
Efficiency and Effectiveness of web application vulnerability
detection approaches: A Review

BING ZHANG, School of information science and engineering, Yanshan University, China
JINGYUE LI∗, Norwegian University of Science and Technology, Norway
JIADONG REN and GUOYAN HUANG, School of information science and engineering, Yanshan
University, China

Most existing surveys and reviews on web application vulnerability detection (WAVD) approaches focus on
comparing and summarizing the approaches’ technical details. Although some studies have analyzed the
efficiency and effectiveness of specific methods, there is a lack of a comprehensive and systematic analysis of
the efficiency and effectiveness of various WAVD approaches. We conducted a systematic literature review
(SLR) of WAVD approaches and analyzed their efficiency and effectiveness. We identified 105 primary studies
out of 775 WAVD articles published between January 2008 and June 2019. Our study identified ten categories of
artifacts analyzed by the WAVD approaches and eight categories of WAVD meta-approaches for analyzing the
artifacts. Our study’s results also summarized and compared the effectiveness and efficiency of different WAVD
approaches on detecting specific categories of web application vulnerabilities and which web applications and
test suites are used to evaluate the WAVD approaches. To our knowledge, this is the first SLR that focuses
on summarizing the effectiveness and efficiencies of WAVD approaches. Our study results can help security
engineers choose and compare WAVD tools and help researchers identify research gaps.

CCS Concepts: • Security and privacy → Software and application security; • General Terms→ Web
application security.

Additional Key Words and Phrases: WAVD approaches, Efficiency and effectiveness, Vulnerability test suites

1 INTRODUCTION
According to OWASP 2017 [1], vulnerabilities in web applications can be categorized into injection,
sensitive data exposure, broken authentication, broken access control, XML external entities,
security misconfiguration, and XSS. Web application vulnerabilities have also been classified
into three high-level categories: input validation (IPV) vulnerability, session management (SM)
vulnerability, and application logic (AL) vulnerability [3, 4, 37]. To detect vulnerabilities, many
approaches, e.g., static code analysis [2, 11], taint analysis [12], white box [13], machine learning
approaches [14], fuzz testing [10, 17], penetration testing [18], and dynamic monitoring [19, 24],
have been proposed.
A few studies have surveyed or reviewed the existing WAVD approaches from different view-

points. Approaches proposed in [27–35, 41] summarized and compared different methods to identify
and mitigate specific vulnerabilities, e.g., SQLi or XSS. [4, 36–38, 40, 42, 104] classified and com-
pared other WAVD or mitigation approaches focusing on the ideas of the approaches. Although
the information in the existing survey or literature reviews provided an overview of the WAVD
approaches from different perspectives, none of the studies were dedicated to summarizing empiri-
cal evaluations of the approaches’ efficiency and effectiveness. To perform security analysis, an
overview of the empirical evaluation of different WAVD approaches can facilitate security engineers
in choosing optimal methods. Based on a systematic summary of the strengths and weaknesses
∗Corresponding author

Authors’ addresses: Bing Zhang, bingzhang@ysu.edu.cn, School of information science and engineering, Yanshan University,
438W Hebei Avenue, Qin Huangdao, Hebei Province, China, 066004; Jingyue Li, Norwegian University of Science and
Technology, Trondheim, Norway, 7030, jingyue.li@ntnu.no; Jiadong Ren; Guoyan Huang, School of information science
and engineering, Yanshan University, 438W Hebei Avenue, Qin Huangdao, Hebei Province, China, 066004.

, Vol. 1, No. 1, Article . Publication date: November 2021.

2 Bing Zhang et al.

of different approaches’ effectiveness and efficiency, researchers can identify research gaps and
improve the weaknesses in the approaches.

To summarize WAVD approaches and their empirical evaluation results, we performed a system-
atic literature review on articles published from January 2008 to June 2019. Our study attempted to
answer three research questions:

• RQ1: What kinds of artifacts have been analyzed by the current WAVD approaches and how
were the artifacts analyzed?

• RQ2: How well were the artifacts analyzed to detect web application vulnerabilities?
• RQ3: Which web applications and test suites have been used to provide empirical evaluation
results?

We first identified 775 articles through keywords searching in prestigious scientific databases.
We then filtered out articles that were duplicated, not accessible, or did not contain the detailed
information we needed. After filtering, we identified 105 primary studies. We combined thematic
analysis and simple statistical analysis to answer our research questions. The results of our study
show the following:

• The artifacts analyzed by the WAVD approaches can be divided into ten categories, such as
models derived from source code, complexity or size properties extracted from source code,
patterns or rules derived from source code, and behavior models or constraints derived from
application execution. The artifacts can be further abstracted into five themes, namely, model,
property, code element, application entry point (AEP), constraint or pattern, and fingerprint.

• Based on analysis strategy performed on the artifacts, the WAVD approaches presented in the
primary studies can be classified into eight categories of meta-approaches, such as matching
fingerprints using elements extracted from models, matching fingerprints with elements
extracted from code, verifying constraints or patterns using models, classifying using code
properties extracted from code, and generating attacks from a model.

• Seventy-eight out of the 105 primary studies focused on detecting injection vulnerabilities.
Only 19 approaches showed less than 10% false-positive rates and 10% false-negative rates or
similar results detecting injection vulnerabilities. Other WAVD approaches’ effectiveness is
either not evaluated adequately or cannot give satisfactory evaluation results.

• Researchers often use web applications and test suites to compare and evaluate their WAVD
approaches. However, only 21 out of the 105 primary studies presented detailed information
on the vulnerabilities in the web application evaluated. Most other studies reported their
evaluation results without disclosing the real numbers and types of vulnerabilities in the web
application or test suites that their evaluations use.

The rest of this paper is organized as follows. Section 2 presents a brief overview of web
application vulnerabilities. Section 3 lists existing literature reviews and surveys on this topic.
Section 4 explains our research design and implementation. Section 5 presents our literature review
results. Section 6 discusses the results, and Section 7 concludes and gives our future work.

2 WEB APPLICATION VULNERABILITIES
Web application vulnerabilities can be classified into three high-level categories (i.e., Input validation
(IPV) vulnerability, Session management (SM) vulnerability, and application logic (AL) vulnerability)
in [4, 37] or more detailed categories, such as those in OWASP top 10 [1].

IPV vulnerability refers to the absence of sanitization or insufficient validation of input supplied
by a user through the user interface, such as input fields, of a web application. Attackers can
exploit vulnerabilities by injecting crafted malicious commands or strings that violate the syntactic
structure of the operating system (OS) command or SQL or XML query. Many attacks [6, 7, 60, 81]

, Vol. 1, No. 1, Article . Publication date: November 2021.

Efficiency and Effectiveness of web application vulnerability detection approaches: A Review 3

exploit IPV vulnerabilities, such as SQL injection, XSS, XML injection, LDAP injection, OS command
injection, remote code execution (RCE), and local or remote file inclusion (LFI/RFI).
SM vulnerability is related to defects in the generation and processing of session tokens (i.e.,

session ID), which is critical to maintaining the relationship between the identification of end users
of applications and mapping subsequent requests of applications (i.e., maintenance status). Once
the session management vulnerability is exploited, an attacker can compromise the session of a
valid user and perform illegal actions. Typical exploitations of session management vulnerabilities
include session fixation [97], session sniffing [97], and cross-site request forgery (CSRF) [120].
Because of improper authentication and authorization of web users, AL vulnerability allows

attackers to access confidential web pages and perform unauthorized operations in the application.
Currently, the most popular application logic vulnerabilities include parameter manipulation [66],
weak access control [15, 98], workflow bypass [62] and workflow violation [129].

When identifying security risks of a system, in addition to threat modeling approaches, analysts
can also apply WAVD approaches and tools to test the application or to detect weaknesses in the
source and executable code and the configurations.

3 EXISTING SURVEYS AND LITERATURE REVIEWS OFWAVD APPROACHES
Several surveys and literature reviews, as shown in Table 1, have summarized existing WAVD
approaches.

Table 1. Summary of the related surveys or literature reviews

Research articles Publication VL Type covered Classified Surveyed VLs
Year IPV SM AL WAVD Testbed Covered

Studies focusing on a specific type of vulnerability
Jyotiyana et al. [27] 2018

√
Clickjacking

Hydara et al. [29] 2015
√ √

XSS
Gupta et al. [32] 2014

√ √
SQLi, XSS

Johari et al. [33] 2012
√

SQLi, XSS
Scholte et al. [41] 2012

√
IPV VLs

Calzavara et al. [34] 2017
√

SM VLs
Visaggio et al. [35] 2010

√ √
SM VLs

Studies focusing on multiple types of vulnerability
Li et al. [4] 2014

√ √ √ √
Multiple VLs

Deepa et al. [37] 2016
√ √ √ √ √

Multiple VLs
Chang et al. [22] 2013

√
Multiple VLs

Gupta et al. [36] 2017
√ √ √

Top 10 VLSeng et al. [30] 2018
√ √ √ √ √

Atashzar et al. [39] 2012
√ √ √ √

in OWASP
IPV: Input validation, SM: Session Management, AL: Application Logic, VL:Vulnerability

• Studies focus on surveying and classifying WAVD methods for detecting a specific
type of vulnerability. Jyotiyana et al. [27] studied high-level strategies to defend against
clickjacking attacks but did not focus on specific tools and approaches to identify clickjacking
vulnerabilities in web applications. Hydara et al. [29] conducted a systematic literature review
on XSS vulnerability detection approaches and classified the approaches to static analysis,
dynamic analysis, hybridization, secure programming, and modeling. [32, 33] surveyed

, Vol. 1, No. 1, Article . Publication date: November 2021.

4 Bing Zhang et al.

techniques to detect IPV vulnerabilities, and [32] classified the techniques into static analysis,
dynamic analysis, and hybridization. Scholte et al. [41] performed an empirical analysis
aiming at understanding how input validation flaws have evolved in the last decade without
focusing on summarizing approaches to detect vulnerabilities that can be exploited by
attacks. Calzavara et al. [34] surveyed the most common attacks against web sessions and
corresponding mitigation approaches but covered very little about the tools and approaches
to detect session-related vulnerabilities. Visaggio et al. [35] explored web application design
flaws which could be exploited by SM attacks and the general strategy and approaches to
defend against the attacks.

• Studies focused on surveying and classifying WAVD methods for detecting multi-
ple types of vulnerabilities. The categorization in [4] included static analysis, dynamic
analysis, and hybrid analysis. Deepa et al. [37] focused on the detection and/or prevention of
attacks targeting injection and logic vulnerabilities and focused on static and dynamic tech-
niques. Chang et al. [22] outlined only two web-based malware detection methods, namely,
virtual machine-based detection and signature-based detection. Gupta et al. [36] presented a
comprehensive survey of emerging web application weaknesses and discussed mechanisms of
avoidance, detection, and attack patterns for all critical web threats in OWASP 2013. However,
[36] focused on high-level principles to detect vulnerabilities without analyzing specific
methods and tools. Seng et al. [30] surveyed web application security scanners and their
qualities by summarizing the measurement metrics used to quantify scanner quality in vari-
ous studies. Atashzar et al. [39] surveyed web application security aspects, including critical
vulnerabilities, hacking tools, and approaches at a high level. [30, 35, 37, 39] summarized web
applications used as a testbed for evaluating WAVD approaches and tools.

Most of the existing surveys and interviews focus on summarizing the methods to detect vulner-
abilities or methods to defend against attacks, and none of the surveys or reviews shown in Table 1
focused on summarizing and comparing the efficiency and effectiveness of the WAVD approaches.
Several studies, e.g., [133, 134], showed that high false-positive rates (>10%) or high-performance
overhead (≥5%) would discourage people from using specific WAVD approaches and tools. The
motivation of this study was to investigate the efficiency and effectiveness of existing WAVD ap-
proaches to help practitioners choose the proper WAVD approach and tool and to help researchers
identify research gaps.

4 RESEARCH DESIGN AND IMPLEMENTATION
In a mapping study [103], WAVD approaches were classified into static analysis, dynamic analysis,
white box, black box, taint analysis, penetration testing, fuzz testing, concolic testing, symbolic
execution, and model checking. [4, 22, 29, 30, 32, 37] mostly classified existing WAVD approaches
into three categories, namely, static, dynamic, and hybrid. To compare the efficiency and effective-
ness of the WAVD approaches, the current classification may not provide enough granularity. For
example, static analysis can focus on the client-side code or the server-side code. Static analysis can
also target different kinds of vulnerabilities and different content and features of web applications.
To more specifically compare the efficiency and effectiveness of WAVD approaches, we started
by revisiting the existing WAVD method classification and made a finer-grained classification by
investigating the detailed analysis processes (steps) of each approach, the artifacts (e.g., HTML tags,
logic functions, variables in the source code, the HTTP request, GET/POST parameters, and sessions
or cookies values), analyzed by the WAVD approaches, and the vulnerabilities the approaches focus
on. Then, we compare the efficiency and effectiveness of each fine-grained category of WAVD
approaches on different kinds of vulnerabilities. Finally, we identified the possible resources for

, Vol. 1, No. 1, Article . Publication date: November 2021.

Efficiency and Effectiveness of web application vulnerability detection approaches: A Review 5

evaluating the efficiency and effectiveness of the WAVD approaches. To make a complete and com-
prehensive summary and comparison of the efficiency and effectiveness of the WAVD approaches,
we followed the systematic literature review guidelines in [44–46]. We covered the peer-reviewed
primary papers related to WAVD published between January 2008 and June 2019.

4.1 Searching and filtering the primary studies
We started by searching the most popular scientific publication databases, namely, IEEE Xplore, ACM
Digital library, Elsevier Science Direct, SpringerLink, Web of Science, using search strings and obtained
775 papers. The search strings are listed in Table 2. We filtered the search results manually by using
the inclusion and exclusion criteria shown in Table 3 and obtained 72 papers. The results after
filtering are shown in Table 4. After that, we manually performed a backward snowballing search
by searching the reference list of the 72 papers and a forward snowballing search by reviewing all
articles citing them using "Google scholar-search within citing articles." We performed a forward
snowballing search because the WAVD approaches may be updated or further evaluated by follow-
up studies. After the snowballing search, 33 more articles were discovered. Finally, we included 105
studies as the primary papers for answering our research questions. A summary of the process of
searching and filtering the papers is presented in Figure 1. The searching process and results of
phase 1 to phase 3 in Figure 1 and the snowballing phase (i.e., the last phase of Figure 1) are logged
in excel files and shared in the public link: https://figshare.com/s/c0d1a19db6d06a33d123 and the
public doi: https://doi.org/10.6084/m9.figshare.13580048.v1.

Table 2. Search string

Key words Search string
web, website, web application (web or website or web application) AND
web application vulnerability, (web application vulnerability
web vulnerability, vulnerability, or web vulnerability or vulnerability)

Table 3. Inclusion Criteria and Exclusion Criteria

Inclusion Criteria Exclusion Criteria

1. paper related to WAVD;
2. papers published between
2008 January and 2019 June;
3. paper written in English;
4. paper come from
peer-reviewed journals
or Conferences.

1. Secondary studies;
2. Duplicated studies;
3. Paper with many versions (We choose only the
latest one and excluded early version);
4. Papers we cannot find the full text or papers was withdrawn;
5. Papers are relevant to vulnerability detection but not about
Web applications;
6. Papers we cannot extract the needed information to answer
our research questions (e.g. analysis objects and analysis).

, Vol. 1, No. 1, Article . Publication date: November 2021.

6 Bing Zhang et al.

By search string

(Title, Abstract,

Keywords, Content)

By manual filtering

(Title, Abstract,

Keywords)

By manual filtering

(Title, Abstract, Keywords,

Content)

 !""#

(Paper

pool 1)

 !"#"

(Paper

pool 2)

 !"#

(Paper

pool 3)

 !"#$

(Paper

pool 4)

Removing (duplicate

articles, similar versions)

exclusion/inclusion criteria

Exclusion/inclusion

criteria

33 Referenced

articles

(Snowballing)

 !"#$%& !"#$%' !"#$%(!"#$%)

Fig. 1. The selection process of primary papers

Table 4. The analysis results in Phase 3

Type of Literature Number Percentage

1 Primary studies: Web application detection techniques
(Inclusion Criteria 1,2,3,4) 72 26.47%

2 Secondary studies et al. (Exclusion Criteria 1) 35 12.87%

3 Irrelevant, duplicated, or unavailable papers
(Exclusion Criteria 2,3,4,5) 95 34.93%

4 Paper without enough information we need
(Exclusion Criteria 6) 70 25.73%

4.2 Data analysis and synthesis
To answer RQ1, we followed the guidelines in [47, 48] and applied thematic synthesis to classify
artifacts the WAVD approaches focus on, and the WAVD approaches. We first extracted and coded
the artifacts the WAVD approaches focus on. We then translated the artifacts into ten categories. We
created five high-order themes of the artifacts by exploring the relationship between the ten artifact
categories. To analyze the WAVD approaches, we first extracted and coded the data processing
strategies of the WAVD approaches and identified four codes. By combing the high-order themes of
the artifacts and the data processing strategy codes, we identified eight WAVDmeta-approaches. We
observed that the primary studies applied one meta-approach or combined several meta-approaches.

As RQ2 focuses on comparing the efficiency and effectiveness of the WAVD approaches, we first
extracted efficiency and effectiveness metrics and results reported in the primary studies. Then, we
summarized how well each category of WAVD meta-approaches detects particular categories of
security vulnerabilities. Also, we analyzed studies that reported low false-positive results and low
false-negative results to understand why those approaches provided good results.
To answer RQ3, we extracted the applications and test suits listed in the primary studies and

manually tested whether the applications and test suites were accessible. We also summarized
other information of the applications and test suites, such as the application code’s programming
language and vulnerabilities inserted.

, Vol. 1, No. 1, Article . Publication date: November 2021.

Efficiency and Effectiveness of web application vulnerability detection approaches: A Review 7

0 2 4 6 8 10 12 14 16

2008

2009

2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

Journal 1 0 2 2 3 3 3 2 6 2 10 3

Conference 3 3 6 8 7 10 7 9 8 5 1 1

Journal Conference

Fig. 2. Publications published during 2008-2019

5 RESULTS
5.1 Basic information of the primary studies
More than half (64.76%) of the 105 primary papers are conference publications, and the others
are journal publications. The numbers of papers published each year are shown in Figure 2 and
illustrate that WAVD approach studies were a hot topic in the last ten years.
The programming languages analyzed by the WAVD approaches are summarized in Figure 3,

which shows that PHP- and Java/JSP-based web applications were the main focuses of existing
WAVD approaches. Only 1% of the study focused on web applications developed using Ruby on
Rails. Another 1% of the study focused on the JavaScript code of the web application. 22% of primary
studies shown in Figure 3 did not give information about the programming languages analyzed by
the WAVD approaches.

5.2 Results of RQ1
To present the results of RQ1, we first describe the artifact categories and their high-order themes.
After that, we explain the WAVD meta-approaches categories based on their detailed analysis
process and artifacts analyzed.

5.2.1 The classification of the artifacts the WAVD analyses. We find that different WAVD approaches
analyzed different artifacts. Forty-seven out of the 105 studies focused on analyzing the source code
or intermediate results derived from the source code. The artifacts they analyze can be classified as
follows.

• S1. Models derived from source code. SomeWAVD analyzed the control flow models (e.g.,
Control Flow Graph (CFG), Call Graph (CG), and Data Dependence Graph (DDG)), data flow
models (e.g., Data flow (DF) and Information flow (IF)), or syntax model (e.g., Abstract syntax
tree (AST)) of the web application. For example, Shar et al. [76] built the CFG and DDG of
the web application to identify potential XSS vulnerabilities.

• S2. Complexity or size properties of the code. Properties of the source code of web
applications, e.g., cyclomatic complexity, lines of code (HTML, non-HTML such as JavaScript,

, Vol. 1, No. 1, Article . Publication date: November 2021.

8 Bing Zhang et al.

PHP

52%

JAVA/JSP

20%

PHP & JAVA/JSP

4%

JavaScript

1%

Ruby on Rails

1%

Not-menthioned

22%

Fig. 3. The programming languages analyzed by the WAVD approaches

CSS, and comments), number of functions, maximum nesting complexity, Halstead’s volume,
or total number of external calls, were used to train a prediction model to discover some
vulnerabilities of the web application. For example, Catal et al. [14] proposed an approach for
predicting vulnerability in web services by artificial neural networks trained on the attributes
of software metric values received from a web form.

