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A B S T R A C T

Low-frequency (LF) motions of floating structures are commonly modeled as the response of an oscillator to
a second-order wave excitation. We present here an empirical method that reliably estimates the oscillators
parameters and quadratic transfer function (QTF) used in such models.

The method is based on an active stationkeeping system that enables to accurately control external
boundary conditions applied on the floating structure in a wave basin. The resulting system can be successively
tuned to different frequency ranges of interest. Then, by deconvolution and optimization, LF damping
and added-mass loads, as well as a response-independent wave excitation load, can be evaluated. From the
wave elevation, and estimated load time series, the difference-frequency QTF is finally estimated by a
cross-bi-spectral analysis, including a new treatment of statistical noise.

The paper describes the proposed method in details, and illustrates it with the study of a ship-shaped
floating unit in a sea-state of relevance for the fatigue design of mooring systems (steep waves, low return
period).
1. Introduction

Large-volume moored structures have eigenfrequencies in the range
2–20 mHz, i.e.well below frequencies contained in the wave spectrum
(50–200 mHz). They are usually associated with eigenmodes contained
in the horizontal plane, i.e. combinations of surge, sway, and yaw. It
is well-known that nonlinear terms in the wave-structure interaction
problem yield wave loads at these low frequencies (Faltinsen, 1993,
Chap. 5). For systems with little damping,1 even if low-frequency
wave loads are generally smaller in magnitude than wave-frequency
loads, the resulting response of the floater can be significant near reso-
nance. Quantifying low-frequency (LF) wave loads in severe sea-states
(i.e. when the wave amplitude squared becomes comparatively large) is
therefore a crucial step in the design of mooring systems, risers, power
cables, and also for the heading stability of turret-moored structures.
Common engineering practice is to approximate the hydrodynamic
wave loading process on large-volume offshore structures as the sum
of 1st and 2nd-order wave loads, in terms of the wave steepness, the
2nd-order component being expected to describe the LF excitation. The
LF response, i.e. the displacement and heading, is then described as
the response of a mechanical oscillator to this LF excitation. The mass

∗ Correspondence to: SINTEF Ocean AS, P.O. Box 4762, Torgarden, Trondheim, 7465, Norway.
E-mail address: thomas.sauder@sintef.no.

1 A notable example of such systems are a ship-shaped structures undergoing low-frequency surge motions in head seas, leading to insignificant wave radiation,
and a damping ratio of a few percent.

term in this oscillator includes the structural mass and the asymptotic
LF value of the added mass, and the stiffness corresponds to one of the
positioning system. The LF damping results from viscous damping on
the hull due to skin friction and flow separation, wave drift damping
(more on this term later on), and damping induced by the riser system
and positioning system. The contribution of each component to the
total LF damping is very case dependent, and varies with the hull
form, water depth, and sea-state, among others (Molin, 2002, Chapter
6). Our objective here is to model LF loads on the floater only, as an
input to global analyses where subsea slender structures are modeled
separately (Aksnes et al., 2015).

In the same way as linear wave loads are described by linear transfer
functions, the 2nd order LF excitation on the floater is modeled by a
difference-frequency Quadratic Transfer Functions (QTF) denoted 𝐻 (2).
It is a complex function linking the hydrodynamic load to a pair of
incoming wave components with complex amplitude and frequency
(𝑎𝑖, 𝑓𝑖)𝑖={1,2} as follows. Assuming that 𝑓1 < 𝑓2, and defining the
difference-frequency 𝛥𝑓 = 𝑓2−𝑓1, the LF hydrodynamic load will occur
at a frequency 𝛥𝑓 , and its complex amplitude will be 2𝐻 (2)(𝑓𝑖, 𝑓𝑗 )𝑎𝑖𝑎𝑗 .
As a practical example, a difference-frequency QTF 𝐻 (2) ≡ 1 results,
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in an irregular sea state, in a ‘‘load’’ equal to half of the amplitude
square of the wave envelope: in other words, the 2nd order LF loading
is in phase with the wave groups in this case. However, QTFs generally
include an imaginary part (a phasing) which can be significant in
shallow water, and exhibit amplitude variations over the bi-frequency
(𝑓1, 𝑓2) domain. This phasing with respect to the incoming wave is
particularly important when it comes to capturing extreme loads in
mooring lines, as these occur when large LF offsets (leading to a large
‘‘local’’ stiffness of the mooring system) are combined with large WF
excitation.

1.1. Numerical and empirical QTF estimation methods

QTFs can be estimated numerically by 2nd order potential the-
ory, where a perturbation method is applied, meaning that the wave
steepness and motions are assumed to be asymptotically small. Ex-
amples of commercial programs currently implementing such methods
are WAMIT, Hydrodstar, Wadam, AQWA and Orcawave. The compu-
tational burden associated with numerical estimations of full QTFs,
i.e. over a wide range of the bi-frequency plane, used to be an issue.
Various simplifying approximations were therefore developed, such as
Newman or Pinkster approximations. See de Hauteclocque et al. (2012)
and Engebretsen et al. (2020) for an overview and some important
limitations of such approximations. With the computational power
available nowadays, calculating full QTFs with the above-mentioned
tools is now achievable in an engineering context, and such approxima-
tions become unnecessary. However, full QTFs obtained from potential
theory do not always describe the hydrodynamic loading in a satisfac-
tory way either. There are several reasons for this. (1) A significant
contribution to the LF wave load is related to the wave-frequency (WF)
relative wave elevation at the waterline (Pinkster, 1980, page 38).
In many cases, the latter is affected by viscous drag loads, which are
amplitude- and frequency-dependent. For example bilge keels increase
the global WF heave or pitch damping on a ship by locally enforcing
flow separation, and hereby influence the amplitude and phasing of her
motions with respect to the incoming wave. LF wave loads are in turn
affected as shown numerically in e.g. Engebretsen et al. (2020). They
can therefore only be predicted correctly by potential theory if such
amplitude- and frequency-dependent viscous effects are modeled cor-
rectly. (2) Wave–current interaction is not treated in a fully consistent
way in 2nd order potential theory. The most prominent approximations
are based on Aranha formula (1994) which corrects the LF load based
on the wave frequency and relative LF velocity with respect to the
current. Recently, another semi-empirical correction has been proposed
by the EXWAVE project to account for wave–current interaction and
sea-state dependency for semi-submersibles (Fonseca et al., 2017). It
has also been applied, with promising results, to model wave-drift
damping (Ommani et al., 2017). (3) The fundamental assumption of
perturbation theory is that the 2nd-order (LF) motions are smaller in
magnitude than the 1st-order (WF) motions. This assumption is violated
for moored structures, as surge LF motions are typically an order of
magnitude larger than WF motions. By Taylor expanding the LF wave
excitation in the LF velocity and LF displacement, it appears that this
violation results in a modification of the LF damping, stiffness and
wave excitation (Molin, 2002, Chapter 6). A similar effect on the added
mass is reported in Kinoshita et al. (2002) and Yoshida et al. (2005).
While significant modifications of eigenfrequencies in harsh sea states
have been reported for offshore structures, for example in Ommani
et al. (2017), these are not fully understood and modeled yet. As of
today, only the modification of LF damping is accounted for, through
the so-called wave drift damping. (4) Finally, beyond-2nd order effects
might lead to increased loads. Some of these effects can be categorized
as ‘‘potential’’ effects, as they could in principle be modeled by a
higher-order potential theory. An example is the additional load caused
by a rapid change of geometry near the free surface, such as bow
2

flares on ships. An other example is the couplings between yaw and
other degrees of freedom, studied e.g. in Grue and Palm (1996). There
are also known beyond-2nd order viscous effects, the most prominent
example being obtained when integrating Morison-drag on columns
up to the instantaneous free-surface. This results in 3rd-order loads in
terms of wave amplitude (Faltinsen, 1993, p. 153).

In the harsh sea-states relevant for design, empirical
estimation/correction of nonlinear wave loads is therefore necessary
(Aksnes et al., 2015; Fonseca et al., 2017; Fonseca and Stansberg,
2017). Empirical methods consist in ‘‘observing’’ the response of the
structure to a known incoming wave to infer the load it was subjected
to. The state-of-the art approach for moored structures consists in
model testing in hydrodynamic laboratories. In such a setting, the
floater is kept in position by a horizontal mooring system connected to
the basin sides. The stiffness of the mooring system in surge, sway and
yaw is designed to be ‘‘soft’’, i.e. leading to natural periods well above
the WF range, in order to minimize the effect on the WF motions of the
floater. This system is then subjected to incoming waves representing
a sea-state of interest, where the wave energy is usually concentrated
around a peak period, and the resulting motions of the floater are
recorded. From there, two types of methods are usually applied to
estimate the LF wave loads. In the first case, the wave excitation
loads are estimated from deconvolution of the motions by assuming
a linear oscillator with known parameters. Then, from the load and the
measured undisturbed input wave, QTFs are estimated using cross-bi-
spectral analysis (see e.g. Pinkster (1979), Rugh (1981) and Stansberg
(1997) for applications to marine hydrodynamics and Kim (2004) for
a thorough literature study until 2004). The oscillator parameters are
updated iteratively, until the reconstructed motions match with the
measured ones. An alternative is to estimate the QTF and oscillator
parameters by a least-square fitting of the response time series (Bunnik
et al., 2006; Rogne et al., 2016). Such empirical methods are comple-
mentary to numerical methods, whose results might be confirmed (as it
is generally the case in moderate sea-states), or corrected, as generally
needed in harsher sea states, and/or in presence of current (Fonseca
and Stansberg, 2017).

There are, however, also several limitations related to traditional
empirical approaches, which are outlined in the following. (1) First of
all, some systems such as FPSOs in head seas, have a small bandwidth,
meaning that they respond mainly at their natural frequency. In that
case, proportional variations of damping and excitation in the model
result in very similar motion patterns. Such a ‘‘poor identifiability’’
property is often a challenge in numerical modeling, as one wishes
to establish estimates of damping and excitation loads separately.
(2) Then, once the soft mooring system is designed, the dynamical
properties of the oscillator constituted by the floater in its mooring,
including its eigenfrequencies, are fixed. If some of the LF load occurs
at e.g. higher frequencies, the dynamical system might not respond
significantly to it, filtering out relevant information about the loading.
For this reason, the eigenfrequency of the soft mooring is often chosen
to be the one of the full-scale system 𝑓𝑛,field. However, we will see in
the following that this choice is not necessarily adequate. (3) Finally,
soft mooring systems induce some (uncontrolled) damping due to drag
loads on the portion of the lines in contact with water. This damping
is usually small, but it can become significant when e.g. studying ships
undergoing surge motions as the hull damping is small. This uncertainty
reduces the accuracy of the deconvolution.

