
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

Isak G
rande Bjørnstad

D
eep Reinforcem

ent Learning for Autonom
ous Vehicles in Sim

ulated Environm
ents

Isak Grande Bjørnstad

Deep Reinforcement Learning for
Autonomous Vehicles in Simulated
Environments

Master’s thesis in Computer Science
Supervisor: Frank Lindseth

June 2021M
as

te
r’s

 th
es

is

Isak Grande Bjørnstad

Deep Reinforcement Learning for
Autonomous Vehicles in Simulated
Environments

Master’s thesis in Computer Science
Supervisor: Frank Lindseth
June 2021

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science

Abstract

In conjunction with deep learning, reinforcement learning has had several break-
throughs in recent years, causing a surge in research interest. Combined with the
increased availability of realistic and open-source car simulators such as Carla,
this means there has never been a better time to research reinforcement learning
based autonomous vehicle systems.

In this thesis, an end-to-end autonomous vehicle system is trained with deep
reinforcement learning in two different simulators with differing levels of realism.
An implementation of the Proximal Policy Optimization algorithm is shown to
learn good driving policies in both environments with only minor implementation
differences. We find that designing and tuning the reinforcement learning based
autonomous vehicle system in a simple simulator allowed faster experimentation
resulting in a better tuned implementation to be deployed in the more complex
simulator.

We develop a low-fidelity 3D environment that generates random roads on the
fly in front of a car as it drives. Reinforcement learning experiments in this envi-
ronment show that encoding visual observations with Variational Autoencoders
result in better policies in terms of performance metrics like mean distance and
episode success rate, but can have unintended side effects such as more uncom-
fortable driving policies being learned.

The reality gap between simulator and the real world causes difficulties when
attempting to deploy a policy trained in a simulator in the real world. We
demonstrate a moderately successful policy transfer over an analogous ”simulator
gap” between two different simulators that differ significantly in graphical fidelity
and environment dynamics, such as vehicle physics. A model trained only in a
simple Unity-based simulator is shown to achieve an episode success rate of 60 %
in the Carla simulator.

ii

Sammendrag

Sammen med dyp læring har Reinforcement Learning (forsterkningslæring) hatt
flere gjennombrudd de siste årene, noe som har økt forskningsinteressen. Kom-
binert med økt tilgjengelighet av realistiske og open-source bilsimulatorer som
Carla, har det aldri vært et bedre tidspunkt for forskning p̊a autonome bilsyste-
mer basert p̊a RL.

I denne oppgaven blir et autonomt kjøretøysystem trent ved hjelp av ende-
til-ende dyp RL i to forskjellige simulatorer med ulikt niv̊a av realisme. Simu-
leringene viser at en implementasjon av algoritmen Proximal Policy Optimisation
lærer effektive kjørepolitikker i begge miljøer med kun sm̊a forskjeller i implemen-
tasjonsdetaljer. Vi finner at det å designe og finjustere det RL baserte autonome
kjøretøysystemet muliggjør raskere utføring av eksperimenter, som igjen resul-
terer i en mer finjustert implementasjon til å bli plassert ut i den mer komplekse
simulatoren.

Vi utvikler et enkelt 3D-miljø som genererer tilfeldige veier foran bilen mens
den kjører. RL-eksperimenter i dette miljøet viser at det å bruke komprimerte
representasjoner av de visuelle observasjonene ved å benytte en Variational Au-
toencoder, resulterte i bedre politikker m̊alt ved ytelsesmetrikker som gjennom-
snittlig distanse og andel vellykkede episoder. Ulempen er at dette ogs̊a kan ha
bivirkninger som at den lærte kjørepolitikken blir mer ”ukomfortabel”.

Realitetsgapet mellom simulator og den virkelige verden skaper problemer n̊ar
det blir forsøkt å plassere politikker som er trent i simulator, ut i den virkelige ver-
den. Vi demonstrerer en moderat vellykket politikkoverføring over et tilsvarende
”simulatorgap” mellom to simulatorer som varierer signifikant i grafikkrealisme
og miljødynamikk, slik som kjøretøyfysikk. En modell trent kun i en enkel Unity-
basert simulator viser seg å oppn̊a en andel vellykkede episoder p̊a 60 % i Carla
simulatoren.

iii

Preface

This thesis was written as part of the NTNU Autonomous Perception Lab (NAPLab)
research group at the Norwegian University of Science and Technology.

I am thankful to my supervisor Frank Lindseth for giving me the opportunity to
write about this exciting field and for providing invaluable feedback throughout
the project’s duration. I would also like to thank Gabriel Kiss for his helpful
feedback in the early stages of the project.

I want to extend additional thanks to Frank Lindseth and Jan Grønsberg for
setting up and providing access to a remote desktop virtual machine with a
GPU.

Some computations were performed on resources provided by the NTNU IDUN/EPIC
computing cluster.

Isak Grande Bjørnstad
Trondheim, June 28, 2021

iv

Contents

1 Introduction 1

1.1 Motivation and Problem Description 1

1.2 Goals and Research Questions . 2

1.3 Contributions . 3

1.4 Thesis Structure . 3

2 Background and Related Work 5

2.1 Reinforcement Learning . 5

2.1.1 Markov Decision Process 5

2.1.2 Deep Reinforcement Learning 9

2.2 Simulated Environments . 18

2.2.1 TORCS . 18

2.2.2 Nvidia ISAAC . 18

2.2.3 LGSVL . 18

2.2.4 CARLA . 19

2.2.5 Unity: ML-Agents . 19

2.3 Autonomous Cars . 20

2.3.1 Introduction to Autonomous Cars 20

2.3.2 Sensors used in autonomous vehicles 21

2.3.3 Modular vs. end-to-end approach 22

2.3.4 End-to-end Learning for autonomous vehicles 23

2.3.5 Deep Reinforcement Learning for Autonomous Vehicles . . 24

2.4 Related Work . 26

2.4.1 Implementation Matters in Deep RL: A Case Study on
PPO and TRPO . 26

2.4.2 What Matters In On-Policy Reinforcement Learning? A
Large-Scale Empirical Study 27

v

vi CONTENTS

2.4.3 Survival-Oriented Reinforcement Learning Model: An Effi-
cient and Robust Deep Reinforcement Learning Algorithm
for Autonomous Driving Problem 27

2.4.4 Learning to Drive in a Day 28

2.4.5 Driving Policy Transfer via Modularity and Abstraction . . 28

2.4.6 RL-CycleGAN: Reinforcement Learning Aware Simulation-
To-Real . 28

2.4.7 CIRL: Controllable Imitative Reinforcement Learning for
Vision-based Self-driving . 29

3 Methodology 31

3.1 Implementation details . 31

3.1.1 Neural network architecture 31

3.1.2 Visual encoders . 35

3.1.3 Variational Autoencoder . 35

3.1.4 Proximal Policy Optimization 36

3.2 Lane following in a Unity environment 39

3.2.1 Procedurally generated roads 39

3.2.2 Creating a car in Unity . 39

3.2.3 Integration with ML-Agents 41

3.3 Lane following in Carla . 43

3.3.1 Reinforcement Learning setup 44

3.4 Transferring policy learned in Unity to Carla 51

3.4.1 Segmentation map in Unity 51

3.4.2 Segmentation map in Carla 52

3.4.3 A stricter Unity environment 53

4 Experiments and Results 55

4.1 Experiment 1: Lane following in Unity 57

4.1.1 Setup . 57

4.1.2 Results . 58

4.1.3 Discussion . 71

4.2 Experiment 2: Lane following in Carla 74

4.2.1 Setup . 74

4.2.2 Results . 76

4.2.3 Discussion . 82

4.3 Experiment 3: Unity to Carla policy transfer 84

4.3.1 Setup . 84

4.3.2 Results . 84

4.3.3 Discussion . 90

CONTENTS vii

5 Discussion 93
5.1 Discussion . 93

5.1.1 Evaluating the Research Questions 94
5.1.2 Comparison to Related Work 96
5.1.3 Reflection . 96

6 Conclusion and Future Work 97
6.1 Conclusion . 97
6.2 Future Work . 98

6.2.1 Policy transfer with RL-CycleGAN 98
6.2.2 Variational Autoencoder’s effects on generalization 98

Bibliography 99

Appendices 103

viii CONTENTS

List of Figures

2.1 Markov Decision Process environment example 6

2.2 Iterations of iterative policy evaluation 8

3.1 Backbone neural network architecture 33

3.2 Implementation B policy head . 34

3.3 Illustration of the ”simple” encoder from ML-Agents 35

3.4 Variational Autoencoder CNN architecture 37

3.5 A road segment from the Unity environment 40

3.6 A generated track in the Unity environment 40

3.7 The car driving in the Unity environment. 41

3.8 Visual observation in the Unity environment 42

3.9 The car driving in Town07 in Carla 44

3.10 A birds-eye view of Town07 in Carla 45

3.11 A birds-eye view of Town07 in Carla with routes marked 47

3.12 Visual observation in the Carla environment 48

3.13 Carla supersampling comparison 50

3.14 Carla low level controller . 51

3.15 Unity semantic segmentation training example 52

4.1 Evaluation of implementation A with a visual encoder trained from
scratch . 60

4.2 Evaluation of a second run of implementation A with a visual
encoder trained from scratch (policy collapse) 61

4.3 Evaluation of the two runs of implementation A with a visual en-
coder trained from scratch . 62

4.4 Evaluation of implementation A with a pre-trained Variational Au-
toencoder . 63

4.5 Evaluation of implementation B with a visual encoder trained from
scratch . 64

ix

x LIST OF FIGURES

4.6 A comparison of Variational Autoencoders with varying values of
zdim with implementation B . 65

4.7 Scatter plot of mean distance and episode success rate of imple-
mentation B with Variational Autoencoders with varying zdim . . 66

4.8 A comparison of implementations A and B with and without a
Variational Autoencoder . 67

4.9 A scatter plot showing mean distance and episode success rate of
implementations A and B with and without a Variational Autoen-
coder . 68

4.10 Evaluation of comfort of each class of model throughout the train-
ing process . 69

4.11 Scatter plot showing jerk score and mean distance of each class of
models . 70

4.12 Evaluation of the Carla model using a Variational Autoencoder in
the training environment . 77

4.13 Evaluation of the Carla model using a Variational Autoencoder in
the mirror world environment . 78

4.14 Evaluation of the Carla model using a Variational Autoencoder in
the training and mirror world environment 79

4.15 Average speed of the Carla model in the training and mirror world
environment throughout the training process 80

4.16 Evaluation of the Carla model using a Variational Autoencoder in
the mirror world environment in lenient mode 81

4.17 Evaluation of the semantic segmentation model in the Unity train-
ing environment . 86

4.18 Evaluation of the semantic segmentation model transfered to the
Carla environment . 87

4.19 Evaluation of the semantic segmentation model transfered to the
Carla mirror world environment . 88

4.20 A comparison of the semantic segmentation models performance
in the Unity and Carla environments 89

6.1 Evaluation of implementation A with a higher resolution image
observation . 104

6.2 Evaluation of implementation A with a visual encoder trained from
scratch and a buffer size of 64 000 instead of 32 000 105

List of Tables

4.1 The model checkpoints with the best mean distance for models
trained with varying zdim in the Variational Autoencoder. 65

4.2 The model checkpoints with the best mean distance for each class
of model trained . 67

xi

xii LIST OF TABLES

Chapter 1

Introduction

1.1 Motivation and Problem Description

Autonomous driving has become an active field of research in recent years, and
some limited forms of autonomous vehicles already exist today. According to
the World Health Organization, the worldwide death toll caused by road traffic
accidents is 1.35 million deaths each year, and these accidents are the leading
cause of death for children and young adults aged 5 - 29 years [WHO, 2020]. In
Norway, traffic accidents claimed the lives of 93 people in 2020 [SSB, 2021]. It is
clear that an autonomous vehicle driving in a safe manner has the potential to
prevent many premature deaths.

Saving time is another motivation for autonomous vehicles. People with long
commutes by car could for instance start their workday during the commute,
increasing productivity and/or spare time. Self-driving cars could also result
in a more efficient traffic flow which could save even more time. There is also
the exciting prospect of autonomous taxis and ridesharing which would remove
the need for individuals to own their own car. Society would need fewer cars
and huge amounts of space that is today wasted on parking lots and other car
infrastructure could be freed up.

Deep Reinforcement Learning has shown impressive results in recent years.
In 2016 a computer program known as AlphaGo trained with DRL became the
first-ever computer program to beat a professional Go player [Silver et al., 2016].
Go had traditionally been a very challenging game for computers to play due
to the large number of possible moves and the difficulty of evaluating how good
a position is. The program was initially trained with supervised learning from
expert games and then improved further with RL by playing games against itself.
The following year the same team from DeepMind released AlphaZero which out-

1

2 CHAPTER 1. INTRODUCTION

performed AlphaGo and was trained entirely from scratch utilizing DRL without
any human knowledge [Silver et al., 2017]. The only knowledge given to the pro-
gram was the rules of the game. AlphaZero is a general reinforcement learning
algorithm that was also trained to play shogi and chess, subsequently defeating
both games’ respective state-of-the-art computer programs.

Schrittwieser et al. [2019] at DeepMind recently released an even more gen-
eralized iteration of the algorithm called MuZero which does not even need to
know the rules of the game, as it learns them by itself.

Using Deep Reinforcement Learning to teach autonomous vehicles to drive
with an end-to-end approach is advantageous because it requires less manual
labor and domain knowledge compared to other approaches such as complex
modular systems often used today. Combined with the use of simulators which
allow models to be cheaply trained and tested, it has great potential in the future
of AVs. A significant obstacle with this approach is closing the reality gap in order
to deploy a model trained in a simulator to the real world.

1.2 Goals and Research Questions

This thesis seeks to explore the training of autonomous vehicle agents in simula-
tors using Reinforcement Learning. Using Reinforcement Learning is promising
because it has shown itself able to learn good policies without any expert example
data. Training from scratch in this way eliminates any possibility of sub-optimal
expert demonstrations negatively influencing the learned policy. The DeepMind
publications mentioned earlier showed that training without any expert demon-
strations can lead to better final policies. Two simulators of differing complexity
will be used, allowing experiments to explore the ”simulator gap” between them
as an analogous problem to the reality gap between simulators and reality.

These goals will be addressed with the following research questions:

• Research question 1: How does using a pre-trained Variational Autoen-
coder to encode visual features influence both the training process and the
resulting policy?

• Research question 2: How can a low fidelity simulator be used to accel-
erate the process of building and deploying a reinforcement learning based
autonomous vehicle in a more realistic environment?

• Research question 3: To what extent can a driving policy learned in a
low fidelity environment be deployed and drive successfully in an unseen
high fidelity environment?

1.3. CONTRIBUTIONS 3

1.3 Contributions

The main contributions of this thesis to the field of deep reinforcement learning
for autonomous vehicles can be summarized as follows:

• A literature review on Deep Reinforcement Learning with a focus on state-
of-the-art on-policy algorithms.

• A demonstration of Unity: ML-Agents’ viability as a sandbox for creat-
ing Reinforcement Learning environments for autonomous vehicle research.
This is demonstrated by our procedurally generated road environment for
prototyping autonomous vehicle lane following systems.

• A Deep Reinforcement Learning based autonomous car lane following sys-
tem that drives well in both a procedural road environment and in the Carla
simulator.

• A deeper analysis on how using Variational Autoencoders to extract fea-
tures affects the resulting policy.

• A moderately successful approach to sim-to-sim policy transfer as an anal-
ogous problem to the sim-to-real policy transfer.

1.4 Thesis Structure

This thesis is structured into six chapters. The chapters are organized in the
following way:

Chapter 1: Introduction Introduces the thesis by specifying the problem
description and the motivation behind it. It then details the goals and research
questions that the rest of the thesis is oriented around before listing the contri-
butions and thesis structure.

Chapter 2: Background and Related Work This chapter covers the rel-
evant background and related work for Deep Reinforcement Learning in an au-
tonomous vehicle context. First, it introduces reinforcement learning before list-
ing a selection of different simulators that can be used with reinforcement learn-
ing. This is followed by an introduction to autonomous vehicles and a review on
how they can be integrated with an RL system. Finally, some important papers
relevant to this thesis are discussed.

4 CHAPTER 1. INTRODUCTION

Chapter 3: Methodology Covers the neural network architecture and rein-
forcement learning algorithm design decisions. Continues with an overview of
both the custom simulator created for the thesis as well as the Carla simulator
and how the RL framework was constructed around them to create RL envi-
ronments. Finally it covers how a car trained in the Unity-based simulator was
transferred to the Carla simulator.

Chapter 4: Experiments and Results The chapter begins with a brief
explanation of each experiment and it’s purpose in relation to the research ques-
tions. Each of the three experiments is then presented in the three parts setup,
results and discussion.

Chapter 5: Discussion Provides a more comprehensive discussion based on
all experiments and discusses how the findings provide answers to the research
questions. Later compares the findings to results in related work before reflecting
on the work done in this thesis.

Chapter 6: Conclusion and Future Work Draws conclusion based on the
results and discussion and talks about intriguing directions for future work.

Chapter 2

Background and Related
Work

This chapter starts with a deep dive into Reinforcement Learning, culminating
with state-of-the-art on-policy Deep Reinforcement Learning algorithms. A se-
lection of simulated environments that can be used with RL is then listed. This
is followed by an introduction to autonomous vehicles before they are discussed
in a reinforcement learning context. Lastly a review is done of related work.

2.1 Reinforcement Learning

Reinforcement Learning is a method that can be applied to problems where an
agent needs to choose actions in an environment in order to receive an action-
dependent reward. Such an environment is more generally referred to as a Markov
Decision Process. The problem reinforcement learning aims to solve is to map
environment-states to actions such that expected reward returned is maximized.

2.1.1 Markov Decision Process

A Markov Decision Process is a time-discrete stochastic-control process in which
an agent acts in an environment and receives rewards. Both the environment and
the rewards are influenced by the actions of the agent. An MDP is characterized
by having the following properties:

• There is an environment which is observed by an agent and is represented
by a state s ∈ S where S is the set of all possible states.