• S3. Elements of source code of web application. After extracting fingerprint from vul-
nerable code, the vulnerability scanners (e.g., [8]) compare the fingerprint with code elements
of the web application, such as file and function names. The tool SAWFIX [11] starts by ob-
taining the file names from the static portion of the inclusion to replace the dynamic process
to detect session fixation vulnerabilities. Besides, the context information about configuration
directives[50], context-sensitive alias, field names in a program[57], and different types of
APIs [87] also belongs to code elements.

• S4. Application entry points identified from code. Some vulnerability scanners, such as
[16], crawl all web sites first to identify all possible application entry points (AEPs, such as
inputs and SQL statements) and then send normal, malicious, or incorrect parameter values
to the AEPs to detect vulnerabilities. Alkhalaf et al. [80] extracted client-side and server-side
input validation functions, and [153] collected SQL statements from database execution logs.

• S5. Constraints or patterns derived from secure code. Some WAVD approaches gen-
erate constraints or patterns from a secure web application or legitimate use of the web
application and then identify vulnerabilities by checking whether the new or updated web
applications or malicious inputs violate the constraints or patterns. For example, Trinh et al.
[82] generated constraints from a secure JavaScript Program, and Jang et al. [83] formed the
patterns of legitimate SQL queries first and then used the patterns to identify SQL injection
attacks compared with the tools such as SQLIPA [135], CANDID [78], SQLProb [136] and
SQLinjectionGen [137].

• S6. Fingerprints derived from vulnerable code. Some WAVD approaches, especially
vulnerability scanners (e.g., [85]), search file names, tokens, and function names, are known
to be vulnerable. These known vulnerable pieces of code are called fingerprint data in [85].
Le et al. [86] analyzed the token list of each file to identify potentially dangerous functions,
and Shahriar et al. [87] applied information retrieval methods to search known method calls
that are related to object injection vulnerabilities. For approaches (e.g., [61]) using taint
analysis, the sensitive sources, sinks, or sanitization points always come from analyzing
known vulnerable code.

Fifty-five articles focused on analyzing the web application execution or intermediate data derived
from running web applications. The artifacts they analyzed can be classified into four categories.

, Vol. 1, No. 1, Article . Publication date: November 2021.

Efficiency and Effectiveness of web application vulnerability detection approaches: A Review 9

• B1. Behaviormodels derived fromapplication execution. Theweb application behavior
model, navigation graph, and navigation paths can be obtained by analyzing the execution
trace of the web application or messages between the client and server. For example, Thilagam
et al. [74] modeled parameters and session variables flowing between different web pages
and the sequence of actions among web pages as an annotated finite state machine. Li et
al. [148] analyzed logs of a web application and modeled the normal users’ behavior using
the hidden Markov model (HMM). Li et al. [66] constructed a partial FSM over the expected
input domain by collecting and analyzing the execution traces when users follow the web
application’s navigation paths.

• B2. Elements of dynamically generated web page. Some approaches focused on the
script, iframe, CSS style, or image tags in the generated web pages to identify possible
vulnerabilities inserted into the pages. For example, Gupta et al. [58] explored the HTTP
response for extracting the script content and compared the content with possible malicious
script functions to detect malicious XSS worms. Kavitha et al. [90] invented an approach to
check the iframe of the code to detect the clickjacking vulnerability.

• B3. Constraints or patterns derived from web application execution. Some studies
focused on analyzing the patterns generated when executing web applications. For example,
Li et al. [62] identified invariants from the execution of the web application during its
attack-free execution and then used invariants to detect vulnerabilities of the application at
runtime.

• B4. Constraints or patterns derived from HTTP traffic. Some studies focused on ana-
lyzing the HTTP traffic (such as page input fields, form fields, login input, HTTP GET/POST
parameters, HTTP cookies, HTTP user-agents, and referrer header values) between client and
server. For example, [16, 100] first extracted the application entry point (AEP) and then cre-
ated a set of incorrect or malicious parameter values to attack these entry points and analyzed
the results to detect vulnerabilities. Muthukumaran et al. [9] proposed a user-data-policy
(UDA)-based approach to detect violations of access control by tracking HTTP traffic. Sunkari
et al. [91] designed a regular expression engine that takes values of HTTP request/response
parameters and built a set of application regular expression attribute validation rules to
prevent input type validation vulnerabilities. Gupta et al. [59] extracted a set of axioms
by monitoring the sequences of HTTP requests/responses and their corresponding session
variables to detect workflow bypass and XSS vulnerabilities.

Three papers analyzed both static source code attributes and dynamic behavior attributes to
detect vulnerabilities. Monga et al. [54] statically analyzed PHP bytecode and searched for dangerous
code statements, and monitored these statements by dynamic analysis. Scholte et al. [95] designed
the input parameter analysis system (IPAAS), which automatically extracted the parameters for
a web application and learned types for each parameter. IPAAS then applied a combination of
machine learning and static analysis to find parameters and application resources that were missed
to prevent the exploitation of XSS and SQL injection vulnerabilities. Balzarotti et al. [122] combined
static and dynamic analysis techniques to identify faulty sanitization procedures that an attacker
can bypass.
The artifacts analyzed by the WAVD approaches and their relationship are shown in Figure 4.

The artifacts can be summarized into five high-order themes: model, property, code element, AEP,
constraint or pattern, and fingerprint.

, Vol. 1, No. 1, Article . Publication date: November 2021.

10 Bing Zhang et al.

Source code of

web app.

Known secure

code

Known

vulnerable code

Behavior models derived from app. execution (B1)

Complexity or size property of the code (S2)

Elements of source code of web app. (S3)

AEPs identified from code (S4)

Constraints or patterns derived from secure code (S5)

Constraints or patterns derived from app. execution (B3)

Constraints or patterns derived from HTTP traffic (B4)

Fingerprint derived from vulnerable code (S6)

Web app.

execution trace

and results

Client-server

traffic data

Models derived from source code (S1)

Model

Property

Code element

AEP

Constraint or pattern

Fingerprint

Elements of dynamically generated web page (B2)

Fig. 4. The artifacts and their relationship

Match

Match

Classify

Verify

Verify

Generate

attack

Model Fingerprint

Code element Fingerprint

Property

Model

Constraint or pattern

Constraint or pattern

Model

Constraint or pattern

AEP
Generate

attack

AEP

Match Fingerprint with elements

extracted from a Model (MFM)

Verify Constraint or Pattern (VCP)

without using a model

Match Fingerprint with elements

extracted from Code (MFC)

ClassifyModel

Verify Constraint or Pattern using

Models (VCPM)

Classify using Property extracted

from Code (CPC)

Classify using Property extracted

from a Model (CPM)

Generate Attack from a Model

(GAM)

Generate Attack from Constraint or

Pattern (GACP)

Legend

Analysis strategy

High-level

artifact themes

Information flow

Fig. 5. The WAVD meta-approaches

5.2.2 The classifications of WAVD approaches. From the primary studies, we identified four analysis
strategy codes: match, verify, classify, and generate attack. We then identified eight WAVD meta-
approaches by combining the artifacts’ high-order themes and the analysis strategy codes. The
results are shown in Figure 5.

• Match Fingerprint with Elements Extracted from a Model (MFM). WAVD methods in
this category [6, 7, 11, 12, 23, 52, 53, 55, 60, 61, 64, 69, 71, 76, 77, 80, 81, 86, 108, 142, 145, 147,

, Vol. 1, No. 1, Article . Publication date: November 2021.

Efficiency and Effectiveness of web application vulnerability detection approaches: A Review 11

150] usually begin by deriving models, e.g., CFG, DDG, AST, browsing behavior models,
navigation graphs, and navigation paths. The WAVD approaches then traverse the model
to extract code elements to compare with known fingerprints. For example, Yan et al. [12]
implemented a backward variable tracing algorithm to all trace variables along all paths
in AST, CFG, CG for taint analysis, which determines whether sanitization functions have
sanitized a variable before the value of the variable is used in sink functions. Dahse et al. [61]
also built AST, CFG, and DF first and then performed backward-directed taint analysis. Shar
et al. [76] built the CFG and DDG and then used taint-based analysis techniques and pattern
matching to identify potential XSS vulnerabilities.

• Match Fingerprint with elements extracted from Code (MFC). This category of WAVD
approaches [49, 50, 54, 58, 85, 87, 90, 96, 116, 122, 132, 136, 143, 149] usually matches and
compares the source code or dynamic code of the web application with known legitimate
or malicious code. For example, the idea of [85] was to crawl a website to extract the site
keys, such as file name, and then compare the keys with known vulnerable keys. Gupta et al.
[49] first built a whitelist of legitimate scripts offline. The whitelist was used as a fingerprint
to match scripts in the runtime document object model (DOM) tree to detect the injection
of malicious scripts. Wu et al. [116] used structure matching to analyze server-side SQL
commands rendered from user queries and to compare them with the general structure of
benign SQL commands to detect malicious SQL queries.

• Verify Constraint or Pattern Using Models (VCPM). The methods in this category [15,
53, 66, 68–70, 74, 78, 88, 95, 98, 140, 142, 148, 150, 153, 154] typically compare the expected
behavior (i.e., constraints) with the information of possible behavior that can be extracted
from models. For example, the tool in [68] first asked developers to specify AEPs and role-
based application states as a basis for automatically inferring the privileged pages. Then,
the tool constructed a CFG that represents the possible HTML outputs and the sitemaps for
different roles in web applications. After that, the tool infers privileged pages to access them
directly to detect access-control vulnerabilities. Li et al. [148] analyzed the differences in
the behavior patterns of attackers and normal users, which are expressed using the hidden
Markov model (HMM), to detect SQL injection attacks. Li et al. [66] first constructed a partial
FSM by collecting and analyzing the execution traces of expected application execution. Then,
they tested the application program in each state by constructing unexpected input vectors,
and evaluate the corresponding web response to detect logical vulnerabilities according to
the difference between the expected FSM and the implemented FSM.

• Verify Constraint or Pattern (VCP) without using models. This category of WAVD
methods [9, 23, 54, 55, 57, 59, 62, 67, 72, 75, 82, 83, 91, 94, 105, 109, 110, 115, 118, 119, 121,
126, 130, 151, 152] begins by identifying constraints, patterns, or policies related to a specific
vulnerability from source code, execution trace, or user inputs and then checks or monitors
violations of the constraints to detect vulnerabilities or attacks. Unlike VCPM, the VCP
approaches do not generate and use models in the process of constraint and pattern verifica-
tion. For example, Zheng et al. [57] analyzed and encoded PHP scripts into nonstring and
string constraints for detecting vulnerabilities related to remote code execution. Li et al. [62]
checked invariants to detect vulnerabilities of an application at runtime. Halfond et al. [72]
built constraints from trusted data and then used the constraints to detect SQLi attacks at
runtime. Sunkari et al. [91] designed a regular expression engine to sanitize HTTP requests
and response traffic to defend against SQLi and XSS attacks.

• Classify Using Property Extracted from Code (CPC). Such approaches [14, 65, 111, 139,
144, 146] usually extract features of known vulnerable or nonvulnerable web applications as
input for training classifiers and then use the classifiers to detect and predict vulnerabilities

, Vol. 1, No. 1, Article . Publication date: November 2021.

12 Bing Zhang et al.

of other web applications. For example, Catal et al. [14] investigated and compared several
classification algorithms to predict vulnerabilities in web services by using properties such as
cyclomatic complexity, lines of code, number of functions, and maximum nesting complexity.

• Classify Using Property Extracted from aModel (CPM). These methods [7, 56, 102, 107,
141, 152] build models first and then extract properties from models to perform classification.
For example, Shar et al. [56] first extracted the input validation and sanitization properties
based on CFG, PDG, and SDG and then applied supervised and semisupervised learning to
build vulnerability predictors. Shar et al.[107] collected static and dynamic code properties,
such as "the number of nodes which invoke functions that return only numeric, mathematic, or
dash characters," from CFG and DDG and used three different classifiers to build prediction
models to predict SQLi and XSS vulnerabilities. [141] classified the user queries by extracting
features from known benign and malicious user queries.

• Generate Attack from a Model (GAM). These methods [63, 64, 79, 84, 89, 92–94, 101, 106,
138, 155] usually use information in the models to generate or guide the generation of attacks
to test the web application. For example, Avancini et al. [106] first built the CFG and then
used symbolic execution to "generate input values to make the execution take all the identified
target branches" to detect XSS vulnerabilities.

• Generate Attack from Constraint or Pattern (GACP). These methods [15, 16, 18, 20, 21,
51, 74, 75, 98, 100, 110–114, 117, 120, 121, 125, 130, 131] generate attacks or penetration test
cases from constraints or attack patterns to determine whether the web application violates
the constraints or the attacks succeed. For example, Deepa et al. [75] invented a two-phase
approach. The first phase is a training step, which crawled the web application and analyzed
HTTP requests and responses to build the constraint sets. The second phase is the testing
step, in which the system "uses the learned set of constraints for generating the attack vectors"
to identify parameter tampering vulnerabilities and XQuery injection vulnerabilities. The
scanner of Kumar et al. [114] first crawled the web application to identify all its pages and
then runs a simulated attack on the pages. Although the attacks are not derived from abstract
constraints, the attack payloads are created based on the historical SQLi attacks, which can
be regarded as patterns. Awang et al. [18] proposed an automated framework to first generate
test cases of a web application by using SQLi attack patterns and permutation algorithms and
then analyze the test results to detect the SQLi vulnerability. [15, 98] extracted access-control
constraints from models built based on execution traces and then generated test cases to test
constraint violations.

5.3 Results of RQ2
To answer RQ2, we collected time consumption/memory consumption (TC/MC) data presented in
the evaluation and information about whether some steps of the method are automatic (Auto) to
measure the efficiency of the WAVD approaches. For measuring effectiveness, in addition to popular
metrics [156] listed in Table B.1 in Appendix B, such as false positive rate (FPR), false negative
rate (FNR), true negative rate (TNR), true positive rate (TPR), precision (P), accuracy (Acc), Recall (R),
F-measure/F1-score, code coverage (CC) [124], detection rate (DR) (i.e., number of attacks detected as
attacks / number of attacks [131, 150]), metrics such as p-value and effect size [20], area under the
receiver operating characteristic curve (AUC) [14], and fitness [123, 131], are also presented in the
evaluation of the WAVD approaches and are therefore summarized and compared.

Seventy-eight out of the 105 studies focus on injection vulnerabilities, probably because injection
vulnerabilities are top listed in OWASP 2013 and OWASP 2017. The other primary studies focus on
SM vulnerability, AL vulnerability, and vulnerabilities, e.g., side-channel [101, 102], which cannot be
classified into IPV, SM, AL, or OWASP Top 10 categories. Fifteen out of the 105 primary studies focus

, Vol. 1, No. 1, Article . Publication date: November 2021.

Efficiency and Effectiveness of web application vulnerability detection approaches: A Review 13

on multiple types of vulnerabilities, and the others focus on only one type of vulnerability. As most
primary studies focus on injection vulnerabilities, we summarized the efficiency and effectiveness
of WAVD approaches into two sub-sections, namely, the injection vulnerability section and other
vulnerability section.

5.3.1 The efficiency and effectiveness of approaches detecting injection vulnerabilities . The injection
vulnerability detection approaches’ effectiveness data are shown in Tables 5 and 6. More detailed
data, including the artifacts the approaches analyze and the number of projects included in approach
evaluations, are shown in Tables A.1 and A.2 in Appendix A.

For studies detecting injection vulnerabilities, if we consider those that reported fewer than 10%
of both FPR and FNR, and the ones that show equivalent results using other metrics, e.g., precision
(>90%), recall (>90%), and F-measure (>90%), we found 19 primary studies. These 19 studies are
marked in bold in Tables 5 and 6. The summaries of these 19 approaches are as follows.

• XSS.
◦ MFM+VCP. [23] proposed context-sensitive taint analysis with pattern matching and
reported 0% FRP and 0% FNR.

◦ MFC. The [143] approaches first identified all untrusted user inputs and sanitized them
and then stored the sanitizer snapshot and used the snapshots to detect the injection of
XSS worms achieved high precision and recall.

◦ MFC. [49] used a similar idea to the one in [143] to detect DOM-based XSS vulnerability
but analyzed elements in the DOM tree and achieved high precision and recall.

• SQLi.
◦ VCP. [72] applied positive taint analysis, which is based on identifying and tracking trusted
data, and syntax-aware evaluation, which considers the context in which the trusted and
untrusted data are used and reports 0% FPR and 0% FNR.

◦ MFC. [149] measured document similarity to identify SQLi and achieved high precision
and recall.

◦ GACP. [84] generated SQLi test cases by combining various patterns, e.g., test statement
patterns and control patterns, and injection points of the system, and achieved 0% FPR and
0% FNR.

◦ GACP+GAM. [92] first summarized existing SQLi payload patterns using SQLIV Penetra-
tion Test Finite State Machine (SPT-FSM) models, and then generate SQLi test cases from
these models.

◦ VCPM. [153] extracted patterns of benign and malicious SQL commands from historical
data and then used the patterns to identify malicious SQL commands. The evaluations
evaluations of [153] reported low FPRs and low FNRs.

• SQLi and XSS. Many studies try to detect SQLi and XSS attacks or vulnerabilities using one
approach.
◦ MFM+VCPM. The approach in [150] combined taint analysis with taint tracking, which is
based on runtime monitoring and reported 0% FPR and 0% FNR. However, the total number
of true SQLi and XSS vulnerabilities identified in the evaluation of [150] was small, which
indicates that evaluation with more applications may be needed.

◦ GAM. [79] applied a goal-directed model-checking system that automatically generates
attacks and reports 0% FPR and 0% FNR, but the approach requires that "the analyst
specifies the vulnerability of interest, and care must be taken when developing the specification
—missing a propagator may lead to false negatives while missing sanitizers is likely to lead to
many false positives." [138] generates test cases using logic programming and model-based
testing. Although [138] reports low FPRs and FNRs, the FPRs and FNRs may also be highly

, Vol. 1, No. 1, Article . Publication date: November 2021.

14 Bing Zhang et al.

Table 5. The effectiveness of WAVD methods on Input Validation vulnerabilities (PartI)

ID Vulnerability Type FPR FNR TPR Precision Other metrics Ref.
1 XSS MFM 33.3%-60% Cac. [12]
2 XSS MFM 0.00% [77]
3 XSS MFM 26.20% [76]
4 XSS MFM+VCP 0.00% 0.00% [23]
5 XSS MFM+VCP [55]
6 XSS MFC 6.7%-17.9% 82.1%-93.3% 88.5%-97% Cac. [58]

7 XSS MFC 0.5%-0.667% 0.8%-1.8% 98.2% - 99.1% 94.1%-95.8%
F-measure>96.1%.
Cac. [143]

8 XSS CPC 69.2%-92%
Recall: 69.5%-92.6%.
F-measure: 68.2%-92.6%.
Accuracy: 69.5%-92.6%.

[146]

9 XSS VCP 0.00% [59]
10 XSS VCPM 10%-15% 0.00% [154]

11 XSS GACP Reported Phi and
Fitness graphs. [131]

12 XSS GACP+CPC [111]
13 XSS GAM [63]
14 XSS GAM [106]
15 XSS GAM+VCP [94]

16 DOM-based
XSS MFC 98.4%-99.2% 97.7%-99.2% F-measure: >98%. [49]

17 SQLi VCP 0.00% 0.00% [72]
18 SQLi MFM+VCPM [69]
19 SQLi MFC 20.50% [116]
20 SQLi MFC Accuracy: 100%. [132]

21 SQLi MFC 0.65%-1.17% 1.07%-3.36% 97.96%-98.93% 93.17%-97.09%
F1-score: 95.51%-
98.04% [149]

22 SQLi MFC Detection rate: 100%. [96]
23 SQLi MFC Detection rate: 100% [136]
24 SQLi GACP 0.00% 100.00% Cac. [114]
25 SQLi GACP Identified 29 VLs. [18]
26 SQLi GACP 7 Scanner compared. [112]
27 SQLi GACP [113]

28 SQLi GACP P-value <0.001
and effect size (d>1). [20]

29 SQLi GACP 0.00% 0.00% Detection rate: 100%. [84]
30 SQLi GACP+GAM 0.34% Recall: 97.5%. [92]
31 SQLi GAM F-measure: 257.33. [155]
32 SQLi GAM 0.05%-0.08% 97.6%-100% [93]
33 SQLi VCPM 16.20% 5.75% [148]
34 SQLi VCP 0.00% [115]
35 SQLi VCP 0.00% [83]
36 SQLi VCPM 0.00% [78]
37 SQLi VCPM 0%- 0.6% 0.00% 100% 12.3%-100% Cac. [153]
38 SQLi, XSS MFM 33.3%-100% Cac. [86]

39 SQLi, XSS MFM SQLi: 35%;
XSS: 37% [81]

40 Second order
SQLi, XSS MFM 21.00% 79.00% [60]

41 SQLi, XSS MFM+VCPM XSS: 60.5%-100%;
SQLi: 62.5%-84% Cac. [53]

42 SQLi, XSS MFM+VCPM 0.00% 0.00% [150]

43
SQLi
First order XSS
Second order XSS

MFM+GAM

SQLi 0%
First order
XSS: 42%
Second order
XSS: 0%

Code coverage<50%. [64]

44 SQLi, XSS MFC [122]
45 SQLi, XSS MFC+VCP [54]
46 SQLi, XSS GACP Low* Low* [100]

47 SQLi, XSS GACP SQLi: 87.5%;
XSS: 100% [117]

48 SQLi, XSS GAM 0.00% 0.00% [79]
49 SQLi, XSS GAM 4%-6.4% 0%-4.8% [138]

50 SQLi, XSS CPC 22.1%-84.9% Recall: 13.8%-85.1%.
F1-score: 16.9%-84.8%. [139]

51 SQLi, XSS CPC XSS: 6%-9%,
SQLi: 11%-16%

XSS: 65%-78%;
SQLi: 92%-93%

XSS: 78%-82%;
SQLi: 90%-92% Accuracy>=85%. [65]

52 SQLi, XSS CPM

Supervised
predicator: 85%;
Unsupervised
predicator: 39%

Recall of supervised
predicator: 90%.
Recall of unsupervised
predicator: 76%.

