed as L1

loc(R)-valued
time-dependent functions.

Proposition 3.1. Let u, v ∈ L∞loc([0,∞), L∞(R)) be entropy solutions of
(1.1) with u0, v0 ∈ L∞(R) as initial data. Then, for any r > 0 and a.e.
t ≥ 0 we have the weighted L1-contraction∫ r

−r
|u(t, x)− v(t, x)|dx ≤

∫ ∞
−∞
|u0(x)− v0(x)|wrM (t, x)dx, (3.6)

where wrM is given by (3.4), and M is any parameter satisfying

M ≥
‖u‖L∞([0,t]×R) + ‖v‖L∞([0,t]×R)

2
. (3.7)

Thus, there is at most one entropy solution of (1.1) for each u0 ∈ L∞(R).

Proof. We begin by reformulating (1.4) in terms of the Kružkov entropies;
parameterized over k ∈ R, they are given by (ηk(u), qk(u)) = (|u −
k|, F (u, k)) where

F (u, k) := 1
2sgn(u− k)(u2 − k2).

These entropy pairs lack the required smoothness, but are still applicable
in (1.4) as they can be smoothly approximated. Indeed, consider for

δ > 0 and k ∈ R the entropy pairs ηδk(u) =
√

(u− k)2 + δ2 and qδk(u) =∫ u
k (ηδk)

′(y)ydy. As we have the pointwise limits

lim
δ→0

ηδk(u) = |u− k|, lim
δ→0

qδk(u) =F (u, k), lim
δ→0

(ηδk)
′(u) = sgn(u− k),

we can substitute (η, q) 7→ (ηδk, q
δ
k) in (1.4) and let δ → 0 to conclude

through dominated convergence that u satisfies

0 ≤
∫ ∞

0

∫
R
|u− k|ϕt + F (u, k)ϕx + sgn(u− k)(K ∗ u)ϕdxdt, (3.8)

for all k ∈ R and all non-negative ϕ ∈ C∞c (R+ × R). For brevity, we
set U = R+ × R for use throughout the proof. Let ψ ∈ C∞c (U × U)
be non-negative, and consider u and v as functions in (t, x) and (s, y)
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respectively. For fixed (s, y) ∈ U , we can in (3.8) insert the test-function
ϕ : (t, x) 7→ ψ(t, x, s, y) and the constant k = v(s, y) so to obtain

0 ≤
∫
U
|u− v|ψt + F (u, v)ψx + sgn(u− v)(K ∗x u)ψdxdt, (3.9)

where we write K ∗x u to stress that the operator K∗ is applied with
respect to the x-variable. As (3.9) holds for all (s, y) ∈ U we can integrate
(3.9) over (s, y) ∈ U to further attain

0 ≤
∫
U

∫
U
|u− v|ψt + F (u, v)ψx + sgn(u− v)(K ∗x u)ψdxdtdyds.

(3.10)

Next, we swap the role of u(t, x) and v(s, y): rewriting (3.8) in terms of
the variables (s, y) and replacing u by v, we can fix (t, x) ∈ U and insert
the test-function ϕ : (s, y) 7→ ψ(t, x, s, y) and the constant k = u(t, x) so
to obtain

0 ≤
∫
U

∫
U
|u− v|ψs + F (v, u)ψy + sgn(v − u)(K ∗y v)ψdxdtdyds,

(3.11)

where we also integrated over (t, x) ∈ U . As F (u, v) = F (v, u) and
sgn(v−u) = −sgn(u−v) we can add (3.10) to (3.11) so to further obtain

0 ≤
∫
U

∫
U
|u− v|(ψt + ψs) + F (u, v)(ψx + ψy)dxdtdyds

+

∫
U

∫
U

sgn(u− v)(K ∗x u−K ∗y v)ψdxdtdyds.

(3.12)

Let ρ ∈ C∞c (R2) be non-negative and satisfy ‖ρ‖L1(R2) = 1, and let ρε
denote the expression

ρε = ρε(t− s, x− y) =
1

ε2
ρ

(
t− s
ε

,
x− y
ε

)
,

for ε > 0. For a fixed T ∈ (0,∞), we further let ϕ denote a non-negative
element of C∞c ((0, T )× R) and set

ψ(t, x, s, y) = ϕ(t, x)ρε(t− s, x− y),

or simply ψ = ϕρε for short. Note that, for ε > 0 sufficiently small, this ψ
is non-negative, smooth and of compact support in U ×U ; in particular,
it satisfies the prior assumptions posed on it. From the observation that
(∂t + ∂s)ρε = 0 = (∂x + ∂y)ρε, we conclude that

(ψt + ψs) =ϕtρε, (ψx + ψy) =ϕxρε,



12 MÆHLEN AND XUE

and so inserting for ψ in (3.12) we attain

0 ≤
∫
U

∫
U

[
|u− v|ϕt + F (u, v)ϕx

]
ρεdxdtdyds

+

∫
U

∫
U

sgn(u− v)(K ∗x u−K ∗y v)ϕρεdxdtdyds.

(3.13)

We now wish to ‘go to the diagonal’ by taking lim supε→0 of (3.13);
for simplicity we study each line separately. For the first one we pick
M ∈ (0,∞) satisfying the inequality (3.7) with T replacing t, and use
(u2 − v2) = (u+ v)(u− v) to calculate

∫
U

∫
U

[
|u− v|ϕt + F (u, v)ϕx

]
ρεdxdtdyds

≤
∫
U

∫
U
|u− v|

[
ϕt +M |ϕx|

]
ρεdxdtdyds

≤
∫
U
|u(t, x)− v(t, x)|

[
ϕt +M |ϕx|

]
dxdt

+

∫
U

∫
U
|v(t, x)− v(s, y)|

[
ϕt +M |ϕx|

]
ρεdxdtdyds,

(3.14)

where we in the last step added and subtracted v(t, x) followed by the
triangle inequality. As ρε(t − s, x − y) is supported in the region |(t −
s, x− y)| ≤ ε and satisfies ‖ρε‖L1(R2) = 1, the very last integral in (3.14)
is bounded by

sup
|(ε,δ)|≤ε

∫
U
|v(t, x)− v(t+ ε, x+ δ)|

[
ϕt +M |ϕx|

]
dxdt→ 0, ε→ 0,

where the limit holds as translation is a continuous operation on L1
loc(R)

and ϕ ∈ C∞c ((0, T )× R). Thus we have established

lim sup
ε→0

∫
U

∫
U

[
|u− v|ϕt + F (u, v)ϕx

]
ρεdxdtdyds

≤
∫
U
|u− v|

[
ϕt +M |ϕx|

]
dxdt,

(3.15)
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where the v on the right-hand side of (3.15) is a function in (t, x). Turning
our attention to the second line of (3.13), we start by observing∫

U

∫
U

sgn(u− v)(K ∗x u−K ∗y v)ϕρεdxdtdyds

≤
∫
U

∫
U

∫
R
|K(z)||u(t, x− z)− v(s, y − z)|

× ϕ(t, x)ρε(t− s, x− y)dzdxdtdyds

=

∫
U

∫
U

∫
R
|K(z)||u(t, x)− v(s, y)|

× ϕ(t, x+ z)ρε(t− s, x− y)dzdxdtdyds

=

∫
U

∫
U
|u− v|

[
|K| ∗x ϕ

]
ρεdxdtdyds,

where the third line holds by the substitution (x, y) 7→ (x+ z, y+ z) and
the last by the symmetry of z 7→ |K(z)|. By similar reasoning used to
attain (3.14), we conclude

lim sup
ε→0

∫
U

∫
U

sgn(u− v)(K ∗x u−K ∗y v)ρεϕdxdtdyds

≤
∫
U
|u− v|(|K| ∗ ϕ)dxdt,

(3.16)

where the v on the right-hand side of (3.16) is a function in (t, x). Com-
bining (3.13) with (3.15) and (3.16), yields the inequality

0 ≤
∫
U
|u− v|

[
ϕt +M |ϕx|+ |K| ∗ ϕ

]
dxdt, (3.17)

where again, both u and v are now functions in (t, x). By density, we

may extend (3.17) to hold for all non-negative ϕ ∈ W 1,1
0 ((0, T ) × R).

Thus, we can set ϕ(t, x) = θ(t)φ(t, x) for two non-negative functions

θ ∈ W 1,1
0 ((0, T )) and φ ∈ W 1,1((0, T ) × R) where we note that φ need

not vanish at t = 0 and t = T . In doing so, (3.17) yields

0 ≤
∫
U
|u− v|θ′φdxdt+

∫
U
|u− v|θ

[
φt +M |φx|+ |K| ∗ φ

]
dxdt, (3.18)

To rid ourselves of the second integral, we now construct a particular φ
such that the square bracket in (3.18) is non-positive in (0, T )× R. Let
f : R → [0, 1] be smooth, non-increasing and satisfy f(x) = 1 for x ≤ 0
and f(x) = 0 for sufficiently large x, and define

g(t, x) = f(|x|+M(t− T )). (3.19)
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By the properties of f , it is readily checked that g ∈ C∞c ([0, T ]×R). We
now define the function φ to be

φ(t, x) =
(
e(T−t)|K|∗g(t, ·)

)
(x), (3.20)

where we used the operator defined in (3.1). Observe that φ is non-
negative and smooth on [0, T ] × R with integrable derivatives; this last
part follows when using (3.2). That the square bracket in (3.18) is non-
positive, can be seen as follows: note first from (3.19) that

gt(t, x) =Mf ′(|x|+M(t− T )),

gx(t, x) = sgn(x)f ′(|x|+M(t− T )).

As f ′ is non-positive, we find gt = −M |gx|. Thus, using (3.20) we calcu-
late for t ∈ (0, T )

φt + |K| ∗ φ = e(T−t)|K|∗gt,

= −M
(
e(T−t)|K|∗|gx|

)
,

≤ −M
∣∣∣e(T−t)|K|∗gx

∣∣∣
= −M |φx|,

where the last equality holds as differentiation commutes with convolu-
tion. In conclusion, the second integral in (3.18) is non-positive. Next,
for a small parameter ε > 0 we set θ = θε where θε is given by

θε(t) =


t/ε, t ∈ (0, ε),

1, t ∈ (ε, T − ε),
(T − t)/ε, t ∈ (T − ε, T ).

(3.21)

Inserting this in (3.18), removing the non-positive integral and letting
ε→ 0, we conclude

lim inf
ε→0

∫ T

T−ε

(∫
R
|u(t, x)− v(t, x)|φ(t, x)dx

)
dt

ε

≤ lim sup
ε→0

∫ ε

0

(∫
R
|u(t, x)− v(t, x)|φ(t, x)dx

)
dt

ε

(3.22)

where we moved the negative term over to the left-hand side. As u and v
are bounded on (0, T )×R and continuous at t = 0 in L1

loc sense, it is easy
to see that |u(t, ·) − v(t, ·)|φ(t, ·) → |u0(·) − v0(·)|φ(0, ·) in L1(R) when
t→ 0 since the same is true for φ(t, x) and φ(0, x). Thus the right-hand
side of (3.22) is given by

lim sup
ε→0

∫ ε

0

(∫
R
|u(t, x)− v(t, x)|φ(t, x)dx

)
dt

ε
=

∫
R
|u0 − v0|φ(0, x)dx.
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As for the left-hand side, we wish to apply the Lebesgue differentiation
theorem so to get convergence for a.e. T > 0, but this can not be
directly done due to the implicit T -dependence of φ. Instead, we observe
from (3.19) and (3.20) that φ(T, x) = g(T, x) = f(|x|) where the latter
function is independent of T . Since ϕ(t, ·) → f(| · |) in L1(R) as t → T ,
the boundness of u and v means that |u(t, ·)−v(t, ·)|(ϕ(t, ·)−f(| · |))→ 0
in L1(R) as t→ T and so we may estimate

lim sup
ε→0

∫ T

T−ε

(∫
R
|u(t, x)− v(t, x)|φ(t, x)dx

)
dt

ε

= lim sup
ε→0

∫ T

T−ε

(∫
R
|u(t, x)− v(t, x)|f(|x|)dx

)
dt

ε

=

∫
R
|u(T, x)− v(T, x)|f(|x|)dx, a.e. T ≥ 0,

where the last equality used the Lebesgue differentiation theorem. Thus
we conclude from (3.22) that we for a.e. T ≥ 0 have∫

R
|u(T, x)− v(T, x)|f(|x|)dx

≤
∫
R
|u0(x)− v0(x)|

(
eT |K|∗f(| · | −MT )

)
(x)dx,

(3.23)

where we inserted for φ(0, x) using (3.19) and (3.20). As f was any
smooth, non-negative, non-increasing function satisfying f(x) = 1 for
x ≤ 0 and f(x) = 0 for sufficiently large x, we may in (3.23) set f =
1(−∞,r) through a standard approximation argument. Doing this, we
observe that f(|x| − MT ) = χrM (T, x) where the latter is defined in
(3.3), and so we obtain from (3.23) exactly (3.6), with T substituting for
t. This concludes the proof. �

While we in this paper are concerned with global entropy solutions,
one may wish to study entropy solutions on a time-bounded domain
(0, T ) × R. Such solutions would be defined as in Def. 1.1, but with
the test-functions in (1.4) restricted to C∞c ((0, T ) × R). Still, no new
solutions are attained this way: the uniqueness of entropy solutions on
a time-bounded domain follows from the same argument as above, and
thus an entropy solution on (0, T ) × R is the restriction of a global one
which the following section establishes the existence of.