5

6 CHAPTER 2. BACKGROUND AND RELATED WORK

Figure 2.1: An example MDP environment. Non-terminal states are represented
by white squares and the terminal state by a grey square. Each action that results
in the agent being in a white square gives a reward of -0.1, while actions that
result in the agent reaching the grey square give a reward of 1 and terminates
the episode. The agent can move to any adjacent square but will stay in the
same square if it hits a wall or tries to enter the black square. For simplicity, this
example has deterministic control and is therefore not a true MDP. Stochasticity
could be introduced by adding a random chance that the agent will move in a
different direction than the chosen action dictates.

• In each state, the agent has to choose an action a ∈ A(s), s ∈ S where A(s)
is the set of possible actions given the environment state.

• For each state-action pair s ∈ S, a ∈ A(s), an immediate reward r(s, a) ∈ R
is given to the agent.

• When an action is performed in a given state, the next state is given by the
state transition function P (s′|s, a), s ∈ S, s′ ∈ S, a ∈ A(s). This function is
a probability distribution over states given the current state s and chosen
action a and s′ being the next state.

• The process has the Markov property, meaning that future states depend
only on the current state, and not the sequence of states leading to it.

Another requirement for an MDP is that the environment is fully observable,
meaning that there is no hidden information in the state, and the agent is om-
niscient. Chess is an example of such an environment since there is no hidden
information. Relaxing the fully-observable requirement results in a Partially Ob-
servable Markov Decision Process. Battleships is an example of a POMDP, since
players do not know where their opponents’ ships are. When modeling real-world
processes it is helpful to model them as POMDPs since it is impossible to have
perfect information about the real world.

A sequence of consecutive timesteps with states, actions and rewards is called
a trajectory τ = {(s0, a0, r0), (s1, a1, r1), ...}. Where rt is the reward obtained
at timestep t given by rt = r(st, at). The return R(τ) of the trajectory is given
by the discounted sum of reward along the trajectory using a discount factor

2.1. REINFORCEMENT LEARNING 7

γ ∈ [0, 1]. The use of a discount factor ensures that returns are finite and causes
rewards earlier in time to be more valuable and thus prioritised. The return of a
trajectory is defined as:

R(τ) =

∞∑
t=0

γt · rt (2.1)

It can also be useful to calculate the return of a trajectory starting from a
given timestep. The following formula defines the return Rt(τ) of trajectory τ
starting from timestep t.

Rt(τ) =

∞∑
k=0

γk · rt+k (2.2)

Policy Evaluation

The agent chooses actions according to its policy π. The policy is modeled as
a probability distribution over actions given a state. The probability that the
agent chooses action a when in state s is π(a|s).

The value of a state Vπ(s), s ∈ S given a policy is the expected discounted
return if starting from that state and following policy π.

Vπ(s) =
∑

a∈A(s)

π(a|s) ·

[
r(s, a) + γ

∑
s′∈S

Vπ(s′) · P (s′|s, a)

]
(2.3)

Since the reward function and state transition function are known in the MDP,
it is possible to create a lookup table of the value function for a given policy if
the state space and action space are small enough. This dynamic programming
approach is done by setting the initial values to arbitrary values and then updat-
ing the value of each state in each iteration. This iterative policy evaluation will
bring the values closer to the real value and will eventually converge to the true
values.

When the value of each state is known, the policy can be improved by acting
greedily with respect to the value function. Policy iteration is a technique that
alternates between updating the value function and updating the policy. This
converges to an optimal policy.

A closely related function to the value function is the action-value function
also known as the Q-function Qπ(s, a). The Q-function gives the expected return
for the agent if it chooses action a when in state s and then continuing following
the policy π.

8 CHAPTER 2. BACKGROUND AND RELATED WORK

(a) V0(s) (b) V1(s) (c) V5(s) (d) Vπ(s)

Figure 2.2: A few iterations of iterative policy evaluation. The policy being
evaluated is the uniform random policy. All states are initialized to a value of 0.
The figure shows the initial state values, and the state values after 1, 5 and ∞
iterations. The bottom parts show the corresponding greedy policy with respect
to the value function. The policy acting with respect to the converged value
function is optimal in this example.

Finally, the advantage function Aπ(s, a) says how much better than expected
the return is when choosing action a when in state s, with the expected return
being the value of the state.

Aπ(s, a) = Qπ(s, a)− Vπ(s) (2.4)

Challenges with complex environments

Most interesting MDP problems are too complex for dynamic programming ap-
proaches to be feasible for computing the value function. Monte-Carlo simu-
lations is a way to estimate the value of a state s by sampling a number of
trajectories originating from s and following the policy π. The value estimate is
then derived by simply taking the average return from these samples.

Monte-Carlo works in episodic environments, where some terminal state is
eventually reached. In non-episodic environments, the length of an episode is
unbounded, which makes Monte-Carlo unfeasible. An alternative is to use a
technique called temporal difference. TD computes the value by taking n steps in
the environment and returning the discounted sum of rewards plus the discounted

2.1. REINFORCEMENT LEARNING 9

value of the state s′. An equation showing this calculation for TD-1, which looks
one step into the future, is shown below.

V (s)← r(s, a) + γV (s′) (2.5)

When the state- and action spaces are too large to be stored in a table,
function approximations can be used to estimate functions such as the value,
policy and Q-function. A neural network with adjustable weights is typically
used.

MDP environments are assumed to be time discrete environments. This
means time is divided into discrete steps where the agent observes and acts before
the next state and time step is reached. When modeling turn based games such
as chess this makes sense, but the real world has no discrete time steps since time
is continuous. One way to deal with this issue is to divide time into discrete time
steps by choosing a frequency of how often the agent will observe and act. The
real world can then be modeled as a time-discrete environment where each time
step represents a fixed amount of time.

Reinforcement Learning

In a Markov Decision Process, the reward function and state transition function
are both known. In a Reinforcement Learning problem, at least one is unknown,
which means the agent needs to learn what behavior is good, and then try to max-
imize its reward. To achieve this, the agent can act randomly in the environment
to explore and observe the consequences or rewards of its actions. After exploring
the environment, it can exploit what it learned in order to obtain better rewards.
This leads to the important tradeoff of Exploration vs. Exploitation. Exploration
means that the agent performs random actions instead of what the agent be-
lieves is optimal in an attempt to find better actions. Exploitation means that
the agent utilizes what the agent already knows and picks the action it believes is
best. Too much exploration might mean it never reaches the best rewards since
it might require many good actions in a row. Too much exploitation might mean
good behaviors are missed because the agent focused on a suboptimal pattern of
behavior early in the training process and got stuck in a local optimum.

2.1.2 Deep Reinforcement Learning

Deep Reinforcement Learning is a type of Reinforcement Learning where deep
neural networks are used as function approximators. An overview of some impor-
tant and recent deep reinforcement learning algorithms will be provided. A few
reinforcement learning concepts that are important to know will be introduced
first, followed by an explanation of advantage estimation.

10 CHAPTER 2. BACKGROUND AND RELATED WORK

Model-based vs. Model-free RL Model-based Reinforcement Learning at-
tempts to create a model of the environment that can be used to help make
decisions. The model can be taught to predict the next state depending on the
action taken, and then the agent can consult this model to plan ahead and find
good actions with for instance, a heuristic tree search algorithm like Monte Carlo
tree search. A downside of a model-based approach is that any errors in the
model compounds for every timestep, which can cause large errors when search-
ing multiple steps ahead. Model-free Reinforcement Learning methods learn to
act directly without a model of the world, meaning they try to map observations
directly to actions.

Sample efficiency Sample efficiency is a term describing how much data an
algorithm needs to learn. An algorithm with a high sample efficiency needs fewer
samples to learn a good policy than an algorithm with a lower sample efficiency.

On-policy vs. Off-policy algorithms Reinforcement Learning algorithms
can be separated into two groups based on whether they are on-policy or off-
policy. An on-policy algorithm has the agent explore the environment using the
policy it is trying to optimize. Off-policy algorithms can optimize the policy using
experience collected with any policy. This allows off-policy algorithms to replay
old experience many times to learn more which increases its sample efficiency.
On-policy algorithms have to discard old experience since it was collected with
an outdated policy and therefore violates the on-policy requirement.

Discrete vs. continuous action space An environment can have a discrete
or a continuous action space. A discrete action space has a fixed number of ac-
tions that can depend on the state, such as movement in a grid or moving a piece
on a chessboard. A continuous action space models actions as real numbers in
a specified range such as [−1, 1]. This action can for instance be the normalized
steering angle of the steering wheel in a car. Since a policy is a probability distri-
bution over actions, this is handled differently for discrete and continuous action
spaces. In the case of policies in discrete action spaces, outputting a probability
for each action is often done, with the sum of all actions being probability 1. For
continuous action spaces, the policies output a continuous probability distribu-
tion from which an action can be sampled. The neural network might predict a
mean action used in a normal distribution used to sample the action.

Actor-Critic architecture Actor-Critic architectures are a type of reinforce-
ment learning models that train a policy (actor) and value function (critic) inde-
pendently.

2.1. REINFORCEMENT LEARNING 11

Curriculum Learning Curriculum learning is a technique that can be used
with reinforcement learning that starts by learning a simple task and then sub-
sequently introducing new concepts in a specific order to teach the agent in-
creasingly complex tasks. As an example, a car agent can start by learning lane
following. Once the agent has mastered lane following, other cars and the pos-
sibility of overtaking other cars can be added to the environment. Curriculum
learning is similar to how humans learn.

Advantage Estimation

Policy gradient methods need a way to know which actions were good and which
actions were bad. Advantage Estimation is the task of estimating the advantage
A(s, a) of taking action a while in state s. Recall that the advantage function
quantifies how much better the return from an action was than expected. Ad-
vantage estimation therefore needs to have an expectation for the return, which
is typically estimated with the value function Vπ(s). One way to estimate the
advantage is to compare the return Rt(τ) with the value estimate V (st).

Ât = Rt(τ)− V (st) (2.6)

This method takes into account the whole trajectory to compute the advan-
tage estimate. This can be undesirable since the effect of the action is confounded
with the effects of later actions in the trajectory, causing a high variance in the
estimate. A different method is to use the temporal difference (TD) residual as
the estimate, defined as

Ât
(1)

= δVt = −V (st) + rt + γV (st+1) (2.7)

This estimates the advantage by looking a single step into the future. This
approach has the downside of introducing bias to the estimate due to the value
term at the end (the −V (st) term does not introduce bias). Multiple δ terms can
be summed together to create an estimate looking multiple steps into the future.

Ât
(2)

= δVt + γδVt+1 = −V (st) + rt + γrt+1 + γ2V (st+2) (2.8)

This is a telescoping sum as the intermediate value terms cancel out, and the
sum can be generalized to look k steps into the future:

Ât
(k)

=

k−1∑
l=0

γlδVt+l = −V (st) + rt + γrt+1 + ...+ γk−1rt+k−1 + γkV (st+k) (2.9)

Higher values of k reduce the bias as the γkV (st+k) term gets more dis-
counted. Generalized Advantage Estimation [Schulman et al., 2015b] is a method

12 CHAPTER 2. BACKGROUND AND RELATED WORK

of advantage estimation that uses a parameter λ ∈ [0, 1] to control the tradeoff
between bias and variance by using an exponentially weighted average of the k-
step estimators. A more detailed explanation of how the formula is derived can
found in the paper. The resulting Generalized Advantage Estimate is defined as:

Ât
GAE(γ,λ)

=

∞∑
l=0

(γλ)lδVt+l (2.10)

The advantage estimate based on discounted returns is now a special case
of GAE with λ = 1 and the 1-step return estimate is another special case with
λ = 0.

Deep Q Learning

Mnih et al. [2015] trained agents to play 49 different Atari games using only pixel
values and the game score as inputs to a Deep Q network. The agents managed
to reach human-level performance on many Atari games and superhuman per-
formance on some. The same architecture and hyperparameters were used for
every Atari game. The Deep Q network used a Convolutional Neural Network
to map the image input to a discrete set of Q values corresponding to each pos-
sible action, and the resulting Q function was used to choose actions. A human
professional games tester was used to obtain reference human-level scores.

Deep Q Learning aims to approximate the optimal Q function

Q∗(s, a) = max
π

E[rt + γrt+1 + γ2rt+2 + ...|s = st, a = at, π] (2.11)

Approximating the Q function with neural networks had been known to be
unstable or even diverging. Some causes of this are that minor changes in the Q
function can cause a significant change in the policy, and that there are correla-
tions between the Q function and the target values used to train the Q function.
The authors address the first problem by using experience replay with randomly
shuffled data to smooth out the transitions between different Q functions and
remove the correlation in the observation sequence. They address the second
problem by only periodically updating the Q function used for target values, as
this reduces the correlation between target Q value and actual Q value. The Q
function is optimized using the following loss function:

Li(θi) = (r + γmax
a′

Q(s′, a′, θ−i)−Q(s, a, θi))
2 (2.12)

where s, a, s′ and r are the state transitions from the replay buffer. The
weights θi are trained while using the old weights θ−i in the target function. The

2.1. REINFORCEMENT LEARNING 13

weights of the target function get updated periodically. This algorithm can only
be used in environments with discrete action spaces.

Policy gradient methods and Vanilla policy gradient

Policy gradient methods are a class of on-policy methods first introduced by
Williams [1992] that model the policy directly as a function to be optimized. This
method of modeling the policy differs from Q-learning methods such as Deep Q-
learning, where the policy is implicitly given by the Q-function. These methods
use an estimate of the gradient of the expected reward with respect to the policy
parameters to optimize the policy with gradient ascent. This estimate is obtained
by sampling trajectories from the environment using the current policy hence the
on-policy categorization. Since this estimate needs trajectories sampled with the
current policy, the trajectories are no longer valid after a policy update and have
to be discarded. This means that experience replay cannot be used, and sample
efficiency is lower.

The general idea of policy gradient methods is to compute the advantages of
a batch of collected trajectories to determine which actions were better or worse
than expected. The policy is then updated such that the probability of actions
that were better than expected is increased and the probability of actions worse
than expected is decreased.

The estimated gradient is given by

ĝ = Êt[∇θlogπθ(at|st)Ât] (2.13)

This is averaged over a batch of samples in the experience buffer and gives
the following loss function:

LPG(θ) = Êt[logπθ(at|st)Ât] (2.14)

It is essential only to perform one gradient step when updating the policy,
as performing multiple steps has been shown empirically to lead to large policy
updates that are harmful to performance.

Trust Region Policy Optimization

Trust-Region Policy Optimization [Schulman et al., 2015a] is an algorithm that
allows multiple policy updates per batch of samples without destroying the policy.
This is achieved thanks to a trust-region constraint that prevents the policy from
changing too much. The objective function used in TRPO becomes:

max
θ
Êt[

πθ(at|st)
πθold(at|st)

Ât] (2.15)

14 CHAPTER 2. BACKGROUND AND RELATED WORK

Algorithm 1: Vanilla policy gradient, Actor-Critic style

Initialize policy parameter θ, value parameter φ;
for iteration=1,2,... do

Collect a a set of trajectories by executing the current policy
Compute the advantage estimates Ât at each timestep for each
trajectory based on Vφ and any advantage estimation algorithm.
(e.g. discounted returns or GAE)

Update the value function, by minimizing the mean square error
||V (st)−Rt||2 summed over all trajectories and timesteps by using
gradient descent

Update the policy, using a policy gradient estimate ĝ, given by the
sum of terms ∇θlogπ(at|st, θ)Ât

end

subject to following constraint:

Êt[KL[πθold(·|st), πθ(·|st)]] < δ (2.16)

where θold is the policy parameters used when the samples were collected.
The Kullback–Leibler divergence measures how different the two probability dis-
tributions πθold and πθ are.

This is a hard constraint on the policy update. The TRPO paper found that
the theory justifies using a KL-divergence penalty on the objective function in-
stead of a constraint, but that it was difficult to choose a robust penalty coefficient
in practice. This is why the hard constraint of δ is used instead.

Proximal Policy Optimization

Proximal Policy Optimization is an algorithm introduced by Schulman et al.
[2017] that, like Trust-Region Policy Optimization, enables multiple policy up-
dates per batch of samples by limiting how much the policy is allowed to change.
Instead of a hard constraint on KL-divergence like TRPO, PPO limits policy
updates using a clipped objective function that disincentivizes large changes in
the probability ratios of actions between the old and new policy. The probability

ratio rt(θ) between the new and the old policy is defined as rt(θ) = πθ(at|st)
πθold (at|st)

.

The objective function from TRPO, which PPO is derived from, can then be
written as

LTRPO(θ) = Êt[
πθ(at|st)
πθold(at|st)

Ât] = Êt[rt(θ)Ât] (2.17)

2.1. REINFORCEMENT LEARNING 15

Algorithm 2: Proximal Policy Optimization, Actor-Critic Style,
adapted from Schulman et al. [2017]

for iteration=1,2,... do
for actor=1,2,...,N do

Run policy πθold in an environment for T timesteps

Compute advantage estimates Â1, ..., ÂT
end
Optimize surrogate L wrt θ, with K epochs and minibatch size
M ≤ NT
θold ← θ

end

The objective function of PPO uses a probability ratio that is clipped to the
range [1−ε, 1+ε], where ε is a hyperparameter, typically ε = 0.2, that controls how
much the policy can change compared to the old policy. The clipped objective is
obtained by replacing the probability ratio in LTRPO with the clipped probability
ratio. The objective function used in PPO is then constructed by performing a
min operation on the clipped and unclipped objectives:

LCLIP (θ) = Êt[min(rt(θ)Ât, clip(rt(θ), 1− ε, 1 + ε)Ât)] (2.18)

This minimization means that LCLIP is a lower bound of the unclipped ob-
jective and that changes in probability ratios are ignored only when they would
make the objective improve too much. Changes in probability ratios that would
make the objective worse are still included. Consider an example where ε = 0.2.
This means that the probability ratio is clipped at 1.2 if the advantage is posi-
tive or clipped at 0.8 if the advantage is negative. In other words, the objective
function will not try to increase the probability of an action that was better than
expected to more than 1.2 times the original probability. Vice versa it will not
try to decrease the probability of an action that was worse than expected to less
than 0.8 times the original probability.

The objective function can be augmented by adding an entropy bonus to
incentivize exploration and the mean squared-error loss between values and target
values for the value function.