[107]

53 SQLi, XSS VCP Low*

SQLi accuracy:
89.99%-95.99%.
XSS accuracy:
73.01%-83%.

[91]

, Vol. 1, No. 1, Article . Publication date: November 2021.

Efficiency and Effectiveness of web application vulnerability detection approaches: A Review 15

Table 6. The effectiveness of WAVD methods on Input Validation vulnerabilities (PartII)

ID Vulnerability Type FPR FNR TPR Precision Other metrics Ref.
54 SQLi, XSS VCP Detection rate: 80%. [118]
55 SQLi, XSS VCP 0.00% 0.00% [119]

56 SQLi, XSS VCPM Low* SQLi: 87%;
XSS: 86% [95]

57 File injection MFM [145]
58 Remote code execution VCP 22.00% [57]([126])
59 Remote code execution VCP 0.00% [126]

60 SPARQLi/SPARULi VCP+GACP 0%-20% Detection rate:
80%-100%. [130]

61 XQuery injection VCP+GACP 8.00% 92.00% 95.80% Code coverage: High*. [75]

62
Inconsistency of
client and server-side
input validation

MFM 0.00% 0.00% [80]

63 Object injection MFC [87]
64 SQLi for web service GACP 0.00% 74.05% [125]
65 SQLi for web service GACP+VCP 0.00% 100.00% Cac. [110]

66 SQLi, XSS, XMLi,
XPathi, LDAPi, MFM Reduce security slices

to 76%. [6]

67 SQLi, XSS, CRLFi MFM 0% - 28% 0%-24% 72%-100% Reported 73
unknown VLs. [61]

68 SQLi, XSS, XPathi,
XMLi, LDAPi MFM+VCPM 0.00% 2.00% 98.00% 100.00% Cac. [142]

69
SQLi, XSS, RFI,
LFI, DT/PT, SCD,
OSCI, PHPCI

MFM+CPM Low* 0.00% 92.50% Accuracy: 92.1%. [7]

70 SQLi, XSS, RFI, LFI,
DT/PT, PHPCI MFM+CPM 12.00% 0.00% 95.00% Accuracy: 96%. [52]

71 Code injection, XSS CPC <80% AUC: 0.616-0.765. [14]

72
SQLi, XSS, Remote
code injection,
and File injection

CPM CF: 0%-7%;
RF: 1%-11%

CF: 42%-80%;
RF: 22%-66%

CF: 59%-81%;
RF: 26%-68% [56]

73 SQLi, XSS, Directory
Traversal, RFI CPM 0.001%-0.03% 99.95%-100% F-measure: 99.5%-99.96%. [141]

74 Injection attacks VCP [82]
([127, 128])

75 SQLi, XSS, command
injection, RFI, VCP 0.88% Detection rate: 82.57%. [151]

76 SQLi and stored
injection attacks VCPM 0.00% 0.00% [140]

77 SQLi, File injection,
OSCI GACP Low* [51]

78 SQLi, XSS, LFI/RFI GACP Accuracy: 20%-90%.
Mean of accuracy: 54%. [16]

LFI: Local File Inclusion; RFI: Remote File Inclusion; DTPT: Directory Traversal or Path Traversal; OSCI: OS Command Injection; PHPCI: PHP Command
Injection; SCD: Source Code Disclosure;
FPR: False positive rate; FNR: False negative rate; TPR: true positive rate;
CF: Co-trained Random Forest; RF: RandomForest
Cac. means that we calculated the value based on data in the primary study. The reason for calculation and detailed calculation methods are explained in Table
B.2 in Appendix B.
Low* and High* mean that the primary study did not provide exact numbers but give qualitative results like low or high.
In the reference column, the reference in the parenthesis is a following up and evaluation study of the one in the bracket.

dependent on the quality of the models. In addition, the evaluation of [138] is based on
only one vulnerable application.

◦ VCP. [119] requires analysts to manually set rules and then uses the rules to match the
application’s response to the injected attack. If the response matches a specific rule, the
vulnerability will be reported. Although the evaluation in [119] reported 0% FPR and 0%
FNR of detection SQLi and XSS attacks, the effectiveness of the tool in [119] may be highly
dependent on the quality of the rules.

• Other kinds of injection vulnerability. In addition to SQLi and XSS, a few studies focus
on other kinds of injection vulnerabilities. The WAVD approaches report complete evaluation
results and high FNR and FPR values are [75, 80]. [75] focuses on detecting XQuery injection
and [80] focuses on detecting inconsistency of client and server-side input validation.
◦ XQuery injection. [75] used a VCP plus GACP approach that uses black-box fuzzing to
detect XQuery injection vulnerabilities and achieved low FNR and high precision.

, Vol. 1, No. 1, Article . Publication date: November 2021.

16 Bing Zhang et al.

◦ Inconsistency of client and server-side input validation. [80] used aMFM approach
that models both client-side and server-side input validation functions to deterministic
finite automata (DFA) and compares the DFAs to identify inconsistencies between them.
Evaluation of the approach in [80] shows that the approach can find all inconsistencies
without false positives.

• Multiple injection vulnerabilities. Some studies have attempted to identify several injec-
tion vulnerabilities using one approach or in one study.
◦ MFM+VCPM. The study [142] was performed by the same team as [6] and focused on
detecting XSS, SQLi, XML injection, XPath injection, and LDAP injection. In addition to
security slicing, [142] enforced constraints on the input string for different vulnerabilities
and achieved 98% TPR and 100% precision.

◦ MFM+CPM. [7, 52] are from the same group of researchers and focus on detecting XSS,
SQLi, local file inclusion, PHP command injection, and so on. Their idea was to use a
machine learning approach to reduce the false positives of taint analysis. The evaluations
in [7, 52] showed that such a combination can achieve 92.1% accuracy [7] and 96% accuracy
[52].

◦ CPM. [141] applied an adaptive learning algorithm to evolve the vulnerability predic-
tion model based on unknown queries that are classified as benign and malicious by a
web application firewall (WAF) and achieved a F-measure of 94.79% and 0.09% FPR. The
vulnerabilities covered in [141] include XSS, SQLi, remote file inclusion, and directory
traversal.

◦ VCPM. [140] focused on various injection attack targeting at DBMSs and proposed a
method for catching SQLi attacks and stored injection attacks, which was obtained from a
training phase, by comparing queries with query models, and the method achieved 0% FPR
and 0% FNR.

From a close look at the 19 approaches, we find the following:

• Using taint analysis solely, e.g., [12, 64, 81], may result in a high false-positive rate because
many paths of web applications are unreachable from static analysis. When the unreachable
path behavior conforms to the vulnerability behavior, it is misclassified as vulnerable, which
results in high FPRs.

• Six out of the 19 studies applied MFM or combined MFMwith other approaches, such asMFM
[80],MFM+VCP [23], MFM+VCPM [142],MFM+VCPM [150], andMFM+CPM [7, 52].

• Combining the advantages of multiple techniques can reduce FPR and FNR. For example, to
detect XSS and SQLi, a combination of goal-directed model-checking and attack generation in
[79] leads to 0% FPR and 0% FNR. GACP+GAM [92] and VCP+GACP [75] combined several
meta-approaches and achieved low FPR and FNR.

• The specific mechanisms proposed may also reduce FPR and FNR. For example, Medeiros et
al. [140] proposed a mechanism that is trained by forcing calls to all queries in an application
to generate query models. The models are then updated after a new release of an application.

Besides analyzing the 19 studies, we had a close look at other injection vulnerability detection
approaches, which report low FPR. We find the following:

• Complete attack rule libraries and signatures, full coverage of constraints, and full coverage of
structure tracking can reduce FPR. For example, Singh et al. [114] attempted to make different
libraries for different databases to expand the attack rule libraries to avoid FPR. Zheng et al.
[126] indicated that a string-only analysis will likely miss pure integer or string-to-integer
constraints (e.g., length of the string) and will, therefore, result in path constraints that are not

, Vol. 1, No. 1, Article . Publication date: November 2021.

Efficiency and Effectiveness of web application vulnerability detection approaches: A Review 17

precise enough and lead to false positives. Thus, they proposed a complete string constraint
solver Z3-Str that can reduce FPR to 0%.

A high-level summary of time consumption, automation, and memory consumption of the
injection vulnerability detection approaches is as follows. More detailed efficiency data can be
found in Tables A.1 and A.2 in Appendix.

• Time and memory consumption. The time and memory consumption reported in
the primary studies related to the studies’ experimental settings are not comparable.
It is essential to report such data in evaluation to help users estimate the hardware resources
required to use the approach and performance overhead. Only fifty percent (39 out of 78) of
the primary studies present the time consumption of their methods or tools, and only eight
articles [55, 60, 61, 63, 80, 132, 136, 145] analyzed and reported memory consumption.

• Automation. Not all WAVD methods for detecting injection vulnerabilities are fully auto-
mated. The CPM approach, e.g., [107, 141], and the CPC approach, e.g., [65], need manual
tagging of the vulnerable code to build the prediction model. The VCP methods [55, 83]
allow users to add rules manually to complement the automatically generated rules. In the
GACP method in [113], one step is web crawling. In addition to automatic web crawling,
crawling can also be performed manually.

5.3.2 The efficiency and effectiveness of approaches detecting other vulnerabilities. The other vul-
nerability detection approaches’ effectiveness data are shown in Table 7. More detailed such data
are included in Table A.3 in Appendix A.

For studies detecting other vulnerabilities, we found eight approaches if we choose approaches by
applying similar FPR and FNR criteria as the injection vulnerabilities. The studies are marked in bold
in Table 7. These eight studies focused on detecting vulnerabilities include parameter tampering,
access-control, workflow bypass, path traversal, horizontal privilege escalation, clickjacking, and
phishing website. The summaries of these eight approaches are as follows.

• Parameter tampering.
◦ VCP. "Parameter tampering attack vectors sometimes arise because the developer simply fails
to realize that the client code checks should be replicated on the server-side [121]". [109] used
the constraints generated from the client-side to verify the server-side code. Bisht et al.
[121] summarized the reason for high FPR and FRN of detecting parameter tampering,
which either pertained to the max-length constraints on form inputs that could not be
exploited to any serious vulnerability or related to rewriting by the server without any
observable difference in HTML output. Bisht et al. addressed these issues in [109] and
achieved high precision and recall.

◦ VCP or VCPM + GACP. The approaches in [74, 75] first learn the parameter constraint
from analyzing the client-side code and legal HTTP requests and responses and then
generate illegal requests based on the legal requests to attack the server-side application
to determine whether the illegal requests are checked at the server-side. The approach in
[74] also detects access-control and workflow bypass vulnerabilities well.

• Path traversal.
◦ MFM. Through fine-grained dataflow analysis of PHP built-in features, the approach in
[61] identified three path traversal vulnerabilities from five popular applications with 0%
FPR. Although the authors reported 0% FNR in [61], they used only Common Vulnerabilities
and Exposures (CVE) entries to measure the number of path traversal vulnerabilities in the
tested applications, which may not be very accurate. Although studies [7, 52, 100] reported

, Vol. 1, No. 1, Article . Publication date: November 2021.

18 Bing Zhang et al.

low FPR and FNR of several vulnerabilities, including path traversal, they did not report
exact FPR and FNR values for detecting each vulnerability.

• Horizontal privilege escalation.
◦ VCP. The approach in [105] first analyzes the application code to identify access-control
constraints and then checks if the constraints are consistent across the application. Any in-
consistencies identified may indicate a potential access-control vulnerability. The approach
in [105] identifies several zero-day authorization vulnerabilities with no false positives.

• Clickjacking.
◦ MFM. The approach in [147] first builds a behavior model based on Finite State Automaton
(FSA) from known clickjacking attacks and legitimate web pages. If the sequence of states
of the user matches the attack signature, which is the information embedded in FSA, an
attack warning is raised.

◦ VCP. [152] presented a VCP idea of using a client-side proxy to filter malicious input by
analyzing the parameter value of request pages and JavaScript code of the response pages
to detect clickjacking vulnerabilities. [147, 152] seemed to perform well with FPR up to
7.8% and 0% FNR in [147, 152]. However, user behavior (e.g., clicking) has a significant
influence on FPR and FNR when detecting clickjacking vulnerabilities. All evaluations of
the clickjacking approaches are carried out in a laboratory, which may have eliminated the
influence of human factors and therefore showed effective results.

• Phishing website.
◦ CPC. [144] presented an approach that uses machine learning to classify and predict
phishing websites. The evaluation classified 9,076 test websites. Although the authors in
[144] reported the high accuracy of their approach, they did not give a detailed list of the
tested websites.

The evaluation of other WAVD approaches listed in Table 7 did not show fewer than 10% of both
FPR and FNR. The approaches and their effectiveness are summarized as follows.

• Path disclosure. [14] introduced a CPC approach and claimed that their machine learning
approach could detect path disclosure vulnerability. However, no details about the number of
path disclosure vulnerabilities identified were presented in [14].

• Logic vulnerability. Logic vulnerability is difficult to identify because it is specific to the
intended functionality of the application [88].
◦ VCPM. [66] test the application at each state by constructing unexpected input vectors
and evaluate corresponding web responses to detect parameter manipulation and forceful
browsing according to the discrepancies between the intended FSM and the implementation
FSM, and finally identified unknown logic vulnerabilities but reported 7 false positives out
of 18 true positives.

◦ GAM. [89] began by modeling the behavior of an application based on the execution trace
of benign applications and then generated attacks based on known attack patterns. The
approaches in [89] identified unknown logic vulnerabilities but reported 6.6% TPR.

◦ VCPM. [88] identified invariants from the application and then used model checking to
determine whether the invariants were violated. The approach presented in [88] identified
unknown logic vulnerabilities but reported 8 false positives out of 48 true positives.

• Unvalidated redirect and insure direct object reference.
◦ GACP. [100] generated attacks bymodifying suspicious URLs to detect unvalidated redirect
vulnerability and by modifying object value to detect insecure direct object reference. The
tool in [100] was compared with three scanners and did not cover these two vulnerabilities.
Although the overall FPR and FNR of the tool in [100] was higher than the three compared

, Vol. 1, No. 1, Article . Publication date: November 2021.

Efficiency and Effectiveness of web application vulnerability detection approaches: A Review 19

Table 7. The effectiveness of WAVD methods on other vulnerabilities

ID Vulnerability Type FPR FNR TPR Precision Other metrics Ref.
1 Parameter tampering GACP 1.12% [120]

2 Parameter tampering VCP 0.00% 0.00%
Identified 45
unknown VLs [109]

3 Parameter tampering VCP+GACP FP: 43. [121]
([109])

4 Parameter tampering VCP+GACP 0.00% 0.00% 100.00% 100.00%
Code coverage: High*;
Cac. [75]

5
Parameter tampering
Access-control
Workflow bypass

VCPM+GACP 0%-5% 0%-6.25% 97.9% 99.10%

Parameter tampering:
0% FP and FN.
Access control:
5% FP and 6.25% FN.
Workflow bypass:
0% FP and FN.

[74]

6 Path traversal MFM 0.00% 0.00%
Built-in functions
coverage: 89%.
Report 73 unknown VLs.

[61]

7 Path traversal MFM 7.00% 93.00%

Identified 159
second-order VLs.
No detailed path
traversal data.

[60]

8 Path traversal MFM+CPM Low* 0.00% 92.50%
Accuracy: 92.1%.
No detailed path
traversal data.

[7]

9 Path traversal MFM+CPM 12.00% 0.00% 95.00% Does not identify
any path traversal VL [52]

10 Path disclosure,
Authorization issue CPC AUC: 0.616-0.765. [14]

11 Logic vulnerabilities VCPM FB: 0-33.3%
PM: 0-100%

FB: 0-66.7%
PM: 0-100%

FB: 0-100%
PM: 0-88.9% Cac. [66]

12 Logic vulnerabilities GAM 6.60% 6.6% real bugs; 93.4%
harmless presentation. [89]

13 Logic vulnerabilities VCPM 86.00% [88]

14
Unvalidated redirects
and insecure direct
object references

GACP Low* Low* No exact FPR or FNR data. [100]

15 Insecure Direct
Object References. MFM High* 97.00% [71]

16 Execution after redirect MFM 59.90% [108]
17 State violation VCP Low* [59]
18 State violation VCP Low* [62]
19 State violation VCPM Low* 0.00% [70]

20 Missing authorization
check MFM+VCPM Low* Reported 47 unknown VLs. [69]

21 Access-control errors VCP Identified 38
access-control VLs. [67]

22 Authorization logic error VCP Low* Low* [9]

23 Horizontal privilege
escalation VCP 0.00% 100.00% Cac. [105]

24 Access control VCPM Low* Coverage: 79.33%-100%. [68]

25 Access control VCPM+GACP 0.00% 100.00% Code coverage:
88.16%-92.21%. Cac. [15]

26 Access control VCPM+GACP Low* Code coverage:
58.7%-81.87%. [98]

27 Clickjacking MFC 0%-5% Accuracy: >80%. [90]
28 Clickjacking MFM 0.28%-7% 0.00% 92.22%-98.78% [147]
29 Clickjacking VCP 0%-7.84% 0.00% [152]
30 Session fixation MFM [11]

31 CSRF GACP Accuracy: 20%-90%.
Mean of accuracy: 54%. [16]

32 CSRF CPC 22.1%-84.9% Recall: 13.8%-85.1%.
F1-score: 16.9%-84.8%. [139]

33 CSRF CPC AUC: 0.616-0.765. [14]
34 Side channel CPM 6.8%-96.3% [102]
35 Side channel GAM 0.00% [101]
36 DoS MFM+VCPM High* [69]
37 Second-order DoS GACP 33.00% 42.1%-100% Cac. [21]
38 Configuration GACP Low* Low* No exact FPR or FNR data. [100]

39 Configuration MFC Identified more VLs than
three other scanners. [50]

40 Phishing website CPC 4.4%-4.9% 0.55%-0.74% 99.26%-99.45% 87.56%-88.89%
Accuracy:
96.23%-96.58. Cac. [144]

41 Web shell MFM 0.00% 81.24% [86]

42 No information
in the paper MFC Average VLs per site: 13.1. [85]

FPR: False positive rate; FNR: False negative rate; TPR: true positive rate; FB: forceful browsing; PM: parameter manipulation; Cac. means that we calculated the
value based on data in the primary study. The reason for calculation and detailed calculation methods are explained in Table B.2 in Appendix B. Low* and High*
mean that the primary study did not provide exact numbers but give qualitative results like low or high. In the reference column, the reference in the parenthesis
is a following up and evaluation study of the one in the bracket. , Vol. 1, No. 1, Article . Publication date: November 2021.