3.2. Existence of entropy solutions. In this subsection, we prove
the existence of an entropy solution of (1.1) for arbitrary initial data
u0 ∈ L∞(R). The strategy goes as follows: we first introduce for a
parameter ε > 0 an approximate solution map Sε,t : L

∞(R) → L∞(R)
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whose key properties are collected in Proposition 3.2. Next, we show
in Lemma 3.4 that when Sε,t is applied to sufficiently regular initial
data u0, we attain approximate entropy solutions. Further, in Propo-
sition 3.5 we establish the convergence (as ε → 0) of these approxima-
tions to an entropy solution, and the result is extended to general L∞

data in Corollary 3.6. Throughout the section, we occasionally refer
to the space C([0,∞), L1

loc(R)) of functions u ∈ L1
loc([0,∞) × R) such

that t 7→ u(t, ·) is a continuous mapping from [0,∞) to L1
loc(R). By an

operator splitting argument, we aim to build entropy solutions of (1.1)
from those of Burgers’ equation, ut + 1

2(u2)x = 0, and the linear convo-
lution equation, ut = K ∗ u. On that note, we introduce two families
of operators (SBt )t≥0 and (SKt )t≥0 parameterized over t ≥ 0. The op-
erator SBt : L∞(R) → L∞(R) is the solution map for Burgers’ equation
restricted to L∞ data at time t; that is,

SBt : f 7→ uf (t, ·), (3.24)

where (t, x) 7→ uf (t, x) is the unique bounded entropy solution of the
problem {

ut + 1
2(u2)x = 0, (t, x) ∈ R+ × R,

u(0, x) = f(x), x ∈ R,

which necessarily lies in C([0,∞), L1
loc(R)) (see [8]). Note that SBt is a

flow map in the sense that SBt1 ◦S
B
t2 = SBt1+t2 for all t1, t2 ≥ 0. The second

map SKt : L∞(R)→ L∞(R) is for t ≥ 0 defined by

SKt : f 7→ f + tK ∗ f. (3.25)

The actual solution map for the equation ut = K ∗u is the operator etK∗

defined as (3.1) with K replacing |K|; the reason we have instead chosen
SKt as (3.25) (which can be seen as a first order approximation of etK∗) is
for our calculations to be slightly tidier. Note however, SKt is not a flow
mapping. With these two families of operators, we build a third family
of operators Sε,t: for fixed parameters ε > 0 and t ≥ 0, pick n ∈ N0 and
s ∈ [0, ε) such that t = s+ nε, and define

Sε,t =SBs ◦
[
SKε ◦ SBε

]◦n
, (3.26)

where the notation ◦n implies that the square bracket is composed with
itself (n−1) times; if n = 0, then the square bracket should be replaced by
the identity. We shall demonstrate that as ε→ 0 the map Sε,t converges
in an appropriate sense to the solution map for entropy solutions of
(1.1). We begin by collecting a few properties of Sε,t when applied to
the space BV (R); this subspace of L1(R) is equipped with the norm
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‖ · ‖BV (R) = ‖ · ‖L1(R) + | · |TV , where the total variation seminorm | · |TV
coincides with | · |TV 1 as defined in (1.5). A short and effective discussion
of BV (R) can be found in either [8] or [13]; we note that functions in
BV (R) have essential right and left limits at each point, and their height
is bounded by their total variation, thus BV (R) ↪→ L1 ∩ L∞(R).

Proposition 3.2. With Sε,t as defined in (3.26), we have for all ε > 0,
t ≥ t̃ ≥ 0, f ∈ BV (R) and p ∈ [1,∞]

‖Sε,t(f)‖Lp(R) ≤ etκ‖f‖Lp(R), (Lp bound),

‖Sε,t(f)‖TV ≤ etκ‖f‖TV , (TV bound),

‖Sε,t(f)− Sε,t̃(f)‖L1(R) ≤ (t− t̃+ ε)Cf (t), (Approx. time continuity),

where κ := ‖K‖L1(R) and where the factor Cf (t) only depends on f and
t.

Proof. Consider ε > 0 fixed. We will be using the following properties of
the mappings SBt and SKt

‖SBt (f)‖Lp(R) ≤‖f‖Lp(R), ‖SKt (f)‖Lp(R) ≤ etκ‖f‖Lp(R), (3.27)

|SBt (f)|TV ≤ |f |TV , |SKt (f)|TV ≤ etκ|f |TV , (3.28)

‖SBt (f)− f‖L1(R) ≤ t|f |2TV , ‖SKt (f)− f‖L1(R) ≤ tκ‖f‖L1(R), (3.29)

valid for all t ≥ 0, p ∈ [1,∞] and f ∈ BV (R). The inequalities involving
SBt are well known and can be found for example in [13]. As for the
inequalities involving SKt , these estimates follow directly from the def-
inition of SKt (3.25) together with Young’s convolution inequality and
1 + tκ ≤ etκ. We start by proving the Lp and TV bound of the propo-
sition. For this we fix t ≥ 0 and pick n ∈ N0 and s ∈ [0, ε) such that
t = s + nε, and pick an arbitrary f ∈ BV (R). By iteration of the two
inequalities in (3.27) we attain

‖Sε,t(f)‖Lp(R) = ‖SBs ◦ [SKε ◦ SBε ]◦n(f)‖Lp(R) ≤ enεκ‖f‖Lp(R), (3.30)

for all p ∈ [1,∞], and by iteration of the inequalities in (3.28) we similarly
get

|Sε,t(f)|TV = |SBs ◦ [SKε ◦ SBε ]◦n(f)|TV ≤ enεκ|f |TV . (3.31)

This gives the first two bounds of the proposition. For the time conti-
nuity, we pick t̃ ∈ [0, t] and ñ ∈ N and s̃ ∈ [0, ε) such that t̃ = s̃ + ñε.

Suppose first that t− t̃ ≤ ε, and set f̃ = Sε,ñε(f). Then either Sε,t(f) =

SBs−s̃(f̃) or Sε,t(f) = SBs ◦ SKε ◦ SBε−s̃(f̃) corresponding to the two situa-
tions n = ñ and n = ñ+ 1; we will only deal with the latter as the other
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case is dealt with similarly. By the triangle inequality we then have

‖Sε,t(f)− Sε,t̃(f)‖L1(R) ≤‖SBs ◦ SKε ◦ SBε−s̃(f̃)− SKε ◦ SBε−s̃(f̃)‖L1(R)

+ ‖SKε ◦ SBε−s̃(f̃)− SBε−s̃(f̃)‖L1(R)

+ ‖SBε−s̃(f̃)− f̃‖L1(R).

The three terms on the right-hand side can be directly dealt with using
the two inequalities (3.29) followed by the estimates (3.30) and (3.31).
Doing so in a straight forward manner results in the bound

se2nεκ|f |2TV + εκeñεκ‖f‖L1(R) + (ε− s̃)e2ñεκ|f |2TV
≤ εe2tκ(2|f |2TV + κ‖f‖L1(R)).

Thus, setting for example Cf (t) = e2tκ(2|f |2TV + κ‖f‖L1(R)) the time

continuity estimate holds whenever t − t̃ ≤ ε. By breaking any large
time step into steps of size no larger than ε, the general case follows by
the triangle inequality. �

The Lp bound provided by the previous proposition was attained by
applying Young’s convolution inequality on the operator K∗; in doing
so, we miss possible cancellations that might take place as K, after all,
is an odd function. While efficient Lp bounds might not be feasible for
general p ≥ 1, these cancellations are easily exploited for the L2 norm as
seen from the following lemma. This L2 control is crucial for the analysis
of Section 4.

Lemma 3.3. With Sε,t as defined in (3.26), we have for all ε > 0, t ≥ 0
and f ∈ L2 ∩ L∞(R)

‖Sε,t(f)‖L2(R) ≤ e
1
2
εtκ2‖f‖L2(R),

where κ := ‖K‖L1(R).

Proof. Consider ε > 0 and t ≥ 0 fixed. As K is odd, real valued and
in L1(R), it is readily checked that K∗ is a skew-symmetric operator on
L2(R), that is

〈f,K ∗ g〉 = −〈K ∗ f, g〉,

for all f, g ∈ L2(R), and consequently 〈f,K ∗ f〉 = 0 for all f ∈ L2(R).
In particular,

‖SKε (f)‖2L2(R) = 〈f + εK ∗ f, f + εK ∗ f〉

= 〈f, f〉+ ε2〈K ∗ f,K ∗ f〉
≤ (1 + ε2κ2)‖f‖2L2(R).
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Combined with 1+ε2κ2 ≤ eε2κ2 and the fact that SBε is non-expansive on
L2(R) (left-most inequality in (3.27)), the result follows by iteration. �

When u0 ∈ BV (R), we can use Sε,t to construct a family of approx-
imate entropy solutions of (1.1) as follows. For an arbitrary, but fixed,
u0 ∈ BV (R), let the family (uε)ε>0 ⊂ L∞loc([0,∞), L∞(R)) be defined by

uε(t) = Sε,t(u0), (3.32)

where uε(t) is compact notation for x 7→ uε(t, x) and Sε,t is as defined in
(3.26). Although (uε)ε>0 is considered a family in L∞loc([0,∞), L∞(R)),
we stress that each member is for all t ≥ 0 well defined in L∞(R). For
small ε > 0 these functions are not far off from satisfying the entropy
inequality (1.4), as we now show.

Lemma 3.4. With (uε)ε>0 as defined in (3.32) for some u0 ∈ BV (R), we
have for every entropy pair (η, q) of (1.1) and non-negative ϕ ∈ C∞c (R+×
R) the approximate entropy inequality∫ ∞

0

∫
R
η(uε)ϕt + q(uε)ϕx + η′(uε)(K ∗ uε)ϕdxdt ≥ O(ε).

Proof. Fixing ε > 0, we observe from the definition of Sε,t (3.26) that uε

is an entropy solution of Burgers’ equation on the open sets (tεn−1, t
ε
n)×R

for n ∈ N, where tεn = nε; thus∫ tεn

tεn−1

∫
R
η(uε)ϕt + q(uε)ϕxdxdt ≥ 0, (3.33)

for every non-negative ϕ ∈ C∞c ((tεn−1, t
ε
n) × R) and every entropy pair

(η, q) of Burgers’ equation, which coincides with the entropy pairs of
(1.1) as the convection term of the two equations agree. Moreover, by
the time continuity of SBt (3.28) and the TV bound from Proposition
3.2, we see that uε ∈ C([tεn−1, t

ε
n), L1

loc(R)); at t = tεn it is discontinuous

from the left, as the left limit is given by uε(tεn−) = SBε (uε(tεn−1)), while
we have defined

uε(tεn) = uε(tεn−) + εK ∗ uε(tεn−). (3.34)

The continuity in time allows us, by a similar trick used to attain (3.22),
to extend (3.33) to∫ tεn

tεn−1

∫
R
η(uε)ϕt + q(uε)ϕxdxdt ≥

∫
R
η(uε(tεn−))ϕ(tεn, x)dx

−
∫
R
η(uε(tεn−1))ϕ(tεn−1, x)dx,

(3.35)
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for all non-negative ϕ ∈ C∞c (R+ × R). For the remainder of the proof,
consider the entropy pair (η, q) and ϕ ∈ C∞c (R+ × R) fixed. Summing
(3.35) over n ∈ N and using ϕ(0, x) = 0, we get∫

R+×R
η(uε)ϕt + q(uε)ϕxdxdt

≥
∞∑
n=1

∫
R

[
η(uε(tεn−))− η(uε(tεn))

]
ϕ(tεn, x)dx.

(3.36)

By Proposition 3.2, the family (uε)ε>0 is uniformly bounded on the
support of ϕ, and so we can assume without loss of generality that
|η′|, |η′′| < C1 for some large C1. Using the relation (3.34), the square
bracket from (3.36) can thus be estimated

η(uε(tεn−))− η(uε(tεn))

≥ − εη′(uε(tεn−))
[
K ∗ uε(tεn−)

]
− C1ε

2

2
|K ∗ uε(tεn−)|2,

which, again by the uniform bound of uε on the compact support of ϕ,
further implies∫

R

[
η(uε(tεn−))− η(uε(tεn))

]
ϕ(tεn, x)dx

≥ − ε
∫
R
η′(uε(tεn−))

[
K ∗ uε(tεn−)

]
ϕ(tn, x)dx− C2ε

2,

(3.37)

for some C2 > 0 independent of n and ε. Combining the uniform time
regularity of Proposition 3.2 and the compact support of ϕ, we see that
the function

gε(t) :=

∫
R
η′(uε(t))

[
K ∗ uε(t)

]
ϕ(t, x)dx, (3.38)

satisfies for all t ≥ t̃ ≥ 0 an inequality |gε(t)− gε(t̃)| ≤ C3(t− t̃ + ε) for
some sufficiently large C3 independent of ε. Thus, the integral on the
right-hand side of (3.37) can be bounded from below as such

− ε
∫
R
η′(uε(tεn−))

[
K ∗ uε(tεn−)

]
ϕ(tn, x)dx

= −
∫ tεn

tεn−1

∫
R
η′(uε(tεn−))

[
K ∗ uε(tεn−)

]
ϕ(tn, x)dxdt

≥ −
∫ tεn

tεn−1

∫
R
η′(uε(t))

[
K ∗ uε(t)

]
ϕ(t, x)dxdt− 2C3ε

2.

(3.39)
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Picking the smallest N(ε) ∈ N such that suppϕ ∩ (εN(ε),∞) × R = ∅,
we combine (3.36), (3.37) and (3.39) to deduce∫

R+×R
η(uε)ϕt + q(uε)ϕx + η′(uε)(K ∗ uε)ϕdxdt ≥ CN(ε)ε2,

for some sufficiently large C > 0. And as N(ε)ε2 ∼ ε the proof is
complete. �

With the previous result at hand, it is natural to look for a limit
function of (uε)ε>0 as ε → 0; this would be a suitable candidate for an
entropy solution of (1.1) with initial data u0 ∈ BV (R). In the next
proposition, we do exactly this and collect a few properties about the
resulting solution.

Proposition 3.5. For any initial data u0 ∈ BV (R), let (uε)ε>0 be as
defined in (3.32). Then, for all t ≥ 0 the following limit holds in L1

loc(R)

uε(t)→ u(t), ε→ 0, (3.40)

where u is an entropy solution of (1.1) with initial data u0. Moreover, u
is an element of C([0,∞), L1(R))∩L∞loc([0,∞), L∞(R)) and satisfies for
all t ≥ 0

‖u(t)‖L∞(R) ≤ etκ‖u0‖L∞(R), (3.41)

‖u(t)‖L2(R) ≤‖u0‖L2(R), (3.42)

where κ := ‖K‖L1(R).

Proof. We first prove the limit (3.40) for a special subsequence of (uε)ε>0

and then generalize afterwards. Fixing t ≥ 0, we see from Proposition
3.2 that the functions (uε(t))ε>0 satisfy for any p ∈ [1,∞]

‖uε(t)‖Lp(R) ≤ etκ‖u0‖Lp(R), (3.43)

and in particular, they are uniformly bounded in L1(R). Moreover, they
are equicontinuous with respect to translation

‖uε(t, ·+ h)− uε(t, ·)‖L1(R) ≤ hetκ|u0|TV ,
for all h > 0, and so by the Kolmogorov–Riesz compactness Theorem,
any infinite subset of (uε(t))ε>0 is relatively compact in L1

loc(R); as we
have skipped developing a tightness estimate for (uε(t))ε>0, we can not
claim the family to be relatively compact in L1(R). The family (uε)ε>0 is
not equicontinuous in time and so we can not directly apply the Arzelà-
Ascoli theorem, however, the family is for small ε arbitrary close to be
equicontinuous and so the proof of the theorem is still applicable; for
clarity we perform the steps. By a standard diagonalization argument,
we can select a sub-sequence (uεj )j∈N ⊂ (uε)ε>0 such that limj→∞ εj = 0
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and uεj (t) converges in L1
loc(R) for every t ∈ E with E being a countable

dense subset of R+. Next, we claim that uεj (t) converges in L1
loc(R) for

every t ≥ 0. Indeed, fix r > 0 for locality and pick s ∈ E such that
|s − t| < ε for some arbitrary ε > 0. By the time regularity estimate of
Proposition 3.2, we have

lim sup
j,i→∞

∫ r

−r
|uεj (t)− uεi(t)|dx

≤ lim sup
j,i→∞

∫ r

−r
|uεj (t)− uεj (s)|+ |uεj (s)− uεi(s)|+ |uεi(s)− uεi(t)|dx

≤ lim sup
j,i→∞

(2ε+ εj + εi)Cu0(t+ ε) + lim sup
j,i→∞

∫ r

−r
|uεj (s)− uεi(s)|dx

= 2εCu0(t+ ε),

and since r and ε were arbitrary, we conclude that uεj (t) converges in
L1

loc(R) to some u(t). Moreover, as uεj (t) converges locally to u(t), the
bound (3.43) necessarily carries over to u(t), and so in particular

‖u(t)‖Lp(R) ≤ etκ‖u0‖Lp(R),

and further by Fatou’s lemma we infer for all t ≥ t̃ ≥ 0

‖u(t)− u(t̃)‖L1(R) ≤ lim inf
j→∞

‖uεj (t)− uεj (t̃)‖L1(R)

≤ lim inf
j→∞

(t− t̃+ εj)Cu0(t)

= (t− t̃)Cu0(t).