1.2. Main contributions, and structure of the paper

We present here a novel ‘‘cyber–physical’’ empirical method aimed
at estimating LF hydrodynamic loads, and addressing the limitations
listed above. A laboratory apparatus is presented in Section 2, that
enables a precise control of external boundary conditions applied to
the structure. Secondly, by exploiting this apparatus, we present, in
Section 3, a method to estimate LF excitation forces, added-mass and

damping forces separately, which is of importance for model calibration
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purposes. The frequency range on which the LF excitation is estimated
is also increased. And finally, in Section 4, we propose an improved
way of establishing empirical QTFs from the estimate wave excitation
time series. Here, domains of the bi-frequency plane where little infor-
mation is available from the experiments are systematically identified
and discarded. The presented method is illustrated with experiments
involving a ship-shaped structure that had been studied thoroughly
earlier (Fonseca and Stansberg, 2017).

2. Laboratory apparatus

The laboratory setup used in the present work consists in an active
positioning system that applies a desired LF horizontal load 𝜏𝑚 ∈
R3 (surge, sway, yaw) on the floating structure. The load 𝜏𝑚 can be
chosen arbitrarily, but consists here of a restoring/damping load. It
is calculated based on the low-frequency displacement/heading and
velocities of the floater, estimated by an observer acting as real-time
wave filter. The load 𝜏𝑚 is applied through a set of actuation lines with
tensions 𝑇 = (𝑇1,… , 𝑇𝑛) where 𝑛 is the number of actuators. See Fig. 1
for a setup with 𝑛 = 6 actuators. The block diagram in Fig. 2 shows the
control architecture of the setup presented here. The setup has been
briefly presented earlier in Sauder and Tahchiev (2020).

Before describing in details this setup, we would like to pinpoint
that using an active positioning system to estimate LF wave loads is not
a new idea. It was actually suggested more than 40 years ago (Pinkster,
1980, page 111), and some more details about the practical implemen-
tation were given in Pinkster and Huijsmans (1992). The objective at
that time was to totally restrain LF motions, while ensuring free WF
motions. The applied forces when doing so would be measured, and be
the exact opposite of the sought LF loads. Restraining LF motions was
performed by a feed-forward controller using instantaneous relative
wave elevation measurements at several places around the ship to
estimate LF forces. The feed-forward controller was completed by a
feedback controller. As they still were spurious residual LF motions
present, these were transformed into loads using assumed added mass
and damping coefficients, and subtracted from the estimated LF loads.
Note that this setup, by construction, could not provide information
about LF added-mass and damping loads themselves. Not much details
were given regarding the performance of the setup, and it is unclear
whether this setup has been used later on. To the author’s knowledge,
no other similar setups has been developed by others.

We will in the following, detail the different components of the
setup as presented in Fig. 2, starting from the physical model.

The physical model used in the present study is the Floating Pro-
duction, Storage and Offloading unit (FPSO) already studied in details
in Fonseca and Stansberg (2017) and other publications by the same
authors. The FPSO model was manufactured at a scale of 𝜆 = 1∕70,
and ballasted to its fully loaded condition. Main particulars and key
parameters of the FPSO are provided in Table 1. The full scale water
depth was 210 m, i.e. 3 m at model scale. The model was installed in the
Ocean Basin at SINTEF Ocean, and subjected to waves. The instrumen-
tation of the model consisted of (1) an optical motion tracking system
with sampling frequency of 100 Hz, and (2) line tension measurements
for all lines connected to the model, visible on Fig. 1, with sampling
frequency of 200 Hz, and low-pass filtering at 20 Hz.

2.1. Estimation of LF position and velocity

The measurements coming from the optical motions tracking con-
tain both the LF component and the wave frequency-range component
of the motions. To obtain real-time estimates of the LF position/heading
and velocity in real-time, we use a model-based wave-filtering tech-
nique widely used in dynamic positioning (DP) systems.

The conventions and notations for coordinate systems described
in Fossen (2011) are adopted here (see also Fig. 1). Assuming that there
is a clearly separated frequency content for WF and LF motions, let
3
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Table 1
FPSO main particulars (scale 1/70), mass and stability properties.

Parameter Unit Model scale Full scale

Length over all [m] 3.663 256.4
Length betw. perpendiculars [m] 3.486 244.0
Beam [m] 0.686 48.0
Draught [m] 0.380 26.6
Displacement [kg], [t] 507.3 178 365
Vertical CoG above baseline [m] 0.269 18.83
Longitudinal CoG fwd of AP [m] 1.711 119.8
Transverse metacentric height [m] 0.0322 2.254
Radius of gyration in roll [m] 0.223 15.61
Radius of gyration in pitch [m] 0.768 53.76
Natural period — heave [s] 1.4 11.5
Natural period — roll [s] 2.7 22.7
Natural period — pitch [s] 1.2 9.6

𝜂 = [𝑁,𝐸, 𝜓] be the LF-component of the position/attitude vector of
the body in the inertial frame of reference, equipped with a North-East-
Down coordinate system. Let 𝜈 = [𝑢, 𝑣, 𝑟] be the LF-component of the
body linear/angular velocity, expressed in a body-fixed frame of ref-
erence (surge, sway, yaw). Let 𝑅(𝜓) be the rotation matrix converting
body-fixed vector coordinates into coordinates expressed in the inertial
frame of reference. The motions of the floater in its mooring can be
approximated by the following set of equations:

𝜂 = 𝑅(𝜓)𝜈 (1)
𝜈̇ + 𝐶(𝜈)𝜈 +𝐷𝜈 = 𝜏𝑚(𝜂) + 𝜏𝑤(𝑡) (2)

n this equation, the mass term 𝑀 ∈ R3×3 consists of the sum of the
ass and LF-asymptotic value of the added mass, estimated e.g. from
otential flow theory. The linearized damping matrix 𝐷 ∈ R3×3 can be
btained from free decay tests, as presented in Sauder and Tahchiev
2020). The Coriolis-centripetal term 𝐶(𝜈)𝜈 can be neglected here since
F velocities are small. 𝜏𝑚 is the force applied by the active positioning
ystem and 𝜏𝑤(𝑡) is the LF wave excitation force.

Online wave filtering (estimation of 𝜂), and estimation of 𝜈, are
erformed with the nonlinear passive observer (Fossen and Strand,
999) described in the following. Denoting 𝜂𝑤 ∈ R3 the WF component
f the position/heading, 𝑦 the measurement of 𝜂+𝜂𝑤, and 𝑦̂ its estimated
ounterpart, the estimation error (also known as the innovation) is
efined as 𝑦̃ = 𝑦 − 𝑦̂. The following equations describe the WF motion
stimator:

𝑦̂ = 𝜂̂ + 𝐶𝑤𝜉 (3)
̇̂𝜉 = 𝐴𝑤𝜉 +𝐾1𝑦̃ (4)

here 𝜉 ∈ R6 is the state vector of a 3-degrees of freedom linear oscil-
ator, such that 𝐶𝑤𝜉 models the WF response. The matrices 𝐴𝑤 ∈ R6×6

𝑤 ∈ R3×6 and 𝐾1 ∈ R6×3 are selected based on the floater’s resonance
requencies, damping ratios, and sea-state peak period (see Fossen,
011, Chapter 11 for details), which, in a laboratory setting, are well
efined. Estimates of the LF position, heading and velocity are given
y

̇̂𝜂 = 𝑅𝜈̂ +𝐾2𝑦̃ (5)
̇̂𝜈 = −𝐷𝜈̂ + 𝑅⊤𝑏̂ + 𝜏𝑚 + 𝑅⊤𝐾4𝑦̃ (6)
̇̂𝑏 = −𝑇 −1

𝑏 𝑏̂ +𝐾3𝑦̃ (7)

here (5) and (6) copy the kinematic and dynamic equations of mo-
ions given in (1) and (2), respectively, and where (7) the estimates
lowly-varying biases, including LF wave loads. 𝑇𝑏 ∈ R3×3 is a diagonal
atrix of positive time constants, that will low-pass filter the bias

ariations. All gains matrices 𝐾{2,3,4} have a diagonal structure, and
re selected to satisfy passivity constraints, and hence ensure conver-
ence of the estimation error to zero. The interested reader is referred
o Fossen (2011, Chapter 11) for more details. Delays introduced in the
ontrol loop by calculation time, data processing and transport time,
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Fig. 1. Active positioning system — Setup in the Ocean Basin, including the earth-fixed North-East-Down coordinate system, the forces applied by the positioning system (in red)
and resulting load vector 𝜏 (in blue) expressed in the body-fixed coordinate system. Notations are consistent with those presented in Fossen (2011).
Fig. 2. Active positioning system — Block diagram. See main text for notations.
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are estimated offline using cross-correlation, and the observed values 𝜂̂
and 𝜈̂ are predicted using polynomial forward prediction (Vilsen et al.,
2017). Predicted values 𝜂𝑝 and 𝜈𝑝 (20 ms ahead) are then used as
estimates of 𝜂 and 𝜈 in the following.

2.2. Applying restoring and damping loads

The load vector applied by the active positioning system on the
floater consists in a linear anisotropic restoring and damping load,
formulated as:

𝜏𝑚 = −𝑅(𝜓)⊤𝑅(𝛼𝑚)
[

𝐷𝑚𝑅(𝛼𝑚)⊤𝑅(𝜓)𝜈 +𝐾𝑚𝑅(𝛼𝑚)⊤(𝜂 − 𝜂ref)
]

(8)

where 𝛼𝑚 defines a main axis direction with respect to North, and
𝐾𝑚 = diag(𝑘𝑖, 𝑘𝑡, 𝑘rot) and 𝐷𝑚 = diag(𝑑𝑖, 𝑑𝑡, 𝑑rot) contain the inline,
transverse, and rotational stiffness and damping terms, respectively.
The equilibrium point is defined by 𝜂ref = (𝑁0, 𝐸0, 𝜓0)⊤.

