
Automating Virtual Patching via
Application Security Testing Tools

July 2021M
as

te
r's

 th
es

is

M
aster's thesis

Kyle Richard Orlando

2021
Kyle Richard Orlando

NT
NU

N
or

w
eg

ia
n

Un
iv

er
si

ty
 o

f
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

Fa
cu

lty
 o

f I
nf

or
m

at
io

n
Te

ch
no

lo
gy

 a
nd

 E
le

ct
ric

al
En

gi
ne

er
in

g
De

pa
rt

m
en

t o
f C

om
pu

te
r S

ci
en

ce

Automating Virtual Patching via
Application Security Testing Tools

Kyle Richard Orlando

Informatics
Submission date: July 2021
Supervisor: Jingyue Li
Co-supervisor:

Norwegian University of Science and Technology
Department of Computer Science

Automating Virtual Patching via Application
Security Testing Tools

Kyle Richard Orlando

July 9, 2021

Abstract

Web Application Firewalls (WAFs) have become increasingly popular as a result
of organizations’ need to protect their web applications and services. One useful
approach to WAF configuration is called virtual patching, in which one or more
WAF rules act to quickly mitigate a security vulnerability that has not yet been
addressed in the web application’s source code. However, virtual patches tend to
require a lot of manual configuration, which can become a serious security is-
sue itself when done improperly. In this thesis, automating virtual patch creation
via dynamic and static application security testing methods is explored. A utility
called VPgen is developed that facilitates taking the output from state-of-the-art
dynamic and static analysis tools and transforming it into rules and directives that
can be interpreted by a WAF. The effectiveness of this approach in virtually patch-
ing two different vulnerable web applications is assessed and compared against
ModSecurity deployed with its Core Rule Set. The results show that in addition to
reducing configuration time, automating virtual patching via application security
testing can reduce the number of false positives.

iii

Sammendrag

Webapplikasjonsbrannmurer (WAF) har blitt stadig mer populært som et resultat
av organisasjoners behov for å beskytte webapplikasjonene og tjenestene deres.
En nyttig tilnærming til WAF-konfigurasjon kalles virtuell patching, hvor en eller
flere WAF-regler raskt reduserer virkningene av et sikkerhetsproblem som ikke har
blitt håndtert i applikasjonens kildekode. Men virtuell patching har en tendens til
å kreve mye manuell konfigurasjon som kan bli et alvorlig sikkerhetsproblem der-
som det gjøres feil. I denne oppgaven utforskes automatisk opprettelse av virtuell
patcher ved hjelp av dynamiske og statiske metoder for sikkerhetstesting av ap-
plikasjoner. En del av denne masteroppgaven har vært å utvikle et verktøy kalt
VPgen som legger til rette for å omforme resultatet av state-of-the-art dynamiske
og statiske analyseverktøy til regler og direktiver som kan tolkes av en WAF. Ef-
fektiviteten av denne tilnærmingen til virtuell patching av to ulike sårbare webap-
plikasjoner blir vurdert og sammenlignet med ModSecurity, med dens Core Rule
Set. Resultatene viser at i tillegg til å redusere konfigurasjonstiden kan automatisk
virtuell patching, ved hjelp av sikkerhetstesting av applikasjoner, redusere antall
falske positiver.

v

Acknowledgement

I would first like to thank my advisor, Associate Professor Jingyue Li of the Depart-
ment of Computer Science at the Norwegian University of Science of Technology
NTNU. Professor Li was very flexible, supportive of, and patient with me through-
out the entire thesis process, and for that I am very grateful. I should also mention
that Professor Li was the one to originally propose web application firewalls as a
potential research topic. This was a welcome relief since I initially could not make
up my mind on which software security-related matter to pursue.

I would also like to thank Even Kronen Johansen, who has also delivered a
thesis concerning improvements to web application firewalls. We were able to to
bounce many ideas off of one another, and even though we ultimately decided to
produce separate theses, the discussions we had while working together ended
up being crucial. I only regret that due to the pandemic, we were never able to
actually meet in person.

Additionally, I need to thank Henrik, Michael, Torstein, and my girlfriend Aly
for the useful advice and proofreading they provided near the end of the writing
process.

Finally, I would like to thank my parents for supporting me and enduring my
endless ramblings and pacing as I worked hard to complete my research.

Sincerely,
Kyle Richard Orlando

vii

Contents

Abstract . iii
Sammendrag . v
Acknowledgement . vii
Contents . ix
Figures . xi
Tables . xiii
Code Listings . xv
Acronyms . xvii
1 Introduction . 1

1.1 Context . 1
1.2 Research Contributions . 2
1.3 Thesis Outline . 2

2 Background . 3
2.1 Critical Web Security Vulnerabilities . 3

2.1.1 Rankings and Categorizations 3
2.1.2 Specific Vulnerabilities . 5

2.2 Web Application Firewalls . 8
2.2.1 Implementation Types . 8
2.2.2 Security Models . 9
2.2.3 Popular WAFs . 9
2.2.4 ModSecurity . 10
2.2.5 Virtual Patching . 12
2.2.6 Evasion Strategies . 13

2.3 Application Security Testing . 13
2.3.1 Static Application Security Testing 14
2.3.2 Dynamic Application Security Testing 15
2.3.3 Automatic Exploit Generation 16

3 Related Works . 17
3.1 Multivocal Literature Review . 17

3.1.1 WAF Strengths and Weaknesses 17
3.2 Virtual Patching . 20
3.3 Automatic WAF Repair . 21
3.4 Machine Learning and AI-driven WAFs 22

3.4.1 Improving Detection of Attacks 22

ix

x K. Orlando: Automating Virtual Patching

3.5 Automatic Fixing of Vulnerabilities . 22
4 Methodology . 23

4.1 Research Motivation . 23
4.2 Research Questions . 24
4.3 Research Method and Design . 24

4.3.1 Research Strategy . 24
4.3.2 Data Generation and Analysis 25

4.4 Research Implementation . 26
4.4.1 Selection of the WAF . 26
4.4.2 Selection of Attack Detection WAF Rules 27
4.4.3 Selection of DAST Tools . 28
4.4.4 Selection of SAST Tools . 29
4.4.5 Selection of Vulnerable Web Applications 29
4.4.6 Selection of Security Vulnerabilities 30
4.4.7 Implementation of VPgen . 30

4.5 Evaluation Design . 34
4.5.1 Setup . 34

5 Results . 39
5.1 Vulnerability Testing . 39

5.1.1 Rule Engine Disabled . 39
5.1.2 Only Core Rule Set Enabled . 39
5.1.3 DAST-driven Virtual Patching 40
5.1.4 SAST-driven Virtual Patching 40

5.2 Targeted Fuzzing . 41
5.2.1 DVWA Results . 41
5.2.2 WackoPicko Results . 41

6 Discussion . 43
6.1 Comparison to Related Works . 43
6.2 Implications to academia . 44

6.2.1 String Constraint Solvers in WAFs 44
6.2.2 NAVEX . 44

6.3 Implications to Industry . 45
6.3.1 Rule Generation Based on Commonly Used Tools 45

6.4 Limitations . 45
6.4.1 Negated SecRule Targets are Hardcoded 45
6.4.2 Application Security Testing Tools Miss Vulnerabilities 45

7 Conclusion . 47
7.1 Conclusion . 47
7.2 Future Work . 47

Bibliography . 49

Figures

2.1 Gartner WAF 2020 . 10

3.1 MLR Question . 17
3.2 A figure from [32] that depicts attack decompositions, their en-

codings, and a derived decision tree. clz refers to the pass/block
classification. 21

4.1 High-level design of VPgen . 25
4.2 VM configuration for experiments. The headless black lines rep-

resent connections. The colored directional lines represent HTTP
requests/responses. 35

4.3 An in-depth depiction of how a VirtualBox NAT network operates.
Image created by Nakivo [104]. 36

xi

Tables

2.1 2020 CWE Top 25 [11] . 6

3.1 Successful attacks against WAFs categorized by OWASP Top 10 -
2017. 19

3.2 Number of papers that pertain to each OWASP Top 10 - 2017 category. 19
3.3 Number of papers that pertain to each WAF. 20

4.1 A mapping of OWASP ZAP alert types to OWASP CRS rule set files. 31
4.2 A mapping of OWASP ZAP alert types to OWASP CRS rule set files. 32

5.1 The number of vulnerabilities discovered when scanning an appli-
cation with a disabled ModSecury rule engine. 39

5.2 Number of vulnerabilities discovered when scanning an application
with just the CRS enabled . 40

5.3 Number of vulnerabilities discovered when scanning an application
that has been virtually patched via a previous run of ZAP 40

5.4 Number of vulnerabilities discovered when scanning an application
that has been virtually patched via a previous run of Wapiti 41

5.5 Number of vulnerabilities discovered when scanning an application
that has been virtually patched via Navex 41

5.6 Number of legitimate requests blocked (false positives) per para-
noia level for DVWA . 42

5.7 Number of legitimate requests blocked (false positives) per para-
noia level for WackoPicko . 42

xiii

Code Listings

4.1 CRS Rule Files . 27
4.2 Example of an XSS Rule . 28
4.3 Excerpt from an OWASP ZAP report where DVWA was the target

application. 30
4.4 Excerpt from a Wapiti report where DVWA was the target application. 31
4.5 A location-specific context created by VPgen for the running example. 33
4.6 Configure-time updates of rule targets created by VPgen for the

running example. 33
4.7 Complete virtual patch generated by VPgen for a SQLi vulnerability

in DVWA . 34
4.8 Wapiti commands for attacking DVWA. 37

xv

Acronyms

AST Abstract Syntax Tree. 14, 15

CFG Control Flow Graph. 14, 15

CRS Core Rule Set. xiii, 12, 20, 22, 27, 28, 30, 31, 34, 39, 40, 45

DAST Dynamic Application Security Testing. 13, 15, 20, 25, 26, 28, 39–41,
45, 47

FI File Inclusion. 7, 8, 30

IAST Interactice Application Security Testing. 13, 14

LFI Local File Inclusion. 7, 32

LFI/RFI Local File Inclusion/Remote File Inclusion. 18

MLR Multivocal Literature Review. 17

NAT Network Address Translation. 35

OWASP Open Web Application Security Project. 3, 12, 14, 15, 27–29

PDG Program Dependency Graph. 14, 15

RASP Runtime Application Self-Protection. 13, 14

RCE Remote Command Execution. 30

RFI Remote File Inclusion. 7, 32

SaaS Software as a service. 8

SAST Static Application Security Testing. 13–15, 25, 26, 40, 43, 45, 47

SMT Satisfiability Modulo Theories. 15, 44

SQLi SQL Injection. xv, 5, 8, 21, 22, 24, 28, 30, 34, 37, 41, 47

VM Virtual Machine. xi, 34–36

WAF Web Application Firewall. 1–3, 8–10, 12, 13, 17, 18, 21–27, 35, 43, 44,
48

xvii

xviii K. Orlando: Automating Virtual Patching

XSS Cross Site Scripting. 7, 8, 22, 24, 30, 39

ZAP Zed Attack Proxy. 29

Chapter 1

Introduction

1.1 Context

The COVID-19 pandemic and its world-wide disruptions has led to a major up-
heaval in terms of how people conduct business. According to surveys conducted
by Pew Research, the percentage of Americans working from home increased from
20% before the outbreak to 71% by October 2020 [1]. This has caused a rapid in-
crease in demand for enterprise cloud services. In Q3 of 2020, enterprise spend-
ing on cloud infrastructure services had reached $65 billion, which was a 28%
increase from the Q3 of 2019 [2]. Between December 2019 and June 2020, orga-
nizations worldwide increased their cloud workload by 20%. Unfortunately, this
also appears to correspond to an increase in cloud security incidents. Retail, manu-
facturing, and government sectors have seen an increase in the number of security
incidents of 402%, 230%, 205% respectively [3].

An organization can mitigate these types of incidents by using some type of
an intrusion detection and prevention system, such as a Web Application Firewall
(WAF). WAFs can be particularly useful when the vulnerability is on the cloud
provider’s side, which renders the customer unable to identify and fix the vulner-
ability in the source code. However, manually configuring a WAF can lead to errors
and security incidents itself. In 2019, a CloudFlare outage was caused by the addi-
tion of a new rule that added "a regular expression that backtracked enormously
and exhausted CPU used for HTTP/HTTPS serving" [4]. Palo Alto Networks dis-
covered "that 65% of publicly disclosed security incidents in the cloud were the
result of customer misconfigurations" [5]. This signifies the need for robust auto-
matic configuration of security controls.

Much of the existing academic research into WAFs focuses on improving at-
tacks for/defenses against various types of injection vulnerabilities. Less focus has
been on the automatic generation, configuration, and/or repair of WAFs. In addi-
tion, for many of the WAF approaches developed, the underlying web application
is treated as a sort of blackbox, and as such the WAF cannot be specifically tai-
lored. Although this has the benefit that the WAF is decoupled from the underlying
application, this one-size-fits-all approach could lead to increased false positives

1

2 K. Orlando: Automating Virtual Patching

(i.e., blocked legitimate requests) [6] and reduced performance [7].

1.2 Research Contributions

This thesis will investigate how a WAF can be automatically configured and tai-
lored to a specific web application, which can also be called automatic or auto-
mated virtual patching. A tool called VPgen will be designed, created, and eval-
uated. It takes as input a vulnerability report generated by a security analysis
tool for a vulnerable web application, and it outputs a list of rules. These rules
correspond to and protect the vulnerable resources and parameters of the web
application. This approach will be evaluated by setting up the WAF with the gen-
erated rules and attacking it with both malicious and benign requests. The same
will be repeated for the WAF configured with a standard rule set, and the results
will be compared.

More specifically, the following contributions are made:

1. A novel approach to virtual patching that leverages an existing ruleset and
popular application security testing techniques and tools

2. A tool that can take a vulnerability report from one of several different scan-
ners, process it, and output virtual patches, i.e., specially tailored WAF rules

3. Improvements/fixes to an existing state-of-the-art static analysis tool in or-
der to facilitate virtual patch generation

1.3 Thesis Outline

Chapter 2 introduces the fundamentals, concepts and related topics that are
pertinent to this thesis. This includes a discussion of the most common security
vulnerabilities found in web applications, as well as the tools and techniques
used for attacking and defending web applications.

Chapter 3 mentions related works that have studied or have attempted to
automate or improve WAFs.

Chapter 4 presents an overview of the research methodology, design, imple-
mentation, and evaluation of automated virtual patching via VPgen.

Chapter 5 presents the results from attacking a WAF with rules generated by
VPgen. It will also present the results of attacking the WAF with a standard
ruleset as a basis for comparison.

Chapter 6 discusses and interprets the results from the previous chapter. Var-
ious other aspects of the thesis are also discussed, such as the extensive efforts
required to revitalize the state-of-the-art static analyzer used in this thesis.

Chapter 7 summarizes what this thesis has achieved, and presents ideas for
future work.

Chapter 2

Background

This chapter will begin by summarizing the most common types web application
security vulnerabilities in Section 2.1. Next, Section 2.2 will define and describe
Web Application Firewall (WAF)s. Finally, Application Security Testing and its ap-
proaches will be presented in 2.3.

2.1 Critical Web Security Vulnerabilities

2.1.1 Rankings and Categorizations

OWASP Top 10

The Open Web Application Security Project (OWASP) maintains a list of "The
Ten Most Critical Web Application Security Risks" called OWASP Top 10 [8]. The
OWASP Top 10 2017 release, which is the most recent version, relied on what
was possibly the most amount of data ever collected for developing an applica-
tion security standard [8]. The full list, taken in verbatim from [8], is presented
below.

A1:2017 - Injection Injection flaws, such as SQL, NoSQL, OS, and LDAP in-
jection, occur when untrusted data is sent to an interpreter as part of a com-
mand or query. The attacker’s hostile data can trick the interpreter into exe-
cuting unintended commands or accessing data without proper authorization.

A2:2017 - Broken Authentication Application functions related to authenti-
cation and session management are often implemented incorrectly, allowing
attackers to compromise passwords, keys, or session tokens, or to exploit other
implementation flaws to assume other users’ identities temporarily or perma-
nently.