A significant advantage of PPO is that it is much easier to implement since
there are no constraints that complicate the optimization of the objective func-
tion. Optimizing the PPO objective is very straightforward as it can be done
with a standard gradient descent optimizer. Empirical observations also show
that PPO performs as well or better than TRPO in most environments.

16 CHAPTER 2. BACKGROUND AND RELATED WORK

Phasic Policy Gradient

When implementing PPO and earlier methods, a choice would have to be made
between using a shared network for the policy and value function or using separate
networks. Using a shared network has the advantage of having fewer parameters
to optimize, being computationally cheaper, and potentially being better at fea-
ture extraction since both the value and policy objectives share the same base
network. However, it has the significant drawback that the value and policy ob-
jectives can interfere and inhibit the learning process. By using separate policy
and value networks the objectives cannot interfere, but each network needs to
optimize its own set of parameters, and the policy network cannot use features
learned by the value network.

Phasic Policy Gradient by Cobbe et al. [2020] attempt to improve the training
process by splitting training into two distinct phases. The first phase advances
training, and the second phase distills features. PPG tries to create a best of both
worlds scenario where the policy can be trained independently in the first phase.
In the second phase, an auxiliary value head on the policy network is trained to
ensure value-related features are learned. This auxiliary value head has no other
purpose than to help the policy network learn useful features. It is not used for
advantage estimation, as that is done by the separate value network. To prevent
destroying the policy when training the auxiliary value, a KL-divergence term
is added to the auxiliary loss function to prevent the policy from changing too
much.

The paper showed experiments where the policy and value networks were
trained with varying numbers of epochs Eπ and EV . In PPO, the number of
epochs is typically kept the same for the value and policy network. The experi-
ments showed that training with only one epoch Eπ was almost always optimal
or near-optimal. This contrasts with PPO, where the optimal number of epochs
was three, given the other hyperparameters in their tuned implementation. This
finding suggests that the extra epochs in PPO only improve performance because
they offer more training to the value function.

The authors compared the algorithm to a highly tuned PPO implementa-
tion and found that PPG had a better sample efficiency than PPO in all 16
environments in the Procgen Benchmark described in Cobbe et al. [2019]. This
benchmark contains environments similar in style to Atari games which have
commonly been used in Reinforcement Learning benchmarks, but with randomly
generated levels to prevent overfitting and instead reward generalization. The
researchers conjecture that the high dimensional input space of visual domains
contributes to the importance of sharing parameters between the value and pol-
icy network, and therefore believe that visual environments are the most likely
domain to see PPG outperform PPO.

2.1. REINFORCEMENT LEARNING 17

Algorithm 3: Phasic Policy Gradient, adapted from Cobbe et al. [2020]

for phase=1,2,... do
Initialize empty buffer B
for iteration=1,2,...,Nπ do

Collect experience under the current policy π
Compute value function target V̂ targt for each state st
for epoch=1,2,...,Eπ do

Optimize Lclip + βSS[π] wrt θπ
end
for epoch=1,2,...,EV do

Optimize Lvalue + βSS[π] wrt θV
end

Add all (st, V̂
targ
t) to B

end
Compute and store current policy for πθold(·, st) for all states st in B
for epoch=1,2,...,Eaux do

Optimize Ljoint wrt θπ, on all data in B
Optimize Lvalue wrt θV , on all data in B

end

end

18 CHAPTER 2. BACKGROUND AND RELATED WORK

2.2 Simulated Environments

This section will list some relevant simulators that can potentially be used to
create environments used with Deep Reinforcement Learning for Autonomous
Vehicles.

2.2.1 TORCS

TORCS or The Open Racing Car Simulator is an open source 3D racing simulator
[Wymann et al., 2015]. The simulator has an interface that allows communica-
tion with the environment via UDP sockets to control the cars. It also includes a
built-in AI that can drive. The environment can provide sensor readings such as
distance to the edge of the track at various angles as well as camera images. The
simulator attempts to provide realistic racing physics by for instance including
different friction profiles for different types of tires on different types of ground.
The physics engine also includes a simple aerodynamics model that includes slip-
streaming effects. A wide selection of racing tracks is included in the simulator.
A disadvantage of TORCS is that the graphics are basic and not photorealistic.

2.2.2 Nvidia ISAAC

Nvidia ISAAC is a platform built on Nvidia Omniverse that includes a Software
Development Kit and simulator for robotics. It offers photorealistic rendering and
comes with sensors like camera, LiDAR and semantic segmentation maps. It also
includes GPU-optimized algorithms for navigation and path planning. The use
cases are mostly tailored towards warehouse robotics, such as controlling robot
arms and robots that move pallets around.

Nvidia ISAAC includes an example environment of a robot arm with a suction
cup that has the goal of stacking boxes on a pallet. Nvidia ISAAC is, as of writing
this thesis, not cross-platform and requires an Nvidia GPU + Ubuntu 18.04 or a
proprietary Nvidia device such as Nvidia Jetson Nano to work. Alternatively, it
can be run in Docker containers on a cloud service.

Nvidia DRIVE is another platform powered by Omniverse that specializes in
autonomous vehicle development. It features photorealistic graphics thanks to
the Nvidia RTX platform. Nvidia Drive is not yet available to the public.

2.2.3 LGSVL

LGSVL Rong et al. is an open source simulator made by LG Electronics R&D
Center. The simulator is built on the Unity game engine and comes with photo-
realistic graphics. The simulator includes a small detailed test map and a larger,
less detailed San Francisco map. LGSVL also comes with many different sensors

2.2. SIMULATED ENVIRONMENTS 19

such as Camera, Fisheye Camera, Depth camera (LiDAR), RADAR, Semantic
Segmentation camera and 3D bounding boxes. It is possible to import supported
map formats into the simulator, and a premium commercial version of the simu-
lator exists with more features than the open source version.

2.2.4 CARLA

CARLA (Dosovitskiy et al. [2017]) or Car Learning to Act is a car simulator with
photorealistic graphics and a great weather system. The simulator is built on
Unreal Engine and mainly focuses on urban driving situations, which is reflected
in the included maps and traffic engine. Interaction with the environment can be
done through the included Python API, where most aspects of the simulator can
be controlled, including controlling the cars. The PythonAPI also comes with a
waypoint navigation system and autopilot, making it easy to simulate traffic and
collect driving data. Carla comes with a wide suite of different sensors, including
RGB camera, depth sensor (LiDAR) and semantic segmentation camera sensors.
Several maps are included with different types of driving environments. CARLA
has been used in previous theses, which means results can be compared to those
of previous authors. This also provides an expectation of what results should be
achievable.

The Carla paper also includes a benchmark in which the three autonomous ve-
hicle pipelines modular, imitation learning and reinforcement learning, are tested.
The setup for running the benchmark is included in the Python API so others
can use it. The benchmark includes different tasks in increasing difficulty ranging
from driving straight ahead to navigating to random positions on the map with
dynamic objects such as other cars and pedestrians on the map. The benchmark
runs tests in different weathers and maps to measure how well the model gener-
alizes. The first test is done with the same types of weather and the same map as
during training. The other tests evaluate the agent in a new map, unseen weather
conditions and a combination of both new map and unseen weather conditions.

Codevilla et al. [2019] proposes another Carla benchmark NoCrash which is
more difficult than the original Carla benchmark.

2.2.5 Unity: ML-Agents

Unity: ML-Agents is a machine learning framework for the Unity game engine
that facilitates the creation of agents that learn to act through both reinforcement
learning and imitation learning. The framework includes a Unity package and a
Python package.

In ML-Agents, agents are defined in Unity by giving them a behavior. This
makes them actors in the environment. The behavior controls how the agent
acts, which in Reinforcement Learning is referred to as the policy.

20 CHAPTER 2. BACKGROUND AND RELATED WORK

The framework contains many example environments such as balancing a ball
on top of a cube that the different RL algorithms can be tested on. The included
reinforcement learning algorithms include Proximal Policy Optimization and Soft
Actor Critic.

Using the included Python trainer allows ML-Agents to automatically cre-
ate the neural network architecture for the agent based on a configuration file
specifying the hyperparameters. This handles both visual and vector observation
data. A script has to be created in Unity that parses the action outputs and uses
it to control the actor in the environment. The automation of this framework
makes it easy to prototype agents and environments with the framework, and the
Python API can always be used to interact directly with the Unity environment
allowing custom RL implementations. Camera sensors and Raycast sensors are
included, but semantic segmentation sensors and depth/LiDAR sensors are not
included when this thesis was written.

2.3 Autonomous Cars

An autonomous vehicle is a vehicle that can control itself autonomously without
human supervision. The main focus of this thesis will be self-driving cars which
is an active area of research within autonomous vehicles.

2.3.1 Introduction to Autonomous Cars

Self-driving cars need to observe the surrounding environment and send control
signals to the car controller. They might need to take into account high-level
commands such as navigational instructions. There are several different levels
of autonomy for autonomous cars, where higher levels are progressively more
difficult. Today, some cars can already help with lane-keeping and controlling
speed, which is a form of autonomy, but this still requires a driver to pay attention
to the road. Ideally, an autonomous vehicle would not even need a steering wheel
and could drive entirely on its own.

SAE International defines six levels of autonomy for self-driving vehicles in
the J3016 standard, where each level is an improvement over the previous [SAE,
2021]. In the first three levels, the human is monitoring the environment, and in
the latter three, the system is monitoring the environment. All but the last level
are specific to driving modes, where a driving mode is a specific driving situation
such as driving on a highway.

• Level 0: No automation.

2.3. AUTONOMOUS CARS 21

• Level 1: Driver assistance. The car can use information about the envi-
ronment to send steering or acceleration/brake signals. Adaptive Cruise
Control, which can adjust the car’s speed depending on the distance to
other cars, is an example of level 1 autonomy. The driver is expected to be
able to intervene immediately.

• Level 2: Partial automation. The car can use information about the
environment to send both steering and acceleration/brake signals. A system
that can autonomously follow lanes and accelerate/brake when needed is
considered a level 2 system. The driver is still expected to be able to
intervene immediately.

• Level 3: Conditional automation. The system monitors the environment
and handles all control. The driver is expected to intervene if the system
requests it.

• Level 4: High automation. The system monitors the environment and
handles all control just like level 3, but without the requirement for a human
to be able to intervene. This requirement needs to be met for some driving
modes, such as driving on the highway.

• Level 5: Full automation. Same requirement as level 4, but for all driving
modes. A car with level 5 autonomy would not need a steering wheel.

2.3.2 Sensors used in autonomous vehicles

Autonomous vehicles can use many different kinds of sensors to observe and gain
information about the environment. This is a list detailing a few sensors that are
useful in an autonomous vehicle.

Camera A camera provides a visual image of the environment. Cameras are
also called RGB sensors since they provide color images with red, green and blue
channels. Alternatively, they can also provide grayscale images. Two camera
sensors can be used together to create a stereoscopic image that can be used to
obtain depth information. Camera sensors are cheap, but they can be unreliable
in conditions such as fog, snowstorms or during nighttime.

LiDAR LiDAR is a sensor that uses electromagnetic waves (usually infrared)
from a laser to determine the distance to an object or a surface by illuminating it
and measuring the reflection time. This laser is scanned over a scene to produce
a depth image or a 3d point cloud of the environment. A significant drawback
of LiDAR sensors is that a quality long-range one as required to be useful for
an autonomous vehicle is very expensive. Some companies such as Tesla do not

22 CHAPTER 2. BACKGROUND AND RELATED WORK

use them and instead rely on cameras. The cost issue might be about to change
as cheaper LiDARs such as solid-state LiDARs have become an active field of
research and development in recent times, largely motivated by their applications
in autonomous vehicles.

Radar Radar is a system that uses Radio waves to detect objects and determine
how far away they are based on their reflection. Radar is similar to LiDAR but
uses radio waves instead of infrared waves.

Ultrasonic sensor Ultrasonic sensors measure the distance to the nearest ob-
stacle using sound waves. These sensors have a relatively short range of a few
meters. These sensors are often used in parking assistants and for detecting
vehicles in the driver’s blind spot. The sensors themselves are very cheap.

GPS GPS uses satellites to obtain global localization to find the vehicle’s lo-
cation on earth to an accuracy on the order of meters. This sensor requires
line-of-sight to satellites which means it will not work when the sky is blocked,
such as in a tunnel. A system with GPS can be augmented with a gyroscope and
accelerometer, which can sense change in velocity and rotation. This information
can then be used to estimate the vehicle’s position even after the GPS signal is
lost.

2.3.3 Modular vs. end-to-end approach

Modular approach

A modular approach to autonomous cars means that the system is separated
into modules that each perform specific tasks. Modules include mapping and
localization modules, perception modules, prediction modules and planning and
control modules. These modules can be hand-crafted by an engineer or trained
with machine learning. The system uses these modules to create a model of
the world that it can then use to plan the vehicle’s actions. Most commercial
solutions for autonomous vehicles at the time this thesis was written use modular
systems.

One disadvantage of a modular system is that it requires a lot of domain
knowledge and careful engineering and tuning by humans. Another disadvantage
is that the performance of the system is limited by the model. How will the
system react if a football rolls into the road and the model is not designed to
handle it? The system’s performance is largely dependent on and limited by
decisions made by the engineers who designed it.

2.3. AUTONOMOUS CARS 23

End-to-end approach

An end-to-end approach to autonomous cars creates a system that directly maps
observations about the environment to vehicle control signals such as steering
angle, throttle and brake signals. It is called end-to-end because it does not
create an explicit intermediate representation of the world.

One advantage of an end-to-end approach is that it does not require humans
to engineer an internal world model and enables learning algorithms such as
Imitation Learning and Reinforcement Learning to learn the entire system on its
own. A major disadvantage of end-to-end systems is that they act as a black
box, meaning one does not know its inner workings. One only knows the input
and output. This makes it hard to attribute the cause of a failure as opposed to
a modular system where you might see system logs showing that for instance the
car detection module failed to detect a vehicle.

2.3.4 End-to-end Learning for autonomous vehicles

A nice property of end-to-end systems is that they can be trained directly using
Imitation- or Reinforcement Learning.

Imitation Learning

Imitation learning is a form of supervised learning that uses a dataset labeled
with the correct action. Imitation Learning is essentially learning from demon-
strations. An agent trained with IL tries to imitate the behavior it has been
shown during training. IL requires large datasets of expert driving data to train
the system, which can be easy to collect from real drivers.

A disadvantage of imitation learning is that it suffers from distributional shift,
meaning that the state distribution in training is different than in test. This hap-
pens because the future states depend on the chosen action, which will differ in
test. This phenomenon is described in detail in de Haan et al. [2019]. Causal
misidentification is a consequence of distributional shift that can be very destruc-
tive to the driving policy. Using the same example as in the paper, let us say a
braking lamp on the dashboard lights up whenever the car brakes, and that this
is included in the input features of the system. The system might then learn to
brake when the braking light is on, as this might give a low training error. The
model then only brakes when the braking light is on. The model misidentified
the braking light as the cause of braking.

Reinforcement Learning

Reinforcement Learning does not need a dataset of demonstrations and instead
learns by trial and error. Naturally, this means the system needs to be able to

24 CHAPTER 2. BACKGROUND AND RELATED WORK

explore the environment in order to learn. Collecting experience in the real world
can be expensive and dangerous. Using a simulator alleviates these problems but
introduces the reality gap problem: a policy trained in a simulator might not
generalize well to the real world since a simulator will never be able to perfectly
simulate the real world.

2.3.5 Deep Reinforcement Learning for Autonomous Vehi-
cles

Some important design decisions need to be taken when designing a DRL system
for autonomous vehicles. These decisions include defining the reward function,
defining the action space, deciding what observations to use as input to the system
and designing the architecture of the neural network.

Reward function design

Choosing the reward function is one of the most important decisions when de-
signing a reinforcement learning system as it is what dictates how the agent will
behave. If rewards are sparse and difficult to reach initially by random behaviour
the agent might never reach them and therefore never learn.

RL algorithms improve their (explicit or implicit) policy by slightly adjusting
its parameters based on the experience it has collected. We can imagine the train-
ing process as the policy (parameters) taking small steps towards a desired policy
in a way such that the expected reward of the policy increases almost monoton-
ically along the way. It is therefore important that such a path of monotonically
increasing expected rewards exists in the policy parameter space.

Consider a racing track environment where the agent controls a car with the
goal of driving around the track within a time limit. If the time limit expires, the
car receives a negative reward. If the car completes a lap, it receives a positive
reward. An RL algorithm is run in this environment with a randomly initialized
policy. Since it is extremely unlikely that the randomly initialized policy will
successfully complete a lap and receive a positive reward, the expected reward will
always be the same negative reward. In this environment there is no reasonably
sized step the policy can take that increases the performance (expected reward)
of the policy. It is therefore very unlikely that the training finds a good policy.
Reward shaping tackles this problem by adding extra rewards that serve the
purpose of guiding the agent towards the real intended reward. Reward shaping
comes with its own set of difficulties though, as a poorly designed reward function
might be exploited by the agent in an unexpected and sub-optimal way resulting
in the agent never reaching the real intended reward.

Local optima is another problem that can hinder learning. This happens when
the policy parameters reach a point where they locally maximize the policy per-

2.3. AUTONOMOUS CARS 25

formance. There might exist a much better policy, but no path of monotonically
increasing performance to it exists meaning there is no chance of actually finding
this policy. The policy will then most likely continue to be stuck in its local
optimum. Reusing the racing track example, let us assume the reward is based
on how fast the car completes a lap in the track and that a locally optimal policy
that completes the lap has been found. Imagine that the track has a difficult to
maneuver shortcut that can significantly improve the lap time (i.e., there exists
a much better policy). The only way to improve the policy would be to drive
through the shortcut, but this would require learning to navigate the shortcut,
which would require policy steps that degrade performance. There would be no
incentive for the agent to perform these policy steps since they make the policy
(temporarily) worse and the agent has no way of knowing this will eventually
lead to a better policy.

An often used reward function that can work pretty well for lane following is to
give a reward proportional to the forward speed of the car, and negative rewards
for driving out of the lane or crashing. It is common to add multiple objectives
to the reward function by linearly combining multiple reward functions with a
weight that controls the importance of each objective. One might for example
add a small penalty term based on erratic steering and velocity behavior to reduce
discomfort experienced by a human in the vehicle.