Then, given desired a load vector 𝜏𝑚, the allocation block in Fig. 2
computes the tension that should be exerted by each cable on the ship.
Let 𝑇0 ∈ R6 be a tuple containing a pretension for each of the six lines
depicted in Fig. 1, in our case 15 N. Let 𝛥𝑇 ∈ R6 be the additional
tension allocated on each line in order to achieve the correct load
vector. We denote 𝐴𝑐 (𝜂) the configuration matrix, which depends on
the actuators position, body position, and position of the attachment
point of the lines on the body (Vilsen et al., 2017). Given 𝑇0, we obtain
𝛥𝑇 from the Moore–Penrose pseudo-inverse of 𝐴𝑐 , which leads to a
minimum deviation |𝛥𝑇 |2 to the pretension:

𝛥𝑇 = 𝐴†
𝑐 (𝜏 − 𝐴𝑐𝑇0) (9)

For some configurations, for example when large heading are investi-
4

gated with the setup presented in Fig. 1, it is beneficial to adapt the o
pretension 𝑇0 to avoid that lines go slack. This is done automatically
by the following adaption law:

𝑇̇0(𝑡) =

𝐾𝑇0 ∫

𝑡

0

(max𝑖={1,2,…,6} (𝑇0(𝑡′) + 𝛥𝑇𝑖(𝑡′)) + min𝑖={1,2,…,6} (𝑇0(𝑡′) + 𝛥𝑇𝑖(𝑡′))
2

− 𝑇0,𝑡𝑎𝑟𝑔𝑒𝑡

)

𝑑𝑡′ (10)

which moves the envelope of the tensions away from the extreme
tension values. The gain 𝐾𝑇0 is used to tune the speed of the adaptation.

The desired line tensions are applied on the structure by using
set of six custom-made actuators designed at SINTEF Ocean. They

onsist in off-the-shelf rotary brushless servomotors, connected, with
ome compliance, to the drum around which the lines are twined. The
ompliance is obtained by using a clock spring with known stiffness. A
ension controller, represented in Fig. 2 defines the desired shaft angle
cmd of the servomotor. The control objective for the tension controller
s twofolds: (CO1) Track of the commanded LF tensions originating
rom the allocation module, and (CO2) reject WF disturbances, meaning
hat the line tensions should not be influenced by FPSO motions at

F. To achieve this objective, the controller consists of three terms:
T1) a feed-forward term that converts change in desired LF tensions to
hanges in the shaft angle, which contributes to (CO1). (T2) The second
erm in the controller maps the rotations of the drum to the angle of
he shaft hereby avoiding any spurious force as requested by (CO2). The
hird term (T3) of the controller is a feedback term that aims at can-
eling remaining errors. More details regarding the mechanical design
f the actuators and their controller are given in Ueland et al. (2021).
ith the present setup, the typical accuracy of the force tracking was

n the order of 0.1 N.
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2.3. Conclusion

It has been shown earlier that the presented active positioning
system is able to replicate tests obtained with a passive soft mooring
system (Sauder and Tahchiev, 2020). The complete validation study
described in this reference (and not repeated here), included static
excursion tests, decay tests, and tests in irregular waves.

To summarize, the setup presented here enables to conveniently
apply a freely-chosen linear restoring and damping load based on LF
motions only. As opposed to traditional soft mooring systems, the
external load is perfectly deterministic as the tension in the lines
are feedback controlled at the attachment points on the model. The
presented setup also enables automatic heading changes and decay tests
by simply adjusting 𝜂ref. The anisotropic characteristic of the stiffness
and damping enables to study or mitigate the effect of couplings, by
associating a comparatively larger damping level to LF yaw motions
for example.

3. Estimation of LF hydrodynamic loads

In this section, we show how the laboratory setup presented in Sec-
tion 2 enables to efficiently estimate the LF added mass and damping
coefficients, and LF wave excitation loads over a wide range of frequen-
cies. Without loss of generality, we assume now that the motions of the
system are decoupled, and that the LF motions can be described by the
following scalar linear equation, where the quantities to be estimated
are in red:

(𝑚 + 𝑎)𝜂̈(𝑡) + 𝑑ℎ𝜂̇(𝑡) = 𝜏𝑤(𝑡) + 𝜏𝑚(𝜂, 𝜂̇) (11)

Let 𝜏𝑚(𝜂, 𝜂̇) = −𝑑𝑚𝜂̇−𝑘𝑚𝜂, be the (known) load applied by the apparatus
described in Section 2, (11) becomes:

(𝑚 + 𝑎)𝜂̈(𝑡) + (𝑑ℎ + 𝑑𝑚)𝜂̇(𝑡) + 𝑘𝑚𝜂(𝑡) = 𝜏𝑤(𝑡) (12)

The parameters in blue can be freely adjusted, and quantities in black
can be measured or derived in a post-processing phase. Assume now
that we perform a set of 𝑁tests tests using the same incoming wave,
but where parameters in 𝜏𝑚 are varied,. We obtain the following set of
equations: ∀𝑖 ∈ {1,… , 𝑁tests},

𝑚𝜂̈(𝑖)(𝑡) + 𝑑(𝑖)𝑚 𝜂̇
(𝑖)(𝑡) + 𝑘(𝑖)𝑚 𝜂

(𝑖)(𝑡) = 𝜏(𝑖)tot (13)

where 𝜏(𝑖)tot = 𝜏𝑤(𝑡) − 𝑎𝜂̈(𝑖)(𝑡) − 𝑑ℎ𝜂̇(𝑖)(𝑡) (14)

This equation now represents an oscillator with known parameters, ex-
cited by a force 𝜏(𝑖)tot that can accurately be determined by deconvolution
(more details will be given in 3.2 about this). Now, according to the
postulated model (2), the wave excitation 𝜏𝑤(𝑡) should not vary much
from test to test, while part of the loading, namely the added mass
−𝑎𝜂̈(𝑡) and damping loads −𝑑ℎ𝜂̇(𝑡) are response-dependent, and will
vary with varying 𝑑𝑚 and 𝑘𝑚. Hence, the LF added mass and damping
can be estimated by solving the following minimization problem:

(𝑎̄, 𝑑ℎ) = arg min
𝑎,𝑑ℎ ∫

𝑇

0
Var𝑖={1,…,𝑁tests}[𝜏

(𝑖)
tot + 𝑎𝜂̈

(𝑖)(𝑡) + 𝑑ℎ𝜂̇(𝑖)(𝑡)]𝑑𝑡 (15)

where Var{...} denotes the variance over the set of tests and 𝑇 the test
duration. Once the optimal parameters 𝑎̄ and 𝑑ℎ are found, they can be
used to determine the excitation force as

𝜏𝑤(𝑡) = E𝑖={1,…,𝑁tests}[𝜏
(𝑖)
tot + 𝑎̄𝜂̈

(𝑖)(𝑡) + 𝑑ℎ𝜂̇(𝑖)(𝑡)] (16)

where E{...} denotes the average over the set of tests. The variance of
the same quantity provides an indication about how well the model
structure (11) suits the problem at hand.2 In the following, we will first

2 One reason for which the model structure (11) might not be valid has been
iscussed in Section 1.1, and is related to the fact that 𝜏𝑤 might be affected

by the non-infinitesimal character of the LF response. So, while achieving a
5

Fig. 3. Wave spectrum.

illustrate this approach with an example before providing more insight
about the selection of the 𝑘(𝑖)𝑚 and 𝑑(𝑖)𝑚 parameters, and test duration.

3.1. Example

We consider the FPSO described in Section 2 in head seas. The
significant wave height is 𝐻𝑠 = 7.3 m, and the peak period 𝑇𝑝 =
10.0 s. The wave energy spectrum (JONSWAP) is presented in Fig. 3.
Such a sea-state is typically of importance when estimating fatigue
damage on mooring lines, as it is energetic and occurs with a relatively
high frequency in the Norwegian Sea. Furthermore, it is interesting
for the purpose of the present research, as (1) it is rather steep, with
2𝜋𝐻𝑠∕(𝑔𝑇 2

𝑝 ) ≃ 0.05, meaning that weakly nonlinear effects such as 2nd-
order wave loads should be significant, and (2) because 𝑇𝑝 is in the
icinity of the heave and pitch natural periods (see Table 1), where
he surge component of the difference-frequency QTF is usually large
nd/or exhibits large variations. On the other hand, the sea-state is
ot extreme, in the sense that green-water or bow-flare slamming do
ot occur much during the tests (confirmed by video footage during
he present study). This means that 2nd-order potential theory also
rovides adequate estimates of the LF wave loads for this sea-state (Fon-
eca and Stansberg, 2017), which adds a useful reference to benchmark
he present empirical estimation method.

Five tests (𝑁tests = 5) were performed, with a full-scale duration
= 14223 s each. The values of 𝑘(𝑖)𝑚 and 𝑑(𝑖)𝑚 used in each test are

reported in Table 2. In tests 1–3 the damping 𝑑𝑚 increased, while the
tiffness remained close to its nominal value 𝑘𝑚 = 268 kN/m. In tests

4 and 5 the stiffness 𝑘𝑚 varied, while keeping the damping close to its
nominal value 𝑑𝑚 = 315 kN/(m/s). The resulting motions of the floater
or the five cases are plotted in black in Fig. 10. It is clear that the
requency content and amplitude of the motion varies significantly from
est to test.

Applying the method described above, the resolution of (15) results
n identified parameters 𝑎̄ = 12.29 t, i.e. a LF added-mass in surge of
bout 7% of the structural mass, and a linearized LF damping of 𝑑ℎ =
02 kN/(m/s), which corresponds to a damping ratio of 2% for the full-
cale asset. These results are in good agreement with results established
ndependently by Fonseca and Stansberg (2017). The value of the
ost function in (15) is presented in Fig. 4. The estimated excitation
orce time series 𝜏𝑤(t), estimated from (16), is also represented in
ig. 4. It can be seen that the standard deviation of the estimated
𝑤 across the tests is very small, which validates the model structure

perfectly consistent wave loading across all cases (i.e. a zero variance) should
not be expected in general, a sufficiently small variance supports the validity
of the assumed structure of Eq. (11).
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Table 2
Parameters 𝑘(𝑖)𝑚 and 𝑑(𝑖)𝑚 used in each test, and corresponding natural frequency 𝑓𝑛 and
damping ratio 𝜁 . The listed eigenfrequencies 𝑓𝑛 correspond to periods 1/𝑓𝑛 equal to
162 s, 240 s and 96 s, respectively..

i 𝑘(𝑖)𝑚 𝑑(𝑖)𝑚 𝑓𝑛 𝜁
kN/m kN/(m/s) mHz %

1 268 315 6.16 2.3
2 267 924 6.16 6.7
3 267 2231 6.16 16.2
4 122 311 4.17 3.3
5 763 324 10.41 1.4

(11). The frequency content of the estimated force is not significant for
frequencies larger than 12 mHz (i.e. periods less than 83 s).

