
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

Axel Ø. Harstad & William E. G. Kvaale

Spatio-Temporal Graph Attention
Network for Anomaly Detection
in the Telco Domain

Master’s thesis in Computer Science
Supervisor: Massimiliano Ruocco
Co-supervisor: Sara Malacarne & Claudio Gallicchio

June 2021

M
as

te
r’s

 th
es

is

Axel Ø. Harstad & William E. G. Kvaale

Spatio-Temporal Graph Attention
Network for Anomaly Detection
in the Telco Domain

Master’s thesis in Computer Science
Supervisor: Massimiliano Ruocco
Co-supervisor: Sara Malacarne & Claudio Gallicchio
June 2021

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science

1

Abstract

In the following pages lies our master’s thesis on how the recent advances in deep
learning architectures, namely graph neural networks, can perform unsupervised
anomaly detection in the Telecommunications (telco) domain. This work is moti-
vated by the need for efficient and accurate anomaly detection in the telco domain,
where Key Performance Indicators (KPIs) of base stations are continuously being
monitored. Furthermore, network infrastructures are constantly being upgraded,
5G is on its way, and there is an exponential increase of devices and antennas.
Thus, it is impractical to achieve robust and dependable anomaly detection re-
sults without relying on data-driven models to automate this task. Also, the
numerous KPIs constitute multivariate time-series with complex patterns and
dependencies that the anomaly detection system should learn to leverage.

In order to address this, we build a complete framework for unsupervised anomaly
detection, where we investigate the use of Graph Attention Network (GAT) [43],
in combination with a forecasting-based and a reconstruction-based model, in
addition to a non-parametric thresholding method. Firstly, we verify our frame-
work on three commonly-used benchmark datasets within anomaly detection.
Secondly, we conduct extensive studies where we 1) analyze GAT’s potential for
capturing and exploiting the complex relationships of multivariate time-series in
both spatial and temporal dimensions, 2) investigate the impact of combining a
forecasting-based and a reconstruction-based model, and 3) verify the effective-
ness of the non-parametric thresholding method. Lastly, we employ and evaluate
our framework on real-world telco data provided by Telenor.

2

Sammendrag

P̊a de neste sidene er masteroppgaven v̊ar om hvordan de nylige fremskrittene
i dyplæringsarkitekturer, nemlig grafnevrale nettverk, kan utføre feildeteksjon
uten tilsyn, i telekommunikasjonsdomenet (telco). Dette arbeidet er motivert av
behovet for effektiv og nøyaktig deteksjon av avvik i telco-domenet, hvor viktige
ytelsesindikatorer (KPI-er) for basestasjoner kontinuerlig overv̊akes. Nettverksin-
frastruktur oppgraderes fortløpende, 5G er p̊a vei, og det er en eksponentiell
økning av enheter og antenner. Dermed er det svært utfordrende å oppn̊a robust
og p̊alitelig anomalideteksjon uten å benytte seg av datadrevne modeller for å
automatisere denne oppgaven. Dessuten utgjør de mange KPI-ene multivariate
tidsserier med komplekse korrelasjoner og avhengigheter som feildeteksjonssys-
temet bør lære å dra nytte av.

For å adressere dette bygger vi et komplett rammeverk for feildeteksjon uten
tilsyn, der vi undersøker bruken av grafoppmerksomhetsnettverk (GAT) [43], i
kombinasjon med en prognosebasert og en rekonstruksjonsbasert modell, i tillegg
til en ikke-parametrisk terskelmetode. For det første verifiserer vi rammever-
ket v̊art p̊a tre anerkjente referansedatasett innen feildeteksjon. For det andre
gjennomfører vi omfattende studier der vi 1) analyserer GAT sitt potensial for å
oppfatte og utnytte komplekse korrelasjoner i multivariate tidsserier i b̊ade rom-
og tidsdimensjoner, 2) undersøker effekten av å kombinere en prognosebasert
og en rekonstruksjonsbasert modell, og 3) verifiserer effektiviteten av den ikke-
parametriske terskelmetoden. Til slutt benytter og evaluerer vi rammeverket v̊art
p̊a virkelig data levert av Telenor.

3

Preface

This master thesis is part of an MSc. in computer science at the Norwegian
University of Science and Technology and is written in collaboration with the
Norwegian Open AI Lab and Telenor. We would like to thank our supervisor
Massimiliano Ruocco for his exceptional support and discussions throughout this
project. Furthermore, we would like to extend our gratitude towards our co-
supervisors, Sara Malacarne and Claudio Gallicchio, for sharing their expertise
in the field of telecommunications, multivariate time-series analysis and graph
neural networks.

Axel Ø. Harstad & William E. G. Kvaale

Trondheim, June 14, 2021

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Goals and Research Questions . 3
1.3 Contributions . 4
1.4 Project Structure . 4

2 Background and Theory 5
2.1 Anomaly Detection . 5
2.2 Deep Learning . 6

2.2.1 Activation Functions . 6
2.3 Recurrent Neural Networks . 7

2.3.1 Backpropagation Through Time (BPTT) 9
2.3.2 Vanishing and Exploding Gradients 10
2.3.3 Long Short-Term Memory (LSTM) 10
2.3.4 Gated Recurrent Unit (GRU) 11

2.4 Graph Neural Networks . 13
2.4.1 Motivation . 13
2.4.2 Definitions . 13
2.4.3 Message Passing . 14

k-hop Neighbourhood . 14
2.4.4 The Basic GNN . 15
2.4.5 Message Passing with Self-loops 15
2.4.6 Neighbourhood Normalization 16
2.4.7 Graph Convolutional Networks (GCN) 16

Graph Convolution using the Adjacency Matrix 18

5

Contents 6

2.4.8 Graph Attention Networks (GAT) 18

3 State Of The Art 21
3.1 Forecasting-based Models . 21
3.2 Reconstruction-based Models . 22
3.3 Combination-based Models . 23

4 Methodology 25
4.1 Problem Formulation . 25
4.2 Framework Overview . 26
4.3 DNN Model . 26

4.3.1 1-D Temporal Convolution 27
4.3.2 Feature-oriented Graph Attention Layer 27
4.3.3 Time-oriented Graph Attention Layer 29
4.3.4 GRU for Long-Term Temporal Dependencies 29
4.3.5 Forecasting Model . 31
4.3.6 Reconstruction Model . 31
4.3.7 Joint Optimization & Anomaly Score 31

4.4 Threshold Selection Model . 32
4.4.1 Non-Parametric Thresholding 33

5 Experimental Setup 35
5.1 Datasets . 35

5.1.1 MSL, SMAP & SMD . 35
5.1.2 Telenor Dataset . 37

Overview . 37
Feature Engineering . 39

5.1.3 Feature-wise Normalization 40
5.2 Experimental Plan . 41

5.2.1 Experiments on the Benchmark Datasets 41
Ablation Study . 42
Evaluating the Threshold Selection Model 42

5.2.2 Experiments on the Telenor Dataset 43
Main Experiments . 43
Transfer Learning . 43
Site-based versus Sector-based 44
GATv2: Dynamic Attention 44

5.3 Evaluation Details . 45

6 Results and Discussion 47
6.1 Results on Benchmark Datasets . 47

6.1.1 Comparison with SOTA . 47

7 Contents

6.1.2 Ablation Study . 48
The impact of the feature-oriented GAT layer 48
The impact of the time-oriented GAT layer 49
The impact of the Forecasting Model 50
The impact of the Reconstruction Model 50
Conclusion of the Ablation Study 50

6.1.3 Evaluation of the Threshold Selection Model 51
6.2 Results on the Telenor Dataset . 52

6.2.1 Main Experiments results 52
Sudden spikes . 52
Anomalies in Complex Temporal Patterns 53
Feature-wise Contextual Anomalies 55
Failure Cases . 56

6.2.2 Visualization of the Attention Matrices 56
Temporal Attention . 56
Feature-wise Attention . 58

6.2.3 Transfer Learning results 61
6.2.4 Site-based versus Sector-based results 63

7 Conclusion 65
7.1 Summary . 65

7.1.1 The first aim of the study 67
7.1.2 The second aim of the study 67

7.2 Future Work . 68

A Figures, Tables and Listings 77

List of Figures

2.1 Visualization of a rolled and unrolled RNN. 8
2.2 Illustration of difference between Feed Forward ANNs and RNNs. . 9
2.3 Illustration of an LSTM cell. 10
2.4 Illustration of a cell. 12
2.5 Illustration of message passing. The model aggregates messages

from B’s neighbours (A, C, and D). Simultaneously, A, C and D are
updated based on the aggregation of their neighbours, respectively.
At the next iteration, the messages aggregated from B’s neighbours
are followingly based on information aggregated from A, C, and
D’s neighbourhoods. This way, the receptive field of each node’s
embedding grows with the number of iterations. 15

2.6 2D Convolution vs. Graph Convolution (figure adapted from [46]) 17
2.7 Simplified Graph convolution using matrix multiplications 18
2.8 Left: The attention mechanism a(W~hi,W~hj) computes atten-

tion weights αij for all neighbours of vi (figure adapted from
[43]). Right: The embeddings are aggregated using the atten-

tion weights in order to obtain the updated embedding ~h′1. 20

4.1 Overall architecture of our framework for multivariate time-series
anomaly detection. 26

4.2 The architecture of the Deep Neural Network (DNN) model in our
framework. Figure partially adapted from [48]. 27

4.3 Illustration of how the feature-oriented GAT layer creates a graph
where each node represents one feature across n timestamps, and
how the attention mechanism is used to compute the output ~hfeat

for a specific node. 30

9

List of Figures 10

4.4 Illustration of how the time-oriented GAT layer creates a graph
where each node represents one timestamp across k features, and
how the attention mechanism is used to compute the output ~htime

for a specific node. 30

4.5 Example output of the Threshold Selection Model. On four occa-
sions does the anomaly score exceed the threshold and anomalies
predicted. 34

5.1 Example data from the MSL and SMAP datasets, where each
telemetry value has corresponding one-hot encoded command in-
formation. Illustration adapted from [17]. 36

5.2 Illustration of the different parts in a telecommunication system. . 37

5.3 A site contains 3 sectors, each of which can have multiple cells.
The coverage layer (cells of lower frequencies) cover larger areas
but have lower quality signal, while the capacity layer (cells of
higher frequencies) have a higher quality signal but smaller range. 38

5.4 Illustration of how the values of each sector is concatenated
column-wise. 40

5.5 Illustration of the evaluation strategy. For 10 contiguous points
in a time-series, we have three rows; first row defines the ground
truth, the second is the point-wise anomaly predictions, and the
last row indicates the adjusted predictions according to the evalu-
ation strategy. 46

6.1 unavail unplan nom. 53

6.2 Illustrating the complex but clear temporal patterns present in
mcdr denom for a particular sector. 54

6.3 Examples of features for which our model accurately learns com-
plex temporal patterns. 55

6.4 Example of a feature-wise contextual anomaly, where anomalies
are aligned across multiple features. Individually they are not con-
sidered an anomaly, but together they represent anomalous behavior. 57

11 List of Figures

6.5 Top: Illustration of attention weights for the last timestamp of
the attention matrix from the time-oriented GAT layer, when the
model is fed with a 1-week input window (168 hours). Lighter
color denotes higher attention weight. For each of the 168 input
timestamps, there is a corresponding attention weight, which rep-
resent how much attendance should be given by the last timestamp
to a particular other timestamp. The rightmost attention weights
correspond to the most recent timestamps, while the leftmost cor-
respond to the least recent. Bottom: The values of mcdr denom
in the same input window. The last timestamp of the input window
corresponds to a Thursday at noon. We see that the time-oriented
GAT layer attends the most recent timestamps, in addition to
timestamps of previous weekdays at the same time of the day, but
also that it has learned not to emphasize weekends, as weekends
do not share the daily patterns of weekdays. 58

6.6 Comparison of the attention matrix from the feature-oriented GAT
layer, between original GAT and GATv2. Each row represents how
much attendance is given by the source-feature corresponding to
the row, to every other feature (including itself). With original
GAT, the ordering of the attention attention weights is global,
unconditioned on the source-feature. GATv2 does not have this
restriction, yielding more expressive attention weights. 60

6.7 Illustration of attention weights for unavail unplan nom 3 (repre-
senting the minutes of which sector three is down (unavailable) for
a particular site), extracted from the feature-oriented GAT layer
when it was fed with a particular input window. Lighter colors
indicate higher attention weights. 60

6.8 ho denom. Comparison of transfer learning versus a conventional
site-based trained model. 62

6.9 mcdr denom. Comparison of a site-based model trained on all
three sectors and a sector-based model. 63

6.10 mcdr denom. Comparison of a site-based model trained on all
three sectors and a sector-based model. 64

A.1 Sector-wise comparison between a site-based and sector-based
model. The row number indicates sector number. Left: Site-
based model results. Right: Sector-based model results. Green is
ground truth, blue is reconstruction and orange is forecasting. . . . 77

A.2 Examples of sudden spikes that our framework detects as anomalies. 78

A.3 A failure case for our framework where the second spike in the test
set is not marked as an anomaly. 79

List of Figures 12

A.4 Comparison of the attention matrix from the feature-oriented GAT
layer, between original GAT and GATv2. 80

A.5 Example of a feature-wise contextual anomaly, where anomalies
are aligned across multiple features. Individually they are not con-
sidered an anomaly, but together they represent anomalous behavior. 81

A.6 Another example of feature-wise contextual anomalies detected by
our framework. 82

List of Tables

4.1 Notations . 28

5.1 Benchmark Datasets Information. 36
5.2 Description of the features in the Telenor dataset. 39
5.3 Training configuration for the benchmark datasets. 42

6.1 Performance of our framework on the benchmark datasets, com-
pared to SOTA methods. 48

6.2 Results on the benchmark datasets, with standard deviations in-
cluded. 49

6.3 Ablation study results showing F1 score ± stdev. 49
6.4 Comparison of Threshold Selection Model versus Brute-Force

Threshold Search. F1 score ± stdev showed. 51

13

Acronyms

ANN Artificial Neural Network. 6, 8, 9, 10

BPTT Backpropagation Through Time. 9, 10

DNN Deep Neural Network. 9, 26, 27, 32, 33

GAT Graph Attention Network. 2, 18, 19, 22, 23, 42

GCN Graph Convolutional Network. 16, 17, 19

GNN Graph Neural Network. 2, 13, 14, 15, 16, 18

GRU Gated Recurrent Unit. 2, 11, 12

KPI Key Performance Indicator. 1, 2, 4, 35, 38

LSTM Long Short-Term Memory. 2, 10, 11, 12

MSL Mars Science Laboratory Dataset. 35, 36, 41, 42, 45, 47, 48, 49, 50, 51,
65, 67

MTAD Multivariate Time-series Anomaly Detection. 2, 4

RNN Recurrent Neural Network. 7, 8, 9, 10, 11

15

Acronyms 16

SMAP Soil Moisture Active Passive Dataset. 35, 36, 41, 42, 45, 47, 48, 49, 50,
51, 65, 67

SMD Server Machine Dataset. 35, 36, 41, 42, 45, 47, 48, 49, 50, 51, 65, 67

STGAT Spatio-Temporal Graph Attention Network. 3, 65

STGNN Spatio-Temporal Graph Neural Network. 2

TDBU Telenor Denmark Business Unit. 4, 37, 41, 43, 45, 47, 51, 52, 58, 61, 66,
67

telco Telecommunications. 1, 3, 4, 35, 43, 61, 65

Chapter 1
Introduction

In this introductory chapter, we start by explain the motivation for this thesis
in section 1.1, and define our goals and research questions in section 1.2. In sec-
tion 1.3 we outline the main contributions of this thesis, and section 1.4 describes
the structure of the thesis.

1.1 Motivation

In the domain of Telecommunications (telco), Key Performance Indicators (KPIs)
of base stations are continuously recorded, measuring quantities such as the num-
ber of voice-related attempts, the number of data-related failures, and the number
of distinct users that receives error messages. In other words, the KPIs reflect
the health status of the system. Any failure could potentially impact an immense
amount of users, making efficient and accurate anomaly detection vital to alert
for potential incidents in time. Throughout this thesis, we denote KPIs, counters,
and features interchangeably.

Time-series anomaly detection has been an important research topic for decades,
and has a wide range of applications in industry [48]. Univariate time-series
anomaly detection methods consider individual streams of values (e.g. a single
KPI), and can be used to detect anomalies for a single metric. However, moni-
toring each KPI separately is generally not sufficient to determine if the system
as a whole is running normally. The numerous KPIs constitute a multivariate
time-series, where the KPIs are expected to correlate, both in space and time.

1

Chapter 1. Introduction 2

Consequently, it is essential to take the correlations between different KPIs into
consideration in a multivariate time-series anomaly detection system.

Due to the inherent lack of labeled anomalies in historical data, and the diverse
nature of anomalies, it is unpractical for domain experts to manually label in-
stances as anomalous or non-anomalous. Thus, anomaly detection is typically
treated as an unsupervised learning problem, where the model must learn to de-
tect anomalies without the help of labeled examples. Until present, there has been
significant progress in the study of Multivariate Time-series Anomaly Detection
(MTAD). Several classical methods have been developed, such as linear-based
models [38], distance-based models [2], and density-based model [4]. However,
such techniques model relationship between features in relatively simple ways, e.g.
only capturing linear relationship, which is insufficient for the complex, nonlinear
characteristics that often are present in real-world data.