20 Bing Zhang et al.

scanners, the exact FPR and FNR of detecting unvalidated redirect vulnerability was not
reported.

◦ MFM. [71] used taint analysis to identify insecure direct object reference vulnerability,
and the approach reported several false positives.

• Execution after redirect (EAR). EAR is a logic flaw when the indented execution of the
server-side code is expected to halt after redirection, but the execution continues. [108] used
MFM approach and was the only study focusing on this vulnerability. The approach analyzed
the control flow of the code to determine whether the execution halted after redirection.
From 1,173 OSS projects, the tool in [108] identified 3,944 instances of the EAR, in which 855
were vulnerable.

• State violation. State violation (also called workflow violation) occurs if there exists a path
leading to restrictive function with insufficient or erroneous checking of session variables [62].
[59, 62] presented VCP-type approaches that included two phases to detect state violations.
The first phase learned input, input/output, or input/output sequence invariants [62] or axioms
[59] from attack-free execution of the application. The second phase used the invariants or
axioms to evaluate each web request and responses to detect any violations. [62] and [59]
used a similar testbed and reported low FPR without reporting FNR data. [70] introduced a
VCPM approach that extracted invariants and then used the invariants to identify malicious
SQL commands. Evaluations in [70] reported no false negative. The authors of [70] claimed
low FPRs without giving concrete numbers. The authors analyzed the false positives and
concluded that false positives "can be introduced by the incomplete exploration of user simulators,
which is known as an inherent challenge for dynamic analysis techniques."

• Other access control vulnerabilities. [69] described aMFM approach that uses taint anal-
ysis to identify missing authorization checks and report low FPRs. The VCP-type approach
in [67] "starts with a high-level specification that indicates the conditional statement of a correct
access-control check and automatically computes an inter-procedural access-control template
(ACT)" and then used ACT to find faulty access-control logic that misses the conditional
statements. Several unknown vulnerabilities were detected by the approach in [67] and were
also auto fixed. However, [67] did not report FPR or FNR data. The VCP-type algorithm in [9]
first monitors HTTP traffic and builds user-data-access policies (a developer can also update
the policies) and then implements a proxy to observe the HTTP traffic to detect unauthorized
data disclosure with low FPR. [68] applied VCPM approach, it first performs static analysis
to build sitemaps for different roles from CFG and then directly accesses privileged pages
from unprivileged roles to detect missing or insufficient access checks. The approaches in
[15, 98] combine VCPM andGACP, which start with a dynamic analysis to identify database
access operations that are allowed for each role and user and then generate test cases to
verify whether a role or a user can perform a privilege escalation attack. Both tools in [15]
and [98] reported low FPRs, but did not report FNRs.

• Session fixation. Only one study [11] focused on detection session fixation vulnerability,
and the approach was aMFM-type approach. It abstracts the session states and then check
the session’s abstract value at the authentication instruction. The evaluation of the approach
in [11] only presents its speed without giving information about its FPR and FNR.

• CSRF. [16] proposed a GACP-type approach, i.e., generating penetration test cases from
known attacks to detect CSRF vulnerabilities, and [14, 139] used the CPC approach to predict
the CSRF vulnerabilities from code features of vulnerable historical code.

• Side-channel. The approach in [102] was based on classifying using models, i.e., an CPM
approach, and its precision varied from 6.8% to 96.3% in the evaluation. The GAM-type
approach in [101] began by detecting the side channels of a web application using models and

, Vol. 1, No. 1, Article . Publication date: November 2021.

Efficiency and Effectiveness of web application vulnerability detection approaches: A Review 21

then performing "a rerun test to assess the amount of information disclosed." The evaluations in
[101, 102] are based on a small number of web applications, and no FNR data were reported.

• DoS. [69] used taint analysis and symbolic execution, which is a combination of MFM and
VCPM, to identify DoS vulnerabilities, and the FPR was high.

• Second-order DoS. Only [21] studied second-order DoS using the GACP approach, which
uses backwards symbolic execution algorithm for generating candidate attack vectors. How-
ever, the approach reports 33% FPR.

• Configuration. [50, 100] invented scanners to identify configuration vulnerabilities and
used MFC approach and GACP approach respectively. However, the scanner in [50] was
only evaluated by comparison with other scanners, which were not designed for identifying
configuration vulnerabilities, and no FNR data were reported. The exact FNR and FPR of the
scanner in [100] to detect configuration vulnerability were not reported either.

• Web shell. "Aweb shell is a script that can be run on a webserver to enable remote administration
of the infected server [86]." A MFM method, which combines taint analysis and pattern
matching, was proposed in [86] to detect web shells.

• Any vulnerability. [85] presented aMFC approach to compare the source code of a web
application with the fingerprint feature of vulnerable code to detect vulnerabilities. However,
the authors in [85] did not explain what types of vulnerabilities their tool can detect, and
their evaluations reported only the speed of the tool without giving FPR or FNR.

A high-level summary of time consumption, automation, and memory consumption of the above
mentioned approaches is below. More detailed efficiency data can be found in Table A.3 in Appendix.

• Time and memory consumption. Twenty one out of the 42 primary studies in Table 7
reported their time consumption, and only three studies [60, 61, 109] reported their memory
consumption.

• Automation. In the VCPM+GACP approach implemented in [74], manual traces can be
combined with automatically generated traces to infer the control flow of the application.
Similarly, manual intervention from the tester can also be applied in the VCP+GACP ap-
proach in [121] to complement the inputs from the client to represent a complete picture of
the valid logic of a system. CPC approaches [14, 139, 144], usually need manual tagging to
build the prediction models.

5.3.3 Publicly available tools derived from the approaches. Although 61.9% of the 105 primary
studies proposed and developed WAVD tools, only 13.3% of them provided URLs of their tools. The
URLs of tools are listed in Table 8. However, most of the URLs are no longer valid or accessible.

5.4 Results of RQ3
To answer RQ3, we first analyzed the test suites and web applications used to evaluate the primary
studies’ WAVD approaches. We then summarized the vulnerabilities inserted or identified in the
test suites and web applications.

Although 92 of the 105 primary studies presented detailed information on the test suites or web
applications they used, 13 studies did not provide details. For example, in [20, 84, 85, 90, 111, 115,
144, 147, 151, 152], the authors only stated that "we evaluated our approach on n web applications".
In [130, 145], the authors only mentioned the test suites, e.g., OWASP top 10 attack test suites
and Stivalet test suites [157], without specifying which parts of the test suites are used in their
evaluation. In [132], we could not find information about the vulnerable web applications used in
their evaluation. When we tried to obtain access to the test suites or web applications listed in the
primary studies, we found many invalid links. This is probably because of the update of the servers

, Vol. 1, No. 1, Article . Publication date: November 2021.

22 Bing Zhang et al.

Table 8. The URL of tools

Tool name and Ref. Vulnerabilities covered by the tool URL
PhpMinerI [65, 107] SQLi, XSS *http://sharlwinkhin.com/phpminer.html
RIPS [61] SQLi, XSS,CRLFi http://sourceforge.net/projects/rips-scanner/
WAPTEC [109] Parameter tampering *http://sisl.rites.uic.edu/waptec
PAPAS [120] Parameter tampering *http://papas.iseclab
THAPS [53] SQLi, XSS *https://bitbucket.org/heinep/thaps/
Notamper [121] Parameter tampering *http://sisl.rites.uic.edu/notamper
PIUIVT [118] SQLi, XSS *https://sites.google.com/site/asergrp/projects/PIUIVT
Z3-str [126] Remote code execution *http://www.cs.purdue.edu/homes/zheng16/str
JOACO [142] SQLi, XSS, XPathi, XMLi, LDAPi https://sites.google.com/site/joacosite/home
XSSDE [77] XSS *http://sharlwinkhin.com/security-auditing.html
Black-box tool [102] Side channel http://www.cs.virginia.edu/sca
Ardilla [64] SQLi, XSS http://groups.csail.mit.edu/pag/ardilla/
White-box tool [108] Execution after redirect https://github.com/adamdoupe/find_ear_rails

* The URL is no longer valid or accessible on 9th February 2021.

that host the test suite. The test suites and web applications that were not accessible were excluded
from our analysis.

As shown in Figure 4, most primary studies focus on using applications developed using Java/JSP
or PHP to evaluate their WAVD approaches. Only a few studies focus on web applications developed
using other programming languages. For example, [108] evaluated its approach using 59,255 open-
source web applications developed using Ruby on Rails, and [82] used the JavaScript test suite. We
listed the applications and test suites used at least three times in primary studies for PHP-based web
applications in Table 9. The most frequently used PHP-based web applications to evaluate WAVD
approaches are WordPress, SCARF, and OsCommerce. We listed Java-based web applications and
test suites used at least twice in primary studies in Table 10. Several Java-based web applications in
the AMNESIA [73] and JOACO-Suite were the most popularly used ones.
From the primary studies, we found a few large-scale test suites, which have not been used

frequently yet. However, we believe these test suites can contribute to evaluating vulnerability
detection in the future.

• Complete JOACO-Suite includes eleven open-source security benchmark applications and
Java web applications/services that were used in [142], with known XMLi, LDAPi, SQLi,
XPathi, and XSS vulnerabilities. As shown in Table 10, some of the open-source applications
in this suite, such as WebGoat, Roller, and TPC-APP, have been used in the evaluation of
WAVD approaches in primary studies. We believe that other applications, such as Bodgeit
[163], openmrs-module-legacyui [164], and Regain [165], can also be valuable to evaluate
WAVD approaches in the future.

• The HTTP dataset CSIC 2010 [166] used in [141] contains 36,000 benign requests and
25,000 malicious requests, which makes this dataset suitable for comparing malicious query
detection systems. The dataset contains the normal traffic set for training and the test, and
the malicious traffic set for the test.

• Suite-9408 PHP source code [167] used in [146] has 5,600 nonvulnerable files and 3,808
vulnerable files. The test suite is more suitable than NVD [160], Bugzilla [161], and NIST [162]
for evaluating XSS vulnerability detection approaches because NVD and Bugzilla provide
only vulnerability information without providing source code, and NITS provides a dataset
with only 80 PHP source code files.

• StrangerJ-Suite is a security benchmark extracted fromfive real-world PHPweb applications:
MyEasyMarket, PBLguestbook, proManager, BloggIT, and aphpkb. StrangerJ-Suite has been
used to evaluate the effectiveness of the Stranger tool [158] which can automatically detect

, Vol. 1, No. 1, Article . Publication date: November 2021.

Efficiency and Effectiveness of web application vulnerability detection approaches: A Review 23

Table 9. PHP-based applications

FQ Application URL
Vulnerabilities covered
by primary studies Reference

13 WordPress wordpress.org/ SQLi, XSS, Configuration, RFI, LFI,
SCD, DT, PPCI, DoS, IDOR, UR.

[9, 21, 49, 50, 52–54, 86, 95]
[83, 100, 153] [143]

11 Scarf www.sourceforge.net/projects/scarf/files/ DoS, XSS, SQLi. LFI, RCE,
Access-control, PM.

[21, 60, 66–68, 98, 143]
[62, 70, 74, 105]

9 OsCommerce www.oscommerce.com/ XSS, DoS, Workflow violation, SQLi,
LFI, RCE, Var tampering, PT.

[21, 51, 59, 60, 89, 143]
[61, 62, 74]

9 PHPMyAdmin *www.phpmyadmin.net/ CI, SQLi, CSRF, XSS, PD, DD,
Configuration, RCE, File inclusion,

[9, 50, 56, 57, 65, 107, 126]
[14, 139]

8 Wackopicko github.com/adamdoupe/WackoPicko.git PM, SQLi, XSS, Access control,
Workflow violation [18, 66, 91, 98, 143] [62, 70, 74]

7 Drupal www.drupal.org/download SQLi, XSS, CI, CSRF, PD,
Configuration, [9, 49, 50, 55] [14, 139, 143]

7 PhpBB www.phpbb.com/ XSS, Configuration, SQLi,
XPathi, OSCI, File include, PT. [9, 50, 51, 58, 83, 143] [61]

7 MyBB sourceforge.net/projects/mybb/
Configuration, XSS, SQLi,
PM, PT, RFI, OSCI, File write,
Access-control

[50, 67, 68, 83, 95, 140] [61]

6 Schoolmate sourceforge.net/projects/schoolmate/ XSS, SQLi, MFE, RCE, File inclusion [56, 63–65, 140] [107]

6 Moodle sourceforge.net/projects/moodle/ CI, CSRF, SQLi, XSS, PD, MFE,
Configuration [50, 63, 83, 95] [14, 139]

6 Yapig
sourceforge.net/projects/yapig/files/
yapig/yapig%200.95b/ SQLi, XSS, Access-control [55, 65, 67, 68, 106] [107]

5 Faqforge sourceforge.net/projects/faqforge/ SQLi, XSS, RCE, MFE, File inclusion [56, 63–65, 107]

5 DVWA www.dvwa.co.uk File inclusion, XSS, SQLi, CSRF,
LFI/ RFI, CJ, UR, XPathi, OSCI, [16, 51, 91, 138, 155]

5 MyBloggie sourceforge.net/projects/mybloggie/ XSS, SQLi. LFI, RCE, PM, DoS,
Access control [60, 69, 109, 121] [105]

5 BloggIT *www.sourceforge.net/ XSS, SQLI, PM, Workflow violation [59, 66, 98, 143] [62]

4 mutillidae sourceforge.net/projects/mutillidae SQLi, XSS, Configuration, UR,
IDOR, Session fixation [11, 18, 91, 100]

4 Webchess sourceforge.net/projects/webchess/ XSS, SQLi, MFE, RFI, OSCI, RCI, [63–65, 140]

4 Events lister www.exploit-db.com/exploits/17554/ PM, Forceful browsing attacks,
Access-control [66–68, 98]

4 Minibloggie www.exploit-db.com/exploits/6782/ Access-control, DoS, SQLi [67, 69, 98] [105]
4 OpenIT sourceforge.net/projects/openit/ Access-control, PM [66, 121] [70, 74]

3 HotCRP www.read.seas.harvard.edu/∼kohler/hotcrp/ DoS, XSS, SQLi. LFI, RCE,
Var tampering, PT. [21, 60, 61]

3 Dnscript dnscrypt.info/ Access-control, DoS, SQLi [67, 69, 105]
3 PunBB github.com/punbb/punbb SQLi, XSS, Workflow violation [59, 83, 95]
3 phpMyFAQ www.phpmyfaq.de/ RCE, Session fixation [11, 57, 126]

* The URL is no longer valid or accessible on 9th February 2021.
FQ: Frequency of use; OSCI: Operating system command injection; CSRF: Cross-site request forgery; LFI/ RFI: Local/Remote File inclusion; CI: Code injection;
SCD: Source code disclosure; DT: Directory traversal; PT: Path traversal; PPCI: PHP command injection; DoS: Denial of service; DD: Data Disclosure; PD: Path
Disclosure; LDAP: Lightweight Directory Access Protocol; UR: Unvalidated redirects; IDOR: insecure direct object references; PM: parameter manipulation/
tampering; MFE: Malicious File Execution; CJ: Clickjacking; RCE: Remote code execution

Table 10. Java-based applications and test suites

FQ Application or test suite URL
Vulnerabilities covered
by primary studies Reference

12 Applications in
AMNESIA suite viterbi-web.usc.edu/∼halfond/testbed.html SQLi, PM,

XQuery injection, XSS
[72, 75–78, 83, 94, 96, 116, 136, 149]
[74]

4

WebGoat in JOACO-suite
www.owasp.org/index.php/Category:
OWASP_WebGoat_Project

XSS, SQLi, XMLi, XPathi,
LDAPi, IDOR [6, 71, 72] [142]

TPC-App in JOACO-suite
www.tpc.org/ XSS, SQLi, XMLi, XPathi,

LDAPi [6] [110, 125, 142]TPC-C in JOACO-suite
TPC-W in JOACO-suite

3

Roller in JOACO-suite roller.apache.org/ XSS, SQLi, XMLi, XPathi,
LDAPi, IDOR [6, 71] [142]Pebble in JOACO-suite pebble.sourceforge.net/

PersonalBlog github.com/suyeq/personalblog SQLI, XSS [76, 77, 79]
Jgossip sourceforge.net/projects/jgossipforum/ SQLi, XSS [76, 79, 80]

2
Jorganizer sourceforge.net/projects/jorganizer/ SQLi, XSS [77, 79]
Education *www.jiaoyudaohang.com SQLi, XSS [117] [114]

Jsp Forum sourceforge.net/projects/jsforum/ Access control,
Logic vulnerability [88, 98]

* The URL is no long valid or accessible on 9th February 2021.
FQ: Frequency of use; IDOR: insecure direct object references; PM: parameter manipulation/ tampering;

, Vol. 1, No. 1, Article . Publication date: November 2021.

24 Bing Zhang et al.

security vulnerabilities in PHP web applications. Moreover, the StrangerJ-Suite benchmark
contains nine paths, which are all vulnerable to XSS.

• Pisa-Suite includes 12 constraints generated from sanitizers detected by PISA [159].
• AppScan-Suite includes eight constraints derived from the security warnings emitted by
IBM Security AppScan [168], which is a commercial vulnerability scanner tool. The generated
security warnings contain traces of program statements that reflect potentially vulnerable
information flows when implementing the IBM Security AppScan on a set of popular websites.

• Juliet Test Suite [169] used in [81] is a collection of test cases in the C/C++ and Java language
for all types of security vulnerabilities, which consists of many small programs, and each
program contains a class of artificial vulnerability. Each test case is usually focused on one
specific type of vulnerability but still might be attached to other vulnerabilities at the same
time.

To precisely calculate false positives and false negatives of WAVD approaches, we must know
the number of vulnerabilities in the web applications or test suites. Among the 105 primary studies,
only 21 studies presented the number of each type of vulnerabilities detected in WAVD approach
evaluations. For example, [119] listed the CVE ID of the identified vulnerabilities. In the application
column of Table 9, the applications marked in bold are the frequently used PHP-based applications
with known numbers of vulnerabilities. In the reference column of Table 9, the corresponding
primary studies, which report the number of each type of vulnerabilities detected, are also marked
in bold. Data in Table 9 show that a few frequently used PHP-based applications do not provide
the number of vulnerabilities, which may make it challenging to calculate false negatives when
evaluating WAVD approaches. In Table 10, we show the same data for Java-based applications and
test suites. A complete list of the number and types of vulnerabilities reported in the 21 studies is
shown in Table C.1 in Appendix C.

Without knowing the specific number of vulnerabilities in the applications or test suites, some pri-
mary studies, such as [56, 66, 122], attempted to measure the effectiveness of the WAVD approaches
through the following methods.

• Injecting a known number of malicious attacks or codes or generating a known
number of test cases to simulate attacks. For example, Li et al. [66] designed a prototype
system LogicScope, generated a known number of testing specifications by the TestSpec
Generator module, detected vulnerabilities by the Output Evaluator module, and finally
manually analyzed the reported vulnerabilities and classified them into true positives or false
positives.

• Compared with vulnerability detection performance with existing approaches. A
few studies, such as [56, 122], used the vulnerabilities detected by existing approaches as
ground truth to evaluate false positive and false negatives of their approach and attempted
to show that the new approach is better than the existing ones. However, the challenge is
that the existing approaches may not reflect the real ground truth, and the results of the new
approach, even if it is superior to the existing approaches, can be misleading.

6 DISCUSSION
6.1 Comparison with related work
Several studies have reviewed the WAVD approaches. Our studies and results are different from
existing studies from three aspects.

• OurWAVD approach categorization is more comprehensive and finer-grained than
any other approach classifications. Many studies, such as [4, 22, 32, 37], classified the
WAVD approaches to static code analysis, dynamic code analysis, and hybrid. Other studies,

, Vol. 1, No. 1, Article . Publication date: November 2021.

Efficiency and Effectiveness of web application vulnerability detection approaches: A Review 25

such as [29], added category secure programming and modeling. Our study covers WAVD
approaches related to more categories of vulnerabilities than existing studies listed in Table
1 and includes approaches to detect Second-order DoS [21] and misconfiguration [99, 100]
vulnerabilities. Our study covers more categories of WAVDmethods and includes data mining
and pattern matching techniques. In addition, our analysis of the WAVD approaches shows
that static, dynamic, or hybrid analysis is usually the first step to building models, properties,
constraints, and patterns. After this step, web content or features in the model can be used by
other analyses, such as matching, classification, verifying compliance, and generating attacks.
Our study also identified more artifacts that are analyzed by various WAVD approaches than
those listed in [43].