3.2. Deconvolution, and choice of 𝑘(𝑖)𝑚 and 𝑑(𝑖)𝑚

Estimating 𝜏tot in (13) from the measured motions and known
arameters 𝑘𝑚 and 𝑑𝑚 consists in performing a linear deconvolution. In
he frequency domain, it simply means that the Fourier coefficients of
tot are obtained by dividing the Fourier coefficients of 𝜂 by the complex
ransfer function

(𝑓 |𝑘𝑚, 𝑓𝑛, 𝜁) =
1
𝑘𝑚

⋅
1

1 −
(

𝑓
𝑓𝑛

)2
+ 2𝑖𝜁 𝑓

𝑓𝑛

(17)

here 2𝜋𝑓𝑛 =
√

𝑘𝑚∕𝑚 and 𝜁 = 𝑑𝑚∕
√

2𝑘𝑚𝑚. We will refer to the
amplitude of this transfer function, as the sensitivity 𝜎 of the setup.
Fig. 5 presents 𝜎 for each of the five tests conditions in Table 2.

The following important considerations about the choice of 𝑘(𝑖)𝑚 and
𝑑(𝑖)𝑚 can be made. First of all, the setup should have a low sensitivity
in the WF range, or near natural frequencies of the floater in the WF
range (typically modes involving heave, roll, and pitch). An important
reason for this, discussed in the introduction, is that LF loads depend
on WF motions, which should be left undisturbed. This criterion is also
related to the fact that one wishes to clearly separate by filtering the LF
motions from the WF motions in post-processing. In the present setup
(head seas), one wishes 𝜎 to be negligible beyond 87 mHz, which is the
heave eigenfrequency.

Then, 𝜎 should be high enough so that the response, i.e. the dis-
placement amplitude, is greater than position/heading measurements
uncertainty at frequencies of interest (here 0–12 mHz). This require-
ment can be quantified as follows. Let (𝛿𝜏)min be the order of magnitude
of the force that one wishes to measure at full scale, and (𝛿𝜂)min the
order of magnitude of the measurement error at model scale, then3

𝜎 ≥ 𝜎min ∶≃
(𝛿𝜂)min
(𝛿𝜏)min𝜆3

(18)

n the present example, setting (𝛿𝜏)min = 100 kN and (𝛿𝜏)min = 5 mm
(i.e. requesting that a load of 100 kN at full-scale triggers a displace-
ment at least of 5 mm at model scale) leads to a minimum acceptable
sensitivity of 𝜎min= 17 mm/N, which is greyed on in Fig. 5. One clearly
sees that relying on one single oscillator (among those considered
here) only will not lead to a sufficient sensitivity throughout the full
frequency range of interest (0–12 mHz), while the combination of cases
studied here covers this range.

On the other hand, it is not necessarily favorable to maximize the
sensitivity by excessively reducing 𝑑𝑚 and hence 𝜁 . Indeed, in case there
is some uncertainty on the natural frequency 𝑓𝑛 (due to measurement
inaccuracies on the mass or moments of inertia for example), perform-
ing a deconvolution with a very little damped oscillator might lead to
significant errors in the estimated loading near 𝑓𝑛. This error can be

3 Density ratios are neglected, and we remind that 𝜆 < 1.
6

quantified by looking at
𝜏est.
𝜏true

=
𝐻(𝑓 |𝑘𝑚, 𝑓𝑛, 𝜁)

𝐻(𝑓 |𝑘𝑚, (1 + 𝜀)𝑓𝑛, 𝜁)
(19)

llustrated in Fig. 6. This plots shows, for the three eigenfrequencies
n Table 2, and four representative damping ratios, the estimated
mplitude and phase error on the estimated force caused by a 𝜀 = 2%
rror on the assumed 𝑓𝑛. Note first that an error in the assumed 𝑓𝑛
auses a constant error of about 2𝜀 on the whole frequency range
eyond 𝑓𝑛. Furthermore, the error in the estimated force amplitude and
hase is maximal around 𝑓𝑛, and can be significant for systems with
mall 𝑑𝑚. This indicates that 𝑓𝑛 should, in principle, not be chosen too
lose to the natural frequency of the floater in its mooring in the field
𝑓n,field, as it is precisely around this frequency that the excitation forces
should be estimated accurately.

As a final remark, when studying systems with much hydrodynamic
damping 𝑑ℎ, which is typically the case for semi-submersibles, the re-
ulting load 𝜏𝑤(𝑡) might be dominated by damping loads −𝑑ℎ𝜂̇, leading

to small motions. The present setup enables to compensate for this by
selecting negative 𝑑𝑚 values which is not feasible using a traditional
passive soft mooring setup.

3.3. A note on test duration, and conclusion

The frequency resolution (𝛥𝑓 )min of the motion and load spectra is
irectly related to the test duration 𝑇 by (𝛥𝑓 )min = 1∕𝑇 , which is equal
o 0.07 mHz in the present example. In other words, the frequency
ange of interest for nonlinear LF wave loads, here 12 mHz wide, is
escribed by 170 points. It is important to be aware of this when
moothing power spectra such as the one presented in Fig. 4.

Defining the minimum test duration based on the problem at hand
an hence be done based on two criteria. (1) there should be enough
oints in the ‘‘very low’’-frequency range up the natural frequency of
he full-scale system 𝑓n,field, i.e. 𝑓𝑛𝑇 > 𝐴1, where 𝐴1 is large, typically of
he order of 100. (2) the LF load spectrum should be resolved correctly
n the vicinity of 𝑓n,field. This constraint relates to the damping ratio
f the full-scale system 𝜁field, and hence its quality factor/bandwidth:

2𝜁field𝑓n,field𝑇 > 𝐴2, where 𝐴2 is of the order of 10–100. The value of
𝑇 = 14423 s used in the present study leads to an acceptable frequency
esolution for the system at hand.

To conclude, we have in this section shown how the apparatus
resented in Section 2 enables an independent estimation of the LF
dded mass, damping, and excitation load 𝜏𝑤. The estimated hydro-

dynamic loads are valid across several tests where the LF motions vary
significantly, which shows the validity of the linear model structure in
(11) for the case at hand. We also provided guidelines for the choice of
𝑘(𝑖)𝑚 and 𝑑(𝑖)𝑚 to be applied in the tests, depending on the full-scale natural
periods of the system of interest, the expected level of hydrodynamic
damping, and the LF frequency range of interest.

4. Estimation of difference-frequency QTFs

In the previous section, a LF wave excitation load time-series 𝜏𝑤(𝑡)
for 𝑡 ∈ [0, 𝑇 ] was estimated. The objective is now to extract an empirical
QTF 𝐻 (2) ∶ R2 → C, that could relate the undisturbed wave time series
𝑥(𝑡) to 𝜏𝑤(𝑡) for other realizations of similar sea states.

.1. Cross-bi-spectral analysis

Let 𝑋(𝑓 ) denote by the double-sided Fourier transform of 𝑥(𝑡). We
ave 𝑥(𝑡) = ∫ ∞

−∞𝑋(𝑓 )𝑒𝑖2𝜋𝑓𝑡𝑑𝑓 We assume that 𝑋(𝑓 ) is a complex
aussian (i.e. circularly distributed) random variable with zero mean,
nd that the components of𝑋(𝑓 ) at any two frequencies spaced by more
han 1/𝑇 are statistically independent (Bendat and Piersol, 2010, eq
11.114)). We define the power spectrum as 𝑆𝑥𝑥(𝑓 ) =

1
𝑇 ⟨𝑋

∗(𝑓 )𝑋(𝑓 )⟩ =
1
⟨|𝑋(𝑓 )|2⟩ where the brackets denote the mathematical expectation.
𝑇
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Fig. 4. Top left: cost function in (15) (normalized by minimizer value), and minimizer (𝑎̄, 𝑑ℎ) represented in red. Bottom: LF force estimated from (16) ± one standard deviation
of the estimated 𝜏𝑤 across the tests. Top right: power spectrum of 𝜏𝑤.
Fig. 5. Sensitivity of the system as defined in (17) for the mooring stiffness and damping parameters in Table 2.
Fig. 6. Consequence of a 2% error on the assumed natural frequency in the deconvolution. Amplitude (top) and phase (bottom) of the error shown for systems with various
eigenfrequencies (3 curves) and damping ratios (4 columns).
7
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In this section, we will denote the force 𝑦(𝑡), instead of 𝜏𝑤, as it is the
typical notation used for outputs in signal processing. The definitions
of important terms used in the following are given in Table 3. This
table also draws a parallel between concepts used in linear signal
analysis with which most readers are familiar with, and second-order
signal analysis. Note that the notations used herein are consistent with
Volterra series expansions (e.g. use of the four quadrants of the bi-
frequency plane to describe the quadratic loads), that differ slightly
from other conventions, where 𝑦 is computed by a double sum over
positive frequencies only. We define the mean frequency 𝑓0 = (𝑓1 +
𝑓2)∕2 and the difference frequency 𝛥𝑓 = 𝑓2 −𝑓1. Note that the variable
change (𝑓0, 𝛥𝑓 ) ↔ (𝑓1, 𝑓2) has a Jacobian determinant of 1, meaning
hat integration over the bi-frequency domain of functions of (𝑓1, 𝑓2)
r (𝑓0, 𝛥𝑓 ) are equivalent.

The empirical QTF 𝐻 (2) is estimated by using Eq. (28) in Table 3.
he power spectrum of the output (LF wave loading) 𝑆𝑦𝑦 can be found
rom (30). To illustrate the mechanisms at play in these equations,
roofs are provided in Appendices B and C, respectively. Noteworthy,
wo assumptions are crucial to obtain these results: that the relationship
etween 𝑥 and 𝑦 should purely second-order, and the components
f 𝑋(𝑓 ) at any two frequencies spaced by more than 1/𝑇 should be
ncorrelated.