More recently, deep learning-based approaches have showed vast improvements
in anomaly detection. For instance, reconstruction-based approaches [26], [29],
[40], [23] which uses the reconstruction error to assess the anomaly likelihood,
and forecasting-based approaches (e.g. via Long Short-Term Memory Networks
(LSTMs) or Gated Recurrent Unit Networks (GRUs)) [7], [25], [50], [17], [15]
which uses the prediction error, have showed promising performance for multi-
variate anomaly detection.

Parallel to the progress of MTAD methods, the use of Graph Neural Net-
works (GNNs) has proven to be a highly successful way for dealing with graph-
structured data. A Spatio-Temporal Graph Neural Network (STGNN) is a sub-
group of GNNs that works on graphs where the node features changes dynamically
over time, and thus aims to learn spatial dependency and temporal dependency
at the same time. For example, a traffic network consisting of speed sensors
placed along roads can be represented using a graph in which the speed sensors
constitutes the nodes and the roads constitute the edges. As the traffic condi-
tion of one road may depend on its adjacent roads’ conditions, it is necessary to
consider spatial dependency when performing traffic speed forecasting [46]. As
STGNNs operate on graph data, it typically requires a pre-defined graph struc-
ture, specifying the edge connections of the graph. However, Graph Attention
Networks (GATs) [43] provides a way of modelling data as a graph without re-
quiring a graph structure. GATs generalize the attention mechanism that has
been successfully used in many sequence-based tasks such as machine translation
[3], [12], [42], and machine reading [9], and adopts it to be applied on graphs.
Recently, GATs have also been applied on time-series data [48], [15], thus consti-
tuting a form for spatio-temporal graph neural network that does not require an
underlying graph structure.

3 1.2. Goals and Research Questions

1.2 Goals and Research Questions

The broader, overall goal that we want our work to contribute towards can be
formulated as the following:

Goal Develop a complete, accurate and robust framework for unsupervised
anomaly detection in the telecommunications domain.

We are provided with real-world industry data of Key Performance Indicators
(KPIs) that monitors the behaviour of multiple base stations, collected over a one-
year period. A detailed explanation of the KPIs is given in section 5.1. Motivated
by its recent success, we aim to study whether Graph Attention Networks (GATs)
can be used to model the complex, highly non-linear relationships expected to
be present among the KPIs, with the underlying purpose of serving as a part of
a complete, accurate and robust framework for unsupervised anomaly detection.
Specifically, we formulate our main objective of this thesis through two research
questions.

Research question 1 How can Graph Attention Networks be utilized to model
the inter-feature (spatial) relationships between the KPIs?

In general, GATs are used to model the relationship between features by repre-
senting the features as nodes in a graph and their inter-dependencies as the edges.
In this way, GATs provides a way to explicitly capture the (feature-wise) correla-
tions between KPIs. However, in addition to being correlated to each other, the
different KPIs are expected to contain time-wise dependencies. As the KPIs rely
on the user traffic of the telco network, temporal information should be taken
into consideration. Thus follows our next research question:

Research question 2 Can Graph Attention Networks be used to capture and
exploit temporal dependencies of the KPIs?

As already stated, GATs are typically used to model feature-wise correlations
rather than time-wise. However, recent work by Zhao et al. [2020] show that
GAT can successfully be used for the purpose of learning temporal dependencies.
Motivated by this, we aim to study whether GATs additionally can be employed
to capture and exploit any temporal dependencies present in the KPIs.

In order to address our research questions, we ensemble a deep learning model
that combines a feature-wise (spatial) GAT layer and a time-wise (temporal)
GAT layer, together constituting a Spatio-Temporal Graph Attention Network
(STGAT).

Chapter 1. Introduction 4

1.3 Contributions

The main contributions of our work can be summarized as follows:

i We propose a PyTorch [31] implementation of a Spatio-Temporal Graph At-
tention Network for unsupervised multivariate time-series anomaly detec-
tion1. The GAT layers are strongly influenced by Microsoft’s MTAD-GAT
[48].

ii We conduct an ablation study using benchmark datasets within multivari-
ate time-series anomaly detection, demonstrating the impact of core com-
ponents in our network.

iii We perform extensive preprocessing and feature engineering of a non-public
KPI dataset of the telco domain, provided by Telenor Denmark Business
Unit (TDBU).

iv We perform comprehensive experiments on the TDBU dataset, visualizing
and discussing the results.

v We analyze the learned attention matrices of the GAT layers, in addition
to exploring a novel modification of the attention mechanisms (recently
proposed in [5]).

vi We investigate the use of transfer learning to achieve a generalized model,
capable of working on KPI data of multiple base stations.

1.4 Project Structure

The rest of this thesis is divided into six parts. In Chapter 2, we provide an
introduction to the background and theory used in this master thesis. Chapter 3
gives an overview of the State Of The Art and related work for MTAD methods.
In Chapter 4, we describe our proposed framework. The experimental setup
is outlined in Chapter 5. In Chapter 6, we present and discuss the results.
Finally, we summarize our work and give a few suggestions for future work in
Chapter 7.

1https://github.com/ML4ITS/mtad-gat-pytorch

https://github.com/ML4ITS/mtad-gat-pytorch

Chapter 2
Background and Theory

In this chapter, we present an introduction to the main theoretical background
needed in order to understand the unsupervised anomaly detection framework
proposed in this thesis.

2.1 Anomaly Detection

Anomaly detection aims to discover unexpected events or rare items in data
[32]. It has been an active research area for several decades, and being able to
accurately detect anomalies constitute a key component of many real-world appli-
cations. In most scenarios, the anomalies to be detected do not come from single
measurements, but from systems with multiple sensors, generating multivariate
time-series. Multivariate time-series anomaly detection entails challenges, as the
context of features must be taken into account.

There exist different kinds of anomalies. A point anomaly is a data point that is
anomalous w.r.t. the majority of other individual data points. A point anomaly
can be a content anomaly or a contextual anomaly. Content anomalies can be
defined as abnormal instances in data with respect to the implicit data alone [14],
e.g. an abnormal spike in data-related attempts of a base station, independent
from external reasons. Contextual anomalies are instances that are considered
anomalous when viewed in a specific context [28]. We define two subgroups of
contextual anomalies, namely feature-wise contextual anomalies and time-wise
contextual anomalies. Feature-wise contextual anomalies refer to data points that

5

Chapter 2. Background and Theory 6

are only considered anomalous when viewed in the context other features. For
instance, a sudden increase in voice-calls via a base station does not necessarily
represent a failure in the system. It must be viewed in context of the other
features, thus making it feature-wise contextual. On the other hand, time-wise
contextual anomalies refer to point anomalies that are considered anomalous only
within a certain period of time, otherwise not.

2.2 Deep Learning

Deep learning allows computational models that are composed of
multiple processing layers to learn representations of data with
multiple levels of abstraction

LeCun et al. [2015]

The reader is assumed to have a basic understanding of computer science and
machine learning concepts. In this thesis, we will concentrate on deep learning,
which is a subfield of machine learning. As the introductory citation from LeCun
et al. [2015] states, the deep part of deep learning comes from the stacking of
multiple layers, thus, making the neural networks deep. Deep learning has in
recent years been the key ingredient of improvements experienced in domains
such as visual object recognition, object detection, speech recognition and protein
folding [36].

For decades, conventional machine learning approaches were restricted in its ca-
pacity to deal with data in its raw natural form. Prior to the breakthroughs of
deep learning, conventional machine learning approaches required feature extrac-
tors designed by domain experts in order to convert the raw data into a suitable
internal representation that the machine learning system could use as input.
Deep learning methods are representational methods that enable machines to
learn directly from raw data.

2.2.1 Activation Functions

A key component of deep learning is the use of non-linear modules that trans-
form the data. An Artificial Neural Network (ANN) can obtain the ability to
represent highly complex functions by utilizing a sufficient amount of non-linear
transformations. These non-linear modules are called activation functions.

The need for non-linearity in ANNs may be attributed to the fact that very few
phenomena in this world are constrained to linearity. We need to enable the
network to approximate functions that do not follow non-linearity. If we were to

7 2.3. Recurrent Neural Networks

use a linear activation function, such as

y = ax+ b, (2.1)

we would lose the effect of stacking several layers, since stacking multiple linear
layers would be equivalent to having one single layer with linear activation.

The sigmoidal, or sigmoid, is an activation function that one can easily recognize
as non-linear, as seen in Equation 2.2. Sigmoid is a clear candidate when the
target is to classify a probability as an output. It is used extensively in binary
classification problems. One can take advantage of the Softmax function for
multiclass classification, a more generalized logistic activation function.

S(x) =
1

1 + e−x
(2.2)

The most commonly-used activation function in recent deep learning has been
the Rectified Linear Unit (ReLU), seen in Equation 2.3. ReLU delivers improved
gradient propagation, decreasing the likelihood of vanishing gradient problems
when compared to other activation functions, such as the sigmoidal. It reduces
training time, as it yields a sparse activation, due to all negative values are set
to zero. A disadvantage of ReLU is that, as it is bound to the range [0, inf], it
can blow up activations.

f(x) = max(0, x) (2.3)

The sparsity leveraged by ReLU is not only beneficial, but it is also the root of a
problem known as the dying ReLU problem. The gradient of 0 is 0; hence, neurons
receiving negative values will not recover and get stuck at 0 - and effectively die.
This phenomenon can arise if the neurons have not been initialized adequately
or the data is not properly normalized.

As a result of this problem, Maas et al. [2013] introduced Leaky ReLU. It allows
for a slight but significant leak of information for negative values. Leaky ReLU
is mathematically described as:

f(x) =

{
x if x ≥ 0

0.01x otherwise
(2.4)

2.3 Recurrent Neural Networks

The main idea behind a Recurrent Neural Network (RNN) [21] is to tackle se-
quential data. In a conventional fully-connected feed-forward neural network,

Chapter 2. Background and Theory 8

one assumes that all inputs to the model are independent. This assumption is
not applicable for sequential data, such as text or time-series data from sensors.
The temporal dynamics that connect the data are more valuable to the network
than the spatial information in each input.

RNN

O

𝑋

ℎt-n

Ԧ𝑥t-n

=

Ԧ𝑜t-n

ℎt

Ԧ𝑥t

Ԧ𝑜t

ℎt-1

Ԧ𝑥t-1

Ԧ𝑜t-1

Figure 2.1: Visualization of a rolled and unrolled RNN.

What makes an RNN recurrent is that it processes sequential data in a loop,
which allows the network to persist the state between inputs. The network’s
hidden layers will inherit the hidden state, or working memory, from the previous
iteration. An RNN can be seen as a chain of identical ANNs, sharing the same
set of weights, non-linear activation functions, and hyperparameters. This way
of conceptualizing an RNN is known as unrolled, as opposed to the rolled version
as seen on the left in Figure 2.1.

Specifically, an RNN achieves its recurrent effect by letting the hidden state
~ht ∈ Ru at timestamp t be computed using the current input ~xt ∈ Rd and the
previous hidden-state ~ht−1, where u is the number of hidden units and d is the

number of input features. Furthermore, an output ~ot ∈ Rc is computed using ~ht,
where c is the desired dimension of the output. Thus the total input is defined
as X ∈ Rn×d, all hidden states are defined as H ∈ Rn×u, and the total output
is defined as O ∈ Rn×c.

RNNs contains an additional weight matrix per layer, when compared to a feed-
forward neural network, as illustrated in Figure 2.2. This additional hidden-state-

9 2.3. Recurrent Neural Networks

Figure 2.2: Illustration of difference between Feed Forward ANNs and RNNs.

to-hidden-state matrix is defined as Whh ∈ Ru×u. The weight matrix between
the input layer and hidden layer is defined as Wxh ∈ Rd×u, and for the output
layer we define Who ∈ Ru×c. All the information in the network gets passed
through activation functions, such as tanh or sigmoid, denoted as σ.

Combining all these notations, we have that the hidden state at timestamp t is
computed as follows:

~ht = σh(~xtWxh + ~ht−1Whh), (2.5)

and the output is computed as

~ot = σo(~htWho) (2.6)

We omitted the use of bias term for the ease of notation.

2.3.1 Backpropagation Through Time (BPTT)

A fundamental component of RNN is Backpropagation Through Time (BPTT)
[44]. As conventional ANNs utilize backpropagation with Gradient Descent to
obtain the optimal weights, RNNs have an additional layer of complexity due to
their cyclic nature. We define a loss function between the network output O and
true target values Y as:

L(O,Y) =

T∑
t=1

L(~ot, ~yt) (2.7)

Chapter 2. Background and Theory 10

In simplified terms, the BPTT enables the unrolled chain of ANNs to compute the
loss and error gradients across each ANN, backward through the chain, yielding
a rolled up RNN with updated weights.

2.3.2 Vanishing and Exploding Gradients

There are two widely known issues with training regular RNNs, namely the van-
ishing and the exploding gradient problem [30]. When a RNN is trained on long
sequences, the gradients will propagated through a long path of timesteps. Van-
ishing gradients may occur when the norm of gradients is less than one, making
the gradients to exponentially decrease towards zero, as they propagate back-
wards through time. On the other hand, if the norm is greater than one, the
gradients will exponentially increase, eventually causing the gradients to eventu-
ally. These two problems make it difficult for standard RNNs to learn long-term
dependencies.

2.3.3 Long Short-Term Memory (LSTM)

X +

X

X

X +
sigmoid tanh pointwise

mulitiplication
pointwise
addition

vector
concatenation

𝐶𝑡−1 𝐶𝑡

ℎ𝑡ℎ𝑡−1

𝑥𝑡

𝑓𝑡 𝑖𝑡

𝑜𝑡

ሚ𝐶𝑡

forget gate input gate output gate

Figure 2.3: Illustration of an LSTM cell.

Since standard RNNs have limitations in retaining long-term dependencies, due
to the challenges with exploding and vanishing gradients, other variants of RNNs
have been developed. Long Short-Term Memory Networks (LSTMs) [16] alleviate
the problems with retaining past data in the working memory. Hence, LSTM is an

11 2.3. Recurrent Neural Networks

algorithm that was developed in order to mitigate the challenges with short-term
memory in RNNs. An illustration of an LSTM cell is shown in Figure 2.3.

The difference from a standard RNN is the use of gates. The gates are constructed
to optionally pass information through the network. Traditionally, an LSTM
contains three gates; input, forget and output gate.

The forget gate is responsible for choosing what information it should remove
(forget), or retain (remember). It consists of one sigmoid function, which acts as
a filter.

~ft = σ(Wf [~ht−1 ⊕ ~xt] +~bf), (2.8)

where ⊕ is the concatenation operation.

Furthermore, the input gate decides which information to add to the cell state. It
utilizes a sigmoid activation function in conjunction with a tanh function which
creates a new set of candidate values C̃t.

~it = σ(Wi[~ht−1 ⊕ ~xt] +~bi)

C̃t = tanh(WC [~ht−1 ⊕ ~xt] +~bC)
(2.9)

The attentive reader might notice that both the input gate and forget gate con-
sists of a sigmoid activation with the same input, ~ht−1, and ~xt. The reason for
this is that the gates have distinct roles. Pointwise operations are applied to
the vectors that are allowed through the input and forget gates in the following
manner:

Ct = ~ft ∗Ct−1 +~it ∗ C̃t (2.10)

The last gate is the output gate. Its goal is to select the valuable information
from the current cell state Ct, and finally, output ~ht.

~ot = σ(Wo[~ht−1 ⊕ ~xt] +~bo)

~ht = ~ot ∗ tanh(Ct)
(2.11)

2.3.4 Gated Recurrent Unit (GRU)

The GRU, as illustrated in Figure 2.4, was proposed by Cho et al. [2014]. Their
contribution was to combine the forget and update gate into one single update
gate. The update gate controls how information from previous hidden states
will influence the current hidden state. In addition, it has a reset gate, which
“effectively allows the hidden state to drop any information that is found to be
irrelevant later in the future, thus, allowing a more compact representation.”
(Cho, et al. (2014), p. 3)[10]

Chapter 2. Background and Theory 12

X

X

1-

+

X

reset gate update gate

ℎ𝑡−1

𝑥𝑡

ℎ𝑡

෨ℎ𝑡
𝑧𝑡𝑟𝑡

Figure 2.4: Illustration of a cell.

GRU is popularly known to have fewer parameters and is more efficient than
LSTM. Furthermore, GRUs do not need to maintain any internal cell state, thus
outputting the hidden state directly. Specifically, the gates and the output of a
GRU cell is defined as follows:

~zt = σ(Wz[~ht−1 ⊕ ~xt] +~bz)

~rt = σ(Wr[~ht−1 ⊕ ~xt] +~br)

~̃ht = tanh(Wc[~ht−1 ⊕ ~xt] + ~bc

~ht = (1− ~zt) ∗ ~ht−1 + ~zt ∗ ~̃ht

(2.12)

By inspecting Equation 2.12, we observe that the relevance of the previous hidden
state, ~ht−1, is determined by the values from the update gate, ~zt. If ~zt approaches

0, it will result in ~ht−1 losing its influence, and that the current hidden state will

rely more on the candidate hidden state, ~̃ht.