• We focus on a detailed comparison of the effectiveness and efficiency of eachWAVD
approach. Seng et al. [30] identified and summarized the measurement metrics of the quality
of scanners and showed that the number of false positives, number of false negatives, number
of true positives, and scanning time are the main metrics applied. However, the detailed
data of these metrics are not analyzed. Most other WAVD approach survey approaches did
not cover effectiveness and efficiency issues. In addition to analyzing the effectiveness and
efficiencies of the WAVD approaches, we considered the WAVD approaches that have high
precision and recall values in depth to summarize the experience and lesson learned from
those approaches. The results of these studies will provide valuable inputs to academia and
industry practitioners who want to improve the quality of their approaches and tools.

• Our analysis of theWAVDapproach testbed provides amore comprehensive overview.
Many WAVD studies used homemade applications, open-source applications, or test data sets
made deliberately for evaluating WAVD methods. Although studies [30, 35, 37, 39] surveyed
and listed some applications for evaluating WAVD approaches, none of the studies presented
a comprehensive list of the test suites, the vulnerabilities the test suites cover, and the studies
that used them, as we did. Our summary of the test suites can help WAVD researchers choose
the most relevant and dependable applications or test suites for evaluating their methods
and tools.

6.2 Implications of the results for practitioners
When security engineers follow, e.g., risk management framework (RMF) [5, 26], or threat modeling
approach [25], e.g., misuse cases [8], they sometimes need to perform a general search to identify
all possible vulnerabilities or a specific type of vulnerability. The engineers need to know which
tools they can use and how well the tools can work. Our results of RQ1 and RQ2 summarized
what artifacts the WAVD approaches use and how well a WAVD can detect specific vulnerabilities.
Knowing what artifacts the WAVD approach used can help engineers filter out WAVD approaches
that are not applicable. For example, without obtaining access to the source code or execution logs
of web applications, WAVD approaches that rely on such artifacts can be excluded by engineers.
Knowing the precision and recall values of WAVD approaches can help engineers prioritize and
choose the proper tools to use. We have also listed the URL of the tools innovated by the primary
studies in Table 8, although many URLs are no longer valid. People do not want to use specific
WAVD tools with high-performance overhead [133, 134]. The time and consumption data we
extracted from the primary studies can help engineers estimate the overhead and cost to use
WAVD approaches. Our results of RQ3 identified test suites and web applications used to evaluate
the primary studies and summarized the vulnerabilities these test suites and applications cover.
Companies developingWAVD tools can use them to benchmark various tools. Companies providing
security education and training services can take code snippets from vulnerable applications to
develop training material. Results of RQ3 also show there are insufficient high-quality test suites

, Vol. 1, No. 1, Article . Publication date: November 2021.

26 Bing Zhang et al.

and applications with available lists of vulnerabilities. Industry practitioners and researchers need
to work collaboratively to provide more such test suites and applicants to benefit the software
security community.

6.3 Implications of the results for researchers
Most existing WAVD approach surveys or interviews focus on summarizing the ideas of the ap-
proaches without targeting their effectiveness and efficiencies. Our results of RQ1 and RQ2 classified
the WAVD approaches and compared the precision, recall, and efficiencies of the approaches. Our
results of RQ3 summarized different evaluation resources that researchers used to evaluate their
WAVD tools. Based on our study’s results, we have identified several research gaps.

• We found the majority (78 out of 105) of our identified primary studies focus on injection vul-
nerabilities. Many other vulnerabilities, such as execution after redirect, logic vulnerabilities,
state violation, side channel, DoS, and configuration, are underexplored. Some vulnerabilities
listed in OWASP top 10, such as XML External Entity (XXE) and insecure deserialization, have
not been covered by many primary studies. As “A software security system is only as secure as
its weakest component” [170], more studies on detecting those underexplored vulnerabilities
are needed.

• In the software engineering domain, there are quality criteria [171], such as the explanation
of design, sampling, control group, data collection, data analysis, reflexivity, and findings, to
evaluate primary studies. To apply such criteria to evaluate WAVD studies’ quality, we shall
modify the criteria to focus more on using rigorous data collection and analysis metrics. One
of the significant quality issues of WAVD studies is that researchers use different metrics to
report evaluation results, as shown in Tables 5, 6, and 7, and many studies did not report
the results of the essential metrics. Only 57 out of the 105 studies presented FPR or gave us
information to calculate FPR. Twenty-three studies showed only the numbers of vulnerabilities
the methods can identify without giving any information about the false positives. Only 34
out of the 105 studies presented FNR or provided sufficient information to calculate FNR.
Although a few other studies presented FNR-related information using detection rates or
accuracy, 40% (43 out of 105) of the studies did not provide any information about FNR.
Part of the reasons for many studies not reporting FNR might be that people did not know
the exact numbers of the vulnerabilities in applications and test suites used for evaluating
WAVD approaches, as shown in Tables 9 and 10. More artifacts studies are needed to develop
applications and test suites with a known number of vulnerabilities as the benchmark.

• We found that only 50% of the studies report the approaches’ time consumption, and only 11
of 105 studies reported the approaches’ memory consumption. We will encourage researchers
to measure and report the time and memory consumption of the methods to help practitioners
estimate the approach’s efficiency and the resources and costs to use it.

• Most primary studies we reviewed focused on PHP and Java-based applications. None of
the studies focused on web applications developed using Python, and very few focused on
JavaScript-based applications. According to market studies [172, 173], Python and JavaScript
are becoming the most popularly used programming languages for web application develop-
ment. More WAVD studies and test suites focus on applications developed using Python and
JavaScript are needed.

• Our studies identified eight WAVD meta-approaches. A single meta-approach could give
highly effective results in some cases, such as [49, 143, 149]. In other cases, such as [7, 23, 52,
75, 142, 150], a combination of multiple meta-approaches can jointly provide good results.

, Vol. 1, No. 1, Article . Publication date: November 2021.

Efficiency and Effectiveness of web application vulnerability detection approaches: A Review 27

Along with proposing new meta-approaches, researchers can also investigate combinations
of meta-approaches to optimize WAVD tools.

6.4 Threats to validity
One possible threat to validity is missing relevant articles. To address this validity issue, the paper
searching and filtering were performed by the first author and validated by the second author. The
first author and the second author read all primary papers individually and then cross-validated
and consolidated the results to avoid possible data analysis errors. The possible risk to the external
validity of the literature review is that the review focuses only on papers targeting detecting web
security vulnerabilities. The conclusions of the literature review may not be generalized to studies
focusing on other kinds of security vulnerabilities. Additionally, we limited the review to scientific
studies. Industrial reports and white papers that present WAVD tools, e.g., vulnerability scanners,
are not included in our review.

7 CONCLUSION AND FUTUREWORK
Due to the increased risk of web security breaches, many WAVD approaches and tools have been
invented to detect web application vulnerabilities in the last ten years, especially the vulnerabilities
listed in OWASP. A few existing surveys and literature reviews summarized the approaches and
classified them. However, to our knowledge, no study has systematically analyzed and compared
the effectiveness and efficiency of WAVD approaches. This article provides a systematic literature
review of WAVD approaches proposed in the last ten years and their efficiencies and effectiveness.
Unlike the classification of existing literature reviews, our study first identifies ten categories of
artifacts that the WAVD approaches to analyze and then identified eight WAVD meta-approaches
based on how the artifacts are processed. After that, our study compares the precision, recall, and
efficiency of each category of the approach to detect specific vulnerabilities. The effectiveness and
efficiency analyses show that a few approaches can detect SQLi, XSS, and injection vulnerabilities
with satisfactory effectiveness and efficiency. However, for many other vulnerabilities, such as
side-channel, CSRF, and second-order DoS, there is a lack of an effective WAVD approach. To
evaluate the trustworthiness of the evaluation results of WAVD approaches, we also analyzed the
web applications and test suites that are popularly used in WAVD approach evaluations. We find
a lack of benchmarking web applications and test suites with known vulnerabilities inserted to
evaluate and compare WAVD approaches and tools. We have identified a few research questions
that deserve further investigation. The research community needs to improve the effectiveness of
WAVD approaches. More studies are needed to re-evaluate and compare existing WAVD approaches
using test suites with known types and numbers of vulnerabilities.

ACKNOWLEDGMENTS
This work is supported by the National Natural Science Foundation of China under Grant Nos.
61802332, 61807028, and 61772449, the Natural Science Foundation of Hebei Province P. R. China
under Grant No. F2019203120, and the doctoral Foundation Program of Yanshan University under
Grant No. BL18012. The authors are grateful to the valuable comments and suggestions of the
reviewers.

A SUPPLEMENTARY MATERIALS
See the contents of Appendix A, Appendix B and Appendix C in supplementary materials file.

, Vol. 1, No. 1, Article . Publication date: November 2021.

28 Bing Zhang et al.

REFERENCES
[1] OWASP Top 10-2017. The Ten Most Critical Web Application Security Risks. Retrieved from

https://www.owasp.org/images/7/72/OWASP_Top_10-2017_%28en%29.pdf.pdf.
[2] F. Yu, and Y. Y. Tung. 2014. Patcher: An Online Service for Detecting, Viewing and Patching Web Application Vulnera-

bilities. Hawaii International Conference on System Sciences. (March 2014), 4878-4886.
[3] V. Dwivedi, H. Yadav and A. Jain. 2014. Web Application Vulnerabilities: A Survey. International Journal of Computer

Applications. 108, 1, (December 2014).
[4] Xiaowei Li and Yuan Xue. 2014. A survey on server-side approaches to securing web applications. ACM Comput. Surv.

46, 4, Article 54 (March 2014), 29 pages. DOI: http://dx.doi.org/10.1145/2541315
[5] G. McGraw. 2006. Software Security: Building Security In. 17th International Symposium on Software Reliability

Engineering (ISSRE 2006), 7-10 November 2006, Raleigh, North Carolina, USA. IEEE.
[6] J. Thomé, L. K. Shar, D. Bianculli, and L. Briand. 2018. Security slicing for auditing common injection vulnerabilities.

Journal of Systems and Software. 137 (March 2018), 766-783.
[7] I. Medeiros, N. Neves, and M. Correia. 2016. Detecting and Removing Web Application Vulnerabilities with Static

Analysis and Data Mining. IEEE Transactions on Reliability. 65, 1 (March 2016), 54-69.
[8] I. A. Tøndel, J. Jensen and L. Røstad. 2010. Combining Misuse Cases with Attack Trees and Security Activity Models. In

Proceedings of International Conference on Availability, Reliability and Security. IEEE, 438-445.
[9] D. Muthukumaran, D. O’Keeffe, C. Priebe and D. Eyers. 2015. FlowWatcher: Defending against Data Disclosure Vulner-

abilities in Web Applications. In Proceedings of 22nd ACM SIGSAC Conference on Computer and Communications
Security, Denver, Colorado, USA, 603-615.

[10] T. Lee, G. Won, S. Cho, N. Park and D. Won. 2012. Experimentation and Validation of Web Application’s Vulnerability
Using Security Testing Method. Lecture Notes in Electrical Engineering, Computer Science and its Applications. 203
(2012).

[11] A. Amira, A. Ouadjaout, A. Derhab, and N. Badache. 2017. Sound and Static Analysis of Session Fixation Vulnerabilities
in PHP Web Applications. In Proceedings of Seventh ACM on Conference on Data and Application Security and Privacy,
Scottsdale, Arizona, USA, 139-141.

[12] X. X. Yan, H. T. Ma and Q. X. Wang. 2017. A Static Backward Taint Data Analysis Method for DetectingWeb Application
Vulnerabilities. 2017 IEEE 9th International Conference on Communication Software and Networks (ICCSN). IEEE,
1138-1141.

[13] J. Miller, T. Huynh. 2010. Practical Elimination of External Interaction Vulnerabilities in Web Applications. Journal of
Web Engineering. 9, 1(2010), 1-24.

[14] C. Catal, A. Akbulut, E. Ekenoglu and M. Alemdaroglu. 2017. Development of a Software Vulnerability Prediction Web
Service Based on Artificial Neural Networks. Springer International Publishing AG, U Kang et al. (Eds.): PAKDD 2017
Workshops, LNAI 10526, 59–67.

[15] S. Wen, Y. Xue and J. Xu, et al. 2016. Toward Exploiting Access Control Vulnerabilities within MongoDB Backend Web
Applications. In Proceedings of 40th Annual Computer Software and Applications Conference. Vol. 1. IEEE, 143-153.

[16] M. N. Khalid, M. Iqbal, M. T. Alam, V. Jain, H. Mirza, and K. Rasheed. 2017. Web Unique Method (WUM): An Open
Source Blackbox Scanner for Detecting Web Vulnerabilities. International Journal of Advanced Computer Science and
Applications. 8, 12 (December 2017), 411-417.

[17] C. Wang, L. Liu and Q. Liu. 2014. Automatic fuzz testing of web service vulnerability. International Conference on
Information and Communications Technologies (ICT), Nanjing, China.

[18] N. F. Awang and A. A. Manaf. 2015. Automated Security Testing Framework for Detecting SQL Injection Vulnerability
in Web Application. In International Conference on Global Security, Safety, and Sustainability, Springer, Cham, 160-171.

[19] N. Antunes and M. Vieira. 2011. Enhancing Penetration Testing with Attack Signatures and Interface Monitoring for
the Detection of Injection Vulnerabilities in Web Services. In Proceedings of IEEE Int’l Conf. Services Computing (SCC
11), IEEE CS, 104-111.

[20] A. Ciampa, C. A. Visaggio and M. Di. Penta. 2010. A heuristic-based approach for detecting sql-injection vulnerabilities
in web applications. In Proceedings of 2010 ICSE Workshop on Software Engineering for Secure Systems, Cape Town,
South Africa, 43–49.

[21] O. Olivo, I. Dillig, and C. Lin. 2015. Detecting and Exploiting Second Order Denial-of-Service Vulnerabilities in Web
Applications. In Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security, Denver,
Colorado, USA, 616-628.

[22] Jian Chang, Krishna K. Venkatasubramanian, Andrew G. West, and Insup Lee. 2013. Analyzing and de-
fending against web-based malware. ACM Comput. Surv. 45, 4, Article 49 (August 2013), 35 pages. DOI:
https://doi.org/10.1145/2501654.2501663.

[23] M. K. Gupta, M. C. Govil, G. Singh and P. Sharma. 2015. XSSDM: Towards detection and mitigation of cross-site
scripting vulnerabilities in web applications. International Conference on Advances in Computing, Communications

, Vol. 1, No. 1, Article . Publication date: November 2021.

Efficiency and Effectiveness of web application vulnerability detection approaches: A Review 29

and Informatics (ICACCI), Kochi, India, 2010–2015.
[24] M. De Bb Abi, M. Girard, L. Poulin, et al. 2001. Dynamic Monitoring of Malicious Activity in Software Systems.

Proceedings of the Symposium on Requirements Engineering for Information Security, 2001.
[25] E. A. Oladimeji, S. Supakkul, L. Chung. 2006. Security threat Modeling and Analysis: A goal-oriented approach.

In Proceedings of the 10th IASTED International Conference on Software Engineering and Applications, SEA 2006,
178–185.

[26] W. Linda. 2000. Software risk management. Annual Quality Congress Proceedings-American Society for Quality
Control. ASQ; 1999, 32-39.

[27] P. Jyotiyana, S. Maheshwari. 2018. Techniques to Detect Clickjacking Vulnerability in Web Pages. In Optical and
Wireless Technologies. Lecture Notes in Electrical Engineering, Springer, Singapore, 615-624.

[28] M. I. Ahmed, M. M. Hassan and T. Bhuyian. 2018. Local File Disclosure Vulnerability: A Case Study of Public-Sector
Web Applications. Journal of Physics: Conference Series. 933 (2018), 012011.

[29] I. Hydara, et al. 2015. Current state of research on cross-site scripting (XSS) – A systematic literature review. Information
and Software Technology. 58(2015), 170-186.

[30] L. K. Seng, N. Ithnin and S. Z. M. Said. 2018. The approaches to quantify web application security scanner quality, a
review. International Journal of Advanced Computer Research. 8, 38(2018).

[31] S. Kumar, R. Mahajan, N. Kumar and S. K. Khatri. 2017. A study on web application security and detecting security vul-
nerabilities. In Proceedings of 2017 6th International Conference on Reliability, Infocom Technologies and Optimization
(Trends and Future Directions) (ICRITO). IEEE, 451-455.

[32] M. K. Gupta, M. C. Govil and G. Singh. 2014. Static analysis approaches to detect SQL injection and cross site scripting
vulnerabilities in web applications: A survey. In Proceedings of IEEE International Conference on Recent Advances and
Innovations in Engineering (ICRAIE-2014), Jaipur, India.

[33] R. Johari and P. Sharma. 2012. A Survey on Web Application Vulnerabilities (SQLIA, XSS) Exploitation and Security
Engine for SQL Injection. In Proceedings of 2012 International Conference on Communication Systems and Network
Technologies. IEEE, 453-458.

[34] Stefano Calzavara, Riccardo Focardi, Marco Squarcina, and Mauro Tempesta. 2017. Surviving the Web: A Journey into
Web Session Security. ACM Comput. Surv. 50, 1, Article 13 (March 2017), 34 pages. DOI:https://doi.org/10.1145/3038923

[35] C. Visaggio. 2010. Session management vulnerabilities in today’s web. In Proceedings of IEEE. Security & Privacy. 8, 5
(2010), 48-56.

[36] S. Gupta and B. B. Gupta. 2017. Detection, Avoidance, and Attack Pattern Mechanisms in Modern Web Application
Vulnerabilities: Present and Future Challenges. International Journal of Cloud Applications and Computing. 7, 3(2017),
1-43.

[37] G. Deepa and P. S. Thilagam. 2016. Securing web applications from injection and logic vulnerabilities: Approaches and
challenges. Information and Software Technology. 74 (June 2016), 160-180.

[38] V. Prokhorenko, K. K. R. Choo and H. Ashman. 2016. Web application protection techniques: A taxonomy. Journal of
Network and Computer Applications. 60 (January 2016), 95-112.

[39] H. Atashzar, A. Torkaman, M. Bahrololum and M. H. Tadayon. 2011. A Survey on Web Application Vulnerabilities and
Countermeasures. In Proceedings of 6th International Conference on Computer Sciences and Convergence Information
Technology (ICCIT), 647-652.

[40] A. L. Hernandez-Saucedo, and J. Mejia. 2016. Proposal of a Hybrid Process toManage Vulnerabilities inWebApplications.
Trends and Applications In Software Engineering. 405(2016), 59-69.

[41] T. Scholte, D. Balzarotti and E. Kirda. 2012. Have Things Changed Now? An Empirical Study on Input Validation
Vulnerabilities in Web Applications. Computers & Security. 31, 3(2012), 344-356.

[42] T. Huynh and J. Miller. 2010. An empirical investigation into open source web applications’ implementation vulnera-
bilities. Empirical Software Engineering. 15, 5 (2010), 556-576.

[43] X. Qi, B. D. Davison. 2009. Web page classification: Features and algorithms. ACM Comput. Surv. 41, 2 (2009), 1-31.
[44] D. Budgen, P. Brereton. 2006. Performing systematic literature reviews in software engineering. In Proceedings of 28th

international conference on Software engineering, Shanghai, China. ACM New York, NY, USA. 1(2006), 1051-1052.
[45] K. Petersen, R. Feldt, S. Mujtaba, and M. Mattsson. 2008. Systematic mapping studies in software engineering. In

Proceedings of 12th International Conference on Evaluation and Assessment in Software Engineering (EASE). 71–80.
[46] B. Kitchenham, S. D. Budgen and P. Brereto. 2015. Evidence-based software engineering and systematic reviews. CRC

press. 4(2015).
[47] X. Huang, H. Zhang, X. Zhou, et al. 2018. Synthesizing qualitative research in software engineering: a critical review.

In Proceedings of 40th International Conference on Software Engineering. ACM, 1207-1218.
[48] D. S. Cruzes, T. Dyba. 2011. Recommended steps for thematic synthesis in software engineering. In Proceedings of

2011 International Symposium on Empirical Software Engineering and Measurement. IEEE, 275-284.

, Vol. 1, No. 1, Article . Publication date: November 2021.