A3:2017 - Sensitive Data Exposure Many web applications and APIs do not
properly protect sensitive data, such as financial, healthcare, and PII. Attackers
may steal or modify such weakly protected data to conduct credit card fraud,
identity theft, or other crimes. Sensitive data may be compromised without

3

4 K. Orlando: Automating Virtual Patching

extra protection, such as encryption at rest or in transit, and requires special
precautions when exchanged with the browser.

A4:2017 - XML External Entities (XXE) Many older or poorly configured XML
processors evaluate external entity references within XML documents. Exter-
nal entities can be used to disclose internal files using the file URI handler,
internal file shares, internal port scanning, remote code execution, and denial
of service attacks.

A5:2017 - Broken Access Control Restrictions on what authenticated users
are allowed to do are often not properly enforced. Attackers can exploit these
flaws to access unauthorized functionality and/or data, such as access other
users’ accounts, view sensitive files, modify other users’ data, change access
rights, etc.

A6:2017 - Security Misconfiguration Security misconfiguration is the most
commonly seen issue. This is commonly a result of insecure default configura-
tions, incomplete or ad hoc configurations, open cloud storage, misconfigured
HTTP headers, and verbose error messages containing sensitive information.
Not only must all operating systems, frameworks, libraries, and applications
be securely configured, but they must be patched/upgraded in a timely fash-
ion.

A7:2017 - Cross-Site Scripting (XSS) XSS flaws occur whenever an applica-
tion includes untrusted data in a new web page without proper validation or
escaping, or updates an existing web page with user-supplied data using a
browser API that can create HTML or JavaScript. XSS allows attackers to exe-
cute scripts in the victim’s browser which can hijack user sessions, deface web
sites, or redirect the user to malicious sites.

A8:2017 - Insecure Deserialization Insecure deserialization often leads to
remote code execution. Even if deserialization flaws do not result in remote
code execution, they can be used to perform attacks, including replay attacks,
injection attacks, and privilege escalation attacks.

A9:2017 - Using Components with Known Vulnerabilities Components, such
as libraries, frameworks, and other software modules, run with the same privi-
leges as the application. If a vulnerable component is exploited, such an attack
can facilitate serious data loss or server takeover. Applications and APIs using
components with known vulnerabilities may undermine application defenses
and enable various attacks and impacts.

A10:2017 - Insufficient Logging & Monitoring Insufficient logging and mon-
itoring, coupled with missing or ineffective integration with incident response,
allows attackers to further attack systems, maintain persistence, pivot to more
systems, and tamper, extract, or destroy data. Most breach studies show time
to detect a breach is over 200 days, typically detected by external parties rather
than internal processes or monitoring.

Chapter 2: Background 5

CWE Top 25

The Common Weakness Enumeration (CWE™) is a large list of common software
and hardware weaknesses [9] maintained by The MITRE Corporation, an Ameri-
can not-for-profit organization. As of CWE List Version 4.4, it contains 918 weak-
nesses [10]. CWE is endorsed by the CWE Community, which consists of repre-
sentatives from major operating systems, security tool vendors, academia, and
government institutions [9]. CWE produces a subset of this list called the Top
25 Most Dangerous Software Weaknesses (CWE Top 25). To create this list, the
CWE team leverages specific vulnerability (Common Vulnerability and Exposures
[CVE®]) and scoring data (Common Vulnerability Scoring System [CVSS]) from
the National Institute of Standards and Technology (NIST) National Vulnerability
Database (NVD) from the previous two calendar years [11]. A score is created for
each weakness based on prevalence and weakness, and the top 25 weaknesses are
published. Not all of these weaknesses are specific or relevant to web security, but
many are. The 2020 CWE Top 25 list is presented in Table 2.1.

Comparison of Categorizations

The OWASP Top 10 list comprises general categories of the most critical risks to
web applications [8]. The CWE Top 25 list covers a broader range of issues, though
the weaknesses themselves are more specific and detailed [12]. CWE conveniently
provides a "view" that shows the mappings from each OWASP Top 10 (2017) is-
sue to one or more CWE entries [13], although not every CWE entry mapped to
appears in the 2020 CWE Top 25.

2.1.2 Specific Vulnerabilities

This subsection contains brief descriptions and demonstrations of the specific web
security vulnerabilities that are most relevant to this thesis. Most are examples of
injection vulnerabilities.

SQL Injection

A SQL Injection (SQLi) attack, also known as a SQL Insertion attack, consists of
specially crafted user input data that allows the attacker to interfere with one or
more SQL queries that the web application uses to interact with the database.
This can allow the attacker to read and modify data from the database, subvert
application logic including login, or even inject OS commands [14, 15]. To pro-
tect against SQLi, software developers need to ensure that user-supplied input
can only be interpreted as data. This is generally the case for any injection vul-
nerability, including the others mentioned in this subsection. For SQLi, this
can be accomplished via prepared statements with parameterized queries, stored
procedures, input validation, and/or input sanitization [16].

6 K. Orlando: Automating Virtual Patching

Table 2.1: 2020 CWE Top 25 [11]

Rank ID Name Score
[1] CWE-79 Improper Neutralization of Input During Web Page

Generation (’Cross-site Scripting’)
46.82

[2] CWE-787 Out-of-bounds Write 46.17
[3] CWE-20 Improper Input Validation 33.47
[4] CWE-125 Out-of-bounds Read 26.50
[5] CWE-119 Improper Restriction of Operations within the

Bounds of a Memory Buffer
23.73

[6] CWE-89 Improper Neutralization of Special Elements used in
an SQL Command (’SQL Injection’)

20.69

[7] CWE-200 Exposure of Sensitive Information to an Unautho-
rized Actor

19.16

[8] CWE-416 Use After Free 18.87
[9] CWE-352 Cross-Site Request Forgery (CSRF) 17.29
[10] CWE-78 Improper Neutralization of Special Elements used in

an OS Command (’OS Command Injection’)
16.44

[11] CWE-190 Integer Overflow or Wraparound 15.81
[12] CWE-22 Improper Limitation of a Pathname to a Restricted

Directory (’Path Traversal’)
13.67

[13] CWE-476 NULL Pointer Dereference 8.35
[14] CWE-287 Improper Authentication 8.17
[15] CWE-434 Unrestricted Upload of File with Dangerous Type 7.38
[16] CWE-732 Incorrect Permission Assignment for Critical Re-

source
6.95

[17] CWE-94 Improper Control of Generation of Code (’Code In-
jection’)

6.53

[18] CWE-522 Insufficiently Protected Credentials 5.49
[19] CWE-611 Improper Restriction of XML External Entity Refer-

ence
5.33

[20] CWE-798 Use of Hard-coded Credentials 5.19
[21] CWE-502 Deserialization of Untrusted Data 4.93
[22] CWE-269 Improper Privilege Management 4.87
[23] CWE-400 Uncontrolled Resource Consumption 4.14
[24] CWE-306 Missing Authentication for Critical Function 3.85
[25] CWE-862 Missing Authorization 3.77

Chapter 2: Background 7

Cross-Site Scripting

A Cross Site Scripting (XSS) attack is a type of injection attack in which malicious
client-side script is injected into a web page. This script will be executed by the
user’s browser and thus can retrieve sensitive information such as cookies. It can
even rewrite the the contents of the web page [17]. There are two main categories
of Cross Site Scripting (XSS) attacks: Stored and Reflected [17].

• Stored XSS: The malicious script is stored on the web server, such as via a
forum post or comment. This is also known as Persistent XSS.

• Reflected XSS: The malicious script is not stored, but is reflected back to the
user’s browser from the web server, usually via an error message or search
result.

OWASP provides numerous XSS prevention guidelines [18], most of which
concern encoding untrusted data for JavaScript, HTML, CSS, and URL data values,
preferably with a dedicated security encoding library.

Path Traversal

A Path Traversal attack, also called Directory Traversal, aims to access files and
directories outside of the website’s root directory. This can be accomplished by
modifying arguments and variables that reference resources with variations of
"dot-dot-slash" (../) [19], which in many systems allows the user to traverse to
the parent directory at the command line.

To protect against Path Traversal, user input should either be validated before
being passed to any filesystem APIs, or it should be prevented from ever reaching
any filesystem APIs [19].

File Inclusion

A File Inclusion (FI) attack attempts to force the web application into returning
and executing a file of the attacker’s choice. This is most often accomplished via
PHP include statements, but this is also possible in technologies like JSP and ASP
[20]. There are two types:

• Local File Inclusion (LFI): This attack is similar to a Path Traversal attack,
except the goal is to execute the local file returned.

• Remote File Inclusion (RFI): This attack forces the web application to down-
load and execute a remote file obtained via protocols like HTTP(S) and FTP.

The protections against FI are the same as for Path Traversal [19, 20].

Code Injection

A Code Injection attack attempts to inject server-side code that can be interpreted
or executed by the web application [21]. More specific attacks include Java, PHP,

8 K. Orlando: Automating Virtual Patching

and ASP code injection. OWASP differentiates Code Injection from Command In-
jection by asserting that in Code Injection, "an attacker is only limited by the func-
tionality of the injected language itself" [21].

As with other injection attacks, Code Injection can be prevented by properly
validating and sanitizing user input.

Command Injection

A Command Injection attack attempts to exploit a vulnerability in web applica-
tion that allows the attacker to execute OS commands on the host OS. These com-
mands are usually executed in the context of a shell, which allows the commands
to be executed with elevated permissions [22]. According to OWASP, Command
Injection differs from Code Injection in that rather than injecting code, the at-
tacker extends the default functionality of the web application, which executes
system commands [22].

As with other injection attacks, Command Injection can be prevented by prop-
erly validating and sanitizing user input. Alternatively, there are usually safe,
language-specific APIs that a developer can use to obviate such an attack.

2.2 Web Application Firewalls

A Web Application Firewall (WAF) is an application-level firewall that can be de-
ployed to protect one or more web applications [23]. It generally runs in front
of a web server through a reverse proxy [23], and it monitors, filters, and blocks
packets of data as they travel to/from a web application [24]. It is often used to
protect against various injection attacks (e.g., SQLi and XSS) [24], FI, and security
misconfiguration. WAFs can be categorized in terms of implementation, security
model, threat detection system, and license.

2.2.1 Implementation Types

According to Cloudflare, a WAF can be be implemented in several ways [25]:

Network-based WAFs These are generally hardware-based WAFs that have
the lowest latency, but the highest cost. Phyiscal equipment will need to be
stored and maintained.

Host-based WAFs These are software-based WAFs that are integrated into or
embedded within the web application. They are cheaper than network-based
WAFs, and provide for more configuration options, but this comes at the cost
of higher latency, consumption of local resources, implementation complexity,
and engineering time.

Cloud-based WAFs These are Software as a service (SaaS) and are thus re-
quire the least amount of effort to setup and maintain. The customer may pay
an initial upfront cost, and then subsequently on a monthly or annual basis

Chapter 2: Background 9

for the service. The drawback is that the customer has little direct control over
the WAF itself since it is operated by a third party.

2.2.2 Security Models

There are three main security models that a WAF can operate under [26] with the
third security model being a combination of the first two.

Negative (blacklist) security model This model focuses on blocking known
exploits or attack signatures. This model can be easier to create and update
since it does not necessarily require knowledge of the underlying web appli-
cation, but attackers can get around it by reworking exploits to be sufficiently
different [27].

Positive (whitelist) security model This model only permits traffic deemed
as safe according to a specific criteria. All other traffic is excluded. This can be
viewed as implementing the input validation that the underlying web appli-
cation(s) should have implemented [27]. This model can be more difficult to
implement since it may need to be tuned to the underlying application, and
thus will need to be updated whenever a new application feature is added
[26].

Hybrid model This model utilizes both of the previous models.

2.2.3 Popular WAFs

Commercial, open-source, and academic WAFs have been developed. Gartner, an
IT Industry Analyst, produces a "Magic Quadrant" for WAFs [28], which is a semi-
annual market research report that indicates the current participants and trends
within WAF technology. See Gartner’s Magic Quadrant for Web Application Fire-
walls in Figure 2.1 for their list of the most important and relevant commercial
WAF vendors on the market. Note that this is just a subset of vendors.

Open-source WAF options are more limited. ModSecurity is the most popular
solution, having a companion rule-set [29], an active mailing list [30], two actively
maintained releases [31], and even a published handbook [27]. It also appears
often in academic literature [6, 32–35]. ModSecurity will be further discussed in
Section 2.2.4. Other open-source WAFs that have been referenced in academic
literature include:

• AQTRONiX WebKnight [35–37]
• Guardian [35, 38]
• Shadow Daemon [37, 39]
• NAXSI [40, 41]
• lua-resty-waf [41, 42]

10 K. Orlando: Automating Virtual Patching

Figure 2.1: Magic Quadrant for Web Application Firewalls [28].

2.2.4 ModSecurity

ModSecurity is an open-source, rule-based WAF that was first released as an Apache
module in November 2002 [27]. Although only originally available for the Apache
web server, ModSecurity was eventually ported to IIS and nginx starting in version
2.7.0 [27]. In version 3.0.0, the ModSecurity platform was completely rewritten
in order to fully decouple it from the Apache web server. This complete rewrite
was named Libmodsecurity, and it serves as an interface to "ModSecurity Con-
nectors" [31]. A ModSecurity Connector functions as a connection point between
Libmodsecurity and a web server. In order for a given web server to be able to
communicate with LibModSecurity, a Connector must be implemented. Connec-
tors already exist for common web servers such as nginx, IIS, and Apache.

Although ModSecurity 3 was released in December 2017, it is still not con-
sidered to be as stable as ModSecurity 2, which is still maintained and updated
(version 2.9.4 was released in June 2021). This is partially because ModSecurity
3 still does not have an up-to-date reference manual [43] or documentation on
which features have been successfully ported or added [31]. The other reason is
that ModSecurity 3 continues to have serious bugs and security issues such as DoS
[44] and complete bypass [45].

ModSecurity provides the following features [27, 46]:

• Complete HTTP Traffic Logging
• Active Monitoring and Attack Detection
• Virtual Patching
• Flexible Rule Engine

Chapter 2: Background 11

ModSecurity 2 also has two separate deployment options:

Embedded ModSecurity can be deployed as part of an existing web server
infrastructure, such as an additional Apache module. This has configuration,
load balancing, overhead, and complexity benefits. However, ModSecurity will
have to share server resources.

Reverse Proxy ModSecurity can be independently deployed as a sort of HTTP
router that stands in front of a web server. This has the benefit of adding a sepa-
rate isolated security layer that has its own dedicated resources. However, this
adds an additional point of failure, and thus some redundant reverse proxies
will need to be added.

Rule Language

ModSecurity uses its own Turing Complete rule language [47]. The rule language
consists of three types of directives [27]:

Configuration directives These directives specify how ModSecurity should
process data. An example is SecRuleEngine, which controls whether the Mod-
Security rule engine is on, off, or detection only.

Rule directives These directives specify what ModSecurity should do with
the processed data, such as pass or block. The most important and obvious
example of this is SecRule, which creates a rule that will analyze provided
variables using a selecter operator and optionally perform certain actions. This
will be described in greater detail below.

Other These are advanced or less commonly used directives that may not fit
into the other categories. An example is SecHashEngine, which enables the
ModSecurity hash engine for cryptographically signing links.

According to the ModSecurity Handbook, rules defined by a SecRule directive
conform to the same format that consists of four parts [27]:

SecRule VARIABLES OPERATOR [TRANSFORMATION_FUNCTIONS] ACTIONS

Variables Identify the part(s) of an HTTP transaction that the rule should
work with.

Operators Specify how the part(s) identified by one or more variables should
be analyzed.

Transformation functions Optionally, a rule can specify transformation func-
tions. These can modify the input before the operators act.

Actions Specify the action(s) that should be taken when a rule has matched,
such as blocking or passing a request.

12 K. Orlando: Automating Virtual Patching

Core Rule Set (CRS)

The OWASP ModSecurity Core Rule Set (CRS) is a set of generic attack rules that
can be used by ModSecurity or any other compatible WAF [29]. It aims to protect
web applications from the attack types mentioned in the OWASP Top 10 List in
addition to other common attacks (see Section 2.1), while also minimizing the
amount of false alarms.