(3.44)

Thus u ∈ C([0,∞), L1(R))∩L∞loc([0,∞), L∞(R)). Next, we prove that u
is, in accordance with Def. 1.1, an entropy solution of (1.1) with initial
data u0; the latter part follows from u(0) = u0 and (3.44). To see that u
satisfies the entropy inequalities (1.4), we pick an arbitrary entropy pair
(η, q) of (1.1) and a non-negative ϕ ∈ C∞c (R+ × R) and recall Lemma
3.4 to calculate∫ ∞

0

∫
R
η(u)ϕt + q(u)ϕx + η′(u)(K ∗ u)ϕdxdt

= lim
j→0

∫ ∞
0

∫
R
η(uεj )ϕt + q(uεj )ϕx + η′(uεj )(K ∗ uεj )ϕdxdt

≥ lim
j→0

O(εj) = 0,

(3.45)

where the second line holds as the integrand converges in L1(R); after
all, (uεj )j∈N is uniformly bounded on the compact support of ϕ. By
Proposition 3.1 we conclude that u is the unique entropy solution of
(1.1) with u0 as initial data. What remains to show, is the general limit
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(3.40) and the L2 bound of u (3.42); the latter follow by Lemma 3.3 and
Fatou’s lemma. We prove (3.40) by contradiction; if this limit does not
exist, then there is a subsequence (uεj )j∈N ⊂ (uε)ε>0, a t > 0 and an
r > 0 such that

lim inf
j→∞

∫ r

−r
|u(t)− uεj (t)|dx > 0.

But as argued above, the infinite set (uεj )j∈N must be precompact in
L1

loc(R) for every t ≥ 0, and thus we can pick a subsequence converging
for every t ≥ 0 in L1

loc(R) to the unique (Proposition 3.1) entropy solution
u which contradicts the above limit inferior. �

The existence of entropy solutions for general L∞ data now follows
from the previous proposition together with the weighted L1-contraction
provided by Proposition 3.1. It is useful to observe that the weight wrM
(3.4) is increasing in t. In particular, with u, v, t, r and M as in (3.6), we
have the contraction∫ r

−r
|u(t, x)− v(t, x)|dx ≤

∫
R
|u0(x)− v0(x)|wrM (T, x)dx, (3.46)

where T ∈ (0,∞) is any parameter satisfying T > t. We note that while
Proposition 3.1 only implies the validity of (3.46) for a.e. t ∈ [0, T ],
we will in the following corollary apply it on entropy solutions with BV
data; as the previous proposition guaranteed that these functions are
continuous from [0,∞) to L1

loc(R), the above contraction holds for all
t ∈ [0, T ].

Corollary 3.6. For any initial data u0 ∈ L∞(R), there exists a corre-
sponding entropy solution u ∈ C([0,∞), L1

loc(R)) of (1.1) satisfying for
all t ≥ 0

‖u(t)‖L∞(R) ≤ etκ‖u0‖L∞(R), (3.47)

where κ := ‖K‖L1(R). If u0 ∈ L2 ∩ L∞(R), it also satisfies for all t ≥ 0

‖u(t)‖L2(R) ≤‖u0‖L2(R). (3.48)

Proof. For u0 ∈ L∞(R), let (uj)j∈N be a sequence of entropy solutions

of (1.1) whose corresponding initial data (uj0)j∈N ⊂ BV (R) satisfies

supj ‖u
j
0‖L∞(R) ≤ ‖u0‖L∞(R) and uj0 → u0 in L1

loc(R) as j → ∞. For
a fixed T > 0, set

M = eTκ‖u0‖L∞(R),

and observe from (3.41) that supj ‖uj(t)‖L∞(R) ≤ M for all t ∈ [0, T ].

In particular, (3.46) is valid for all substitutions (u, v) 7→ (uj , ui) and all
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parameters r > 0, t ∈ [0, T ] and x0 ∈ R. Using this contraction, we may
estimate for any r > 0

lim sup
j,i→∞

sup
0≤t≤T

∫ r

−r
|uj(t, x)− ui(t, x)|dx

≤ lim sup
j,i→∞

∫
R
|uj0(x)− ui0(x)|wrM (T, x)dx = 0,

where the last limit holds by the dominated convergence theorem. This
shows that (uj)j∈N is Cauchy in the Fréchet space C([0,∞), L1

loc(R)) and
so the sequence converges to some u ∈ C([0,∞), L1

loc(R)). Moreover,

‖u(t)‖L∞(R) ≤ lim inf
j→∞

‖uj(t)‖L∞(R) ≤ etκ‖u0‖L∞(R),

by (3.41), and so u ∈ L∞loc([0,∞), L∞(R)) too. That u takes u0 as ini-
tial data in L1

loc-sense follows from the time-continuity of u and u(0) =

limj→∞ u
j
0 = u0 where the limit is taken in L1

loc(R). Moreover, as each
member (uj)j∈N satisfies the entropy inequalities (1.4), the same can
be said for u by a similar calculation as (3.45). Thus the corollary is
proved, save for the L2 estimate; this is attained through Fatou’s lemma

and (3.42) as we may assume supj ‖u
j
0‖L2(R) ≤ ‖u0‖L2(R). �

3.3. L2 continuity and stability of entropy solutions. For clarity,
we summarize what of Theorem 2.1 has been proved so far and what
remains to be proved. Combining Proposition 3.1 and Corollary 3.6, we
conclude that there exists a unique entropy solution of (1.1) in accordance
with Def. 1.1 for every initial data u0 ∈ L∞(R) and thus also for u0 ∈
L2 ∩L∞(R). Furthermore, Corollary 3.6 guarantees that these solutions
are continuous from [0,∞) to L1

loc(R) so that the restriction u(t) :=
u(t, ·) ∈ L1

loc(R) makes sense for all t ≥ 0. The same corollary also
provides the bounds (2.1) of Theorem 2.1. It remains to prove that
entropy solutions with L2∩L∞ data are continuous from [0,∞) to L2(R)
and that they satisfy the stability result of Theorem 2.1. To do so,
we shall exploit the height bound of Corollary 2.6. As explained at
the beginning of Section 4, Corollary 2.6 can be proved for the case
u0 ∈ L2∩L∞(R) independently of this subsection; thus we may here use
the height bound (2.5) for entropy solutions of (1.1) without risking a
circular argument. From here til the end of the section, we take the above
properties of entropy solutions for granted. We begin with a variant of
Proposition 3.1 which makes use of the above discussed height bound.

Lemma 3.7. There is a function Ψ: [0,∞)3 → [0,∞), increasing in all
arguments, such that for any pair of entropy solutions u, v of (1.1) with
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respective initial data u0, v0 ∈ L2 ∩ L∞(R) one has for any t, r ≥ 0 and
N ≥ max{‖u0‖L2(R), ‖v0‖L2(R)} the inequality

‖u(t)− v(t)‖L1([−r,r]) ≤ Ψ(t,N, r)‖u0 − v0‖L2(R). (3.49)

Proof. Let u, v, u0, v0 and N be as described in the lemma. By (2.5) from
Corollary 2.6, and the property of N , we have for all t > 0

‖u(t)‖L∞(R) + ‖v(t)‖L∞(R)

2
≤ CN

2
3

(
1 +

1

t
1
3

)
=: m(t), (3.50)

where C := max{2
11
12 3

1
3 ‖K‖

1
3

L1(R)
, 2

5
4 }. With F (u, v) := 1

2sgn(u− v)(u2−
v2), we have for any non-negative ϕ ∈ C∞c ((0,∞)× R) the inequality

0 ≤
∫ ∞

0

∫
R
|u− v|ϕt + F (u, v)ϕx + |u− v|(|K| ∗ ϕ)dxdt. (3.51)

This is attained by following the first half of the proof of Proposition
3.1 without using the bound |F (u, v)| ≤ M |u − v| as done in the first
inequality of (3.14); one may instead, when ‘going to the diagonal’, sub-
tract F (u(t, x), v(t, x)) from F (u(t, x), v(s, y)) and use

|F (u(t, x), v(s, y))− F (u(t, x), v(x, y))| . |v(s, y)− v(t, x)|,

which follows from local Lipschitz continuity of F and the fact that u
and v are globally bounded (as pointed out after Corollary 2.6). With
(3.51) established, we may now filter out (u + v)/2 from F using the
more precise bound (3.50), that is

|F (u(t, x), v(t, x))| ≤ m(t)|u(t, x)− v(t, x)|.

Doing so, and additionally setting ϕ(t, x) = θ(t)φ(t, x) for two arbitrary
non-negative functions θ ∈ C∞c ((0, T )) and φ ∈ C∞c ((0, T ) × R), with
T > 0 also arbitrary, we conclude from (3.51) that

0 ≤
∫ T

0

∫
R
|u− v|θ′φdxdt

+

∫ T

0

∫
R
|u− v|θ

[
φt +m(t)|φx|+ |K| ∗ φ

]
dxdt.

(3.52)

Observe that (3.52) resembles (3.18); for brevity, we skip minor details
in the following steps due to their similarity of those following (3.18).
Let f : R → [0, 1] be a smooth and non-increasing function satisfying
f(x) = 1 for x ≤ 0 and f(x) = 0 for sufficiently large x, and set

g(t, x) := f(|x|+M(t)−M(T )),
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where we have here defined M(t) by

M(t) :=

∫ t

0
m(s)ds = CN

2
3

(
t+ 3

2 t
2
3

)
,

not to be confused with the constant M from the proof of Proposition
3.1. Analogous to (3.20), we then set

φ(t, x) =
(
e(T−t)|K|∗g(t, ·)

)
(x), (3.53)

and while this φ is not of compact support, both it, and its derivatives,
are integrable on (0, T )×R and so by an approximation argument it can
be used in (3.52) (the compact support of θ means the singularity of m(t)
at t = 0 is not seen). By similar arguments as those following (3.20) we
find also here that the second integral in (3.52) is non-positive, and so we
may remove it. Letting then θ approximate 1(0,T ) in a similar (smooth)
manner as done by the sequence (3.21), we may from (3.52) conclude∫

R
|u(T, x)− v(T, x)|φ(T, x)dx ≤

∫
R
|u0(x)− v0(x)|φ(0, x)dx, (3.54)

where we used that t 7→ |u(t, ·)− v(t, ·)|φ(t, ·) is continuous from [0, T ] to
L1(R) which holds as the same is true for t 7→ φ(t, ·) while u and v are
both globally bounded and continuous from [0, T ] to L1

loc(R). Note that
φ(0, x) = f(|x|), and so letting f → 1(−∞,r) in L1 sense, the left-hand
side of (3.54) becomes the left-hand side of (3.49). When f → 1(−∞,r)
we also get from (3.53) that

φ(0, x)→
(
eT |K|∗1(−∞,r)(| · | −M(T ))

)
(x), (3.55)

in L1 sense. Denoting the right-hand side of (3.55) also by φ(0, x), it
follows by Young’s convolution inequality that

‖φ(0, x)‖L2(R) ≤ eTκ[2r + 2M(T )]
1
2 = eTκ

[
2r + 2CN

2
3

(
T + 3

2T
2
3

)] 1
2
,

(3.56)

where κ := ‖K‖L1(R). Applying then the Cauchy–Schwarz inequality to

the right-hand side of (3.54), and using the above L2 bound for φ(0, x),
we attain (3.49) (with T substituting for t) for Ψ(T,N, r) given by the
right-hand side of (3.56). �

We follow up with a tightness bound for entropy solutions with L2∩L∞
data.
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Lemma 3.8. There is a function Φ: [0,∞)2×R→ [0,∞), increasing in
all arguments, such that if u is an entropy solution of (1.1) with initial
data u0 ∈ L2 ∩ L∞(R), then for any t, r ≥ 0 and N ≥ ‖u0‖L2(R)∫

|x|>r
u2(t, x)dx ≤

∫
R
u2

0(x)Φ(t,N, |x| − r)dx. (3.57)

Moreover,

lim
ξ→−∞

Φ(t,N, ξ) =0, Φ(t,N, ξ) = e2tκ, ξ > 0,

where κ := ‖K‖L1(R), and in particular, ξ 7→ Φ(t,M, ξ) is a bounded
function.

Proof. Pick arbitrary initial data u0 ∈ L2 ∩ L∞(R) and let u denote
the corresponding entropy solution of (1.1). Writing out the entropy
inequality (1.4) for u using the entropy pair (η(u), q(u)) = (u2, 2

3u
3) and

a non-negative test function ϕ ∈ C∞c ((0, T )×R), with T ∈ (0,∞) fixed,
we get

0 ≤
∫ T

0

∫
R
u2ϕt + 2

3u
3ϕx + 2u(K ∗ u)ϕdxdt. (3.58)

By the height bound (2.5) of Corollary 2.6, we have ‖u(t)‖L∞(R) ≤ m(t)
where m(t) is as defined in (3.50), and so the second term of the above
integrand satisfies

2
3u

3ϕx ≤ u2
[

2
3m(t)|ϕx|

]
.

Additionally, the third part of the integrand satisfies∫
R

2u(K ∗ u)ϕdx =

∫
R

∫
R

2u(t, x)u(t, y)K(x− y)ϕ(t, x) dydx

≤
∫
R

∫
R

[
|u(t, x)|2 + |u(t, y)|2

]
|K(x− y)|ϕ(t, x) dydx

=

∫
R
u2
[
κϕ+ |K| ∗ ϕ

]
dx.