30 Bing Zhang et al.

[49] S. Gupta, B. B. Gupta, and P. Chaudhary. 2018. Hunting for DOM-Based XSS vulnerabilities in mobile cloud-based
online social network. Future Generation Computer Systems. 79 (2018), 319-336.

[50] B. Eshete, A. Villafiorita, K. Weldemariam, and M. Zulkernine. 2013. Confeagle: Automated Analysis of Configuration
Vulnerabilities in Web Applications. in 2013 Ieee 7th International Conference on Software Security and Reliability
(Sere), 188-197.

[51] R. Akrout, E. Alata, M. Kaaniche, and V. Nicomette. 2014. An automated black box approach for web vulnerability
identification and attack scenario generation. Journal of the Brazilian Computer Society. 20, 1(2014), 4.

[52] I. Medeiros, N. Neves, and M. Correia. 2016. DEKANT: a static analysis tool that learns to detect web application
vulnerabilities. In Proceedings of the 25th International Symposium on Software Testing and Analysis, Saarbrücken,
Germany, 1-11.

[53] T. Jensen, H. Pedersen, M. C. Olesen and R. R. Hansen. 2012. THAPS: Automated Vulnerability Scanning of PHP
Applications. In Proceedings of 17th Nordic Conference, NordSec 2012 Nordic Conference on Secure IT Systems, Lecture
Notes in Computer Science, 31-46.

[54] M. Monga, R. Paleari, and E. Passerini. 2009. A hybrid analysis framework for detecting web application vulnerabilities.
In Proceedings of the 2009 ICSE Workshop on Software Engineering for Secure Systems, 25-32.

[55] G. Wassermann, and Z. Su. 2008. Static detection of cross-site scripting vulnerabilities. In Proceedings of the 30th
international conference on Software engineering, Leipzig, Germany, 171-180.

[56] L. K. Shar, L. C. Briand, and H. B. K. Tan. 2015. Web Application Vulnerability Prediction Using Hybrid Program
Analysis and Machine Learning. IEEE Transactions on Dependable and Secure Computing. 12, 6 (December 2015),
688-707.

[57] Y. H. Zheng and X. Y. Zhang. 2013. Path Sensitive Static Analysis of Web Applications for Remote Code Execution
Vulnerability Detection. In Proceedings of 35th International Conference on Software Engineering ICSE 2013), 652-661.

[58] S. Gupta, and B. B. Gupta. 2016. Enhanced XSS Defensive Framework for Web Applications Deployed in the Virtual
Machines of Cloud Computing Environment. Procedia Technology. 24 (January 2016), 1595-1602.

[59] S. Gupta, and B. B. Gupta. 2015. PHP-sensor: a prototype method to discover workflow violation and XSS vulnerabilities
in PHP web applications. In Proceedings of the 12th ACM International Conference on Computing Frontiers, Ischia,
Italy, 1-8.

[60] J. Dahse and T. Holz. 2014. Static Detection of Second-Order Vulnerabilities in Web Applications. In Proceedings of
23rd USENIX Security Symposium, San Diego, CA.

[61] J. Dahse. 2014. Simulation of Built-in PHP Features for Precise Static Code Analysis. In Annual Network & Distributed
System Security Symposium (NDSS), San Diego, USA.

[62] X. Li, and Y. Xue. 2011. BLOCK: a black-box approach for detection of state violation attacks towards web applications.
In Proceedings of the 27th Annual Computer Security Applications Conference, Orlando, Florida, USA, 247-256.

[63] F. Yu, M. Alkhalaf, T. Bultan, and O. H. Ibarra. 2014. Automata-based symbolic string analysis for vulnerability detection.
Formal Methods in System Design. 44, 1 (2014), 44-70.

[64] A. Kiezun, P. J. Guo, K. Jayaraman and M. D. Ernst. 2009. Automatic Creation of SQL Injection and Cross-Site Scripting
Attacks. In Proceedings of 2009 31st International Conference on Software Engineering, Proceedings, 199-209.

[65] L. K. Shar, and H. B. K. Tan. 2013. Predicting SQL injection and cross site scripting vulnerabilities through mining
input sanitization patterns. Information and Software Technology. 55, 10 (October 2013), 1767-1780.

[66] X. Li, and Y. Xue. 2013. LogicScope: automatic discovery of logic vulnerabilities within web applications. In Proceedings
of the 8th ACM SIGSAC symposium on Information, computer and communications security, Hangzhou, China, 481-486.

[67] S. Sooel, Kathryn S. Mckinley, and S. Vitaly. 2013. Fix me up: Repairing access-control bugs in web applications. In
Network and Distributed System Security Symposium.

[68] F. Q. Sun, L. Xu and Z. D. Su. 2011. Static Detection of Access Control Vulnerabilities inWeb Applications. In Proceedings
of 20th USENIX Security Symposium. 64.

[69] S. S. V. Shmatikov. 2011. SAFERPHP: Finding semantic vulnerabilities in PHP applications. In Proceedings of the ACM
SIGPLAN 6th Workshop on Programming Languages and Analysis for Security, 1-13.

[70] X. Li, W. Yan, and Y. Xue. 2012. SENTINEL: securing database from logic flaws in web applications. In Proceedings of
the second ACM conference on Data and Application Security and Privacy, San Antonio, Texas, USA, 25-36.

[71] A. Møller, M. Schwarz. 2012. Automated detection of client-state manipulation vulnerabilities. In Proceedings of 2012
34th International Conference on Software Engineering (ICSE), 749-759.

[72] W. G. J. Halfond, A. Orso, and P. Manolios. 2008. WASP: Protecting web applications using positive tainting and
syntax-aware evaluation. IEEE Transactions on Software Engineering. 34, 1(2008), 65-81.

[73] W. G. Halfond, A. Orso. 2005. Amnesia: analysis and monitoring for neutralizing SQL-injection attacks. In Proceedings
of 20th IEEE. ACM International Conference on Automated Software Engineering, 174–183.

[74] G. Deepa, P. S. Thilagam, A. Praseed, and A. R. Pais. 2018. DetLogic: A black-box approach for detecting logic
vulnerabilities in web applications. Journal of Network and Computer Applications. 109 (May 2018), 89-109.

, Vol. 1, No. 1, Article . Publication date: November 2021.

Efficiency and Effectiveness of web application vulnerability detection approaches: A Review 31

[75] G. Deepa, P. S. Thilagam, F. A. Khan, A. Praseed, A. R. Pais, and N. Palsetia. 2018. Black-box detection of XQuery
injection and parameter tampering vulnerabilities in web applications. International Journal of Information Security. 17,
1 (February 2018), 105-120.

[76] L. K. Shar, and F. B. K. Tan. 2012. Automated removal of cross site scripting vulnerabilities in web applications.
Information and Software Technology. 54, 5 (May 2012), 467-478.

[77] L. K. Shar, and H. B. K. Tan. 2012. Auditing the XSS defence features implemented in web application programs. IET
Software. 6, 4 (August 2012), 377-390.

[78] P. Bisht, P. Madhusudan, and V. N. Venkatakrishnan. 2010. CANDID: Dynamic Candidate Evaluations for Automatic
Prevention of SQL Injection Attacks. ACM Transactions on Information and System Security. 13, 2 (February 2010).

[79] M. Martin, M. S. Lam. 2008. Automatic Generation of XSS and SQL Injection Attacks with Goal-Directed Model
Checking. In Proceedings of 17th conference on Security symposium. USENIX Association, 31-43.

[80] M. Alkhalaf, S. R. Choudhary, M. Fazzini, T. Bultan, A. Orso, and C. Kruegel. 2012. ViewPoints: differential string
analysis for discovering client- and server-side input validation inconsistencies. In Proceedings of the 2012 International
Symposium on Software Testing and Analysis, Minneapolis, MN, USA, 56-66.

[81] Q. Binbin, L. Beihai, J. Sheng, Y. Chutian. 2013. Design of automatic vulnerability detection system for Web application
program. In Proceedings of 2013 IEEE 4th International Conference on Software Engineering and Service Science, 89-92.

[82] M. T. Trinh, D. H. Chu, and J. Jaffar. 2014. S3: A Symbolic String Solver for Vulnerability Detection in Web Applications.
In Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications Security, Scottsdale, Arizona,
USA, 1232-1243.

[83] Y. S. Jang, and J. Y. Choi. 2014. Detecting SQL injection attacks using query result size. Computers & Security . 44
(2014), 104-118.

[84] L. Lei, X. Jing, L. Minglei and Y. Jufeng. 2013. A Dynamic SQL Injection Vulnerability Test Case Generation Model
Based on the Multiple Phases Detection Approach. In Proceedings of 2013 IEEE 37th Annual Computer Software and
Applications Conference, Kyoto, Japan, 256-261.

[85] H. He, L. L. Chen andW. P. Guo. 2017. Research onWeb Application Vulnerability Scanning System based on Fingerprint
Feature. In Proceedings of 2017 International Conference onMechanical, Electronic, Control andAutomation Engineering
(Mecae 2017), 61 (2017), 150-155.

[86] V. G. Le, H. T. Nguyen, D. N. Lu and N. H. Nguyen. 2016. A Solution for Automatically Malicious Web Shell and Web
Application Vulnerability Detection. International Conference on Computational Collective Intelligence ICCCI 2016:
Computational Collective Intelligence, Springer, Cham, 367-378.

[87] H. Shahriar, and H. Haddad. 2016. Object injection vulnerability discovery based on latent semantic indexing. In
Proceedings of the 31st Annual ACM Symposium on Applied Computing, Pisa, Italy, 801-807.

[88] V. Felmetsger, L. Cavedon, C. Kruegel, and G. Vigna. 2010. Toward automated detection of logic vulnerabilities in web
applications. In Proceedings of the 19th USENIX conference on Security, Washington, DC, 58(2010).

[89] G. Pellegrino, D. Balzarott. 2014. Toward Black-Box Detection of Logic Flaws in Web Applications. NDSS 14, SanDiego,
CA, USA, 23-26.

[90] D. Kavitha, S. Chandrasekaran, and S. K. Rani. 2016. HDTCV: Hybrid Detection Technique for Clickjacking Vulnerability.
Advances in Intelligent Systems and Computing, 607-620.

[91] V. Sunkari and C. V. G. Rao. 2014. Preventing input type validation vulnerabilities using network based intrusion
detection systems. In Proceedings of 2014 International Conference on Contemporary Computing and Informatics
(IC3I), Mysore, India, 702-706.

[92] L. Lei, X. Jing, G. Chenkai, K. Jiehui, X. Sihan and Z. Biao. 2016. Exposing SQL Injection Vulnerability through
Penetration Test based on Finite State Machine. In Proceedings of 2016 2nd IEEE International Conference on Computer
and Communications (ICCC), Chengdu, China, 1171-1175.

[93] L. Liu, J. Xu, H. Yang, C. Guo, J. Kang, S. Xu and G. Si. 2016. An Effective Penetration Test Approach Based on
Feature Matrix for Exposing SQL Injection Vulnerability. In Proceedings of IEEE 40th Annual Computer Software and
Applications Conference (COMPSAC), Atlanta, GA, USA, 123-132.

[94] M. E. Ruse and S. Basu. 2013. Detecting Cross-Site Scripting Vulnerability Using Concolic Testing. In Proceedings of
2013 10th International Conference on Information Technology: New Generations, Las Vegas, NV, USA, 633-638.

[95] T. Scholte, W. Robertson, D. Balzarotti, E. Kirda. 2012. Preventing Input Validation Vulnerabilities in Web Applications
through Automated Type Analysis. In Proceedings of 2012 IEEE 36th Annual Computer Software and Applications
Conference, Izmir, Turkey, 233-243.

[96] I. Lee, S. Jeong, S. Yeo, and J. Moon. 2012. A novel method for SQL injection attack detection based on removing SQL
query attribute values. Mathematical and Computer Modelling. 55, 1 (2012), 58-68.

[97] C. Visaggio. 2010. Session management vulnerabilities in today’s web. In Proceedings of IEEE Security & Privacy. 8, 5
(October 2010), 48-56.

, Vol. 1, No. 1, Article . Publication date: November 2021.

32 Bing Zhang et al.

[98] X. Li, X. Si, and Y. Xue. 2014. Automated black-box detection of access control vulnerabilities in web applications. In
Proceedings of the 4th ACM conference on Data and application security and privacy, San Antonio, Texas, USA, 49-60.

[99] C. Huang, J. Y. Liu, Y.Fang and Z. Zuo. 2016. A study on Web security incidents in China by analyzing vulnerability
disclosure platforms. Computers & Security. 58 (May 2016), 47-62.

[100] N. M. Vithanage, N. Jeyamohan. 2016. WebGuardia - An Integrated Penetration Testing System to Detect Web
Application Vulnerabilities. In Proceedings of IEEE. International Conference on Wireless Communications, Signal
Processing and Networking (Wispnet), Chennai, India, 221-227.

[101] K. H. Zhang, Z. Li, R. Wang, X. F. Wang and S. Chen. 2010. Sidebuster: Automated Detection and Quantification
of Side-Channel Leaks in Web Application Development. In Proceedings of 17th ACM Conference on Computer and
Communications Security (CCS’10), 595-606.

[102] P. Chapman, and D. Evans. 2011. Automated black-box detection of side-channel vulnerabilities in web applications.
In Proceedings of the 18th ACM conference on Computer and communications security, Chicago, Illinois, USA, 263-274.

[103] V. Garousi, A. Mesbah, A. Betin-Can, et al. 2013. A systematic mapping study of web application testing. Information
and Software Technology. 55, 8 (August 2013), 1374-1396.

[104] M. H. Alalfi, J. R. Cordy, T. R. Dean. 2009. Modelling methods for web application verification and testing: state of the
art. Software Testing, Verification and Reliability. 19, 4 (December 2009), 265-296.

[105] M. Monshizadeh, P. Naldurg, and V. N. Venkatakrishnan. 2014. MACE: Detecting Privilege Escalation Vulnerabilities
in Web Applications. In Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications Security,
Scottsdale, Arizona, USA, 690-701.

[106] A. Avancini, and M. Ceccato. 2013. Comparison and integration of genetic algorithms and dynamic symbolic execution
for security testing of cross-site scripting vulnerabilities. Information and Software Technology. 55, 12 (2013), 2209-2222.

[107] L. K. Shar, H. B. K. Tan, and L. C. Briand. 2013. Mining SQL injection and cross site scripting vulnerabilities using
hybrid program analysis. In Proceedings of International Conference on Software Engineering (ICSE), San Francisco,
CA, USA, 642-651.

[108] A. Doupe, B. Boe, C. Kruegel and G.Vigna. 2011. Fear the EAR: Discovering and Mitigating Execution After Redirect
Vulnerabilities. In Proceedings of 18th ACM Conference on Computer & Communications Security (CCS’ 11), 251-261.

[109] P. Bisht, T. Hinrichs, N. Skrupsky and V. N. Venkatakrishnan. 2011. WAPTEC: Whitebox Analysis of Web Appli-
cations for Parameter Tampering Exploit Construction. In Proceedings of 18th ACM Conference on Computer &
Communications Security (CCS’ 11), 575-586.

[110] N. Antunes, and M. Vieira. 2017. Designing vulnerability testing tools for web services: approach, components, and
tools. International Journal of Information Security. 16, 4 (August 2017), 435-457.

[111] X. Guo, S. Jin, Y. Zhang. 2015. XSS Vulnerability Detection Using Optimized Attack Vector Repertory. In Proceedings
of International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery, Xi’an, China, 29-36.

[112] M. S. Aliero, I. Ghani. 2015. A component based SQL injection vulnerability detection tool. In Proceedings of 9th
Malaysian Software Engineering Conference (MySEC), 224-229.

[113] Z. Djuric. 2013. A black-box testing tool for detecting SQL injection vulnerabilities. In Proceedings of 2013 Second
International Conference on Informatics & Applications (ICIA), Lodz, Poland, 216-221.

[114] A. K. Singh, S. Roy. 2012. A network based vulnerability scanner for detecting SQLI attacks in web applications. In
Proceedings of 2012 1st International Conference on Recent Advances in Information Technology (RAIT), Dhanbad,
India, 585-590.

[115] V. Shanmughaneethi, R. Y. Pravin, C. E. Shyni, and S. Swamynathan. 2011. SQLIVD - AOP: Preventing SQL Injection
Vulnerabilities Using Aspect Oriented Programming through Web Services. High Performance Architecture and Grid
Computing. 169 (2011), 327-337.

[116] H. Y. Wu, G. Z. Gao, C. Y. Miao. 2011. Test SQL injection vulnerabilities in web applications based on structure
matching. In Proceedings of 2011 International Conference on Computer Science and Network Technology, Harbin,
China, 935-938.

[117] L. Zhang, Q. Gu, S. Peng, X. Chen, H. Zhao, D. Chen. 2010. D-WAV: A Web Application Vulnerabilities Detection Tool
Using Characteristics of Web Forms. In Proceedings of 2010 Fifth International Conference on Software Engineering
Advances, Nice, France, 501-507.

[118] N. Li, T. Xie, M. Jin, and C. Liu. 2010. Perturbation-based user-input-validation testing of web applications. Journal of
Systems and Software. 83, 11 (2010), 2263-2274.

[119] J. M. Chen, C. L. Wu. 2010. An automated vulnerability scanner for injection attack based on injection point. In
Proceedings of 2010 International Computer Symposium (ICS2010), 113-118.

[120] M. Balduzzi, C. Gimenez, D. Balzarotti and E. Kirda. 2011. Automated Discovery of Parameter Pollution Vulnerabilities
in Web Applications. NDSS Symposium.

[121] P. Bisht, T. Hinrichs, N. Skrupsky, R. Bobrowicz, and V. N. Venkatakrishnan. 2010. NoTamper: Automatic Blackbox
Detection of Parameter Tampering Opportunities in Web Applications. In Proceedings of 17th ACM Conference on

, Vol. 1, No. 1, Article . Publication date: November 2021.

Efficiency and Effectiveness of web application vulnerability detection approaches: A Review 33

Computer and Communications Security (CCS’10), 607-618.
[122] D. Balzarotti, M. Cova, V. Felmetsger, N. Jovanovic, E. Kirda, C. Kruegel, and G. Vigna. 2008. Saner: Composing Static

and Dynamic Analysis to Validate Sanitization in Web Applications. In Proceedings of IEEE. Symposium on Security
and Privacy, Oakland, CA, USA, 387-401.

[123] A. W. Marashdih and Z. F. Zaaba. 2017. Detection and Removing Cross Site Scripting Vulnerability in PHP Web
Application. In 2017 International Conference on Promising Electronic Technologies (ICPET). IEEE, 26-31.

[124] W. E. Wong, V. Debroy, B. Choi. 2010. A family of code coverage-based heuristics for effective fault localization.
Journal of Systems & Software. 83 (2): 188-208.

[125] N. Antunes, M. Vieira. 2011. Enhancing Penetration Testing with Attack Signatures and Interface Monitoring for the
Detection of Injection Vulnerabilities in Web Services. In Proceedings of IEEE. International Conference on Services
Computing, 104-111.

[126] Y. Zheng, X. Zhang, V. Ganesh. 2013. Z3-str: a z3-based string solver for web application analysis. In Proceedings of
the 2013 9th Joint Meeting on Foundations of Software Engineering. ACM, 114-124.

[127] Y. Zheng, V. Ganesh, S. Subramanian, et al. 2015. Effective search-space pruning for solvers of string equations, regular
expressions and length constraints. International Conference on Computer Aided Verification. Springer, Cham, 235-254.

[128] P. A. Abdulla, M. F. Atig, Y. F. Chen, et al. 2015. Norn: An SMT solver for string constraints. International Conference
on Computer Aided Verification, Springer, Cham, 462-469.

[129] S. Gupta, B. B. Gupta. 2018. RAJIVE: restricting the abuse of JavaScript injection vulnerabilities on cloud data centre
by sensing the violation in expected workflow of web applications. International Journal of Innovative Computing and
Applications. 9(2018), 13-36.

[130] H. Asghar, Z. Anwar, and K. Latif. 2016. A deliberately insecure RDF-based Semantic Web application framework for
teaching SPARQL/SPARUL injection attacks and defense mechanisms. Computers & Security. 58 (2016), 63-82.

[131] M. A. Ahmed, and F. Ali. 2016. Multiple-path testing for cross site scripting using genetic algorithms. Journal of
Systems Architecture. 64(2016), 50-62.

[132] N. Patel, and N. Shekokar. 2015. Implementation of Pattern Matching Algorithm to Defend SQLIA. Procedia Computer
Science. 45 (2015), 453-459.