2.2.5 Virtual Patching

When an organization discovers a security vulnerability in its deployed web ap-
plication, it needs to address that vulnerability as quickly and as thoroughly as
possible to prevent bad actors from potentially wreaking havoc. The most obvi-
ous resolution strategy is for the organization to identify the vulnerable source
code, fix the vulnerable source code, and then deploy and install a patch contain-
ing that fix. However, this strategy may not always be possible or timely. OWASP
gives several reasons for this [48, 49]:

Third party software If the vulnerability is caused by or lies within a ven-
dor’s commercial module or application, then the organization, as a customer,
may not have access to the relevant source code. The organization has to wait
for the vendor’s official patch, which may not be available as quickly as the
customer would like.

Long installation time Even if a patch is quickly and readily available, ex-
tensive and time-consuming regression testing is often needed prior to de-
ployment into production.

Lack of resources Developers may already be allocated to other projects, and/or
it may be deemed too expensive to fix the custom code causing the vulnera-
bility.

Legacy Code The organization may be necessarily utilizing a commercial ap-
plication or module that is no longer actively supported by the vendor.

Outsourced Code The organization may be outsourcing some or all of their
application development, adding an additional layer of complexity. Asking for
a vulnerability fix may require an entirely new project and additional cost.

WAFs can mitigate these issues, often completely, in strategy known as virtual
patching. OWASP’s Virtual Patching Cheat Sheet [49] provides the following def-
inition for virtual patching: "A security policy enforcement layer which prevents
and reports the exploitation attempt of a known vulnerability". Unlike typical WAF
strategies, which see the firewall deployed site-wide with only some application-
specific tuning, virtual patching is meant to apply only to certain resources and
parameters, resulting in rules and signatures that are specific to the application
under protection.

As with WAFs in general, virtual patching can use the security models men-
tioned in Section 2.2.2.

Chapter 2: Background 13

In order to create whitelist virtual patches, it must be known what the valid
and expected input values are for a given parameter or resource. This is gener-
ally the recommended strategy [49], especially since it can be applied to every
parameter and resource in the web application regardless of the existence of vul-
nerabilities. This can be considered a form of defense-in-depth [50].

For blacklist virtual patches, the goal is to create rules that block the specific
types of attacks that can exploit the underlying application’s vulnerabilities. How-
ever, one must take care not to create an exploit patch that is too specific, e.g., a
patch that only blocks a specific payload/string, since these types of rules can be
easily bypassed by tweaking something inconsequential like the number of spaces.

2.2.6 Evasion Strategies

There are many strategies for evading WAF protections. OWASP itself has several
pages dedicated to evasion concepts and payloads [51, 52]. Other payloads and
strategies can come from open-source code repositories [53] or tweets from secu-
rity analysts [54]. Some of these strategies can be used as a basis for improving
WAFs and WAF rulesets, which will be discussed in Chapter 3.

For XSS, many evasions involve encoding or obfuscation of the malicious script.
The obfuscation can be a syntax error, an obscure encoding, or an esoteric subset
of Javascript like JSFuck. Others require the usage of obscure or obsolete HTML
attributes and events [55]. Mimicry JavaScript attacks, a variation of XSS attacks,
use slight transformations (i.e., changing the leaf values of abstract syntax tree)
of an application’s benign scripts as attack vectors for malicious purposes. This
bypasses WAFs that use script-whitelisting mechanisms. Script-whitelisting mech-
anisms creates unique identifiers for every valid script during a training phase,
which takes place before an app goes live. These identifiers combine elements
that are extracted from either the script, i.e., part of the AST, or its execution env,
such as the URL that triggered execution. The identifiers are stored in a whitelist.
During productions, only scripts that generate identifiers in the whitelist will be
identified and approved for execution [56].

2.3 Application Security Testing

Application Security Testing refers to the tools, techniques, and services used to
test applications for security flaws. This information is then used to address those
flaws and thus harden the application against any potential security threats. There
are several types of application security testing [57] including:

• Static Application Security Testing (SAST)
• Dynamic Application Security Testing (DAST)
• Interactice Application Security Testing (IAST)
• Runtime Application Self-Protection (RASP)

SAST and DAST are the most well-known approaches to application security

14 K. Orlando: Automating Virtual Patching

testing. They will be discussed below in sections 2.3.2 and 2.3.1. IAST tools run as
a software agent, which allows for data from running applications to be collected
and analyzed [57]. This data helps provide the developer a better understanding
of their application’s security situation, and it can also be leveraged by other se-
curity testing tools. RASP tools are embedded inside of the application itself and
can block attacks.

2.3.1 Static Application Security Testing

Static Application Security Testing (SAST) tools take a white-box approach to se-
curity testing. They automatically analyze the source code of application in or-
der to reason about the run-time of a program without actually executing it [58].
SAST tools usually leverage compiler technology to construct Abstract Syntax Tree
(AST)s from the source code. Then, analysis must be performed locally (within a
function), modularly (within a file or module), and globally (across the entire ap-
plication) [59]. SAST tools scale well and produce reports that are very useful to
software developers who want to know where exactly in the source code the issue
is occurring [60]. However, many types of security vulnerabilities, such as au-
thentication problems, access control issues, and misconfigurations, cannot easily
be found from static source code analysis [60]. False positives are common, and
even figuring out the exploit for true positives can be difficult. OWASP maintains
a large table of commerical, open-source, and free SAST tools [60].

SAST techniques and concepts most relevant to this thesis are described below.

Abstract Syntax Tree (AST)

A tree that represents the syntactic structure of source code written in a specific
programming language. Unlike parse trees, these do not represent concrete pro-
gram syntax. Inner nodes of the tree represent operators and leaf nodes represent
operands [61].

Control Flow Graph (CFG)

A graph that describes all of the code execution paths within a program as well as
the necessary conditions for those paths. Control flow graphs can be constructed
from ASTs [61].

Program Dependency Graph (PDG)

A graph that represents dependencies among statements and predicates within a
program. It consists of data dependency edges, which each represent the influence
of one variable on another, and control dependency edges, which each represent
the influence of a predicate on a variable [61].

Chapter 2: Background 15

Code property graphs

A graph that merges ASTs, CFGs, and PDGs into a joint data structure that can be
used for modeling security vulnerabilities within a program [61].

Taint analysis

A type of information flow analysis used in the security domain that traces user
data from "sources" to locations of interest called "sinks" [62]. Any variables that
the input data modifies is considered "tainted" until it has been properly sanitized

Symbolic execution

A way to systematically explore many execution paths concurrently without rely-
ing on concrete inputs. Instead, inputs are abstractly represented using symbols,
and constraint solvers are used to find violations [63].

SMT solvers

According to Barrett et al.: "Satisfiability Modulo Theories (SMT) refers to the
problem of determining whether a first-order formula is satisfiable with respect
to some logical theory" [64]. SMT solvers attempt to solve these types of problems.
These solvers are particularly in string constraint solving for symbolic execution.
Examples include the Z3 Theorem Prover [65] and the Z3str2 String Constraint
Solver [66].

2.3.2 Dynamic Application Security Testing

Dynamic Application Security Testing (DAST) tools, also known as vulnerability
scanners, take a black-box approach to security testing. These automated tools
scan an application for potential security vulnerabilities by injecting malicious in-
put and observing the response from the application. These are usually used in
conjunction with SAST tools [67]. OWASP also maintains a large table of commer-
cial, free, and open-source DAST tools [68]. In addition, there is a project called
the Web Application Vulnerability Scanner Evaluation Project (WAVSEP) that was
designed to help assess the quality of various DAST tools [69].

Fuzzing

Fuzzing is defined by Sutton et al. as "a method for discovering faults in software
by providing unexpected input and monitoring for exceptions" [70]. Vulnerability
scanners heavily employ various types of fuzzing in order to find potential security
flaws.

16 K. Orlando: Automating Virtual Patching

2.3.3 Automatic Exploit Generation

Automatic exploit generation tools use some combination of the whitebox and
blackbox techniques described above to find bugs, determine whether they are
exploitable, and then produce a working attack string to achieve that exploit [71].
Subsequently, this exploit could be used to then patch the vulnerability [72]. Ex-
amples of automatic exploit generators include AEG [71], CRAXweb [73], Chain-
saw [74], and NAVEX [75]. The latter of this list is particularly notable since its
focus is on dynamic web applications and its code repository is public [76].

Chapter 3

Related Works

In this chapter, related works will be briefly mentioned or summarized.

3.1 Multivocal Literature Review

3.1.1 WAF Strengths and Weaknesses

In order to determine which types of attacks the above WAFs were most and least
effective against, a MLR was conducted following a set of guidelines designed for
software engineering [77].

Planning the review

First, it needed to be determined whether or not a MLR was actually needed. After
a few manual searches using Scopus, Google Scholar, and Google, the following
questions [77] were answered:

Figure 3.1: Should I conduct an MLR?

Since most answers were yes, an MLR is appropriate. Next, a research/review
question with sub-questions was formulated:

17

18 K. Orlando: Automating Virtual Patching

1. How many studies have evaluated WAFs in terms of the types of attacks they
are able to protect against?

a. Which WAFs have been evaluated?
b. Which types of attacks are most effective, and how do they map to

OWASP’s Top 10 Web Application Security Risks?

Conducting the review

The following search engine(s) were used for academic/formal literature:

• Scopus
• Google Scholar

The following search engine(s) were used for gray literature:

• Google

Stopping criteria:

• First 50 search hits
• Continue only if last page reveals anything new or interesting

Inclusion criteria:

• Discusses the effectiveness of an attack/attacks against an available WAF/WAFs
• Comprehensible English
• 2014 or newer

Query:
"web application firewall" AND (fail OR survey OR comparison OR "false

negative" OR "evade" OR "evasion" OR "bypass" OR detect)

Taking into account the stopping and inclusion criteria, there were only 13 re-
sults. Thus, it was decided to repeat the following query for every WAF listed in
[28] (starting with Amazon) and ModSecurity:

"amazon" "application firewall" "bypass"

This yielded an additional 22 results once the stopping and inclusion criteria were
applied.

Results

Table 3.1 shows which types of attacks were able to successfully bypass a given
WAF. The attacks are categorized by OWASP Top 10 - 2017 categories. An x means
that a type of attack indicated by the column was successful against the WAF
indicated by a row, i.e., the WAF was bypassed. Local File Inclusion/Remote File
Inclusion (LFI/RFI) is also a category.

Tables 3.2 and 3.3 show the number of formal and gray papers that pertained
to each WAF and each OWASP Top 10 - 2017 category.

Chapter 3: Related Works 19

OWASP Top 10 - 2017
WAF A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 LFI/RFI
Akamai x x
Amazon
Barracuda x x
Cloudflare x x x
Comodo x x x
Fortinet
F5 Big IP x x x x
Guardian x x x x x
Imperva Incapsula x
Microsoft Azure
ModSecurity x x x x x x x
PHPIDS x x x
QuickDefense x x x x
Radware
Signal Sciences
Sucuri x x x
WebKnight x x x x

Table 3.1: Successful attacks against WAFs categorized by OWASP Top 10 - 2017.

OWASP Top 10 - 2017 Formal Papers Gray Papers Total
A1 11 12 23
A2 2 1 3
A3 0 0 0
A4 0 0 0
A5 5 1 6
A6 1 5 6
A7 3 7 10
A8 0 1 1
A9 0 0 0
A10 1 0 1
LFI/RFI 3 1 4

Table 3.2: Number of papers that pertain to each OWASP Top 10 - 2017 category.

20 K. Orlando: Automating Virtual Patching

WAF Formal Papers Gray Papers Total
Akamai 0 3 3
Amazon 0 0 0
Barracuda 0 2 2
Cloudflare 0 9 9
Comodo 0 1 1
Fortinet 0 0 0
F5 Big IP 0 5 5
Guardian 1 0 1
Imperva Incapsula 0 2 2
Microsoft Azure 0 0 0
ModSecurity 12 9 21
PHPIDS 1 2 3
QuickDefense 0 2 2
Radware 0 0 0
Signal Sciences 0 0 0
Sucuri 0 4 4
WebKnight 1 2 3

Table 3.3: Number of papers that pertain to each WAF.

3.2 Virtual Patching

Although there have been attempts to automate whitelist virtual patching, it re-
mains a largely manual process. Betarte et al. [33] developed a tool called DEPSA
that could translate "security requirements expressed in a high-level language
over a model of the vulnerable application" into both whitelist and virtual patches
(specifically, ModSecurity rules). However, the application needs to be modeled
and the requirements specified, both of which are largely manual processes.

Automated blacklist virtual patch creation seems to have more tools, however
most are proprietary commercial solutions that rely on the output of a proprietary
Dynamic Application Security Testing (DAST), and some of those are a decade old
and likely obsolete. None have been independently assessed or evaluated in aca-
demic literature. The OWASP ModSecurity Core Rule Set (CRS) has virtual patch-
ing scripts that parse vulnerability reports generated by open-source DAST tools
such as OWASP ZAP and Arachni Web Scanner [68, 78], but they are also a decade
old and no longer function as originally intended, and have not been rigorously
evaluated. They rely on the anomaly scoring feature of the CRS. Essentially, the
anomaly score would be incremented by another fixed amount when the location
and parameter matched a known vulnerability. The Arachni solution [68]was par-
ticularly interesting because ModSecurity itself would initiate the scan whenever
a resource was visited that had not been previously scanned. Finally, there is a
blog post by a computer security company that describes in-depth an approach to

Chapter 3: Related Works 21

blacklist virtual patching via static analysis [79], but this has not been evaluated
by or referenced in academic literature.

Salemi et al. [80] explores automatically generating WAF rules via Runtime
Application Self Protection (RASP) logs. However, the WAF is intentionally redun-
dant in this approach since RASPs already detect and block malicious requests.

Ryan Barnett at Breach Security wrote a white paper about virtually patching
the vulnerable OWASP WebGoat application [81], but this seems to have been
done manually.

3.3 Automatic WAF Repair

Krueger et al. [82] creates a reverse proxy called TokDoc that intercepts requests,
parses them into token-value pairs, and determines whether or not a token needs
to be "healed" based on the learned profile of normal content. "Healing" involves
dropping, encoding, or replacing the token. It is an anomaly-based solution, not
a rule/signature-based one.

Appelt et al. [32, 83] puts forth an approach for repairing a WAF based on
successful SQLi attacks. The approach starts with defining an attack grammar for
SQLi attacks, and using that to create a diverse set of random attacks. These at-
tacks, called the tests, are sent to a web application protected by WAF, and they
are subsequently labeled by whether they passed ("P") or were blocked ("B"). The
tests are then decomposed into slices (substrings) according to the grammar, and
each slice is given a unique id. Slices are assigned a value of "1" if they are part
of a successful attack, otherwise they receive a "0". These are then modeled by
decision trees (see Figure 3.2) to derive string patterns. Finally, the regular ex-
pressions matching those string patterns are evolved via genetic algorithms with
the optimization objectives of minimizing blocked legitimate requests and maxi-
mizing blocked attacks.

Figure 3.2: A figure from [32] that depicts attack decompositions, their encod-
ings, and a derived decision tree. clz refers to the pass/block classification.

22 K. Orlando: Automating Virtual Patching

3.4 Machine Learning and AI-driven WAFs

Appelt et al. [32, 83] used machine learning techniques such as random forest
to generate the original attack strings. Thang [84] also uses the random forest
method to detect code injection attacks. Liu et al. [85] and Kar et al. [86] train
support vector machines for improving attack detection, specifically against SQLi.
Betarte et al. [87] propose a machine learning model based on one-class classif-
cation and n-gram analysis that outperforms CRS.

3.4.1 Improving Detection of Attacks

Previous studies have proposed anomaly detectors based on characteristics of
HTTP requests such as character distribution, parameter length, and parameter
value. TokDoc is a WAF that analyzes HTTP requests and replaces suspicious parts
with benign pieces learned from the past [82]. One recent study uses session pat-
terns [88]. Others use such approaches as the Random Forest Method [84] and
feature analysis and SVM optimization [85].