13 2.4. Graph Neural Networks

2.4 Graph Neural Networks

2.4.1 Motivation

Deep learning has revolutionized many machine learning tasks in recent years,
ranging from image classification and video processing to speech recognition and
natural language understanding [46]. In most of these tasks, the data is typically
represented in the Euclidean space. For example, an image can be represented
as a 2D grid, and text as a 1D sequence. While deep learning effectively operates
on regular Euclidean data, there is an increasing number of applications where
data is generated from non-Euclidean domains and represented as graphs with
complex relationships between objects [46]. Due to the non-Euclidean structure of
graphs, existing deep learning methods cannot be directly applied to graph data.
Recently, there is increasing interest in extending deep learning approaches for
graph data, which has lead to the emergence of Graph Neural Networks (GNNs),
which operate directly on graph data.

2.4.2 Definitions

Graphs are a kind of data structure which models a set of objects (vertices or
nodes) and their relationships (edges). Below, we provide formal definitions of
graph-related concepts.

Definition 2.4.1 (Graph) A graph is formulated as G = (V, E), where V is the
set of nodes, and E is the set of edges. Let n denote the number of nodes in the
graph.

Definition 2.4.2 (Node Neighbourhood) Let vi ∈ V denote a node and
eji = (vj , vi) ∈ E denote an edge pointing from vj to vi. The neighbourhood
of node vi is defined as Ni = {vj ∈ V | eji ∈ E}.

Definition 2.4.3 (Node Features) A graph may have node features X where
X ∈ Rn×d is a node feature matrix with ~xi ∈ Rd representing the feature vector
of node vi.

Definition 2.4.4 (Adjacency Matrix) The adjacency matrix A ∈ Rn×n is a
n× n holds information about all edges, with Aij = 1 if (vi, vj) ∈ E and Aij = 0
if (vi, vj) /∈ E.

Definition 2.4.5 (Degree Matrix) The degree matrix D ∈ Rn×n is a diagonal
matrix with Dij = |Ni| if i = j, and Dij = 0 if i 6= j.

Chapter 2. Background and Theory 14

2.4.3 Message Passing

The concept of GNNs was first proposed in [35], that extends existing neural net-
work methods for processing the data represented in graph domains. In general,
each node in a graph is naturally defined by its features and the features of re-
lated nodes. Motivated by this, the target for GNNs is to learn a node embedding
~hi ∈ Rd which captures the complete information relevant for representing node
vi. The defining feature of any GNN is that is uses a form of message passing, in
which vector messages are exchanged between nodes in the graph and updated
using neural networks.

During each message-passing iteration in a GNN, the embedding ~hi corresponding
to each node vi ∈ V is updated according to information aggregated from vi’s
neighbourhood Ni, see Figure 2.5. This message-passing update can be expressed
as follows:

~h
(k+1)
i = UPDATE(k)

(
~h
(k)
i ,AGGREGATE(k)({~h(k)j ,∀j ∈ Ni})

)
= UPDATE(k)

(
~h
(k)
i ,m

(k)
Ni

)
,

(2.13)

where UPDATE and AGGREGATE are arbitrary differentiable functions (i.e.
neural networks) and mNi is the ”message” that is aggregated from vi’s graph
neighbourhood Ni. Subscripts are used to denote different nodes, while super-
scripts to denote different iterations of message passing.

At each iteration of the GNN, the AGGREGATE function takes as input the set
of embeddings of the nodes in vi’s neighbourhood and generates a message mNi .
The update function UPDATE then combines the message with the previous em-
bedding ~hi of node vi to generate the updated embedding. The initial embeddings

at k = 0 are set to the input features for all nodes, i.e. ~h
(0)
i = ~xi.

k-hop Neighbourhood

After performing a single aggregation (k = 1), a node’s embedding goes from
being its original feature vector, ~xi, to an combination of the original features
of itself and its neighbours. As these iterations progress each node embedding
contains more and more information from further reaches of the graph. At k = 1
every node embedding contains information from its 1-hop neighbourhood, i.e.
the features of its immediate neighbours, which can be reached by a path of
length 1 in the graph. After the second iteration (k = 2), every embedding has
information from its 2-hop neighbourhood, etc. In general, after k iterations every
node embedding contains information about its k-hop neighbourhood.

15 2.4. Graph Neural Networks

Figure 2.5: Illustration of message passing. The model aggregates messages
from B’s neighbours (A, C, and D). Simultaneously, A, C and D are updated
based on the aggregation of their neighbours, respectively. At the next
iteration, the messages aggregated from B’s neighbours are followingly based on
information aggregated from A, C, and D’s neighbourhoods. This way, the
receptive field of each node’s embedding grows with the number of iterations.

2.4.4 The Basic GNN

As stated earlier, the UPDATE and AGGREGATE functions from Equation 2.13
are typically implemented as neural networks. Using an simplified version of the
original model proposed in [35] we have a basic GNN model where the message
passing is defined as:

~h
(k)
i = σ

W
(k)
self

~h
(k−1)
i + W

(k)
neigh

∑
j∈Ni

~h
(k−1)
j

 , (2.14)

where W
(k)
self and W

(k)
neigh are trainable weight matrices and σ is an non-linear

activation function (e.g. tanh or ReLU).

2.4.5 Message Passing with Self-loops

It is common to add self-loops to the input graph and thus excluding the need
for the update function in the message passing. In this case, the message passing
can be simply defined as:

~h
(k)
i = AGGREGATE

(
{~h(k−1)j ,∀j ∈ Ni ∪ {i}}

)
, (2.15)

Chapter 2. Background and Theory 16

where the aggregation is now taken over the set Ni ∪ {i}, i.e. the node’s neigh-
bours as well as the node itself. The specifics of the aggregation function in
Equation 2.15 can then be defined as:

~h
(k)
i = σ

W (k)
∑

j∈Ni∪{i}

~h
(k−1)
j

 , (2.16)

The consequence of adding self-loops to the graph is that the weight matrices
Wself and Wneigh have shared parameters. It simplifies the message passing and
one can this way argue that it reduces the risk of overfitting, but it also limits
the expressive power of the GNN, as the information from a node’s neighbours
is not distinguished from the information from the node itself.

2.4.6 Neighbourhood Normalization

The aggregation operation from Equation 2.14 and Equation 2.16 simply takes
the sum of the neighbour embeddings. In cases where nodes have very different
degrees (different number of neighbours) this may be problematic. Consider the
case where node vi has 100x higher degree than node vj . Then it is reasonable to
expect that the output from the aggregation will be much larger for vi than for
vj . This significant difference in magnitude may lead to numerical instabilities
and optimization problems. One simple solution to this problem is to normalize
the aggregation based upon the degrees of the nodes involved. If we denote the
aggregation part of Equation 2.16 as mNi

, the normalized aggregation becomes:

mNi
=

1

|Ni|
∑
j∈Ni

~hj (2.17)

.

However, [20] proposes a modified normalization factor:

mNi =
∑
j∈Ni

~hj√
|Ni||Nj |

, (2.18)

with the intuition that messages coming from high-degree neighbours should be
down-weighted, since they may be less precise and informative.

2.4.7 Graph Convolutional Networks (GCN)

One of the most popular graph neural network models is the Graph Convolutional
Network (GCN), first outlined in [20].

17 2.4. Graph Neural Networks

GCNs generalize the operation of convolution from grid data in the Euclidean
space to graph data in the non-Euclidean space. As illustrated in Figure 2.6,
an image is represented as a 2D grid and can be considered a special case of
graphs, with each pixel representing a node which is connected to its nearby pix-
els. Similarly to the 2D convolution, a graph convolution is typically performed
by aggregating the features of a node’s neighbours. Thus, the graph convolution
is a form of message passing. Specifically, the standard GCN model from [20]
utilizes the Kipf normalization from Equation 2.18 as well as the self-loop update
approach from Equation 2.16, and thus the graph convolution (message passing
function) is defined as:

~h
(k)
i = σ

W (k)
∑

j∈Ni∪{i}

~h
(k−1)
j√
|Ni||Nj |

 . (2.19)

(a) 2D convolution. Each pixel in an
image is viewed as a node, with
neighbours determined by the filter
size (here: 3x3). The 2D convolution
takes the weighted average of pixel
values within the filter. Note that the
neighbours of a node are positionally
ordered and have a fixed size.

(b) Graph convolution. To get a
hidden representation of the red node,
the graph convolution operator
aggregates the node features of the red
node along with its neighbours,
typically via a summation or average.
Contrary to the image case, the
neighbours of a node are unordered
and may vary in size.

Figure 2.6: 2D Convolution vs. Graph Convolution (figure adapted from [46])

Chapter 2. Background and Theory 18

Graph Convolution using the Adjacency Matrix

So far, we have defined the message-passing functions at the node level. However,
in practice, message passing can often be performed simultaneously for all nodes.
In that case, we should define the message passing at a graph-level. The adjacency
matrix contains information about every node’s neighbourhood, i.e. all the edges
in the graph. Let Ã = A+ I denote the adjacency matrix with added self-loops.
The degree matrix D contains the degree of each node. Let D̃ denote the degree
matrix of Ã. Furthermore, let H = {~h0,~h1, ...,~hn} ∈ Rn×d denote the matrix of
node embeddings.

Then, we can write the graph-level version of Equation 2.19 as:

H(k) = σ
(
D̃−

1
2 ÃD̃−

1
2H(k−1)W (k−1),

)
(2.20)

where D̃−
1
2 ÃD̃−

1
2 achieves the Kipf normalization, while Ã together with

H(k−1) performs the neighbourhood aggregation. A simplified version of Equa-
tion 2.20 is depicted in Figure 2.7, which illustrates how the adjacency matrix is
used to perform neighbour aggregation for all nodes simultaneously.

(a) Example graph with
four nodes, each with a
3-dimensional embedding
vector ~h

(k−1)
i .

(b) The adjacency matrix (including self-loops)
specifies all edges present in the graph, and the
embedding matrix contains all node embeddings.
The updated (aggregated) node embeddings are
then given by the matrix multiplication between
the adjacency matrix and the embedding matrix.

Figure 2.7: Simplified Graph convolution using matrix multiplications

2.4.8 Graph Attention Networks (GAT)

Attention mechanisms has been successfully used in many sequence-based tasks
[3], [12]. Veličković et al. [2018] propose Graph Attention Networks (GATs)
which incorporates the attention mechanism into the aggregation step of the
GNN. The core idea is to assign an attention weight to each neighbour, which

19 2.4. Graph Neural Networks

is used to weight this neighbour’s influence during the aggregation. As opposed
to GCNs, GATs allows the assigning of different importances to nodes of a same
neighbourhood, enabling a leap in model capacity [43]. The message passing
function is defined as:

~h
′

i = σ

 ∑
j∈Ni∪{i}

αijW~hj

 , (2.21)

where ~h
′
i is the updated embedding of node vi, ~hj is the current embedding of node

vj , W is a weight matrix of shared linear transformation which is applied to every
node, and αij denotes the attention that node vi should attend to node vj during
the aggregation. The attention mechanisms are illustrated in Figure 2.8.

To get the attention weight αij , an attention score is first computed as

eij = a(W~hi,W~hj), (2.22)

where a is a single-layer feedforward neural network, parametrized by a weight
vector ~a ∈ R2d. In essence, a works by multiplying ~aT with the concatenation of
the transformed node embeddings of node vi and vj , and applies a nonlinearity
function (LeakyReLU in [43]) to output a score that indicates the importance of
vj ’s features to vi, i.e.

eij = LeakyReLU
(
~aT [W~hi ⊕W~hj]

)
, (2.23)

where .T represent transposition and ⊕ is the concatenation operation.

Note that this attention score may be computed between every pair of nodes,
dropping all structural information. However, the graph structure is commonly
injected by performing masked attention, i.e. eij is only computed for nodes
j ∈ Ni ∪ {i}. In practice, this masking can be achieved by multiplying with the
adjacency matrix. These attention scores are then normalized using the softmax
function:

αij = softmaxj(eij) =
exp(eij)∑

k∈Ni∪{i} exp(eik)
. (2.24)

Fully expanded out, the attention weights is then defined as:

αij =
exp

(
LeakyReLU

(
~aT [W~hi ⊕W~hj]

))
∑
k∈Ni∪{i} exp

(
LeakyReLU

(
~aT [W~hi ⊕W~hk]

)) . (2.25)

Chapter 2. Background and Theory 20

Note that because the attention weights are normalized, i.e.∑
k∈Ni∪{i}

αik = 1,

the aggregation in Equation 2.21 will followingly be normalized across the neigh-
bouring nodes, so there is no need for an additional normalization step.

Figure 2.8:
Left: The attention mechanism a(W~hi,W~hj) computes attention weights αij
for all neighbours of vi (figure adapted from [43]). Right: The embeddings are
aggregated using the attention weights in order to obtain the updated
embedding ~h′1.

Chapter 3
State Of The Art

Time-series anomaly detection is a well-researched domain and is yet an active
field of research as it has many applications on an industrial scale. One per-
spective of categorizing the methods under this umbrella is supervised versus
unsupervised learning methods. Supervised learning methods require data with
labels in order for the model to learn. In the real world, time-series data are
collected at an incredible speed which makes the task of labeling anomalies chal-
lenging, and expensive. Therefore, unsupervised learning methods compose an
essential toolbox to tackle multivariate time-series analysis [18]. There exists a
few other perspectives to categorize anomaly detection methods, such as univari-
ate versus multivariate, and forecasting-based vs reconstruction-based solutions.
In this chapter, we summarize important works about multivariate time-series
anomaly detection, from the perspective of the latter.

3.1 Forecasting-based Models

In general, forecasting-based models tries to predict future values of a time-series,
using a window of predecessing values. Then, anomalies are predicted based on
the forecasting errors.

Chauhan et al. [7] employs deep LSTM networks in order to develop a forecasting-
based model for healthy ECG (electrocardiogram) signals. LSTM-AD [25] also
uses LSTM-layers, but predicts multiple steps ahead, instead of just one. The pre-
diction errors are modeled as a multivariate Gaussian distribution, which is used

21

Chapter 3. State Of The Art 22

to assess the likelihood of the observed value. DAGMM [50] focuses on anomaly
detection of multivariate data without any temporal dependencies, where the
input of DAGMM is just a single entity observation (all features but for one
timestamp at the time), instead of a sequence of inputs.

Hundman et al. from NASA JPL proposes LSTM-NDT [17], an unsupervised
and non-parametric dynamic thresholding method for fitting a threshold on the
forecasting error, and uses a simple LSTM network to forecast values. In addi-
tion, they propose a false-positive mitigation strategy which is a key element in
developing systems for real-life applications.

He et. al. [15] argue that existing methods are not explicitly capturing rela-
tionships between features, and propose to use a GAT layer for this purpose.
Additionally, they use multiscale convolutions to capture temporal patterns of
various ranges.

3.2 Reconstruction-based Models

In general, reconstruction-based models learn a representation of the normal be-
havior for the entire time-series input sequence, by reconstructing the original
input from some latent representation with reduced dimension. The reconstruc-
tion error is then used to predict anomalies.

LSTM-ED [26] propose an Encoder-Decoder scheme to learn the representation
over normal time-series. LSTM-VAE [29] suggests to use an LSTM-based Varia-
tional Auto-Encoder (VAE) as the reconstruction model. It models the underly-
ing distribution of the multivariate time-series and reconstructs the data with an
expected distribution. OmniAnomaly [40] argues that the stochastic nature of
multivariate time-series often causes deterministic reconstruction methods to be
mislead by unpredictable (random) patterns. Therefore, they propose a stochas-
tic recurrent neural network, in which robust representations are learned using
stochastic variable connection and normalizing flows. Generative Adversarial
Network (GANs) have been widely used in multivariate time-series anomaly de-
tection, where it learns to reconstruct the input from a latent representation,
through a minimax two-player game [13]. MAD-GAN [23] is an approach uti-
lizing GANs, where the generator and discriminator is modeled using LSTM
networks.

23 3.3. Combination-based Models

3.3 Combination-based Models

Both forecasting-based and reconstruction-based models have shown success in
the task of multivariate time-series anomaly detection. Zhao et. al. [48] argue
that forecasting-based and reconstruction-based models have shown their superi-
ority in some specific situations, and that they are complementary to each other.
Therefore, they propose to make the model both forecast next values in addi-
tion to reconstruct the input sequence of values. Moreover, they leverage two
parallel GAT layers to explicitly capture correlations among both features and
timestamps.

Chapter 4
Methodology

In this chapter, we explain each part of our framework in detail. We begin by
mathematically formulate the problem we seek to address, in section 4.1. In
section 4.2 we give an overview of the complete framework, while section 4.3
explains the DNN model and its components, and section 4.4 describes the inner
workings of the Threshold Selection Model.

4.1 Problem Formulation

The overall problem we seek to address is that of multivariate time-series
anomaly detection, which can be formulated as follows:

Problem Formulation: An input of multivariate time-series anomaly
detection is denoted by X = {~x1, ~x2, ..., ~xn} ∈ Rn×k, where n is the number
of timestamps, and k is the number of features in the input. ~xi ∈ Rk is the
vector containing values for all k variables at time i. As time-series can be
very long, we use a sliding window to generate fixed-length inputs of length n:
{~xt−n, ~xt−n+1, ..., ~xt−1}. The target is to produce an output vector y ∈ Rn,
where yi ∈ {0, 1} denotes whether xi is an anomaly.