Action space

The action space defines the output of the neural network model. A straightfor-
ward action space is to output a throttle, braking and steering signal. A more
abstract option is to output a waypoint and target speed that the car should
steer towards and adjust to. This requires a low-level controller that converts the
abstract action into throttle, brake and steering angle control signals for the car.
This low-level controller can be programmed by an engineer or even trained with
reinforcement learning.

In the context of autonomous vehicles, it is preferable to use a continuous
action space rather than a discrete action space as it can result in smoother
policies. When using a continuous action space, actions can be sampled from a
probability distribution such as a normal distribution with a mean predicted by
the network. This ensures exploration.

Observations

Autonomous vehicles can utilize many sensors to observe the environment. Per-
haps the most important sensor is the camera sensor. A forward-facing camera
gives a visual image of the road, and multiple cameras can be combined to create
a wider field of view. Processed images such as semantic segmentation maps can

26 CHAPTER 2. BACKGROUND AND RELATED WORK

also be used as observations. Semantic segmentation maps classify each pixel of
the image into classes like Road, Vehicles, Lane Markings, Vegetation and so on.

Input from multiple sensors is usually required, and these need to be com-
bined in a neural network that outputs an action. This is commonly done by
concatenating the features from each sensor into a common feature vector that
is passed through the rest of the network. Visual input is not a vector, so it
needs to be converted to one by encoding it through a visual encoder such as
a CNN. This visual encoder can then be trained as part of the neural network,
or a pre-trained encoder can be used. If multiple types of image observations
are used such as RGB images, LiDAR depth images and semantic segmentation
maps, a choice has to be made on where these images should be merged together
in the network. They can be concatenated together channel-wise before or in the
middle of the CNN visual encoder, or they can each have their own CNN visual
encoder and let their feature vector be concatenated afterwards. The neural net-
work architectures used in this thesis will be explained in more detail in section
3.1.1.

2.4 Related Work

2.4.1 Implementation Matters in Deep RL: A Case Study
on PPO and TRPO

Most implementations of RL algorithms such as PPO contain ”code-level opti-
mizations” which are types of algorithm augmentations. These are often only
described as implementation details of secondary importance in the literature.
Engstrom et al. [2020], however, find that these details have a major impact on
the behavior of the agent. Not only are they responsible for most of the im-
provement PPO has over TRPO, but they also fundamentally change how the
algorithm operates.

Since the code-level optimizations PPO uses are algorithm agnostic in the way
that they can trivially be applied to any policy gradient method, they can also be
added to the PPO predecessor TRPO. In an attempt to correctly attribute the
success of PPO the researchers create the following variants of PPO and TRPO:

• TRPO+: TRPO with the addition of the code-level optimizations used in
PPO.

• PPO-M: A core PPO implementation without the code-level optimiza-
tions.

• PPO-NoClip: Standard PPO implementation with code-level optimiza-
tions but without the clipping mechanism.

2.4. RELATED WORK 27

Their experiments showed that varying the use of code-level optimizations had
a significantly higher impact on the performance than varying whether PPO or
TRPO was used. They also found that PPO-NoClip achieved similar benchmark
performance to PPO without using any clipping mechanism at all.

While it is widely believed that the success of PPO comes from the clip-
ping mechanism, these results suggest that the success actually comes from the
implementation details such as the code-level optimizations.

2.4.2 What Matters In On-Policy Reinforcement Learn-
ing? A Large-Scale Empirical Study

Similarly to the previous article, Andrychowicz et al. [2020] argue that imple-
mentation details are crucial for the good performance of many state-of-the-art
RL implementations while often not being discussed extensively in the literature.
This makes it hard to attribute progress in RL algorithms since it is hard to
know if the improvement comes from the algorithm itself or the implementation
details.

The paper continues by investigating the effect different low-level implemen-
tation details have on the performance of on-policy RL using PPO. The authors
train over 250 000 agents where they vary >50 different design choices. The find-
ings give insights into which design choices matter the most, and provides rec-
ommendations for these design choices when implementing on-policy algorithms.
One surprising finding they made was that the policy initialization scheme had a
large impact on the performance of the policy while rarely even being mentioned
in RL publications.

2.4.3 Survival-Oriented Reinforcement Learning Model: An
Efficient and Robust Deep Reinforcement Learning
Algorithm for Autonomous Driving Problem

Ye et al. [2017] aims to improve the safety of reinforcement learning approaches by
prioritizing survival rather than maximizing reward. This is done by a Negative-
Avoidance or danger function D(s, a) which predicts a danger score of taking
action a in state s. This danger function is trained by giving state-action pairs
leading to early termination of an episode a danger score.

The authors argue that defining an optimal policy is a bad idea, as the real
goal is to learn a policy to safely control the speed and lane position, not staying
in some arbitrarily defined optimal speed or a specific position in the lane. It is
also hard to learn to respond to rare accident scenarios with a small number of
samples.

28 CHAPTER 2. BACKGROUND AND RELATED WORK

Their experiments involve lane-keeping and collision avoidance and are done
in the TORCS simulator. They find that their model converges faster and is less
sensitive to the reward function than the equivalent model without the Negative-
Avoidance aspect.

2.4.4 Learning to Drive in a Day

Kendall et al. [2018] create and tune a model using a custom-made simulator with
procedural generation creating a country road. They found that using Variational
Autoencoders to learn a compressed latent space of the RGB image input and
using this to encode the image input greatly increased sample efficiency. After
finding a good set of hyperparameters for the simulated environment, they trained
a model from scratch in the real world using the same hyperparameters and
managed to successfully perform lane-keeping on a 250m stretch of road after
only 11 episodes of training. The Deep Deterministic Policy Gradient algorithm
was used. As DDPG is an off-policy algorithm it can use experience replay and
therefore have a higher sample efficiency compared to on-policy algorithms.

2.4.5 Driving Policy Transfer via Modularity and Abstrac-
tion

Mûller et al. [2018] divide the end-to-end driving task into modules that abstract
away domain-specific details such that a policy trained in this abstract space can
be transferred to the real world.

The first module is the perception module that translates an RGB image
into a semantic segmentation map. The middle module is the driving policy
module which predicts waypoints that the car should steer towards based on the
segmentation map. The last module is a low-level controller that translates the
waypoints into control signals such as acceleration/braking and steering angle for
the vehicle. The first and last modules are domain-specific, so that the middle
one can be domain-independent.

The authors found that this architecture allowed them to transfer a policy
learned exclusively in the Carla simulator to a 1:5 scale robotic truck in the real
world. The truck was able to complete multiple routes with lengths up to 1.1
kilometers, albeit with some missed turns.

2.4.6 RL-CycleGAN: Reinforcement Learning Aware Simulation-
To-Real

Rao et al. [2020] perform a sim-to-real transfer on robotics grasping tasks by
using a CycleGAN to translate the image to a realistic style. The network is

2.4. RELATED WORK 29

trained with an RL-Scene consistency loss which ensures consistent Q-values for
both the simulated and generated image. This helps the GAN keep important
information relevant to the RL task and prevents the GAN from making the
generated image too different such that the action outcome would be changed.
This method addresses only the visual ”reality gap,” and it does not address the
physics gap between simulated and real-world physics.

This method requires off-policy data from the real world to first train the
initial CycleGAN, and then to train the RL model off policy. The model is later
improved in simulation with realistic images generated by the CycleGAN.

The authors suggest in future work that Augmented CycleGAN (Almahairi
et al. [2018]) could be used to extend RL-CycleGAN produce stochastic image
outputs.

2.4.7 CIRL: Controllable Imitative Reinforcement Learn-
ing for Vision-based Self-driving

Liang et al. [2018] use Imitation Learning to initialize the action exploration into
a reasonable space. They argue that this reduces the chance that the policy gets
stuck in a bad local optimum. They then continue training using the Deep Deter-
ministic Policy Gradient algorithm to improve the policy. The architecture uses
a gating mechanism to select the network head to use based on a high-level com-
mand, allowing the car to respond to navigation commands. The four different
high level commands are {TurnLeft, TurnRight, Straight, Follow}. This allows
the model to learn specialized policies for each high-level command, and also al-
lows the authors to use different reward functions for each policy head. The model
was tested in the Carla simulator using the Carla benchmark and outperformed
all other methods at the time in terms of the percentage of episodes successfully
completed.

30 CHAPTER 2. BACKGROUND AND RELATED WORK

Chapter 3

Methodology

3.1 Implementation details

3.1.1 Neural network architecture

Several neural network architectures are evaluated in this thesis. The first is
inspired by the architecture used in ML-Agents Release 10. This allowed us to
verify that the PPO algorithm was implemented correctly, as the results could be
compared to those from the specialization project, where the ML-Agents trainer
was used in the same environment.

Once the initial implementation performs at least as well as the ML-Agents
implementation, tweaks can be made in an attempt to improve the performance.
It seems reasonable to assume that the ML-Agents implementation is designed
to perform well in a wide variety of environments, and that more optimizations
can be made for our specific use case.

A revised second architecture based on recommendations from Andrychowicz
et al. [2020] is also made. The first and second architectures will henceforth be
referred to as Implementation A and Implementation B, respectively.

The policy function and value function used by PPO are approximated by
using deep neural networks as function approximators. These networks take an
image from a camera sensor and a vector of real numbers containing values such
as the car’s velocity as input. Output is an action vector for the policy function
and a real number for the value function.

Each neural network consists of a backbone network that is identical for both
the policy and value network. The backbone network extracts features from the
visual and vector observations into a 512-dimensional feature vector. This vector
is fed through the value or policy head to complete the value and policy networks,

31

32 CHAPTER 3. METHODOLOGY

respectively.

Backbone network

The image is passed through an encoder resulting in a vector of extracted features
that can be concatenated with the vector input. This encoder can be trained from
scratch, but it is also possible to use the encoder from a pre-trained Variational
Autoencoder. Both approaches are compared in this thesis. The concatenated
vector is then run through two fully connected layers and then the head of the
policy or value network. It is possible to use the same backbone network for
the policy and value function and attach both heads at the end in parallel, but
this paper uses separate networks for both as this results in more stable training.
Implementation A uses the Swish activation function after each fully connected
layer, while implementation B uses the tanh activation.

Although the value and policy networks share the same backbone architecture
shown in figure 3.1, they are separate networks and do not share parameters.
This approach is recommended in Andrychowicz et al. [2020] as they find it
leads to better performance in 4 out of 5 tested environments. The ML-Agents
implementation of PPO also uses separate networks.

Policy network head

The policy network head starts with a fully connected layer reducing the 512-
dimensional feature vector from the backbone to a 2-dimensional action-mean
vector. The network then samples from a normal distribution with the given
action-mean and learnable standard deviation. This standard deviation is per
action and global, meaning it isn’t state-dependent. The details of this action
sampling vary between implementations:

Implementation A The standard deviations are initialized to 1. The sampled
action is clipped into the range [−3, 3], and then divided by 3 resulting in an action
in the desired range [-1, 1].

Implementation B The standard deviation parameters are initialized to 1, but
a constant is subtracted such that the resulting initial standard deviation after
a softplus operation is 0.5. The value after the softplus operation is used when
sampling from the action distribution, and the actions are then passed through a
tanh activation to confine the values to the [-1, 1] range. An illustration showing
the policy head from this implementation can be seen in figure 3.2.

3.1. IMPLEMENTATION DETAILS 33

Figure 3.1: Overview of the backbone of the neural network architecture used for
the policy and value networks. The visual observation is encoded with a CNN-
based encoder that is either trained from scratch or taken from a pre-trained
Variational Autoencoder. The encoded vector is then concatenated with the
vector observation that contains the velocity of the car and the previous actions,
and is then fed through two fully connected layers. The illustrated network uses
a 512-dimensional vector for the encoded image, but lower dimensionalities are
also used.

34 CHAPTER 3. METHODOLOGY

Figure 3.2: The policy head used in implementation B using the Proximal Policy
Optimization algorithm. The output of the backbone network is passed through
a fully connected layer with no activation function, outputting a 2-dimensional
vector used as the mean of a normal distribution. A learnable parameter is passed
through a softplus activation before being used as the standard deviation for the
normal distribution. The softplus activation ensures the standard deviation will
never be negative. An action is sampled from the normal distribution and passed
through a tanh activation to force the values into the [−1, 1] range resulting in
a sampled action output. This architecture is based on the recommendations by
Andrychowicz et al. [2020].

3.1. IMPLEMENTATION DETAILS 35

Figure 3.3: Illustration of the ”simple” visual encoder, which is the default used
by ML-Agents, and is the one used by our models that learn a visual encoder
from scratch. Each layer has a LeakyReLU activation.

Value network head

The value network head consists of a single fully connected layer with one output
value. No activation function is used since the value can be any real number.

3.1.2 Visual encoders

The visual encoder is the module that turns the visual observation (image) into
a feature vector. A Convolutional Neural Network is used for this task as it is
specialized in handling image processing tasks.

The ML-Agents framework has a few visual encoders to choose from, where
the default one is called the ”simple” encoder, and it is the encoder used in the
our experiments that train a visual encoder from scratch. The encoder consists
of two convolutional layers and a fully connected layer, each with a LeakyReLU
activation function. An illustration of this network can be seen in figure 3.3.
Implementation B uses the tanh activation function instead.

The other visual encoder used is the encoder from a Variational Autoencoder
that is pre-trained on images collected in the environment.

3.1.3 Variational Autoencoder

Variational Autoencoders have been shown to improve training speed and per-
formance of reinforcement learning models as shown in Kendall et al. [2018].

36 CHAPTER 3. METHODOLOGY

Autoencoders are a type of neural network that consists of an encoder and a
decoder. The encoder encodes a high dimensional input such as an image into
a low dimensional latent space vector with zdim dimensions. The decoder takes
the low dimensional vector as input and tries to reconstruct the original image.
This network can be trained by minimizing the mean square error of the pixel
values in the output compared to the input. This way the low dimensional latent
space vector can be seen as high-level features that describe the image. This low
dimensional vector is used as the encoded image in the backbone network for the
reinforcement learning models and therefore the network does not need to learn a
visual encoder from scratch. A Variational Autoencoder is a type of autoencoder
introduced in Kingma and Welling [2013] that predicts a distribution of latent
space vectors instead of a deterministic latent space vector. This is done by pre-
dicting mean and standard deviation vectors that are used to sample a vector
that is passed back through the decoder. The loss function for VAEs includes a
KL-divergence term to hinder this distribution from straying too far away from a
normal distribution. Figure 3.4 shows the Variational Autoencoder used for the
grayscale images in the Unity lane following environment.

3.1.4 Proximal Policy Optimization

The Proximal Policy Optimization algorithm was chosen to be used in this the-
sis. PPO was chosen because it is a good general purpose Deep Reinforcement
Learning algorithm that has been shown to work well for the type of environment
we are interested in. PPO also performed well in our Unity environment created
in the specialization project. Recently the Phasic Policy Gradient algorithm was
published which supposedly is better than PPO, so a decision had to be made
on whether to use that algorithm instead.

PPO vs. PPG

Mohanty et al. [2021] run a competition with Atari-like environments from the
ProcGen benchmark. Participants submit algorithms that are evaluated for gen-
eralization ability and sample efficiency on ProcGen benchmarks, as well as a
few hold-out environments created specifically for the competition, which the
participants did not have access to during the competition. The highest per-
forming submission both in terms of generalization and sample efficiency was
based on PPG, but PPO-based submissions were not far behind. There was also
a PPG-based implementation that performed worse than multiple PPO-based
submissions in terms of generalization ability. All submissions were highly tuned
implementations and the results show that using PPG instead of PPO doesn’t
automatically improve performance. PPG also has a few additional hyperparam-
eters compared to PPO. This makes hyperparameter optimization more difficult

3.1. IMPLEMENTATION DETAILS 37

Figure 3.4: CNN archiecture of the Variational Autoencoder used for the Unity
environment. Note that the deconv layers in the decoder are more accurately
called transpose convolution layers. Each convolutional and transpose convolu-
tional layer is followed by a batch normalization layer that normalizes each chan-
nel and a LeakyReLU activation function. The exception is the final convolutional
layer which doens’t have a normalization layer and uses the tanh activation.

38 CHAPTER 3. METHODOLOGY

and time-consuming, which is a big disadvantage since hyperparameter optimiza-
tion for PPO is already challenging with our limited computational resources.

The main difference between PPG and PPO is the feature distillation phase
which supposedly helps the policy learn better features. The original paper’s
authors conjecture that visual domains will have the most to gain from this since
their high dimensional input space increase the importance of sharing parameters
between the value and policy network. This gives reason to believe that the
benefit will be less significant when a Variational Autoencoder is already used
to extract a lower-dimensional set of features. Finally as shown in sections 2.4.1
and 2.4.2 the code level optimizations are sometimes more impactful on final
performance than the actual underlying algorithm. Based on this reasoning, we
chose to continue with PPO, which we already had a working implementation
of at the time the competition paper showing PPGs superior performance was
published.

PPO Implementation

The policy and value network weights are randomly initialized when training
starts. The current policy is used by potentially multiple agents in parallel to
collect experience into episodes. For each timestep the following is stored in the
agent’s buffer:

• Environment state

• Sampled action

• Reward received

• Log probability of the sampled action

• Value of the state as predicted by the value function

• Whether the state was a terminal state

Whenever an agent completes an episode by either failing or reaching the
maximum length, the discounted reward for each time step is computed, and a
list of state transitions is created. If the episode is terminated due to reaching the
maximum length, the discounted reward at the final step is set to the prediction
from the value function.

Completed episodes are added to the global buffer, which collects state tran-
sitions from episodes until it reaches a threshold number of state transitions that
trigger a policy update. After the policy update, all agent environments are reset,
and any unfinished episodes are discarded since they were collected using a now
outdated policy. During the policy update, the buffer is split into batches, and

3.2. LANE FOLLOWING IN A UNITY ENVIRONMENT 39

the advantage estimate is computed. The loss is calculated with the clipped pol-
icy loss, value loss and entropy loss. The loss is backpropagated and an optimizer
step is taken using the Adam optimizer. This is repeated until multiple passes
(epochs) over the entire buffer are completed.