It has been shown that it often takes more time to manually configure a WAF
than it takes for a tester or hacker to bypass it [89], [90]. Thus, researchers have
started to develop ways to automatically configure and repair them. [32] pro-
poses an approach to automatically repair vulnerable WAFs by augmenting ex-
isting rulesets based on an analysis of test results, using machine learning and
metaheuristics. The focus was SQL injection attacks since they sit atop OWASP
Top 10.

3.5 Automatic Fixing of Vulnerabilities

As opposed to relying on a WAF which can be bypassed as mentioned in previous
sections, security vulnerabilities within the code can be fixed. [91] was a survey
of 20 papers that proposed some solution for automatically detecting and fixing
vulnerabilities classified by OWASP Top 10. The target languages were either PHP
or Java, and the three most popular vulnerabilities to address were A1 (injection),
A7 (XSS), and A3 (sensitive data exposure). Of particular interest is

Chapter 4

Methodology

In Chapter 4, the overall research design, methodology, and implementation for
this thesis will be described. Section 4.1 describes the motivation behind this re-
search, followed by the research questions in Section 4.2. Subsequently, Section
4.3 describes the research methodology and design. Next, Section 3.1 describes
the design a multi-vocal literature review that was performed to aid in determin-
ing which attacks to focus on. Finally, Section 4.4 presents the implementation of
the research.

4.1 Research Motivation

Section 2.2.5 presents the background on what virtual patching is and why it can
be useful. To summarize, virtual patching provides a way for an organization to
quickly patch a known software vulnerability in an application without having to
touch the application itself. This can be accomplished via a WAF like ModSecurity,
which has a flexible rule language that is well-suited to virtual patching [27].
Virtual patching can use whitelist and/or blacklist approaches.

Manual configuration of a WAF can be difficult. It generally requires some-
one with technical knowledge of the web application under protection, and that
someone may also need to be aware of potentially conflicting security policies of
other web applications configured on the web server [92]. This can lead to mis-
configuration that can be as devastating as not having any protection [92]. Palo
Alto Networks discovered "that 65% of publicly disclosed security incidents in the
cloud were the result of customer misconfigurations" [5]. In 2019, a CloudFlare
outage was caused by a the additional of a new rule that added "a regular ex-
pression that backtracked enormously and exhausted CPU used for HTTP/HTTPS
serving" [4]. Also in 2019, a former Amazon employee was able to steal more than
100 million credit application made with Capitol One by exploiting a misconfig-
ured ModSecurity installation [93]. This signifies the need for robust automatic
configuration of security controls.

As mentioned in Chapter 3, although WAFs are commercially popular [28],
there is not a particularly large body of academic research concerning WAFs and

23

24 K. Orlando: Automating Virtual Patching

virtual patching, nor are there many open-source solutions. The research that does
exist tends to focus on creating or preventing common types of injection attacks
like SQLi and XSS, and many involve advanced machine learning techniques [32].
Others perform an evaluation of one or more existing WAFs.

Finally, according to OWASP [49] there are two main tenants with regards to
virtual patching, where order indicates priority:

1. No false positives - Do not block benign traffic.
2. No false negatives - Do not allow attacks.

To see why the first tenant should have precedence over the second, consider
the adverse effects false positives can have on an organization’s business. If users
and customers are often unable to complete transactions due to their legitimate
requests being blocked, they will become frustrated and as a result the organiza-
tion may have some unhappy customers, potentially leading to loss of business
and thus revenue. To assuage this, the organization might configure the WAF to
operate in a detection-only mode, but this only serves to undermine the second
tenant since attacks can no longer be proactively blocked.

Given the lack of open-source implementations and academic study of auto-
mated virtual patching and WAF configuration, this research aims to investigate
the feasibility and effectiveness of such solutions utilizing tools that are often al-
ready a part of the application development and testing process. The ranked ten-
ants above will serve as guidelines for what to implement and evaluate.

4.2 Research Questions

The research motivation described in 4.1 yielded three research questions. They
are as follows:

RQ1. How can dynamic analysis tools be used to automatically generate virtual
patches for a vulnerable application?

RQ2. How can static analysis tools be used to automatically generate virtual patches
for a vulnerable application?

RQ3. How effective are automatically generated virtual patches compared to a
standard set of WAF rules?

4.3 Research Method and Design

This section will describe the overall research method and design for this thesis.
This includes the research strategy, data generation and analysis methods.

4.3.1 Research Strategy

To address the research questions, a series of experiments will be performed that
pit selected open-source vulnerability scanners against selected vulnerable web

Chapter 4: Methodology 25

applications with a rule-based WAF standing in-between. These experiments will
be conducted for several different configurations of the WAF:

• Rule engine disabled
• Rule engine enabled with a standard rule set in place
• Rule engine enabled with generated virtual patches in place

In order to generate the virtual patches, output from an application security
testing tool (DAST or SAST) must be translated into rules and directives that can
be understood by the WAF. A prototypical tool called VPgen will be developed for
this purpose. VPgen will process the report generated by an application security
testing tool for a vulnerable application and use it to generate rules and directives
that can be understood by a WAF. This strategy can be considered an experimental
strategy [94], since it will be characterized by the observation, measurement, and
comparison of results obtained with and without the implemented prototype.

High-level design of VPgen

The high-level design of VPgen can be seen in Figure 4.1. The steps are as follows:

1. Input vulnerability report Take the path to a vulnerability report generated
by a security analysis tool as input.

2. Is format supported? Determines whether the report type is supported or
not based on vulnerability scanner and file format.

3. Process report The type, location, and parameter for each vulnerability is
scraped from the report and stored.

4. Generate rules Directives and rules specific to the scraped vulnerability
type, location, and parameter are created.

5. Output rules file The directives and rules are output to a file that the WAF
should reference.

Figure 4.1: High-level design of VPgen

4.3.2 Data Generation and Analysis

Data will be generated by using vulnerability scanners to attack vulnerable web
application. The data itself will depend on how the vulnerability scanner is being
used. It will be operated in two different modes described below.

26 K. Orlando: Automating Virtual Patching

Active Scanning

Vulnerability scanners operating in active scanning mode will automatically crawl
an application in order to find any and all data entry points. They will then au-
tomatically fuzz these data entry points using payloads of known attacks. In this
mode, the data generated will be the number of vulnerabilities discovered for each
specific type of attack/vulnerability.

Targeted Fuzzing

In this mode, specific pages and parameters of the vulnerable web application will
be manually selected via the vulnerability scanner and fuzzed. The vulnerability
scanner will provide a nice interface to facilitate this, but the user must specify
the location and the payload(s). The data generated from this mode will be the
number of payloads that were blocked by or passed through the WAF.

Results from attacking and generating virtual patches via DAST tools will be
used to address RQ1. For RQ2, a SAST tool will be used. Finally, to address RQ3,
the results from attacking a vulnerable web application protected by a standard,
application-wide WAF rule set will be used. This data will be analyzed quantita-
tively via recall and precision measures that will be explained below.

4.4 Research Implementation

This section will describe the in-depth implementation of the research method and
design explained above in Section 4.3. The first several subsections will describe
the selection criteria for the WAF, base rule set 4.4.2, DAST tools 4.4.3, SAST tool
4.4.4, vulnerable applications 4.4.5, and vulnerability/attack types 4.4.6. After-
wards, in Section 4.4.7, VPgen will be described in depth.

4.4.1 Selection of the WAF

The main criterion for the selection of the WAF was that it needed to be open-
source. Although there are many popular commercial solutions [28], not being
able to dig into their implementations in order to definitively determine how they
operate is a negative for this project. Few have been openly evaluated, so we
would have to take the vendor at their word in terms of their effectiveness and
capabilities.

The other criteria were:

• Rule-based
• Through documentation
• Actively maintained
• Active discussion board or mailing list
• Prevalence in academic literature

Chapter 4: Methodology 27

Although this methodology is not specific to any one WAF, ModSecurity is a
natural candidate. It fulfills all of the criteria, as mentioned in Sections 2.2.3 and
2.2.4. Other options include WebKnight [36] and ShadowDaemon [39], with the
former also occasionally appearing in the literature [35, 37].

Due to bugs and security issues with ModSecurity 3 [44, 45], ModSecurity
version 2.9.4 is selected.

4.4.2 Selection of Attack Detection WAF Rules

This thesis is not about improving defenses against specific types of attacks, so it
was decided that an existing rule set should be leveraged by the virtual patching
tool (VPgen). This rule set could also be used as a baseline to compare against.
The main criterion for this rule set is was that its rules should be able to be eas-
ily categorized and grouped by attack/vulnerability type. Since ModSecurity was
chosen as the WAF, that makes the OWASP Core Rule Set (CRS) [29] is an obvious
candidate as the rule set.

The CRS groups rules by attack type such that different groups of rules reside
in different configuration files. These rules will also have specific ID ranges and
tags that further help communicate their type. This will enable a tool like VPgen
to only include rules that are relevant to the identified vulnerability. Listing 4.1
shows the rule configuration files from CRS’s rules/ directory.

Code listing 4.1: CRS Rule Files

REQUEST-900-EXCLUSION-RULES-BEFORE-CRS.conf
REQUEST-901-INITIALIZATION.conf
REQUEST-903.9001-DRUPAL-EXCLUSION-RULES.conf
REQUEST-903.9002-WORDPRESS-EXCLUSION-RULES.conf
REQUEST-903.9003-NEXTCLOUD-EXCLUSION-RULES.conf
REQUEST-903.9004-DOKUWIKI-EXCLUSION-RULES.conf
REQUEST-903.9005-CPANEL-EXCLUSION-RULES.conf
REQUEST-903.9006-XENFORO-EXCLUSION-RULES.conf
REQUEST-905-COMMON-EXCEPTIONS.conf
REQUEST-910-IP-REPUTATION.conf
REQUEST-911-METHOD-ENFORCEMENT.conf
REQUEST-912-DOS-PROTECTION.conf
REQUEST-913-SCANNER-DETECTION.conf
REQUEST-920-PROTOCOL-ENFORCEMENT.conf
REQUEST-921-PROTOCOL-ATTACK.conf
REQUEST-930-APPLICATION-ATTACK-LFI.conf
REQUEST-931-APPLICATION-ATTACK-RFI.conf
REQUEST-932-APPLICATION-ATTACK-RCE.conf
REQUEST-933-APPLICATION-ATTACK-PHP.conf
REQUEST-934-APPLICATION-ATTACK-NODEJS.conf
REQUEST-941-APPLICATION-ATTACK-XSS.conf
REQUEST-942-APPLICATION-ATTACK-SQLI.conf
REQUEST-943-APPLICATION-ATTACK-SESSION-FIXATION.conf
REQUEST-944-APPLICATION-ATTACK-JAVA.conf
REQUEST-949-BLOCKING-EVALUATION.conf
RESPONSE-950-DATA-LEAKAGES.conf
RESPONSE-951-DATA-LEAKAGES-SQL.conf
RESPONSE-952-DATA-LEAKAGES-JAVA.conf
RESPONSE-953-DATA-LEAKAGES-PHP.conf

28 K. Orlando: Automating Virtual Patching

RESPONSE-954-DATA-LEAKAGES-IIS.conf
RESPONSE-959-BLOCKING-EVALUATION.conf
RESPONSE-980-CORRELATION.conf
RESPONSE-999-EXCLUSION-RULES-AFTER-CRS.conf

Note that rule configuration files are of the format:

<REQUEST|RESPONSE>-<ID_PREFIX>-<ATTACK_TYPE>.conf

This way, if a rule begins with the ID 942, that indicates that it is supposed to
protect against SQLi attacks. More explicitly, rules have tags (such as "attack-
xss") that indicate the attack type. See listing 4.2 for an example.

Code listing 4.2: Example of an XSS Rule

SecRule REQUEST_COOKIES|!REQUEST_COOKIES:/__utm/|REQUEST_COOKIES_NAMES|
,→ REQUEST_HEADERS:User-Agent|ARGS_NAMES|ARGS|XML:/* "@detectXSS" \
"id:941100,\
phase:2,\
block,\
t:none,t:utf8toUnicode,t:urlDecodeUni,t:htmlEntityDecode,t:jsDecode,t:

,→ cssDecode,t:removeNulls,\
msg:’XSS Attack Detected via libinjection’,\
logdata:’Matched Data: XSS data found within %{MATCHED_VAR_NAME}: %{

,→ MATCHED_VAR}’,\
tag:’application-multi’,\
tag:’language-multi’,\
tag:’platform-multi’,\
tag:’attack-xss’,\
tag:’paranoia-level/1’,\
tag:’OWASP_CRS’,\
tag:’capec/1000/152/242’,\
ctl:auditLogParts=+E,\
ver:’OWASP_CRS/3.3.0’,\
severity:’CRITICAL’,\
setvar:’tx.xss_score=+%{tx.critical_anomaly_score}’,\
setvar:’tx.anomaly_score_pl1=+%{tx.critical_anomaly_score}’"

Core Rule Set version 3.3.0 is selected. In this version, anomaly scoring mode
is the default, and the paranoia level 1. These defaults will apply for the active
scanning tests, but the paranoia level will be incremented up to its maximum
level for the targeted fuzzing tests. In anomaly scoring mode, matching rules will
contribute to a transactional score. If this score exceeds a specified threshold,
the request will be blocked. Paranoia levels control how many CRS rules should
apply. The higher the paranoia level, the more rules and thus the higher the level
of security.

4.4.3 Selection of DAST Tools

There are many available DAST tools/vulnerability scanners as evidenced by OWASP’s
page on the topic [68]. There have also been several papers and tool that attempt
to assess their effectiveness [69, 95]. Portswigger’s Burp is a popular commercial
vulnerability scanner, but its free community version is limited [96]. In addition,
an open-source vulnerability scanner is more desirable since it allows us to see

Chapter 4: Methodology 29

how attack payloads are generated and categorized, which is important when it
comes to mapping vulnerability reports to virtual patches in VPgen.

Based on the previously referenced literature, OWASP’s large list, and previ-
ous virtual patch generation work [89], OWASP Zed Attack Proxy (ZAP) [97] and
Arachni web scanner [98] were chosen. However, Arachni has not been main-
tained for several years, and relies on some old dependencies that make it diffi-
cult to build and work with on a newer system. It has also been removed from the
rolling Kali Linux distribution [99], which contains a curated list of vulnerability
analysis and web application attack tools [100]. Instead, wapiti, another actively
maintained vulnerability scanner that is still a part of the rolling Kali Linux distri-
bution, was selected.

4.4.4 Selection of SAST Tools

A difficulty with static analysis tools is that although they provide helpful infor-
mation to the developer such as the line(s) of code causing the vulnerability, the
source, and the sink, this is not necessarily actionable information. This is where
automatic exploit generation can help (see Section 2.3.3). If an exploit for a given
vulnerability can be generated, then it follows that at least an exploit-based patch
can be created [72]. Selection was simple, since the only tool that appears to be
publicy available is NAVEX [75, 76]. NAVEX is not a purely static tool, though
it can be split into two parts, the first of which generates the initial exploits via
code property graphs, taint analysis, and string constraint solvers, and as such is
completely static. Thus, the first part is selected for this thesis.

4.4.5 Selection of Vulnerable Web Applications

The criteria for the selection of vulnerable web applications is the following:

• Open-source
• Written in PHP
• Appears in academic literature
• Can be built on a Linux VM without issues caused by legacy dependencies

or PHP versions
• Can be easily scanned by an automated vulnerability scanner

PHP is a requirement since NAVEX only works on PHP applications.

OWASP maintains a list of vulnerable web applications [101]. Of these, DVWA
and WackoPicko seem to appear in the literature [95, 102, 103]. For the genuinely
vulnerable web applications, the NAVEX provides a large list of applications it was
evaluated against [75]. However, many of these tools were more than a decade
old and relied on outdated version of MySQL and PHP. In addition, they were
difficult to automatically scan with vulnerability scanner.