25

Chapter 4. Methodology 26

4.2 Framework Overview

We address the problem of multivariate time-series anomaly detection by combin-
ing a DNN model with a threshold selection model (TS model). In this section
we describe the architecture of our proposed framework. The DNN model is
heavily inspired by the recent works of Zhao et. al. [48], which introduced a
novel Graph Attention model named MTAD-GAT for solving the problem of
multivariate time-series anomaly detection. However, as there is no public code
available for MTAD-GAT, the implementation is done solely by us.

The overall architecture of our framework is shown in Figure 4.1. It consists
of a deep neural network which takes the multivariate time-series data as input
and outputs anomaly scores, indicating its belief in different timestamps being
anomalous. These anomaly scores are fed to a threshold selection model, which
fits a threshold to the distribution of anomaly scores, and uses this threshold to
label timestamps as anomalous or non-anomalous.

Figure 4.1: Overall architecture of our framework for multivariate time-series
anomaly detection.

4.3 DNN Model

The architecture of the DNN model is depicted in Figure 4.2. In summary,
the DNN model takes a window of multivariate time-series data as input,
X = {~xt−n, ..., ~xt−1} ∈ Rn×k (k = 8 in Figure 4.2), and tries to both forecast
values for time t, as well as reconstruct values for the complete input sequence.
The predictions are compared to the real values of the time-series, yielding two
separate losses, and the model is optimized in an end-to-end fashion using a joint
objective function which combines the two losses. At inference, the same function
is used to output the anomaly scores that are passed to the threshold selection
model. This way, we have that the DNN model is separate from the threshold
selection model, and they do not interact with each other when the DNN model
is trained.

27 4.3. DNN Model

Figure 4.2: The architecture of the DNN model in our framework. Figure
partially adapted from [48].

The DNN model is composed of the following modules (in order):

1) We preprocess the raw input data and apply a 1-D convolution in the
temporal dimension in order to smooth the data.

2) The output of the 1-D convolution module are processed by two parallel
graph attention modules, one feature-oriented and one time-oriented, in
order to capture dependencies among features and timestamps, respectively.

3) We concatenate the output from the 1-D convolution module and the two
GAT modules, and feed them to a Gated Recurrent Unit, to capture longer
sequential patterns.

4) The output from the GRU are fed into a forecasting model and a recon-
struction model, to get a prediction for the next timestamp, as well as a
reconstruction of the input sequence.

Table 4.1 summarizes the notations we will use throughout this section.

4.3.1 1-D Temporal Convolution

A 1-D convolution with kernel size dconv is applied to the preprocessed input data.
The convolution works along the temporal direction, each feature constituting a
channel. As demonstrated in previous work [34], the convolution operation is
good at local feature engineering within a sliding window, and has been shown to
alleviate possible noise effects of the original input data [15]. We denote the result
of the 1-D convolution as X̃ ∈ Rn×k (having the same dimension as X).

4.3.2 Feature-oriented Graph Attention Layer

The graph attention (GAT) layers are the core designs of the DNN model. The
goal of the feature-oriented GAT layer is to capture correlations existing across

Chapter 4. Methodology 28

X an instance of multivariate time-series input
n the length of X in a pre-defined sliding window
k the number of features in X

X̃ input after preprocessing and 1-D Convolution
~vi input node representation for a GAT layer
~hi output node representation for a GAT layer
Hfeat total output for the feature-oriented GAT layer
Htime total output for the time-oriented GAT layer

Hcat concatenation of X̃, Hfeat and Hfeat

~hgru last hidden state of the GRU layer
dconv kernel size of the 1-D Convolution
dgru hidden dimension of the GRU layer
dfor hidden dimension of the fully-connected layer in the Forecasting Model
drec hidden dimension of the GRU in the Reconstruction Model

~̂y one-step ahead forecasts from the Forecasting Model

X̂ window reconstructions from the Reconstruction Model
~s anomaly scores outputted from the DNN model
γ hyper-parameter to combine forecasting and reconstruction loss into the anomaly score
ε threshold fitted by the Threshold Selection Model

Table 4.1: Notations

the different features of the multivariate time-series. The feature-oriented GAT
layer treats the multivariate time-series as a complete graph, where each node
represents a feature, and each edge denotes the relationship between two corre-
sponding features. That is, in our input data X ∈ Rn×k, we view each column
(feature) as a separate node. This way, each node is represented by a sequential
vector ~vi = ~x:,i = {x1,i, x2,i, ..., xn,i} of length n, where xt,i is the value of feature
i at time t.

As described in subsection 2.4.8, a GAT layer explicitly models the relationship
between every pair of nodes by learning attention scores that are used to weight
the neighbours’ influence during the aggregation. This way, the relationships be-
tween different features of the multivariate time-series can be carefully captured.
Also, GAT layers do not rely on a pre-defined graph structure, i.e. an adjacency
matrix. This is a convenient property, as many multivariate time-series does not
have a natural graph structure defined. However, if present, the graph structure
can easily be injected into the GAT layer.

Specifically, the output for each node is calculated by the feature-oriented GAT
layer as follows:

~hi = σ

∑
j∈Ni

αij~vj

 , (4.1)

where ~hi ∈ Rn denotes the output representation of node ~vi, αij is the attention

29 4.3. DNN Model

score between node i and node j, Ni is the neighbouring nodes of node i, and
σ represents the sigmoid activation function. Note that Ni will be the set of all
nodes if no graph structure is defined.

We denote the output representation for each node of the feature-oriented GAT
layer as ~hfeati ∈ Rn, and there is a total of k nodes. Thus, the total output from

this layer is a matrix Hfeat = {~hfeat1 , ...,~hfeatk } ∈ Rk×n.

Figure 4.3 illustrates how the feature-oriented GAT layer creates the graph from
the input data, and how the output representation is computed for a single
node.

4.3.3 Time-oriented Graph Attention Layer

The goal of the time-oriented GAT layer is to capture dependencies between
different timestamps (as opposed to between features). In order to utilize the
GAT layer for this purpose, the time-oriented GAT layer views the input data
as a complete graph in which each node represents the values for all features at
a specific timestamp. Concretely, in the input data X ∈ Rn×k, we view each
row (timestamp) as a separate node, and all other timestamps in the sliding win-
dow as neighbours. This way, each node is represented by the sequential vector
~vt = ~xt,: = {xt,1, xt,2, ..., xt,k}. As opposed to in the feature-oriented GAT layer,
each node now has length k, and there are n nodes in total. Otherwise, the
output representation of each node is computed in the same way as in Equa-
tion 4.1.

We denote the output representation for each node of the time-oriented GAT
layer as ~htimei ∈ Rk, and there is a total of n nodes. Thus, the total output from

this layer is a matrix Htime = {~htime1 , ...,~htimen } ∈ Rn×k.

Figure 4.4 shows how the time-oriented GAT layer creates the graph from the
input data, and how the output representation is computed for a single node.
Note the differences from Figure 4.3.

4.3.4 GRU for Long-Term Temporal Dependencies

We concatenate the output of the 1-D convolution (X̃), the feature-oriented GAT
(Hfeat) and the time-oriented GAT (Htime) along the feature dimension, in order
to make a matrix of shape n× 3k, which we denote as Hcat. The concatenation
is then fed to a single-layered GRU with dgru hidden state size, for capturing
sequential patterns. Hfeat has augmented the representation of each feature by
combining the information of correlated features, while Htime combines the infor-
mation from correlated timestamps. On the other hand, X̃ contains a smoothed

Chapter 4. Methodology 30

Figure 4.3: Illustration of how the feature-oriented GAT layer creates a graph
where each node represents one feature across n timestamps, and how the
attention mechanism is used to compute the output ~hfeat for a specific node.

Figure 4.4: Illustration of how the time-oriented GAT layer creates a graph
where each node represents one timestamp across k features, and how the
attention mechanism is used to compute the output ~htime for a specific node.

version of the original input. Intuitively, these three sources add different but
informative information. This enriches the information available at each times-
tamp, thus helping the GRU to better capture temporal dependencies. Recall
from subsection 2.3.4 that a GRU outputs the hidden state corresponding to each
input timestamp that it receives. Thus, we extract the last hidden state as the
final output of the GRU layer, and denote it as ~hgru ∈ Rdgru .

31 4.3. DNN Model

4.3.5 Forecasting Model

The output from the GRU layer is flattened and fed to a forecasting model that
predicts the value for each feature at the next timestamp. Specifically, the fore-
casting model is a 3-layered fully-connected neural network, with hidden dimen-
sions dfor. Intuitively, the last hidden state of the GRU has received information
from all prior timestamps within the sliding window, and should thus contain
useful information to forecast the next value. We denote the output from the
forecasting model as ~̂y ∈ Rk, containing the one-step ahead prediction for each
of the k features.

4.3.6 Reconstruction Model

The reconstruction model takes the output from the GRU layer (~hgru) and tries to
reconstruct the complete input sequence. As seen from the reconstruction model’s
perspective, one can view the previous parts of the model as an encoder, and the
reconstruction model as the decoder. From this point of view, the path going from
input data and through the reconstruction model constitutes an auto-encoder,
where the input data X has been encoded into latent variables of dimension dgru
(the output from the GRU layer), and then decoded by the reconstruction model.
Contrary to [48], which uses an Variational Auto-Encoder, our reconstruction
model consists of a single-layered GRU with hidden dimension drec. As the GRU
expects sequential data, ~hgru is copied n times (length of input data), and then
fed to the GRU. This also ensures that each individual timestamp reconstruction
within the window is dependent on the reconstruction of previous timestamps,
making them more consistent. We denote the output from the reconstruction
model as X̂ ∈ Rn×k, containing reconstructions for each k feature for each n
timestamp.

4.3.7 Joint Optimization & Anomaly Score

Given the current window input from t = 0 to t = n, the loss function for the
forecasting model is the Root Mean Squared Error (RMSE) between the predicted
and the actual values for t = n+ 1:

Lossfor =

√√√√1

k

k∑
i=1

(yi − ŷi)2, (4.2)

where ŷi is the predicted value for the ith feature, and yi is the actual value, i.e.
yi = xn+1,i.

Similarly, for the reconstruction model, the loss function is the RMSE between

Chapter 4. Methodology 32

the reconstructed values and the actual values for the complete input window:

Lossrec =

√√√√ 1

nk

n∑
t=1

k∑
i=1

(xt,i − x̂t,i)2. (4.3)

The DNN model is trained end-to-end using a joint optimization target that
combines the forecasting and reconstruction loss:

Loss = Lossfor + Lossrec (4.4)

At inference, i.e. after the DNN model is fully trained and applied to new data, we
record the loss, and calculate an anomaly score for each feature using a weighted
sum of the forecasting and reconstruction loss. Concretely, given the forecasted
values of a timestamp, ~yt, and the reconstructed value for the same timestamp,
~̂xt, we define the anomaly score for feature i as the following:

si =
(yt,i − ŷt,i)2 + γ(xt,i − x̂t,i)2

1 + γ
, (4.5)

where γ is a hyper-parameter to combine the forecasting error and the recon-
struction error. This way, we get an individual anomaly score for each feature,
at every timestamp. In cases where we are interested in detecting anomalies
at entity-level, i.e. across all features, we simply take the mean of all feature
anomaly scores at a specific timestamp:

sentity =
1

k

k∑
i=1

si (4.6)

In turn, the anomaly scores are fed to the Thresholding Selection Model, which
decides a threshold and label a timestamp-feature combination (or only times-
tamp if at entity-level) as anomalous if its corresponding anomaly score exceeds
the threshold.

4.4 Threshold Selection Model

The Threshold Selection Model is the second core component of our framework
(see Figure 4.1). In summary, it receives the anomaly scores from the DNN model,
fits a threshold, and predicts anomalies. Following good machine learning (ML)
practice, we use anomaly scores from the training set to decide the threshold, and
then apply that threshold to the anomaly scores of the test set. As we already

33 4.4. Threshold Selection Model

have all the data available (train and test), it is practically possible to include
the test anomaly scores when fitting the threshold. However, from a real-case
perspective, where one get inputs of the multivariate time-series in real-time,
this would not be possible. Thus, in order to get a realistic evaluation of our
framework’s performance, we keep to the good ML practice.

There exist several approaches that could be employed to set the threshold. A
common approach is to make Gaussian assumptions about the distribution of er-
rors (e.g. [1] and [37]). However, if the parametric assumptions are violated, this
approach may become problematic. As stated in ”Research Issue 6” for outlier
detection in data streams by Sadik and Gruenwald [33], no distribution assump-
tions should be made on the data. Therefore, we apply a method that satisfies
this criteria, namely the non-parametric approach proposed in [17].

4.4.1 Non-Parametric Thresholding

The main motivation behind this method is that it achieves high performance
with low overhead, and without statistical assumption regarding the distribution
of errors. Given the anomaly scores ~s (anomaly scores for a relatively large
number of timestamps) provided by the DNN model, it searches through a range
of values and selects a threshold ε that is determined by:

ε = argmax
ε

1

|~sa|

(
∆µ(~s)

µ(~s)
+

∆σ(~s)

σ(~s)

)
, (4.7)

where

(∗) : ∆µ(~s) = µ(~s)− µ ({s ∈ ~s | s < ε}) ,
(∗∗) : ∆σ(~s) = σ(~s)− σ ({s ∈ ~s | s < ε}) ,
(∗ ∗ ∗) : ~sa = {s ∈ ~s | s > ε}.

(4.8)

(∗) is the mean of the anomaly scores that are smaller than ε, (∗∗) is the standard
deviation of the anomaly scores that are smaller than ε, and (∗∗∗) are the anomaly
scores greater than ε.

In terms, a threshold ε is found such that if all values above are removed, would
cause the greatest percent decrease in the mean and standard deviation when
compared to the mean and standard deviation of all values. The method also
penalizes thresholds that produces a large set of anomalous vales (|~sa|), to prevent
overly greedy behavior [17].

The candidate thresholds are selected from the set

{µ(~s) + zσ(~s) | z ∈ Z}, (4.9)

Chapter 4. Methodology 34

where Z is an ordered set of positive values, representing the number of standard
deviations above µ(~s).

Once a threshold is fitted using the train anomaly scores, the same threshold
is applied to the anomaly scores of the test set, and anomalies are predicted.
Specifically, given m test anomaly scores, ~s = {s1, s2, ..., sm}, belonging to m
timestamps, and the threshold ε, the Threshold Selection Model will output a
vector ~y ∈ Rm, where

yi =

{
1, si ≥ ε
0, si < ε.

, (4.10)

Figure 4.5 shows an example output of the Threshold Selection Model.

Figure 4.5: Example output of the Threshold Selection Model. On four
occasions does the anomaly score exceed the threshold and anomalies predicted.

Chapter 5
Experimental Setup

This chapter covers the experiments we perform. Section 5.1 describes the multi-
variate time-series datasets we use, section 5.2 explains the different experiments
in detail, and section 5.3 describes what metrics we use to evaluate the perfor-
mance of our framework.

5.1 Datasets

Our main objective is to apply our framework on real-world KPI data of the
telco domain, provided by Telenor. However, in order to verify the effectiveness
of our framework, in addition to analyze its different components, we use three
commonly-used benchmark datasets within anomaly detection for multivariate
time-series, and compare results with SOTA methods. These datasets contains
test sets where anomalies have been labeled by domain experts, and can therefore
be used to get a numerical evaluation of our framework. Section 5.1.1 describes
the benchmark datasets, while subsection 5.1.2 presents the dataset provided
by Telenor, as well as describing the preprocessing and feature engineering we
perform in order to make it applicable for our framework.

5.1.1 MSL, SMAP & SMD

The three benchmark datasets we use are the Soil Moisture Active Passive
Dataset (SMAP), the Mars Science Laboratory Dataset (MSL), and the Server
Machine Dataset (SMD), summarized in Table 5.1.

35

Chapter 5. Experimental Setup 36

SMAP and MSL are two public spacecraft datasets from NASA’s Jet Propulsion
Laboratory [27]. The SMAP dataset originates from one of the first Earth obser-
vation satellites by NASA. The satellite uses an advanced radiometer in order to
peer through clouds, vegetation and other features on Earth’s surface. Thus, it
can monitor water and energy fluxes, which leads to improved flood predictions
and monitoring of droughts. The MSL dataset contains data from the Curios-
ity Rover Environmental Monitoring Station, collected during its adventures on
Mars. Both MSL and SMAP consists of a single telemetry feature in addition to
command information (information regarding the module to which a command
was issued, whether it was sent or received, etc) that has been one-hot encoded
and slotted into each time step [17].

The SMD dataset is a 5-week-long dataset from a large Internet company, col-
lected and made public by Su et al. [2019]. SMD consists of three groups of
entities, each with 28 different machines. It is concretized by the aforementioned
authors that each of these machines should be trained and tested individually.
Each machine consists of 38 continuous features representing different server-
related counters, such as CPU load, network usage, memory usage, etc.