[133] C. Sadowski, et al. 2015. Tricorder: Building a program analysis ecosystem. In 2015 IEEE/ACM 37th IEEE International
Conference on Software Engineering. IEEE, 598-608.

[134] B. Johnson, Y. Song, E. Murphy-Hill, R. Bowdidge. 2013. Why don’t software developers use static analysis tools to
find bugs? In 2013 35th International Conference on Software Engineering (ICSE). IEEE, 672-681.

[135] S. Ali, S. K. Shahzad, H. Javed. 2009. Sqlipa: An authentication mechanism against sql injection. European Journal of
Scientific Research. 38, 4 (2009), 604-611.

[136] A. Liu, Y. Yuan, D. Wijesekera and A. Stavrou. 2009. SQLProb: A Proxy-based Architecture towards Preventing SQL
Injection Attacks. In Proceedings of the ACM Symposium on Applied Computing, SAC 2009, Honolulu, Hawaii, USA,
2054-2061.

[137] M. Junjin. 2009. An approach for SQL injection vulnerability detection. In 2009 Sixth International Conference on
Information Technology: New Generations. IEEE, Las Vegas, NV, USA, 1411-1414.

[138] P. Zech, M. Felderer, and R. Breu. 2019. Knowledge-based security testing of web applications by logic programming.
International Journal on Software Tools for Technology Transfer. 21, 2 (2019), 221-246.

[139] M. N. Khalid, H. Farooq, M. Iqbal, M. T. Alam, and K. Rasheed. 2018. PredictingWeb Vulnerabilities inWeb Applications
Based on Machine Learning. Communications in Computer and Information Science. 932(2018), 473-484.

[140] I. Medeiros, M. Beatriz, N. Neves, and M. Correia. 2019. SEPTIC: Detecting Injection Attacks and Vulnerabilities
Inside the DBMS. IEEE Transactions on Reliability. 68, 3(2019), 1168-1188.

[141] D. Ying, Z. Yuqing, M. Hua, W. Qianru, L. Qixu, W. Kai, and W. Wenjie. 2018. An adaptive system for detecting
malicious queries in web attacks. Science China Information Sciences. 61, 3 (2018), 032114.

[142] J. Thomé, L. K. Shar, D. Bianculli, and L. Briand. 2018. An Integrated Approach for Effective Injection Vulnerability
Analysis of Web Applications through Security Slicing and Hybrid Constraint Solving. IEEE Transactions on Software
Engineering. 1-32.

[143] G. Shashank, and B. G. B. 2018. XSS-secure as a service for the platforms of online social network-based multimedia
web applications in cloud. Multimedia Tools and Applications. 77, 4 (2018), 4829-4861.

[144] V. Patil, P. Thakkar, C. Shah, T. Bhat, and S. P. Godse. 2018. Detection and Prevention of Phishing Websites Using
Machine Learning Approach. 2018 Fourth International Conference on Computing Communication Control and
Automation (ICCUBEA). IEEE, 1-5.

[145] A. Kurniawan, B. S. Abbas, A. Trisetyarso and S. M. Isa. 2018. Static Taint Analysis Traversal with Object Oriented
Component for Web File Injection Vulnerability Pattern Detection. Procedia Computer Science . 135 (2018), 596-605,
2018.

, Vol. 1, No. 1, Article . Publication date: November 2021.

34 Bing Zhang et al.

[146] M. K. Gupta, M. C. Govil and G. Singh. 2018. Text-Mining and Pattern-Matching Based Prediction Models for Detecting
Vulnerable Files in Web Applications. Journal of Web Engineering. 17, 1-2(March 2018), 28-44.

[147] S. Anil, S. G. Manoj, L. Vijay, and C. Mauro. 2019. You click, I steal: analyzing and detecting click hijacking attacks in
web pages. International Journal of Information Security. 18, 4 (2019), 481-504.

[148] P. Li, L. Liu, J. Xu, H. Yang, L. Yuan, C. Guo, and X. Ji. 2017. Application of Hidden Markov Model in SQL Injection
Detection. 2017 IEEE 41st Annual Computer Software and Applications Conference (COMPSAC), 578-583.

[149] D. Kar, S. Panigrahi, and S. Sundararajan. 2016. SQLiDDS: SQL injection detection using document similarity measure.
Journal of Computer Security. 24, 4(2016), 507-539.

[150] G. Agosta, A. Barenghi, A. Parata, and G. Pelosi. 2012. Automated Security Analysis of Dynamic Web Applica-
tions through Symbolic Code Execution. In 2012 Ninth International Conference on Information Technology - New
Generations, 189-194.

[151] Y. Zhong, H. Asakura, H. Takakura, and Y. Oshima. 2015. Detecting malicious inputs of web application parameters
using character class sequences. 2015 IEEE 39th Annual Computer Software and Applications Conference. IEEE, 525-532.

[152] H. Shahriar, V. K. Devendran, and H. Haddad. 2013. ProClick: a framework for testing clickjacking attacks in web
applications. In Proceedings of the 6th International Conference on Security of Information and Networks, Aksaray,
Turkey, 144-151.

[153] M. Ceccato, C. D. Nguyen, D. Appelt, and L. C. Briand. 2016. SOFIA: an automated security oracle for black-box
testing of SQL-injection vulnerabilities. In Proceedings of the 31st IEEE/ACM International Conference on Automated
Software Engineering, Singapore, Singapore, 167-177.

[154] S. Gupta, and B. B. Gupta. 2015. XSS-SAFE: A Server-Side Approach to Detect and Mitigate Cross-Site Scripting (XSS)
Attacks in JavaScript Code. Arabian Journal for Science and Engineering. 41, 3(2015), 897-920.

[155] Z. Long, et al. 2019. ART4SQLi: The ART of SQL Injection Vulnerability Discovery. IEEE Transactions on Reliability.
68, 4 (2019), 1470-1489.

[156] T. Hall, S. Beecham, D. Bowes, et al. 2011. A systematic literature review on fault prediction performance in software
engineering. IEEE Transactions on Software Engineering. 38, 6 (2011), 1276-1304.

[157] S. Bertrand, E. Fong. 2016. Large scale generation of complex and faulty PHP test cases. 2016 IEEE International
conference on software testing, verification and validation (ICST). IEEE, 409–415.

[158] F. Yu, M. Alkhalaf, and T. Bultan. 2010. Stranger: An automatabased string analysis tool for PHP. In Proceedings of
TACAS’10. Springer, 154–157.

[159] T. Tateishi, M. Pistoia, and O. Tri. 2013. Path- and index-sensitive string analysis based on monadic second-order
logic. ACM Transactions on Software Engineering and Methodology (TOSEM). 22, 4 (2013), 1–33.

[160] NVD. The U.S. government repository of standards based vulnerability management data represented using the
Security Content Automation Protocol (SCAP). Retrieved from https://nvd.nist.gov/.

[161] Bugzilla. A software to manage software development. Retrieved from https://www.bugzilla.org/.
[162] NIST. National Institute of Standards and Technology. Retrieved from http://www.nist.gov/.
[163] Bodgeit. The BodgeIt Store. Retrieved from https://github.com/psiinon/bodgeit.
[164] Openmrs-module-legacyui. OpenMRS Platform. Retrieved from https://github.com/openmrs/openmrs-module-

legacyui.
[165] Regain. Search engine. Retrieved from http://regain.sourceforge.net/.
[166] HTTP dataset CSIC 2010. Testbeds. Retrieved from http://www.isi.csic.es/dataset/.
[167] Suite-9408 PHP source code. Test suite. Retrieved from https://github.com/stivalet/PHP-Vulnerability-test-suite.
[168] IBM Security AppScan. Sanner. Retrieved from https://www.ibm.com/developerworks/cn/downloads/r/appscan/.
[169] NIST. Juliet Test Suite. Retrieved from https://samate.nist.gov/SRD/testsuite.php.
[170] Securing the Weakest Link. Retrieved from https://us-cert.cisa.gov/bsi/articles/knowledge/principles/securing-the-

weakest-link
[171] T. Dybå, T. Dingsyr. 2008. Empirical studies of agile software development: A systematic review. Information and

Software Technology, 50(9–10), 833-859.
[172] Top 10 Programming Languages for Web Development in 2020.Retrieved from https://intersog.com/blog/top-10-

programming-languages-for-web-development-in-2020/.
[173] Top 5 programming languages for web development in 2021.Retrieved from https://medium.com/javarevisited/top-5-

programming-languages-for-web-development-in-2021-f6fd4f564eb6.

, Vol. 1, No. 1, Article . Publication date: November 2021.

1

SUPPLEMENTARY MATERIALS

APPENDIX A
INFERRING AND COMPUTING FALSE POSITIVE RATE (FPR), FALSE NEGATIVE RATE (FNR), TRUE POSITIVE RATE

(TPR) ETC. FOR CATEGORICAL STUDIES

We extracted the reported effectiveness and efficiency of web vulnerability detection approaches from the primary studies
and presented the results from Table A.1 to Table A.3. As the primary studies gave different levels of details of their evaluation
results, we showed their findings using different presentations from Table A.1 to Table A.3.

• If exact data of metrics, such as FPR or FNR, is presented in the primary study, we show the data as it is.
• If the exact metrics data are not presented but can be calculated precisely by us such as [144] through using the data in the

paper, we calculated the parameters and marked the results by ”Cac.” in ’Evaluation’ attribute. And the detail computing
process and data are given in Table B.1 and Table B.2.

• Some techniques are not evaluated by the indicators, but evaluated in other articles as a comparison method or in the further
work by the same authors. For example, Trinh et al [82] proposed a symbolic string solver S3 and Z3-str prospectively
to detect the IPV vulnerabilities. Zheng et al. [127] and Abdulla et al. [128] applied the these two solvers in their papers
on the result comparison of ”sat”, ”unsat”, ”timeout”, ”crash” etc. Then we described them as ”[82](127,128)”.

• Some studies [9, 91, 95] did not present precise numbers of their evaluation, and gave just qualitative conclusions, such as
”It has a low false positive rate.” For such studies, we use ”*” to distinguish their results and presented them as ”Low*.”
However, if the qualitative descriptions are ”without any” or ”no any” FPR or FNR, we marked them as 0%. Besides,
”*” in Language attribute means we cannot get the information of language for the test beds.

• For the indicator of automation (Auto), we used ”Need” to represent whether human intervention is needed when applying
the approaches.

• The blanks mean that we cannot extract evaluations of the corresponding metrics from the primary studies.

APPENDIX B
CONVENTIONAL PERFORMANCE INDICATORS AND COMPOSITE PERFORMANCE MEASURES AND THE

CALCULATION FOR INDICATORS IN PART OF REFERENCES

Many studies only reported the number of false positives or false negatives, even the flagged vulnerabilities and confirmed
vulnerabilities in the experiment result, but others report FPR, FNR, TPR and precision. If we are to compare the result we
need to convert the results of one article into the performance measures reported by the other paper. Then we need to infer
and compute them to a same form. Table B.1 shown the traditional Performance Indicators and their Composite Performance
Measures [156]. Table B.2 gave the detailing Calculation for the indicators.

APPENDIX C
THE DETAIL INFORMATION OF TESTBEDS USED IN THE PRIMARY STUDIES

The datasets that have been used by at least three times in primary studies for PHP based web applications, two times for
JAVA based web applications, or the large-scale test-suites are listed in Table 9 and Table 10 which are listed in the main text
of our paper, and the 21 studies that presented the information of vulnerability in the web applications or test suites used in
evaluation, which are listed in Table C.1.

2

TABLE A.1
THE EFFICIENCY AND EFFECTIVENESS OF WAVD METHODS ON INPUT VALIDATION VULNERABILITIES (PART I)

ID VL Type Artifacts Language Efficiency
(TC/MC/Auto) FPR FNR TPR Precision Evaluation Ref.

1 XSS MFM S1, S6 PHP 33.3%-60%
3 OSS project and one student
project. Cac. [12]

2 XSS MFM S1, S6 JAVA Need 0.00% 7 Java applications. [77]
3 XSS MFM S1 JAVA 26.20% 5 Java applications. [76]
4 XSS MFM+VCP S1, S5 PHP 0.00% 0.00% 9408 sample files. [23]

5 XSS MFM+VCP S1, S4, S5 PHP
1s-3671s,
33MB-2282MB,
Need

7 applications and 9 applications
for manual input validation
functions.

[55]

6 XSS MFC B2 PHP Low* 6.7%-17.9% 82.1%-93.3% 88.5%-97%
2 applications with inserted
VLs. Cac [58]

7 XSS MFC B2 PHP
Response
time<3126ms 0.5%-0.667% 0.8%-1.8% 98.2% - 99.1% 94.1%-95.8%

5 Non-Online Social Network(OSN)
and 5 OSN applications.
F-measure>96.1%. Cac.

[143]

8 XSS CPC S2 PHP 69.2%-92%

Dataset with 9408 PHP source
code files.
Recall: 69.5%-92.6%.
F-measure:68.2%-92.6%.
Accuracy:69.5%-92.6%.

[146]

9 XSS VCP B4 PHP 0.00% 5 real world applications. [59]
10 XSS VCPM B1 JAVA 2244-3098ms 10%-15% 0.00% 5 real world applications. [154]

11 XSS GACP B4 PHP
3 applications. Reported Phi and
Fitness graphs. [131]

12 XSS GACP+CPC B2 * 1000s-3000s 848 XSS VLs on 50 websites. [111]

13 XSS GAM S1 PHP
7.79s-713.27s,
1393Kb-107333Kb 8 OSS applications. [63]

14 XSS GAM S1 PHP
4 real world applications.
On average 4 VLs covered
in each application.

[106]

15 XSS GAM+VCP S1 JSP 14.96s-168.38s
1 OSS application with 88 files
and 32 files have VLs. [94]

16 DOM-based XSS MFC B1 PHP 2.018s-2.986s 98.4%-99.2% 97.7%-99.2%
5 Online Social Network based
applications. F-measure: >98%. [49]

17 SQLi VCP B1 JAVA 0.056s-0.94s 0.00% 0.00% 10 applications. [72]
18 SQLi MFM+VCPM S1 PHP 6 PHP applications. [69]
19 SQLi MFC B2 JSP 0.2712s 20.50% 10 OSS applications. [116]

20 SQLi MFC B2 * MC: Low*
Compared with one similar tool
without giving detailed info.
of the dataset. Accuracy: 100%.

[132]

21 SQLi MFC B4 PHP 0.65%-1.17% 1.07%-3.36% 97.96%-98.93% 93.17%-97.09%
5 self-developed applications
and inserted queries.
F1-score: 95.51%-98.04%.

[149]

22 SQLi MFC S5 JAVA
5 types of applications.
Detection rate100%. [96]

23 SQLi MFC B4 JAVA
MC<similar
tools

30 attack patterns on 5
application.
Detection rate:100%

[136]

24 SQLi GACP S4 JSP 6s 0.00% 100.00% 7 applications. Cac. [114]

25 SQLi GACP B4 PHP
2 applications.
Identified 29 VLs. [18]

26 SQLi GACP B4 PHP
3 applications.
7 Scanner compared. [112]

27 SQLi GACP B4 JAVA, PHP Need
3 own developed applications.
Manual web crawling needed to
complete the crawling.

[113]

28 SQLi GACP B4 * Low*

12 applications. Significantly
better than compare with SQLMap
with P-value <0.001 and
effect size (d>1).

[20]

29 SQLi GACP S4, S5 * 0.00% 0.00%

1 own developed vulnerable
application and 3 groups of URLs
with 5000 URLs in each group.
Detection rate: 100%.

[84]

30 SQLi GACP+GAM B4 * 0.34%

1 own developed vulnerable
application and 2000 URLs from
10 applications.
Recall: 97.5%.

[92]

31 SQLi GAM B4 PHP
18.98s-
208.17s

3 OSS VL simulation benchmarks.
F-measure: 257.33. [155]

32 SQLi GAM B4 PHP 0.05%-0.08% 97.6%-100%
1 OSS application and 1
vulnerability evaluation system
and 30000 URLs from 20 web sites.

[93]

33 SQLi VCPM B1 * 16.20% 5.75% 1 OSS website. [148]

34 SQLi VCP B4 *
130.89s-
169.76s 0.00%

No detailed info. of the
applications used for evaluation. [115]

35 SQLi VCP S5 JSP
0.05s-0.3s,
Need 0.00%

12 real world applications.
Require human intervention to
transform some control flows
and SQL queries.

[83]

36 SQLi VCPM B4 JAVA <0.22s 0.00% 7 applications. [78]

37 SQLi VCPM S4 PHP
20.3ms-
463.77ms 0%- 0.6% 0.00% 100% 12.3%-100%

9 datasets from 6 applications
and 3 attack tools. Cac. [153]

38 SQLi, XSS MFM S6 PHP 33.3%-100%
WhiteHat Capture The Flag
(CTF) contests. Cac. [86]

39 SQLi, XSS MFM S1 JAVA 44.8s-114.2s
SQLi: 35%;
XSS: 37%

CWE89 SQL Injection and
CWE80 XSS test suite in Juliet
Test Suite for Java in
version1. 1. 1.

[81]

40
Second order
SQLi, XSS MFM S1, S6 PHP

3s-345s,
40MB-846MB 21.00% 79.00% 6 OSS projects. [60]

41 SQLi, XSS MFM+VCPM S1 PHP
SQLi: <60s;
XSS: <1200s

XSS: 60.5%-100%;
SQLi: 62.5%-84%

375 WordPress plug-ins and a
commercial web application,
68 and 28 VLs. Cac.

[53]

42 SQLi, XSS MFM+VCPM S1 PHP 0.88-34s 0.00% 0.00%
NIST Benchmarks and 2 web
applications. [150]

43
SQLi, First and
second order XSS MFM+GAM S1 PHP

SQLi 0%,
First order XSS 42%,
Second order XSS 0%

5 applications.
Code coverage<50%. [64]

44 SQLi, XSS MFC S1, B1 PHP
67s-1109s,
Need

5 real world applications,
Reported the number of
faulty sanitization procedures
that can be bypassed by
an attacker.

[122]

MC: memory consumption; TC: time consumption; FP: False positive; FN: False negative; TP: true positive; P: precision.

3

TABLE A.2
THE EFFICIENCY AND EFFECTIVENESS OF WAVD METHODS ON INPUT VALIDATION VULNERABILITIES (PART II)

ID VL Type Artifacts Language Efficiency
(TC/MC/Auto) FPR FNR TPR Precision Evaluation Ref.

45 SQLi, XSS MFC+VCP S1, B4 PHP
6 OSS applications, Percentage
of files contain VLs
are reported.

[54]

46 SQLi, XSS GACP B4 PHP Need Low* Low*

OWASP Mutillidae 2, old
WordPress, and Acuart Web app.
Compared with three other
scanners. Does not report exact
FPR or FNR of each type of VL.

[100]

47 SQLi, XSS GACP B4 JAVA
SQLi: 87.5%;
XSS: 100%

794 web forms and 4082 from
these forms. [117]

48 SQLi, XSS GAM B4 JAVA 0.00% 0.00% 3 OSS applications. [79]

49 SQLi, XSS GAM B4 PHP 329.7s-343.5s 4%-6.4% 0%-4.8%
1 vulnerability evaluation
application. [138]

50 SQLi, XSS CPC S2 PHP Need 22.1%-84.9%

3 websites Drupal, PHPMyAdmin
and Moodle.
Recall: 13.8%-85.1%.
F1-score: 16.9%-84.8%.