Deriving 𝐻 (2) from (28) also requires an estimate of the cross-bi-
pectrum 𝑆𝑥𝑥𝑦, defined in (26) as a mathematical expectation. Due to
he stochastic nature of the wave process, a number of realizations
f 𝑥(𝑡) and 𝑦(𝑡) tending to infinity4 would be needed to converge
owards 𝑆𝑥𝑥𝑦. In practice, only one or a few time series are available,
efined on a finite window 𝑡 ∈ [0, 𝑇 ]. It has however been shown that

averaging over 𝑛𝑑 adjacent frequency components from a single record
of total length 𝑇 = 𝑛𝑑𝑇𝑟 is equivalent (in terms of random error in
the estimate) to averaging over 𝑛𝑑 different records, each of reduced
ength 𝑇𝑟 (Bendat and Piersol, 2010, section 11.5). In other words,
he estimation of mathematical expectation of 𝑆𝑥𝑥𝑦, and hence 𝐻 (2),
y smoothing sets a stringent requirement on a sufficiently large test
uration 𝑇 . This requirement comes in addition to those discussed in
ection 3.3, related to the wave load estimation. In the present work,
he smoothing was performed by convolution with a Gaussian envelope,
s previously described in Stansberg (1997).

.2. Denoising of the QTF

Several authors have noted that, when 𝑥(𝑡) has a relatively narrow-
anded spectrum, then 𝐻 (2) is estimated accurately only for mean
requencies 𝑓0 near the peak of spectrum (Pinkster and Huijsmans,
992; Stansberg, 1997). This is due to the fact that the variance of the
aw cross-bi-spectrum 𝜒 increases fast, in comparison with ⟨𝜒⟩ when
𝑥𝑥 decreases (Stansberg, 1997, page 9). We propose to deal with this

ssue as follows. Based on Eqs. (19) and (22) in Stansberg (1997), we
efine the estimated signal-to-noise ratio of the cross-bi-spectrum as

(𝑓1, 𝑓2) = |𝐻 (2)(𝑓1, 𝑓2)|

√

𝑆𝑥𝑥(𝑓1)𝑆𝑥𝑥(𝑓2)
𝑇 ⋅ 𝑆𝑦𝑦(𝛥𝑓 )

(32)

We then cancel (set to zero) all components of 𝐻 (2) for which 𝜉 <
𝜉min, where 𝜉min is a minimum signal-to-noise ratio defined by the
analyst. In other words, we enforce no contribution from the QTF to
the output (wave loads) from areas in the bi-frequency plane where
we lack information to estimate the QTF properly. In reality, there
might be some contribution elsewhere in the bi-frequency plane, so, by
‘‘pruning’’ the QTF, we generally remove energy from the reconstructed
output signal. A heuristic way of alleviating this is therefore to re-scale
𝐻 (2), so as to match exactly the energy content of the output for each

4 Or an infinitely long testing period if one assumes ergodicity.
8
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difference-frequency, which can formally be written as:

∀𝛥𝑓 > 0,𝐻 (2)(𝑓0, 𝛥𝑓 ) ← 𝐻 (2)(𝑓0, 𝛥𝑓 )

√

𝑆𝑦𝑦,measured(𝛥𝑓 )
𝑆𝑦𝑦,estimated(𝛥𝑓 )

(33)

It should be noted that several authors suggest to assess and pos-
sibly alleviate the effect of statistical noise on 𝐻 (2) estimates, by
using the Hilbert transform 𝑥𝐻 (𝑡), and more particularly the complex
analytic signal 𝑥𝐴(𝑡) = 𝑥(𝑡) + 𝑖𝑥𝐻 (𝑡), whose module is the wave enve-
ope (Pinkster and Huijsmans, 1992; Stansberg, 1997). Indeed, applying

unit difference-frequency QTF 𝐻𝑢(𝑓1, 𝑓2) to the input wave signal
(𝑡), yields an output equal to |𝑥𝐴(𝑡)|

2∕2 (proof given in Appendix D).
o comparing 𝐻𝑢, estimated from the pair (𝑥(𝑡), |𝑥𝐴(𝑡)|

2∕2), with the
nit difference-frequency QTF, can provide some information about
he quality of the estimate of 𝐻 (2) obtained from the pair (𝑥(𝑡), 𝑦(𝑡)).
his assessment is useful to detect where assumptions discussed in
ection 4.1 might be violated. A possibility is then to re-normalize the
(2) by 𝐻𝑢, which was not found necessary here.

.3. Benchmark of the procedure against a known QTF

In order to verify the procedure above on a purely 2nd-order
rocess, we define the following QTF, with bell-shaped amplitude,
nd a phase linearly varying with difference-frequency: (2)(𝑓1, 𝑓2) =
(𝑓1, 𝑓2)𝑒𝑖(𝑓1 ,𝑓2) where

(𝑓1, 𝑓2) = 0 exp

(

−
(𝑓1 − 𝑓𝑏)2

2𝜎2𝑏
−

(𝑓2 − 𝑓𝑏)2

2𝜎2𝑏

)

(34)

and 0 = 100 kN/m2, 𝑓𝑏 = 0.1 Hz, 𝜎𝑏 = 7.96 mHz, and (𝑓1, 𝑓2) =
𝑓1 − 𝑓2) × 67.8 × 10−3[𝑜∕Hz]. The same wave time series 𝑥(𝑡) as used
n Section 3, is used, with 𝑇𝑝 = 1∕𝑓𝑏. The QTF estimation procedure
ncluding reconstruction of the time series takes one second on a
ommon laptop.

The estimated QTF is compared, in Fig. 7, to (2) for three values of
he difference frequency. Two correspond to lower and upper periods
‘bounds’’ of 100 s and 250 s that are relevant for typical offshore
ystems. The third one, corresponds to 169 s, which is the natural
eriod in surge of the actual asset described in Section 2. According to
he proposed method, the QTF estimate is made only for bi-frequencies
t which 𝜉(𝑓1, 𝑓2) was larger than the upper 10th percentile of 𝜉. This
esults in a rather narrow band of 0.02 Hz, centered on 1∕𝑇𝑝 = 0.1 Hz.
he match in the amplitude is acceptable, with an error on the order
f 10%. The error on the phase is of the order of 15◦ .

It can be noticed that the relative error in amplitude and phase
ncreases with increasing 𝛥𝑓 , which can be explained by the fact
hat for a ‘‘peaky’’ spectrum such as the one used here (see Fig. 3),
𝑥𝑥(1∕𝑇𝑝)𝑆𝑥𝑥(1∕𝑇𝑝+𝛥𝑓∕2), and thus 𝜉, decrease fast with 𝛥𝑓 . Note also

hat the amplitude (𝑓1, 𝑓2) of our benchmark QTF also decreases in
odule with 𝛥𝑓 . The original and reconstructed output are compared

n Fig. 8. As (33) has been applied, their spectra agree well by construc-
ion. Differences between the reconstructed output time series can be
oticed, originating from the truncation of the QTF and the estimation
rrors described above, but the main features of the time series are
ell captured. The 𝐿2 error between the time series is of 5.1%, and the
mplitude of the maxima are reasonably well captured. The estimation
ould be acceptable in an engineering context.

.4. Application to the FPSO

The same procedure is applied to 𝑦(𝑡) = 𝜏𝑤(𝑡), the surge force on
he FPSO estimated in Section 3, based on the same wave input 𝑥(𝑡).
he estimated empirical QTF is compared to results obtained with 2nd
rder potential theory by the EXWAVE project (Fonseca and Stansberg,
017). Results are shown in Fig. 9. Compared to the analytical case
n the previous section, the support of 𝐻 (2) is about twice wider, and
t results on a wider range of 𝜉 values, even if 𝑆 is the same as in
𝑥𝑥
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Table 3
Definitions of terms, and parallels between concepts used in first- and second-order process analysis.
Linear analysis Quadratic analysis

Linear Transfer Function (LTF) Quadratic Transfer Function (QTF)

𝑦(1)(𝑡) = ∫

∞

−∞
𝐻 (1)(𝑓 )𝑋(𝑓 )𝑒𝑖2𝜋𝑓𝑡𝑑𝑓 (20) 𝑦(2)(𝑡) = ∬

∞

−∞
𝐻 (2)(𝑓1 , 𝑓2)𝑋∗(𝑓1)𝑋(𝑓2)𝑒𝑖2𝜋(𝑓2−𝑓1 )𝑡𝑑𝑓1𝑑𝑓2 (21)

𝑦(2)(𝑡) = ∫

∞

−∞

(

∫

∞

−∞
𝐻 (2)(𝑓0 , 𝛥𝑓 )𝑋∗(𝑓0 −

𝛥𝑓
2

)𝑋(𝑓0 +
𝛥𝑓
2

)𝑑𝑓0

)

𝑒𝑖2𝜋𝛥𝑓𝑡𝑑𝛥𝑓 (22)

Fourier coefficient output Fourier coefficient output

𝑌 (1)(𝑓 ) = 𝐻 (1)(𝑓 )𝑋(𝑓 ) (23) 𝑌 (2)(𝛥𝑓 ) = ∫

∞

−∞
𝐻 (2)(𝑓0 , 𝛥𝑓 )𝑋∗(𝑓0 −

𝛥𝑓
2

)𝑋(𝑓0 +
𝛥𝑓
2

)𝑑𝑓0 (24)

Cross-spectrum Cross-bi-spectrum
𝑆𝑥𝑦(𝑓 ) = 1∕𝑇 ⟨𝑋∗(𝑓 )𝑌 (𝑓 )⟩ (25) 𝑆𝑥𝑥𝑦(𝑓1 , 𝑓2) =

1
𝑇
⟨𝜒(𝑓1 , 𝑓2)⟩ =

1
𝑇
⟨𝑋(𝑓1)𝑋∗(𝑓2)𝑌 (𝛥𝑓 )⟩ (26)

LTF estimation QTF estimation

𝐻 (1)(𝑓 ) =
𝑆𝑥𝑦(𝑓 )
𝑆𝑥𝑥(𝑓 )