30 K. Orlando: Automating Virtual Patching

4.4.6 Selection of Security Vulnerabilities

The criteria for selecting the security vulnerabilities is as follows:

• Supported by NAVEX
• Supported by both Wapiti and OWASP ZAP
• Can be detected by OWASP CRS
• Present in one or more of the vulnerable web applications

This resulted in the following list of attacks/vulnerabilities:

• SQL Injection (SQLi) (both blind and normal)
• Cross Site Scripting (XSS) (both reflected and persistent)
• File Inclusion (FI) (path traversal, local, and remote inclusion)
• Remote Command Execution (RCE) (both command and code injection)

4.4.7 Implementation of VPgen

VPgen is a Python script that takes input in the form of an OWASP ZAP or Wapiti
vulnerability report, processes it, generates rules, and outputs a file containing a
list of Apache directives and ModSecurity tools. It does this by defining mappings
from OWASP ZAP and Wapiti alerts to OWASP CRS ruleset files and tags.

OWASP ZAP report processing

An example of an OWASP ZAP alert is shown in Listing 4.3. Each alert item con-
tains one or more instances. Each instance contains the location (uri), method,
vulnerable parameter, and attack string used.

Code listing 4.3: Excerpt from an OWASP ZAP report where DVWA was the target
application.

<alertitem>
<pluginid>40018</pluginid>
<alertRef>40018</alertRef>
<alert>SQL Injection</alert>
<name>SQL Injection</name>
<riskcode>3</riskcode>
<confidence>2</confidence>
<riskdesc>High (Medium)</riskdesc>
<desc><p>SQL injection may be possible.</p></desc>
<instances>
<instance>
<uri>http://waf-virtualbox/DVWA/vulnerabilities/sqli/?Submit=Submit&id=ZAP

,→ %27+AND+%271%27%3D%271%27+--+</uri>
<method>GET</method>
<param>id</param>
<attack>ZAP' OR '1'='1' -- </attack>
</instance>
<instance>
<uri>http://waf-virtualbox/DVWA/vulnerabilities/sqli_blind/?Submit=Submit&

,→ id=ZAP%27+AND+%271%27%3D%271%27+--+</uri>
<method>GET</method>
<param>id</param>

Chapter 4: Methodology 31

<attack>ZAP' OR '1'='1' -- </attack>
</instance>
</instances>
<count>2</count>
...

</alertitem>

Only released, high risk alerts resulting from an Active Scan Rule are consid-
ered. In addition, these alerts must normally be associated with a parameter. Each
of these will be mapped to one or more OWASP CRS rule set files. See Table 4.1
for the mapping.

Table 4.1: A mapping of OWASP ZAP alert types to OWASP CRS rule set files.

Alert Rule Set
Path Traversal REQUEST-930-APPLICATION-ATTACK-LFI.conf

REQUEST-933-APPLICATION-ATTACK-PHP.conf
Remote File Inclusion REQUEST-931-APPLICATION-ATTACK-RFI.conf

REQUEST-933-APPLICATION-ATTACK-PHP.conf
Cross Site Scripting (Reflected) REQUEST-941-APPLICATION-ATTACK-XSS.conf
Cross Site Scripting (Persistent) REQUEST-941-APPLICATION-ATTACK-XSS.conf
SQL Injection REQUEST-942-APPLICATION-ATTACK-SQLI.conf
Server Side Code Injection - PHP
Code Injection

REQUEST-933-APPLICATION-ATTACK-PHP.conf

Remote OS Command Injection REQUEST-932-APPLICATION-ATTACK-RCE.conf

Wapiti report processing

An example of a Wapiti alert is shown in Listing 4.4. Each alert contains an array of
successful attacks, with each element containing the location (path), parameter,
and full HTTP request with the attack payload.

Code listing 4.4: Excerpt from a Wapiti report where DVWA was the target ap-
plication.

"SQL Injection": [
{
"method": "GET",
"path": "/DVWA/vulnerabilities/brute/",
"info": "SQL Injection (DMBS: MySQL) via injection in the parameter

,→ username",
"level": 4,
"parameter": "username",
"referer": "http://waf-virtualbox/DVWA/vulnerabilities/brute/",
"module": "sql",
"auth": null,
"http_request": "GET /DVWA/vulnerabilities/brute/?username=alice%C2%BF

,→ %27%22%28&password=Letm3in_&Login=Login HTTP/1.1\nHost: waf-
,→ virtualbox\nReferer: http://waf-virtualbox/DVWA/vulnerabilities/
,→ brute/",

32 K. Orlando: Automating Virtual Patching

"curl_command": "curl \"http://waf-virtualbox/DVWA/vulnerabilities/brute/?
,→ username=alice%C2%BF%27%22%28&password=Letm3in_&Login=Login\" -e \"
,→ http://waf-virtualbox/DVWA/vulnerabilities/brute/\""

},
{
"method": "GET",
"path": "/DVWA/vulnerabilities/sqli/",
"info": "SQL Injection (DMBS: MySQL) via injection in the parameter id",
"level": 4,
"parameter": "id",
"referer": "http://waf-virtualbox/DVWA/vulnerabilities/sqli/",
"module": "sql",
"auth": null,
"http_request": "GET /DVWA/vulnerabilities/sqli/?id=default%C2%BF%27%22%28&

,→ Submit=Submit HTTP/1.1\nHost: waf-virtualbox\nReferer: http://waf-
,→ virtualbox/DVWA/vulnerabilities/sqli/",

"curl_command": "curl \"http://waf-virtualbox/DVWA/vulnerabilities/sqli/?id
,→ =default%C2%BF%27%22%28&Submit=Submit\" -e \"http://waf-virtualbox/
,→ DVWA/vulnerabilities/sqli/\""

}
],

Mapping Wapiti alerts to OWASP CRS rule set files is not as straightforward as
it is with ZAP. This is because the alert types correspond to Wapiti attack modules,
and each Wapiti attack module can contains several types of attacks. For example,
the sql module also contains LDAP and XPATH injection attacks. The file module
contains both LFI and RFI attacks in addition to some code injection attacks. This
was determined by a combination of trial-and-error and viewing the Wapiti source
code. See Table 4.2 for the complete mapping.

Table 4.2: A mapping of OWASP ZAP alert types to OWASP CRS rule set files.

Alert Rule Set
Path Traversal REQUEST-930-APPLICATION-ATTACK-LFI.conf

REQUEST-931-APPLICATION-ATTACK-RFI.conf
REQUEST-933-APPLICATION-ATTACK-PHP.conf

Cross Site Scripting REQUEST-941-APPLICATION-ATTACK-XSS.conf
SQL Injection REQUEST-942-APPLICATION-ATTACK-SQLI.conf
Blind SQL Injection REQUEST-942-APPLICATION-ATTACK-SQLI.conf
Command Execution REQUEST-932-APPLICATION-ATTACK-RCE.conf

REQUEST-933-APPLICATION-ATTACK-PHP.conf

Rule generation

The goal with virtual patching is to have rules that apply to vulnerable loca-
tions and parameters, and for those rules to be specific to the vulnerability type.
Location-specific virtual patches can be achieved by creating Apache configuration
contexts using container directives. Configuration contexts provide a mechanism
for the selective application of a configuration [27]. They come in pairs called
tags, accept parameters, and enclose various other directives such as Include

Chapter 4: Methodology 33

and SecRule. Specifically, VPgen uses the <LocationMatch> directive to create
a location-specific configuration context.

<LocationMatch> takes a regular expression as an argument. If a URL’s path
matches that argument, then directives enclosed within the LocationMatch tags
will apply. As a running example, recall the OWASP ZAP alert from Listing 4.3.
VPgen will create the following configuration context for the first instance:

Code listing 4.5: A location-specific context created by VPgen for the running
example.

<LocationMatch "^/DVWA/vulnerabilities/sqli/$">
...

</LocationMatch>

Note that this approach could also work with nginx, or any other web server that
has the notion of configuration contexts.

Now that a location-specific configuration has been achieved, the next step is
to make it parameter-specific. VPgen is concerned with parameters that appear in
the query string (GET requests) and body (POST request). Unfortunately, Loca-
tionMatch only matches against a URL’s path. Apache does have a QUERY_STRING
variable, so that combined with an If directive should accomplish the goal for
GET requests. However, this would not cover parameters that appear in the body
of a POST request.

Fortunately, the ModSecurity rule language contains a special type of SecRule
that allows the update a of rule targets at configure-time. This can be done by
ID, message, or tag. Recall that rules in OWASP CRS can also be categorized by
tag, e.g., "attack-xss". The mappings between the vulnerability scanners and the
tags are identical to the ones in Tables 4.1 and 4.2, except replace the configura-
tion files with tags. Thus, VPgen will generate a SecRule that removes all targets
via negation for a certain tag, followed by another SecRule that adds a single
parameter via the ARGS target:

Code listing 4.6: Configure-time updates of rule targets created by VPgen for the
running example.

SecRuleUpdateTargetByTag "attack-sqli" "!ARGS,\
!ARGS_NAMES,\
!REQUEST_COOKIES,\
!REQUEST_COOKIES_NAMES,\
!REQUEST_HEADERS,\
!FILES,\
!FILES_NAMES,\
!PATH_INFO,\
!QUERY_STRING,\
!REQUEST_BODY,\
!REQUEST_BASENAME,\
!REQUEST_FILENAME,\
!XML,\
!REQUEST_LINE,\
!REQUEST_URI,\
!REQUEST_URI_RAW"

SecRuleUpdateTargetByTag "attack-sqli" "ARGS:id"

34 K. Orlando: Automating Virtual Patching

Note that the list of negated targets is a hard-coded list. It comes from a manual
review of all the relevant rules in OWASP CRS, and is meant to be exhaustive.

Finally, using the mapping from Table 4.1 to include the relevant rule(s), the
configuration context from 4.5 to create a location-specific virtual patch, the spe-
cial configuration update rules from 4.6 to make it parameter-specfic, and adding
some additional directives that are required as per CRS documentation, VPgen
creates the following virtual patch for the running example:

Code listing 4.7: Complete virtual patch generated by VPgen for a SQLi vulner-
ability in DVWA

<LocationMatch "^/DVWA/vulnerabilities/sqli/$">
SecDefaultAction "phase:1,log,auditlog,pass"
SecDefaultAction "phase:2,log,auditlog,pass"

Include /coreruleset/rules/REQUEST-942-APPLICATION-ATTACK-SQLI.conf

Include /coreruleset/rules/REQUEST-949-BLOCKING-EVALUATION.conf
Include /coreruleset/rules/RESPONSE-980-CORRELATION.conf

SecRuleUpdateTargetByTag "attack-sqli" "!ARGS,\
!ARGS_NAMES,\
!REQUEST_COOKIES,\
!REQUEST_COOKIES_NAMES,\
!REQUEST_HEADERS,\
!FILES,\
!FILES_NAMES,\
!PATH_INFO,\
!QUERY_STRING,\
!REQUEST_BODY,\
!REQUEST_BASENAME,\
!REQUEST_FILENAME,\
!XML,\
!REQUEST_LINE,\
!REQUEST_URI,\
!REQUEST_URI_RAW"

SecRuleUpdateTargetByTag "attack-sqli" "ARGS:id"
</LocationMatch>

4.5 Evaluation Design

4.5.1 Setup

Hardware and virtualizations

As opposed to setting up physical machines, a virtualization strategy was pur-
sued. Three VirtualBox (version 6.1.22) Virtual Machine (VM)s were created and
deployed to perform the experiments. Their specifications, along with the host
machine’s specifications, will be summarized below.

• Host machine

◦ OS: Windows 10 Education (64-bit)

Chapter 4: Methodology 35

◦ CPU: i7-8550U @ 1.80GHz
◦ RAM: 16 GB

• Web server

◦ OS: Xubuntu 20.04.2
◦ CPUs: 1
◦ RAM: 4 GB

• WAF machine

◦ OS: Xubuntu 20.04.2
◦ CPUs: 1
◦ RAM: 4 GB

• Client/attacker machine

◦ OS: Kali 2021.2
◦ CPUs: 2
◦ RAM: 4 GB

Network configuration

The network configuration consisted of two Network Address Translation (NAT)
networks. The WAF machine and client machine are connected via NAT Network
2, while the web server and WAF machine are connected via NAT Network 1. This
means that the client machine cannot directly communicate with the web server.
Instead, it needs to go through the WAF machine, which is setup as a reverse
proxy. See Figure 4.2 for a depiction of this setup.

Figure 4.2: VM configuration for experiments. The headless black lines represent
connections. The colored directional lines represent HTTP requests/responses.

36 K. Orlando: Automating Virtual Patching

A NAT network allows connected VMs to communicate with each other as
well as with other hosts in the physical network and even external networks like
the internet. However, these other hosts and external networks cannot access the
VMs. This is important since we are deploying vulnerable web applications, which
should not be exposed to other machines or external networks. See Figure 4.3 for
a more in-depth depiction of how a NAT network operates.

Figure 4.3: An in-depth depiction of how a VirtualBox NAT network operates.
Image created by Nakivo [104].

WAF setup and deployment

ModSecurity 2.9.4 is configured as an Apache module for Apache web server
2.4.41 on an Xubuntu VM. It is set up as a reverse proxy, so all requests it re-
ceives are routed to the web server. Xubuntu was chosen because it is a more
lightweight but still user-friendly version of Ubuntu.

Web application server setup and deployment

All web applications are deployed to /var/www/html. All were built or deployed
from source. Apache web server 2.4.41 is used, along with PHP 5.6.40 and MySQL
5.1.73. These old versions were required for some compatibility reasons with
NAVEX and the old applications it tested. The database for each application was
reset between attempts. DVWA provides a button for accomplishing this, but for
WackoPicko it has to be done manually.

Vulnerability scanner setup and deployment

Both OWASP ZAP 2.10.0 and Wapiti 3.0.4 come pre-installed as Kali tools on the
Kali Linux distribution. Kali Linux was chosen because it was designed for pen-
etration testing and security auditing. Wapiti 3.0.4 was uninstalled and replaced
with Wapiti 3.0.5, which was built from source.

Chapter 4: Methodology 37

For OWASP ZAP, a context was created for each vulnerable web application.
Each context would include all pages except for those disruptive to the current
user’s session, such as a logout action or a database reset. Form-based authentica-
tion was configured, where the URL to login is identified along with the username
and password parameters. User records are created for each role in the applica-
tion (such as admin and a regular user). Strings corresponding to a user being
logged out or logged in were also identified.

For Wapiti, it was not possible to set this configuration up ahead of time. The
links to be excluded were specified as command-line options, and each user was
logged in ahead of time via a separate Wapiti utility. The generated cookie file
is also specified as an option, as are the types of attacks to perform against the
vulnerable web application. See Listing 4.8 for an example.

Code listing 4.8: Wapiti commands for attacking DVWA.

wapiti-getcookie -u http://waf-virtualbox/DVWA/login.php -c dvwa_cookies.json
wapiti -u http://waf-virtualbox/DVWA/

-x http://waf-virtualbox/DVWA/logout.php
-x http://waf-virtualbox/DVWA/vulnerabilities/csrf/
-x http://waf-virtualbox/DVWA/setup.php
-x http://waf-virtualbox/DVWA/security.php
-x http://waf-virtualbox/DVWA/vulnerabilities/captcha/
-x http://waf-virtualbox/DVWA/login.php
-c dvwa_cookies.json
-m xss,sql,permanentxss,file,exec
-f json

Targeted fuzzing

A benefit to our virtual patching approach is that locations that do no correspond
to any known vulnerabilities will not have any issues with false positives. For
example, the login page to DVWA does not have a security vulnerability. Similarly,
locations and parameters that only have a specific type of vulnerability should
have relatively fewer false positives. For example, the login age to WackoPicko
has a SQLi vulnerability.

OWASP ZAP’s Fuzzer will be used to fuzz select requests and parameters.
Specifically, the login request with username and password parameter will be tar-
geted for both applications. The payloads will come from a leaked phpBB database
of passwords that is available via FuzzDB [105]. ModSecurity will be configured
with CRS set at each paranoia level (1–4), with and without virtual patches.