Dataset MSL SMAP SMD
No. of attributes 55 25 38
Training subset size 58 317 135 183 708 405
Testing subset size 73 729 427 617 708 420
Anomaly rate % 10.72 13.13 4.16

Data description
Telemetry data: computational,
radiation, temperature, power,

activities, etc.

Server data:
CPU load, network usage,

memory usage, etc.

Table 5.1: Benchmark Datasets Information.

Figure 5.1: Example data from the MSL and SMAP datasets, where each
telemetry value has corresponding one-hot encoded command information.
Illustration adapted from [17].

37 5.1. Datasets

5.1.2 Telenor Dataset

Overview

The dataset is provided by TDBU, and consist of data coming from the Radio
Access Network (RAN). RAN is the part of a telecom system that connects
individual devices (phones, computers, etc) to the Core Network. The Core
Network is the central elements of the telecom system which provides services
to customers connected to the network, such as routing of calls and download-
ing/uploading data. The data includes different types of RAN which operate on
different technologies, namely GRAN/GERAN for 2G technology, UTRAN for
3G technology and EUTRAN for 4G technology.

Figure 5.2: Illustration of the different parts in a telecommunication system.

The data is produced by multiple base stations, or sites (we will refer to them
as such), that are spread across a given geographical area. A site is divided into
three sectors, each covering a 120°area. A sector has multiple cells, and cells
run on different frequencies. Cells of lower frequencies are part of the so-called
coverage layer, which has longer range and covers larger areas, but provides worse
signals. Cells of higher frequencies are part of the capacity layer, which is used
by users that are closer to the site, thus giving a better signal. Depending on the
demand, cells of different frequencies can be activated (turned on) or deactivated
(turned off) within a sector. Figure 5.3 shows a high-level view of the different

Chapter 5. Experimental Setup 38

parts of a site.

Figure 5.3: A site contains 3 sectors, each of which can have multiple cells. The
coverage layer (cells of lower frequencies) cover larger areas but have lower
quality signal, while the capacity layer (cells of higher frequencies) have a
higher quality signal but smaller range.

Concretely, our data is collected from multiple sites located in Copenhagen, Den-
mark. It consists of numerous counters, representing different Key Performance
Indicators (KPIs). The raw data is recorded at cell-level, meaning that each in-
stance (row) in the data corresponds to a particular cell. In reality, whenever a
cell is used (e.g. to connect a call), information regarding the event is recorded
using the KPI counters. However, in our data, the time resolution is hourly,
meaning that all recorded values for a counter within an hour are aggregated
into one number. Each row is marked with a timestamp, which specifies the date
and hour of the row.

We choose a subset of the KPI values to serve as the features of our data. These
features were picked based on discussion with telco domain experts, filtering out
the ones not relevant for our purpose of detecting anomalies. Table 5.2 provides
a description of each feature.

39 5.1. Datasets

Name Description
avail period duration Minutes that cell was available
unavail unplan nom Minutes that cell was unplanned unavailable
unavail unplan denom Defined as avail period duration− unavail plan denom
mcdr denom Total number of voice-related attempts
msdr denom Total number of data-related attempts
msdr nom s Number of data-related setup failures
msdr nom d Number of data-related drops
ho denom Total number of handovers
ho nom Number of handover failures
impact nom Number of distinct users with error message

Table 5.2: Description of the features in the Telenor dataset.

Feature Engineering

The data goes through an extensive pipeline of preprocessing and feature engi-
neering, where we obtain multivariate time-series of the format X ∈ Rn×k, ready
to be input to our framework. Here, we briefly describe the main parts of this
pipeline.

Imputing Missing Values

We follow a ”hierarchical” approach to impute missing values for a cell. The
main motivation behind this approach is that the cells are distributed across
a relatively large geographical area. Cells of different sites do not necessarily
behave similarly, as the user traffic will vary depending on the location of the
site. Also, as values are varying with time, one should use values of the same
(or nearby) timestamp to impute values. Therefore, we first group all cells such
that each group contains rows (cell data) of the same timestamp, site and sector,
i.e. each group contains cells that are identical with respect to both time and
location. Missing values are imputed using only values from rows within the same
group. Concretely, the median is used to impute missing values for columns with
discrete values, while the average is used for continuous columns. However, as
there may be only one row in such a group, we group the rows again, this time
based on only timestamp and site (one step down in the hierarchy) and perform
imputations again. We repeat this process, each time making the groups more
general, until there are no missing values left.

Aggregation of Cells

As the data contains cells from sectors belonging to many different sites, there are
initially multiple rows with the same timestamp. A possible way of converting

Chapter 5. Experimental Setup 40

it to a valid multivariate time-series, in which each timestamp is unique, is to
isolate each individual cell. However, as cells may be activated and deactivated
based on the demand, there will often be a substantial amount of timestamps
for which a cell has no values. To overcome this problem, we aggregate all cells
within the same sector. This converts the data to be on sector-level, where
each row represents the average values for all cells in a sector, for a specific
timestamp.

Concatenation of Sectors

Sectors of the same site share the same geographical location and are likely to
share similar user traffic patterns. Therefore, we combine each of the three sectors
within a site by concatenating their features (columns) for each timestamp, as
illustrated in Figure 5.4. Each of the original KPIs is now present three times for
every row, each corresponding to one of the three sectors.

Now, a row represents all counters of the three sectors of a site, at a particular
timestamp. We isolate each site, such that each site constitutes its own multi-
variate time-series of the format X ∈ RN×k. Specifically, N = 10200 (each site
has data from a time span of slightly more than a year), k = 30 (3× 10), and a
total of 34 sites. For each site, we use the first 90% as training data, and the last
(most recent) 10% as test set.

Figure 5.4: Illustration of how the values of each sector is concatenated
column-wise.

5.1.3 Feature-wise Normalization

Different features will typically have values on different scales (e.g. one sensor
might have values in the range [0.0, 0.5], while another in [100, 200]. To improve
robustness of our framework, we perform normalization individually for each
feature of the multivariate time-series. This data normalization is applied to

41 5.2. Experimental Plan

both training and testing set, for all datasets. Specifically, the values for each
feature i is normalized using the minimum and maximum values from the training
data:

x̃i =
xi −min(xi,train)

max(xi,train)−min(xi,train)
, (5.1)

where min(xi,train) and max(xi,train) is the minimum and maximum value, re-
spectively, for feature i in the training set.

5.2 Experimental Plan

In this section, we describe the experiments we perform, both on the benchmark-
ing datasets, and on the TDBU dataset.

5.2.1 Experiments on the Benchmark Datasets

Recall from subsection 5.1.1 that MSL and SMAP only has one continuous fea-
ture, while the rest are 0s and 1s. Therefore, we make the DNN model take all
features as input, but only forecast and reconstruct the one continuous feature.
For SMD, on the other hand, all features are continuous, so the model outputs
predictions for all.

We use the same model configuration for the three benchmarking datasets. The
sliding window size is set to n = 150 for MSL and SMAP, and n = 100 for SMD.
The kernel size of the 1-D convolution is dconv = 7, while the hidden dimension
of the GRU layer (dgru), the fully-connected layers in the Forecasting Model
(dfor), and the Reconstruction Model (drec), are set to 150. γ, which combines
the forecasting loss and the reconstruction loss, is set to 1.0. As mentioned,
MSL, SMAP and SMD has pre-defined training and test sets (see Table 5.1).
We set aside 10% of the training data as a validation set, which is used to set
the parameters above. The labeled ground-truth anomalies in the test set are at
entity-level, meaning that a complete timestamp is either labeled as anomalous
or non-anomalous. Therefore, we use anomaly scores at entity-level, as shown in
Equation 4.6.

We use the Adam optimizer [19] with a learning rate of 0.001 to train our model
for 50 epochs on MSL and SMAP, and 10 epochs for each subpart of SMD.
All configurations are summarized in Table 5.3. Each run is repeated 10 times,
and the average performance (Precision, Recall, F1) is reported along with the
standard deviation (section 6.1).

Chapter 5. Experimental Setup 42

MSL SMAP SMD
n 150 150 100
dconv 7 7 7
dgru 150 150 150
dfor 150 150 150
drec 150 150 150
γ 1.0 1.0 1.0
learning rate 0.001 0.001 0.001
epochs 50 50 10

Table 5.3: Training configuration for the benchmark datasets.

Ablation Study

In order to analyze the effectiveness and necessity of the core components of
the DNN model, we conduct an ablation study where different components are
removed. Concretely, we run experiments on the benchmark datasets, with four
different compositions of the DNN model:

(i) w/o feature: Removing the feature-oriented GAT layer

(ii) w/o time: Removing the time-oriented GAT layer

(iii) w/o forecasting : Removing the Forecasting Model

(iv) w/o reconstruction: Removing the Reconstruction Model

To examine the influence of the two GAT layers, we disable the feature-oriented
GAT layer and the time-oriented GAT layer one at the time, denoted as w/o
feature and w/o time, respectively. In addition, to analyze the effect of comb-
ing a forecasting-based model and a reconstruction-based model, we remove the
Forecasting Model (denoted w/o forecasting) and then the Reconstruction Model
(w/o reconstruction), making the model output only reconstructions and only
forecasted values, respectively.

We use the same model parameters and training configurations as previously
(Table 5.3). Each composition of the DNN model is run ten times on MSL and
SMAP, and three times on SMD (SMD is considerably more expensive), and the
average performance along with standard deviation is reported.

Evaluating the Threshold Selection Model

In order to evaluate the Threshold Selection Model, we compare it to a brute-
force thresholding method that searches across multiple thresholds, and chooses

43 5.2. Experimental Plan

the one that yields the highest F1 score. As the number of candidate thresholds
grows, this method will approach the theoretical upper limit for the best possible
performance, given the output from the DNN model. In our experiments, we
choose the number of candidate thresholds such that it balances the accuracy
with the computational complexity of the search.

5.2.2 Experiments on the Telenor Dataset

For all our experiments on the TDBU dataset, we use a train/test split of 0.9/0.1,
making the training data consist of values from the 10th of November 2019 to
25th of November 2020, while the test data is from the November 26th 2020 to
December 31st 2020. We use 10% of the training data as validation set, which
we used to find optimal model and training configuration. Specifically, we use a
window size of n = 168 (corresponding to one week), while dconv, dgru, dfor, drec
and γ are set to the same as for the benchmarking datasets (see Table 5.3). We
train for 50 epochs with a learning rate of 0.001.

Main Experiments

Our main experiments consists of employing our proposed framework on each
of the 34 sites present in the TDBU data. Recall from subsection 5.1.2 that
we column-wise concatenate the features from all three sectors within a site, on
the assumption that sectors within the same site will have similar behaviour as
they share the same geographical location. Every site is trained individually,
and anomalies are predicted on their respective test sets. For a real-life anomaly
detection system in the telco domain it is useful that anomalies are predicted
at feature-level (in contrast to entity-level), as this provides important insight
for anomaly diagnosis. Therefore, we output the anomaly scores per feature
(Equation 4.5), and make the Threshold Selection Model predict anomalies for
each individual feature.

Transfer Learning

The concept of transferring knowledge originates from educational psychology,
and psychologist Charles M. Judd’s theory of generalization states that learning
to transfer is the result of generalization of experience [49] [6]. Transfer learning
has become an important tool in machine learning [41], where a model developed
for a task is reused as the starting point for a model on a second task. We consider
there to be several incentives for investigating the use of transfer learning in our
scenario. Firstly, as each site is an entity of the same type, it is reasonable to
believe that knowledge gained from training on one site could be beneficial when
training and employing our framework on another site. Secondly, each site has

Chapter 5. Experimental Setup 44

limited data (a one-year period with hourly resolution), making transfer learning
a way of preventing any potential problems related to insufficient training data.
Lastly, the exists a very high number of sites, making it unpractical having to
train and employ a separate framework on each and every one.

In order to address this, we perform a transfer learning-inspired experiment.
We use a form of transfer learning that deviates slightly from the regular. In
regular transfer learning, a model that has been trained on one task is trained
on some other task, using the already-trained model as starting point, and then
applied to unseen data from the newer task. In this way, the model is transferring
knowledge gained from the previous task, but is fine-tuned on the present task
before it is employed. In our scenario, if we were to perform transfer learning
in this manner, we would have to fine-tuned the model on each site, essentially
losing the point of not having to train a separate model for each site. Instead,
we train the same model on each of the 34 sites, one after the other, and only
then, making it predict anomalies for each site individually. Effectively, this is
equivalent to concatenating the training data from all sites into one large training
set, but keeping all tests the same as previously. If such a model is successful,
it represents a generalized model, capable of being employed to numerous sites
without having to be customized to each individual site.

Site-based versus Sector-based

As explained in subsection 5.1.2, we column-wise concatenate all three sectors
within a site, with the intuition that sectors of the same site will correlate. To
evaluate this argument, we additionally employ our framework on individual sec-
tors (sector-based), and compare results against those from the main experiments
(site-based). That is, for a site A that consists of three sectors {A1, A2, A3}, we
train individually on A1, A2 and A3, and compare the results with the result of
A from the site-based model.

Intuitively, we expect that if there exists correlation in traffic patterns amongst
the sectors, the model can benefit from forecasting and reconstructing all of them,
making the site-based more accurate than the sector-based. Contrarily, if sectors’
patterns strongly deviate from each other, we hypothesis that the site-based
model may be mislead, making the sector-based model a better choice.

GATv2: Dynamic Attention

Recently, Brody et al. [2021] proved that the original GAT (proposed by
Veličković et al. [2018]) can only compute a restricted kind of attention (which
they refer to as static) where the ranking of attended nodes is unconditioned
on the query node. That is, the ranking of attention weights is global for all

45 5.3. Evaluation Details

nodes in the graph, a property which the authors claim to severely hinders the
expressiveness of the GAT. In order to address this, they introduce a simple fix
by modifying the order of operations, and propose GATv2, a dynamic attention
variant that is strictly more expressive that GAT.

Brody et al. [2021] state that the main problem in the standard GAT scoring
function (Equation 2.23) is that the learned layers W and ~a are applied consec-
utively, and thus can be collapsed into a single linear layer. Instead, they modify
the original GAT attention scoring function by applying the ~a layer after the
non-linearity and the W layer after the concatenation, effectively applying an
MLP to compute the score for each node pair:

GAT (Veličković et al. [2018]) : eij = LeakyReLU
(
~aT [W~hi ⊕W~hj]

)
GATv2 (Brody et al. [2021]) : eij = ~aTLeakyReLU

(
W [~hi ⊕ ~hj]

) (5.2)

Brody et al. [2021] perform an extensive evaluation and show that GATv2 out-
performs GAT across a wide variety of benchmark datasets. Motivated by their
success, we incorporate GATv2 into the feature-oriented GAT layer, and perform
experiments on the TDBU dataset.

5.3 Evaluation Details

The TDBU dataset contains no labeled anomalies, so we will evaluate our re-
sults using visualizations and discussions with domain experts. The benchmark
datasets (MSL, SMAP and SMD) have ground-truth labels for their test set.
Thus, we use precision, recall and F1-score to evaluate our framework on these
datasets, defined as:

Precision =
TP

TP + FP
, Recall =

TP

TP + FN
, F1 =

2× Precision
Precision+Recall

,

where TP denotes true positives, FP denotes false positives, and FN denotes
false negatives.

It is often the case that anomalies occur in the form of contiguous segments.
In real-life, it is usually acceptable to trigger an alert for any point within the
anomaly segment. Therefore, we follow the strategy proposed in [47], which seems
to have become the convention when evaluating anomaly detection methods [40]
[32] [48] [15]. If any point in a ground-truth anomaly segment is detected, we mark
the segment as correctly classified, and all points in this segment are treated as if
they was detected correctly. Meanwhile, any point outside the anomaly segment
is treated as normal. This evaluation strategy is illustrated in Figure 5.5.

Chapter 5. Experimental Setup 46

Figure 5.5: Illustration of the evaluation strategy. For 10 contiguous points in a
time-series, we have three rows; first row defines the ground truth, the second is
the point-wise anomaly predictions, and the last row indicates the adjusted
predictions according to the evaluation strategy.

Chapter 6
Results and Discussion

In this chapter we present and discuss the results on the experiments we per-
form. Section 6.1 compares the performance of our framework on the bench-
marking datasets, to that of existing SOTA methods, and demonstrate the im-
pact of key components in our framework through an ablation study. In sec-
tion 6.2 we present and discuss the results from the experiments run on the
TDBU dataset.

6.1 Results on Benchmark Datasets

6.1.1 Comparison with SOTA

Table 6.1 displays the performance of our framework on the benchmark datasets,
averaged over 10 runs. The other SOTA methods included are LSTM-NDT [17],
LSTM-VAE [29], DAGMM [50], OmniAnomaly [40], MTAD-TF [15] and MTAD-
GAT [48], all described in chapter 3.

Compared to the best SOTA methods, our framework performs moderately worse
on SMAP and SMD, and achieves the best F1 score on MSL with a 4% improve-
ment over the best SOTA performance. Our framework performs reasonably well
on all three datasets, which indicates that it has satisfactory generalization capa-
bilities across different scenarios. In addition, Table 6.2 shows the F1 score with
standard deviation of the 10 runs included. The standard deviations are overall
small, telling us that our framework is stable and not too sensitive to differences
in initialization or randomness in the training phase.