Implementation A computes discounted rewards once, creates minibatches by
iterating over the buffer sequentially. Advantages are computed by subtracting
the value as predicted by the value function from the discounted rewards (equiv-
alent to GAE with λ = 1).

Implementation B computes Generalized Advantage Estimates for the advan-
tage, which are recomputed for every pass over the data. This implementation
also shuffles the dataset at the state-transition level when creating minibatches
instead of sampling sequentially from the buffer like implementation A.

3.2 Lane following in a Unity environment

Unity was chosen as the platform to create a low fidelity environment due to its
ease of use and the availability of the ML-Agents framework facilitating rapid
deployment of RL agents.

3.2.1 Procedurally generated roads

Creating procedurally generated roads has many advantages. Each road is dif-
ferent due to random generation, which prevents overfitting to a specific set of
roads which could happen with premade road maps. It also allows a high de-
gree of control over the generated road shape by tuning parameters of the road
generator such as road width and curvature.

The procedural road generator works by keeping track of the position and
rotation of the current endpoint of the road and creating and attaching a newly
generated segment whenever the endpoint’s distance from the car agent falls
below a set threshold distance. The new segment will have a fixed length and a
curve that defines how much the road direction will rotate over the length of the
segment. Road segments that the car has passed will be deleted as they are no
longer needed. Figure 3.5 shows what such a segment looks like, while figure 3.6
shows what a road with many segments stitched together looks like. The road
can be rotated about any of the three axes x, y and z, which will cause hills,
turns and banks, respectively.

3.2.2 Creating a car in Unity

A car can be created in Unity using its included physics engine. This can be done
by first creating four WheelColliders as the wheels and then attaching them to a

40 CHAPTER 3. METHODOLOGY

Figure 3.5: A 30 meter long and 8 meter wide segment of track with a 20-degree
rotation about the y-axis. The triangle mesh that makes up the track is visible.

Figure 3.6: An example of what a randomly generated track can look like in
the Unity lane environment. The track is 8 meters wide and is made up of 30
meter long segments each with rotation about the y-axis sampled uniformly in
the [−25◦, 25◦] range.

3.2. LANE FOLLOWING IN A UNITY ENVIRONMENT 41

Figure 3.7: The car driving in the Unity environment.

RigidBody as the car’s body. A torque is applied to the front wheels to accelerate
the car, and a brake torque is applied to all wheels to brake. The front wheels
are rotated to steer the car. A CameraSensor is placed on the windshield at the
top of the car which will be used as the visual observation.

The model for the vehicle is purely cosmetic and doesn’t affect the vehicle’s
physics in any way. The exception is that the hood of the car is visible in the visual
observation. We do believe that the CNN will learn to ignore this, however. A
free model from the Unity Asset Store was used for the car in this project. Figure
3.7 shows the car in the lane environment.

3.2.3 Integration with ML-Agents

The ML-Agents framework requires an Agent script to be created, which needs
to implement specific methods.

Observations The visual observation is an 80x60 image from the front-facing
camera sensor and is handled automatically by the framework. Figure 3.8 shows
an example image from this camera. Vector observations have to be added in a
designated method in the Agent script. The vector observation consists of the
car’s velocity in each dimension relative to its own rotation (e.g., z-axis velocity
is forward velocity). The previous action is concatenated, and the resulting 5-
dimensional vector is stacked with the same vectors from the previous two steps.

42 CHAPTER 3. METHODOLOGY

Figure 3.8: An 80x60 grayscale visual observation as seen by the agent and used
as input to the RL model.

The final vector observation is thus a 15-dimensional vector.

Rewards The car’s reward is proportional to the length of road covered. This
is calculated as the exact length along the center of the road. This is almost
equivalent to rewarding based on the speed of the vehicle. A side effect of this
reward function is that it encourages inner turns as the distance traveled along
the center is then slightly higher than the actual distance traveled by the car.
If the car is in the wrong lane, the distance-based reward gets its sign flipped,
and the episode terminates if the agent fails to return to the correct lane within
2 seconds. The agent acts in the environment for up to 3000 steps, which is
equivalent to 5 minutes of simulated time. The episode terminates early with a
large negative reward if any of the following fail conditions occur:

• The car drives off the road. This fail condition is triggered if a downwards
raycast starting from the car’s center of mass doesn’t hit the road.

• One or more wheels are off the road. This fail condition is triggered if
there is at least one wheel that isn’t touching the track for two consecutive
seconds.

• The car is driving on the wrong lane. This fail condition is triggered if the
car is driving in the wrong lane for at least two consecutive seconds. The
car is considered to be driving in the wrong lane if the car’s center of mass

3.3. LANE FOLLOWING IN CARLA 43

projected onto the road is less than 1 meter to the right of the center of the
road.

• The car is moving too slowly. This fail condition is triggered if the average
velocity of the car during the last ten seconds is less than 1 m/s.

Actions The actions predicted by the network are the steering and throttle
signals which both are in the range of [−1, 1]. Another option is to predict a
separate throttle and brake signal in the [0, 1] range, but since one should never
use both at the same time anyway, it seems appropriate to predict an action in
the [−1, 1] range and just interpret negative throttle signals as brake signals.

The throttle signal is applied to the Car by applying a torque proportional to
the throttle signal to the front wheels. The steering signal is applied by rotating
the front WheelColliders by an angle proportional to the steering signal.

Parallel environments ML-Agents supports parallel environments which al-
low multiple agents to train simultaneously in the same world. This was im-
plemented by stacking 16 environments vertically. Each environment consists of
the car, the generated road and the green background that is just a flat green
plane below the road. Placing the environment far away from the origin of the
Unity world causes the physics engine to behave differently due to larger errors
in floating-point arithmetic. This is why the environments were stacked closely
together with a vertical distance of 50 meters between each environment.

3.3 Lane following in Carla

The Carla environment was chosen as the high-fidelity simulated environment
because it has photorealistic graphics, is easy to use and is widely used in the
literature. There are many included maps in Carla, but most of them are urban
environments with many intersections and terrain that is very different from the
Unity environment. Each map comes with a list of spawnpoints which are all valid
locations and orientations for cars to be spawned. This is useful wishing to place
cars in random but valid locations. For a lane following environment in Carla
the Town07 map was chosen. The map is a part of the AdditionalMaps package
and is downloaded separately. This map is a more rural area compared to other
maps and contains sections with several hundred meters of rural road through
forest. Figure 3.9 shows the car driving in this area. We limit the scope of the
experiment to lane following since it is a core task in autonomous driving and
a good starting point for a reinforcement learning approach. It is also the same
task that was done in Unity, which allows us to reuse most of the methodology.
A birds-eye view of the map used can be seen in 3.10.

44 CHAPTER 3. METHODOLOGY

Figure 3.9: The car driving in the outskirts of Town07 which is where we defined
our lane following environment.

3.3.1 Reinforcement Learning setup

Episodes Episodes are defined by pairs of spawnpoints. The first element in
the pair is the starting point for the episode where the vehicle begins. The second
element is the goal point of the episode, which is the point right before the road
reaches an intersection. The episode is successfully completed if the distance to
this point falls below a threshold distance. Figure 3.11 shows the stretches of road
used. At the start of each episode, the vehicle is primed by enabling the autopilot
for a random amount of time between 2 and 3 seconds of simulator time, before
handing the control to the reinforcement learning system. The reinforcement
learning system is oblivious to the priming phase and will only start collecting
observations afterward. This has several advantages. First, it makes sure the car
responds immediately to throttle signals. In Carla, a car standing still is a bit
slow to react to throttle signals, taking about 2 seconds to react initially. After
it starts moving, the car is much more responsive to control signals, meaning it
is easier for the agent to see how its actions affect the environment. The second
advantage is that it slightly randomizes the initial location of the car at the start
of each episode, so that even episodes that start at the same spawn point will
start in slightly different locations. We believe that these advantages are helpful
to the learning process. An episode also terminates with a failure and a large
negative reward if any of the following fail conditions are reached:

3.3. LANE FOLLOWING IN CARLA 45

Figure 3.10: A birds-eye view of the Town07 map in Carla. The spawnpoints
have been visualized by spawning a black car at each one. The lane-following
parts can be seen in the west, south and east outskirts of the map.

46 CHAPTER 3. METHODOLOGY

• The car’s collision sensor is triggered.

• The car’s lane invasion sensor is triggered. This sensor is triggered if the
car gets too close to the other lane or drives off the road.

• The average car speed over the last 100 time steps is less than 1 m/s, the
current speed is less than 0.5 m/s and the length of the current episode is
more than 200 steps (20 seconds simulator time).

Lenient mode The lane invasion sensor is triggered very easily which termi-
nates episodes that slightly touch the lane markings but otherwise would continue
driving perfectly fine. Due to this, a lenient mode was added that replaces the
lane invasion fail condition with one that is triggered if the lane center deviance
is more than one meter. This is a more lenient fail condition and is used when
testing some models that performed poorly under the stricter fail conditions.

Rewards The reward is given based on the car moving forward on the road.
An easy way to do this that was initially implemented, is to give a reward propor-
tional to the speed of the car. A few early models were trained with this approach.
One problem with this reward scheme is that it is agnostic to the direction the
car is traveling. The car can potentially receive more reward per meter of road by
driving in a zig-zag pattern. Eventually, an analogous approach to the one used
Unity was implemented: giving a reward proportional to the distance of road
traveled. The Carla maps include detailed lane information making it possible
to generate waypoints along the center of any lane on any road in the map. The
PythonAPI includes a function that takes a location such as the location of the
ego vehicle as input and returns that location projected onto the center of the
nearest lane. Calculating the distance between these waypoints between steps
thus gives an accurate distance measure for the length of road. Attempting to
train with this distance measure quickly revealed that this function in the Carla
API is very slow, with a single function call taking close to 100 milliseconds in
our case. This resulted in the training time increasing by about of factor 4 as the
function was called every step, so this distance measure was quickly abandoned.

A different approach was to use the Carla API to generate a list of waypoints
containing evenly spaced waypoints for every lane in the map. This only needs to
be done once at the beginning of the training session. Generating this list with
waypoints spaced 0.5 meters apart results in a list of roughly 14000 waypoints.
One could iterate through this list in pure Python code to find the nearest point
which does result in a speedup, but this is still too slow. A better approach is
to load all the waypoint coordinates into a single NumPy array and use NumPys
efficient array operations to find the nearest point. The execution time for this

3.3. LANE FOLLOWING IN CARLA 47

Figure 3.11: A birds-eye view of the Town07 map in Carla with three routes
marked in red. The marked routes are the routes used in our Carla lane following
environment. An episode starts at a randomly chosen spawn point out of the ten
that are inside the desired sections and ends right before it reaches an intersection.

48 CHAPTER 3. METHODOLOGY

Figure 3.12: An 80x60 color visual observation as seen by the agent in the Carla
lane following environment and used as input to the RL model.

approach is in the sub-millisecond territory, and the impact on training time is
negligible.

In order to calculate the precise distance the car traveled between two timesteps,
a few extra steps are needed since the nearest waypoint only provides a granular-
ity of 0.5 m. This is solved by also calculating how much in front of the waypoint
the car is. This distance is calculated by defining a plane using the waypoints
location and forward vector, and calculating the distance from the plane to the
car’s origin. This distance is essentially the car’s distance along the road relative
to the waypoint.

Observations A forward-facing camera is placed on the top of the windshield
of the car as in the Unity environment. The camera provides 80x60 images with
three color channels (red, green and blue). An example image observation taken
from the environment is shown in figure 3.12. Color images are used since the
graphics are more photorealistic and varied compared to the Unity environment,
and the extra information in a color image is helpful in handling this additional
complexity. A vector observation containing the actions and vehicle speed of the
three previous steps is used. This resulted in a 9-dimensional vector.

Supersampling of image observations It was observed that using a low ren-
dering resolution such as 80x60 in Carla caused graphical glitches in the image

3.3. LANE FOLLOWING IN CARLA 49

when the car was moving and especially if the car was moving and turning at
high speed. We suspect this is a form of ghosting caused by temporal anti-aliasing
(TAA): an anti-aliasing technique used by many modern rendering engines includ-
ing Unreal Engine which Carla is using. Aliasing is (in the context of computer
graphics) an effect that causes edges in the image to appear jagged. TAA at-
tempts to reduce aliasing in images by combining the frame with previous frames
in order to smooth out the jagged edges. This can cause ”ghosts” of previous
frames to be visible especially if the scene contains fast-moving objects. The effect
is more noticeable at low rendering resolutions. Another anti-aliasing technique
called supersampling renders the image at a higher resolution internally before
downscaling it to the desired resolution. The internal rendering resolution is con-
trolled by the render scale. Supersampling with render scale = 2 would render
an image with double the width and height, and each pixel in the downsampled
image would correspond to the average of a 2x2 region in the original image.
This achieves a high-quality anti-aliasing effect but comes with the downside of
being computationally expensive since even a render scale of two quadruples the
number of pixels needing to be rendered. An example of the ghosting effect and
the benefit of higher render scales can be in figure 3.13.

It was decided to use a render scale of 3 as this mitigated the ghosting effect
and resulted in a high-quality image without having too high of a computational
cost. The render scale is implemented by setting the resolution of the camera
in Carla to three times the desired width and height and then downscaling the
image in Python before passing it to the RL system.

Actions The action definitions and interpretations were initially the same as
the ones in Carla, with steering and throttle signals. Although some decent results
were achieved with this setup, it caused some difficulties which will be explained
in more detail in section 4.2. The throttle signal was therefore replaced with a
target speed, and a simple low-level controller was created to convert the target
speed into throttle or brake signals. This change would also be useful for the
third experiment of transferring Unity policy to Carla. The low-level controller
works by looking at the difference between the target speed and the current speed
of the car. It then applies a brake or throttle signal depending on whether the car
is driving faster or slower than the target speed. These signals are proportional
to the speed difference and both max out at a speed difference of 5 m/s. The
throttle signal is then capped at 1, and the brake signal is capped at 0.25. Figure
3.14 shows the control signals from the low-level controller as a function of the
difference between the target speed and current speed. The brake signal has a
lower cap because applying a brake signal of 1 has a greater impact and slows
down the car faster than applying throttle of 1 accelerates it. This is problematic
for learning. To see why this is problematic, consider a policy that samples target

50 CHAPTER 3. METHODOLOGY

(a) render scale = 1 (80x60) (b) render scale = 2 (160x120)

(c) render scale = 3 (240x180) (d) render scale = 4 (320x240)

Figure 3.13: A comparison of 80x60 images from the Carla simulator at different
render scales showing the benefit of rendering at a higher resolution to create a
supersampled image. The render scale and the corresponding internal rendering
resolution can be seen below each image. At a render scale of 1, some visual
bugs can be seen. These disappear when increasing the render scale to 2. The
difference between render scale 2 and 3 is less obvious but is noticeable when
looking at details in the distance, such as the lane markings in the hill in front
of the car. The lane markings are invisible in render scale 2, but can be seen in
render scale 3 if looking closely. Increasing the render scale to 4 doesn’t improve
the quality in a meaningful way, so a render scale of 3 was used in experiments.

3.4. TRANSFERRING POLICY LEARNED IN UNITY TO CARLA 51

Figure 3.14: A plot showing the behaviour of the low level controller for the Carla
environment converting a target speed to throttle and brake signals. The x-axis
shows the desired speed change, which is defined as the difference between the
target speed and the current speed.

speeds from a normal distribution v ∼ N(0, 0.3), which is what an initial policy
will typically look like. Half the sampled target speeds will then result in throttle
signals and other half will result in braking signals, but since the brakes have
a greater impact on the speed they will more than negate any throttle signals
causing the car to always stand still.

3.4 Transferring policy learned in Unity to Carla

3.4.1 Segmentation map in Unity

Due to the primitive graphics of our Unity lane following environment, it was
assumed that creating segmentation maps based on the camera image would be
easy since the different parts of the image to be labeled already have distinct

52 CHAPTER 3. METHODOLOGY

(a) Input image (b) Target label

Figure 3.15: The single training example used to train the semantic seg-
mentation network. The semantic segmentation map has five classes:
{Sky,RoadLines,Roads, V egetation, V ehicles}. The Sky and V egetation
classes were later merged into a single class.

colors.

Since the color of the pixel alone should be able to determine the class label, a
Convolutional Neural Network with only 1x1 kernels was created. In practice this
network acts as a fully connected network processing each pixel independently
from each other.

The training data was created manually by creating color-coded segmentation
maps in an image editor. Two examples pairs from grayscale images to segmene-
tation maps were created, but this was unable to provide satisfactory results. A
modified version of the Unity lane environment that provided RGB image obser-
vations instead of grayscale was created, and a single segmentation example was
manually created. This time the network converged to pixel-perfect segmentation
maps on both the training example and several unseen test images. The network
was trained with 10000 iterations over the training image using square error loss
weighted by the inverse class frequency. The training example used to train the
network can be seen in figure 3.15.

3.4.2 Segmentation map in Carla

Carla includes a segmentation map camera. This semantic segmentation image
contains more classes than the one created in Unity, so some classes are merged
together such that the number of classes match. This was done by mapping
each class in the Carla image to the correct class as we defined. This was done
by mapping the Carla RoadLines, Road and V ehicles to the same class in our
image. Every other class including sky was mapped to V egetation.

3.4. TRANSFERRING POLICY LEARNED IN UNITY TO CARLA 53

3.4.3 A stricter Unity environment

The Unity environment was modified before being used to train policies to be
transferred to Carla. These modifications are intended to make the Unity envi-
ronment behave more like the Carla environment. The width of the road was
reduced from 8 meters to 7 meters meaning that each lane was half a meter
narrower. The fail conditions were also made much more strict. Previously the
episode would fail if the car’s offset from the center of the road was less than 1
meter for 20 consecutive timesteps. This threshold was changed to 1.3 meters
and with instant episode termination. A fail condition was also added to the
outer edge of the road where termination happens if the offset from the edge of
the road is less than 1 meter. Previously the episode would fail if at least one
wheel was off the track for 20 consecutive timesteps.

These changes make the environment more like the Carla environment that
terminates episodes upon triggering lane invasion sensors. The hood of the car
which is visible in the camera is slightly bigger in the Carla environment. To
ensure this didn’t affect the policy, an overlay of this shape was added to the
Unity semantic segmentation observation. This made the hood of the car have
the same shape in both environments.