Inserting these two bounds in (3.58) we get for any non-negative ϕ ∈
C∞c ((0, T )× R)

0 ≤
∫ T

0

∫
R
u2
[
ϕt + 2

3m(t)|ϕx|+K ∗ ϕ
]

dxdt, (3.59)

where we introduced the measure K := κδ + |K|, where δ is the Dirac
measure. We also here, like the previous proof, proceed in a manner
similar to the second half of the proof of Proposition 3.1, though some
necessary changes are made. We set ϕ(t, x) = θ(t)ρ(x)φ(t, x) for three
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smooth non-negative functions on [0, T ]×R with θ and ρ having compact
support in (0, T ) and R respectively. Additionally, while φ need not be
compactly supported, we require φ and its derivatives to be bounded.
Inserting this in (3.59) we get

0 ≤
∫ T

0

∫
R
u2θ′ρφdxdt

+

∫ ∞
0

∫
R
u2θ
[
ρφt + 2

3m(t)|(ρφ)x|+K ∗ (ρφ)
]

dxdt.

(3.60)

By approximation, (3.60) is still valid for a non-negative θ ∈W 1,1
0 ((0, T ))

and so we may set θ = θε where the latter given by (3.21), followed by
letting ε→ 0 to conclude from (3.60) that

0 ≤
∫
R

[
u2

0(x)φ(0, x)− u2(T, x)φ(T, x)
]
ρ(x)dx

+

∫ ∞
0

∫
R
u2
[
ρφt + 2

3m(t)|(ρφ)x|+K ∗ (ρφ)
]

dxdt,

(3.61)

where we used that t 7→ u2(t, ·)ρ(·)φ(t, ·) is continuous in L1 sense as
follows from the L1

loc continuity and boundness of u, the smoothness of
φ and the compact support of ρ. Next, we set ρ(x) = ρ̃(x/N) where
ρ̃ ∈ C∞c (R) is non-negative and satisfies ρ̃(0) = 1. Letting N → ∞,
(3.61) yields through the dominated convergence theorem∫

R
u2(T, x)φ(T, x)dx ≤

∫
R
u2

0(x)φ(0, x)dx

+

∫ ∞
0

∫
R
u2
[
φt + 2

3m(t)|φx|+K ∗ φ
]

dxdt,

(3.62)

where the convergence of the integrals follows from the boundness of
φ (and its derivatives) combined with ‖u(t)‖L2(R) ≤ ‖u0‖L2(R) for all
t ∈ [0, T ]. To rid ourselves of the last integral in (3.62), we perform a
similar trick as done for (3.18) and (3.52), but with a different f ; we here
let f : R→ [0, 1] be a non-decreasing function with bounded derivatives.
Define further g by

g(t, x) := f(|x|+M(T )−M(t)),

where M(t) denotes

M(t) :=

∫ t

0

2
3m(s)ds = CN

2
3

(
2
3 t+ t

2
3

)
, (3.63)
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and analogues to (3.20), we set φ to be

φ(t, x) =
(
e(T−t)K∗g(t, ·)

)
(x).

As t 7→ g(t, x) is still a non-increasing function, we conclude by similar
arguments as those following (3.20) that the square bracket in (3.62)
is non-positive. Thus, removing the non-positive integral in (3.62) we
conclude∫

R
u2(T, x)f(|x|)dx ≤

∫
R
u2

0(x)
(
eTK∗f(| · |+M(T ))

)
(x)dx, (3.64)

where we used the explicit expressions for φ(T, x) and φ(0, x). Letting
f → 1(r,∞) pointwise a.e. it is clear that the left-hand side of (3.64)

converges to
∫
|x|>r u

2(T )dx. As for the right-hand side, we get the cum-

bersome term eTK∗1(r,∞)(|·|+MT ) which we now simplify. Let the Borel

measure νT be defined by the relation νT ∗ = eTK∗ and observe that we
for x ∈ R have(

νT ∗ 1(r,∞)(| · |+M(T ))
)

(x) =

∫
|x−y|+M(T )>r

dνT (y)

≤
∫
|x|−r+M(T )>−|y|

dνT (y).

(3.65)

We thus define Φ(T,N, |x| − r) to be the latter expression after substi-
tuting for M(T ) using (3.63). Inserting this in (3.64) we get exactly
(3.57) with T substituting for t. The properties of Φ stated in the
lemma can be read directly from (3.65) when setting ξ = |x| − r to-
gether with the fact that T 7→ νT is increasing (in the canonical sense)
and

∫
R dνT = eTK∗1 = e2Tκ. �

We may now prove the remaining part of Theorem 2.1.

Proposition 3.9. Let two sequences (tk)k∈N ⊂ [0,∞) and (u0,k)k∈N ⊂
L2 ∩ L∞(R) admit limits

lim
k→∞

|tk − t| =0, lim
k→∞

‖u0,k − u0‖L2(R) = 0,

with t ∈ [0,∞) and u0 ∈ L2 ∩ L∞(R). Letting (uk)k∈N and u denote the
entropy solutions of (1.1) corresponding to the initial data (u0,k)k∈N and
u0 respectively, we have

lim
k→∞

‖uk(tk)− u(t)‖L2(R) = 0.

In particular, entropy solutions of (1.1) with L2∩L∞ data are continuous
from [0,∞) to L2(R).
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Proof. Suppose first that t > 0. As tk → t there is a T ∈ (0,∞) such
that (tk)k∈N ⊂ [0, T ]. Similarly, there is an N such that N ≥ ‖v0‖L2(R)

for every v0 ∈ {u0,1, u0,2, . . . , u0}; observe that such an N satisfies N ≥
‖v(t)‖L2 for all t ∈ [0, T ] and v ranging over the corresponding entropy
solutions. As the function Φ from Lemma 3.8 was increasing in its argu-
ments, we infer for all k ∈ N and r > 0 that∫

|x|>r
u2
k(tk, x)dx ≤

∫
R
u2

0,k(x)Φ(T,N, |x| − r).

Furthermore, as ξ 7→ Φ(T,M, ξ) is bounded while u2
0,k → u2

0 in L1(R) as
k →∞, it follows that

lim sup
k→∞

∫
|x|>r

u2
k(tk, x)dx ≤

∫
R
u2

0(x)Φ(T,M, |x| − r), (3.66)

for any r > 0. Since u2
0 is integrable and limξ→−∞Φ(T,M, ξ) = 0, we

may for any ε > 0 pick a sufficiently large r > 0 such that the right-hand
side of (3.66) is smaller than ε2. For such a couple of constants ε, r > 0
we find

lim sup
k→∞

‖uk(tk)− u(t)‖L2(R) ≤ 2ε+ lim sup
k→∞

‖uk(tk)− u(t)‖L2([−r,r]).

(3.67)

To deal with the rightmost term in (3.67), we yet again let m be the
function defined in (3.50) using the above N . As t > 0, there are only
a finite number of elements in (tk)k∈N smaller than t/2; without loss of
generality, we shall assume there are none. By the height bound (2.5)
from Corollary 2.6 and m being decreasing in t, it then follows that
‖v‖L∞(R) ≤ m(t/2) for every v ∈ {u1(t1), u2(t2), . . . , u(t)}. Thus,

‖uk(tk)− u(t)‖2L2([−r,r]) ≤ 2m(t/2)‖uk(tk)− u(t)‖L1([−r,r]),

and by the triangle inequality, we further have

‖uk(tk)− u(t)‖L1([−r,r]) ≤‖uk(tk)− u(tk)‖L1([−r,r])

+ ‖u(tk)− u(t)‖L1([−r,r]).

As t 7→ u(t) is continuous in L1
loc sense, we have ‖u(tk)−u(t)‖L1([−r,r]) →

0 as k →∞, while Lemma 3.7 gives us

‖uk(tk)− u(tk)‖L1([−r,r]) ≤ Ψ(T,N, r)‖u0,k − u0‖L2(R) → 0,

as k → ∞. The last term of (3.67) is thus zero, and as ε > 0 was
arbitrary, we conclude lim supk→∞ ‖uk(tk) − u(t)‖L2(R) = 0. Suppose
next t = 0. We have the two immediate properties

lim
k→∞

‖uk(tk)− u0‖L1([−r,r]) = 0, ∀r > 0,
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lim sup
k→∞

[
‖uk(tk)‖L2(R) − ‖u0‖L2(R)

]
≤ 0,

the first following by the triangle inequality, Lemma 3.7 and the fact that
t 7→ u(t) is continuous in L1

loc sense, while the second follows from using
‖uk(tk)‖L2(R) ≤ ‖u0,k‖L2(R). Moreover, for any w ∈ C∞c (R) we have

〈uk(tk)− u0, u0〉 = 〈uk(tk)− u0, w〉+ 〈uk(tk)− u0, u0 − w〉
≤ ‖u0 − uk(tk)‖L1(supp(w))‖w‖L∞(R)

+
[
‖uk(tk)‖L2(R) + ‖u0‖L2(R)

]
‖u0 − w‖L2(R),

and so, together with the above properties, we see from approximating
u0 (in L2 sense) by elements in C∞c (R) that

lim
k→∞
〈uk(tk)− u0, u0〉 = 0.

This last limit, and the above limit superior, then give us

lim
k→∞

‖uk(tk)− u0‖2L2(R)

= lim
k→∞

[
〈uk(tk), uk(tk)〉 − 〈u0, u0〉

]
− 2 lim

k→∞
〈uk(tk)− u0, u0〉 ≤ 0.

Thus, the stability result of the proposition has been demonstrated. That
this implies the continuity of t 7→ u(t) in L2 sense follows by considering
the sequence of initial data where u0,k = u0 for all k ∈ N. �

We end the section by proving Corollary 2.2.

Proof of Corollary 2.2. The solution mapping S is by Proposition 3.9
jointly continuous from [0,∞) × (L2 ∩ L∞(R))∗ to L2(R), where (L2 ∩
L∞(R))∗ denotes the set L2 ∩ L∞(R) equipped with its L2 subspace-
topology. Seeking to extend S to all of [0,∞) × L2(R) in a continuous
manner, we note that we have only one choice: whenever a sequence
(u0,k)k∈N ∈ L2 ∩ L∞(R) converges in L2(R), it follows from Lemma 3.7
that the corresponding entropy solutions (uk)k∈N form a Cauchy sequence
in the Fréchet space C([0,∞), L1

loc(R)), and thus they converge to a
unique element u ∈ C([0,∞), L1

loc(R)) in the appropriate topology. We
now argue that u inherits all the nice properties of entropy solutions of
(1.1) established so far, apart from being bounded at t = 0. Denoting
u0 ∈ L2(R) for the L2 limit of (u0,k)k∈N, we have by Fatou’s lemma

‖u(t)‖L2(R) ≤ lim inf
k→∞

‖uk(t)‖L2(R) ≤ lim inf
k→∞

‖u0,k‖L2(R) = ‖u0‖L2(R).

Moreover, as each uk satisfy the height bound (2.5) this bound also
carries over to u, and thus u is locally bounded in (0,∞)×R. Similarly,
as each uk satisfy the entropy inequalities (1.4), the same is true for
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u by a limit argument exploiting the uniform bound of (uk)k∈N on the
support of ϕ and the fact that η and q are smooth; in particular, u is
a weak solution of (1.1). Even Lemma 3.7 and Lemma 3.8 carries over
to u by approximation. In conclusion, u – and all other weak solutions
obtained this way – satisfy every property used for entropy solutions in
the proof of Proposition 3.9, and so the proposition extends to these weak
solutions. Consequently, S is continuous on the larger set [0,∞)×L2(R),
and the proof is complete. �

4. One sided Hölder regularity for entropy solutions

In this section we show that entropy solutions of (1.1) with L2 ∩ L∞
data satisfy one sided Hölder conditions with time-decreasing coefficients.
As Subsection 3.3 exploits Corollary 2.6, which is proved using the results
established here, we stress that the coming analysis will only depend on
the results of Subsection 3.1 and 3.2, thus avoiding a circular argument.
In Subsection 4.1 we introduce the necessary building blocks and provide
an informal discussion of the idea behind the analysis of Subsection 4.2
where the Hölder conditions are constructed; Theorem 2.3 is proved in
the summary following Corollary 4.8. Central in this section is the fol-
lowing object, which in classical terms can be described as a modulus of
right upper semi-continuity.

Definition 4.1. We say that a smooth and strictly increasing function
ω : (0,∞)→ (0,∞) is a modulus of growth for v : R→ R if for all h > 0

ess sup
x∈R

[
v(x+ h)− v(x)

]
≤ ω(h).

The requirement that ω be smooth and strictly increasing is for tech-
nical convenience. Note also that we did not require ω(0+) = 0; this is
to include the expression (4.10) when s = 0.

4.1. Preliminary results. The classical Olěınik estimate [8] for entropy
solutions of Burgers’ equation is for (t, x) ∈ R+ × R and h ≥ 0 given by

u(t, x+ h)− u(t, x) ≤ h

t
. (4.1)

For a fixed t > 0, this one sided Lipschitz condition (or modulus of
growth) restricts how fast x 7→ u(t, x) can grow, but not how fast it
can decrease, thus allowing for jump discontinuities (shocks) whose left
limit is above the right. Interestingly, when the initial data of Burg-
ers’ equation satisfies u0 ∈ Lp(R) for some p ∈ [1,∞), one can for the
corresponding entropy solution u use (4.1) to attain

‖u(t)‖p+1
L∞(R) ≤

p+1
t ‖u(t)‖pLp(R) ≤

p+1
t ‖u0‖pLp(R), (4.2)
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where the rightmost inequality is just the classical Lp bound for Burgers’
equation, and thus, the height of u(t) = u(t, ·) tends to zero as t → ∞.
We omit the proof of (4.2), which is similar to that of the next lemma
where we provide a general method for bounding the height of a function
u ∈ L2(R) admitting a modulus of growth ω. Our focus on L2(R) is
because the other Lp norms might fail to be non-increasing for entropy
solutions of (1.1); the generalization of (4.1) will (surprisingly) require
a generalization of (4.2), so p = 2 is the natural choice as ‖u(t)‖L2(R) ≤
‖u0‖L2(R) for entropy solutions of (1.1). In the coming lemma we also
provide for later convenience a bound on the following seminorm defined
for v ∈ L∞(R) by

|v|∞ := ess sup
x,y∈R

v(x)− v(y)

2
. (4.3)

As |v|∞ ≤ ‖v‖L∞(R), any bound on ‖v‖L∞(R) obviously carries over to
|v|∞. Note however, that the next lemma bounds |v|∞ sharper than it
does ‖v‖L∞(R). Finally, we mention that the extra assumptions posed
on ω in the lemma are only for technical simplicity, as the lemma holds
more generally.