47

Chapter 6. Results and Discussion 48

MSL SMAP SMD

Precision Recall F1 Precision Recall F1 Precision Recall F1

LSTM-NDT 0.5944 0.5374 0.5640 0.8965 0.8846 0.8905 0.5684 0.6438 0.6037

LSTM-VAE 0.5257 0.9546 0.6780 0.8551 0.6366 0.7298 0.7922 0.7075 0.7842

DAGMM 0.5412 0.9934 0.7007 0.5845 0.9058 0.7105 0.5835 0.9042 0.7093

OmniAnomaly 0.8867 0.9117 0.8989 0.7416 0.9776 0.8434 0.8334 0.9449 0.8857

MTAD-GAT 0.8754 0.9440 0.9084 0.8906 0.9123 0.9013 - - -

MTAD-TF 0.9043 0.8988 0.9015 0.9779 0.8192 0.8916 0.9045 0.9048 0.8940

Ours 0.9478 0.9352 0.9410 0.9891 0.7738 0.8679 0.8957 0.8702 0.8538

Table 6.1: Performance of our framework on the benchmark datasets, compared
to SOTA methods.

In summary, these results verifies the effectiveness of our framework, which was
the objective of our experiments on the benchmark datasets.

6.1.2 Ablation Study

The results of the ablation study (described in subsection 5.2.1) are shown in
Table 6.3. For each composition of the DNN model, we report the average per-
formance and standard deviation across multiple runs (10 for MSL and SMAP,
3 for SMD), and compare it to the original performance of the complete DNN
model.

The impact of the feature-oriented GAT layer

The model denoted w/o feature represents the DNN model where the feature-
oriented GAT layer is removed. Interestingly, we observe that the average F1
score actually increased by 0.8% on MSL and only decreased by 1.3% on SMAP.
However, on SMD, we notice a significant decrease of 10.9%, from 0.8538 to
0.7447. We suspect that the removal of the feature-oriented GAT layer has im-
pacted the datasets differently because of the fundamental dissimilarity between
the SMD dataset and the two other datasets. Recall from subsection 5.1.1 that
MSL and SMAP contains mostly one-hot encoded data. In our model, each en-
try in the one-hot encoding is then treated as a separate feature, for which the
feature-oriented GAT layer attempts to find correlations between. Seeing as most
features are discrete values of 0 or 1, there might be a lack of correlations. In
SMD, however, all features are continuous streams of values, creating a larger po-
tential for feature-wise dependencies to capture and exploit. Following this line
of argumentation, it appears likely that the feature-oriented GAT layer could

49 6.1. Results on Benchmark Datasets

Dataset Metric

MSL

Precision 0.9478 ± 0.0172

Recall 0.9352 ± 0.0282

F1 0.9410 ± 0.0078

SMAP

Precision 0.9891 ± 0.0072

Recall 0.7738 ± 0.0311

F1 0.8679 ± 0.0175

SMD

Precision 0.8957 ± 0.0106

Recall 0.8702 ± 0.0207

F1 0.8540 ± 0.0209

Table 6.2: Results on the benchmark datasets, with standard deviations
included.

MSL SMAP SMD

Complete DNN Model 0.9410 ±0.0078 0.8679 ±0.0175 0.8540 ±0.0209

w/o time 0.9430 ±0.0201 0.8654 ±0.0206 0.7587 ±0.0146

w/o feature 0.9486 ±0.0078 0.8549 ±0.0294 0.7447 ±0.0166

w/o forecasting 0.9330 ±0.0106 0.8934 ±0.0103 0.7838 ±0.0623

w/o reconstruction 0.9274 ±0.0102 0.8287 ±0.0393 0.7913 ±0.0045

Table 6.3: Ablation study results showing F1 score ± stdev.

be highly beneficial for data where inter-feature relationships exists, but that it
could add unnecessary complexity and even be damaging if the data is lacking
correlations between its features.

The impact of the time-oriented GAT layer

The model denoted w/o time represents the DNN model where the time-oriented
GAT layer is removed. The results show negligible effects on MSL and SMAP,
where the average F1 score changes by only +0.2% and −0.3%, respectively, while
there is a considerable decrease of 9.5% on SMD. As with the feature-oriented
GAT layer, we think it is reasonable to believe that this is caused by the nature
of the datasets. Continuous values are more likely to have temporal patterns
that the time-oriented GAT layer can learn and use to its advantage, making it
beneficial for SMD, but not necessarily for MSL or SMAP.

Chapter 6. Results and Discussion 50

The impact of the Forecasting Model

The model denoted w/o forecasting represents the DNN model where the fore-
casting is removed, thus giving insight into the impact of the Forecasting Model.
We see only a slight decrease of 0.8% in average F1 score on MSL, from 0.9410
to 0.9329, and that the average F1 score actually increases with 2.6% for SMAP,
from 0.8679 to 0.8934. For SMD, however, we see a decrease of 7%, from 0.8538
to 0.7838. Once again, we see that the impact is very different for SMD compared
to MSL and SMAP. The reason for this is not obvious, but we hypothesize that it
can be because MSL and SMAP only has one single feature that the DNN model
predicts values for, making the impact of having both forecasting and reconstruc-
tion less significant. For SMD, on the other hand, the DNN model predicts all 38
input features, and it is more likely that the Forecasting Model and the Recon-
struction Model work in a complementary way. In addition, when the Forecasting
Model tries to predict the values of the next timestamp, it is reasonable to believe
that it will emphasize information from certain timestamps more than others, for
instance from the most recent ones, or timestamps that are otherwise related. If
values from those timestamps happen to be noisy, the Forecasting Model might
become deluded, causing it to predict inaccurately. For MSL and SMAP, where
only one feature is predicted, noisy values will be more damaging, as the error
for that feature make up the entire anomaly score. For SMD, however, the error
of several feature predictions are combined, making each individual feature less
important.

The impact of the Reconstruction Model

The model denoted w/o reconstruction represents the DNN model where the re-
construction is removed, thus giving insight into the impact of the Reconstruction
Model. For MSL and SMAP we see a decrease of 1.4% and 3.9% in average F1
score, respectively, while for SMD we observe an 6.2% decrease. The fact that the
model consistently perform worse on all three datasets imply that the Reconstruc-
tion Model is an essential part of the DNN model. In contrast to the Forecasting
Model, which predicts one step ahead, the Reconstruction Model tries to learn
the distribution of entire time-series windows, and is therefore expected to be
less sensitive to occasional noise and perturbation. When the Reconstruction
Model is removed, all predictions are made by the Forecasting Model, which, as
discussed earlier, is more easily mislead by noisy values.

Conclusion of the Ablation Study

Our ablation study reveals interesting and somewhat surprising results. We see
that the usefulness of the two GAT layers is highly dependent on the data and

51 6.1. Results on Benchmark Datasets

the nature of its features. Additionally, the Reconstruction Model seems to be
generally of higher importance than the Forecasting Model, possibly because
the former is more robust to noise and perturbation. For MSL and SMAP, the
impact of each core component is less signficant, and both actually achieved a
better performance for a composition of the DNN model where one of the core
components were removed. However, for SMD, we observe that the DNN model
performs considerably worse when any of the core components are removed. The
TDBU dataset shares much more resemblance to SMD than MSL and SMAP,
as it consists of many continuous streams of values that are expected to have
both feature-wise correlations and temporal dependencies. Therefore, we use the
full implementation of our framework when running experiments on the TDBU
data.

6.1.3 Evaluation of the Threshold Selection Model

Table 6.4 shows comparison between the Threshold Selection Model and the
brute-force method that searches through a large number of possible thresholds
(denoted F1best). As the brute-force method picks the threshold with the highest
F1 score, this provides an approximation of the upper performance limit, given
the output from the DNN model. As we can see, the Threshold Selection Model
performs extremely well on MSL, with a F1 score only slightly lower than F1best,
but lies 7.5% and 9.9% below F1best on SMAP and SMD, respectively. Keep in
mind that the brute-force method checks the F1 score for every threshold that it
attempts, something that will never be possible in a real-case scenario. There-
fore, despite the difference in performance for SMAP and SMD, we would say
that the Threshold Selection Model performs reasonably well. Additionally, the
consistently high F1 scores of the brute-force method on all three datasets verifies
that the DNN model is performing very well. However, the difference in perfor-
mance between the Threshold Selection Model and the the Brute-Force Search
demonstrates that the former has room for improvement, and demonstrate that
the thresholding method is a crucial part of an unsupervised anomaly detection
system.

MSL SMAP SMD

F1 using Threshold Selection Model 0.9410±0.0078 0.8679±0.0175 0.8540±0.0209

F1best using Brute-Force Search 0.9542±0.0036 0.9428±0.0201 0.9530±0.0032

Table 6.4: Comparison of Threshold Selection Model versus Brute-Force
Threshold Search. F1 score ± stdev showed.

Chapter 6. Results and Discussion 52

6.2 Results on the Telenor Dataset

In this section we present, visualize and discuss the results from the experiments
performed on the TDBU dataset. As the data is not labeled with ground-truth
anomalies, we evaluate our framework mainly through visual inspection, in addi-
tion to feedback from domain experts. Section 6.2.1 covers the results from our
main experiment. Section 6.2.2 visualizes the learned attention matrices of the
two GAT layers. In subsection 6.2.3 we analyse the effect of transfer learning,
while in subsection 6.2.4 we examine the consequence of combining sectors of the
same site.

6.2.1 Main Experiments results

As explained in subsection 5.2.2, our main experiment consists of employing our
framework on multiple sites. The DNN model forecasts and reconstructs all
input features, and outputs anomaly scores per feature. In turn, these anomaly
scores are fed to the Threshold Selection Model, that predicts anomalies for each
individual feature.

Sudden spikes

Some features in the TDBU dataset represent counters that remains constant for
the vast majority of the time. If these features deviates from their normal value, it
will be detected by our framework, and likely be marked as an anomaly. Figure 6.1
illustrates such a scenario, for the feature unavail unplan nom, which represents
the average number of minutes that the cells in a sector is unavailable during the
hour. The topmost figure shows the forecasted values from the Forecasting Model
(denoted y forecast) and the reconstructed values from the Reconstruction Model
(denoted y recon), along with the actual values of the feature (denoted y true),
while the figure in the middle shows the corresponding anomaly scores (denoted
Error). We visualize the anomalies detected by our framework by shading a small
area around it. The lower figure shows the anomaly scores of unavail unplan nom
on the train set. These are the anomaly scores that are input to the Threshold
Selection Model, which fits a threshold to capture the peaks, and then applies
the fitted threshold to the anomaly scores of the test set.

Such cases may also arise for features that are not necessarily constant most of the
time, but keep within a limited range of values for a period of time. In general,
sudden spikes are likely to be detected by our framework. Figure A.2 illustrates a
few other cases where one or more sudden spikes are marked as anomalies.

53 6.2. Results on the Telenor Dataset

(a) The sudden spike is easily detected by our framework.

(b) All values that exceeds the threshold found by the
Threshold Selection Model are marked as anomalies.

(c) The anomaly scores of the train set are used to set the
threshold, which in turn are applied to the test anomaly

scores.

Figure 6.1: unavail unplan nom.

Anomalies in Complex Temporal Patterns

Sudden spikes that deviate substantially from the majority of values constitute
a relatively easy scenario, for which far less sophisticated methods than ours
are expected to manage. Rather, detecting anomalies in features that express
more complex patterns are of higher interest, but consequently more difficult.
Figure 6.2a is an illustrative example, showing the feature mcdr denom, that
represents the total number of voice-related attempts. We notice that there is a

Chapter 6. Results and Discussion 54

clear weekly trend (five high tops corresponding to each of the weekdays, followed
by two minor ones for the weekend), and that our framework has learned these
temporal patterns very accurately. At first sight, it might seem like our framework
is predicting the leftmost anomalies because of high peaks, something that in this
case would be a false alarm. However, when looking closer (Figure 6.2b), wee see
that the anomalies are actually caused by a sudden drop in the actual value. We
see the same drop for the anomaly in the middle. For the rightmost anomaly, we
observe a clear spike that occurs at an unusual time, and the framework rightfully
triggers an alert. This spike actually corresponds to midnight on Christmas Eve,
which explains the sudden increase in voice-related attempts. In addition, we
observe that the traffic following Christmas Eve deviates from the normal weekly
pattern, but that our model is able to dynamically adapt and continue to predict
accurately.

(a) The temporal patterns are accurately modeled by our
framework. On four occasions does it trigger an anomaly

alert.

(b) Inspection of the the marked area in Figure 6.2a reveal
that these anomalies are caused by an abnormal drop.

Figure 6.2: Illustrating the complex but clear temporal patterns present in
mcdr denom for a particular sector.

It is the time-oriented GAT and the GRU layer that is responsible for learning
time-wise relationships and exploiting temporal patterns to make better forecast-
ings and reconstructions. We note that our model, in general, is doing a good job

55 6.2. Results on the Telenor Dataset

at forecasting and reconstructing values that follow complicated temporal pat-
terns, indicating that the time-oriented GAT and the GRU layer are successfull
in their task. Figure 6.3 shows a few other examples where our framework learns
complex temporal patterns very precisely.

(a) ho denom. No anomalies predicted by our framework.

(b) mcdr denom. Two abnormally high spikes make our
framework trigger anomalies.

Figure 6.3: Examples of features for which our model accurately learns complex
temporal patterns.

Feature-wise Contextual Anomalies

As we have seen, the anomalies our framework detects are caused by abnormal
values in the data itself. However, these anomalies are not necessarily considered
anomalous from a business-perspective. For example, the spike from Figure 6.1
represents a sudden increase in the average number of minutes for which cells
in a sector are unplanned unavailable. From the business-perspective, this may
be acceptable and not even a cause of concern, unless certain other counters
show abnormal behaviour as well. Thus, to decide whether a feature actually
is an anomaly of actual interest, one often needs to take the other features into
account, i.e. one must consider the feature-wise context of an anomaly. In order
to address this, we additionally make our framework extract anomalies that are
aligned across multiple features, illustrated in Figure 6.4. In this example, we

Chapter 6. Results and Discussion 56

see that unavail unplan nom spikes for all three sectors (denoted using 1, 2,
3), something that alone would not be considered an anomaly. However, as

our framework simultaneously detects anomalies for msdr denom, measuring the
number of data-related attempts, and impact nom, measuring the number of
users that received an error message, this should be treated as a true anomaly.
Thus, this is an example of feature-wise contextual anomaly. More examples of
such anomalies can be found in Appendix A.

Failure Cases

Our framework is not perfect, and there will be true anomalies that it fails to de-
tect. One class of anomalies that we found our framework struggling to detect is
time-wise contextual anomalies. These are anomalies that are considered anoma-
lous within a local time window, but otherwise not. The Threshold Selection
Model fits the threshold to the anomaly scores of the training set, and applies
that same threshold to the entire test set. This enables scenarios in which the
threshold is set too high, creating the possibility for true negatives. An example
of this for msdr nom d, representing the number of data-related drops, is shown
in Figure A.3. Because of a few very large spikes in the training set, the Threshold
Selection Model fits a threshold that is higher than desired, causing it to fail to
detect the second spike in the test set. Compared to the entire training set, this
spike is small. However, with respect to the more recent context, it represents
an abnormal value that should have been detected, thus constituting a time-wise
contextual anomaly.

6.2.2 Visualization of the Attention Matrices

To further analyze the impact of the feature-oriented GAT layer and the time-
oriented GAT layer, we extract their attention matrices and visualize the atten-
tion weights.

Temporal Attention

Recall that the attention matrix of the time-oriented GAT layer is an n × n
matrix (n is the size of the input window), where each row represents how much
the values at a timestamp should attend to the values of any other timestamp
(including itself). Figure 6.5 shows the attention weights for the last timestamp
(the bottommost row), when the time-oriented GAT layer was fed with a 1-week
input window (168 hours, same as we used in training). For each of the 168
input timestamps, there is a corresponding attention weight, which represent
how much attendance should be given by the last timestamp to a particular
other timestamp. The rightmost attention weights correspond to the most recent

57 6.2. Results on the Telenor Dataset

Figure 6.4: Example of a feature-wise contextual anomaly, where anomalies are
aligned across multiple features. Individually they are not considered an
anomaly, but together they represent anomalous behavior.

timestamps, while the leftmost correspond to the least recent. This timestamp
correspond to a Thursday at noon. We note that the attention weights are large
for the most recent timestamps, and then spikes in daily pattern, corresponding

Chapter 6. Results and Discussion 58

to 24, 48, etc., hours before the current timestamp. Thus, it seems like the
time-oriented GAT layer is capturing daily patterns and has learned to attend to
timestamps that are similar in terms of the time of the day. Also, what is perhaps
even more impressing, is that the attention weights are lower for the forth and fifth
day prior to the current timestamp, which we know correspond to the weekend
(Saturday and Sunday). The lower part of Figure 6.5 shows mcdr denom for the
same input window, illustrating that the daily patterns of the weekend deviates
from that of the weekdays. This way, we see that the model has learned to not
emphasize weekends when the current timestamp is at weekday. In summary,
these observations leads us to believe that the time-oriented GAT layer can be
highly useful for learning and exploiting temporal dependencies.