54 CHAPTER 3. METHODOLOGY

Chapter 4

Experiments and Results

This chapter will present the experiments and results and seeks to answer the
research questions. Each experiment is organized into a setup, results and dis-
cussion part, and there are three experiments total.

The first experiment takes place in the Unity lane following environment.
The purpose of this experiment is to use the low fidelity environment to build
an autonomous vehicle system that performs well, and to investigate the effects
of using Variational Autoencoders to encode the visual observations. This pro-
vides insight into Research question 1 on Variational Autoencoders, and forms a
starting point for experiment 2.

The second experiment takes place in the Carla lane following environment.
Experiment 2 is based on the findings from experiment 1 and attempts to deploy
an RL agent in Carla based on the best performing one in Unity. The findings
from this experiment help answer Research question 2.

The third and final experiment takes place in both environments. The Unity
lane following environment is used to train the RL agent before it is transferred
to the Carla lane following environment and evaluated. This answers Research
question 3 on policy transfer.

A video compilation that shows the car agents driving in the various environments
is available at https://youtu.be/aqDVVh0rHzQ. The compilation contains video
samples of many driving policies driving in various environments. The video is not
intended to be watched from beginning to end, but instead to serve as a library
of videos of the various driving policies. Video recordings of the policies allow
us to qualitatively evaluate them. The video contains samples of cars driving in
the environment where it shows the car from a third-person view and the agent’s
visual observation that is used as input to the neural network. A graph shows
the steering and throttle/speed actions over the previous three seconds. There

55

https://youtu.be/aqDVVh0rHzQ

56 CHAPTER 4. EXPERIMENTS AND RESULTS

are also video segments that compare the Variational Autoencoders of differing
zdim by showing the original input image and the reconstructed image after being
passed through VAEs of different sizes.

4.1. EXPERIMENT 1: LANE FOLLOWING IN UNITY 57

4.1 Experiment 1: Lane following in Unity

Experiment 1 takes place in the Unity environment for lane following described in
section 3.2. The main purpose of experiment 1 is to test the RL algorithms and
model architectures such that the best-performing ones can be launched in Carla.
This allows faster experimentation since simulation in the Unity environment is
computationally cheaper than in Carla. An experiment was done using the same
lane following environment in the specialization project, where ML-Agents’ built-
in RL algorithm was used.

The first goal of experiment 1 is to match the performance of the ML-Agents
implementation of PPO to verify that the algorithm is implemented correctly.
The next step is to use a Variational Autoencoder to encode the visual observa-
tions and see if it improves the speed of training and performance of the agent.

4.1.1 Setup

Models were initially trained on a desktop PC with an Nvidia GTX 1070 GPU,
16 GB of RAM and a 6-core Ryzen 5 1600X CPU. Some models were trained
on a remote desktop virtual machine with a shared RTX 8000 GPU. Later on,
most models were trained on the Idun GPU cluster described in Själander et al.
[2019]. The cluster doesn’t support graphics, so the Unity environment was run
on the desktop PC and communicated with the trainer running on the cluster
via sockets. This allowed faster testing of models since multiple models could
be trained simultaneously. The Variational Autoencoders were all trained on the
Idun cluster.

Each model is trained for up to a maximum of 15 million steps, which is
equivalent to about 415 hours of simulated time. A checkpoint is saved during
training every 100 000 timesteps in the simulator, with each timestep representing
100 milliseconds of simulated time. The model is evaluated at each checkpoint
by collecting 100 episodes using the model and looking at the mean distance
traveled as well as the number of successful episodes. An episode is successful
if it reaches the maximum episode length without failing. When evaluating a
model, the mean action is used instead of sampling from the action distribution.

Models are also evaluated for passenger comfort. This is done by measuring
the jerk (rate of change of acceleration) experienced by the passenger. A higher
average jerk implies a more uncomfortable ride. The change in throttle and
steering angle actions between consecutive timesteps can be used as a surrogate
metric for the longitudinal and lateral jerk. The jerk metric for an episode is
then calculated as the mean absolute jerk of every pair of consecutive timesteps
in the episode. This is averaged over 10 episodes for each checkpoint. We create
a lateral jerk score based on this mean absolute lateral jerk metric. Both lateral
and longitudinal jerk were highly correlated, so lateral jerk was chosen as the

58 CHAPTER 4. EXPERIMENTS AND RESULTS

metric as it was also easier to see as an observer. The jerk surrogate metric has
no defined unit, but it can still be used to compare policies against each other.
The lateral jerk score has an upper bound value of 2, which is reached if the
policy alternates between a steering signal of -1 and 1 at each timestep.

The experiments are done using two different PPO implementations: A and
B, and both implementations are tested with and without a Variational Autoen-
coder. This gives a total of four classes of models tested. Different settings for
the VAE are also tested with PPO implementation B.

Variational Autoencoder

A dataset is needed to train the Variational Autoencoder. This dataset was
collected by training a model from scratch without the VAE, and saving the
observed image every 100 steps. This ensures a diverse set of images including
many near-failure states that might not be seen in the late stages of training but
are seen in the early stages of its training. It is likely that a different model
trained from scratch will observe a similar distribution of images during the
course of training. Another advantage of collecting the dataset this way is less
manual labor as an alternative would be to drive manually in the environment to
collect the dataset. A third option would be to drive using autopilot to collect
the dataset, but this will collect a different distribution of images as it will not
contain near-failure states.

The resulting dataset of roughly 100 000 images were used to train the VAEs
with different latent space dimensionalities zdim. Ten images were chosen ran-
domly and taken out of the training set to become to test set. The VAE models
were qualitatively evaluated by manually checking if the reconstructed test im-
ages kept the shape of the road and lane markings roughly intact, as those are
believed to be the most important features for the vehicle.

Each instance of the Unity environment contains 16 agents with their own
roads. During training all 16 agents are collecting experience and storing the
experience from each time step in their own buffer.

4.1.2 Results

Implementation A

The first goal of implementation A was to match the performance of the ML-
Agents implementation of PPO. The ML-Agents implementation was used with
the same environment in the specialization project where it achieved a mean
distance of 5020 m and an episode success rate of 90 %.

Figure 4.1 and 4.2 shows the results of two separate training runs with imple-
mentation A with a visual encoder trained from scratch. Figure 4.3 shows both

4.1. EXPERIMENT 1: LANE FOLLOWING IN UNITY 59

runs plotted together. The first run was trained for about 12 hours wall-clock
time before it reached 15 million training steps. The second policy collapsed after
about 8 hours of wall-clock time and was kept running in the collapsed state for
15 more hours before it was canceled.

Figure 4.4 shows the results from implementation A where the visual encoder
is replaced by the encoder from a Variational Autoencoder with zdim = 64. This
model was trained for 16 hours of wall-clock time.

Implementation B

Figure 4.5 shows the performance of implementation B with a visual encoder
trained from scratch. The policy can be seen to collapse at the end after training
for eight and a half hours of wall-clock time. The training was canceled after
13 million steps or 21 hours of wall-clock time as the policy had not recovered.
This network uses the tanh activation instead of LeakyReLU and Swish as ex-
plained in section 3.1, with the exception of the value network, which still uses
LeakyReLU and Swish as in implementation A. The reason for this was that the
initial experiments using tanh in the value function resulted in saturated tanh
outputs and the value function collapsing to a single value regardless of state.

The next experiment shows models trained using a Variational Autoencoder.
This time latent space dimensionalities zdim from 8 to 128 were tried and com-
pared. The results can be seen in figure 4.6, and the best performing checkpoint
from each run with respect to mean distance can be seen in table 4.1. Figure 4.7
shows a scatter plot showing the mean distance and episode success rate of every
checkpoint of all the VAE based models.

Model comparison

Figure 4.8 shows the mean distance of all four classes of models tested. Figure 4.9
shows a scatter plot of mean distance and episode success rate of all checkpoints
of the same four models. The comfort of each class of model throughout the
training process can be seen in figure 4.10. A scatter plot showing the correlation
between mean distance and comfort can be seen in figure 4.11. Table 4.2 shows
the checkpoints with the best mean distance of each model class.

60 CHAPTER 4. EXPERIMENTS AND RESULTS

Figure 4.1: A run of implementation A with a visual encoder trained from scratch.
The line shows the mean distance and the shaded area shows the interquartile
range of distances traveled. The dotted line shows the episode success rate. A
running average of the 5 preceding values is used to smooth out the graph.

4.1. EXPERIMENT 1: LANE FOLLOWING IN UNITY 61

Figure 4.2: A second run of implementation A with a visual encoder trained from
scratch. This run experienced a policy collapse after roughly 7 million steps of
training and the policy never recovered. The line shows the mean distance and
the shaded area shows the interquartile range of distances traveled. The dotted
line shows the episode success rate. A running average of the 5 preceding values
is used to smooth out the graph.

62 CHAPTER 4. EXPERIMENTS AND RESULTS

Figure 4.3: The two runs of implementation A with visual encoder trained from
scratch shown together. The lines show the mean distance and the shaded areas
show the interquartile range of distances traveled. A running average of the 5
preceding values is used to smooth out the graph.

4.1. EXPERIMENT 1: LANE FOLLOWING IN UNITY 63

Figure 4.4: Evaluation of implementation A using a pre-trained Variational Au-
toencoder to encode the visual observation to a 64-dimensional vector. The line
shows the mean distance traveled by the agent, and the shaded area shows the
interquartile range of distances traveled. The dotted line shows the episode suc-
cess rate. A running average of the 5 preceding values is used to smooth out the
graph.

64 CHAPTER 4. EXPERIMENTS AND RESULTS

Figure 4.5: Evaluation of implementation B with a visual encoder trained from
scratch. The line shows the mean distance traveled by the agent, and the shaded
area shows the interquartile range of distances traveled. The policy collapses
slightly before 7 million steps. A running average of the 5 preceding values is
used to smooth out the graph.

4.1. EXPERIMENT 1: LANE FOLLOWING IN UNITY 65

Figure 4.6: Training runs of implementation B using Variatational Autoencoders
with differing latent space dimensionalities zdim. The lines show the mean dis-
tance traveled by the agent, and the shaded areas shows the interquartile range
of distances traveled. A running average of the 5 preceding values is used to
smooth out the graph.

zdim Step number (·106) Mean distance Success rate
8 10.4 6725 m 78 %
16 9.3 6583 m 84 %
32 8.9 6835 m 80 %
64 9.8 7526 m 98 %
128 13.3 7045 m 69 %

Table 4.1: The model checkpoints with the best mean distance for models trained
with varying zdim in the Variational Autoencoder. The best results are marked
in bold.

66 CHAPTER 4. EXPERIMENTS AND RESULTS

Figure 4.7: A scatter plot showing the mean distance and episode success rates
of runs of implementation B with Variational Autoencoders with differing zdim.
Each point represents a checkpoint that was evaluated, with one checkpoint every
100 000 steps.

4.1. EXPERIMENT 1: LANE FOLLOWING IN UNITY 67

Figure 4.8: A comparison of implementations A and B both with and without a
VAE with zdim = 64. The lines show the mean distance traveled by the agent, and
the shaded area shows the interquartile range of distances traveled. A running
average of the 5 preceding values is used to smooth out the graph.

Model class Step number (·106) Mean distance Success rate
impl A 10.9 6264 m 85 %
impl A vae 9.4 7895 m 80 %
impl B 5.8 5451 m 79 %
impl B vae 9.8 7526 m 98 %

Table 4.2: The model checkpoints with the best mean distance for each class of
model trained. The best results are highlighted in bold.

68 CHAPTER 4. EXPERIMENTS AND RESULTS

Figure 4.9: A scatter plot comparing implementation A and B both with and
without a VAE with zdim = 64. Each point represents a checkpoint that was
evaluated, with one checkpoint every 100 000 steps.

4.1. EXPERIMENT 1: LANE FOLLOWING IN UNITY 69

Figure 4.10: Evolution of comfort throughout the training process of each class
of models. A lower jerk score corresponds to a more comfortable driving policy.
A running average of the 5 preceding values is used to smooth out the graph.

70 CHAPTER 4. EXPERIMENTS AND RESULTS

Figure 4.11: A scatter plot showing the lateral jerk score and mean distance of
every checkpoint of each class of models. A lower jerk score corresponds to a
more comfortable driving policy. Each point represents a checkpoint that was
evaluated, with one checkpoint every 100 000 steps.

4.1. EXPERIMENT 1: LANE FOLLOWING IN UNITY 71

4.1.3 Discussion

Implementation A

The results from implementation A using a visual encoder trained from scratch
show that performance varies wildly between runs. The training also appears
to be unstable with performance drops happening often. Further demonstrating
instability the second run shows the policy collapsing after 7 million steps and
being unable to recover. Using checkpoints and evaluating every checkpoint al-
lows us to be able to select good policies despite the unstable training. Both
runs outperformed the ML-Agents reference model’s performance of 5020 meters
mean distance. However, the reference model still had a higher success rate of 90
%. It should be noted that the ML-Agents model had some disadvantages, such
as only training for 5 million steps instead of 15 million and only evaluating the
final model instead of every checkpoint. This means that the comparison is not
entirely fair.

The difference between the runs highlights the issue in Reinforcement Learn-
ing that performance can vary wildly between runs due to the stochastic nature
of the training process and randomization of initial parameters. Ideally, multiple
runs should have been done with each experiment and set of hyperparameters
in order to present an average of runs. Although the IDUN cluster at NTNU
provided access to plenty of computational resources, the Unity environment had
to run on hardware supporting graphics in order to provide visual observations.
The availability of this type of hardware was more limited, and therefore only a
single run was done for each experiment.

A run of implementation A with a buffer size of 64 000 instead of 32 000 was
done which showed noticeably improved results. These results are not included
here since we were unable to reproduce them and it was possibly just the results
of a ”lucky” run. The result of this run can be seen in the appendix.

Swapping the visual encoder with the encoder from a Variational Autoencoder
caused significant improvements in the results. The model trained faster, was
more stable and achieved longer mean distances. It outperformed the reference
ML-Agents model both in terms of mean distance and success rate after fewer
than 2 million training steps.

Implementation B

Implementation B with a visual encoder trained from scratch achieved a worse
performance than implementation A by every presented metric. The mean dis-
tance is worse, the success rate is worse, the sample efficiency was lower, the jerk
score was higher and the training was more unstable.

The experiments using pre-trained encoders showed much more intriguing

72 CHAPTER 4. EXPERIMENTS AND RESULTS

results. The training is still unstable, but using checkpoints allows us to select the
best policies. zdim = 16 and zdim = 32 appears to outperform early in the training
while zdim = 64 and zdim = 128 takes the lead at later stages. One explanation
for this that could explain training being easier in the beginning is that there
is less information to work with meaning less noise. The lower noise makes it
easier for the model to learn the important correlations. The models using a
higher zdim might be able to squeeze out extra performance later in the training
process by exploiting the extra information available to it that is lost in the lower
dimensional encoders. Compared to the VAE experiment in implementation A,
the mean distance was lower, but the success rate is consistently higher, especially
with the 64-dimensional encoder. The scatterplot in figure 4.7 shows zdim = 64
significantly outperforming the other values of zdim.

It is hard to know exactly why the 64-dimensional autoencoder performs so
well. Since only one experiment was done, we cannot exclude the possibility that
it was just a lucky run. The quality of the feature vector encoding learned by the
VAE itself is also a variable that could be subject to ”luck” and vary between
runs, as its initialization and training process is also stochastic. This means that
even if an average of multiple experiments suggested that zdim = 64 was optimal,
it would be hard to know if it was because 64 actually is the optimal zdim, or if
the VAE itself had learned an exceptionally good feature representation due to
chance. Performing experiments to gain a deeper understanding of these issues
would be too time-consuming given the resources at our disposal and are left for
future work.

Model comparison

Of the four classes of models tested, all but the class using implementation B
without a VAE have some advantages over the others. Implementation A with
VAE seen at 2:00 achieves the highest mean distance of all models and is more
comfortable than both models using implementation B. It is the most aggressive
driving policy and the upper quartile distance is significantly higher than all other
models throughout the entirety of the training process. It is also the fastest
learner of all the models. A disadvantage is that it has a lower success rate
presumably because of its aggressive driving. Implementation A without a VAE
results in the most comfortable driving policies while still achieving a reasonable
mean distance and success rate. The driving policy is more comfortable early
in the training process and an early policy can be seen at 0:00 in the video.
Implementation B with a VAE achieves a mean distance that is almost as good
as the best model in that regard, but at a near 100 % success rate. The downside
is that it is about as uncomfortable as a driving policy can possibly get with a
very erratic steering behavior. The policy sometimes alternates between steering
strongly to the left and strongly to the right every timestep. This behavior can

https://youtu.be/aqDVVh0rHzQ?t=120
https://youtu.be/aqDVVh0rHzQ?t=0

4.1. EXPERIMENT 1: LANE FOLLOWING IN UNITY 73

be seen at 6:12 in the video.

Variational Autoencoder reconstruction

A policy from implementation B without VAE was chosen for the VAE reconstruc-
tion comparison video due to it being the worst class of policies. A checkpoint
with a good mean distance but also a high failure rate was selected to increase
the frequency of near failure and failure states. These states, such as the one
seen in the video at 8:35 show that the VAE reconstruction breaks down when
images that significantly differ from those seen during training are encountered.
Otherwise, the VAEs do a good job at recovering the image even with as little as
an 8-dimensional zdim.

https://youtu.be/aqDVVh0rHzQ?t=372
https://youtu.be/aqDVVh0rHzQ?t=515

74 CHAPTER 4. EXPERIMENTS AND RESULTS

4.2 Experiment 2: Lane following in Carla

Experiment 2 is done in the Carla simulator where a lane following task is im-
plemented as described in section 3.3. This experiment aims the deploy the best
performing models from experiment 1 in the higher fidelity environment that is
Carla. Simulation in Carla is more time-consuming, which is why fewer runs are
done in Carla. The model with a 64-dimensional Variational Autoencoder using
implementation B was chosen to be used in Carla.