Lemma 4.2. Let v ∈ L2(R) admit a modulus of growth ω that satisfies
ω(0+) = 0 and ω(∞) =∞. Then v ∈ L2 ∩ L∞(R) and moreover

‖v‖2L2(R) ≥F
(
‖v‖L∞(R)

)
, (4.4)

1
2‖v‖

2
L2(R) ≥F

(
|v|∞

)
, (4.5)

where F is the strictly increasing and convex function

F (y) := 2

∫ y

0

∫ y1

0
ω−1(y2)dy2dy1. (4.6)

Proof. By Lemma A.1 from the appendix we may assume v to be left-
continuous, and in particular, well defined at every point. Now, if x ∈ R
is such that v(x) ≥ 0 we have

v(x− h) ≥ v(x)− ω(h) ≥ 0,

for all h ∈ (0, ω−1(v(x))], while if x is such that v(x) < 0 we have

v(x+ h) ≤ v(x) + ω(h) ≤ 0,

for all h ∈ (0, ω−1(−v(x))]. Squaring each of these inequalities (the
bottom one would flip direction) and integrating over h ∈ (0, ω−1(|v(x)|)],
yields in both cases

‖v‖2L2(R) ≥
∫ ω−1(|v(x)|)

0
(|v(x)| − ω(h))2dh, (4.7)
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where the left-hand side has been replaced by the upper bound ‖v‖2L2(R).

Performing the change of variables h = ω−1(y) the right-hand side of
(4.7) can further be written∫ |v(x)|

0
(|v(x)| − y)2dω−1(y) = 2

∫ |v(x)|

0
(|v(x)| − y)ω−1(y)dy

= 2

∫ |v(x)|

0

∫ y

0
ω−1(z)dzdy,

where we integrated by parts twice. This last expression is exactly
F (|v(x)|), and so letting this replace the right-hand side of (4.7) followed
by taking the supremum with respect to x ∈ R yields (4.4). For (4.5), we
write v+ and v− for the positive and negative part of v respectively, and
observe that v ∈ L2 ∩ L∞(R) implies |v|∞ = 1

2(‖v+‖L∞(R) + ‖v−‖L∞(R))

and ‖v‖2L2(R) = ‖v+‖2L2(R)+‖v−‖2L2(R). Furthermore, as both v+ and −v−
admit ω as a modulus of growth, we can use (4.4) followed by Jensen’s
inequality to calculate

1
2‖v‖

2
L2(R) = 1

2

[
‖v+‖2L2(R) + ‖v−‖2L2(R)

]
≥ 1

2

[
F
(
‖v+‖L∞(R)

)
+ F

(
‖v−‖L∞(R)

)]
≥F

(
1
2

[
‖v+‖L∞(R) + ‖v−‖L∞(R)

])
=F

(
|v|∞

)
.

�

The calculations of the next subsection, where Theorem 2.3 is proved,
can be boiled down to the three lemmas of this subsection (Lemma 4.2
being the first). The remaining Lemma 4.3 and Lemma 4.4, induce
a natural evolution of a modulus of growth from the mappings SBt and
SKt , introduced in (3.24) and (3.25). The relevance of these results should
come as no surprise; the previous section showed that entropy solutions
could be approximated by repeated compositions of said mappings.

Lemma 4.3. Suppose v ∈ BV (R) admits a concave modulus of growth
ω. Then for any ε > 0, the function w = SBε (v), admits the modulus of
growth

h 7→ ω(h)

1 + εω′(h)
. (4.8)

Proof. As v ∈ BV (R) it admits for each x ∈ R an essential left limit
v(x−) and right limit v(x+), and since SBt is non-expansive on BV (R),
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the same can be said for w. Thus we assume without loss of generality
that v and w are left continuous. For x ∈ R, h > 0 and t ∈ [0, ε], in-
troduce the two (minimal) backward characteristics of SBt (v) emanating
from (ε, x) and (ε, x+ h) respectively

ξ1(t) = x+ (t− ε)w(x),

ξ2(t) = x+ h+ (t− ε)w(x+ h).

As v and w are left continuous, it follows from Theorem 11.1.3. in [8]
that

v(ξ1(0)) ≤w(x), w(x+ h) ≤ v(ξ2(0)+).

Moreover, by the Olěınik estimate of w (4.1), we find

ξ2(0)− ξ1(0) =h− ε[w(x+ h)− w(x)] ≥ 0,

and so exploiting ω we can calculate

w(x+ h)− w(x) ≤ v(ξ2(0)+)− v(ξ1(0))

≤ ω(h− ε[w(x+ h)− w(x)])

≤ ω(h)− εω′(h)(w(x+ h)− w(x)),

(4.9)

where the last inequality holds as ω is concave. We conclude that

w(x+ h)− w(x) ≤ ω(h)

1 + εω′(h)
,

for all x ∈ R and h > 0. That (4.8) is positive, smooth and strictly
increasing follows from ω being positive, smooth, strictly increasing and
concave. �

We follow immediately with a similar result for the operator SKt , which
will depend on the fractional variation |K|TV s as defined in (1.5) and the
seminorm | · |∞ defined in (4.3).

Lemma 4.4. Let s ∈ [0, 1] and assume |K|TV s < ∞. Suppose v ∈
L∞(R) admits a modulus of growth ω. Then for any ε > 0, the function
w = SKε (v) admits the modulus of growth

h 7→ ω(h) + ε|K|TV s |v|∞hs. (4.10)

Proof. For simple notation, we introduce the shift operator Th : f 7→ f(·+
h). As shifts commute with convolution, and since

∫
R ThK −Kdx = 0,

we start by noting that for any k ∈ R

(Th − 1)(K ∗ v) = [(Th − 1)K] ∗ (v − k).
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Next, we introduce v = ess supx v(x) and v = ess infx v(x), and observe
that

‖v − k‖L∞(R) = max{v − k, k − v},

and so setting k = 1
2(v + v), we get ‖v − k‖L∞(R) = 1

2(v − v) = |v|∞. By
Young’s convolution inequality and the above calculations we infer

‖(Th − 1)(K ∗ v)‖L∞(R) ≤ ‖K(·+ h)−K‖L1(R)‖v − k‖L∞(R)

≤ |K|TV s |v|∞hs.

Thus, for any h > 0 we have

(Th − 1)w = (Th − 1)v + ε(Th − 1)(K ∗ v) ≤ ω(h) + ε|K|TV s |v|∞hs,

where the last inequality holds pointwise for a.e. x ∈ R. �

We conclude this subsection with an informal discussion to motivate
the technicalities of Subsection 4.2. For initial data u0 ∈ L2 ∩L∞(R) let
u denote the corresponding entropy solution of (1.1). For a fixed t > 0,
suppose the function ω : [0, t] × (0,∞) → (0,∞) is such that for every
τ ∈ [0, t] the function ω(τ, ·) serves as a concave modulus of growth for
u(τ) = u(τ, ·). Seeking to extend the time domain of ω, we let ∆t > 0
denote an infinitesimal time step, and write u(t+ ∆t) = SK∆t ◦ SB∆t(u(t))
which is informally justified by the previous section. Lemma 4.3 and 4.4
now suggests how to extend ω to ω(t + ∆t, h), and combining the two
lemmas we conclude for some fixed s ∈ [0, 1] that

ω(t+ ∆t, h) =
ω(t, h)

1 + ∆tωh(t, h)
+ ∆t|K|TV s |u(t)|∞hs, (4.11)

serves as a modulus of growth for u(t + ∆t). Using (4.11) to extend ω
has the disadvantage of requiring one to calculate |u(t)|∞. To overcome
this difficulty, we replace |u(t)|∞ with the upper bound m[ω], dependent
only on ω(t, ·) and ‖u0‖L2(R), defined by

1
2‖u0‖2L2(R) =

∫ m[ω]

0

∫ y

0
ω−1(t, z)dzdy, (4.12)

where ω−1(t, ·) is the inverse of ω(t, ·). By (4.5) and ‖u(t)‖L2(R) ≤
‖u0‖L2(R) we indeed get |u(t)|∞ ≤ m[ω]. Additionally, by Taylor ex-
pansion we have

ω

1 + ∆tωh
=ω −∆tωhω +O((∆t)2)

=ω − ∆t

2
(ω2)h +O((∆t)2),



PAPER 3: ENTROPY SOLUTIONS OF DISPERSIVE EQUATIONS 37

and so subtracting ω(t, h) on each side of (4.11), dividing by ∆t and
replacing |u(t)|∞ with m[ω], we get

∆ω

∆t
= −1

2(ω2)h + κsm[ω]hs +O(∆t), (4.13)

where ∆ω := ω(t + ∆t, h) − ω(t, h) and κs := |K|TV s . In summary,
equation (4.13) describes for an infinitesimal time step ∆t a sufficiently
large change ∆ω such that ω + ∆ω serves as a modulus of growth for
u(t + ∆t) whenever the same can be said for ω and u(t). As t was
general, one can expect from this discussion that if ω satisfies the partial
differential equation {

ωt + 1
2(ω2)h = κsm[ω]hs,

ω(0, h) = ω0(h),
(4.14)

where ω0 is a modulus of growth for u0, then h 7→ ω(t, h) serves as a
modulus of growth for u(t) for all t > 0. Unfortunately, working directly
with (4.14) is cumbersome due to the term m[ω], which can be viewed as
a nonlinear and nonlocal operator in space applied to ω. Nevertheless,
we can make the following observation: assume that a solution ω of
(4.14) admits a limit limt→∞ ω(t, h) = ω(h), which in turn yields a limit
m[ω]→ m[ω] =: m. Then (4.14) reduces to

1
2(ω2)h = κsmh

s, =⇒ ω(h) =

√
2κsm

1 + s
h

1+s
2 ,

where we assume ω(0) = 0. If one wanted, this expression for ω could be
used in (4.12) to calculate m, thus also calculating the coefficient of ω
explicitly; the resulting expression would coincide with the limit of (2.3).

As the ‘limit modulus of growth’ is of the form h 7→ ah
1+s
2 , one may

hope that a solution of (4.14) is of the similar form ω(t, h) = a(t)h
1+s
2 .

In Lemma 4.5 we show that m[ω] = c0a(t)
1

2+s , for an appropriate c0 > 0,

whenever ω(t, h) = a(t)h
1+s
2 , and so seeking a solution of (4.14) of this

special form, we insert for ω and m[ω] in (4.14) and get

ȧh
1+s
2 + (1+s)

2 a2hs = κsc0a
1

2+shs.

Setting c1 := κsc0 and c2 := 1+s
2 , we further divide each side by h

1+s
2 and

rearrange to get

ȧ =
[
c1a

1
2+s − c2a

2
]
h
s−1
2 . (4.15)

Apart from the special case s = 1, the h-dependence on the right-hand
side of (4.15) means that the only non-trivial solution a(t) of this form is
the constant one where the square bracket is zero. As we do not wish to
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impose regularity constraints on the initial data, this constant solution
is not of value to us. Instead we make a second observation: for a � 1
the right-hand side of (4.15) is negative and thus increasing in h. This
roughly suggests that if we relax our search to instead find a function

h 7→ a(t)h
1+s
2 serving as a modulus of growth for u(t) when h < H, for

some finite H, then H can replace h in (4.15) and we can solve thereafter.
Conveniently, Lemma 4.5 demonstrates that there is an H > 0 such that

if h 7→ a(t)h
1+s
2 serves as a modulus of growth for u(t) when h ∈ (0, H)

then the same holds for all h > 0. This H depends on a(t) and is given

by H(a) = c3a
− 2

2+s for an appropriate c3 > 0. Replacing h with H(a) in
(4.15) gives

ȧ =
[
c1a

1
2+s − c2a

2
]
c
s−1
2

3 a
1−s
2+s , (4.16)

which indeed is the equation (4.37) that the Hölder coefficients con-
structed in the next subsection solve. In conclusion, this informal ar-

gument suggests that if u0 admits the modulus of growth h 7→ a(0)h
1+s
2 ,

then the same can be said for u(t) and h 7→ a(t)h
1+s
2 where a(t) solves

(4.16) for t > 0. We stress that this discussion is only meant to coarsely
summarize the idea behind the steps in the following subsection.

4.2. Deriving a modulus of growth for entropy solutions. In this
subsection we consider s ∈ [0, 1] fixed and assume that |K|TV s is finite.
Further, we let µ, κs ∈ (0,∞) denote arbitrary fixed values, though we
impose the requirement κs ≥ |K|TV s on the latter. The role of µ and κs
will essentially be that of placeholders for the L2 norm of the initial data
and of |K|TV s respectively, but note that µ and κs are strictly positive
(even if the quantities they represent might be zero). This positivity is for
technical convenience as some of the coming expressions would otherwise
need a limit sense interpretation. Motivated by the previous discussion,
we shall for an arbitrary entropy solution u of (1.1) with L2 ∩ L∞ data,

seek an expression a(t) such that h 7→ a(t)h
1+s
2 serves as a modulus of

growth (Def. 4.1) for x 7→ u(t, x). We begin with an important result,
which among other things rephrases Lemma 4.2 for the more explicit

case ω(h) = ah
1+s
2 . For this purpose, we introduce the constant

cs =

[
(2 + s)(3 + s)

2(1 + s)2

] 1+s
4+2s

, (4.17)
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and the function

H(a) =
(2cs)

2
1+sµ

2
2+s

a
2

2+s

, (4.18)

defined for all a > 0. We recall for the following lemma definition (4.3)
of the seminorm | · |∞.

Lemma 4.5. With fixed a > 0, let ω(h) = ah
1+s
2 for h ∈ (0,∞). Suppose

v ∈ L2(R) satisfies ‖v‖L2(R) ≤ µ and admits ω as a modulus of growth
for the restricted values h ∈ (0, H(a)). Then v admits ω as a modulus of
growth for all h ∈ (0,∞) and moreover

‖v‖L∞(R) ≤ 2
1+s
4+2s csµ

1+s
2+sa

1
2+s , (4.19)

|v|∞ ≤ csµ
1+s
2+sa

1
2+s . (4.20)

Proof. We begin by proving the two inequalities, so let us assume for
now that v admits ω as a modulus of growth for all h ∈ (0,∞). Since

ω−1(y) = a−
2

1+s y
2

1+s the function F from (4.6) can here be written

F (y) =

[
2(1 + s)2

(3 + s)(4 + 2s)

]
y

4+2s
1+s

a
2

1+s

=
1

2

(
y

csa
1

2+s

) 4+2s
1+s

,

with inverse

F−1(y) = 2
1+s
4+2s csa

1
2+s y

1+s
4+2s .

Combined with ‖v‖L2(R) ≤ µ, (4.4) and (4.5) give ‖v‖L∞(R) ≤ F−1(µ2)

and |v|∞ ≤ F−1(1
2µ

2), which coincides with (4.19) and (4.20) respec-
tively. Next, assume we only know that v admits ω as a modulus of
growth for h ∈ (0, H(a)). The steps in the proof of Lemma 4.2 can still

be carried out if one lets the role of ω−1(y) = a−
2

1+s y
2

1+s be taken by the
truncated version

y 7→ min
{
a−

2
1+s y

2
1+s , H(a)

}
,

to yield the inequalities ‖v‖L∞(R) ≤ F̃−1(µ2) and |v|∞ ≤ F̃−1(1
2µ

2) with

F̃ (y) := 2

∫ y

0

∫ y1

0
min

{
a−

2
1+s y

2
1+s

2 , H(a)
}

dy2dy1.