NAVEX setup

NAVEX has a complex setup. It relies on old versions of many other open-source
projects that are no longer maintained and dependencies that must be down-
loaded and built from source. For example, it uses Gremlin 2.5, whereas the latest
stable version is 3.5. It also relies on Neo4j 2.1 as a graph database, where the

38 K. Orlando: Automating Virtual Patching

latest stable release is 4.3.1. The complete instructions are available at NAVEX’s
GitHub repository [76], although they were insufficient on their own.

Chapter 5

Results

In Chapter 5, the results from applying the methods of Chapter 4 will be presented.
The first section will test for vulnerabilities. The second section will test for false
positives.

5.1 Vulnerability Testing

In this stage of testing, DASTs tools are used to attack web applications and report
on any vulnerabilities that are found. The attacks are categorized as:

• SQLi - SQL injection
• XSS - Both reflected and stored Cross Site Scripting
• RCE - Both command injection and code injection
• FI - Path Traversal along with Local/Remote File Inclusion.

5.1.1 Rule Engine Disabled

In this test, the ModSecurity rule engine was disabled. The web applications are
completely unprotected. See Table 5.1 for results.

ZAP Wapiti
Application SQLi XSS RCE FI SQLi XSS RCE FI

DVWA 3 6 1 2 2 7 2 1
WackoPicko 1 4 2 2 2 2 2 2

Table 5.1: The number of vulnerabilities discovered when scanning an applica-
tion with a disabled ModSecury rule engine.

5.1.2 Only Core Rule Set Enabled

In this testing, the ModSecurity rule engine is turned on, and the CRS is setup
with default settings (e.g., in anomaly detection mode with default thresholds).

39

40 K. Orlando: Automating Virtual Patching

See Table 5.2 for the results.

ZAP Wapiti
Application SQLi XSS RCE FI SQLi XSS RCE FI

DVWA 1 0 1 1 2 0 1 1
WackoPicko 1 0 0 2 1 0 1 2

Table 5.2: Number of vulnerabilities discovered when scanning an application
with just the CRS enabled

5.1.3 DAST-driven Virtual Patching

In these tests, the ModSecurity rule engine is turned on, and virtual patches gen-
erated from the results of Section 5.1.1 are used to protect the application. Since
there are two DAST tools being used, that means there will also be two sets of
virtual patches.

ZAP Results

This tests how well the virtual patches generated from ZAP’s vulnerability report
protect the vulnerable web application. See Table 5.3 for the results.

ZAP Wapiti
Application SQLi XSS RCE FI SQLi XSS RCE FI

DVWA 0 0 1 1 2 0 2 1
WackoPicko 0 0 0 2 2 0 2 0

Table 5.3: Number of vulnerabilities discovered when scanning an application
that has been virtually patched via a previous run of ZAP

Wapiti Results

This tests how well the virtual patches generated from Wapiti’s vulnerability report
protect the vulnerable web application. See Table 5.4 for the results.

5.1.4 SAST-driven Virtual Patching

In these tests, a SAST called NAVEX was used to generate virtual patches. In fact,
it seems that the answer to RQ2 is the same as to RQ1: if an SAST tool is able to
produce a report with the URLs, parameters, and types of the attacks, then it can
be used to generate virtual patches. NAVEX seems to be the only tool capable of
this.

Chapter 5: Results 41

ZAP Wapiti
Application SQLi XSS RCE FI SQLi XSS RCE FI

DVWA 1 0 1 1 2 0 2 1
WackoPicko 0 0 2 2 20 0 2 0

Table 5.4: Number of vulnerabilities discovered when scanning an application
that has been virtually patched via a previous run of Wapiti

NAVEX results

This tests how well the virtual patches generated from NAVEX’s exploit report
protect the vulnerable web application. Unfortunately, NAVEX was unable to find
any vulnerabilities for attack types beyond SQLi. However, the results for SQLi are
consistent with the virtual patches generated by the DAST tools.

ZAP Wapiti
Application SQLi XSS RCE FI SQLi XSS RCE FI

DVWA 0 - - - 2 - - -
WackoPicko 0 - - - 2 - - -

Table 5.5: Number of vulnerabilities discovered when scanning an application
that has been virtually patched via Navex

5.2 Targeted Fuzzing

This tests how well VPgen rules (generated via OWASP ZAP) reduce false pos-
itives. FuzzDB’s phpbb.txt dataset is used, which consists of 20 495 passwords.
VPgen relies on the CRS rulesets, so adjusting the paranoia level does make a
difference.

5.2.1 DVWA Results

This was tested on the login page for the password parameter. Since it is a location
without a vulnerability, the false positive rate for VPgen is always 0, which can
never be worse than the CRS’s false positive rate.

5.2.2 WackoPicko Results

This is tested on the login page for the username parameter. It has at least a
SQLi vulnerability, though OWASP ZAP also detected an XSS vulnerability. At the
highest paranoia level (PL4), VPgen rules have a false positive rate that is 17% of
the CRS’s rate, which is much better. Otherwise, it is no worse.

42 K. Orlando: Automating Virtual Patching

Table 5.6: Number of legitimate requests blocked (false positives) per paranoia
level for DVWA

Paranoia CRS VPgen
PL1 1 0
PL2 2 0
PL3 6 0
PL4 76 0

Table 5.7: Number of legitimate requests blocked (false positives) per paranoia
level for WackoPicko

Paranoia CRS VPgen
PL1 1 1
PL2 2 2
PL3 6 6
PL4 76 13

Chapter 6

Discussion

In this Chapter, the thesis will discuss the methodology from Chapter 5 and the
results from Chapter 5. First, in Section 6.1, this thesis will be compared to related
works from Chapter 3 and others. Next, the implications to academia and industry
will be discussed in Sections 6.2 and 6.3. Finally, the limitations of the approach
will be discussed in Section 6.4.

6.1 Comparison to Related Works

Appelt et al. [32] generated WAF rules to supplement an existing ruleset, which
is somewhat similar to what this this thesis attempts. VPgen creates rules that
leverage the CRS for attack detection. However, Appelt et al. only focused on
SQLi, whereas this paper selected several different vulnerabilities. Betarte et al.
[33] generated virtual patches based on a representation of the vulnerable web
application, which is similar to our approach, especially with regards to SAST-
generated virtual patches. However, Betarte et al. do not leverage another rule
set; they start from scratch. Their results saw much improved performance over
CRS in terms of performance and blocking attacks, whereas our generated virtual
patches only had a better false positive rate.

Salemi [80] used a type of application security testing tool, called RASP, to
automatically generate rules, which is very similar to the approach this paper used.
However, they do not utilize an existing ruleset, and instead try to create rules
from scratch that either block requests coming from certain IP addresses or use a
primitive type of SQLi detection. OWASP’s CRS has been widely studied [6] and
has an active community that is constantly working to improve its performance
[29]. Thus, unless the focus of the work is a novel attack detection technique, it
makes the most sense to leverage a stable and effective ruleset like CRS.

In most papers that try to test the effectiveness of a given WAF or rule set, the
curated lists of payloads are sent to the WAF with little regard to no regard for
web application under protection. For example, the closest that the WAF world
has to a standard test set of data is HTTP CSIC 2010 [106]. It was developed
specifically for testing WAFs, and yet it is not useful for testing the virtual patches

43

44 K. Orlando: Automating Virtual Patching

generated by VPgen because the paths and parameters in HTTP CSIC 2010 need
to correspond to vulnerable places in the web application that’s under protection.
Therefore, coming up with a sensible and comprehensive way to test and evaluate
VPgen and the virtual patches it creates was a major struggle.

Other papers have used custom approaches, such as selecting arbitrary specific
services of the vulnerable web application to test, and using test suites to generate
data [32]. Betarte et al. [33] used OWASP ZAP and simply counted the number
of vulnerabilities that were found with and without the virtual patches. This was
influential to this paper’s approach. However, they did not look for or take into
account false positives.

6.2 Implications to academia

This was a relatively practical effort that involved the novel integration of existing
tools in order to virtually patch web applications in a novel way. This is something
that has been mentioned in technical blog [78, 79, 89] posts, but nothing similar
has been evaluated in academia until now. There is one particular topic that was
explored that could have a more pronounced effect on academia: WAFs powered
by string constraint or SMT solvers. However, this was not successfully imple-
mented due to the complexities with running NAVEX as well as time constraints.

6.2.1 String Constraint Solvers in WAFs

The main application domain for string constraint solvers is software verification
and testing, especially with the automated detection of security vulnerabilities
[107]. There are many static analysis tools that make use of string constraint and
SMT solvers across a variety of programming languages such as Java, PHP, and
JavaScript [107]. However, no one appears to have employed these in conjunction
with a WAF. In this thesis we get close. The solver is used by NAVEX to determine
whether an attack is feasible on a supposedly vulnerable code path.

6.2.2 NAVEX

Considerable time and effort was put into making NAVEX function. In addition to
having some very old dependencies (such as Gremlin 2.5 and Neo4j 2.1.8), critical
pieces of functionality were missing, such as the taint analysis, formula genera-
tion, inclusion map generation, and database sanitizations. The researchers that
designed and developed NAVEX were contacted, but they were unable to provide
assistance. This has been noted in the literature as well [108]. Although we were
able to get NAVEX to run from start to finish, we were never able to exactly repli-
cate NAVEX’s results from its paper. Part of this is due to not implementing the
database sanitizations that NAVEX uses to reduce false positives. Although men-
tioned as a central feature of NAVEX [75] and its predecessor Chainsaw [74], it
was not described in enough detail for us to replicate.

Chapter 6: Discussion 45

Significant portions of NAVEX’s code was re-written, modified, and even im-
proved for this thesis. Support for PHP string interpolation was added, increasing
the number of modeled PHP built-in functions from 35 [75] to 36.

6.3 Implications to Industry

Since similar types of virtual patching approaches have been mentioned on com-
panies’ technical blogs before [78, 79, 89], it seems likely that this effort will have
positive implications to industry. This can reduce the time-to-fix metric [89] down
to however long it takes the security testing tool to run, which can be just minutes.

6.3.1 Rule Generation Based on Commonly Used Tools

OWASP ZAP is a very popular open-source vulnerability scanner, as is ModSecurity
as a firewall and the CRS as a standard ruleset. Thus, VPgen is a fairly accessible
tool for those organizations who need to get up and running quickly with a virtual
patch for some recently acquired legacy code that has glaring security issues.

6.4 Limitations

In this section, various limitations to the approach will be discussed.

6.4.1 Negated SecRule Targets are Hardcoded

The list of negated targets in the first SecRuleUpdateTargetByTag directive was
hard-coded. This is heavy-handed, since not every target that was negated ap-
peared in every rule. In addition, the ARGS target was added to some rules that
did not previously look at any arguments.

6.4.2 Application Security Testing Tools Miss Vulnerabilities

Neither DAST tools nor SAST can always find 100% of the security vulnerabilities
within an application. Without additional (usually manual) testing, it is possible
that the patches generated do not cover certain vulnerabilities. This is where the
approaches described in [89] and [78] may be superior, since all CRS rules still
apply.

Chapter 7

Conclusion

The final chapter of this thesis is split between the Conclusion in Section 7.1 and
the discussion of Future Work in Section 7.2.

7.1 Conclusion

This master’s thesis aimed to determine whether application security testing tools
such as Static Application Security Testing (SAST) and Dynamic Application Secu-
rity Testing (DAST) tools could be used to automate the creation of virtual patches
for a vulnerable web application. Virtual patch creation is often a highly techni-
cal and manual process that could lead to serious security issues if performed
improperly. To facilitate automation, a tool called VPgen was developed that can
transform the output from several different application security testing tools into
rules and directives that can be understood by a web application firewall. The re-
sults are promising, but not all is clear. Using DAST tools such as ZAP and Wapiti
can reduce the number of false positives when the ruleset being leveraged is very
strict. When the rules are not as strict, the false positive benefit is negligible, and
the organization risks an attack slipping past.

Conclusions are tough to draw for SAST tools and virtual patching. The tool
used in this paper, NAVEX, was only effective in detecting SQLi vulnerabilities, and
its associated virtual patches were not any better than the DAST tools’ results.

7.2 Future Work

There are several different directions for future research in automated virtual
patching. VPsec could be transformed from a simple Python script into a full-
fledged virtual patching framework that processes many different types of vulner-
abilty reports and leverage several different types of rulesets. Ideally it would be
extensible so that any developer or security tester could easily add a report type or
ruleset of their choice. In addition, a tool like msc_pyparser could be used to more
carefully leverage a ModSecurity rule language rule set instead of hard coding a

47

48 K. Orlando: Automating Virtual Patching

number of targets. It could also prevent VPsec from configuring rule set rules that
should never have a vulnerable parameter as their target. As opposed to relying
on the output from other tools, perhaps a static analyzer could be built into a WAF
itself. [79] gives some insight into this. One idea is to leverage a string constraint
solver, like Z3-str2 used by NAVEX [75], from the rules of the WAF. ModSecurity
has the ability to call out to Lua scripts, which in turn can make system calls and
run other types of scripts.

Bibliography

[1] K. Parker, J. Horowitz, and R. Minkin. (2020). “How the coronavirus out-
break has – and hasn’t – changed the way americans work,” [Online].
Available: https://www.pewresearch.org/social-trends/2020/12/
09/how-the-coronavirus-outbreak-has-and-hasnt-changed-the-
way-americans-work/ (visited on 07/03/2021).

[2] Synergy Research Group. (2020). “Covid-19 boosts cloud service spend-
ing by $1.5 billion in the third quarter,” [Online]. Available: https://
www.srgresearch.com/articles/covid-19-boosts-cloud-service-
spending-15-billion-third-quarter (visited on 07/02/2021).

[3] Palo Alto Networks. (2021). “Cloud threat report 1H 2021,” [Online].
Available: https://federalnewsnetwork.com/wp-content/uploads/
2021/05/1H21-CTR-full.pdf (visited on 06/29/2021).

[4] J. Graham-Cumming. (2019). “Details of the cloudflare outage on july
2, 2019,” [Online]. Available: https://blog.cloudflare.com/details-
of-the-cloudflare-outage-on-july-2-2019/ (visited on 07/02/2021).

[5] Palo Alto Networks. (2019). “Cloudy with a chance of entropy,” [Online].
Available: https://unit42.paloaltonetworks.com/cloudy-with-a-
chance-of-entropy/ (visited on 07/04/2021).

[6] J. J. Singh, H. Samuel, and P. Zavarsky, “Impact of paranoia levels on
the effectiveness of the ModSecurity web application firewall,” in 2018
1st International Conference on Data Intelligence and Security (ICDIS), Apr.
2018, pp. 141–144. DOI: 10.1109/ICDIS.2018.00030.

[7] J. Oberoi, H. Samuel, and P. Zavarsky, “How much web security is just
enough? analysis of granulated web application firewall rules on web
server performance,” Aug. 2018.

[8] OWASP. (2017). “The ten most critical web application security risks (2017),”
[Online]. Available: https://www.%20owasp.%20org/index.%20php/
Top%5C_10-2017%5C_Top%5C_10 (visited on 04/19/2021).

[9] The MITRE Corporation. (2021). “About CWE,” [Online]. Available: https:
//cwe.mitre.org/about/index.html (visited on 06/27/2021).