[139]

51 SQLi, XSS CPC S2 PHP Need
XSS: 6%-9%,
SQLi:11%-16%

XSS: 65%-78%;
SQLi: 92%-93%

XSS:78%-82%;
SQLi:90%-92%

8 OSS applications. Manual
tagging. Accuracy>=85%. [65]

52 SQLi, XSS CPM S1 PHP Need

Supervised
predicator: 85%;
Unsupervised
predicator: 39%

6 real world applications.
Recall:
Supervised predicator: 90%
Unsupervised predicator: 76%

[107]

53 SQLi, XSS VCP B4 PHP Low*
7 applications.
SQLi accuracy: 89.99%-95.99%.
XSS accuracy: 73.01%-83%.

[91]

54 SQLi, XSS VCP B4 JAVA
1 application with 20 inserted
VLs. Detection rate: 80%. [118]

55 SQLi, XSS VCP B4 PHP 0.00% 0.00%
7 web sites from National
Vulnerability Database (NVD). [119]

56 SQLi, XSS VCPM S1, B4 PHP Low*
SQLi: 87%;
XSS: 86% 5 real world applications. [95]

57 File injection MFM S1 PHP
1.231s-10.606s;
39.775MB-
220.725MB

Stivalet dataset [157]. [145]

58 Remote code execution VCP S3, S5 PHP 1.6s-87.6s 22.00% 10 real world applications. [57]([126])
59 Remote code execution VCP S5 PHP 0.031s-2.718s 0.00% 10 OSS applications. [126]

60 SPARQLi/SPARULi VCP+GACP B1 * 0%-20%
1 own developed semantic web
application.
Detection rate: 80%-100%.

[130]

61 XQuery injection VCP+GACP B4 JAVA 8.00% 92.00% 95.80%
4 applications with known VLs.
Code coverage: High*. [75]

62
Inconsistency of
client and server-side
input validation

MFM S4 JAVA
<300s;
3.16Mb-6.12Mb 0.00% 0.00% 7 applications. [80]

63 Object injection MFC S3,S6 PHP 3 OSS projects. [87]

64 SQLi for web service GACP B4 * 0.00% 74.05%
A reference site of 21
services. [125]

65 SQLi for web service GACP+VCP B4 * 0.00% 100.00%
An extension of [125].
A reference site
of 21 services. Cac.

[110]

66
SQLi, XSS, XMLi,
XPathi, LDAPi, MFM S1, S6 JAVA/JSP 3.2s-123s

43 programs from 9
Java-based systems.
Reduce security slices
to 76%.

[6]

67 SQLi, XSS, CRLFi MFM S1, S6 PHP
29s-252s;
289MB-1143MB 0% - 28% 0%-24% 72%-100%

9 OSS projects. Also reported
73 previously unknown VLs. [61]

68
SQLi, XSS, XPathi,
XMLi, LDAPi MFM+VCPM S1, S6 JAVA 2981.4s 0.00% 2.00% 98.00% 100.00%

11 OSS home developed
benchmark applications
and 5 real world web
applications. Cac.

[142]

69
SQLi, XSS, RFI,
LFI, DT/PT, SCD,
OSCI, PHPCI

MFM+CPM S1, S6 PHP 1s-105s Low* 0.00% 92.50%
45 OSS packages.
Accuracy:92.1%. [7]

70
SQLi, XSS, RFI, LFI,
DT/PT, PHPCI MFM+CPM S1, S2 PHP 2s-90s 12.00% 0.00% 95.00%

10 Wordpress plugins and
10 OSS software packages.
Accuracy:96%.

[52]

71 Code injection, XSS CPC S2 PHP Need
3 datasets,
AUC: 0.616-0.765.
TPR:Up to 80%

[14]

72
SQLi, XSS, Remote
code injection,
and File injection

CPM S1, S2 PHP 7384s-33430s
CF:0%-7%;
RF:1%-11%

CF:42%-80%;
RF:22%-66%

CF:59%-81%;
RF:26%-68% 7 OSS projects. [56]

73
SQLi, XSS, Directory
Traversal, RFI CPM B4 *

4.4s-6.7s,
Need 0.001%-0.03% 99.95%-100%

F-measure: 99.5%-99.96%. Data
collected from web server logs.
1 public dataset. Manual label
in the model training stage
is needed.

[141]

74 Injection attacks VCP S5 JavaScript 21s-267s A set of 5000+ benchmarks.
[82]
([127,128])

75
SQLi, XSS, command
injection, RFI, VCP B3 * <80s 0.88%

15 public web servers. FPR= # of
legitimate requests detected as
attacks/# of legitimate
requests, Detection rate:82.57%.

[151]

76
SQLi and stored
injection attacks VCPM B4

PHP, JAVA,
Visual Basic

2.2%
Latency
Overhead

0.00% 0.00%
Insert VLs in an application and
compare with 4 anti-SQL tools and
11 real world applications.

[140]

77
SQLi, File
injection,OSCI GACP B4 PHP Low*

5 applications and 5 OSS
applications with known VLs. [51]

78 SQLi, XSS, LFI/RFI GACP S4 PHP
10 websites from xssed.com and
dvwa.co.uk. Accuracy: 20%-90%.
Mean of accuracy: 54%.

[16]

MC: memory consumption; TC: time consumption; FP: False positive; FN: False negative; TP: true positive; P: precision.

4

TABLE A.3
THE EFFICIENCY AND EFFECTIVENESS OF WAVD METHODS ON OTHER VULNERABILITIES

ID VL Type Artifacts Language Efficiency
(TC/MC/Auto) FPR FNR TPR Precision Evaluation Ref.

1 Parameter tampering GACP B4 * 1.12% 5000 URLs from Alexa. [120]

2 Parameter tampering VCP S5 PHP
4s-10042s,
1Kb-738Kb 0.00% 0.00%

6 OSS applications. Identify
45 unknown VLs. [109]

3 Parameter Tampering VCP+GACP B3 PHP 219s, Need
8 OSS applications and 5 live websites.
FP:43. Manual intervention.

[121]
([109])

4 Parameter tampering VCP+GACP B4 JAVA 0.00% 0.00% 100.00% 100.00%
4 applications with known VLs.
Code coverage: High*, Cac. [75]

5
Parameter tampering,
access-control,
workflow bypass

VCPM+GACP B1 JAVA, PHP Need 0%-5% 0%-6.25% Overall 97.9% 99.10%

4 applications with known VLs. Parameter
tampering: 0% FP and FN.
Access control: 5% FP and 6.25% FN.
Workflow bypass: 0% FP and FN.

[74]

6 Path traversal MFM S1, S6 PHP
29s-252s,
289MB-1143MB 0.00% 0.00%

5 applications with known VLs.
Built-in functions coverage: 89%.
Report 73 unknown VLs.

[61]

7 Path traversal MFM S1, S6 PHP
3s-345s,
40MB-846MB 7.00% 93.00%

6 OSS projects. Identified 159
second-order VLs. No path traversal VLs. [60]

8 Path traversal MFM+CPM S1, S6 PHP 1s-105s Low* 0.00% 92.50%
45 OSS packages. Accuracy:92.1%.
No detailed data of path traversal [7]

9 Path traversal MFM+CPM S1,S2 PHP 2s-90s 12.00% 0.00% 95.00%
10 WordPress plugins. Does not identify
any path traversal vulnerability. [52]

10
Path disclosure,
Authorization issue CPC S2 PHP Need

3 datasets.
AUC: 0.616-0.765. [14]

11 Logic vulnerabilities VCPM B1 * Need
FB:0-33.3%;
PM:0-100%

FB:0-66.7%;
PM:0-100%

FB:0-100%;
PM:0-88.9%

6 real world applications.
Manually verified VLs. Cac. [66]

12 Logic vulnerabilities GAM B1 * 2h-16h 6.60%
7 OSS applications. 6.6% real bugs.
93.4% harmless presentation. [89]

13 Logic vulnerabilities VCPM B1 JAVA 30s-76.2h 86.00%
4 real world applications. 8
applications from students. [88]

14
Unvalidated redirects
and insecure direct
object references

GACP B4 PHP Need Low* Low*

OWASP Mutillidae 2, old WordPress, and
Acuart Web app. Compared with three other
scanners. Does not report exact FPR or
FNR of each type of VL

[100]

15
Insecure Direct
Object References. MFM S1 JSP 30s-3600s High* 97.00% 7 OSS applications. [71]

16 Execution after redirect MFM S1 Rubby <2.5s 59.90% 1,173 OSS Rubby projects. [108]
17 State violation VCP B4 PHP Low* 5 real world applications. [59]

18 State violation VCP B3 PHP 0.0015s-0.005s Low*
3 projects with auth bypass. 1 project with
parameter manipulation. 1 project with
workflow bypass.

[62]

19 State violation VCPM B3 PHP
0.0016s-0.004s,
Need Low* 0.00% 4 OSS applications. [70]

20
Missing authorization
check MFM+VCPM S1 PHP Low* 12 applications. Reported 47 unknown VLs. [69]

21 Access control VCP S5 PHP 22s-5133s
10 OSS projects, Identify 38
access-control VLs. [67]

22
Authorization logic
error VCP B4 PHP 0.1s-0.8s Low* Low* 7 OSS applications. [9]

23
Horizontal privilege
escalation VCP S1 PHP 35s-35093s 0.00% 100.00% 7 known applications. Cac. [105]

24 Access control VCPM S1 PHP
3.84s-760.62s,
Need Low*

7 real world applications, CC:79.33%-100%.
Manually confirmed VL. [68]

25 Access control VCPM+GACP B1 * 0.00% 100.00%
5 OSS applications.
Code coverage: 88.16%-92.21%. Cac. [15]

26 Access control VCPM+GACP B1 PHP, JSP Need Low*
5 PHP and 2 JSP OSS applications.
Code coverage: 58.7%-81.87%. [98]

27 Clickjacking MFC B2 * 0%-5%
Scan DNS to identify vulnerable
ones. Accuracy:>80%. [90]

28 Clickjacking MFM B1 * 0.28%-7% 0.00% 92.22%-98.78% 1000 vulnerable web pages. [147]
29 Clickjacking VCP B4 * TC<500ms 0%-7.84% 0.00% 102 websites from Alexa. [152]
30 Session fixation MFM S1,S3 PHP TC<40s 11 applications of different complexity. [11]

31 CSRF GACP B4 PHP
10 websites from xssed.com and
dvwa.co.uk. Accuracy:20%-90%.
Mean of accuracy: 54%.

[16]

32 CSRF CPC S2 PHP Need 22.1%-84.9%
Three websites Drupal, PHPMyAdmin,
and Moodle. Recall:13.8%-85.1%.
F1-score:16.9%-84.8%.

[139]

33 CSRF CPC S2 PHP Need
3 datasets.
AUC: 0.616-0.765. [14]

34 Side channel CPM B4 * 6.8%-96.3% 7 public websites. [102]
35 Side channel GAM S1 * <1980s 0.00% 6 known applications. [101]
36 DoS MFM+VCPM S1, S6 PHP High* 5 applications. [69]
37 Second-order DoS GACP S5 PHP 46s-1h,>1h 33.00% 42.1%-100% 6 known applications. Cac. [21]

38 Configuration GACP B4 PHP Need Low* Low*

OWASP Mutillidae 2, old WordPress,
and Acuart Web app. Compared with three
other scanners. Does not report
exact FPR or FNR of each type of VL

[100]

39 Configuration MFC S3,S5 PHP
14 applications. Identified more VLs than
three other scanners. [50]

40 Phishing website CPC S2 * 4.4%-4.9% 0.55%-0.74% 99.26%-99.45% 87.56%-88.89%
9076 test websites (No detailed info.)
Accuracy: 96.23%-96.58. Cac. [144]

41 Web shell MFM S6 PHP 0.00% 81.24% 150 official Wordpress plugins. [86]

42
No information
in the paper MFC S3,S6 * 10.87s

1000 educational websites. The type of
vulnerabilities identified are not
reported. Average VLs per site:13.1.

[85]

MC: memory consumption; TC: time consumption; FP: False positive; FN: False negative; TP: true positive; P: precision.

5

TABLE B.1
PERFORMANCE METRICS AND COMPOSITE PERFORMANCE MEASURES

Predict/Detect Metrics
Vulnerable Benign

Actual Vulnerable True Positive (TP) False Negative (FN)
TPR = Recall = TP / (TP+FN)
FNR = FN / (TP+FN)

Benign False Positive (FP) True Negative (TN) FPR = FP / (FP+TN)
Precision = TP / (TP+FP) Accuracy = (TP+TN) / (TP+FP+FN+TN)

F1-measure = F1-score = 2 * (Precision*Accuracy) / (Precision+Accuracy)
Code coverage(CC)[124], Detection rate(DR)[131,150], P-value and effect size[20], AUC[14], Fitness[123,131]

TP: The prediction result is vulnerable, which is actually vulnerable.
FP: The prediction result is vulnerable, which is actually benign.
FN: The prediction result is benign, which is actually vulnerable.

TN: The prediction result is benign, which is actually benign.
TPR or Recall: The rate that the correct prediction vulnerable results in the whole actual vulnerable results.

FNR: The rate that the wrong prediction benign results in the whole actual vulnerable results.
FPR: The rate that the wrong prediction vulnerable results in the whole actual benign results.

Precision: The rate that the correct prediction vulnerable results in the whole prediction vulnerable results.
Accuracy: The rate that the correct prediction results in the whole results.

F1-measure or F1-score: Defined as the harmonic mean of the model’s precision and recall.
Code coverage: A measurement of the amount of code that is run by unit tests - either lines, branches, or methods.

Detection rate: The rate that number of attacks detected as attacks over number of attacks.
P-value and effect size: The P-value is the probability that Null Hypothesis is true. Obtaining a significant result simply means the p-value obtained by the statistical test was equal to or less than the alpha value, which in most cases is 0.05. Effect

size addresses the concept of “minimal important difference” which states that at a certain point a significant difference (i.e., p ≤ 0.05) is so small that it would not serve any benefits in the real world.
AUC (Area under the receiver operating characteristic curve): The probability that a randomly chosen positive example is ranked higher than a randomly chosen negative example.

Fitness: A fairly basic metric corresponding to the closeness level to measure a function, i.e., the percentage of branches from the target path that are executed when the application is run using a given input. The solution for the target path is found
when an individual is able to traverse 100% of the required branches. The more an input is near to this condition, the higher value of fitness function will have.

TABLE B.2
DETAILING CALCULATION FOR THE INDICATORS

Ref. TN TP FP FN FPR
FP/(FP+TN)

FNR
FN/(TP+FN)

TPR(Recall, Detection rate)
TP/(TP+FN)

Precision
TP/(TP+FP)

Data sources
in primary studies

[66]
√ √ √ FB:0/(0+4)∼1/(1+2);

PM:0/(0+8)∼1/(1+0)
FB:0/(0+2)∼2/(1+2);
PM:0/(0+1)∼8/(8+0)

FB:0/(0+2)∼2/(2+0);
PM:0∼8/(8+1) Table2

[142]
√ √ √ √

0 2/(93+2) 93/(93+2) 93/(93+0) Table 8
[143]

√ √ √ √
5/(5+5)∼6/(6+3) 1/(1+117)∼2/(2+112) 98.2%∼99.1% 94.1%∼95.8% Table 21

[144]
√ √ √ √

297/(297+6392)∼326/(326+6393) 13/(13+2374)∼17/(17+2287) 2287/(2287+17)∼2374/(2374+13) 2287/(2287+325)∼2374/(2374+297) Table I
[75]

√ √ √
4/(46+4),0/(0+40) 46/(46+4),40/(40+0) 46/(46+2), 40/(40+0) Table 3(Total)

[86]
√ √ √

1/(1+2)∼2/(2+0) Table 3∼5
[58]

√ √ √
2/(2+28)∼5/(5+23) 23/(5+23)∼28/(28+2) 23/(23+3)∼32/(32+1) Fig.6

[21]
√ √

8/(8+11)∼11/(11+0) Table1
[105]

√ √
0/* 7/(7+0) Table 3

[53]
√ √ XSS: 63/(63+41)∼7/(7+0);

SQLi:5/(5+3)∼21/(21+4) Table 1∼2

[15]
√ √

0/* 10/(10+0) Table II
[12]

√ √
2/(2+4)∼6/(6+4) Table I

[114]
√ √

0/21 21/21 Table II
[153]

√ √ √ √
1871/(1871+0) 4/(4+28.5)∼1871/(1871+0) Table 3

[110]
√ √

0/* 119/(119+0) Fig.11-Fig.12

FB: Forceful Browsing; PM: parameter manipulation

zhang
Highlight

6

TABLE C.1
PERFORMANCE INDICATORS ON WEB APPLICATIONS AND TEST SUITES WITH KNOW VULNERABILITIES

Ref. Vulnerability detection focuses Known type of VLs Number or percentage of known VLs Performance Indicators

[110, 125] SQLI
158 VLs in TPC-App,
TPC-C and TPC-W FP

[14]
Code injection, XSS, Path
disclosure, Authorization issue,
CSRF

Drupal (97%), Moodle (51%),
PHPMyAdmin (75%)

[93] SQLI Wavsep (135), Vulweb (42) FP

[62] State violation
Scarf (CVE-2006-5909),
Simplecms (BID 19386),
BloggIt(CVE-2006-7104)

Wackopicko (Parameter manipulation),
OsCommerce (Workflow bypass)

[70]
Access control, parameter
manipulation

Scarf (CVE-2006-5909),
openInvoice (CVE-2008-6524)

Wackopicko (Parameter manipulation,
forceful browsing),
OpenIT [121] (Parameter manipulation)

[74]
parameter manipulation

BookStore (64), Classifieds (86),
Events (39), Emploee Directory (42) FP, FN

access-control Scarf (CVE-2006-5909)
Scarf(8), OpenIT (2), Wackopicko (4),
Puzzlemall (1) FP, FN, TP

workflow bypass
Scarf(2), Wackopicko (2), OpenIT (0),
OsCommerce(1) FP, FN

[142] SQLI, XMLI, XPathI, LDAPI JOCAO-Suite (86), StrangerJ-Suite (9) FP, FN, TP, TN

[119] SQLI, XSS

CVE-2010-0122, CVE-2009-4669,
CVE-2008-2488, CVE-2009-4595,
CVE-2009-4456, CVE-2009-3716,
CVE-2010-1742

53 VLs in Timeclock-software, RoomPHPlanning,
php Inventory, Green Desktiny,
Mcshoutbox and Scratcher

FP, FN

[23] XSS
9048 PHP vulnerabilities test suite (2856
unsafe sample files, 4200 safe sample files) FP, FN

[55] XSS Claroline 1.5.3 (CVE-2005-1374)
[105] Privilege Escalation myBloggie 2.1.3 (3), miniBloggie 1.1 (1), Scarf 1.0 (1) FP, TP

[61]
XSS, SQLI, Parameter tampering,
CRLF injection, path traversal,
file write

CVE Mybb (10), osCommerce (29), phpBB2 (2), phpBB3 (1) TP, FP, FN

[143] XSS

Humhub 0.10.0(CVE-2014-9528),
Elgg 1.8.16 (CVE-2012-6561),
Drupal 7.23 (CVE-2012-0826),
WordPress 3.6.1 (CVE-2013-5738),
Joomla 3.2.0 (CVE-2013-5738)

TP, FP, FN, TN

[51] SQLI, XPathI, OSCI, File include
Cyphor(CVE-2005-3236/3575),
Seagull(CVE-2010-3212/3209),
Pligg(CVE-2008-7091)

FP

[146] XSS
9048 PHP vulnerabilities test suite
(3808 unsafe sample files, 5600 safe sample files)

[139] CSRF, SQL, XSS
Drupal, PHPMyAdmin, Moodle; Code injection (19),
CSRF (12), XSS (86), others (106)

[107] SQLI, XSS
GeccBBLite 0.1 (%Vuln to SQLI: 44.4%; %Vuln to XSS:58.8%),
SchoolMate 1.5.4 (%Vuln to SQLI: 80.4%; %Vuln to XSS:80.2%),
Yapig 0.95b (%Vuln to XSS:7.7%)

FPR

[114] SQLI
On line Real State (1), ICC World Cup11(1), On line Tutorial(1),
Graphics(1), travel (1), Job site(4), Education(12) FP

[92] SQLI Target experimental Web platform (40 SQLIVs classified into 7 kinds) FPR, FN

[113] SQLI

JSP application (3 first-order SQLI and 1 second-order SQLI), JSF
application (1 first-order SQLI, 1 second-order SQLI and 2 blind
SQLI attacks), PHP application (1 first-order SQLI, 1 second-order
SQLI and 1 blind SQLI attack)

	Abstract
	1 Introduction
	2 Web application vulnerabilities
	3 Existing surveys and literature reviews of WAVD approaches
	4 Research design and implementation
	4.1 Searching and filtering the primary studies
	4.2 Data analysis and synthesis

	5 Results
	5.1 Basic information of the primary studies
	5.2 Results of RQ1
	5.3 Results of RQ2
	5.4 Results of RQ3

	6 Discussion
	6.1 Comparison with related work
	6.2 Implications of the results for practitioners
	6.3 Implications of the results for researchers
	6.4 Threats to validity

	7 Conclusion and future work
	Acknowledgments
	A SUPPLEMENTARY MATERIALS
	References