As F̃ is strictly increasing and agrees with F on (0, aH(a)
1+s
2 ), we nec-

essarily have both F̃−1(µ2) = F−1(µ2) and F̃−1(1
2µ

2) = F−1(1
2µ

2) pro-

vided F−1(µ2) < aH(a)
1+s
2 . As F−1(µ2) is exactly the right-hand side
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of (4.19), we see that the latter inequality holds since

F−1(µ2) = 2
1+s
4+2s csµ

1+s
2+sa

1
2+s < 2csµ

1+s
2+sa

1
2+s = aH(a)

1+s
2 .

Thus, the bounds for ‖v‖L∞(R) and |v|∞ attained now coincides again
with (4.19) and (4.20). It then follows that v admits ω as a modulus of
growth for all h ∈ (0,∞). Indeed, for any h ∈ [H(a),∞) we have the
two trivial inequalities

ess sup
x∈R

[
v(x+ h)− v(x)

]
≤ 2|v|∞, aH(a)

1+s
2 ≤ ah

1+s
2 ,

and so we would be done if 2|v|∞ ≤ aH(a)
1+s
2 , which is precisely the

already established inequality (4.20) multiplied by two. �

The most essential part of the previous lemma, is in allowing us to
extend the domain for which a homogeneous modulus of growth is valid.
Its utility will become apparent in the proof of the next proposition which
in short combines Lemma 4.3 and 4.4 to attain a corresponding result
for the operator SBε ◦SKε . While it in Section 3 was natural to work with
iterations of SKε ◦ SBε , it will here be easier to work with its counterpart
SBε ◦ SKε . We now introduce the useful limit value a defined by

a =

(
2csκs
1 + s

) 2+s
3+2s

µ
1+s
3+2s . (4.21)

This quantity will naturally occur in our calculations to come and relate
to the expression a(t) we seek by limt→∞ a(t) = a. In particular, it
coincides with the first term on the right-hand side of (2.3) from Remark
2.4, though it is here expressed in different notation.

Proposition 4.6. For every A ∈ (a,∞), there are constants CA, εA > 0
such that: if v ∈ BV (R) satisfies ‖v‖L2(R) ≤ µ and admits the modulus

of growth h 7→ ah
1+s
2 for some a ∈ [a,A], then for every ε ∈ (0, εA] the

function w = SBε ◦ SKε (v) admits the modulus of growth

h 7→
(
a− εf(a) + ε2CA

)
h

1+s
2 , (4.22)

where f(a) ≥ 0 is given by

f(a) =

[
(1 + s)a

2−s
2+s

2
2

1+s c
1−s
1+s
s µ

1−s
2+s

][
a

3+2s
2+s − a

3+2s
2+s

]
. (4.23)

Proof. For fixed A > a, let v ∈ BV (R) and a ∈ [a,A] be as described
in the lemma. We fix the pair v and a for convenience, but it should
be clear from the proof that the construction of CA and εA do not in
fact depend on said pair. Introduce for ε > 0 the auxiliary function
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ṽ = SKε (v). Combining Lemma 4.4 and (4.20), ṽ admits the concave
modulus of growth

ω̃(h) = ah
1+s
2 + εcsκsa

1
2+sµ

1+s
2+shs,

where |K|TV s was replaced by the larger κs introduced at the beginning of
this subsection. And since ṽ ∈ BV (R), as follows from (3.27) and (3.28),
we can further apply Lemma 4.3 to w = SBε (ṽ), which combined with

ω̃′(h) > (1+s
2 )ah

s−1
2 , allows us to conclude that w admits the modulus of

growth

ω(h) =
ah

1+s
2 + εcsκsa

1
2+sµ

1+s
2+shs

1 + ε(1+s
2 )ah

s−1
2

= ah
1+s
2 +

−ε(1+s
2 )a2hs + εcsκsa

1
2+sµ

1+s
2+shs

1 + ε(1+s
2 )ah

s−1
2

= ah
1+s
2 − ε

[
(1 + s)a2 − 2csκsa

1
2+sµ

1+s
2+s

2h
1−s
2 + ε(1 + s)a

]
︸ ︷︷ ︸

B(a,h,ε)

h
1+s
2 ,

(4.24)

where B(a, h, ε) denotes the square bracket. With a as given by (4.21),
this square bracket can further be factored

B(a, h, ε) =

[
(1 + s)a

1
2+s

2h
1−s
2 + ε(1 + s)a

][
a

3+2s
2+s − a

3+2s
2+s

]
. (4.25)

Since a ≥ a it follows that B(a, h, ε) is non-negative and thus non-
increasing in h > 0. Consequently, we read from (4.24) the inequality

ω(h) ≤
(
a− εB(a, h, ε)

)
h

1+s
2 , 0 < h <h. (4.26)

Since (4.26) can be viewed as implying that w admits a homogeneous
modulus of growth on bounded intervals, we would like to make use
of Lemma 4.5; however, we do not necessarily have ‖w‖L2(R) ≤ µ (as
is assumed by said lemma). We deal with this small inconvenience as
follows: define w̃ by

w̃ := ρ−1w, ρ := max
{

1, µ−1‖w‖L2(R)

}
, (4.27)

that is, w̃ is the renormalized version of w if the L2 norm of w exceeds µ.
We proceed by proving the proposition for w̃ and then extend the result
to w. Observe that ω must serve as a modulus of growth also for w̃ since
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ρ ≥ 1, and consequently by (4.26), w̃ further admits for any fixed h > 0
the modulus of growth

h 7→
(
a− εB(a, h, ε)

)
h

1+s
2 , (4.28)

for the restricted values h ∈ (0, h). Lemma 4.5 then tells us that w̃ must
additionally admit (4.28) as a modulus of growth for all h > 0 provided

H
(
a− εB(a, h, ε)

)
≤ h, (4.29)

where the function H is as defined by (4.18). As H is a decreasing
function while B is non-negative, all h satisfying (4.29) necessarily also
satisfy h ≥ H(a); we now show that we for small ε can pick such a h
close to H(a). To do so, we start by introducing the closed set of points
(a, h, ε) defined by

SA = [a,A]× [H(A),∞)× [0,∞),

where we abuse notation slightly by reusing a as a dummy variable for
referring to elements in [a,A] (although the original a ∈ [a,A] is fixed).
From (4.25) we see that both (a, h, ε) 7→ B(a, h, ε) and its partial deriva-
tives are bounded on the set SA. We exploit the additional smoothness
of B later; for now we need only ‖B‖L∞(SA) <∞. Pick εA > 0 such that

εA‖B‖L∞(SA) ≤ 1
2a,

and observe that the argument of H in (4.29) must then lie in [1
2a,A] for

all (a, h, ε) ∈ [a,A]× [H(a),∞)× [0, εA] ⊂ SA. Moreover, as H is smooth
on [1

2a,A] we conclude for any such triplet (a, h, ε) that

H
(
a− εB(a, h, ε)

)
≤H(a) + ε‖H ′‖L∞([ 1

2
a,A])‖B‖L∞(SA)

=:H(a) + εDA.

Thus, this calculation guarantees that the choice h = H(a)+εDA satisfies
(4.29) for every a ∈ [a,A] and ε ∈ (0, εA], and so substituting for h in
(4.28), we conclude that w̃ admits the modulus of growth

h 7→
(
a− εB(a,H(a) + εDA, ε)

)
h

1+s
2 , (4.30)

for all h > 0, provided ε ∈ (0, εA] (we already assume a ∈ [a,A]). Recall-
ing that the partial derivatives of B are bounded on SA, we can write

B(a,H(a) + εDA, ε) ≥B(a,H(a), 0)

− ε
[
DA‖∂B∂h ‖L∞(SA) + ‖∂B∂ε ‖L∞(SA)

]
,

(4.31)
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and so letting CA denote a constant no smaller than the square bracket
in (4.31), we combine this inequality with (4.30) to further conclude that

h 7→
(
a− εB(a,H(a), 0) + ε2CA

)
h

1+s
2 , (4.32)

also serves as a modulus of growth for w̃, provided ε ∈ (0, εA]. Us-
ing the explicit expressions (4.25) and (4.18) one attains the identity
B(a,H(a), 0) = f(a), where f is as defined in (4.23), and so the propo-
sition has been proved for the renormalized function w̃. It remains to
extend the result to w; assume from here on out that ε ∈ (0, εA]. Intro-
ducing ã = (a − εf(a) + ε2CA) for brevity, it is clear from the relation

w = ρw̃, where ρ is as defined in (4.27), that w admits h 7→ ρãh
1+s
2 as

a modulus of growth, as the same can be said for w̃ and h 7→ ãh
1+s
2 .

Moreover, by a similar and coarser calculation as in the proof of Lemma
3.3, we have ‖w‖L2(R) ≤ (1 + ε2κ2)‖u‖L2(R) where κ = ‖K‖L1(R), and so

ρ ≤ 1 + ε2κ2. Thus

ρã ≤ (1 + ε2κ2)ã = a− εf(a) + ε2[CA + κ2ã] ≤ a− εf(a) + ε2C̃A,

where C̃A := [CA + κ2(A + ε2
ACA)], and so this calculation shows that

the proposition also holds for w after choosing a larger constant CA. �

Together with a few results from Section 3, the previous proposition
equips us with all we need to construct moduli of growth for entropy solu-
tions of (1.1). Roughly speaking, we can for small ε > 0 iterate Proposi-
tion 4.6 repeatedly to construct a modulus of growth for an approximate
entropy solution (3.32), and further letting ε→ 0 this construction car-
ries over to the entropy solution itself. To formalize, we shall introduce
some notation and assume from here on that a pair of constants εA, CA,
as described by Proposition 4.6, has been chosen for each A > a. Define
the function

gεA(a) := a− εf(a) + ε2CA, (4.33)

which is parameterized over A > a and ε ∈ (0, εA] and where

f(a) = γa
2−s
2+s

(
a

3+2s
2+s − a

3+2s
2+s

)
, γ =

1 + s

2
2

1+s c
1−s
1+s
s µ

1−s
2+s

. (4.34)

The function f in (4.34) is indeed the same as in (4.23), and so gεA(a) is
the new Hölder coefficient provided by Proposition 4.6. In the coming
proposition, we carry out the above sketched argument consisting in
part of repeated iterations of Proposition 4.6, and consequently, we will
encounter repeated compositions of gεA. We point out two relevant facts
about gεA. First off, for any A > a and sufficiently small ε > 0, the
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function gεA maps [a,A] to itself. To see this, note from (4.33) that (gεA)′

is strictly positive on [a,A] for small ε > 0. Moreover, we have

gεA(a) = a, gεA(A) =A− εf(A) + ε2CA,

and since f(A) > 0, it is clear that ε > 0 can be made sufficiently small
such that

a = gεA(a) ≤ gεA(a) ≤ gεA(A) ≤ A, (4.35)

for all a ∈ [a,A]. Our second fact, rigorously justified in the coming
proposition, is that repeated compositions of gεA applied to the starting
value a = A will, as ε → 0, result in a smooth function aA : [0,∞) →
(a,A], implicitly defined by

t =

∫ A

aA(t)

da

f(a)
. (4.36)

That (4.36) yields a unique value aA(t) ∈ (a,A] for each t ∈ [0,∞)
follows as the positive integrand has a non-integrable singularity at a =
a. Alternatively, the function aA can be viewed as the solution of the
differential equation {

a′(t) = −f(a(t)), t > 0,

a(0) = A,
(4.37)

which coincides with the equation (4.16) from the discussion of the pre-
vious subsection. For the next proposition, we shall exploit the two
constants

MA = max
a∈[a,A]

|f ′(a)|, M̃A = max
a∈[a,A]

|f(a)f ′(a)|, (4.38)

both well defined as f is smooth on R+. Note that the latter serves as a
bound on (aA)′′ = f(aA)f ′(aA), and so by Taylor expansion, we infer

|aA(t+ ε)− aA(t) + εf(aA(t))| ≤ ε
2

2
M̃A, (4.39)

for all t ≥ 0 and ε ≥ 0.

Proposition 4.7. Let u be an entropy solution of (1.1), whose initial
data u0 ∈ BV (R) satisfies ‖u0‖L2(R) ≤ µ and admits a modulus of growth

h 7→ Ah
1+s
2 for some A > a. Then for all t > 0, the function x 7→ u(t, x)

admits the modulus of growth

h 7→ aA(t)h
1+s
2 ,

with aA given by (4.36).
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Proof. Consider t > 0 fixed, and assume without loss of generality that
‖u0‖L2(R) < µ; if the proposition holds in this case, it necessarily also
holds in the case ‖u0‖L2(R) ≤ µ as the implicit µ-dependence of aA(t) is

a continuous one. Pick a large n ∈ N, set ε = t
n and consider the family

of functions ukn ∈ BV (R) defined inductively by{
u0
n = SBε (u0),

ukn = SBε ◦ SKε (uk−1
n ), k = 1, 2, . . . , n,

As u0 admits h 7→ Ah
1+s
2 as a modulus of growth, so does u0

n by Lemma
4.3. Observe also that each ukn ∈ BV (R) as follows by induction and
the properties of SBε and SKε listed at the very beginning in the proof
of Proposition 3.2. Moreover, by similar reasoning as in the proof of
Lemma 3.3, we have

‖ukn‖L2(R) ≤ e
k
2
ε2κ2‖u0‖L2(R) ≤ e

t
2n
κ2‖u0‖L2(R), k = 0, 1, . . . , n,

where κ = ‖K‖L1(R). Since we have a strict inequality ‖u0‖L2(R) < µ,

we can assume n large enough such that ‖ukn‖L2(R) ≤ µ for every k. We

define further the coefficients akn inductively by{
a0
n = A,

akn = gεA(ak−1
n ), k = 1, 2, . . . , n,

where gεA is given by (4.33). We assume n large enough such that ε = t
n

is both less than εA > 0 and small enough such that gεA maps [a,A]
to itself (see the discussion leading up to (4.35)). In particular, each
akn is in [a,A]. We may now apply Proposition 4.6 inductively to each

pair (ukn, a
k
n), starting with (u0

n, a
0
n). As u0

n admits h 7→ a0
nh

1+s
2 as a

modulus of growth, Proposition 4.6 infers the same relationship for the
pair (u1

n, a
1
n), and by repeating the argument, the same can be said for all

pairs (ukn, a
k
n). Most importantly, unn admits h 7→ annh

1+s
2 as a modulus of

growth. The proposition will now follow if we can, as n →∞, establish
the limits

ann → aA(t), (4.40)

unn →u(t), (4.41)

where u(t) = u(t, ·) and the latter limit is taken in L1
loc(R). Indeed, in

this scenario we can let ϕ denote any non-negative smooth function of
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compact support that satisfies
∫
R ϕdx = 1 so to calculate for h > 0

ess sup
x∈R

[
u(t, x+ h)− u(t, x)

]
= sup

ϕ
〈u(t, ·+ h)− u(t, ·), ϕ〉

= sup
ϕ

lim
n→∞

〈unn(·+ h)− unn, ϕ〉

≤ sup
ϕ

lim
n→∞

annh
1+s
2

= aA(t)h
1+s
2 .