(27) 𝐻 (2)(𝑓1 , 𝑓2) =
𝑆𝑥𝑥𝑦(𝑓1 , 𝑓2)

𝑆𝑥𝑥(𝑓1)𝑆𝑥𝑥(𝑓2)
(28)

Power spectrum output Power spectrum output

𝑆𝑦𝑦(𝑓 ) = |𝐻 (1)(𝑓 )|2𝑆𝑥𝑥(𝑓 ) (29) 𝑆𝑦𝑦(𝛥𝑓 ) = ∫

∞

−∞
|𝐻 (2)(𝑓0 , 𝛥𝑓 )|

2𝑆𝑥𝑥(𝑓0 −
𝛥𝑓
2

)𝑆𝑥𝑥(𝑓0 +
𝛥𝑓
2

)𝑑𝑓0 (30)

Coherence function

𝐶𝑥𝑦(𝑓 ) =
𝑆𝑥𝑦(𝑓 )

√

𝑆𝑥𝑥(𝑓 )𝑆𝑦𝑦(𝑓 )
(31)
Fig. 7. Comparison of the amplitude (middle) and phase (right) of the estimated QTF 𝐻 (2) (thick dots) and true QTF (2) (thin line). Left: 𝜉(𝑓1 , 𝑓2)∕𝜉max, and difference frequencies
of interest, represented as diagonals of the bi-frequency plane.
Fig. 8. Comparison between the original (black) and reconstructed (red) time series (left) and power spectra (right) for the original.
the analytical verification case. The agreement between the numerical
and empirical QTFs is fair. A first amplitude peak is visible near the
(uncoupled) eigenfrequency 𝑓heave = 0.088 Hz. A second amplitude
top can be observed at a mean frequency 𝑓0, slightly beyond 𝑓pitch =
0.103 Hz. Quantitatively, |𝐻 (2)

| predicted by the numerical and empir-
ical methods differ by less than 10% for 𝑓0 < 𝑓pitch, deteriorating when
𝑓0 differs from the peak frequency of the wave spectrum. The phase
angle of 𝐻 (2) is rather small on the 𝑓0 range of interest. For 𝑓0 > 0.1 Hz
and 𝛥𝑓 = 10mHz, the numerical method predicts an increasing phase
with 𝑓0, which is captured by the cross-bi-spectral analysis, but at
a slightly higher difference frequency (phase of +50 ◦ for (𝑓0, 𝛥𝑓 ) =
(0.14 Hz,13 mHz)).

The numerical and experimental QTFs are used, together with the
LF damping and added mass estimated empirically in Section 3.1, to
reconstruct motions, for all external damping and restoring parameters
listed in Table 2. These motions are compared in Fig. 10, with motions
measured in the laboratory. Excellent agreement is found in this sea-
state between measurements, numerical and empirical estimations. It
9

is clear that the empirical (and numerical) QTF, combined with the
LF added mass and damping estimated empirically lead to satisfac-
tory estimates of the motions for whole range of mooring damping
and stiffness, confirming the adequacy of the simplified hydrodynamic
model (11) and estimated parameters. Note that the results (QTF and
damping ratios) obtained in a systematic manner here are consistent
with those obtained previously by the arguably less robust trial-and-
error method described in Section 1 (deconvolution using guessed
oscillator parameters) and used in Fonseca and Stansberg (2017).

5. Conclusion

We outlined a new method to estimate empirically the
low-frequency damping, added-mass, and wave excitation load 𝜏𝑤,
which is of practical interest for the calibration of numerical models
of floating structures. The proposed method alleviates issues related to
the poor identifiability for systems with very narrow-banded response
(due to e.g. little damping), enabling, in particular, to distinguish LF
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Fig. 9. Amplitude (middle) and phase (right) of the empirical QTF (thick dots) and numerical QTF (thin line). Left: 𝜉(𝑓1 , 𝑓2)∕𝜉max and difference frequencies of interest.
Fig. 10. Time series (left) and power spectrum (right) of the wave force (top) and resulting motions. Results obtained with the estimated empirical QTF are plotted in red, and
with the numerical QTF in blue. In all cases, the LF damping and added-mass estimated empirically was used. Motions measurements are in black. The external stiffness and
damping applied to each case 1–5 are listed in Table 2.
damping (response-dependent) from external excitation loads 𝜏𝑤 (as-
sumed to be response-independent) in a robust manner. The frequency
range on which 𝜏𝑤 is estimated reliably is increased as compared to
10
traditional methods based on passive soft mooring, as the sensitivity of
the setup can now be tuned. From 𝜏𝑤, empirical difference-frequency
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QTFs are established using cross-bi-spectral analysis, discarding auto-
matically regions of the bi-frequency plane where comparatively little
information is available from the experiments.

We validated the novel method by considering a previously-studied
FPSO, undergoing surge motions in head seas. The estimated LF damp-
ing was found to be in agreement with previous experimental studies,
and the estimated QTF was consistent with 2nd order potential the-
ory, as expected for moderate sea-states and in absence of current.
Good agreement between re-constructed and measured motions were
obtained for a wide range of external damping and stiffness, which
indicated that the simple model structure in Eq. (11), i.e. a linear
oscillator excited by a second-order process, was adequate to model
LF motions for the case at hand.

The advances presented here, were enabled by a newly developed
active positioning system, that applies a freely-chosen and determin-
istic linear restoring and damping load based on LF motions only.
This method can therefore be categorized as cyber–physical, or hybrid,
in the same way as earlier developments made by the author and
collaborators to study floating wind turbines (Sauder et al., 2016).

In Fonseca and Stansberg (2017), significant discrepancies between
numerical and empirical QTFs were shown to appear in harsher sea-
states (larger 𝐻𝑠) and in presence of current. Further work includes
pplying the present method to such conditions and to other types
loaters for which viscous effects matter. Systematic studies employing
his method will contribute to improve our understanding of the na-
ure of nonlinear hydrodynamic loads and, in long term, enhance our
odeling capabilities.
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ppendix A. Isserlis’ theorem

Let 𝐴 = {𝛼1,… , 𝛼𝑁} be a set of integers such that 1 ≤ 𝛼𝑖 ≤ 𝑑 for all
, and let 𝑋 ∈ R𝑑 be a Gaussian vector with zero mean. If 𝑁 is odd,
hen ⟨𝑋𝐴⟩ = 0. If 𝑁 is even, then

𝑋𝐴⟩ =
∑

𝜎∈𝛱(𝐴)

∏

𝑖∈𝐴∕𝜎
⟨𝑋𝛼𝑖𝑋𝛼𝜎(𝑖) ⟩ (A.1)

In particular, for 𝐴 = {1, 2, 3, 4} we have

𝑋1𝑋2𝑋3𝑋4⟩ = ⟨𝑋1𝑋2⟩⟨𝑋3𝑋4⟩ + ⟨𝑋1𝑋3⟩⟨𝑋2𝑋4⟩ + ⟨𝑋1𝑋4⟩⟨𝑋2𝑋3⟩ (A.2)
11
ppendix B. Fundamental equation of the cross-bi-spectral analy-
is

Proof that 𝑆𝑥𝑥𝑦(𝑓1, 𝑓2) = 𝐻 (2)(𝑓1, 𝑓2)𝑆𝑥𝑥(𝑓1)𝑆𝑥𝑥(𝑓2). We denote
(𝑓1, 𝑓2) = 𝑋(𝑓1)𝑋∗(𝑓2)𝑌 (𝑓2 − 𝑓1) the raw complex cross-bi-spectrum.

⟨𝜒(𝑓1, 𝑓2)⟩ = ⟨𝑋(𝑓1)𝑋∗(𝑓2)𝑌 (𝛥𝑓 )⟩

= ⟨𝑋(𝑓0 −
𝛥𝑓
2

)𝑋∗(𝑓0 +
𝛥𝑓
2

)
(

∫

∞

−∞
𝐻 (2)(𝑓 ′

0, 𝛥𝑓 )𝑋
∗

× (𝑓 ′
0 −

𝛥𝑓
2

)𝑋(𝑓 ′
0 +

𝛥𝑓
2

)𝑑𝑓 ′
0

)

⟩

= ⟨∫

∞

−∞
𝐻 (2)(𝑓 ′

0, 𝛥𝑓 )𝑋(𝑓0 −
𝛥𝑓
2

)𝑋∗

×(𝑓0 +
𝛥𝑓
2

)𝑋∗(𝑓 ′
0 −

𝛥𝑓
2

)𝑋(𝑓 ′
0 +

𝛥𝑓
2

)𝑑𝑓 ′
0⟩

= ∫

∞

−∞
𝐻 (2)(𝑓 ′

0, 𝛥𝑓 )⟨𝑋(𝑓0 −
𝛥𝑓
2

)𝑋∗

×(𝑓0 +
𝛥𝑓
2

)𝑋∗(𝑓 ′
0 −

𝛥𝑓
2

)𝑋(𝑓 ′
0 +

𝛥𝑓
2

)⟩𝑑𝑓 ′
0

e now apply (A.2). Since 𝑋(𝑓1) and 𝑋(𝑓2) are uncorrelated if |𝑓1 − 𝑓2|
1∕𝑇 , combinations of 𝑓0 +

𝛥𝑓
2 and 𝑓0 −

𝛥𝑓
2 factors vanish, and only

the second term in (A.2) remains.

⟨𝜒(𝑓1, 𝑓2)⟩ = ∫

∞

−∞
𝐻 (2)(𝑓 ′

0, 𝛥𝑓 )⟨𝑋(𝑓0 −
𝛥𝑓
2

)𝑋∗(𝑓 ′
0 −

𝛥𝑓
2

)⟩

× ⟨𝑋∗(𝑓0 +
𝛥𝑓
2

)𝑋(𝑓 ′
0 +

𝛥𝑓
2

)⟩𝑑𝑓 ′
0

gain, correlation only if |𝑓 ′
0 − 𝑓0| < 1∕𝑇 , so the integrand is nonnull

nly on a 𝛥𝑓 wide interval centered on 𝑓0.