Figure 6.5: Top: Illustration of attention weights for the last timestamp of the
attention matrix from the time-oriented GAT layer, when the model is fed with
a 1-week input window (168 hours). Lighter color denotes higher attention
weight. For each of the 168 input timestamps, there is a corresponding
attention weight, which represent how much attendance should be given by the
last timestamp to a particular other timestamp. The rightmost attention
weights correspond to the most recent timestamps, while the leftmost
correspond to the least recent. Bottom: The values of mcdr denom in the
same input window. The last timestamp of the input window corresponds to a
Thursday at noon. We see that the time-oriented GAT layer attends the most
recent timestamps, in addition to timestamps of previous weekdays at the same
time of the day, but also that it has learned not to emphasize weekends, as
weekends do not share the daily patterns of weekdays.

Feature-wise Attention

As described in subsection 5.2.2, we perform experiments on the TDBU dataset
using both the original GAT attention scoring function (which we here denote

59 6.2. Results on the Telenor Dataset

as static) and the GATv2 version proposed by [5] (denoted dynamic). In or-
der to evaluate the two methods, we extract the complete attention matrix of
the feature-oriented GAT layer for both methods, and compare them. This is
illustrated in Figure 6.6, where Figure 6.6a and Figure 6.6b shows the attention
matrix computed using GAT and GATv2, respectively. Recall that the attention
matrix is a k × k matrix (k is the number of features), where row i represents
how much feature i attends to each of the k features (including itself).

By inspecting the static attention matrix in Figure 6.6a, we observe what the at-
tention weights have the same ordering in every row. For example, we see that ev-
ery feature (row) attends the most to ho denom 1, second most to mcdr denom 2,
and third most unavail unplan denom 3. Common to Brody et al. [2021], we
consider this property of the original GAT to be undesirable, as every feature is
prohibited against having an individual ordering of attention weights. Instead,
the expressive power is restricted to the ”sharpness” of the distribution of the
produced attention, i.e. each feature can distribute the attention differently to
different features, but must keep the same ordering. However, for the dynamic
attention in Figure 6.6b, we see that this restriction is not present, yielding richer
attention weights. Using the dynamic attention, each feature can attend as it like
to any other feature, and need not to have the same ordering. By comparison of
the two attention matrices, we conclude that GATv2 constitute a more powerful
graph attention mechanism than the original GAT.

An interesting remark is that the diagonal of the attention matrix, which repre-
sent how much each feature attends to itself, does not tend to be higher than the
rest. Intuitively, this seems unreasonable, as one would expect that a feature’s
own values should be important for forecasting and reconstructing that feature.
However, recall from subsection 4.3.4, that in addition to the output from the
two GAT layers, the GRU layer receives the features (after the 1-D convolution)
directly. Thus, the GRU layer always receives the (almost) unprocessed features,
a fact that might enable the feature-oriented GAT layer to focus on learning at-
tention weights for which the ”self-to-self”-attention weight does not need to be
emphasized.

Figure 6.7 shows one row of the dynamic attention matrix, namely un-
avail unplan nom 3, representing the minutes of which sector three is down (un-
available) for a particular site. From the telco-perspective, unavail unplan nom 3
will typically be correlated with different type of failures, which is reflected in
high attention scores for msdr nom d 3, and ho nom 3, representing the number
of data drops and handover failures in sector three, respectively. Additionally,
it is also shows high attendance to impact nom 3, representing the number of
users that receives error messages, and unavail unplan nom 2, which represents
the same as unavail unplan nom 3, but for sector two. However, other attention

Chapter 6. Results and Discussion 60

(a) Static Attention (Original
GAT)

(b) Dynamic Attention
(GATv2)

Figure 6.6: Comparison of the attention matrix from the feature-oriented GAT
layer, between original GAT and GATv2. Each row represents how much
attendance is given by the source-feature corresponding to the row, to every
other feature (including itself). With original GAT, the ordering of the
attention attention weights is global, unconditioned on the source-feature.
GATv2 does not have this restriction, yielding more expressive attention
weights.

Figure 6.7: Illustration of attention weights for unavail unplan nom 3
(representing the minutes of which sector three is down (unavailable) for a
particular site), extracted from the feature-oriented GAT layer when it was fed
with a particular input window. Lighter colors indicate higher attention weights.

weights are less intuitive, e.g. that there is relatively high attention to the general
data traffic in sector one (msdr denom 1), but not to the unavailability of sec-
tor one (unavail unplan nom 1). By inspecting other examples, we find that it
will often be difficult to draw meaningful insight from certain attention weights,
which reminds us that one should be careful when attributing human intuition to

61 6.2. Results on the Telenor Dataset

the mechanics of neural networks. Neural networks are extremely complex and
there is a reason for why they are commonly referred to as ”black boxes”; it is
difficult to understand why they act the way they do.

6.2.3 Transfer Learning results

Recall from subsection 5.2.2 that the utilization of transfer learning on the TDBU
data was motivated by several factors, namely 1) that combining knowledge from
multiple sites could be beneficial for the model, 2) that it provides significantly
more training data, and 3) that it removes the unpractical requirement of having
to train a separate model for each site. We evaluate its effectiveness by visually
comparing results of the transfer-learned model against the the normal site-based
model. Despite some cases for which the transfer-learned model performed bet-
ter, we found it to provide less accurate reconstruction and forecastings for the
majority of the sites. Figure 6.8 reflects the typical difference in performance
present for most sites. Through discussions with telco domain experts, we know
that there can be large variation in traffic patterns between different sites. As
the transfer-learning model tries to generalize across all sites, it is enforced to
learn more universal dependencies that applies to all sites. Thus, if data from
different sites vary too much, this constitutes a problem for the transfer-learning
model, where it ends up not being able to accurately predict each individual one.
A natural approach for overcoming this problem would be to cluster sites based
on their similarity in traffic patterns, and then apply the transfer-learning model
to sites within the same group. Specifically, this could be achieved by utilizing
clustering algorithms or representational learning techniques [45].

Chapter 6. Results and Discussion 62

(a) Non-transfer learning.

(b) Transfer learning.

Figure 6.8: ho denom. Comparison of transfer learning versus a conventional
site-based trained model.

63 6.2. Results on the Telenor Dataset

6.2.4 Site-based versus Sector-based results

Recall that the purpose of running sector-based experiments was to test our
assumption that feeding the model with data from all three sectors within a site
(in contrast to each sector separately) would provide it with richer information,
enabling it to learn any correlations potentially present between sectors. As
stated in section 5.2.2, we expected the site-based model to perform better for
sites with sectors of similar traffic patterns, but that the sector-based model might
be advantageous for sites where such similarities are missing. In general, we found
the results to meet our expectations. Figure 6.9 illustrates one example in which
the sector-based seems to be performing better. This corresponding site has two
of three sectors pointing towards a populated part of the city, while the last is
directed towards a road. By visual inspection, we observe that the site-based
model has a worse fit, causing it to detect several false positives.

(a) Site-based.

(b) Sector-based.

Figure 6.9: mcdr denom. Comparison of a site-based model trained on all three
sectors and a sector-based model.

In Figure 6.10, we can observe a site-based model which has benefited from
learning from all sectors simultaneously. The site which it has trained on, has
three sectors with highly comparable traffic patterns. The sector-based model has

Chapter 6. Results and Discussion 64

only trained on one sector, and thus it has not benefited from learning the trend
from its neighboring sectors. We can observe that it is attempting to reconstruct
and forecast an anomalous segment, whilst the site-based has drawn advantages
from learning the trend across sectors. This is better visualized in Figure A.1
where all three features, from each sector respectively, is compared in a site-
versus sector-based fashion.

(a) Site-based.

(b) Sector-based.

Figure 6.10: mcdr denom. Comparison of a site-based model trained on all
three sectors and a sector-based model.

These results suggest that combining the sectors of the same site is not necessarily
beneficial, especially if they are not expected to share similar traffic patterns. As
with the transfer learning model, there is an argument to be made for clustering
sectors based on similarity in traffic pattern, and combining sectors within each
group, instead of naively combing those that belong to the same site.

Chapter 7
Conclusion

In this concluding chapter, we provide a short summary of the work that has been
done in this master thesis, as well as giving a few suggestion for future work. The
summary of our findings related to the research questions stated in section 1.2
are addressed in subsection 7.1.1 and subsection 7.1.2, respectively.

7.1 Summary

In this master’s thesis, we have developed and assessed a Spatio-Temporal Graph
Attention Network (STGAT) for unsupervised anomaly detection in the telco do-
main. We verified the effectiveness of our framework by evaluating it on three
benchmark datasets, in which our framework achieved the best F1 score on the
MSL dataset, with a 4% improvement over the best state-of-the-art performance.
By comparison with a brute-force threshold search, we saw that the Threshold
Selection Model performed decent compared to the approximate upper-limit, but
the difference were significant enough to make us realize that a proper threshold
method is of upmost importance in any unsupervised anomaly detection sys-
tem. Additionally, we performed an extensive ablation study with the purpose
of demonstrating the impact of the core components of our model, i.e. the time-
oriented GAT layer, the feature-oriented GAT layer, the Forecasting Model, and
the Reconstruction Model. In general, for MSL and SMAP, each core compo-
nent had little to no impact on the model’s performance. However, for SMD,
that consists of multiple continuous features (in contrast to MSL and SMAP),
we saw a significant decrease in performance when any of the core components

65

Chapter 7. Conclusion 66

were removed.

Further, we employed our framework on the TDBU dataset, a real-world industry
dataset of Key Performance Indicators (KPIs). Our main experiments consisted
of training and testing our framework separately on multiple sites, where data
from each sector had been column-wise concatenated. Through visualizations and
discussions with domain experts, we found our framework to be highly successful
in detecting a wide variety of anomalies, from easily-detected sudden spikes to
anomalies hidden in complex patterns. Also, as our framework detects anomalies
at feature-level, it can output feature-wise contextual anomalies, where anomalies
of multiple features are occurring at the same time. However, we also showed that,
because of the way the Threshold Selection Model works, our model may struggle
to detect time-wise contextual anomalies, i.e. anomalies that are considered
anomalous only within a short window of time.

Besides, we investigated the use of transfer learning with the purpose of obtaining
a generalized model, capable of working across multiple sites. The experiments
showed that the transfer learning model struggled to forecast and reconstruct
accurately, probably because of the fact that sites can have quite different traffic
patterns, making it difficult to generalize well across sites. In addition, we tested
our initial assumption that feeding the model with data from all three sectors
within a site would yield better results than using each sector separately. The
results confirmed our suspicion of that this assumption would only hold for sites
where the sectors has similar traffic patterns.

The overall goal that we wanted our thesis to contribute towards was to develop a
complete, accurate and robust framework for unsupervised anomaly detection in
the telecommunications domain. The aforementioned work of this thesis showed
that our proposed framework, for the most part, is 1) complete, because it is
able to take raw data as input, and output detected anomalies for each input
feature in real-time, 2) accurate, as it is able to accurately detect anomalies
of multiple sorts, and 3) robust, as it performs well across multiple sites, in
addition to being on par with SOTA methods on several benchmark datasets.
However, we experienced that our framework is not flawless. For example, our
framework struggled to detect time-wise contextual anomalies, and the Threshold
Selection Model performed considerably worse than the approximate upper-limit
performance. In our seek to achieve the overall goal, we aimed to study how
Graph Attention Networks (GATs) could be used to model the complex, highly
non-linear relationships expected to be present among the KPIs. We divided our
aim of study into two research questions, which we will address next.

67 7.1. Summary

7.1.1 The first aim of the study

The first aim of the study (Research question 1) was to study how Graph Atten-
tion Networks (GATs) can be used to model inter-feature (spatial) relationships
between the KPIs. In our model, the feature-oriented GAT layer is responsi-
ble for capturing the spatial dependencies. We evaluated the feature-oriented
GAT in primarily two ways. Firstly, through our ablation study, we saw that
our framework’s performance on SMD significantly decreased when removing the
feature-oriented GAT layer. Recall that we focus on SMD, rather than MSL and
SMAP, because the TDBU dataset is fundamentally different from the latter
ones. This result indicate that the feature-oriented GAT could be highly ben-
eficial for data where inter-feature relationships exists. Secondly, we analyzed
the learned attention matrix of the feature-oriented GAT layer, both using the
original attention mechanism of GAT [43], and the newly proposed modifications
of GATv2 [5]. We observed that the original GAT was only able to compute a
restricted kind of attention where the ranking of attended nodes is global across
all nodes. Using GATv2, however, this limitation is removed, making it strictly
more expressive than the original GAT. By inspecting individual rows of the
attention matrix, we observed that feature-oriented GAT layer had learned rela-
tionships that seem intuitive from a telco-domain perspective. However, we also
found several examples that lacked such intuitive characteristics. In summary, we
found the feature-oriented GAT layer to be beneficial for modeling dependencies
between KPIs, but that it can be difficult to draw meaningful insights from the
learned attention matrix.

7.1.2 The second aim of the study

The second aim of the study (Research question 2) was to study whether Graph
Attention Networks (GATs) additionally could be utilized to capture and exploit
temporal dependencies of the KPIs. In our model, the time-oriented GAT layer
is responsible for capturing the temporal dependencies. We evaluated the time-
oriented GAT layer in the same way as we evaluated the feature-oriented GAT
layer. In our ablation study, we saw that the time-oriented GAT layer had a large
positive impact on the performance of our framework on SMD. Additionally, when
analyzing its learned attention matrix, we found that it had learned to capture
complex temporal patterns, which also seemed to be intuitive from the telco-
domain perspective. In summary, we found the time-oriented GAT layer to be
successful in its task of capturing and exploiting temporal dependencies present
in the KPIs. However, we would like to analyse its effect even more. As stated
earlier, deep neural networks typically model temporal dependencies through a
recurrent neural network, such as GRU or LSTM, and the role of the GRU layer
in our model is in fact to capture long temporal patterns. Therefore, it would be

Chapter 7. Conclusion 68

interesting to see how our model would perform if the GRU layer was removed
completely, effectively leaving more of the temporal dependencies to be modeled
by the time-oriented GAT layer.

7.2 Future Work

Anomaly detection remains an active field of research, and we expect to witness
several breakthroughs in the time to come. We consider there to be several inter-
esting approaches that could serve as a natural progression of this work. Firstly,
the use of other thresholding methods could be explored. For example, Peaks-
Over-Threshold (POT)[39] is a method originating from Extreme Value Theory
(EVL) that has become popular in recent research [48] [15] [40]. Secondly, explor-
ing other implementations of the Reconstruction Model could be considered. We
implemented it as a single-layered GRU, but recent research has shown success
using other architectures, e.g. Variatonal Auto-Encoders (VAEs) [48] and Gen-
erative Adversarial Networks (GANs) [23]. Thirdly, GATs constitute a relatively
new research area, and is constantly evolving. For example, we recognized in [5]
that the original GAT has limitations which restricts its expressive power. Thus,
the mechanisms of graph attention could be further explored.

Alternatively, other deep-learning attention approaches could be investigated. In
recent years, the Transformer [42] is an attention mechanism that has emerged
as the preferable choice when faced with the challenge of sequence modeling and
forecasting, due to its capability of capturing long-term contextual information as
well as its parallel efficiency. Chen et al. [2021] proposed GTA; Graph Learning
With Transformer for Anomaly Detection, which automatically learns a graph
structure followed by graph convolutions, and utilizes a Transformer-based archi-
tecture for modeling the temporal dependencies.

When it comes to the telco-domain, we believe one should explore other ways
of making the model capturing spatial relationships between sectors and sites.
So far, we have incorporated geographically spatial information by concatenating
KPIs of sectors within the same site, and then making the model learn attention
weights between all these KPIs. As suggested previously, instead of combining
sectors of the same site, one could consider clustering sectors based on their sim-
ilarity in traffic patterns, using clustering algorithms or representational learning
techniques. This could also make transfer learning more effective, possibly im-
proving the the performance of a generalized model that works across multiple
sites. However, the model would still be restricted to only learning correlations
between sectors in the same cluster as the model computes attention weights be-
tween every pair of KPIs, and the dimension of the attention mechanism grows
by the number of KPIs for each sector included, this is a rather computationally

69 7.2. Future Work

expensive approach. Additionally, if including numerous sectors (e.g. 5 or 10), it
might become implausible to model the correlation between every pair of KPIs.
A way to address this would be to model the graph at a higher level, similar to
what was proposed by Cirstea et al. [2021]. In our case, this could be to e.g.
model each sector as a node in the graph. Compared to the methodology of this
thesis, each node would go from representing an individual KPI of a sector, to
representing a complete sector with all its KPIs serving as the features of the
node. In this way, the attention weights are computed between sectors, rather
than between KPIs, which would enable the model itself to learn which sectors
that are correlated.

Bibliography

[1] S. Ahmad, Alexander Lavin, S. Purdy, and Zuha Agha. Unsupervised real-
time anomaly detection for streaming data. Neurocomputing, 262:134–147,
2017.

[2] Fabrizio Angiulli and Clara Pizzuti. Fast outlier detection in high dimen-
sional spaces. volume 2431, pages 15–26, 08 2002. ISBN 978-3-540-44037-6.
doi: 10.1007/3-540-45681-3 2.

[3] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine
translation by jointly learning to align and translate. CoRR, abs/1409.0473,
2015.