49

https://www.pewresearch.org/social-trends/2020/12/09/how-the-coronavirus-outbreak-has-and-hasnt-changed-the-way-americans-work/
https://www.pewresearch.org/social-trends/2020/12/09/how-the-coronavirus-outbreak-has-and-hasnt-changed-the-way-americans-work/
https://www.pewresearch.org/social-trends/2020/12/09/how-the-coronavirus-outbreak-has-and-hasnt-changed-the-way-americans-work/
https://www.srgresearch.com/articles/covid-19-boosts-cloud-service-spending-15-billion-third-quarter
https://www.srgresearch.com/articles/covid-19-boosts-cloud-service-spending-15-billion-third-quarter
https://www.srgresearch.com/articles/covid-19-boosts-cloud-service-spending-15-billion-third-quarter
https://federalnewsnetwork.com/wp-content/uploads/2021/05/1H21-CTR-full.pdf
https://federalnewsnetwork.com/wp-content/uploads/2021/05/1H21-CTR-full.pdf
https://blog.cloudflare.com/details-of-the-cloudflare-outage-on-july-2-2019/
https://blog.cloudflare.com/details-of-the-cloudflare-outage-on-july-2-2019/
https://unit42.paloaltonetworks.com/cloudy-with-a-chance-of-entropy/
https://unit42.paloaltonetworks.com/cloudy-with-a-chance-of-entropy/
https://doi.org/10.1109/ICDIS.2018.00030
https://www.%20owasp.%20org/index.%20php/Top%5C_10-2017%5C_Top%5C_10
https://www.%20owasp.%20org/index.%20php/Top%5C_10-2017%5C_Top%5C_10
https://cwe.mitre.org/about/index.html
https://cwe.mitre.org/about/index.html

50 K. Orlando: Automating Virtual Patching

[10] The MITRE Corporation. (2021). “CWE list version 4.4,” [Online]. Avail-
able: https://web.archive.org/web/20210619113352/https://cwe.
mitre.org/data/index.html (visited on 06/27/2021).

[11] The MITRE Corporation. (2020). “2020 cwe top 25 most dangerous soft-
ware weaknesses,” [Online]. Available: https://cwe.mitre.org/top25/
archive/2020/2020_cwe_top25.html (visited on 07/06/2021).

[12] The MITRE Corporation. (2020). “About CWE - frequently asked ques-
tions,” [Online]. Available: https://cwe.mitre.org/about/faq.html
(visited on 07/07/2021).

[13] The MITRE Corporation. (2021). “Cwe view: Weaknesses in owasp top ten
(2017),” [Online]. Available: https://cwe.mitre.org/data/definitions/
1026.html (visited on 07/07/2021).

[14] PortSwigger. (2021). “SQL injection,” [Online]. Available: https://portswigger.
net/web-security/sql-injection (visited on 06/15/2021).

[15] OWASP and kingthorin. (2021). “SQL injection,” [Online]. Available: https:
/ / owasp . org / www - community / attacks / SQL _ Injection (visited on
07/09/2021).

[16] OWASP. (2021). “SQL injection prevention cheat sheet,” [Online]. Avail-
able: https://cheatsheetseries.owasp.org/cheatsheets/SQL_Injection_
Prevention_Cheat_Sheet.html (visited on 06/17/2021).

[17] OWASP and KirstenS. (2021). “Cross site scripting (XSS),” [Online]. Avail-
able: https://owasp.org/www-community/attacks/xss/ (visited on
07/09/2021).

[18] OWASP. (2021). “Cross site scripting prevention cheat sheet,” [Online].
Available: https://cheatsheetseries.owasp.org/cheatsheets/Cross_
Site_Scripting_Prevention_Cheat_Sheet.html (visited on 07/08/2021).

[19] OWASP. (2020). “Path traversal,” [Online]. Available: https://owasp.
org/www-community/attacks/Path_Traversal (visited on 07/09/2021).

[20] OWASP. (2020). “Testing for remote file inclusion,” [Online]. Available:
https://owasp.org/www- project- web- security- testing- guide/
latest/4-Web_Application_Security_Testing/07-Input_Validation_
Testing/11.2-Testing_for_Remote_File_Inclusion (visited on 07/02/2021).

[21] OWASP, W. Zhong, and Rezos. (2021). “Code injection,” [Online]. Avail-
able: https://owasp.org/www-community/attacks/Code_Injection
(visited on 07/09/2021).

[22] OWASP and W. Zhong. (2021). “Command injection,” [Online]. Available:
https://owasp.org/www-community/attacks/Command_Injection (vis-
ited on 07/08/2021).

[23] OWASP. (2020). “Web application firewall,” [Online]. Available: https:
//owasp.org/www-community/Web_Application_Firewall (visited on
07/09/2021).

https://web.archive.org/web/20210619113352/https://cwe.mitre.org/data/index.html
https://web.archive.org/web/20210619113352/https://cwe.mitre.org/data/index.html
https://cwe.mitre.org/top25/archive/2020/2020_cwe_top25.html
https://cwe.mitre.org/top25/archive/2020/2020_cwe_top25.html
https://cwe.mitre.org/about/faq.html
https://cwe.mitre.org/data/definitions/1026.html
https://cwe.mitre.org/data/definitions/1026.html
https://portswigger.net/web-security/sql-injection
https://portswigger.net/web-security/sql-injection
https://owasp.org/www-community/attacks/SQL_Injection
https://owasp.org/www-community/attacks/SQL_Injection
https://cheatsheetseries.owasp.org/cheatsheets/SQL_Injection_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/SQL_Injection_Prevention_Cheat_Sheet.html
https://owasp.org/www-community/attacks/xss/
https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.html
https://owasp.org/www-community/attacks/Path_Traversal
https://owasp.org/www-community/attacks/Path_Traversal
https://owasp.org/www-project-web-security-testing-guide/latest/4-Web_Application_Security_Testing/07-Input_Validation_Testing/11.2-Testing_for_Remote_File_Inclusion
https://owasp.org/www-project-web-security-testing-guide/latest/4-Web_Application_Security_Testing/07-Input_Validation_Testing/11.2-Testing_for_Remote_File_Inclusion
https://owasp.org/www-project-web-security-testing-guide/latest/4-Web_Application_Security_Testing/07-Input_Validation_Testing/11.2-Testing_for_Remote_File_Inclusion
https://owasp.org/www-community/attacks/Code_Injection
https://owasp.org/www-community/attacks/Command_Injection
https://owasp.org/www-community/Web_Application_Firewall
https://owasp.org/www-community/Web_Application_Firewall

Bibliography 51

[24] B. Lutkevich. (2019). “Web application firewall (WAF),” [Online]. Avail-
able: https://searchsecurity.techtarget.com/definition/Web-
application-firewall-WAF (visited on 07/08/2021).

[25] Cloudflare. (2021). “What is a WAF? | web application firewall explained,”
[Online]. Available: https://www.cloudflare.com/learning/ddos/
glossary/web-application-firewall-waf/ (visited on 07/05/2021).

[26] Positive Technologies. (2019). “What is a web application firewall?” [On-
line]. Available: https://www.ptsecurity.com/ww- en/analytics/
knowledge-base/waf-web-application-firewall/ (visited on 06/20/2021).

[27] I. Ristić and C. Folini, ModSecurity Handbook: The Complete Guide to the
Popular Open Source Web Application Firewall, 2nd ed. Feisty Duck, 2017,
ISBN: 978-1907117077.

[28] J. D’Hoinne, A. Hils, R. Kaur, and J. Watts, “Magic quadrant for web ap-
plication firewalls,” Gartner Research, 2020.

[29] OWASP. (). “OWASP modsecurity core rule set,” [Online]. Available: https:
//coreruleset.org/ (visited on 06/01/2021).

[30] victorhora and zimmerletw. (2021). “Mailing list: Mod-security-users,”
[Online]. Available: https://sourceforge.net/projects/mod-security/
lists/mod-security-users (visited on 07/09/2021).

[31] SpiderLabs. (2021). “Modsecurity,” [Online]. Available: https://github.
com/SpiderLabs/ModSecurity (visited on 07/01/2021).

[32] D. Appelt, A. Panichella, and L. Briand, “Automatically repairing web ap-
plication firewalls based on successful sql injection attacks,” in 2017 IEEE
28th International Symposium on Software Reliability Engineering (ISSRE),
IEEE, 2017, pp. 339–350.

[33] G. Betarte, R. D. L. Fuente, R. Martínez, J. Pírez, and F. Zipitría, “To-
wards model-driven virtual patching for web applications,” in 2016 Sev-
enth Latin-American Symposium on Dependable Computing (LADC), Oct.
2016, pp. 109–118. DOI: 10.1109/LADC.2016.24.

[34] G. Betarte, Á. Pardo, and R. Martınez, “Web application attacks detection
using machine learning techniques,” in 2018 17th ieee International Con-
ference on Machine Learning and Applications (icmla), IEEE, 2018, pp. 1065–
1072.

[35] S. Prandl, M. Lazarescu, and D.-S. Pham, “A study of web application
firewall solutions,” in International Conference on Information Systems Se-
curity, Springer, 2015, pp. 501–510.

[36] AQTRONiX. (2019). “AQTRONiX WebKnight - open source web applica-
tion firewall (WAF) for IIS,” [Online]. Available: http://www.aqtronix.
com/?PageID=99 (visited on 07/08/2021).

https://searchsecurity.techtarget.com/definition/Web-application-firewall-WAF
https://searchsecurity.techtarget.com/definition/Web-application-firewall-WAF
https://www.cloudflare.com/learning/ddos/glossary/web-application-firewall-waf/
https://www.cloudflare.com/learning/ddos/glossary/web-application-firewall-waf/
https://www.ptsecurity.com/ww-en/analytics/knowledge-base/waf-web-application-firewall/
https://www.ptsecurity.com/ww-en/analytics/knowledge-base/waf-web-application-firewall/
https://coreruleset.org/
https://coreruleset.org/
https://sourceforge.net/projects/mod-security/lists/mod-security-users
https://sourceforge.net/projects/mod-security/lists/mod-security-users
https://github.com/SpiderLabs/ModSecurity
https://github.com/SpiderLabs/ModSecurity
https://doi.org/10.1109/LADC.2016.24
http://www.aqtronix.com/?PageID=99
http://www.aqtronix.com/?PageID=99

52 K. Orlando: Automating Virtual Patching

[37] N. Agarwal and S. Z. Hussain, “A closer look at intrusion detection system
for web applications,” Security and Communication Networks, vol. 2018,
2018.

[38] A. Salih. (2020). “Guardian web application firewall,” [Online]. Available:
https://github.com/asalih/guardian (visited on 07/09/2021).

[39] H. Buchwald. (2021). “Shadow daemon,” [Online]. Available: https://
shadowd.zecure.org/overview/introduction/ (visited on 07/09/2021).

[40] N. System. (2021). “NAXSI,” [Online]. Available: https://github.com/
nbs-system/naxsi (visited on 07/09/2021).

[41] B. Garn, D. S. Lang, M. Leithner, D. R. Kuhn, R. Kacker, and D. E. Simos,
“Combinatorially xssing web application firewalls,” in 2021 IEEE Inter-
national Conference on Software Testing, Verification and Validation Work-
shops (ICSTW), IEEE, 2021, pp. 85–94.

[42] p0pr0ck5. (2018). “Lua-resty-waf,” [Online]. Available: https://github.
com/p0pr0ck5/lua-resty-waf (visited on 07/09/2021).

[43] SpiderLabs. (2020). “Reference manual (v3.x),” [Online]. Available: https:
//github.com/SpiderLabs/ModSecurity/wiki/Reference- Manual-
%5C%28v3.x%5C%29 (visited on 07/01/2021).

[44] The MITRE Corporation. (2019). “CVE-2019-19886,” [Online]. Available:
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-19886
(visited on 07/02/2021).

[45] C. Folini. (2021). “Disabling request body access in modsecurity 3 leads
to complete bypass,” [Online]. Available: https://coreruleset.org/
20210302 / disabling - request - body - access - in - modsecurity - 3 -
leads-to-complete-bypass/ (visited on 07/07/2021).

[46] SpiderLabs. (2020). “Reference manual (v2.x),” [Online]. Available: https:
//github.com/SpiderLabs/ModSecurity/wiki/Reference- Manual-
(v2.x) (visited on 07/01/2021).

[47] C. Sanders. (2017). “Is modsecurity’s secrules turing complete?” [Online].
Available: https://www.trustwave.com/en- us/resources/blogs/
spiderlabs-blog/is-modsecuritys-secrules-turing-complete/ (vis-
ited on 07/05/2021).

[48] R. Barnett, D. Cornell, A. Hoffman, and M. Knobloch. (). “Virtual patching
best practices | OWASP,” [Online]. Available: https://owasp.org/www-
community/Virtual_Patching_Best_Practices (visited on 02/02/2021).

[49] OWASP. (). “Virtual patching - OWASP cheat sheet series,” [Online]. Avail-
able: https://cheatsheetseries.owasp.org/cheatsheets/Virtual_
Patching_Cheat_Sheet.html#example-public-vulnerability (visited
on 02/02/2021).

https://github.com/asalih/guardian
https://shadowd.zecure.org/overview/introduction/
https://shadowd.zecure.org/overview/introduction/
https://github.com/nbs-system/naxsi
https://github.com/nbs-system/naxsi
https://github.com/p0pr0ck5/lua-resty-waf
https://github.com/p0pr0ck5/lua-resty-waf
https://github.com/SpiderLabs/ModSecurity/wiki/Reference-Manual-%5C%28v3.x%5C%29
https://github.com/SpiderLabs/ModSecurity/wiki/Reference-Manual-%5C%28v3.x%5C%29
https://github.com/SpiderLabs/ModSecurity/wiki/Reference-Manual-%5C%28v3.x%5C%29
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-19886
https://coreruleset.org/20210302/disabling-request-body-access-in-modsecurity-3-leads-to-complete-bypass/
https://coreruleset.org/20210302/disabling-request-body-access-in-modsecurity-3-leads-to-complete-bypass/
https://coreruleset.org/20210302/disabling-request-body-access-in-modsecurity-3-leads-to-complete-bypass/
https://github.com/SpiderLabs/ModSecurity/wiki/Reference-Manual-(v2.x)
https://github.com/SpiderLabs/ModSecurity/wiki/Reference-Manual-(v2.x)
https://github.com/SpiderLabs/ModSecurity/wiki/Reference-Manual-(v2.x)
https://www.trustwave.com/en-us/resources/blogs/spiderlabs-blog/is-modsecuritys-secrules-turing-complete/
https://www.trustwave.com/en-us/resources/blogs/spiderlabs-blog/is-modsecuritys-secrules-turing-complete/
https://owasp.org/www-community/Virtual_Patching_Best_Practices
https://owasp.org/www-community/Virtual_Patching_Best_Practices
https://cheatsheetseries.owasp.org/cheatsheets/Virtual_Patching_Cheat_Sheet.html#example-public-vulnerability
https://cheatsheetseries.owasp.org/cheatsheets/Virtual_Patching_Cheat_Sheet.html#example-public-vulnerability

Bibliography 53

[50] W. C. Vink. (2018). “Methods for the controlled deployment and operation
of a virtual patching program,” [Online]. Available: https://www.giac.
org/paper/gcia/12447/methods-controlled-deployment-operation-
virtual-patching-program/143808 (visited on 07/09/2021).

[51] OWASP, J. Manico, and R. R. Hansen. (2021). “XSS filter evasion cheat
sheet,” [Online]. Available: https://owasp.org/www-community/xss-
filter-evasion-cheatsheet (visited on 07/09/2021).

[52] OWASP and D. Mishra. (2020). “SQL injection bypassing WAF,” [On-
line]. Available: https://owasp.org/www-community/attacks/SQL_
Injection_Bypassing_WAF (visited on 07/08/2021).

[53] 0xInfection. (2021). “Awesome-WAF,” [Online]. Available: https://github.
com/0xInfection/Awesome-WAF (visited on 07/09/2021).

[54] M. Aldoub. (2020). “Here’s a command injection waf bypass that works,”
[Online]. Available: https://twitter.com/Voulnet/status/1229031352596672513
(visited on 06/23/2021).

[55] A. Khan. (2016). “Web application firewall, filter and bypass!” [Online].
Available: https://owasp.org/www-pdf-archive/OWASP-NL%5C_2016-
04-21-Web%5C_Application%5C_Firewall,%5C_Filter%5C_and%5C_
Bypass.pdf (visited on 11/13/2020).

[56] S. Chaliasos, G. Metaxopoulos, G. Argyros, and D. Mitropoulos, “Mime
artist: Bypassing whitelisting for the web with javascript mimicry attacks,”
in European Symposium on Research in Computer Security, Springer, 2019,
pp. 565–585.

[57] R. Lemos. (2021). “SAST, DAST, IAST, and RASP: Pros, cons and how to
choose,” [Online]. Available: https://techbeacon.com/sast- dast-
iast-rasp-pros-cons-how-choose (visited on 07/09/2021).