⟨𝜒(𝑓1, 𝑓2)⟩ = 1
𝑇
𝐻 (2)(𝑓1, 𝑓2)⟨|𝑋(𝑓1)|

2
⟩⟨|𝑋(𝑓2)|

2
⟩

⟨𝜒(𝑓1, 𝑓2)⟩ = 1
𝑇
𝐻 (2)(𝑓1, 𝑓2)(𝑇𝑆𝑥𝑥(𝑓1))(𝑇𝑆𝑥𝑥(𝑓2))

𝑥𝑥𝑦(𝑓1, 𝑓2) = 1
𝑇
⟨𝜒(𝑓1, 𝑓2)⟩ = 𝐻 (2)(𝑓1, 𝑓2)𝑆𝑥𝑥(𝑓1)𝑆𝑥𝑥(𝑓2)

ppendix C. Power spectrum of the output

Proof that 𝑆𝑦𝑦(𝛥𝑓 ) ∶= 1
𝑇 ⟨|𝑌 (𝛥𝑓 )|

2
⟩ = ∫ ∞

−∞ |𝐻 (2)(𝑓0, 𝛥𝑓 )|
2

𝑆𝑥𝑥(𝑓0 −
𝛥𝑓
2 )𝑆𝑥𝑥(𝑓0 +

𝛥𝑓
2 )𝑑𝑓0

⟨|𝑌 (𝛥𝑓 )|2⟩ = ⟨𝑌 (𝛥𝑓 )𝑌 ∗(𝛥𝑓 )⟩

= ⟨∫

∞

−∞
𝐻 (2)(𝑓 ′

0, 𝛥𝑓 )𝑋
∗(𝑓 ′

0 −
𝛥𝑓
2

)𝑋(𝑓 ′
0 +

𝛥𝑓
2

)𝑑𝑓 ′
0 ∫

∞

−∞
𝐻 (2)∗

×(𝑓 ′′
0 , 𝛥𝑓 )𝑋(𝑓 ′′

0 −
𝛥𝑓
2

)𝑋∗(𝑓 ′′
0 +

𝛥𝑓
2

)𝑑𝑓 ′′
0 ⟩

= ⟨∬

∞

−∞
𝐻 (2)(𝑓 ′

0, 𝛥𝑓 )𝑋
∗(𝑓 ′

0 −
𝛥𝑓
2

)𝑋(𝑓 ′
0 +

𝛥𝑓
2

)𝐻 (2)∗(𝑓 ′′
0 , 𝛥𝑓 )

×𝑋(𝑓 ′′
0 −

𝛥𝑓
2

)𝑋∗(𝑓 ′′
0 +

𝛥𝑓
2

)𝑑𝑓 ′
0𝑑𝑓

′′
0 ⟩

= ∬

∞

−∞
𝐻 (2)(𝑓 ′

0, 𝛥𝑓 )𝐻
(2)∗(𝑓 ′′

0 , 𝛥𝑓 )⟨𝑋
∗(𝑓 ′

0 −
𝛥𝑓
2

)𝑋(𝑓 ′
0 +

𝛥𝑓
2

)

×𝑋(𝑓 ′′
0 −

𝛥𝑓
2

)𝑋∗(𝑓 ′′
0 +

𝛥𝑓
2

)⟩𝑑𝑓 ′
0𝑑𝑓

′′
0

Applying (A.2) to the previous equation, the first term vanishes as
∗(𝑓 ′

0−
𝛥𝑓
2 ) and 𝑋(𝑓 ′

0+
𝛥𝑓
2 ) are always uncorrelated, and the third term

⟨𝑋∗(𝑓 ′
0 −

𝛥𝑓
2 )𝑋∗(𝑓 ′′

0 + 𝛥𝑓
2 )⟩⟨𝑋(𝑓 ′

0 +
𝛥𝑓
2 )𝑋(𝑓 ′′

0 − 𝛥𝑓
2 )⟩ vanishes, due to the

fact that 𝑋(𝑓 ′) 𝑎𝑛𝑑𝑋(𝑓 ′′) are only correlated if |𝑓 ′ − 𝑓 ′′
| < 𝛥𝑓 . Keeping

nly the second term, we obtain that

|𝑌 (𝛥𝑓 )|2⟩ = ∬

∞

−∞
𝐻 (2)(𝑓 ′

0, 𝛥𝑓 )𝐻
(2)∗(𝑓 ′′

0 , 𝛥𝑓 )⟨𝑋
∗(𝑓 ′

0 −
𝛥𝑓
2

)𝑋

× (𝑓 ′′
0 −

𝛥𝑓
2

)⟩⟨𝑋(𝑓 ′
0 +

𝛥𝑓
2

)𝑋∗(𝑓 ′′
0 +

𝛥𝑓
2

)⟩𝑑𝑓 ′
0𝑑𝑓

′′
0

= 1∕𝑇 ∫

∞

−∞
𝐻 (2)(𝑓0, 𝛥𝑓 )𝐻 (2)∗(𝑓0, 𝛥𝑓 )⟨𝑋∗(𝑓0 −

𝛥𝑓
2

)𝑋

× (𝑓 −
𝛥𝑓

)⟩⟨𝑋(𝑓 +
𝛥𝑓

)𝑋∗(𝑓 +
𝛥𝑓

)⟩𝑑𝑓
0 2 0 2 0 2 0
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= 1∕𝑇 ∫

∞

−∞
|𝐻 (2)(𝑓0, 𝛥𝑓 )|2⟨|𝑋(𝑓0 −

𝛥𝑓
2

)|2⟩

× ⟨|𝑋(𝑓0 +
𝛥𝑓
2

)|2⟩𝑑𝑓0

= 𝑇 ∫

∞

−∞
|𝐻 (2)(𝑓0, 𝛥𝑓 )|

2𝑆𝑥𝑥(𝑓0 −
𝛥𝑓
2

)𝑆𝑥𝑥(𝑓0 +
𝛥𝑓
2

)𝑑𝑓0

which proves the result.

Appendix D. Relationship between wave group envelope and unit
QTF

Let 𝑈 (𝑡) be the signal obtained when applying a unit one-sided
difference-frequency QTF to an input 𝑥(𝑡)

𝑈 (𝑡) = ∬

∞

−∞
𝐻 (2)(𝑓1, 𝑓2)𝑋∗(𝑓1)𝑋(𝑓2)𝑒𝑖2𝜋(𝑓2−𝑓1)𝑡𝑑𝑓1𝑑𝑓2 (D.1)

= 2∬

∞

0
𝑋∗(𝑓1)𝑋(𝑓2)𝑒𝑖2𝜋(𝑓2−𝑓1)𝑡𝑑𝑓1𝑑𝑓2 (D.2)

= 2∬

∞

0
𝑋∗(𝑓1)𝑒−𝑖2𝜋𝑓1𝑡𝑋(𝑓2)𝑒𝑖2𝜋𝑓2𝑡𝑑𝑓1𝑑𝑓2 (D.3)

= 2∫

∞

0
𝑋∗(𝑓1)𝑒−𝑖2𝜋𝑓1𝑡𝑑𝑓1 ∫

∞

0
𝑋(𝑓2)𝑒𝑖2𝜋𝑓2𝑡𝑑𝑓2 (D.4)

= 2
(

∫

∞

0
𝑋(𝑓 )𝑒𝑖2𝜋𝑓𝑡𝑑𝑓

)∗ (

∫

∞

0
𝑋(𝑓 )∗𝑒𝑖2𝜋𝑓𝑡𝑑𝑓

)

(D.5)

= 2|
(

∫

∞

0
𝑋(𝑓 )𝑒𝑖2𝜋𝑓𝑡𝑑𝑓

)

|

2 = 1
2
|

(

∫

∞

0
2𝑋(𝑓 )𝑒𝑖2𝜋𝑓𝑡𝑑𝑓

)

|

2 (D.6)

= 1
2
|

(

∫

∞

−∞
𝑋𝐴(𝑓 )𝑒𝑖2𝜋𝑓𝑡𝑑𝑓

)

|

2 = 1
2
|𝑥𝐴(𝑡)|

2 (D.7)

here 𝑥𝐴 is the (complex) analytic signal, whose real part is 𝑥(𝑡) and
maginary part is the Hilbert transform of 𝑥(𝑡). The module of 𝑥𝐴 is
lassically denoted the envelope of 𝑥. The Fourier components of 𝑥𝐴
re null for negative frequencies, and twice those of 𝑥 for positive
requencies.

eferences

ksnes, V., Berthelsen, P.A., Da Fonseca, N.M.M.D., 2015. On the need for calibration of
numerical models of large floating units against experimental data. In: The Twenty-
Fifth International Ocean and Polar Engineering Conference. International Society
of Offshore and Polar Engineers.

endat, J.S., Piersol, A.G., 2010. Random Data: Analysis and Measurement Procedures,
fourth ed. In: Wiley Series in Probability and Statistics, Wiley, Hoboken, N.J.

unnik, T., Huijsmans, R., Namba, Y., 2006. Identification of quadratic responses of
floating structures in waves. In: The Sixteenth International Offshore and Polar
Engineering Conference. International Society of Offshore and Polar Engineers.

e Hauteclocque, G., Rezende, F., Waals, O., Chen, X.-B., 2012. Review of approx-
imations to evaluate second-order low-frequency load. In: Volume 1: Offshore
Technology. American Society of Mechanical Engineers, Rio de Janeiro, Brazil, pp.
363–371. http://dx.doi.org/10.1115/OMAE2012-83407.

ngebretsen, E., Pan, Z., Fonseca, N., 2020. Second-order difference-frequency loads on
FPSOs by full QTF and relevant approximations. In: Volume 1: Offshore Technology.
American Society of Mechanical Engineers, Virtual, Online, http://dx.doi.org/10.
1115/OMAE2020-18132.
12
altinsen, O.M., 1993. Sea Loads on Ships and Offshore Structures. In: Cambridge Ocean
Technology Series.

onseca, N., Ommani, B., Stansberg, C., Bøckmann, A., Birknes-Berg, J., Nestegård, A.,
de Hauteclocque, G., Baarholm, R., 2017. Wave forces and low frequency drift
motions in extreme seas: benchmark studies. In: Offshore Technology Conference.
Offshore Technology Conference, Houston, Texas, USA, http://dx.doi.org/10.4043/
27803-MS.

onseca, N., Stansberg, C.T., 2017. Wave drift forces and low frequency damping on
the exwave FPSO. In: Proceedings of the ASME 2017 36th International Conference
on Ocean, Offshore and Arctic Engineering. http://dx.doi.org/10.1115/OMAE2017-
62540.