[4] Markus Breunig, Hans-Peter Kriegel, Raymond Ng, and Joerg Sander. Lof:
Identifying density-based local outliers. volume 29, pages 93–104, 06 2000.
doi: 10.1145/342009.335388.

[5] Shaked Brody, Uri Alon, and Eran Yahav. How attentive are graph attention
networks?, 2021.

[6] Robert B. Burns and Clifford B. Dobson. Transfer of learning (training),
pages 345–357. Springer Netherlands, Dordrecht, 1984. ISBN 978-94-011-
6279-1. doi: 10.1007/978-94-011-6279-1 9. URL https://doi.org/10.

1007/978-94-011-6279-1_9.

[7] Sucheta Chauhan and Lovekesh Vig. Anomaly detection in ecg time signals
via deep long short-term memory networks. In 2015 IEEE International
Conference on Data Science and Advanced Analytics (DSAA), pages 1–7,
2015. doi: 10.1109/DSAA.2015.7344872.

71

https://doi.org/10.1007/978-94-011-6279-1_9
https://doi.org/10.1007/978-94-011-6279-1_9

Bibliography 72

[8] Zekai Chen, Dingshuo Chen, Zixuan Yuan, Xiuzhen Cheng, and Xiao Zhang.
Learning graph structures with transformer for multivariate time series
anomaly detection in iot, 2021.

[9] Jianpeng Cheng, Li Dong, and Mirella Lapata. Long short-term memory-
networks for machine reading. In Proceedings of the 2016 Conference
on Empirical Methods in Natural Language Processing, pages 551–561,
Austin, Texas, November 2016. Association for Computational Linguistics.
doi: 10.18653/v1/D16-1053. URL https://www.aclweb.org/anthology/

D16-1053.

[10] Kyunghyun Cho, Bart van Merrienboer, Çaglar Gülçehre, Fethi Bougares,
Holger Schwenk, and Yoshua Bengio. Learning phrase representations
using RNN encoder-decoder for statistical machine translation. CoRR,
abs/1406.1078, 2014. URL http://arxiv.org/abs/1406.1078.

[11] Razvan-Gabriel Cirstea, Chenjuan Guo, and Bin Yang. Graph attention
recurrent neural networks for correlated time series forecasting – full version,
2021.

[12] Jonas Gehring, Michael Auli, David Grangier, Denis Yarats, and Yann
Dauphin. Convolutional sequence to sequence learning. 05 2017.

[13] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David
Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Gen-
erative adversarial networks, 2014.

[14] Michael A. Hayes and Miriam A.M. Capretz. Contextual anomaly detection
in big sensor data. In 2014 IEEE International Congress on Big Data, pages
64–71, 2014. doi: 10.1109/BigData.Congress.2014.19.

[15] Q. He, Y. Zheng, C.L. Zhang, and H. Wang. Mtad-tf: Multivariate time
series anomaly detection using the combination of temporal pattern and
feature pattern. Complexity, 2020:1–9, 10 2020. doi: 10.1155/2020/8846608.

[16] Sepp Hochreiter and JÃ¼rgen Schmidhuber. Long short-term memory. Neu-
ral Computation, 9(8):1735–1780, 1997. doi: 10.1162/neco.1997.9.8.1735.
URL http://dx.doi.org/10.1162/neco.1997.9.8.1735.

[17] Kyle Hundman, Valentino Constantinou, Christopher Laporte, Ian Colwell,
and Söderström. Detecting spacecraft anomalies using lstms and nonpara-
metric dynamic thresholding. Proceedings of the 24th ACM SIGKDD Inter-
national Conference on Knowledge Discovery Data Mining. doi: 10.1145/
3219819.3219845. URL http://dx.doi.org/10.1145/3219819.3219845.

https://www.aclweb.org/anthology/D16-1053
https://www.aclweb.org/anthology/D16-1053
http://arxiv.org/abs/1406.1078
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1145/3219819.3219845

73 Bibliography

[18] Dino Ienco and Roberto Interdonato. Deep multivariate time series embed-
ding clustering via attentive-gated autoencoder. In Hady W. Lauw, Ray-
mond Chi-Wing Wong, Alexandros Ntoulas, Ee-Peng Lim, See-Kiong Ng,
and Sinno Jialin Pan, editors, Advances in Knowledge Discovery and Data
Mining, pages 318–329, Cham, 2020. Springer International Publishing.

[19] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic opti-
mization, 2017.

[20] Thomas N. Kipf and Max Welling. Semi-Supervised Classification with
Graph Convolutional Networks. In Proceedings of the 5th International
Conference on Learning Representations, ICLR ’17, 2017. URL https:

//openreview.net/forum?id=SJU4ayYgl.

[21] John Kolen and Stefan Kremer. A Field Guide to Dynamical Recurrent
Neural Networks. 01 2001. ISBN 978-0-7803-5369-5.

[22] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature,
521(7553):436–444, 2015. doi: 10.1038/nature14539. URL https://doi.

org/10.1038/nature14539.

[23] Dan Li, Dacheng Chen, Lei Shi, Baihong Jin, Jonathan Goh, and See-Kiong
Ng. Mad-gan: Multivariate anomaly detection for time series data with
generative adversarial networks, 2019.

[24] Andrew L. Maas, Awni Y. Hannun, and Andrew Y. Ng. Rectifier nonlin-
earities improve neural network acoustic models. In in ICML Workshop on
Deep Learning for Audio, Speech and Language Processing, 2013.

[25] Pankaj Malhotra, Lovekesh Vig, Gautam Shroff, and Puneet Agarwal. Long
short term memory networks for anomaly detection in time series. 04 2015.

[26] Pankaj Malhotra, Anusha Ramakrishnan, Gaurangi Anand, Lovekesh Vig,
Puneet Agarwal, and Gautam Shroff. Lstm-based encoder-decoder for multi-
sensor anomaly detection, 2016.

[27] Peggy O’Neill, Dara Entekhabi, Eni Njoku, and Kent Kellogg. The nasa soil
moisture active passive (smap) mission: Overview. In 2010 IEEE Interna-
tional Geoscience and Remote Sensing Symposium, pages 3236–3239, 2010.
doi: 10.1109/IGARSS.2010.5652291.

[28] Guansong Pang, Chunhua Shen, Longbing Cao, and Anton van den Hengel.
Deep learning for anomaly detection: A review. CoRR, abs/2007.02500,
2020. URL https://arxiv.org/abs/2007.02500.

https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=SJU4ayYgl
https://doi.org/10.1038/nature14539
https://doi.org/10.1038/nature14539
https://arxiv.org/abs/2007.02500

Bibliography 74

[29] Daehyung Park, Yuuna Hoshi, and Charles C. Kemp. A multimodal anomaly
detector for robot-assisted feeding using an lstm-based variational autoen-
coder, 2017.

[30] Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On the difficulty of
training recurrent neural networks, 2013.

[31] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Brad-
bury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein,
Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zachary De-
Vito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative
style, high-performance deep learning library. In H. Wallach, H. Larochelle,
A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances
in Neural Information Processing Systems 32, pages 8024–8035. Curran As-
sociates, Inc., 2019.

[32] Hansheng Ren, Bixiong Xu, Yujing Wang, Chao Yi, Congrui Huang, Xiaoyu
Kou, Tony Xing, Mao Yang, Jie Tong, and Qi Zhang. Time-series anomaly
detection service at microsoft. Proceedings of the 25th ACM SIGKDD Inter-
national Conference on Knowledge Discovery Data Mining, Jul 2019. doi:
10.1145/3292500.3330680. URL http://dx.doi.org/10.1145/3292500.

3330680.

[33] Md. Shiblee Sadik and Le Gruenwald. Research issues in outlier detection for
data streams. ACM SIGKDD Explorations Newsletter, 15:33–40, 03 2014.
doi: 10.1145/2594473.2594479.

[34] C. D. Santos and M. Gatti. Deep convolutional neural networks for sentiment
analysis of short texts. In COLING, 2014.

[35] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and
Gabriele Monfardini. The graph neural network model. IEEE Transactions
on Neural Networks, 20(1):61–80, 2009. doi: 10.1109/TNN.2008.2005605.

[36] Andrew W. Senior, Richard Evans, John Jumper, James Kirkpatrick, Lau-
rent Sifre, Tim Green, Chongli Qin, Augustin Ž́ıdek, Alexander W. R.
Nelson, Alex Bridgland, Hugo Penedones, Stig Petersen, Karen Simonyan,
Steve Crossan, Pushmeet Kohli, David T. Jones, David Silver, Koray
Kavukcuoglu, and Demis Hassabis. Improved protein structure predic-
tion using potentials from deep learning. Nature, 577(7792):706–710, Jan
2020. ISSN 1476-4687. doi: 10.1038/s41586-019-1923-7. URL https:

//doi.org/10.1038/s41586-019-1923-7.

http://dx.doi.org/10.1145/3292500.3330680
http://dx.doi.org/10.1145/3292500.3330680
https://doi.org/10.1038/s41586-019-1923-7
https://doi.org/10.1038/s41586-019-1923-7

75 Bibliography

[37] Dominique T. Shipmon, Jason M. Gurevitch, Paolo M. Piselli, and
Stephen T. Edwards. Time series anomaly detection; detection of anoma-
lous drops with limited features and sparse examples in noisy highly periodic
data, 2017.

[38] M. Shyu, S. Chen, Kanoksri Sarinnapakorn, and L. Chang. A novel anomaly
detection scheme based on principal component classifier. 2003.

[39] Alban Siffer, Pierre-Alain Fouque, Alexandre Termier, and Christine
Largouet. Anomaly detection in streams with extreme value theory. In Pro-
ceedings of the 23rd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD ’17, pages 1067–1075, New York, NY,
USA, 2017. Association for Computing Machinery. ISBN 9781450348874.
doi: 10.1145/3097983.3098144. URL https://doi.org/10.1145/3097983.

3098144.

[40] Ya Su, Youjian Zhao, Chenhao Niu, Rong Liu, Wei Sun, and Dan Pei.
Robust anomaly detection for multivariate time series through stochastic
recurrent neural network. In Proceedings of the 25th ACM SIGKDD In-
ternational Conference on Knowledge Discovery amp; Data Mining, KDD
’19, pages 2828–2837, New York, NY, USA, 2019. Association for Comput-
ing Machinery. ISBN 9781450362016. doi: 10.1145/3292500.3330672. URL
https://doi.org/10.1145/3292500.3330672.

[41] Chuanqi Tan, Fuchun Sun, Tao Kong, Wenchang Zhang, Chao Yang, and
Chunfang Liu. A survey on deep transfer learning, 2018.

[42] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you
need, 2017.

[43] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero,
Pietro Liò, and Yoshua Bengio. Graph attention networks, 2018.

[44] Paul Werbos. Backpropagation through time: what it does and how to do
it. Proceedings of the IEEE, 78:1550 – 1560, 11 1990. doi: 10.1109/5.58337.

[45] Lirong Wu, Zicheng Liu, Zelin Zang, Jun Xia, Siyuan Li, and Stan. Z Li.
Deep clustering and representation learning with geometric structure preser-
vation, 2021.

[46] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang,
and Philip S. Yu. A comprehensive survey on graph neural networks. IEEE
Transactions on Neural Networks and Learning Systems, 32(1):4–24, 2021.
doi: 10.1109/TNNLS.2020.2978386.

https://doi.org/10.1145/3097983.3098144
https://doi.org/10.1145/3097983.3098144
https://doi.org/10.1145/3292500.3330672

Bibliography 76

[47] Haowen Xu, Yang Feng, Jie Chen, Zhaogang Wang, Honglin Qiao, Wenxiao
Chen, Nengwen Zhao, Zeyan Li, Jiahao Bu, Zhihan Li, and et al. Unsu-
pervised anomaly detection via variational auto-encoder for seasonal kpis in
web applications. Proceedings of the 2018 World Wide Web Conference on
World Wide Web - WWW â18, 2018. doi: 10.1145/3178876.3185996. URL
http://dx.doi.org/10.1145/3178876.3185996.

[48] Hang Zhao, Yujing Wang, Juanyong Duan, Congrui Huang, Defu Cao, Yun-
hai Tong, Bixiong Xu, Jing Bai, Jie Tong, and Qi Zhang. Multivariate
time-series anomaly detection via graph attention network, 2020.

[49] Fuzhen Zhuang, Zhiyuan Qi, Keyu Duan, Dongbo Xi, Yongchun Zhu, Heng-
shu Zhu, Hui Xiong, and Qing He. A comprehensive survey on transfer
learning, 2020.

[50] Bo Zong, Qi Song, Martin Renqiang Min, Wei Cheng, Cristian Lumezanu,
Daeki Cho, and Haifeng Chen. Deep autoencoding gaussian mixture
model for unsupervised anomaly detection. In International Conference on
Learning Representations, 2018. URL https://openreview.net/forum?

id=BJJLHbb0-.

http://dx.doi.org/10.1145/3178876.3185996
https://openreview.net/forum?id=BJJLHbb0-
https://openreview.net/forum?id=BJJLHbb0-

Appendix A
Figures, Tables and Listings

Figure A.1: Sector-wise comparison between a site-based and sector-based
model. The row number indicates sector number. Left: Site-based model
results. Right: Sector-based model results. Green is ground truth, blue is
reconstruction and orange is forecasting.

77

Appendix A. Figures, Tables and Listings 78

(a) msdr nom s

(b) mcdr denom

(c) ho denom

Figure A.2: Examples of sudden spikes that our framework detects as anomalies.

79

(a) Forecasts and reconstructions for the training set.

(b) Train anomaly scores. The large values of the rightmost
anomaly scores causes the Threshold Selection Model to

select a high threshold.

(c) Forecasts and reconstructions for the test set. The
smaller second spike is not detected.

(d) Test anomaly scores. From the anomaly scores we see
that the second spike is just below the threshold.

Figure A.3: A failure case for our framework where the second spike in the test
set is not marked as an anomaly.

Appendix A. Figures, Tables and Listings 80

(a) Static Attention (Original GAT)

(b) Dynamic Attention (GATv2)

Figure A.4: Comparison of the attention matrix from the feature-oriented GAT
layer, between original GAT and GATv2.

81

Figure A.5: Example of a feature-wise contextual anomaly, where anomalies are
aligned across multiple features. Individually they are not considered an
anomaly, but together they represent anomalous behavior.

Appendix A. Figures, Tables and Listings 82

Figure A.6: Another example of feature-wise contextual anomalies detected by
our framework.

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

Axel Ø. Harstad & William E. G. Kvaale

Spatio-Temporal Graph Attention
Network for Anomaly Detection
in the Telco Domain

Master’s thesis in Computer Science
Supervisor: Massimiliano Ruocco
Co-supervisor: Sara Malacarne & Claudio Gallicchio

June 2021

M
as

te
r’s

 th
es

is

	Introduction
	Motivation
	Goals and Research Questions
	Contributions
	Project Structure

	Background and Theory
	Anomaly Detection
	Deep Learning
	Activation Functions

	Recurrent Neural Networks
	Backpropagation Through Time (BPTT)
	Vanishing and Exploding Gradients
	Long Short-Term Memory (LSTM)
	Gated Recurrent Unit (GRU)

	Graph Neural Networks
	Motivation
	Definitions
	Message Passing
	k-hop Neighbourhood

	The Basic GNN
	Message Passing with Self-loops
	Neighbourhood Normalization
	Graph Convolutional Networks (GCN)
	Graph Convolution using the Adjacency Matrix

	Graph Attention Networks (GAT)

	State Of The Art
	Forecasting-based Models
	Reconstruction-based Models
	Combination-based Models

	Methodology
	Problem Formulation
	Framework Overview
	DNN Model
	1-D Temporal Convolution
	Feature-oriented Graph Attention Layer
	Time-oriented Graph Attention Layer
	GRU for Long-Term Temporal Dependencies
	Forecasting Model
	Reconstruction Model
	Joint Optimization & Anomaly Score

	Threshold Selection Model
	Non-Parametric Thresholding

	Experimental Setup
	Datasets
	MSL, SMAP & SMD
	Telenor Dataset
	Overview
	Feature Engineering

	Feature-wise Normalization

	Experimental Plan
	Experiments on the Benchmark Datasets
	Ablation Study
	Evaluating the Threshold Selection Model

	Experiments on the Telenor Dataset
	Main Experiments
	Transfer Learning
	Site-based versus Sector-based
	GATv2: Dynamic Attention

	Evaluation Details

	Results and Discussion
	Results on Benchmark Datasets
	Comparison with SOTA
	Ablation Study
	The impact of the feature-oriented GAT layer
	The impact of the time-oriented GAT layer
	The impact of the Forecasting Model
	The impact of the Reconstruction Model
	Conclusion of the Ablation Study

	Evaluation of the Threshold Selection Model

	Results on the Telenor Dataset
	Main Experiments results
	Sudden spikes
	Anomalies in Complex Temporal Patterns
	Feature-wise Contextual Anomalies
	Failure Cases

	Visualization of the Attention Matrices
	Temporal Attention
	Feature-wise Attention

	Transfer Learning results
	Site-based versus Sector-based results

	Conclusion
	Summary
	The first aim of the study
	The second aim of the study

	Future Work

	Figures, Tables and Listings