4.2.1 Setup

Final models in this experiment were trained on the desktop PC with the Nvidia
GTX 1070 GPU. Some initial experiments not shown here were done in the remote
desktop machine described in section 4.1.1. The Variational Autoencoders were
trained on the Idun GPU cluster as in the previous experiment.

The car is spawned in a random spawnpoint from a selection of the included
spawnpoints. Autopilot is then enabled for a random amount of timesteps be-
tween 20 and 30 as the priming phase. This ensures the car doesn’t always start
in the same locations and that the car starts off with some forward speed. The
car is not primed in evaluation mode.

Models are still trained for up to a maximum of 15 million steps which is also
equivalent to about 415 hours of simulated time since the timestep duration is
the same as in the Unity environment. A checkpoint is saved every 50 000 steps,
but only the first checkpoint in each 100 000 step interval is evaluated to stay
consistent with previous experiments. Each timesteps in the simulator represent
100 milliseconds of simulated time. Evaluation consists of collecting 100 episodes
using the policy of each checkpoint, choosing the mean action instead of sampling,
and collecting data such as the distance of each episode and number of successful
episodes. A comfort evaluation is also performed that computes a lateral jerk
score by computing the mean absolute lateral jerk over 10 episodes with the
same method as the previous experiment.

Action space The action output was changed to predict a target speed instead
of a throttle signal. This was after initial experiments using a throttle signal failed
to yield satisfactory results. Another design choice with this failed model was to
disable brakes since they made learning difficult. The resulting policy learned a
low mean and a high standard deviation for the throttle action. This meant that
network would output throttle values close to either -1 or 1 after the tanh acti-
vation with the values below 0 has no effect since the brakes were disabled. This
meant it could drive in training due to the sampled action sometimes resulting in
a high throttle value, but in testing the car would stand still. The car would even

4.2. EXPERIMENT 2: LANE FOLLOWING IN CARLA 75

roll backwards if it started in a hill since it has no information in its observation
that tells it it’s on an incline, and gravity outweighed the throttle signal.

Variational Autoencoder

As in experiment 1, a dataset for the Variational Autoencoder was collected by
training a model without a VAE and saving images during the training process.
The autopilot was enabled for a longer period of time before each episode started
during the data collection period to prevent the majority of the images from being
from the same spawnpoint areas. Specifically, the number of autopilot steps was
randomly chosen between 25 and 125 instead of 20 and 30. This was especially
important as the models without a VAE did not perform well at all in Carla.

A dataset of more than 100 000 images were collected, and VAEs of several
different latent space dimensionalities zdim were trained, but a 64-dimensional
latent space was used for experiments since it was the best performing one in the
Unity experiment. Increasing the dimensionality further did not meaningfully
reduce the training loss of the VAE, nor did it appear to improve the reconstruc-
tions on the ten test images.

Testing in a mirrored world

The Carla environment does not have procedurally generated roads, and the
selection of roads that are fitting for the desired lane following environment is
limited. This makes models trained here prone to overfitting. In order to test the
trained models on unseen roads, a mirror world environment is created. When
mirror world mode is enabled, the visual observation is flipped horizontally and
the car’s start position is moved over to the left lane so that it appears to be in
the right lane in the mirrored image. The steering commands are then modified
by flipping the sign before sending it to Carla.

Testing without episode termination

The car agent will also be tested in a modified environment where all termination
conditions are disabled with the exception of a car crash. This essentially means
that the car drives until it crashes since the episode success condition is also
disabled. A video clip of the car driving in this mode will be shown. The intent
of this test is to see what happens when the car encounters traffic situations it is
not trained to handle, such as traffic intersections.

76 CHAPTER 4. EXPERIMENTS AND RESULTS

4.2.2 Results

Figure 4.12 shows the evaluation of the model trained with a Variational Autoen-
coder on the training environment with its success rates, while figure 4.13 shows
the evaluation in the mirror world environment. An evaluation in the mirror
world environment with lenient mode is shown in figure 4.16. The model was
trained over the course of just above 100 hours of wall-clock time and over 415
hours of simulator time. Both train and test are seen together in figure 4.14. The
average speed of train and test are shown in figure 4.15.

A few attempts were made to train a policy without a Variational Autoencoder
using implementation A as this resulted in the most comfortable policies in the
previous experiment, but none achieved satisfactory results.

The video shows the policy with the best performance in the test environment
in the training environment at 10:00 and in the mirror world environment at 12:00.
A later policy that drives much faster can be seen in the training environment
at 14:00. Because this policy does not perform well in the mirror world, the
video instead shows it in the lenient environment which can be seen at 16:00. A
comparison between different choices of the VAE zdim is shown at 18:00. At 19:00
the same comparison is made but with observations from the mirror world which
the VAE has never seen during training. The video compilation shows the car
launched in the environment with termination conditions disabled in the training
and mirror world at timestamps 20:00 and 22:00 respectively.

https://youtu.be/aqDVVh0rHzQ?t=600
https://youtu.be/aqDVVh0rHzQ?t=720
https://youtu.be/aqDVVh0rHzQ?t=840
https://youtu.be/aqDVVh0rHzQ?t=960
https://youtu.be/aqDVVh0rHzQ?t=1080
https://youtu.be/aqDVVh0rHzQ?t=1140
https://youtu.be/aqDVVh0rHzQ?t=1200
https://youtu.be/aqDVVh0rHzQ?t=1320

4.2. EXPERIMENT 2: LANE FOLLOWING IN CARLA 77

Figure 4.12: Evaluation of the Carla model using a Variational Autoencoder with
zdim = 64 in the Carla lane following environment. The evaluation is done in the
same environment it was trained in. The line shows the mean distance traveled
by the agent, and the shaded area shows the interquartile range of distances
traveled. A running average of the 5 preceding values is used to smooth out the
graph.

78 CHAPTER 4. EXPERIMENTS AND RESULTS

Figure 4.13: Evaluation of the Carla model using a Variational Autoencoder with
zdim = 64 in the Carla lane following environment. The evaluation is done in
the mirror world environment. The line shows the mean distance traveled by the
agent, and the shaded area shows the interquartile range of distances traveled.
A running average of the 5 preceding values is used to smooth out the graph.

4.2. EXPERIMENT 2: LANE FOLLOWING IN CARLA 79

Figure 4.14: Evaluation of the Carla model using a Variational Autoencoder
with zdim = 64 in the Carla lane following environment. The plot shows both
the evaluation in the training world and in the mirror world. The lines show the
mean distance traveled by the agent, and the shaded areas show the interquartile
range of distances traveled. A running average of the 5 preceding values is used
to smooth out the graph.

80 CHAPTER 4. EXPERIMENTS AND RESULTS

Figure 4.15: The average speed of the Carla model in the training environment
and mirror world environment. The graph shows that the average speed keeps
increasing throughout the training process, which means the model performance
is increasing even if the mean distance plateaued. The model uses a Variational
Autoencoder with zdim = 64. A running average of the 5 preceding values is used
to smooth out the graph.

4.2. EXPERIMENT 2: LANE FOLLOWING IN CARLA 81

Figure 4.16: Evaluation of the Carla model with Variational Autoencoder with
zdim = 64 in the Carla lane following environment in lenient mode. It is the same
environment and model as in figure 4.13 but with a more lenient fail condition.
The line shows the mean distance traveled by the agent, and the shaded area
shows the interquartile range of distances traveled. The red dotted line shows
the episode success rate. A running average of the 5 preceding values is used to
smooth out the graph.

82 CHAPTER 4. EXPERIMENTS AND RESULTS

4.2.3 Discussion

The model achieves near 100 % success rate in the training environment after
about 3 million training steps. The mean distance plateaus after this since, un-
like the Unity environment, the roads have a finite length. When the model
reaches 100 % success rate it must also have the maximum possible mean dis-
tance. The interquartile range of distance loses its meaning after the plateau
since it becomes entirely determined by the lengths of the different predeter-
mined routes in the Carla lane following environment. The different interquartile
ranges at different checkpoints are just the result of which routes were randomly
selected when evaluating that checkpoint. The performance on test increases un-
til about 5 million steps where the success rate peaks at 50 %. The performance
degrades after this point which shows the model overfitting to the training envi-
ronment. The figure showing the average speed shows an increasing trend for the
training environment throughout the training process, albeit with diminishing
returns. This shows that the policy performance keeps increasing with respect
to discounted reward, as completing the lap faster gives a higher discounted re-
ward. The average speed being lower in the test environment is due to the higher
failure rate causing the car to spend more time at low speeds, such as at the
beginning of episodes. When the model is evaluated in the lenient mirror world,
the performance is much better and doesn’t seem to suffer as much from overfit-
ting. The video shows that the car often touches the lane markings which would
fail the episode in the stricter mode, but continues on to complete the episode
successfully. As an example, the episode starting at 16:00 shows the agent drive
over the outer lane markings which would have failed the episode in the strict
training environment, but it does not drive off the road and does successfully
complete the episode. It would be interesting to see if a model trained in lenient
mode would generalize as well in the mirror world as the one trained in strict
mode. Perhaps training in a stricter environment than the target environment
can improve performance in the target environment. This was not attempted due
to time constraints.

The no-termination video show that the car sometimes can get through in-
tersections even though it was not trained to, such as at 20:40. The intersection
is more difficult if it is not straight, as seen at 20:18 where the car crashes into
the guardrail.

The VAE reconstruction video shows that the quality of the reconstruction
increases with higher zdim, which is expected. Although it was not measured
quantitatively, the video seems to show that VAE reconstructions of the images
from the mirror world are worse. This is also expected behavior, seeing as the
VAE was only trained on images from the non-mirrored world. Another interest-
ing behavior of the VAE is seen at 21:02 where the cornfields which are unseen
during training are reconstructed as forest.

https://youtu.be/aqDVVh0rHzQ?t=960
https://youtu.be/aqDVVh0rHzQ?t=1240
https://youtu.be/aqDVVh0rHzQ?t=1218
https://youtu.be/aqDVVh0rHzQ?t=2162

4.2. EXPERIMENT 2: LANE FOLLOWING IN CARLA 83

Deploying the well-performing model from Unity in Carla was not straight-
forward. Many iterations and numerous tweaks had to be made to the model
before any meaningful results were achieved. All attempts at training a visual
encoder from scratch also failed. Training often showed promising progress until
as much as 12 hours into training or 2 million steps before performance peaked
and degraded from thereon. This made model iterations slow and highlighted the
importance of testing in a computationally cheaper environment to get a good
idea of where to begin in the higher fidelity environment. All models with visual
encoders trained from scratch failed to achieve good performance. Switching the
visual encoder trained from scratch from 2 convolutional layers to 4 layers with
the same shape as the VAE encoder resulted in improved performance, but it was
not enough to converge to a good policy. It might be helpful to use a visual en-
coder with more layers such as ResNet, especially in the Carla environment. We
did not attempt to use ResNet due to it having many more trainable parameters
making it harder to train.

84 CHAPTER 4. EXPERIMENTS AND RESULTS

4.3 Experiment 3: Unity to Carla policy transfer

The goal of experiment 3 is to train a model in the Unity environment and
transfer the learned policy to the Carla environment. This is done by training
the model on a semantic segmentation image instead of a grayscale or color image.
This semantic segmentation image looks similar in both environments closing the
visual ”simulator gap”.

4.3.1 Setup

The sky and vegetation channels were merged into a single channel in order to
make both environments look more similar. The resulting semantic segmenta-
tion image consisted of the four classes {Road,RoadLines, V ehicle,Other}. The
model was trained on the remote desktop machine. Evaluation of the model in
the Unity lane environment was also done on the remote desktop machine. The
Nvidia GTX 1070 desktop was used when evaluating the model in Carla. Both
machines are described in more detail in section 4.1.1.

The strict Unity lane environment described in section 3.4.3 is used when
training the model. This stricter environment aims to better mimic the Carla
environment by having a much lower episode termination threshold. This envi-
ronment also uses a target speed action instead of a throttle signal action, as this
is what ended up being used in the Carla experiment. The vehicle physics in the
Unity environment was altered by making the wheels use Ackermann steering ge-
ometry which makes each wheel trace out circles of different radii when turning.
This is a better and more realistic steering behavior compared to rotating each
wheel by the same angle as was done earlier. This makes the steering behave
more like the steering in Carla.

The lenient Carla lane following environment was used when evaluating in
Carla. This was chosen because the agent following the transferred policy strug-
gled to complete even a single episode under the strict lane invasion sensor. The
lenient environment allows the agent to successfully complete episodes while still
mostly staying in its lane.

The model is trained for almost 9 million steps which is about 250 hours of
simulator time. A checkpoint is saved every 100 000 steps and evaluated in the
Unity environment and both the mirrored and non-mirrored Carla lane environ-
ment.

4.3.2 Results

The model is trained for 8.8 million steps over the course of 16 hours of wall-
clock time. The model evaluated in the Unity environment where it was trained
is shown in figure 4.17. The policy is then evaluated in the Carla lane following

4.3. EXPERIMENT 3: UNITY TO CARLA POLICY TRANSFER 85

environment which can be seen in figure 4.18. Figure 4.19 shows the same evalu-
ation in the mirrored Carla environment. Figure 4.20 shows the policy evaluated
in both Unity and Carla with the distance normalized.

The car driving in the Unity environment where it was trained can be seen at
24:00 in the video. The same policy can then be seen driving in Carla at 26:00.
The agent then drives with no termination in the Carla normal world at 28:00
and in the mirror world at 30:00.

https://youtu.be/aqDVVh0rHzQ?t=1440
https://youtu.be/aqDVVh0rHzQ?t=1560
https://youtu.be/aqDVVh0rHzQ?t=1680
https://youtu.be/aqDVVh0rHzQ?t=1800

86 CHAPTER 4. EXPERIMENTS AND RESULTS

Figure 4.17: Evaluation of the model in the Unity lane following training en-
vironment with semantic segmentation map observations. The line shows the
mean distance traveled by the agent, and the shaded area shows the interquartile
range of distances traveled. The red dotted line shows the episode success rate.
A running average of the 5 preceding values is used to smooth out the graph.

4.3. EXPERIMENT 3: UNITY TO CARLA POLICY TRANSFER 87

Figure 4.18: Evaluation of the model transferred to the Carla lane following
environment with semantic segmentation map observations. The line shows the
mean distance traveled by the agent, and the shaded area shows the interquartile
range of distances traveled. The red dotted line shows the episode success rate.
A running average of the 5 preceding values is used to smooth out the graph.

88 CHAPTER 4. EXPERIMENTS AND RESULTS

Figure 4.19: Evaluation of the model transferred to the Carla lane following
environment with semantic segmentation map observations. This figure shows
the evaluation in the mirror world Carla environment. The line shows the mean
distance traveled by the agent, and the shaded area shows the interquartile range
of distances traveled. The red dotted line shows the episode success rate. A
running average of the 5 preceding values is used to smooth out the graph.

4.3. EXPERIMENT 3: UNITY TO CARLA POLICY TRANSFER 89

Figure 4.20: A comparison of how the model performed in Unity lane environment
and in the Carla lane environment. The mean distance is normalized to fit in the
same scale.

90 CHAPTER 4. EXPERIMENTS AND RESULTS

4.3.3 Discussion

The model’s performance evaluated in Unity is lower than that of implementation
A without VAE from experiment 1 which it is based on. This is unsurprising
since the environment has stricter fail conditions and is therefore a more difficult
environment. Another difference is that the environment in experiment 1 used a
three-dimensional velocity vector in the vector observation while this environment
uses the velocity magnitude.

The performance evaluations from Carla show that performance is mostly the
same regardless of whether the world is mirrored or not. There are some differ-
ences such as the peak in mean distance and success rate right after 1 million
steps that is present in the regular world but not in the mirror world. Although
each checkpoint is evaluated for 100 episodes, there are only ten different routes
defined in the Carla lane following environment. If a certain policy fails a partic-
ular route one time, it is likely that it will fail it every time since the policy and
environment is almost deterministic. The policy is deterministic in evaluation
mode, but the environment can introduce uncertainty such as when animated
vegetation overlaps the road on slightly different pixels in the image depending
on the elapsed simulator time. This low number of routes can cause significant
differences in success rate and mean distance, even if only one or two routes are
slightly harder. There is some overlap between routes so it can even be a single
difficult turn causing failures for multiple routes.

The success rate of over 60 % in Carla shows that the model trained only
in Unity can transfer reasonably well to Carla. The Carla and Unity environ-
ments are vastly different in terms of visuals and in terms of vehicle physics.
The semantic segmentation map used here in place of the image observations
addresses the visual gap between the environments, but the physics gap is still
unaddressed. Measurements found the turning radius when turning maximally
to be 4.4 meters in Unity and 6.4 meters in Carla. Informal attempts to close
this gap by decreasing the turning radius in Carla were unsuccessful in improving
performance, so the results presented here are with the original 6.4-meter turning
radius. The visual observations were also a bit different since the style of road
lines was different, and Carla also has road lines in the edges of the road instead
of just the center. This is likely the cause of confusion at 31:40 where the car
drives off the road but keeps the outer road lines to its left as if they were the
center road lines. Another difference is that the Carla environment has some
turns that are sharper than what was encountered during training. The video
shows the agent failing a sharp turn at 31:20 which might be because it hasn’t
encountered such a sharp turn during training. Another difference that might
cause trouble is the fact that Carla has inclines while the Unity environment only
generated perfectly flat roads.

The performance decrease in Carla as training goes on is likely the result of

https://youtu.be/aqDVVh0rHzQ?t=1900
https://youtu.be/aqDVVh0rHzQ?t=1880

4.3. EXPERIMENT 3: UNITY TO CARLA POLICY TRANSFER 91

overfitting which was also seen in experiment 2 when mirror world performance
decreased towards the end of the training.

92 CHAPTER 4. EXPERIMENTS AND RESULTS

Chapter 5

Discussion

In this section, the findings from the three experiments are compiled together and
discussed. The discussion starts with an overall discussion about the experiments’
results. Next, the research questions are listed, with a discussion centered around
each question. The experiment results are then compared to findings from related
work. Finally, a reflection is done to identify things that could have been done
better in this thesis.

5.1 Discussion

Setting up a simple Reinforcement Learning environment in Unity: ML-Agents
was relatively easy and quick to do. Using the built-in trainer made testing
different observation setups easy as the trainer automatically creates the neural
network architecture based on the attached sensors. This also provided a useful
baseline result to compare our custom implementation against.