[58] A. Gosain and G. Sharma, “Static analysis: A survey of techniques and
tools,” in Intelligent Computing and Applications, Springer, 2015, pp. 581–
591.

[59] B. Chess and G. McGraw, “Static analysis for security,” IEEE security &
privacy, vol. 2, no. 6, pp. 76–79, 2004.

[60] OWASP. (2020). “Source code analysis tools,” [Online]. Available: https:
//owasp.org/www-community/Source_Code_Analysis_Tools (visited on
07/09/2021).

[61] F. Yamaguchi, N. Golde, D. Arp, and K. Rieck, “Modeling and discovering
vulnerabilities with code property graphs,” in 2014 IEEE Symposium on
Security and Privacy, IEEE, 2014, pp. 590–604.

[62] M. Velez, Foundations of software engineering: Taint analysis, Oct. 2018.
[Online]. Available: https://www.cs.cmu.edu/~ckaestne/15313/2018/
20181023-taint-analysis.pdf.

https://www.giac.org/paper/gcia/12447/methods-controlled-deployment-operation-virtual-patching-program/143808
https://www.giac.org/paper/gcia/12447/methods-controlled-deployment-operation-virtual-patching-program/143808
https://www.giac.org/paper/gcia/12447/methods-controlled-deployment-operation-virtual-patching-program/143808
https://owasp.org/www-community/xss-filter-evasion-cheatsheet
https://owasp.org/www-community/xss-filter-evasion-cheatsheet
https://owasp.org/www-community/attacks/SQL_Injection_Bypassing_WAF
https://owasp.org/www-community/attacks/SQL_Injection_Bypassing_WAF
https://github.com/0xInfection/Awesome-WAF
https://github.com/0xInfection/Awesome-WAF
https://twitter.com/Voulnet/status/1229031352596672513
https://owasp.org/www-pdf-archive/OWASP-NL%5C_2016-04-21-Web%5C_Application%5C_Firewall,%5C_Filter%5C_and%5C_Bypass.pdf
https://owasp.org/www-pdf-archive/OWASP-NL%5C_2016-04-21-Web%5C_Application%5C_Firewall,%5C_Filter%5C_and%5C_Bypass.pdf
https://owasp.org/www-pdf-archive/OWASP-NL%5C_2016-04-21-Web%5C_Application%5C_Firewall,%5C_Filter%5C_and%5C_Bypass.pdf
https://techbeacon.com/sast-dast-iast-rasp-pros-cons-how-choose
https://techbeacon.com/sast-dast-iast-rasp-pros-cons-how-choose
https://owasp.org/www-community/Source_Code_Analysis_Tools
https://owasp.org/www-community/Source_Code_Analysis_Tools
https://www.cs.cmu.edu/~ckaestne/15313/2018/20181023-taint-analysis.pdf
https://www.cs.cmu.edu/~ckaestne/15313/2018/20181023-taint-analysis.pdf

54 K. Orlando: Automating Virtual Patching

[63] T. Avgerinos, A. Rebert, S. K. Cha, and D. Brumley, “Enhancing symbolic
execution with veritesting,” in Proceedings of the 36th International Con-
ference on Software Engineering, 2014, pp. 1083–1094.

[64] C. Barrett and C. Tinelli, “Satisfiability modulo theories,” in Handbook of
model checking, Springer, 2018, pp. 305–343.

[65] L. De Moura and N. Bjørner, “Z3: An efficient smt solver,” in International
conference on Tools and Algorithms for the Construction and Analysis of
Systems, Springer, 2008, pp. 337–340.

[66] Y. Zheng, V. Ganesh, S. Subramanian, O. Tripp, M. Berzish, J. Dolby, and
X. Zhang, “Z3str2: An efficient solver for strings, regular expressions, and
length constraints,” Formal Methods in System Design, vol. 50, no. 2-3,
pp. 249–288, 2017.

[67] techopedia. (21). “Dynamic application security testing (DAST,” [Online].
Available: https://www.techopedia.com/definition/30958/dynamic-
application-security-testing-dast (visited on 07/09/2021).

[68] OWASP. (2020). “Vulnerability scanning tools,” [Online]. Available: https:
//owasp.org/www-community/Vulnerability_Scanning_Tools (visited
on 07/09/2021).

[69] S. Chen. (2017). “Evaluation of web application vulnerability scanners
in modern pentest/ssdlc usage scenarios,” [Online]. Available: https:
//sectooladdict.blogspot.com/ (visited on 07/05/2021).

[70] M. Sutton, A. Greene, and P. Amini, Fuzzing: brute force vulnerability dis-
covery. Pearson Education, 2007.

[71] T. Avgerinos, S. K. Cha, A. Rebert, E. J. Schwartz, M. Woo, and D. Brum-
ley, “Automatic exploit generation,” Communications of the ACM, vol. 57,
no. 2, pp. 74–84, 2014.

[72] D. Brumley, P. Poosankam, D. Song, and J. Zheng, “Automatic patch-based
exploit generation is possible: Techniques and implications,” in 2008 IEEE
Symposium on Security and Privacy (sp 2008), IEEE, 2008, pp. 143–157.

[73] S. Huang, H. Lu, W. Leong, and H. Liu, “CRAXweb: Automatic web ap-
plication testing and attack generation,” in 2013 IEEE 7th International
Conference on Software Security and Reliability, Jun. 2013, pp. 208–217.
DOI: 10.1109/SERE.2013.26.

[74] A. Alhuzali, B. Eshete, R. Gjomemo, and V. Venkatakrishnan, “Chainsaw:
Chained automated workflow-based exploit generation,” in Proceedings
of the 2016 ACM SIGSAC Conference on Computer and Communications
Security, ser. CCS ’16, New York, NY, USA: Association for Computing
Machinery, Oct. 24, 2016, pp. 641–652, ISBN: 978-1-4503-4139-4. DOI:
10.1145/2976749.2978380. [Online]. Available: https://doi.org/10.
1145/2976749.2978380 (visited on 03/10/2021).

https://www.techopedia.com/definition/30958/dynamic-application-security-testing-dast
https://www.techopedia.com/definition/30958/dynamic-application-security-testing-dast
https://owasp.org/www-community/Vulnerability_Scanning_Tools
https://owasp.org/www-community/Vulnerability_Scanning_Tools
https://sectooladdict.blogspot.com/
https://sectooladdict.blogspot.com/
https://doi.org/10.1109/SERE.2013.26
https://doi.org/10.1145/2976749.2978380
https://doi.org/10.1145/2976749.2978380
https://doi.org/10.1145/2976749.2978380

Bibliography 55

[75] A. Alhuzali, R. Gjomemo, B. Eshete, and V. N. Venkatakrishnan, “NAVEX:
Precise and scalable exploit generation for dynamic web applications,”
p. 17, 2018.

[76] A. Alhuzali. (2019). “Navex,” [Online]. Available: https://github.com/
aalhuz/navex (visited on 07/09/2021).

[77] V. Garousi, M. Felderer, and M. V. Mäntylä, “Guidelines for including grey
literature and conducting multivocal literature reviews in software en-
gineering,” Information and Software Technology, vol. 106, pp. 101–121,
2019.

[78] R. Barnett. (2012). “Modsecurity advanced topic of the week: Automated
virtual patching using OWASP zed attack proxy,” [Online]. Available: https:
//www.trustwave.com/en-us/resources/blogs/spiderlabs-blog/
modsecurity- advanced- topic- of- the- week- automated- virtual-
patching-using-owasp-zed-attack-proxy/ (visited on 07/09/2021).

[79] A. P. Research. (). “Do WAFs dream of static analyzers?” [Online]. Avail-
able: http://blog.ptsecurity.com/2017/10/do-wafs-dream-of-
static-analyzers.html (visited on 02/02/2021).

[80] M. Salemi, “Automated rules generation into web application firewall us-
ing runtime application self-protection,” 2020.

[81] R. Barnett, “WAF virtual patching challenge - securing WebGoat with Mod-
Security,” p. 26, 2009.

[82] T. Krueger, C. Gehl, K. Rieck, and P. Laskov, “Tokdoc: A self-healing web
application firewall,” in Proceedings of the 2010 ACM Symposium on Ap-
plied Computing, 2010, pp. 1846–1853.

[83] D. Appelt, C. D. Nguyen, A. Panichella, and L. C. Briand, “A machine-
learning-driven evolutionary approach for testing web application fire-
walls,” IEEE Transactions on Reliability, vol. 67, no. 3, pp. 733–757, 2018.

[84] N. M. Thang, “Improving efficiency of web application firewall to de-
tect code injection attacks with random forest method and analysis at-
tributes http request,” Programming and Computer Software, vol. 46, no. 5,
pp. 351–361, 2020.

[85] C. Liu, J. Yang, and J. Wu, “Web intrusion detection system combined
with feature analysis and svm optimization,” EURASIP Journal on Wireless
Communications and Networking, vol. 2020, no. 1, p. 33, 2020.

[86] D. Kar, S. Panigrahi, and S. Sundararajan, “Sqligot: Detecting sql injection
attacks using graph of tokens and svm,” Computers & Security, vol. 60,
pp. 206–225, 2016.

[87] G. Betarte, E. Giménez, R. Martınez, and Á. Pardo, “Machine learning-
assisted virtual patching of web applications,” arXiv preprint arXiv:1803.05529,
2018.

https://github.com/aalhuz/navex
https://github.com/aalhuz/navex
https://www.trustwave.com/en-us/resources/blogs/spiderlabs-blog/modsecurity-advanced-topic-of-the-week-automated-virtual-patching-using-owasp-zed-attack-proxy/
https://www.trustwave.com/en-us/resources/blogs/spiderlabs-blog/modsecurity-advanced-topic-of-the-week-automated-virtual-patching-using-owasp-zed-attack-proxy/
https://www.trustwave.com/en-us/resources/blogs/spiderlabs-blog/modsecurity-advanced-topic-of-the-week-automated-virtual-patching-using-owasp-zed-attack-proxy/
https://www.trustwave.com/en-us/resources/blogs/spiderlabs-blog/modsecurity-advanced-topic-of-the-week-automated-virtual-patching-using-owasp-zed-attack-proxy/
http://blog.ptsecurity.com/2017/10/do-wafs-dream-of-static-analyzers.html
http://blog.ptsecurity.com/2017/10/do-wafs-dream-of-static-analyzers.html

56 K. Orlando: Automating Virtual Patching

[88] M. Tanrıverdi and A. Tekerek, “Implementation of blockchain based dis-
tributed web attack detection application,” in 2019 1st International Infor-
matics and Software Engineering Conference (UBMYK), IEEE, 2019, pp. 1–
6.

[89] R. Barnett. (2012). “Dynamic DAST/WAF integration: Realtime virtual
patching.,” [Online]. Available: https://www.trustwave.com/en-us/
resources/blogs/spiderlabs-blog/dynamic-dastwaf-integration-
realtime-virtual-patching/ (visited on 07/09/2021).

[90] R. Barnett. (2012). “OWASP virtual patching survey results,” [Online].
Available: http://blog.spiderlabs.com/2012/03/owasp-virtual-
patching-survey-results.html (visited on 09/27/2020).

[91] A. Marchand-Melsom and D. B. Nguyen Mai, “Automatic repair of owasp
top 10 security vulnerabilities: A survey,” in Proceedings of the IEEE/ACM
42nd International Conference on Software Engineering Workshops, 2020,
pp. 23–30.

[92] V. Clincy and H. Shahriar, “Web application firewall: Network security
models and configuration,” in 2018 IEEE 42nd Annual Computer Software
and Applications Conference (COMPSAC), IEEE, vol. 1, 2018, pp. 835–836.

[93] B. Krebs. (2019). “What we can learn from the capital one hack,” [Online].
Available: https://krebsonsecurity.com/2019/08/what- we- can-
learn-from-the-capital-one-hack/ (visited on 07/09/2021).

[94] B. J. Oates, Researching information systems and computing. Sage, 2005.

[95] A. Doupé, M. Cova, and G. Vigna, “Why johnny can’t pentest: An analysis
of black-box web vulnerability scanners,” in International Conference on
Detection of Intrusions and Malware, and Vulnerability Assessment, Springer,
2010, pp. 111–131.

[96] PortSwigger. (2021). “Burp suite,” [Online]. Available: https://portswigger.
net/burp (visited on 07/09/2021).

[97] OWASP. (2021). “OWASP zed attack proxy (ZAP),” [Online]. Available:
https://www.zaproxy.org/ (visited on 07/09/2021).

[98] Sarosys LLC. (2021). “Arachni - web application security scanner net-
work,” [Online]. Available: https://www.arachni-scanner.com/ (vis-
ited on 07/09/2021).

[99] O. Security. (2020). “Kali linux package tracker - arachni,” [Online]. Avail-
able: https://pkg.kali.org/pkg/arachni (visited on 07/09/2021).

[100] O. Security. (2021). “Kali linux tools listing,” [Online]. Available: https:
//tools.kali.org/tools-listing (visited on 07/09/2021).

[101] OWASP. (2021). “OWASP vulnerable web applications directory,” [On-
line]. Available: https://owasp.org/www-project-vulnerable-web-
applications-directory/ (visited on 07/09/2021).

https://www.trustwave.com/en-us/resources/blogs/spiderlabs-blog/dynamic-dastwaf-integration-realtime-virtual-patching/
https://www.trustwave.com/en-us/resources/blogs/spiderlabs-blog/dynamic-dastwaf-integration-realtime-virtual-patching/
https://www.trustwave.com/en-us/resources/blogs/spiderlabs-blog/dynamic-dastwaf-integration-realtime-virtual-patching/
http://blog.spiderlabs.com/2012/03/owasp-virtual-patching-survey-results.html
http://blog.spiderlabs.com/2012/03/owasp-virtual-patching-survey-results.html
https://krebsonsecurity.com/2019/08/what-we-can-learn-from-the-capital-one-hack/
https://krebsonsecurity.com/2019/08/what-we-can-learn-from-the-capital-one-hack/
https://portswigger.net/burp
https://portswigger.net/burp
https://www.zaproxy.org/
https://www.arachni-scanner.com/
https://pkg.kali.org/pkg/arachni
https://tools.kali.org/tools-listing
https://tools.kali.org/tools-listing
https://owasp.org/www-project-vulnerable-web-applications-directory/
https://owasp.org/www-project-vulnerable-web-applications-directory/

Bibliography 57

[102] M. Parvez, P. Zavarsky, and N. Khoury, “Analysis of effectiveness of black-
box web application scanners in detection of stored sql injection and stored
xss vulnerabilities,” in 2015 10th International Conference for Internet Tech-
nology and Secured Transactions (ICITST), IEEE, 2015, pp. 186–191.

[103] Y. Makino and V. Klyuev, “Evaluation of web vulnerability scanners,” in
2015 IEEE 8th International Conference on Intelligent Data Acquisition and
Advanced Computing Systems: Technology and Applications (IDAACS), IEEE,
vol. 1, 2015, pp. 399–402.

[104] M. Bose. (2019). “Virtualbox network settings: Complete guide,” [On-
line]. Available: https://www.nakivo.com/blog/virtualbox-network-
setting-guide/ (visited on 07/09/2021).

[105] F. Project. (2020). “FuzzDB,” [Online]. Available: https://github.com/
fuzzdb-project/fuzzdb (visited on 07/09/2021).

[106] C. T. Giménez, A. P. Villegas, and G. Á. Marañón, “Http data set csic 2010,”
Information Security Institute of CSIC (Spanish Research National Council),
2010.

[107] R. Amadini, “A survey on string constraint solving,” arXiv preprint arXiv:2002.02376,
2020.

[108] P. Li, W. Meng, K. Lu, and C. Luo, “On the feasibility of automated built-in
function modeling for php symbolic execution,” in Proceedings of the Web
Conference 2021, 2021, pp. 58–69.

https://www.nakivo.com/blog/virtualbox-network-setting-guide/
https://www.nakivo.com/blog/virtualbox-network-setting-guide/
https://github.com/fuzzdb-project/fuzzdb
https://github.com/fuzzdb-project/fuzzdb