(4.42)

We first prove (4.40). Using the explicit form (4.33) of gεA with ε = t
n ,

the constants (4.38) and the inequality (4.39) we can calculate for k ≥ 1,∣∣∣akn − aA(ktn )∣∣∣
=
∣∣∣gεA(ak−1

n

)
− aA

(
(k−1)t
n + t

n

)∣∣∣
≤
∣∣∣ak−1
n − aA

(
(k−1)t
n

)∣∣∣+ ( tn)
∣∣∣f(ak−1

n

)
− f

(
aA

(
(k−1)t
n

))∣∣∣
+ ( tn)2

(
CA + 1

2M̃A

)
≤
[
1 + ( tn)MA

]∣∣∣ak−1
n − aA

(
(k−1)t
n

)∣∣∣+ ( tn)2DA,

(4.43)

with DA := CA + 1
2M̃A. By repeated use of (4.43), and the fact that

a0
n = aA(0) = A, we conclude

|ann − aA(t)| ≤ ( tn)2DA

n−1∑
k=0

[
1 + ( tn)MA

]k
≤ 1

n

[
t2DAe

tMA

]
,

and thus (4.40) is established. To prove (4.41), we recall definition (3.26)
of the approximate solution map Sε,t and observe the relation

unn = SBε ◦ Sε,t(u0) =: SBε (uε(t)), (4.44)

where the definition of uε coincides with (3.32), although we now work
with a particular u0 and ε = t

n . As Proposition 3.5 ensures that uε(t)→
u(t) in L1

loc(R) as ε → 0, the same limit then carries over to unn (as

n→∞) by (4.44) and the time continuity of the map SBε (3.29) together
with the TV bound of uε provided by Proposition 3.2. With the two
limits (4.40) and (4.41) established, the proof is complete. �

For a fixed t > 0, it is not hard to see from (4.36) that A 7→ aA(t)
is strictly increasing. In particular, each aA(t) is bounded above by the
pointwise limit b(t) := limA→∞ aA(t). This function b : (0,∞) → (a,∞)
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is implicitly given by

t =
1

γa
3

2+s

∫ ∞
b(t)
a

dξ

ξ
2−s
2+s

(
ξ

3+2s
2+s − 1

) , (4.45)

which can be read from (4.36) by letting A → ∞ and performing the
change of variables a = aξ. That b(t) ∈ (a,∞) is well defined for t > 0
follows as the integrand in (4.45) is positive with an integrable tail at
ξ = ∞ and a non-integrable singularity at ξ = 1. The utility of b is
that it allows us to generalize the previous proposition to initial data
u0 ∈ L2 ∩ L∞(R).

Corollary 4.8. Let u be an entropy solution of (1.1), whose initial data
u0 ∈ L2∩L∞(R) satisfies ‖u0‖L2(R) ≤ µ. Then for all t > 0, the function
x 7→ u(t, x) admits the modulus of growth

h 7→ b(t)h
1+s
2 ,

where b(t) is defined by (4.45).

Proof. Consider t > 0 fixed. Let (un)n∈N be a sequence of entropy solu-
tions of (1.1) whose corresponding initial data (un0 )n∈N ⊂ C∞c (R) satisfies

‖un0‖L2(R) ≤‖u0‖L2(R), ‖un0‖L∞(R) ≤‖u0‖L∞(R),

and yields, in L1
loc sense, the limit

un0 → u0, n→ 0.

For a fixed n ∈ N, we can apply Proposition 4.7 to conclude for a suffi-
ciently large A > 0 that un(t) = un(t, ·) admits the modulus of growth

h 7→ aA(t)h
1+s
2 , which in turn can be replaced by the upper bound

h 7→ b(t)h
1+s
2 . This modulus of growth carries over to u(t) by a cal-

culation similar to (4.42), if we can show that un(t) → u(t) in L1
loc(R).

By the weighted L1-contraction of Proposition 3.1 and the uniform L∞

bound of (un0 )n∈N, this latter limit follows from the corresponding limit
of the initial data. �

We pause here to note that Theorem 2.3 follows.

Proof of Theorem 2.3. We start by proving the theorem for u0 ∈ L2 ∩
L∞(R) in which case the corresponding weak solution u provided by
Corollary 2.2 is the entropy solution provided by Theorem 2.1. For any
two positive constants µ ≥ ‖u0‖L2(R) and κs ≥ |K|TV s where s is such
that |K|TV s < ∞, all calculations of this subsection go through. In
particular, Corollary 4.8 then implies for all t > 0 that x 7→ u(t, x) admits

h 7→ b(t)h
1+s
2 as a modulus of growth. By Lemma A.1, x 7→ u(t, x) then
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coincides a.e. with both a left-continuous function and a right-continuous
function whenever t > 0; associating u(t, ·) with either, the inequality

u(t, x+ h)− u(t, x) ≤ b(t)h
1+s
2 holds for all t, h > 0 and x ∈ R. Finally,

the fact that t 7→ b(t) is decreasing can be read directly from (4.45),
and so Theorem 2.3 has been proved for the case u0 ∈ L2 ∩ L∞(R).
The height bound from Corollary 2.6 may now be proved for entropy
solutions of (1.1) with L2 ∩ L∞ data, and so the calculations of Section
3.3 can be carried out resulting in the jointly continuous solution map
S : [0,∞)×L2(R)→ L2(R). Exploiting the continuity of S, Theorem 2.3
holds for every u0 ∈ L2(R) by a density argument. �

Next, we shall establish the content of Remark 2.4. The implicit de-
scription (4.45) of b(t) makes its dependence on t somewhat convoluted;
whether or not there exists a simple and explicit representation of b(t),
for general s ∈ [0, 1], will not be pursued here. Instead, we provide an
explicit bound b(t) ≤ a(t), which in the case s = 0 turns out to be an
equality. The trick is to exploit the identity

− d

dξ

[
c1 log

(
1 +

c2

ξc3 − 1

)]
=

c1c2c3ξ
c3−1

(ξc3 − 1)2 + c2(ξc3 − 1)
, (4.46)

and that the right-hand side can approximate the integrand in (4.45)
from above, for the particular choice of parameters

c1 =
2 + s

3 + 2s
, c2 =

3 + 2s

3
, c3 =

3

2 + s
. (4.47)

It is worth mentioning that these parameters are chosen such that (4.46)
preserves the tail and singularity of the integrand in (4.45). This is to
make a(t) and b(t) behave qualitatively the same; see Subsection 4.3 for
a more precise discussion.

Lemma 4.9. We have for all t > 0 the pointwise bound b(t) ≤ a(t),
where b(t) is as in (4.45), while a(t) is the quantity defined by

a(t) = a

[
1 +

1 + 2
3s

eτt − 1

] 2+s
3

, (4.48)

where the limit value a and the exponent τ are given by

a =C1(s)κ
2+s
3+2s
s µ

1+s
3+2s , τ =C0(s)κ

3
3+2s
s µ

2s
3+2s , (4.49)

and where C1(s) is as it appears in (2.4) while C0(s) is given by (A.1) in
the appendix. Moreover, for all t > 0, if s = 0 then the two expressions
coincide b(t) = a(t), while if s ∈ (0, 1] we have a strict inequality b(t) <
a(t).



PAPER 3: ENTROPY SOLUTIONS OF DISPERSIVE EQUATIONS 49

Proof. Note first that the above a is the same as the one used through-
out this section; Lemma A.2 shows the equivalence between how it is
originally defined (4.21) and (4.49). Next, the integral in (4.45) can be
bounded by first observing that the integrand satisfies for all ξ > 1 the
pointwise inequality

1

ξ
2−s
2+s

(
ξ

3+2s
2+s − 1

) ≤ ξ
1−s
2+s(

ξ
3

2+s − 1
)2

+ (1 + 2
3s)
(
ξ

3
2+s − 1

) . (4.50)

To see this, one can multiply each side of (4.50) with the two denom-
inators followed by some cleaning up to find that (4.50) is for ξ > 1
equivalent to

ξ
3−2s
2+s ≤ 2s

3 + (3−2s
3 )ξ

3
2+s . (4.51)

Setting x = 1, y = ξ
3−2s
2+s , p = 3

2s and q = 3
3−2s , Young’s inequality

xy ≤ 1
px

p + 1
qy

q guarantees the validity of (4.51). Moreover, we observe

for all ξ > 1 that (4.51) is an equality if s = 0 and a strict inequality
otherwise; this, together with the calculations to come, justifies the last
assertion of the lemma. Combining (4.45) with (4.50) we find

γa
3

2+s t ≤
∫ ∞
b(t)
a

ξ
1−s
2+s(

ξ
3

2+s − 1
)2

+ (1 + 2
3s)
(
ξ

3
2+s − 1

)dξ

=

(
2 + s

3 + 2s

)
log

(
1 +

1 + 2
3s

(b(t)/a)
3

2+s − 1

)
,

where the integral was solved by the formula (4.46) with the specific
parameters (4.47). Rearranging this inequality, we get (4.48), but with

τ = 3+2s
2+s γa

3
2+s . Lemma A.2 shows that this expression for τ is equivalent

with (4.49). �

The expression (4.48) is the sharpest explicit Hölder coefficient – ap-
propriate for use in Theorem 2.3 – that we give here, and it is a close
approximation of b(t) as pointed out in Subsection 4.3. The much sim-
pler expression (2.3) follows directly from (4.48) if one use the following
inequalities(

1 +
c1

ec2 − 1

) 2+s
3
<
(

1 +
c1

c2

) 2+s
3 ≤ 1 +

(c2

c3

) 2+s
3
, (4.52)

valid for all c1, c2 > 0.
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Corollary 4.10. With u and s ∈ [0, 1] as in Theorem 2.3, one may set
the Hölder coefficient in (2.2) to

C1(s)|K|
2+s
3+2s

TV s ‖u0‖
1+s
3+2s

L2(R)
+ C2(s)

‖u0‖
1−s
3

L2(R)

t
2+s
3

, (4.53)

where C1(s) and C2(s) are as the appear in (2.4).

Proof. As explained in the above given proof of Theorem 2.3, one can
for any two positive constants µ ≥ ‖u0‖L2(R) and κs ≥ |K|TV s use b(t),
defined in (4.45), as a valid Hölder coefficient in (2.2). By Lemma 4.9
one may then also use the larger coefficient a(t), here defined by (4.48).
Further exploiting (4.52) we find

a(t) < a+ a

(
1 + 2

3s

τt

) 2+s
3

= C1(s)κ
2+s
3+2s
s µ

1+s
3+2s + C2(s)

µ
1−s
3

t
2+s
3

, (4.54)

where the first term on the right hand side is the expression for a as given
by (4.49) while the second term follows from the identity (A.5) of Lemma
A.2. In conclusion, the right hand side of (4.54) serves as a valid Hölder
coefficient for u in (2.2). That we may generally set µ = ‖u0‖L2(R) and
κs = |K|TV s , even when either of the two are zero, now follows from a
continuity argument. �

4.3. The error of the approximation. We conclude the section with
a short discussion regarding the approximation a(t) of b(t) from Lemma
4.9. One can think of a(t) as a delayed version of b(t); defining the delay
ε(t) through the relation a(t+ ε(t)) = b(t) it follows that ε(t) satisfies

ε(t) =
1

γa
3

2+s

∫ ∞
b(t)
a

2s
3 + (3−2s

3 )ξ
3

2+s − ξ
3−2s
2+s

ξ
2−s
2+s

(
ξ

3+2s
2+s − 1

)(
ξ

3
2+s − 1

)(
ξ

3
2+s + 2

3

)dξ. (4.55)

This identity is attained by subtracting the implicit representation of b(t)
from that of a(t + ε(t)), that is, the integrand is exactly the difference
between the right- and left-hand side of (3.37). From (4.55) we observe
that ε(t) is strictly increasing and bounded above by

ε := lim
t→∞

ε(t) =
1

γa
3

2+s

∫ ∞
1

2s
3 + (3−2s

3 )ξ
3

2+s − ξ
3−2s
2+s

ξ
2−s
2+s

(
ξ

3+2s
2+s − 1

)(
ξ

3
2+s − 1

)(
ξ

3
2+s + 2

3

)dξ,

where the integral is finite as the integrand is bounded (the numerator
has a second order zero at ξ = 1) and decays sufficiently fast. Moreover,

as b(t) ' t−
2+s
3 for small t while the integrand satisfies ' ξ−

8+s
2+s for large
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ξ, we infer from (4.55) that ε(t) . t2, and so combining this with the
boundness of ε(t) we get

ε(t) . min{t2, 1}.

In conclusion a(t) and b(t) behaves very similar for small t, and approach
the same limit – at the same exponential rate – as t→∞ with b(t) being
at most a time-step ε ahead of a(t), that is, b(t) ∈ [a(t+ ε), a(t)].

Appendix A. Auxiliary results

In the coming lemma we work with the concept of a modulus of growth
as defined by Def. 4.1.

Lemma A.1. Let f ∈ L1
loc(R) admit a modulus of growth ω that satisfies

ω(0+) = 0. Then f admits essential left and right limits at each point
x ∈ R. In particular, there are functions f− and f+, respectively left-
and right-continuous, that coincides a.e. with f .

Proof. For any x ∈ R the existence of an essential left limit f(x−) of f
at x, follows from the calculation

ess lim sup
y<0
y→0

f(x+ y)− ess lim inf
y<0
y→0

f(x+ y)

= ess lim sup
y2<y1<0
y2,y1→0

[
f(x+ y1)− f(x+ y2)

]
≤ lim sup
y2<y1<0
y2,y1→0

ω(y1 − y2) = 0.

By the Lebesgue differentiation theorem, the function f−(x) := f(x−)
can only differ from f on a null set, and moreover, must be left continuous
as the above calculation could be repeated for f− with essential limits
replaced by limits. A similar argument yields the existence of an essential
right limit f(x+) of f at each x ∈ R and further that f+(x) := f(x+) is
a right-continuous function agreeing a.e. with f . �

The next lemma deals with quantities appearing throughout the pa-
per and the relations between them. For convenience, we here list the
definition of each relevant quantity; some of them given for the first time.
The quantities cs and γ were in (4.17) and (4.34) defined to be

cs =

[
(2 + s)(3 + s)

2(1 + s)2

] 1+s
2(2+s)

, γ =
1 + s

2
2

1+s c
1−s
1+s
s µ

1−s
2+s

.
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The coefficient C0(s) from Lemma 4.9 is defined here by

C0(s) :=
2

3−s
3+2s (3 + s)

s
3+2s (3 + 2s)

2
2

1+s (2 + s)
3+s
3+2s

. (A.1)

The two coefficients C1(s) and C2(s) were in Remark (2.4) defined to be

C1(s) =
2

3+s
6+4s [(2 + s)(3 + s)]

1+s
6+4s

1 + s
, C2(s) =

2
4+2s
3+3s (2 + s)

5+s
6 (3 + s)

1−s
6

2
1−s
6 3

2+s
3 (1 + s)

.