Experimenting with different implementation details such as the neural net-
work architecture, code level optimizations, and hyperparameters was important
as it had a huge impact on policy performance as discussed in earlier literature
such as Andrychowicz et al. [2020]. It is therefore important to be able to test
different architectures rapidly. The use of a simple and computationally cheap
environment that still stayed somewhat faithful to the target environment, al-
lowed more iterations of design decisions and hyperparameters to be made. This
let us make more informed decisions about these choices when deploying the
model in the Carla environment. While a few changes were required to get good
performance in Carla, we believe the lessons learned from the Unity experiments
made the process easier.

In our results, none of the final policy checkpoints had the best performance,

93

94 CHAPTER 5. DISCUSSION

and the performance sometimes dropped significantly during the training process.
This seemed to happen more often in the Unity environment. The performance
drops have a simple explanation: the agent takes on more risk in an attempt to
get a higher reward. Increasing the speed of the car means it can collect more
reward, but it becomes harder to steer the car and stay on the road. An example
of a scenario that can cause a destructive policy update is if the replay buffer only
contains successful episodes at the time of the update. The agent will then see
that every time it sampled a higher throttle than usual, it received more reward
than expected (advantage was positive). The policy is then updated to output a
higher throttle which then results in the car driving too fast and ends up driving
off the road.

This instability justifies our decision to save policy checkpoints for evaluation
often. Evaluating all the policy checkpoints used more computational resources
than the actual training of the policy in some cases, but it allowed us to gain
a deeper understanding of the training process and to select the best policies.
This method of selecting policies was even more important in cases where the
target environment was different from the training environment. This could be
seen when evaluating in mirror world in experiment 2 and in Carla in experiment
3. In both cases, the best-performing policy checkpoint was from the first half
of the training process after which the policy started to overfit to the training
environment.

The Carla experiment demonstrates that modeling in a simpler environment
is beneficial. Training models in Carla is very time-consuming, but fewer training
attempts are required since the same setup used in the Unity environment can
be used in Carla with relatively few changes.

5.1.1 Evaluating the Research Questions

Research question 1 How does using a pre-trained Variational Autoencoder
to encode visual features influence both the training process and the resulting
policy?

Using a pre-trained Variational Autoencoder leads to better policy performance
in every tested scenario. Using a VAE seemed to increase sample efficiency,
especially in implementation A, and it was essential in enabling the learning of
a meaningful driving policy at all in Carla. The Carla mirror world experiment
showed that the VAE works on unseen images from the mirror world and the
agent can still drive well. The video also showed the agent driving through
cornfields which the VAE encoded as forest. Encoding images using a Variational
Autoencoder also prevented the unrecoverable policy collapse phenomenon that
was observed in every experiment where the visual encoder was trained from

5.1. DISCUSSION 95

scratch. The policy collapse might be because the non-VAE networks need to
backpropagate the gradient through more layers. A higher number of layers can
be problematic because no measures were taken to combat vanishing/exploding
gradients. The VAE combats vanishing/exploding gradients by using a batch
normalization layer after each convolutional layer.

In the Unity environment using a VAE leads to more uncomfortable policies
through more noisy actions, although it might be possible to counteract this by
penalizing jerk in the reward function as done in Zhu et al. [2020].

Research question 2 How can a low fidelity simulator be used to accelerate
the process of building and deploying a reinforcement learning based autonomous
vehicle in a more realistic environment?

Modeling in a low fidelity simulator allowed us to more quickly build and tune
a reinforcement learning based autonomous vehicle agent. The system was then
deployed in the high fidelity simulator Carla with some minor modifications to
the system. Testing an architecture in Unity allowed us to see if a model would
perform well in a couple of hours tops. Testing for the same number of steps in
Carla would take at least six times as long using our setup.

Research question 3 To what extent can a driving policy learned in a low
fidelity environment be deployed and drive successfully in an unseen high fidelity
environment?

Our policy transfer experiments showed that a driving policy learned in a low
fidelity environment could be transferred to a higher fidelity environment. We
are happy with an episode success rate of 60 % considering there is still a slight
visual difference in the segmentation maps and a significant physics difference
between the environments. We believe the success rate can be further increased
by improving the Unity environment by adding inclines and outer road markings
to close the visual gap further.

Achieving such results despite the significant physics gap, including a signif-
icant difference in turning radius and tire traction at higher speeds, make us
optimistic about the potential of policy transfer. The difference in turning ra-
dius/steering strength doesn’t seem to matter that much. We believe that any
under- or oversteering will just be corrected at later timesteps keeping the car in
the lane. This might however cause a more erratic steering behavior. It would
be interesting to investigate how tolerant driving policies are to steering signal
strength. An interesting experiment for future work could be to add a steer-
ing strength multiplier to the environment and analyze how different steering
strength multipliers affect the driving behavior.

96 CHAPTER 5. DISCUSSION

5.1.2 Comparison to Related Work

Our findings are consistent with the findings of Kendall et al. [2018] that Vari-
ational Autoencoders significantly improve the training process. We find this
to have a much bigger impact on Carla compared to Unity due to its higher
graphical fidelity. It makes sense that a more varied distribution of images is
harder to learn, which explained why VAEs are more important when dealing
with photorealistic graphics.

The policy transfer experiment leveraging semantic segmentation maps uses
a similar approach as Mûller et al. [2018]. We demonstrated that this approach
also works for sim-to-sim policy transfer. The authors used semantic segmen-
tation maps predicted by a CNN in both the simulator and in the real world.
They did this despite ground truth segmentation maps being available in the
simulator. The reason behind this was to show imperfect segmentation maps
during training as this made it robust to noise in the real world. We used ground
truth segmentation maps in our experiments since we had access to them in both
simulators.

5.1.3 Reflection

A disproportionate amount of time was spent testing models in the Unity lane
environment. This meant less time was available to run experiments in Carla.
Ideally more time should have been spent running Carla experiments in order to
have more than one successful training run. Obtaining a successful policy with a
visual encoder trained from scratch would provide more insight into how a Vari-
ational Autoencoder influences the learned policy. Then we could compare the
generalization ability measured by mirror world performance with and without a
VAE.

Chapter 6

Conclusion and Future
Work

6.1 Conclusion

We have demonstrated a Deep Reinforcement Learning approach to driving au-
tonomous cars using only 80x60 images, speed and previous action features as
inputs to a neural network. Our results show that using a simple simulator is
helpful in designing and prototyping reinforcement learning based autonomous
vehicle systems. These design choices can then be reused when creating an au-
tonomous vehicle system in the more complex simulator. We show that a sim-
ple simulator can even be used as a training environment for sim-to-sim policy
transfer. While also highlighting potential downsides, we confirm findings from
previous work that Variational Autoencoders speed up the training process.

Using Deep Reinforcement Learning to create autonomous vehicles in an end-
to-end manner is an exciting field of research that we believe is still in its infancy.
The recent release of photorealistic driving simulators has stimulated autonomous
driving research. Even more photorealistic simulators such as Nvidia DRIVE,
which uses real-time raytracing to create highly photorealistic visuals, are likely
to be released soon. This means that while safely deploying fully autonomous
(level 5) vehicles that can drive anywhere in the real world is still quite far
from reality, the development of these systems is becoming easier every year as
technology advances and more tools are developed.

97

98 CHAPTER 6. CONCLUSION AND FUTURE WORK

6.2 Future Work

6.2.1 Policy transfer with RL-CycleGAN

We used semantic segmentation maps to close the visual gap between the two
simulators. When working with simulators, one has the privilege of having access
to perfect ground truth semantic segmentation maps. This is not the case in real
life. CNN-based approaches are used to generate these semantic segmentation
maps from RGB images, but they are not perfect and relying on them introduces
an additional possible point of failure. Another way to close the visual gap is to
use RL-CycleGAN which converts visual images from one domain to another in
an RL-aware manner [Rao et al., 2020]. The paper demonstrates the method on
robotics grasping tasks, so it would be interesting to see if the same method could
work in an autonomous vehicle setting. The method could be tested between the
two simulators and compared against the semantic segmentation approach. If
the results are promising the next step would to launch a model trained in a
simulator with RL-CycleGAN in the real world.

6.2.2 Variational Autoencoder’s effects on generalization

We were unable to train a well-performing model in Carla without using a Varia-
tional Autoencoder. This means we couldn’t compare how using a VAE affected
generalization ability to the mirror world. Since it was observed that VAE recon-
structions were worse in the mirror world environment, it would be interesting to
investigate whether using a VAE to encode visual observations can lead to worse
generalization ability due to for instance the VAE overfitting to images from the
training environment.

Bibliography

Almahairi, A., Rajeswar, S., Sordoni, A., Bachman, P., and Courville, A. (2018).
Augmented cyclegan: Learning many-to-many mappings from unpaired data.

Andrychowicz, M., Raichuk, A., Stańczyk, P., Orsini, M., Girgin, S., Marinier, R.,
Hussenot, L., Geist, M., Pietquin, O., Michalski, M., Gelly, S., and Bachem,
O. (2020). What matters in on-policy reinforcement learning? a large-scale
empirical study.

Cobbe, K., Christopher, Hilton, J., and Schulman, J. (2019). Leveraging proce-
dural generation to benchmark reinforcement learning.

Cobbe, K., Hilton, J., Klimov, O., and Schulman, J. (2020). Phasic policy gra-
dient.

Codevilla, F., Santana, E., López, A. M., and Gaidon, A. (2019). Exploring the
limitations of behavior cloning for autonomous driving.

de Haan, P., Jayaraman, D., and Levine, S. (2019). Causal confusion in imitation
learning.

Dosovitskiy, A., Ros, G., Codevilla, F., Lopez, A., and Koltun, V. (2017). Carla:
An open urban driving simulator.

Engstrom, L., Ilyas, A., Santurkar, S., Tsipras, D., Janoos, F., Rudolph, L., and
Madry, A. (2020). Implementation matters in deep rl: A case study on ppo
and trpo. In International Conference on Learning Representations.

Kendall, A., Hawke, J., Janz, D., Mazur, P., Reda, D., Allen, J.-M., Lam, V.-D.,
Bewley, A., and Shah, A. (2018). Learning to drive in a day.

Kingma, D. P. and Welling, M. (2013). Auto-encoding variational bayes.

Liang, X., Wang, T., Yang, L., and Xing, E. (2018). Cirl: Controllable imitative
reinforcement learning for vision-based self-driving.

99

100 BIBLIOGRAPHY

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G.,
Graves, A., Riedmiller, M., Fidjeland, A. K., Ostrovski, G., Petersen, S., Beat-
tie, C., Sadik, A., Antonoglou, I., King, H., Kumaran, D., Wierstra, D., Legg,
S., and Hassabis, D. (2015). Human level control through deep reinforcement
learning. Nature, 518:529–533.

Mohanty, S., Poonganam, J., Gaidon, A., Kolobov, A., Wulfe, B., Chakraborty,
D., Šemetulskis, G., Schapke, J., Kubilius, J., Pašukonis, J., Klimas, L.,
Hausknecht, M., MacAlpine, P., Tran, Q. N., Tumiel, T., Tang, X., Chen,
X., Hesse, C., Hilton, J., Guss, W. H., Genc, S., Schulman, J., and Cobbe,
K. (2021). Measuring sample efficiency and generalization in reinforcement
learning benchmarks: Neurips 2020 procgen benchmark.

Mûller, M., Dosovitskiy, A., Ghanem, B., and Koltun, V. (2018). Driving policy
transfer via modularity and abstraction.

Rao, K., Harris, C., Irpan, A., Levine, S., Ibarz, J., and Khansari, M. (2020).
Rl-cyclegan: Reinforcement learning aware simulation-to-real.

Rong, G., Shin, B. H., Tabatabaee, H., Lu, Q., Lemke, S., Možeiko, M., Boise,
E., Uhm, G., Gerow, M., Mehta, S., Agafonov, E., Kim, T. H., Sterner, E.,
Ushiroda, K., Reyes, M., Zelenkovsky, D., and Kim, S. (2020). Lgsvl simulator:
A high fidelity simulator for autonomous driving.

SAE (2021). Taxonomy and definitions for terms related to driving automation
systems for on-road motor vehicles. SAE International.

Schrittwieser, J., Antonoglou, I., Hubert, T., Simonyan, K., Sifre, L., Schmitt,
S., Guez, A., Lockhart, E., Hassabis, D., Graepel, T., Lillicrap, T., and Silver,
D. (2019). Mastering atari, go, chess and shogi by planning with a learned
model.

Schulman, J., Levine, S., Mortiz, P., Jordan, M., and Abbeel, P. (2015a). Trust
region policy optimization.

Schulman, J., Moritz, P., Levine, S., Jordan, M., and Abbeel, P. (2015b). High-
dimensional continuous control using generalized advantage estimation.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and Klimov, O. (2017).
Proximal policy optimization algorithms.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., van den Driessche, G.,
Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., Dieleman,
S., Grewe, D., Nham, J., Kalchbrenner, N., Sutskever, I., Lillicrap, T., Leach,
M., Kavukcuoglu, K., Graepel, T., and Hassabis, D. (2016). Mastering the
game of go with deep neural networks and tree search. Nature, 529:484–489.

BIBLIOGRAPHY 101

Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., Lanc-
tot, M., Sifre, L., Kumaran, D., Graepel, T., Lillicrap, T., Simonyan, K., and
Hassabis, D. (2017). Mastering chess and shogi by self-play with a general
reinforcement learning algorithm.

Själander, M., Jahre, M., Tufte, G., and Reissmann, N. (2019). EPIC: An energy-
efficient, high-performance GPGPU computing research infrastructure.

SSB (2021). Trafikkulykker med personskade. Statistisk Sentralbyr̊a.

WHO (2020). Road traffic injuries. World Health Organization.

Williams, R. J. (1992). Simple statistical gradient-following algorithms for con-
nectionist reinforcement learning.

Wymann, B., Dimitrakakis, C., Sumner, A., Espié, E., and Guionneau, C. (2015).
Torcs: The open racing car simulator.

Ye, C., Ma, H., Zhang, X., Zhang, K., and You, S. (2017). Survival-oriented rein-
forcement learning model: An effcient and robust deep reinforcement learning
algorithm for autonomous driving problem. pages 417–429.

Zhu, M., Wang, Y., Pu, Z., Hu, J., Wang, X., and Ke, R. (2020). Safe, ef-
ficient, and comfortable velocity control based on reinforcement learning for
autonomous driving. Transportation Research Part C: Emerging Technologies,
117:102662.

102 BIBLIOGRAPHY

Appendices

Appendix A

This appendix shows the result of a couple of training runs in the Unity lane
following environment that weren’t included in the main part of the thesis. Both
training runs use implementation A with a visual encoder trained from scratch.

Figure 6.1 shows a training run where the resolution of the visual observation is
increased from 80x60 to 120x90. There is no significant improvement in perfor-
mance, and the increased resolution caused significantly slower training due to
the higher computational cost of processing higher resolution images.

Figure 6.2 shows the results of training with a buffer size of 64 000 instead of
32 000. The performance is significantly higher, but subsequent training runs
attempting to reproduce these results failed. This suggests that the results were
from a lucky run and we therefore continued to use a buffer size of 32 000 for the
remainder of the thesis.

103

104 APPENDICES

Figure 6.1: Evaluation of implementation A with a visual encoder trained from
scratch comparing the results when increasing the image observation resolution
to 120x90.

105

Figure 6.2: A run of implementation A using a visual encoder trained from
scratch. A buffer size of 64 000 is used instead of 32 000. These results are from
a lucky run that we were unable to reproduce. The best mean distance of 7261
meters happened at timestep 15.2 million with an episode success rate of 80 %.

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

Isak G
rande Bjørnstad

D
eep Reinforcem

ent Learning for Autonom
ous Vehicles in Sim

ulated Environm
ents

Isak Grande Bjørnstad

Deep Reinforcement Learning for
Autonomous Vehicles in Simulated
Environments

Master’s thesis in Computer Science
Supervisor: Frank Lindseth

June 2021M
as

te
r’s

 th
es

is

	Introduction
	Motivation and Problem Description
	Goals and Research Questions
	Contributions
	Thesis Structure

	Background and Related Work
	Reinforcement Learning
	Markov Decision Process
	Deep Reinforcement Learning

	Simulated Environments
	TORCS
	Nvidia ISAAC
	LGSVL
	CARLA
	Unity: ML-Agents

	Autonomous Cars
	Introduction to Autonomous Cars
	Sensors used in autonomous vehicles
	Modular vs. end-to-end approach
	End-to-end Learning for autonomous vehicles
	Deep Reinforcement Learning for Autonomous Vehicles

	Related Work
	Implementation Matters in Deep RL: A Case Study on PPO and TRPO
	What Matters In On-Policy Reinforcement Learning? A Large-Scale Empirical Study
	Survival-Oriented Reinforcement Learning Model: An Efficient and Robust Deep Reinforcement Learning Algorithm for Autonomous Driving Problem
	Learning to Drive in a Day
	Driving Policy Transfer via Modularity and Abstraction
	RL-CycleGAN: Reinforcement Learning Aware Simulation-To-Real
	CIRL: Controllable Imitative Reinforcement Learning for Vision-based Self-driving

	Methodology
	Implementation details
	Neural network architecture
	Visual encoders
	Variational Autoencoder
	Proximal Policy Optimization

	Lane following in a Unity environment
	Procedurally generated roads
	Creating a car in Unity
	Integration with ML-Agents

	Lane following in Carla
	Reinforcement Learning setup

	Transferring policy learned in Unity to Carla
	Segmentation map in Unity
	Segmentation map in Carla
	A stricter Unity environment

	Experiments and Results
	Experiment 1: Lane following in Unity
	Setup
	Results
	Discussion

	Experiment 2: Lane following in Carla
	Setup
	Results
	Discussion

	Experiment 3: Unity to Carla policy transfer
	Setup
	Results
	Discussion

	Discussion
	Discussion
	Evaluating the Research Questions
	Comparison to Related Work
	Reflection

	Conclusion and Future Work
	Conclusion
	Future Work
	Policy transfer with RL-CycleGAN
	Variational Autoencoder's effects on generalization

	Bibliography
	Appendices