ossen, T.I., 2011. Handbook of Marine Craft Hydrodynamics and Motion Control. John
Wiley & Sons, Ltd.

ossen, T.I., Strand, J.P., 1999. Passive nonlinear observer design for ships using
Lyapunov methods: Full-scale experiments with a supply vessel. Automatica 35
(1), 3–16. http://dx.doi.org/10.1016/S0005-1098(98)00121-6.

rue, J., Palm, E., 1996. Wave drift damping of floating bodies in slow yaw motion.
J. Fluid Mech. 319 (-1), 323. http://dx.doi.org/10.1017/S0022112096007367.

im, N., 2004. Extraction of the Second-Order Nonlinear Response from Model Test
Data in Random Seas and Comparison of the Gaussian and Non-Gaussian Models
(Ph.D. thesis). Texas A&M University.

inoshita, T., Bao, W., Yoshida, M., Ishibashi, K., 2002. Wave-drift added mass of
a cylinder array free to respond to the incident waves. In: 21st International
Conference on Offshore Mechanics and Arctic Engineering, Volume 4. Oslo,
Norway, pp. 645–652. http://dx.doi.org/10.1115/OMAE2002-28442.

olin, B., 2002. Hydrodynamique Des Structures Offshore. Editions Technip, Paris.
mmani, B., Fonseca, N., Stansberg, C.T., 2017. Simulation of low frequency motions

in severe seastates accounting for wave-current interaction effects. In: ASME
2017 36th International Conference on Ocean, Offshore and Arctic Engineering.
Trondheim, Norway, http://dx.doi.org/10.1115/OMAE2017-62550.

inkster, J., 1979. Mean and low frequency wave drifting forces on floating structures.
Ocean Eng. 6 (6), 593–615. http://dx.doi.org/10.1016/0029-8018(79)90010-6.

inkster, J., 1980. Low Frequency Second Order Wave Excitation Forces on Floating
Structures (Ph.D. thesis). Delft University of Technology.

inkster, J., Huijsmans, R., 1992. Wave drift forces in shallow water. In: BOSS.
ogne, Ø.Y., Haug, N., Lø ken, R., 2016. An improved method for model test based

identification of drift coefficients and damping for floating platforms. In: Offshore
Technology Conference.

ugh, W.J., 1981. Nonlinear System Theory: the Volterra/Wiener Approach. The Johns
Hopkins University Press.

auder, T., Chabaud, V., Thys, M., Bachynski, E.E., Sæther, L.O., 2016. Real-time hybrid
model testing of a braceless semi-submersible wind turbine. part i: the hybrid
approach. In: ASME 2016 35th International Conference on Ocean, Offshore and
Arctic Engineering.

auder, T., Tahchiev, G., 2020. From soft mooring system to active positioning in
laboratory experiments. In: Proceedings of the ASME 2020 39th International
Conference on Ocean, Offshore and Arctic Engineering.

tansberg, C.T., 1997. Linear and nonlinear system identification in model testing. In:
International Conference on Non-Linear Aspects of Physical Model Tests. OTRC,
Texas A&M University, Collage Station, Texas, USA.

eland, E., Sauder, T., Skjetne, R., 2021. Force tracking using actuated winches with
position-controlled motors for use in hydrodynamical model testing. IEEE Access
1. http://dx.doi.org/10.1109/ACCESS.2021.3083539.

ilsen, S., Sauder, T., Sø rensen, A.J., 2017. Real-time hybrid model testing of moored
floating structures using nonlinear finite element simulations. In: Dynamics of
Coupled Structures. In: Conference Proceedings of the Society for Experimental
Mechanics Series, vol. 4, Springer International Publishing, pp. 79–92.

oshida, M., Kinoshita, T., Bao, W., 2005. Nonlinear hydrodynamic forces on an
accelerated bodv in waves. J. Offshore Mech. Arct. Eng. 127.

http://refhub.elsevier.com/S0141-1187(21)00366-7/sb1
http://refhub.elsevier.com/S0141-1187(21)00366-7/sb1
http://refhub.elsevier.com/S0141-1187(21)00366-7/sb1
http://refhub.elsevier.com/S0141-1187(21)00366-7/sb1
http://refhub.elsevier.com/S0141-1187(21)00366-7/sb1
http://refhub.elsevier.com/S0141-1187(21)00366-7/sb1
http://refhub.elsevier.com/S0141-1187(21)00366-7/sb1
http://refhub.elsevier.com/S0141-1187(21)00366-7/sb2
http://refhub.elsevier.com/S0141-1187(21)00366-7/sb2
http://refhub.elsevier.com/S0141-1187(21)00366-7/sb2
http://refhub.elsevier.com/S0141-1187(21)00366-7/sb3
http://refhub.elsevier.com/S0141-1187(21)00366-7/sb3
http://refhub.elsevier.com/S0141-1187(21)00366-7/sb3
http://refhub.elsevier.com/S0141-1187(21)00366-7/sb3
http://refhub.elsevier.com/S0141-1187(21)00366-7/sb3
http://dx.doi.org/10.1115/OMAE2012-83407
http://dx.doi.org/10.1115/OMAE2020-18132
http://dx.doi.org/10.1115/OMAE2020-18132
http://dx.doi.org/10.1115/OMAE2020-18132
http://refhub.elsevier.com/S0141-1187(21)00366-7/sb6
http://refhub.elsevier.com/S0141-1187(21)00366-7/sb6
http://refhub.elsevier.com/S0141-1187(21)00366-7/sb6
http://dx.doi.org/10.4043/27803-MS
http://dx.doi.org/10.4043/27803-MS
http://dx.doi.org/10.4043/27803-MS
http://dx.doi.org/10.1115/OMAE2017-62540
http://dx.doi.org/10.1115/OMAE2017-62540
http://dx.doi.org/10.1115/OMAE2017-62540
http://refhub.elsevier.com/S0141-1187(21)00366-7/sb9
http://refhub.elsevier.com/S0141-1187(21)00366-7/sb9
http://refhub.elsevier.com/S0141-1187(21)00366-7/sb9
http://dx.doi.org/10.1016/S0005-1098(98)00121-6
http://dx.doi.org/10.1017/S0022112096007367
http://refhub.elsevier.com/S0141-1187(21)00366-7/sb12
http://refhub.elsevier.com/S0141-1187(21)00366-7/sb12
http://refhub.elsevier.com/S0141-1187(21)00366-7/sb12
http://refhub.elsevier.com/S0141-1187(21)00366-7/sb12
http://refhub.elsevier.com/S0141-1187(21)00366-7/sb12
http://dx.doi.org/10.1115/OMAE2002-28442
http://refhub.elsevier.com/S0141-1187(21)00366-7/sb14
http://dx.doi.org/10.1115/OMAE2017-62550
http://dx.doi.org/10.1016/0029-8018(79)90010-6
http://refhub.elsevier.com/S0141-1187(21)00366-7/sb17
http://refhub.elsevier.com/S0141-1187(21)00366-7/sb17
http://refhub.elsevier.com/S0141-1187(21)00366-7/sb17
http://refhub.elsevier.com/S0141-1187(21)00366-7/sb18
http://refhub.elsevier.com/S0141-1187(21)00366-7/sb19
http://refhub.elsevier.com/S0141-1187(21)00366-7/sb19
http://refhub.elsevier.com/S0141-1187(21)00366-7/sb19
http://refhub.elsevier.com/S0141-1187(21)00366-7/sb19
http://refhub.elsevier.com/S0141-1187(21)00366-7/sb19
http://refhub.elsevier.com/S0141-1187(21)00366-7/sb20
http://refhub.elsevier.com/S0141-1187(21)00366-7/sb20
http://refhub.elsevier.com/S0141-1187(21)00366-7/sb20
http://refhub.elsevier.com/S0141-1187(21)00366-7/sb21
http://refhub.elsevier.com/S0141-1187(21)00366-7/sb21
http://refhub.elsevier.com/S0141-1187(21)00366-7/sb21
http://refhub.elsevier.com/S0141-1187(21)00366-7/sb21
http://refhub.elsevier.com/S0141-1187(21)00366-7/sb21
http://refhub.elsevier.com/S0141-1187(21)00366-7/sb21
http://refhub.elsevier.com/S0141-1187(21)00366-7/sb21
http://refhub.elsevier.com/S0141-1187(21)00366-7/sb23
http://refhub.elsevier.com/S0141-1187(21)00366-7/sb23
http://refhub.elsevier.com/S0141-1187(21)00366-7/sb23
http://refhub.elsevier.com/S0141-1187(21)00366-7/sb23
http://refhub.elsevier.com/S0141-1187(21)00366-7/sb23
http://dx.doi.org/10.1109/ACCESS.2021.3083539
http://refhub.elsevier.com/S0141-1187(21)00366-7/sb25
http://refhub.elsevier.com/S0141-1187(21)00366-7/sb25
http://refhub.elsevier.com/S0141-1187(21)00366-7/sb25
http://refhub.elsevier.com/S0141-1187(21)00366-7/sb25
http://refhub.elsevier.com/S0141-1187(21)00366-7/sb25
http://refhub.elsevier.com/S0141-1187(21)00366-7/sb25
http://refhub.elsevier.com/S0141-1187(21)00366-7/sb25
http://refhub.elsevier.com/S0141-1187(21)00366-7/sb26
http://refhub.elsevier.com/S0141-1187(21)00366-7/sb26
http://refhub.elsevier.com/S0141-1187(21)00366-7/sb26

	Empirical estimation of low-frequency nonlinear hydrodynamic loads on moored structures
	Introduction
	Numerical and empirical QTF estimation methods
	Main contributions, and structure of the paper

	Laboratory apparatus
	Estimation of LF position and velocity
	Applying restoring and damping loads
	Conclusion

	Estimation of LF hydrodynamic loads
	Example
	Deconvolution, and choice of km(i) and dm(i)
	A note on test duration, and conclusion

	Estimation of difference-frequency QTFs
	Cross-bi-spectral analysis
	Denoising of the QTF
	Benchmark of the procedure against a known QTF
	Application to the FPSO

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Appendix A. Isserlis' theorem
	Appendix B. Fundamental equation of the cross-bi-spectral analysis
	Appendix C. Power spectrum of the output
	Appendix D. Relationship between wave group envelope and unit QTF
	References