Finally, the two coefficients C̃1(s) and C̃2(s) from Corollary 2.6 are de-
fined here by

C̃1(s) :=
2

3+s
(3+2s)(4+2s) [(2 + s)(3 + s)]

1+s
3+2s

1 + s
,

C̃2(s) :=
2

2
3+3s (2 + s)

2
3 (3 + s)

1
3

2
1−s

12+6s 3
1
3 (1 + s)

.

(A.2)

In the coming lemma, we will also see the quantities µ and κs; these are
simply placeholders for the expressions ‖u0‖L2(R) and |K|TV s respectively
and will not affect the algebra in any non-trivial way.

Lemma A.2. With cs, γ, C0(s), C1(s), C2(s), C̃1(s), C̃2(s), µ and κs as
they appear above, we have the relations(

2csκs
1 + s

) 2+s
3+2s

µ
1+s
3+2s =: a =C1(s)κ

2+s
3+2s
s µ

1+s
3+2s , (A.3)(

3 + 2s

2 + s

)
γa

3
2+s =: τ =C0(s)κ

3
3+2s
s µ

2s
3+2s , (A.4)

a

(
3 + 2s

3τ

) 2+s
3

= C2(s)µ
1−s
3 , (A.5)

2
1+s
4+2s csC1(s)

1
2+s = C̃1(s), (A.6)

2
1+s
4+2s csC2(s)

1
2+s = C̃2(s). (A.7)

Proof. We start with (A.3): inserting for cs on the left-hand side of (A.3)
we get (

2

1 + s

) 2+s
3+2s

(
(2 + s)(3 + s)

2(1 + s)2

) 1+s
2(3+2s)

κ
2+s
3+2s
s µ

1+s
3+2s

=

[
2

3+s
6+4s [(2 + s)(3 + s)]

1+s
6+4s

1 + s

]
︸ ︷︷ ︸

C1(s)

κ
2+s
3+2s
s µ

1+s
3+2s ,
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and so (A.3) is established. Next, we prove (A.4): on the left-hand side
of (A.4) we substitute for a the left-hand side of (A.3) and insert for γ
to attain (

3 + 2s

2 + s

)(
1 + s

2
2

1+s c
1−s
1+s
s µ

1−s
2+s

)(
2csκs
1 + s

) 3
3+2s

µ
3+3s

(2+s)(3+2s)

=

[(
2

3
3+2s (1 + s)

2s
3+2s (3 + 2s)

2
2

1+s (2 + s)

)
c

2s(2+s)
(1+s)(3+2s)
s

]
κ

3
3+2s
s µ

2s
3+2s .

Inserting for cs, this last square bracket can further be written(
2

3
3+2s (1 + s)

2s
3+2s (3 + 2s)

2
2

1+s (2 + s)

)(
(2 + s)(3 + s)

2(1 + s)2

) s
3+2s

=

[
2

3−s
3+2s (3 + s)

s
3+2s (3 + 2s)

2
2

1+s (2 + s)
3+s
3+2s

]
︸ ︷︷ ︸

C0(s)

,

and so (A.4) is established. Next, we prove (A.5): if we on the left-hand
side of (A.5) replace τ with the left-hand side of (A.4) we attain

a

(
3 + 2s

3

) 2+s
3

[
2 + s

(3 + 2s)γa
3

2+s

] 2+s
3

=

(
2 + s

3γ

) 2+s
3

=

(
2

2
1+s (2 + s)

3(1 + s)

) 2+s
3

c
(1−s)(2+s)

3(1+s)
s µ

1−s
3 ,

where the second equality follows from inserting for γ. Inserting for cs
in this last expression, we get(

2
2

1+s (2 + s)

3(1 + s)

) 2+s
3
[

(2 + s)(3 + s)

2(1 + s)2

] 1−s
6

µ
1−s
3

=

[
2

4+2s
3+3s (2 + s)

5+s
6 (3 + s)

1−s
6

2
1−s
6 3

2+s
3 (1 + s)

]
︸ ︷︷ ︸

C2(s)

µ
1−s
3 ,

and so (A.5) is established. Next, we prove (A.6): inserting for cs and
C1(s) on the left-hand side of (A.6) we get

2
1+s

2(2+s)

(
(2 + s)(3 + s)

2(1 + s)2

) 1+s
2(2+s)

(
2

3+s
2(3+2s) [(2 + s)(3 + s)]

1+s
2(3+2s)

1 + s

) 1
2+s
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=

[
2

3+s
(3+2s)(4+2s) [(2 + s)(3 + s)]

1+s
3+2s

1 + s

]
︸ ︷︷ ︸

C̃1(s)

,

and so (A.6) is established. Finally, we prove (A.7): inserting for cs and
C2(s) on the left-hand side of (A.7) we get

2
1+s

2(2+s)

(
(2 + s)(3 + s)

2(1 + s)2

) 1+s
2(2+s)

(
2

2(2+s)
3+3s (2 + s)

5+s
6 (3 + s)

1−s
6

2
1−s
6 3

2+s
3 (1 + s)

) 1
2+s

=

[
2

2
3+3s (2 + s)

2
3 (3 + s)

1
3

2
1−s

12+6s 3
1
3 (1 + s)

]
︸ ︷︷ ︸

C̃2(s)

,

demonstrating the last equation (A.7). �

In the next lemma, we show that W s,1 regularity is sufficient to bound
the fractional variation (1.5). For this, we recall the Slobodeckij semi-
norm

[f ]s,1 :=

∫
R2

|f(x+ y)− f(x)|
|y|1+s

dxdy,

associated with W s,1(R) for s ∈ (0, 1). Note however, the two seminorms
are not equivalent as setting f(x) = |x|s−1 with s ∈ (0, 1) yields |f |TV s <
∞ = [f ]s,1.

Lemma A.3. For f ∈W s,1(R) with s ∈ [0, 1], we have the relations

|f |TV 0 = 2‖f‖L1(R),

|f |TV s ≤Cs[f ]s,1, s ∈ (0, 1),

|f |TV 1 = |f |TV (R),

where the constant Cs only depends on s ∈ (0, 1).

Proof. The cases s = 0 and s = 1 are trivial and so we focus on s ∈ (0, 1).
Set τ(y) := ‖f(·+ y)− f‖L1(R) and observe that τ is sub-additive by the
triangle inequality. For any h > 0 we find

2[f ]s,1 =

∫
R

τ(y)

|y|1+s
dy +

∫
R

τ(h− y)

|h− y|1+s
dy

≥
∫
R

τ(y) + τ(h− y)

max{|y|, |h− y|}1+s
dt

≥τ(h)

∫
R

1

max{|y|, |h− y|}1+s
dy
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=
τ(h)

hs

∫
R

1

max{|y|, |1− y|}1+s
dy,

and so taking the supremum over h > 0 gives the result. �

The Bessel kernels Gα ∈ L1(R) are for general α > 0 defined by the
formula (1.2) if one evaluates the integral in a principle value sense. We
list a few properties regarding these kernels that can be found in [2, Chap.
2.4.]; for all α, β > 0 we have the two identities

‖Gα‖L1(R) = 1, Gα+β = Gα ∗Gβ,

and for α > 1, the distributional derivatives Kα := (Gα)′ satisfy

‖Kα‖L1(R) <∞, |Kα(x)| .α |x|α−2.

Additionally, Gα is symmetric and completely monotone on (0,∞) when
α ∈ (0, 2] (see [5]). We use these properties in the coming lemma to
bound the seminorm (1.5) when evaluated on Kα.

Lemma A.4. For α > 1 and 0 ≤ s ≤ min{α− 1, 1} we have

|Kα|TV s <∞.

Proof. First let α ∈ (1, 2). As Gα is symmetric and completely monotone
on (0,∞), Kα is positive on (−∞, 0), negative on (0,∞) and strictly
increasing on both. Thus we may calculate for h > 0

‖Kα(·+ h)−Kα‖L1(R) = 4

∫ 0

−h
Kα(x)dx ≤ Cαhα−1,

for some constant Cα <∞. For s ∈ [0, α− 1] we then have

|Kα|TV s = sup
h>0

‖Kα(·+ h)−Kα‖L1(R)

hs

≤(2‖Kα‖L1(R))
1−s
α−1 sup

h>0

(‖Kα(·+ h)−Kα‖L1(R)

hα−1

) s
α−1

,

where the last quantity is bounded by the above calculation. For α = 2,
we have Gα(x) = 1

2e
−|x| and thus K2(x) = −1

2sgn(x)e−|x|. This gives
|K2|TV 1 = |K2|TV = 2, which together with a similar interpolation argu-
ment as above implies the lemma for the α = 2 case. Finally, for α > 2
we can use the identity

Kα(·+ h)−Kα = Gα−2 ∗ (K2(·+ h)−K2),

to conclude by Young’s convolution inequality that |Kα|TV s ≤ |K2|TV s
for all s ∈ [0, 1]. �
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Appendix B. Proof of Corollary 2.6 and Corollary 2.7

We prove Corollary 2.6 which provides a decaying L∞ bound for the
weak solutions of (1.1) provided by Corollary 2.2.

Proof of Corollary 2.6. We prove only (2.6) as (2.5) follows directly from
the former when setting s = 0 and using |K|TV 0 = 2‖K‖L1(R). With
s ∈ [0, 1] such that |K|TV s <∞, we have by Theorem 2.3 that u(t) admits

the modulus of growth (Def. 4.1) h 7→ a(t)h
1+s
2 , where we set a(t) to be

the the explicit expression (2.3) provided by Remark 2.4. The parameter
µ > 0 from Lemma 4.5 is arbitrary (see the beginning of Subsection 4.2)
and so we may set it to µ = ‖u0‖L2(R). Using ‖u(t)‖L2(R) ≤ ‖u0‖L2(R),
we infer from said lemma – more specifically (4.19) – that

‖u(t)‖L∞(R) ≤ 2
1+s

2(2+s) cs‖u0‖
1+s
2+s

L2(R)
a(t)

1
2+s ,

for all t > 0. Using the sub-additivity of y 7→ |y|
1

2+s we infer that

a(t)
1

2+s ≤ C1(s)
1

2+s |K|
1

3+2s

TV s ‖u0‖
1+s

(2+s)(3+2s)

L2(R)
+ C2(s)

1
2+s

‖u0‖
1−s

3(2+s)

L2(R)

t
1
3

,

and so inserting this in the above inequality we get

‖u(t)‖L∞(R) ≤
[
2

1+s
2(2+s) csC1(s)

1
2+s

]
|K|

1
3+2s

TV s ‖u0‖
2+2s
3+2s

L2(R)

+
[
2

1+s
2(2+s) csC2(s)

1
2+s

]‖u0‖
2
3

L2(R)

t
1
3

,

for all t > 0. That these square brackets coincide with C̃1(s) and C̃2(s)
is precisely the two identities (A.6) and (A.7) of Lemma A.2. �

Next, we prove Corollary 2.7 which established a maximal lifespan for
classical solutions of (1.1) with L2 ∩ L∞ data.

Proof of Corollary 2.7. Consider s ∈ [0, 1] fixed for now, and assume
|K|TV s <∞. As (bounded) classical solutions are entropy solutions, we
may associate u ∈ L∞ ∩C1((0, T )×R) with the global entropy solution
admitting u0 as initial data, provided by Theorem 2.1; the discussion
following the proof of Proposition 3.1 justifies this viewpoint. Referring
to this solution also as u, we have by (2.1) that x 7→ u(T, x) is a well
defined element of L2∩L∞(R) approximated in L2 sense by u(t) as t↗ T .
Setting v(t, x) := u(T − t,−x), we see through pointwise evaluation that
v also is a classical solution of (1.1) (and thus an entropy solution) on
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(0, T )× R with initial data v0(x) := u(T,−x). From (2.1) we then infer
‖v0‖L2(R) = ‖u0‖L2(R) since

‖v0‖L2(R) = ‖u(T )‖L2(R) ≤ ‖u0‖L2(R) = ‖v(T )‖L2(R) ≤ ‖v0‖L2(R).

Using the identity u0(x) = v(T,−x) for a.e. x ∈ R and applying Theorem
2.3 to v we further find for all h > 0 and a.e. x ∈ R that

u0(x− h)− u0(x) = v(T,−x+ h)− v(T,−x) ≤ a(T )h
1+s
2 , (B.1)

where we for a(T ) use the following explicit expression from Remark 2.4

a(T ) = C1(s)|K|
2+s
3+2s

TV s ‖u0‖
1+s
3+2s

L2(R)
+ C2(s)

‖u0‖
1−s
3

L2(R)

T
2+s
3

=: a+
q

T
2+s
3

, (B.2)

and where we have substituted ‖u0‖L2(R) for ‖v0‖L2(R) as the two quan-

tities agree. Dividing each side of (B.1) by h
1+s
2 and taking the essential

supremum with respect to x ∈ R we get

[u0]s := ess sup
x∈R
h>0

[
u0(x− h)− u0(x)

h
1+s
2

]
≤ a+

q

T
2+s
3

, (B.3)

and if [u0]s > a then (B.3) can be rewritten as

T ≤

[
q

[u0]s − a

] 3
2+s

=

(
C2(s)

1− a
[u0]s

) 3
2+s ‖u0‖

1−s
2+s

L2(R)

[u0]
3

2+s
s

=: F
(

a
[u0]s

)‖u0‖
1−s
2+s

L2(R)

[u0]
3

2+s
s

,

(B.4)

where the first equality replaced q by its explicit expression as given by
(B.2). We now show that this gives for any ρ ∈ (0, 1) the following
implication

[u0]3+2s
s >

(
C1(s)

ρ

)3+2s

|K|2+s
TV s‖u0‖1+s

L2(R)
, =⇒ T ≤ F (ρ)

‖u0‖
1−s
2+s

L2(R)

[u0]
3

2+s
s

.

(B.5)

Indeed, using the explicit expression (B.2) for a we see that the left-hand
side of (B.5) is equivalent to [u0]s > a/ρ which, as ρ ∈ (0, 1), implies
that [u0]s > a and so (B.4) holds. By observing that ρ 7→ F (ρ) is strictly
increasing on (0, 1) and that ρ > a/[u0]s we see that the right-hand side
of (B.5) then follows from (B.4). With (B.5) established, the corollary
follows: for any ρ ∈ (0, 1) we get such universal constants c and C by
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setting

c = sup
s∈[0,1]

(
C1(s)

ρ

)3+2s

, C = sup
s∈[0,1]

F (ρ) = sup
s∈[0,1]

(
C2(s)

1− ρ

) 3
2+s

. (B.6)

The free parameter ρ allows us to shrink one of the two constants at the
cost of enlarging the other; in particular, c is at its smallest for ρ → 1
while C is at its smallest for ρ→ 0. �
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